offshore wind turbine operation under atmospheric icing

24
1 www.cesos.ntnu.no Author – Centre for Ships and Ocean Structures Offshore Wind Turbine Operation under Atmospheric Icing and Controller System Faults Mahmoud Etemaddar PhD Candidate, CeSOS 28 May 2013 CeSOS Conference Highlights Department of Marine Technology NTNU-Trondheim Norway www.cesos.ntnu.no M. Etemaddar– Centre for Ships and Ocean Structures

Upload: others

Post on 25-Oct-2021

10 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Offshore Wind Turbine Operation under Atmospheric Icing

1

www.cesos.ntnu.no Author – Centre for Ships and Ocean Structures

Offshore Wind Turbine Operationunder Atmospheric Icing and

Controller System FaultsMahmoud Etemaddar

PhD Candidate, CeSOS28 May 2013

CeSOS Conference HighlightsDepartment of Marine Technology

NTNU-Trondheim Norway

www.cesos.ntnu.no M. Etemaddar– Centre for Ships and Ocean Structures

Page 2: Offshore Wind Turbine Operation under Atmospheric Icing

2

www.cesos.ntnu.no Author – Centre for Ships and Ocean Structures

Outline

• Introduction• Wind Turbine Operational Conditions• Wind Turbine Operation under Atmospheric Icing• Wind Turbine Operation under Fault Condition• Conclusions

www.cesos.ntnu.no M. Etemaddar– Centre for Ships and Ocean Structures

Page 3: Offshore Wind Turbine Operation under Atmospheric Icing

3

www.cesos.ntnu.no Author – Centre for Ships and Ocean Structures

Deep Water Offshore Wind

Economic Production Cost WT Life Time : 20 Years

Introduction

Vast, Reliable, Economic

Primary challenge

www.cesos.ntnu.no M. Etemaddar– Centre for Ships and Ocean Structures

Page 4: Offshore Wind Turbine Operation under Atmospheric Icing

4

www.cesos.ntnu.no Author – Centre for Ships and Ocean Structures

Operational Conditions

100 Years Extreme WindIce Impact

EarthquakeLightning

Atmospheric IcingSystem Faults

20 Years Life Time

Normal Abnormal

Power ProductionStart Up

Shut DownDirection Change

Wind GustIdling

Rarely happeningStrongly Stochastic

Complicated PhysicsLimited KnowledgeLack of experience

Frequently happeningWeakly Stochastic

Relatively Simple PhysicsDeveloped Knowledge

Experience from onshore

More Research

www.cesos.ntnu.no M. Etemaddar– Centre for Ships and Ocean Structures

Page 5: Offshore Wind Turbine Operation under Atmospheric Icing

5

www.cesos.ntnu.no Author – Centre for Ships and Ocean Structures

Operational Conditions

All Wind TurbinesReduce the availability

Increase the Fatigue DamageExtreme Loads

Reduce the Life Time

2 Abnormal Operational Conditions

Atmospheric Icing Sub-System Faults

Wind Turbines in Cold Climate RegionsOperational Challenge

Aerodynamic DegradationVibration

Power Reduction

www.cesos.ntnu.no M. Etemaddar– Centre for Ships and Ocean Structures

Page 6: Offshore Wind Turbine Operation under Atmospheric Icing

6

www.cesos.ntnu.no Author – Centre for Ships and Ocean Structures

Atmospheric Icing

When is there a risk of atmospheric icing for offshore Wind Turbines ?

• Wherever there is sea icing !• Temperature bellow zero degree + Super cold water particles :

Fog, Rainfall, Wet snow, Sea spray

2 Examples of Offshore Wind Sites:

Gulf of Bothnia (Finland)Greenland Sea (Canada)

www.cesos.ntnu.no M. Etemaddar– Centre for Ships and Ocean Structures

Page 7: Offshore Wind Turbine Operation under Atmospheric Icing

7

www.cesos.ntnu.no Author – Centre for Ships and Ocean Structures

Atmospheric Icing Problem

1. Modeling the Atmospheric Icing 2. Aerodynamic Degradation3. Response Realization

Estimate Envi. Param.LWC, MVD, Temp, RH

Calculate Sys Param.AOA, RW, 2D Airfoil

To simulate icingIce Profile, Distribution

• HAWC2 ServoAeroElasic• NREL 5MW Reference• WS [3-25] m/s

• Langmuir A Icing model• Constant Parameters• Potential Flow Solver• Particle Trajectory

• T=[-20:-5], • LWC=[0,05:0,15]• MVD=[10:22] • RH= 100 %

Aerdynamic Calculationwith CFD

• K-Eps Turbulent Model• Transient Solver• Wind Tunnel Test • Surface Roughness

Modify the HAWC2 Aero. And St. Input Files

Simulate the Responseand post processing

• Extrapolation of Aerodynamics• Ice mass distribution

• Normal Operation• Shut Down • Parking

HAWC2

LEWICE

FLUENT

HAWC2

4 hours ice profile

3 main steps to study:

www.cesos.ntnu.no M. Etemaddar– Centre for Ships and Ocean Structures

Page 8: Offshore Wind Turbine Operation under Atmospheric Icing

8

www.cesos.ntnu.no Author – Centre for Ships and Ocean Structures

Effect of Icing on Airfoil Aerodynamics

CL: Lift Coefficients CD : Drag Coefficients

NACA64-618

www.cesos.ntnu.no M. Etemaddar– Centre for Ships and Ocean Structures

Page 9: Offshore Wind Turbine Operation under Atmospheric Icing

9

www.cesos.ntnu.no Author – Centre for Ships and Ocean Structures

Bellow Rated : 0 Deg Blade Pitch

Effect of Icing on Rotor Aerodynamics

Above Rated :10 Deg Blade Pitch

Reduces Reduces

POWER THRUST

www.cesos.ntnu.no M. Etemaddar– Centre for Ships and Ocean Structures

Page 10: Offshore Wind Turbine Operation under Atmospheric Icing

10

www.cesos.ntnu.no Author – Centre for Ships and Ocean Structures

Bellow rated : 0 Deg Blade Pitch Above rated :10 Deg Blade Pitch

Reduces

Increases

Effect of icing on Rotor Aerodynamics

POWER

www.cesos.ntnu.no M. Etemaddar – CeSOS Conference Highlights

Page 11: Offshore Wind Turbine Operation under Atmospheric Icing

11

www.cesos.ntnu.no Author – Centre for Ships and Ocean Structures

Effect of Icing on Blade Mass Distribution

Total Ice Mass = 486 Kg2.8 % of total mass of blade

24 Hours Icing

www.cesos.ntnu.no M. Etemaddar – CeSOS Conference Highlights

Page 12: Offshore Wind Turbine Operation under Atmospheric Icing

12

www.cesos.ntnu.no Author – Centre for Ships and Ocean Structures

Wind Turbine Responses under Icing

Test Case : 24 Hrs working under time varying atmospheric icing

• NREL 5MW• 1,2, 3 Blades Icing

Power Production Extreme Gust Normal Shut Down Emergency Shut Down Parking Condition

NREL 5MW OC3-HYWIND (SPAR)

LAND BASED FLOATINGOFFSHORE

www.cesos.ntnu.no M. Etemaddar – CeSOS Conference Highlights

Page 13: Offshore Wind Turbine Operation under Atmospheric Icing

13

www.cesos.ntnu.no Author – Centre for Ships and Ocean Structures

Effect of Icing on Extreme ResponsesIEC DLC 1.1 ( Power Production )

FLOATING OFFSHORELANDBASED

TB : Tower BottomSB : Shaft BearingBi : Blade Root

Iced Wind Turbine

Clean Wind Turbine

TOWER SHAFTSHAFT

1 BLADE ICED2 BLADES ICED3 BLADES ICED

www.cesos.ntnu.no M. Etemaddar – CeSOS Conference Highlights

Page 14: Offshore Wind Turbine Operation under Atmospheric Icing

14

www.cesos.ntnu.no Author – Centre for Ships and Ocean Structures

IEC DLC1.1 (Power Production)

FATIGUE DAMAGE ON TOWER BOTTOM OF LANDBASED WIND TURBINE

Effect of Icing on Fatigue Damage

www.cesos.ntnu.no M. Etemaddar– Centre for Ships and Ocean Structures

Page 15: Offshore Wind Turbine Operation under Atmospheric Icing

15

www.cesos.ntnu.no Author – Centre for Ships and Ocean Structures

Effect of Icing on Floater Response

HEAVE YAW

1P

www.cesos.ntnu.no M. Etemaddar– Centre for Ships and Ocean Structures

Page 16: Offshore Wind Turbine Operation under Atmospheric Icing

16

www.cesos.ntnu.no Author – Centre for Ships and Ocean Structures

Wind Turbine Operation under Fault

WIND TURBINE FAULT

SYSTEM CHARACTERISTICS

FAULT AND FAILURE DATA

SYSTEM

SUB SYSTEM

SUB ASSEMBLY

COMPONENTS

ASSEMBLY

LEVEL 1

LEVEL 2

LEVEL 3

LEVEL 4

LEVEL 5

www.cesos.ntnu.no M. Etemaddar– Centre for Ships and Ocean Structures

Page 17: Offshore Wind Turbine Operation under Atmospheric Icing

17

www.cesos.ntnu.no Author – Centre for Ships and Ocean Structures

Wind Turbine Failure Data

• Pitch System (Rotor)• Converter (Power)• Yaw System (Nacelle)

RESULTS RELIAWIND PROJECT

Con

tribu

tion

to T

otal

Fai

lure

/ WT

/ yea

r

Most Unreliable Components :

www.cesos.ntnu.no M. Etemaddar– Centre for Ships and Ocean Structures

Page 18: Offshore Wind Turbine Operation under Atmospheric Icing

18

www.cesos.ntnu.no Author – Centre for Ships and Ocean Structures

Wind Turbine Subsystem Faults

2 FAULTS IN PITCH CONTROLLER

ACTUATOR SENSOR

STUCK

RUNAWAYMULTIPLICATIVE GAIN

FIXED VALUEADDITIVE GAIN

PITCH SENSOR ADDITIVE GAIN

www.cesos.ntnu.no M. Etemaddar– Centre for Ships and Ocean Structures

Page 19: Offshore Wind Turbine Operation under Atmospheric Icing

19

www.cesos.ntnu.no Author – Centre for Ships and Ocean Structures

Effect of Faults on Operational Parameter

PITCH ACTUATOR STUCK

Bellow Rated

Above Rated

Bellow Rated

Above Rated

www.cesos.ntnu.no M. Etemaddar– Centre for Ships and Ocean Structures

Page 20: Offshore Wind Turbine Operation under Atmospheric Icing

20

www.cesos.ntnu.no Author – Centre for Ships and Ocean Structures

Effect of Faults on Extreme Responses

IDE DLC 1.1 (POWER PRODUCTION)TB : Tower BottomSB : Shaft BearingBi : Blade No. i

Fault Response

Fault Free Response

OFFSHORELANDBASEDPITCH ACTUATOR STUCKPITCH SENSOR ADDITIVE GAINPITCH SENSOR FIXED VALUE

www.cesos.ntnu.no M. Etemaddar– Centre for Ships and Ocean Structures

Page 21: Offshore Wind Turbine Operation under Atmospheric Icing

21

www.cesos.ntnu.no Author – Centre for Ships and Ocean Structures

Effect of Faults on Floater Responses

SURGE YAW

NON FAULT

PITCH ACTUATOR STUCK

PITCH SENSOR ADDITIVE FAULTPITCH SENSOR FIXED VALUE

www.cesos.ntnu.no M. Etemaddar– Centre for Ships and Ocean Structures

Page 22: Offshore Wind Turbine Operation under Atmospheric Icing

22

www.cesos.ntnu.no Author – Centre for Ships and Ocean Structures

Conclusions:

• In below rated wind speed power-shaft_speed consistancy and in aboverated wind speed thrust-shaft_speed consistancy can be used as icedetection criteria• The deicing system is mainly needed for outer half of the blade• Aerodynamic degradation and power reduction are the main challenges• Shaft is the most sensitive component for both onshore and offshore wind turbines• DLC 1.4 : EDC was the critical load case for the offshore wind turbine

Wind Turbine Response Under Atmospheric Icing Condition

Wind Turbine Response under Fault Condition• Pitch sensor fixed value fault was the most critical fault case • Shaft was the most sensitive structurtal member• Effects of faults were more severe on land based wind turbine than offshore floating• Yaw response was the most affected DOF for the SPAR wind turbine

www.cesos.ntnu.no M. Etemaddar– Centre for Ships and Ocean Structures

Page 23: Offshore Wind Turbine Operation under Atmospheric Icing

23

www.cesos.ntnu.no Author – Centre for Ships and Ocean Structures

References:

www.cesos.ntnu.no M. Etemaddar– Centre for Ships and Ocean Structures

1. Etemaddar M., Blanke M. and Moan T., Response Analysis and Comparison of a Spar Type and a Land-based Wind Turbinesunder Blade Pitch Controller Faults. Wind Energy (Submitted), 2013.2. Etemaddar M., Hansen M. O. L. and Moan T. Atmospheric Ice Accumulation and its Effect on a Typical 5-MW Wind Turbine inDifferent Operational Conditions. in EWEA Offshore Wind 2011. Amesterdam, Netherland 29Nov-1Dec.3. Etemaddar M., Hansen M. O. L. and Moan T., Wind turbine aerodynamic response under atmospheric icing conditions. Journalof Wind Energy, DOI : 10.1002/We. 1573, 2012.4. Bachynski E. E., Etemaddar M., Kvittem M. I., Luan C. and Moan T., Dynamic Analysis of Floating Wind Turbines DuringPitch Actuator fault, Grid Loss and Shutdown, in 10th Deep Sea Offshore Wind R&D Conference, DeepWind 20132013: Norway,Trondheim Jan 24-25.5. Makkonen L., Atmospheric icing on sea structures, 1984, COLD REGIONS RESEARCH AND ENGINEERING LABHANOVER, Document No. ADA144448, APR 1984.6. Makkonen L., Laakso T., Marjaniemi M. and Finstad K.J., Modelling and prevention of ice accretion on wind turbines. Journalof Wind Engineering, 2001. 25(1): p. 3-21.7. Virk M. S., Homola M. C. and Nicklasson P. J., Effect of rime ice accretion on aerodynamic characteristics of wind turbineblade profiles. Wind Engineering, 2010. 34(2): p. 207-218.8. Esbensen T. and Sloth C., Fault Diagnosis and fault-Tolerant Control of Wind Turbines, in Engineering Science andTechnology2009, AALBORG University.9. Hameed Z., Hong Y. S., Cho Y. M., Ahn S. H. and Song C. K., Condition monitoring and fault detection of wind turbines andrelated algorithms: A review. Renewable and Sustainable energy reviews, 2009. 13(1): p. 1-39.10. Odgaard P. F.; Stoustrup J. and Kinnaert M., Fault tolerant control of wind turbines: a benchmark model, in 7th IFACSymposium on Fault Detection, Supervision and Safety of Technical Processes 2009: Barcelona, Spain, June 30 - July 3.11. Bussel V., Z.M.B., Reliability, availability and maintenance aspects of large-scale offshore wind farms, a concepts study, inMarine renewable Energy 2001: London UK, Mar 3-5. p. 119-126.12. Hahn B., Durstewitz M. and Rohrig K., Reliability of wind turbines–Experience of 15 years with 1500 WTs, in Institut furSolare Energieversorgungstechnik (ISET), Kassel, Germany2006.13. Tavner P. J., Xiang J. and Spinato F., Reliability analysis for wind turbines. Wind Energy, 2007. 10(1): p. 1-18.14. Wilkinson M., Harman K., Hendriks B. and Spinato F. Measuring Wind Turbine Reliability, Results of the Reliawind Project.in European Wind Energy Conference. 2011. Amesterdam, Netherland , 29 Nov- 1 Dec.

Page 24: Offshore Wind Turbine Operation under Atmospheric Icing

24

www.cesos.ntnu.no Author – Centre for Ships and Ocean Structures

Thanksfor Your Attention

www.cesos.ntnu.no M. Etemaddar– Centre for Ships and Ocean Structures