okoro, e.m. and structural styles onuoha, k.m. and … · 2019. 10. 19. · recent oligocene...

24
STRUCTURAL STYLES AND BASEMENT ARCHITECTURE OF THE DAHOMEY BASIN FROM GEOPHYSICAL DATA Okoro, E.M. and Onuoha, K.M. Department of Geology University of Nigeria Nsukka

Upload: others

Post on 27-Jan-2021

3 views

Category:

Documents


0 download

TRANSCRIPT

  • STRUCTURAL STYLES AND BASEMENT ARCHITECTURE OF THE DAHOMEY BASIN FROM GEOPHYSICAL DATA

    Okoro, E.M. and Onuoha, K.M.Department of GeologyUniversity of Nigeria Nsukka

  • PRESENTATION OUTLINE

    Introduction

    Aim/Objectives of Study

    Location of Study Area

    Geologic Framework

    Dataset and Methodology

    Results and Discussion

    Concluding Remarks

  • INTRODUCTIONThe Nigerian sector of the Dahomey Basin was until recently one of the under‐explored and poorlyunderstood Cretaceous frontier basins in the country.

    For many years knowledge of the geology of the basin came primarily from boreholes drilled to thebasement and from new road cuts.

    However, the integration of geophysical data with available subsurface information from shallowand deeper wells drilled for petroleum exploration is helping to throw more light on basinmorphology and structure.

    The present paper provides information on structural styles and basement architecture in thebasin on the basis of aeromagnetic data coupled with results from the analysis of publiclyavailable gravity and seismic data.

    The study area lie between Latitude 60 30' and 70 00' N and Longitude 20 50' and 30 30' E in theSouthwestern part of Nigeria

  • AIM/OBJECTIVES OF STUDY

    Aim

    Map the structural features and basement morphology, and estimate depth to

    magnetic sources from the available geophysical data.

    Objectives

    Analyze structural features including faults and other discontinuities

    Define the basement morphology and architecture

    Determine the depth to magnetic basement in the study area

    Estimate sedimentary thickness in the study area

  • LOCATION OF STUDY AREA

  • GEOLOGIC FRAMEWORK

    Fig. 2. Geological Framework of the Dahomey Basin (Modified after Oladele et al., 2015)

    NIGER DELTABASINGULF OF GUINEA

    NIGERIA

    BENINREPUBLIC

    TOGO

    GHANA

    XX

    XX

    XX X

    X

    X

    X

    X

    X

    X

    X

    X

    X

    XX Precambrian ‐ Paleozoic

    Upper Cretaceous

    Paleocene

    Eeocene

    Neogene

    Quartenary

    LEGEND

    0 100km

    X

    X

    X

  • Legend

    AgeInterpretation

    Alluvium

    Ilaro Fm

    Oshosun Fm

    Abeokuta Fm

    Basement

    Coastal Plain Sands(Benin Fm )

    Ewekoro Fm

    Recent

    Oligocene ‐ Recent

    Eocene 

    Eocene 

    Paleocene 

    Cretaceous 

    Precambrian 

    Fig. 3. Geological  Map of Ogun State showing the study area(Modified from Olowofela et al., 2012)

    GEOLOGIC FRAMEWORK

    7000

    ’N70

    30’N

    7000

    ’N70

    30’N

    30 30’E 40 00’E

    30 30’E 40 00’E

    0 40 80km

    N

    Lagos State

    Oyo State

    OndoState

    • Idogo• Ilaro

    Abeokuta

  • Fig. 4: (A) The free air (offshore) and Bouguer(onshore) gravity field of Nigeria

    (B) The Total magnetic intensity (TMI) field response(Fairhead et al., 2012)

    (C) Index Map of Nigeria from NGSA showing theHRAM sheet used in this study (red box; the yellowbox covers the full area of interest for this study).

    GEOLOGIC FRAMEWORK

    C

  • DATASET AND METHODOLOGY

    Dataset

    HRAM data sheets 278 & 279; Residual gravity & SPI maps, Seismic section (from desk studies)

    Workflow

    HRAM Data

    Residual gravity& SPI Maps

    Seismic section

    Data Enhancement  ‐RTP, 1VD, 2VD 1HD, 2HD, AS, 

    Euler Deconvolution

    Structural Analysis

  • RESULTS AND DISCUSSION

    5000 0 5000 10000 15000

    (meters)WGS 84 / UTM zone 32N

    Total Magnetic Intensity Map(TMI)

    -5.29.8

    17.324.429.733.035.838.039.941.342.944.345.847.348.649.850.550.951.351.752.252.753.253.854.455.055.856.657.558.559.961.563.465.668.573.480.393.3

    nT

    7200

    0073

    0000

    7400

    0075

    0000

    7600

    0077

    0000

    7800

    00

    720000730000

    740000750000

    760000770000

    780000

    -190000 -180000 -170000 -160000 -150000 -140000 -130000 -120000 -110000

    -190000 -180000 -170000 -160000 -150000 -140000 -130000 -120000 -110000

    6°30

    '6°

    40'

    6°50

    '7°

    00'

    6°30'6°40'

    6°50'7°00'

    2°50' 3°00' 3°10' 3°20' 3°30'

    2°50' 3°00' 3°10' 3°20' 3°30'

    0 1 20

    3 0

    40

    06

    606 0

    06

    08

    0

    0

    00

    05

    0 5

    0 5

    100

    Fig. 5: (A) Total Magnetic Intensity map of the study area (B) Reduction to Pole Color map of the study area

    A B

  • Fig. 6. First Vertical derivative and second vertical derivative of aeromagnetic data highlighting shallow faults and fracture networks in the study area.  

    Structural Framework

  • Fig. 7. First horizontal derivative and second horizontal derivative of aeromagnetic data highlighting discontinuities in the study area.  

  • Fig. 8. Analytical signal color map showing basement blocks of different magnetizations.

    Basement Block Pattern

    A

    B

    E

    D

    C

  • Fig. 9. SPI derived depth to magnetic basement imaging the Lagos and Badagry grabens (Oladele and Ayolabi, 2014).  

  • Fig. 10. Residual gravity map of the Dahomey Basin (Oladele and Ayolabi, 2014)

  • Fig. 11. Geological model along W – E profile in Figure 9 showing basement block pattern (horst and graben) of the Dahomey Basin (After Oladele and Ayolabi, 2014).

  • Fig. 12. Fracture zone at the Okitipupa Ridge/Benin Hinge Line 

    Source: Lekoil Technical Report on Block OPL‐325, Niger Delta 

  • SENW

    Fig. 13. (A) Map of the aeromagnetic residualshowing the location of the modeled cross‐section (B) Geological model along NW ‐ SEtraverse across the shoreline into the AtlanticOcean (After Oladele et al., 2016).

  • Fig. 14. Composite section showing offshore and onshore seismic data (After Tyrrell et al., 2017).

    Half graben

    Basement

  • 5000 0 5000 10000 15000

    (meters)WGS 84 / UTM zone 32N

    EULER DECONVOLUTION MAPSI= 0

    (m)Depth

    < 500500 - 1000

    1000 - 1500> 1500

    7200

    0073

    0000

    7400

    0075

    0000

    7600

    0077

    0000

    7800

    00

    720000730000

    740000750000

    760000770000

    780000

    -190000 -180000 -170000 -160000 -150000 -140000 -130000 -120000 -110000

    -190000 -180000 -170000 -160000 -150000 -140000 -130000 -120000 -110000

    6°30

    '6°

    40'

    6°50

    '7°

    00'

    6°30'6°40'

    6°50'7°00'

    2°50' 3°00' 3°10' 3°20' 3°30'

    2°50' 3°00' 3°10' 3°20' 3°30'

    0 1 20

    3 0

    4 0

    06

    60

    6 0

    06

    08

    0

    0

    00

    05

    05

    0 5

    100

    Depth to Magnetic Sources

    5000 0 5000 10000 15000

    (meters)WGS 84 / UTM zone 32N

    EULER DECONVOLUTION MAPSI= 1

    (m)Depth

    < 500500 - 1000

    1000 - 1500> 1500

    7200

    0073

    0000

    7400

    0075

    0000

    7600

    0077

    0000

    7800

    00

    720000730000

    740000750000

    760000770000

    780000

    -190000 -180000 -170000 -160000 -150000 -140000 -130000 -120000 -110000

    -190000 -180000 -170000 -160000 -150000 -140000 -130000 -120000 -110000

    6°30

    '6°

    40'

    6°50

    '7°

    00'

    6°30'6°40'

    6°50'7°00'

    2°50' 3°00' 3°10' 3°20' 3°30'

    2°50' 3°00' 3°10' 3°20' 3°30'

    0 1 20

    3 0

    40

    06

    60

    6 0

    06

    08

    0

    0

    00

    05

    05

    0 5

    100

    Fig. 15. Euler Deconvolution maps of the study area for structural indices of 0 (A) and 1 (B).

    A B

  • CONCLUDING REMARKS

    Geologic imprints on the underlying basement rocks in the study area have been investigated using aeromagnetic data,

    integrated with gravity and seismic data from public sources

    Information on the structural styles and basement architecture have been provided with the help of vertical and

    horizontal derivatives and analytical signal processing while the depth to various magnetic sources were predicted using

    the standard Euler method

    Faults and fracture networks in the study area were trending NE ‐ SW, NW ‐ SE and E – W

    Depth to magnetic sources in the study area ranges between 0.5km to greater than 1.5km, suggesting low thickness

    sediments in this part of Dahomey Basin

    However, recent studies have shown that depth to basement varied from 0.18km in the onshore areas to 9km offshore .

    A maximum depth of 6.38km (Oladele et al., 2015), 6.03km (Opara, 2011), 4km Oladele et al. (2016) and 3.5km (Kaki et

    al. (2013) to the magnetic basement have also been predicted

  • Interpretation of the analytical signal map indicated high susceptibility basement uplift and low susceptibility

    sediment filled depression, reflecting the rugose nature of the underlying basement

    This suggests a horst and graben architecture on the basement of the study area

    Successful exploration program in the Dahomey Basin requires the integration of data sources, coupled with

    sound knowledge of the subsurface geological complexities

    CONCLUDING REMARKS

  • NAPE: Opportunity

    PTDF: Sponsorship

    NGSA: Provision of Research Dataset

    Geosoft: Software

    Basin Analysis Reservoir Geology‐RG: Technical Support

    Department of Geology UNN: Favorable Disposition

    ACKNOWLEDGEMENT

  • Thanks for Listening…

    Cretaceous in Nigeria Workshop – Abuja 2019