oleg starykh, andreas schnyder and leon balents- spatially anisotropic s=1/2 heisenberg kagome...

Upload: imaxsw

Post on 06-Apr-2018

223 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/3/2019 Oleg Starykh, Andreas Schnyder and Leon Balents- Spatially anisotropic S=1/2 Heisenberg Kagome antiferromagnet

    1/33

    Spatially anisotropic S=1/2

    Heisenberg Kagomeantiferromagnet

    Oleg Starykh, University of Utah

    Andreas Schnyder, KITP

    Leon Balents, KITP and UCSB

    Thanks to J.-S. Caux for numerical data

    PRB 78, 174420 (2008)

  • 8/3/2019 Oleg Starykh, Andreas Schnyder and Leon Balents- Spatially anisotropic S=1/2 Heisenberg Kagome antiferromagnet

    2/33

    Kagome spin-1/2 antiferromagnet:

    from model to experiments

    herbersmithite

    volborthite

    vesignieite

    Hiroi et al. 2001, Shores et al. 2005, Okamoto et al. 2009

    no order for T

  • 8/3/2019 Oleg Starykh, Andreas Schnyder and Leon Balents- Spatially anisotropic S=1/2 Heisenberg Kagome antiferromagnet

    3/33

    Outline

    Motivation

    - strong spatial anisotropy offers well controlled analysis

    - relevant experimentally

    Description of the J

  • 8/3/2019 Oleg Starykh, Andreas Schnyder and Leon Balents- Spatially anisotropic S=1/2 Heisenberg Kagome antiferromagnet

    4/33

    Volborthite Cu3V2O7(OH)2 2H2O

  • 8/3/2019 Oleg Starykh, Andreas Schnyder and Leon Balents- Spatially anisotropic S=1/2 Heisenberg Kagome antiferromagnet

    5/33

  • 8/3/2019 Oleg Starykh, Andreas Schnyder and Leon Balents- Spatially anisotropic S=1/2 Heisenberg Kagome antiferromagnet

    6/33

    Volborthite Cu3V2O7(OH)2 2H2O

  • 8/3/2019 Oleg Starykh, Andreas Schnyder and Leon Balents- Spatially anisotropic S=1/2 Heisenberg Kagome antiferromagnet

    7/33

    k,

    jk

    ,j

    k,

    j"

    JJJ!!!

    J

    J'

    2i 2i+1 2i+2

    2y

    2y+1

    2y-1

    J'

    Spatially anisotropic geometry

  • 8/3/2019 Oleg Starykh, Andreas Schnyder and Leon Balents- Spatially anisotropic S=1/2 Heisenberg Kagome antiferromagnet

    8/33

    The model

    Chain spins S (black dots), exchange interactionJ (blue lines)

    Interstitial (interchain) spins (red dots), exchange J

    Quasi-one-dimensional limit: J

  • 8/3/2019 Oleg Starykh, Andreas Schnyder and Leon Balents- Spatially anisotropic S=1/2 Heisenberg Kagome antiferromagnet

    9/33

    How small should J/J be ? Frustration greatly enhances region of small interchain J

    Numerics: no interchain correlations for J/J < 0.6 - 0.7Weng et al 2006, Hayashi Ogata 2007, Heidarian Sorella Becca 2009

    Example: spatially anisotropic triangularAFM

    Collinear AFM state,generated by quantum fluctuations,coupling between NN chains (J/J)4

    Pardini Singh 2008 - no; Bishop et al 2008 - yes

    (J)4/J3

    Starykh, Balents 2007

    interchain spin correlations,

    J=0.6 J;

    exponential decay

    Weng et al 2006

  • 8/3/2019 Oleg Starykh, Andreas Schnyder and Leon Balents- Spatially anisotropic S=1/2 Heisenberg Kagome antiferromagnet

    10/33

  • 8/3/2019 Oleg Starykh, Andreas Schnyder and Leon Balents- Spatially anisotropic S=1/2 Heisenberg Kagome antiferromagnet

    11/33

    The decoupled limit, J 0, is very singular

    collection ofindependentspin chains and interstitial spins

    JS S

  • 8/3/2019 Oleg Starykh, Andreas Schnyder and Leon Balents- Spatially anisotropic S=1/2 Heisenberg Kagome antiferromagnet

    12/33

    Separation of scales

    local Kondo coupling J (marginal, TK ~ e-c J/J )

    RKKY interaction between interstitial spins (via chains)

    Tinterstitial ~ (J)2/J

    The biggest non-frustrated interaction energy

    Tinterstitial >> Tchains >> TK

    Interstitial-mediated coupling between spin chainsTchains ~ (J)4/J3

    =>

    Ny+1

    Ny

    y+1

    y

  • 8/3/2019 Oleg Starykh, Andreas Schnyder and Leon Balents- Spatially anisotropic S=1/2 Heisenberg Kagome antiferromagnet

    13/33

    Frustrated vs Non-Frustrated geometry

    Imagine non-frustrated rectangulargeometry:then Tinterstitial ~ Tchain ~ (J)2/J

    =>no clear separation of energy scales,

    difficult to analyze.e.g. Kondo necklace, Essler Kuzmenko Zaliznyak 2007

    =>

    Frustrated Kagome geometry:

    Ny+1

    Ny

    y+1

    y

    (S2n + S2n+1)y My + x Ny

    V(1)ch =

    y

    dx Nx Ny x Ny+1 + M My My+1

    (J)2/J order: marginal coupling

    (J)4/J order: relevant coupling

    V(2)ch =

    y dx N Ny Ny+1 + yy+1

    M xN

    =>

    uniform magnetization

    staggered magnetization

  • 8/3/2019 Oleg Starykh, Andreas Schnyder and Leon Balents- Spatially anisotropic S=1/2 Heisenberg Kagome antiferromagnet

    14/33

    RKKY interaction between interstitial spins

    a polarizes spin chain, which in turn couples to b,c: interactionbetween s connected to the same spin chain.

    JS

    J

    S

    c

    b

    a

  • 8/3/2019 Oleg Starykh, Andreas Schnyder and Leon Balents- Spatially anisotropic S=1/2 Heisenberg Kagome antiferromagnet

    15/33

    RKKY interaction between interstitial spins

    Spatially anisotropic triangular lattice formed byK1 and K2 bonds, withfurther-neighbor interactions K3,4 etc.

  • 8/3/2019 Oleg Starykh, Andreas Schnyder and Leon Balents- Spatially anisotropic S=1/2 Heisenberg Kagome antiferromagnet

    16/33

    RKKY interaction between interstitial spins

    Spatially anisotropic triangular lattice formed byK1 and K2 bonds, withfurther-neighbor interactions K3,4 etc.

    K1: nearest-neighbor interaction between s

  • 8/3/2019 Oleg Starykh, Andreas Schnyder and Leon Balents- Spatially anisotropic S=1/2 Heisenberg Kagome antiferromagnet

    17/33

    RKKY interaction between interstitial spins

    Spatially anisotropic triangular lattice formed byK1 and K2 bonds, withfurther-neighbor interactions K3,4 etc.

    K1: nearest-neighbor interaction between s

    K2: next nearest-neighbor interaction

  • 8/3/2019 Oleg Starykh, Andreas Schnyder and Leon Balents- Spatially anisotropic S=1/2 Heisenberg Kagome antiferromagnet

    18/33

    RKKY interaction between interstitial spins

    Spatially anisotropic triangular lattice formed byK1 and K2 bonds, withfurther-neighbor interactions K3,4 etc.

    K1: nearest-neighbor interaction between s

    K2: next nearest-neighbor interaction

    K3: further-neighbor interactions

  • 8/3/2019 Oleg Starykh, Andreas Schnyder and Leon Balents- Spatially anisotropic S=1/2 Heisenberg Kagome antiferromagnet

    19/33

    RKKY interaction between interstitial spins

    Inter- interactions are determined by dynamical structure factor of critical spin-1/2 chain

    K1: nearest-neighbor interaction between s

    K2: next nearest-neighbor interaction

    K1 = 2(J)2A(1)

    K2 = 4(J)2A(2)

    A(r) =8

    0

    d

    0

    dqS(q, )

    cos2(q

    2) cos(qr)

    < 0 ferro> 0 antiferro

    K1

    K2K2

    K1 0.7

    because (J/J)4

  • 8/3/2019 Oleg Starykh, Andreas Schnyder and Leon Balents- Spatially anisotropic S=1/2 Heisenberg Kagome antiferromagnet

    20/33

    : Spatially anisotropic triangular lattice

    K1: nearest-neighbor interaction

    K2: next nearest-neighbor interaction

    K1 = 2(J)2A(1)

    K2 = 4(J)2A(2)

    < 0 ferro

    > 0 antiferro

    K1

    K2

    H =

    q

    K(q)q q

    K(q) = 2K1 cos qx cos qy + K2 cos(2qx) + 2K3 cos(3qx)cos qy + K4 cos(4qx)

    2-spinon approximation for A(r) : rotating spiral ground state, q=2(0.08,0)

    ABACUS database (N=500 site chain): ferromagnetic ground state, q=0

    J.S.Caux, U Amsterdam

    = s0[x cos(qx) + y sin(qx)]

    2d magnetic orderamongst

    interstitial spins!

    Note: s0 ~ O(1)

    consider both

    cases!

  • 8/3/2019 Oleg Starykh, Andreas Schnyder and Leon Balents- Spatially anisotropic S=1/2 Heisenberg Kagome antiferromagnet

    21/33

    Ordering of chain spins I

    Chain spins are subject to: external rotating field due to ordered s:

    marginal backscattering term in every chain

    (J/J)4 fluctuation-generated interchain interactions

    Expect response to hx :static magnetization in x-yplane, of magnitude O(J/J)

    hx = 2s0 cos(q/2)J[x cos(qx) + y sin(qx)]

    V(2)ch =

    y

    dx N Ny Ny+1 + yy+1

    Hbs = gbs

    dx MR ML

    q > 0

  • 8/3/2019 Oleg Starykh, Andreas Schnyder and Leon Balents- Spatially anisotropic S=1/2 Heisenberg Kagome antiferromagnet

    22/33

  • 8/3/2019 Oleg Starykh, Andreas Schnyder and Leon Balents- Spatially anisotropic S=1/2 Heisenberg Kagome antiferromagnet

    23/33

  • 8/3/2019 Oleg Starykh, Andreas Schnyder and Leon Balents- Spatially anisotropic S=1/2 Heisenberg Kagome antiferromagnet

    24/33

    Ordering of chain spins IV

    Order in a rotated basis: Nx

    y = (1)yM , M = c(J/J)2

    M

    a

    R/L=

    y= 0

    Order in the original basis: S+x+1/2,y = h2 + d2

    2vcos e

    iqx

    Szx+1/2,y = (1)x+y

    M

    yx

    z

    a

    x

    z

    Non-coplanar order (q > 0)

    x,y

    O(1) Sx,y

    O(J

    /J) Sz

    O(J

    /J)2

    ~ J/J

    ~ (J/J)2

    q > 0

  • 8/3/2019 Oleg Starykh, Andreas Schnyder and Leon Balents- Spatially anisotropic S=1/2 Heisenberg Kagome antiferromagnet

    25/33

    (b)xz + + + +

    + + + + +

    + + + + +

    + + + +

    -yx

    Ordering of chain spins: top viewinterstitial spins form spiral,

    chain spins are locally anti-parallel to it,

    with small staggered component normal to the spiral plane

    basic physics: s=1/2 chain subject to magnetic field -components orthogonal to the field are most relevant

  • 8/3/2019 Oleg Starykh, Andreas Schnyder and Leon Balents- Spatially anisotropic S=1/2 Heisenberg Kagome antiferromagnet

    26/33

  • 8/3/2019 Oleg Starykh, Andreas Schnyder and Leon Balents- Spatially anisotropic S=1/2 Heisenberg Kagome antiferromagnet

    27/33

    Ordering of chain spins: q=0 case

    Ferromagnetic order among interstitial spins,

    predominantly ferromagnetic ordering among chain spins,

    with weaker antiferromagnetic order along, and between, chains:

    coplanar state, ferrimagnet.

  • 8/3/2019 Oleg Starykh, Andreas Schnyder and Leon Balents- Spatially anisotropic S=1/2 Heisenberg Kagome antiferromagnet

    28/33

  • 8/3/2019 Oleg Starykh, Andreas Schnyder and Leon Balents- Spatially anisotropic S=1/2 Heisenberg Kagome antiferromagnet

    29/33

    Comparison

    Wang, Vishwanath, Kim 2007:q=0 state

    Yavorskii, Apel, Everts 2007:extended region of incommensurate order q>0

    among inter-chain spins, disordered chains

    1d limit: J=1, J>>1

    large-S semiclassical analysis large-N Sp(N)

    very similar to our q=0 state

  • 8/3/2019 Oleg Starykh, Andreas Schnyder and Leon Balents- Spatially anisotropic S=1/2 Heisenberg Kagome antiferromagnet

    30/33

    Conclusions

    Surprise: spatially anisotropic kagomeantiferromagnet is magnetically ordered

    The order is non-coplanar (q > 0)- coplanar with q=0 is possible (ferrimagnetic state)

    Interesting hierarchy of scales

    - interstitial spins order at Tinterstitial ~ (J)2/J

    - chain spins order at Tchain ~ (J)4/J3

  • 8/3/2019 Oleg Starykh, Andreas Schnyder and Leon Balents- Spatially anisotropic S=1/2 Heisenberg Kagome antiferromagnet

    31/33

    Heisenberg spin chain via free Dirac fermions

    Spin-1/2 AFM chain = half-filled (1 electron per site, kF=!/2a ) fermion chain

    Spin-charge separation

    ! 2kF(= !/a) fluctuations: charge density wave" , spin density wave N

    Spin flip #S=1

    #S=0

    Staggered

    Magnetization N

    Staggered

    Dimerization

    "= (-1)x Sx Sx+a

    Susceptibility

    1/q

    1/q

    1/q

    kF-kF

    kF-kF

    ! q=0 fluctuations: right- and left- spin currents

  • 8/3/2019 Oleg Starykh, Andreas Schnyder and Leon Balents- Spatially anisotropic S=1/2 Heisenberg Kagome antiferromagnet

    32/33

    Quantumtriad: uniform magnetization M = JR

    + JL

    ,

    staggered magnetization N and staggered dimerization != (-1)x Sx Sx+1!Components of Wess-Zumino-Witten-Novikov SU(2) matrix

    Hamiltonian H ~ JRJR

    + JLJL+ "

    bsJRJL

    Operator product expansion

    Scaling dimension 1/2 (relevant)

    Scaling dimension 1 (marginal)

    Low-energy degrees of freedom

    (similar to commutation relations)

    marginal perturbation

  • 8/3/2019 Oleg Starykh, Andreas Schnyder and Leon Balents- Spatially anisotropic S=1/2 Heisenberg Kagome antiferromagnet

    33/33

    S=1/2 AFM Chain in a Field

    1

    1/2

    0 h/hsat1

    M

    1/2

    XY AF correlations grow with hand remain commensurate Ising SDW correlations decrease with h and shift from !

    Affleck and Oshikawa, 1999

    Field-split Fermi momenta:

    ! Uniform magnetization

    ! Half-filled condition

    Sz component ("S=0) peaked at

    scaling dimension

    increases

    Sx,y components ("S=1) remain at !scaling dimension

    decreases

    Derived for free electrons but correct always - Luttinger Theorem

    10 h/hsat

    hsat=2J