on gradient ricci solitons

125
Rigidity, gap theorems and maximum principles for Ricci solitons Manuel Fernández López Consellería de Educación e Ordenación Universitaria Xunta de Galicia Galicia SPAIN (joint work with Eduardo García Río) Ricci Solitons Days in Pisa 4-8 th April 2011

Upload: mnlfdzlpz

Post on 28-May-2015

420 views

Category:

Education


5 download

TRANSCRIPT

Page 1: On gradient Ricci solitons

Rigidity, gap theorems and maximumprinciples for Ricci solitons

Manuel Fernández López

Consellería de Educación e Ordenación UniversitariaXunta de Galicia

Galicia SPAIN

(joint work with Eduardo García Río)

Ricci Solitons Days in Pisa4-8th April 2011

Page 2: On gradient Ricci solitons

Outline

Rigidity of Ricci solitonsRigidity: compact caseRigidity: non-compact caseLocally conformally flat case

Gap theoremsDiameter boundsGap theorems: compact caseGap theorems: non-compact case

Maximum principlesIntroductionOmori-Yau maximum principleApplications

Steady solitonsLower bound for the curvature of a steady soliton

Page 3: On gradient Ricci solitons

Definition (Petersen and Wylie, 2007)A Ricci soliton is said to be rigid if it is of the form N ×Γ Rk ,where N is an Einstein manifold and Γ acts freely on N and byorthogonal transformations on Rk .

Theorem (Petersen and Wylie, 2007)The following conditions for a shrinking (expanding) gradientsoliton Ric + Hf = λg all imply that the metric is radially flat andhas constant scalar curvature

I R is constant and sec(E ,∇f ) ≥ 0 (sec(E ,∇f ) ≤ 0)

I R is constant and 0 ≤ Ric ≤ λg (λg ≤ Ric ≤ 0)

I The curvature tensor is harmonicI Ric ≥ 0 (Ric ≤ 0) and sec(E ,∇f ) = 0

Page 4: On gradient Ricci solitons

Definition (Petersen and Wylie, 2007)A Ricci soliton is said to be rigid if it is of the form N ×Γ Rk ,where N is an Einstein manifold and Γ acts freely on N and byorthogonal transformations on Rk .

Theorem (Petersen and Wylie, 2007)The following conditions for a shrinking (expanding) gradientsoliton Ric + Hf = λg all imply that the metric is radially flat andhas constant scalar curvature

I R is constant and sec(E ,∇f ) ≥ 0 (sec(E ,∇f ) ≤ 0)

I R is constant and 0 ≤ Ric ≤ λg (λg ≤ Ric ≤ 0)

I The curvature tensor is harmonicI Ric ≥ 0 (Ric ≤ 0) and sec(E ,∇f ) = 0

Page 5: On gradient Ricci solitons

Outline

Rigidity of Ricci solitonsRigidity: compact caseRigidity: non-compact caseLocally conformally flat case

Gap theoremsDiameter boundsGap theorems: compact caseGap theorems: non-compact case

Maximum principlesIntroductionOmori-Yau maximum principleApplications

Steady solitonsLower bound for the curvature of a steady soliton

Page 6: On gradient Ricci solitons

Theorem (Eminenti, LaNave and Mantegazza, 2008)Let (Mn,g) be an n-dimensional compact Ricci soliton. If (M,g)is locally conformally flat then it is Einstein (in fact, a spaceform).

Theorem (E. García Río and MFL, 2009)Let (Mn,g) be an n-dimensional compact Ricci soliton. Then(M,g) is rigid if an only if it has harmonic Weyl tensor.

A gradient Ricci soliton is a Riemannian manifold such that

Ric + Hf = λg

Page 7: On gradient Ricci solitons

Theorem (Eminenti, LaNave and Mantegazza, 2008)Let (Mn,g) be an n-dimensional compact Ricci soliton. If (M,g)is locally conformally flat then it is Einstein (in fact, a spaceform).

Theorem (E. García Río and MFL, 2009)Let (Mn,g) be an n-dimensional compact Ricci soliton. Then(M,g) is rigid if an only if it has harmonic Weyl tensor.

A gradient Ricci soliton is a Riemannian manifold such that

Ric + Hf = λg

Page 8: On gradient Ricci solitons

Theorem (Eminenti, LaNave and Mantegazza, 2008)Let (Mn,g) be an n-dimensional compact Ricci soliton. If (M,g)is locally conformally flat then it is Einstein (in fact, a spaceform).

Theorem (E. García Río and MFL, 2009)Let (Mn,g) be an n-dimensional compact Ricci soliton. Then(M,g) is rigid if an only if it has harmonic Weyl tensor.

A gradient Ricci soliton is a Riemannian manifold such that

Ric + Hf = λg

Page 9: On gradient Ricci solitons

The Schouten tensor S = Rc − R2(n − 1)

g is a Codazzi tensor

(∇X Rc)(Y ,Z )− (∇Y Rc)(X ,Z ) =X (R)

2(n − 1)g(Y ,Z )− Y (R)

2(n − 1)g(X ,Z )

Rm(X ,Y ,Z ,∇f ) =1

n − 1Rc(X ,∇f )g(Y ,Z )− 1

n − 1Rc(Y ,∇f )g(X ,Z )

∇f is an eigenvector of Rc

(div Rm)(X ,Y ,Z ) = Rm(X ,Y ,Z ,∇f )

|div Rm|2 =1

2(n − 1)|∇R|2

Page 10: On gradient Ricci solitons

The Schouten tensor S = Rc − R2(n − 1)

g is a Codazzi tensor

(∇X Rc)(Y ,Z )− (∇Y Rc)(X ,Z ) =X (R)

2(n − 1)g(Y ,Z )− Y (R)

2(n − 1)g(X ,Z )

Rm(X ,Y ,Z ,∇f ) =1

n − 1Rc(X ,∇f )g(Y ,Z )− 1

n − 1Rc(Y ,∇f )g(X ,Z )

∇f is an eigenvector of Rc

(div Rm)(X ,Y ,Z ) = Rm(X ,Y ,Z ,∇f )

|div Rm|2 =1

2(n − 1)|∇R|2

Page 11: On gradient Ricci solitons

The Schouten tensor S = Rc − R2(n − 1)

g is a Codazzi tensor

(∇X Rc)(Y ,Z )− (∇Y Rc)(X ,Z ) =X (R)

2(n − 1)g(Y ,Z )− Y (R)

2(n − 1)g(X ,Z )

Rm(X ,Y ,Z ,∇f ) =1

n − 1Rc(X ,∇f )g(Y ,Z )− 1

n − 1Rc(Y ,∇f )g(X ,Z )

∇f is an eigenvector of Rc

(div Rm)(X ,Y ,Z ) = Rm(X ,Y ,Z ,∇f )

|div Rm|2 =1

2(n − 1)|∇R|2

Page 12: On gradient Ricci solitons

The Schouten tensor S = Rc − R2(n − 1)

g is a Codazzi tensor

(∇X Rc)(Y ,Z )− (∇Y Rc)(X ,Z ) =X (R)

2(n − 1)g(Y ,Z )− Y (R)

2(n − 1)g(X ,Z )

Rm(X ,Y ,Z ,∇f ) =1

n − 1Rc(X ,∇f )g(Y ,Z )− 1

n − 1Rc(Y ,∇f )g(X ,Z )

∇f is an eigenvector of Rc

(div Rm)(X ,Y ,Z ) = Rm(X ,Y ,Z ,∇f )

|div Rm|2 =1

2(n − 1)|∇R|2

Page 13: On gradient Ricci solitons

The Schouten tensor S = Rc − R2(n − 1)

g is a Codazzi tensor

(∇X Rc)(Y ,Z )− (∇Y Rc)(X ,Z ) =X (R)

2(n − 1)g(Y ,Z )− Y (R)

2(n − 1)g(X ,Z )

Rm(X ,Y ,Z ,∇f ) =1

n − 1Rc(X ,∇f )g(Y ,Z )− 1

n − 1Rc(Y ,∇f )g(X ,Z )

∇f is an eigenvector of Rc

(div Rm)(X ,Y ,Z ) = Rm(X ,Y ,Z ,∇f )

|div Rm|2 =1

2(n − 1)|∇R|2

Page 14: On gradient Ricci solitons

The Schouten tensor S = Rc − R2(n − 1)

g is a Codazzi tensor

(∇X Rc)(Y ,Z )− (∇Y Rc)(X ,Z ) =X (R)

2(n − 1)g(Y ,Z )− Y (R)

2(n − 1)g(X ,Z )

Rm(X ,Y ,Z ,∇f ) =1

n − 1Rc(X ,∇f )g(Y ,Z )− 1

n − 1Rc(Y ,∇f )g(X ,Z )

∇f is an eigenvector of Rc

(div Rm)(X ,Y ,Z ) = Rm(X ,Y ,Z ,∇f )

|div Rm|2 =1

2(n − 1)|∇R|2

Page 15: On gradient Ricci solitons

∫M|div Rm|2e−f =

∫M|∇Ric|2e−f

X. Cao, B. Wang and Z. Zhang; On Locally ConformallyFlat Gradient Shrinking Ricci Solitons

12(n − 1)

∫M|∇R|2e−f ≥ 1

n

∫M|∇R|2e−f

For n ≤ 3 compact shrinking Ricci solitons are Einstein (n = 2Hamilton, n = 3 Ivey)

Since n ≥ 4 one has that R is constant

(M,g) is Einstein

What about the noncompact case?

Page 16: On gradient Ricci solitons

∫M|div Rm|2e−f =

∫M|∇Ric|2e−f

X. Cao, B. Wang and Z. Zhang; On Locally ConformallyFlat Gradient Shrinking Ricci Solitons

12(n − 1)

∫M|∇R|2e−f ≥ 1

n

∫M|∇R|2e−f

For n ≤ 3 compact shrinking Ricci solitons are Einstein (n = 2Hamilton, n = 3 Ivey)

Since n ≥ 4 one has that R is constant

(M,g) is Einstein

What about the noncompact case?

Page 17: On gradient Ricci solitons

∫M|div Rm|2e−f =

∫M|∇Ric|2e−f

X. Cao, B. Wang and Z. Zhang; On Locally ConformallyFlat Gradient Shrinking Ricci Solitons

12(n − 1)

∫M|∇R|2e−f ≥ 1

n

∫M|∇R|2e−f

For n ≤ 3 compact shrinking Ricci solitons are Einstein (n = 2Hamilton, n = 3 Ivey)

Since n ≥ 4 one has that R is constant

(M,g) is Einstein

What about the noncompact case?

Page 18: On gradient Ricci solitons

∫M|div Rm|2e−f =

∫M|∇Ric|2e−f

X. Cao, B. Wang and Z. Zhang; On Locally ConformallyFlat Gradient Shrinking Ricci Solitons

12(n − 1)

∫M|∇R|2e−f ≥ 1

n

∫M|∇R|2e−f

For n ≤ 3 compact shrinking Ricci solitons are Einstein (n = 2Hamilton, n = 3 Ivey)

Since n ≥ 4 one has that R is constant

(M,g) is Einstein

What about the noncompact case?

Page 19: On gradient Ricci solitons

∫M|div Rm|2e−f =

∫M|∇Ric|2e−f

X. Cao, B. Wang and Z. Zhang; On Locally ConformallyFlat Gradient Shrinking Ricci Solitons

12(n − 1)

∫M|∇R|2e−f ≥ 1

n

∫M|∇R|2e−f

For n ≤ 3 compact shrinking Ricci solitons are Einstein (n = 2Hamilton, n = 3 Ivey)

Since n ≥ 4 one has that R is constant

(M,g) is Einstein

What about the noncompact case?

Page 20: On gradient Ricci solitons

∫M|div Rm|2e−f =

∫M|∇Ric|2e−f

X. Cao, B. Wang and Z. Zhang; On Locally ConformallyFlat Gradient Shrinking Ricci Solitons

12(n − 1)

∫M|∇R|2e−f ≥ 1

n

∫M|∇R|2e−f

For n ≤ 3 compact shrinking Ricci solitons are Einstein (n = 2Hamilton, n = 3 Ivey)

Since n ≥ 4 one has that R is constant

(M,g) is Einstein

What about the noncompact case?

Page 21: On gradient Ricci solitons

∫M|div Rm|2e−f =

∫M|∇Ric|2e−f

X. Cao, B. Wang and Z. Zhang; On Locally ConformallyFlat Gradient Shrinking Ricci Solitons

12(n − 1)

∫M|∇R|2e−f ≥ 1

n

∫M|∇R|2e−f

For n ≤ 3 compact shrinking Ricci solitons are Einstein (n = 2Hamilton, n = 3 Ivey)

Since n ≥ 4 one has that R is constant

(M,g) is Einstein

What about the noncompact case?

Page 22: On gradient Ricci solitons

Outline

Rigidity of Ricci solitonsRigidity: compact caseRigidity: non-compact caseLocally conformally flat case

Gap theoremsDiameter boundsGap theorems: compact caseGap theorems: non-compact case

Maximum principlesIntroductionOmori-Yau maximum principleApplications

Steady solitonsLower bound for the curvature of a steady soliton

Page 23: On gradient Ricci solitons

Theorem (E. García Río and MFL, 2009)Let (Mn,g) be a complete noncompact gradient shrinking Riccisoliton whose curvature tensor has at most exponential growthand having Ricci tensor bounded from below. Then (M,g) isrigid if an only if it has harmonic Weyl tensor.∫

M|div Rm|2e−f =

∫M|∇Ric|2e−f

R is constant and Rm(∇f ,X ,X ,∇f ) = 0

P. Petersen and W. Wilye; Rigidity of gradient Ricci solitons

Theorem (Munteanu and Sesum, 2009)Let (M,g) be a complete noncompact gradient shrinking Riccisoliton. Then (M,g) is rigid if an only if it has harmonic Weyltensor.

Page 24: On gradient Ricci solitons

Theorem (E. García Río and MFL, 2009)Let (Mn,g) be a complete noncompact gradient shrinking Riccisoliton whose curvature tensor has at most exponential growthand having Ricci tensor bounded from below. Then (M,g) isrigid if an only if it has harmonic Weyl tensor.∫

M|div Rm|2e−f =

∫M|∇Ric|2e−f

R is constant and Rm(∇f ,X ,X ,∇f ) = 0

P. Petersen and W. Wilye; Rigidity of gradient Ricci solitons

Theorem (Munteanu and Sesum, 2009)Let (M,g) be a complete noncompact gradient shrinking Riccisoliton. Then (M,g) is rigid if an only if it has harmonic Weyltensor.

Page 25: On gradient Ricci solitons

Theorem (E. García Río and MFL, 2009)Let (Mn,g) be a complete noncompact gradient shrinking Riccisoliton whose curvature tensor has at most exponential growthand having Ricci tensor bounded from below. Then (M,g) isrigid if an only if it has harmonic Weyl tensor.∫

M|div Rm|2e−f =

∫M|∇Ric|2e−f

R is constant and Rm(∇f ,X ,X ,∇f ) = 0

P. Petersen and W. Wilye; Rigidity of gradient Ricci solitons

Theorem (Munteanu and Sesum, 2009)Let (M,g) be a complete noncompact gradient shrinking Riccisoliton. Then (M,g) is rigid if an only if it has harmonic Weyltensor.

Page 26: On gradient Ricci solitons

Theorem (E. García Río and MFL, 2009)Let (Mn,g) be a complete noncompact gradient shrinking Riccisoliton whose curvature tensor has at most exponential growthand having Ricci tensor bounded from below. Then (M,g) isrigid if an only if it has harmonic Weyl tensor.∫

M|div Rm|2e−f =

∫M|∇Ric|2e−f

R is constant and Rm(∇f ,X ,X ,∇f ) = 0

P. Petersen and W. Wilye; Rigidity of gradient Ricci solitons

Theorem (Munteanu and Sesum, 2009)Let (M,g) be a complete noncompact gradient shrinking Riccisoliton. Then (M,g) is rigid if an only if it has harmonic Weyltensor.

Page 27: On gradient Ricci solitons

Theorem (E. García Río and MFL, 2009)Let (Mn,g) be a complete noncompact gradient shrinking Riccisoliton whose curvature tensor has at most exponential growthand having Ricci tensor bounded from below. Then (M,g) isrigid if an only if it has harmonic Weyl tensor.∫

M|div Rm|2e−f =

∫M|∇Ric|2e−f

R is constant and Rm(∇f ,X ,X ,∇f ) = 0

P. Petersen and W. Wilye; Rigidity of gradient Ricci solitons

Theorem (Munteanu and Sesum, 2009)Let (M,g) be a complete noncompact gradient shrinking Riccisoliton. Then (M,g) is rigid if an only if it has harmonic Weyltensor.

Page 28: On gradient Ricci solitons

Outline

Rigidity of Ricci solitonsRigidity: compact caseRigidity: non-compact caseLocally conformally flat case

Gap theoremsDiameter boundsGap theorems: compact caseGap theorems: non-compact case

Maximum principlesIntroductionOmori-Yau maximum principleApplications

Steady solitonsLower bound for the curvature of a steady soliton

Page 29: On gradient Ricci solitons

Lemma (E. García Río and MFL, 2010)Let (Mn,g) be a locally conformally flat gradient Ricci soliton.Then it is locally (where ∇f 6= 0) isometric to a warped product

(M,g) = ((a,b)× N,dt2 + ψ(t)2gN),

where (N,gN) is a space form.

W (V ,Ei ,Ei ,V ) = − Rc(V ,V )

(n − 1)(n − 2)− Rc(Ei ,Ei )

n − 2+

R(n − 1)(n − 2)

whereV =

1|∇f |∇f

Page 30: On gradient Ricci solitons

Lemma (E. García Río and MFL, 2010)Let (Mn,g) be a locally conformally flat gradient Ricci soliton.Then it is locally (where ∇f 6= 0) isometric to a warped product

(M,g) = ((a,b)× N,dt2 + ψ(t)2gN),

where (N,gN) is a space form.

W (V ,Ei ,Ei ,V ) = − Rc(V ,V )

(n − 1)(n − 2)− Rc(Ei ,Ei )

n − 2+

R(n − 1)(n − 2)

whereV =

1|∇f |∇f

Page 31: On gradient Ricci solitons

Rc(Ei ,Ei) =1

n − 1(R − Rc(V ,V ))

Hf (Ei ,Ei) =1

n − 1(∆f − Hf (V ,V ))

N = f−1(c) is a totally umbilical submanifold of (M,g)

∇f is an eigenvector of Hf ↔ the integral curves of V aregeodesics

(M,g) is locally a warped product

N is a space form

Brozos-Vázquez, García-Río and Vázquez-Lorenzo;Complete locally conformally flat manifolds of negativecurvature

Page 32: On gradient Ricci solitons

Rc(Ei ,Ei) =1

n − 1(R − Rc(V ,V ))

Hf (Ei ,Ei) =1

n − 1(∆f − Hf (V ,V ))

N = f−1(c) is a totally umbilical submanifold of (M,g)

∇f is an eigenvector of Hf ↔ the integral curves of V aregeodesics

(M,g) is locally a warped product

N is a space form

Brozos-Vázquez, García-Río and Vázquez-Lorenzo;Complete locally conformally flat manifolds of negativecurvature

Page 33: On gradient Ricci solitons

Rc(Ei ,Ei) =1

n − 1(R − Rc(V ,V ))

Hf (Ei ,Ei) =1

n − 1(∆f − Hf (V ,V ))

N = f−1(c) is a totally umbilical submanifold of (M,g)

∇f is an eigenvector of Hf ↔ the integral curves of V aregeodesics

(M,g) is locally a warped product

N is a space form

Brozos-Vázquez, García-Río and Vázquez-Lorenzo;Complete locally conformally flat manifolds of negativecurvature

Page 34: On gradient Ricci solitons

Rc(Ei ,Ei) =1

n − 1(R − Rc(V ,V ))

Hf (Ei ,Ei) =1

n − 1(∆f − Hf (V ,V ))

N = f−1(c) is a totally umbilical submanifold of (M,g)

∇f is an eigenvector of Hf ↔ the integral curves of V aregeodesics

(M,g) is locally a warped product

N is a space form

Brozos-Vázquez, García-Río and Vázquez-Lorenzo;Complete locally conformally flat manifolds of negativecurvature

Page 35: On gradient Ricci solitons

Rc(Ei ,Ei) =1

n − 1(R − Rc(V ,V ))

Hf (Ei ,Ei) =1

n − 1(∆f − Hf (V ,V ))

N = f−1(c) is a totally umbilical submanifold of (M,g)

∇f is an eigenvector of Hf ↔ the integral curves of V aregeodesics

(M,g) is locally a warped product

N is a space form

Brozos-Vázquez, García-Río and Vázquez-Lorenzo;Complete locally conformally flat manifolds of negativecurvature

Page 36: On gradient Ricci solitons

Rc(Ei ,Ei) =1

n − 1(R − Rc(V ,V ))

Hf (Ei ,Ei) =1

n − 1(∆f − Hf (V ,V ))

N = f−1(c) is a totally umbilical submanifold of (M,g)

∇f is an eigenvector of Hf ↔ the integral curves of V aregeodesics

(M,g) is locally a warped product

N is a space form

Brozos-Vázquez, García-Río and Vázquez-Lorenzo;Complete locally conformally flat manifolds of negativecurvature

Page 37: On gradient Ricci solitons

Theorem (E. García Río and MFL, 2010)Let (Mn,g) be a simply connected complete locally conformallyflat gradient shrinking or steady Ricci soliton. Then it isrotationally symmetric.Any complete ancient solution to the Ricci flow has nonnegativecurvature operator (n = 3 Chen, n ≥ 4 Zhang)

RmN(X ,Y ,Y ,X ) = RmM(X ,Y ,Y ,X )+II(X ,X )II(Y ,Y )−II(X ,Y )2

N is a standard sphere

(Mn,g) is rotationally symmetric

B. Kotschwar; On rotationally invariant shrinking gradientRicci solitons

H.-D. Cao and Q. Chen; On Locally Conformally FlatGradient Steady Ricci Solitons

Page 38: On gradient Ricci solitons

Theorem (E. García Río and MFL, 2010)Let (Mn,g) be a simply connected complete locally conformallyflat gradient shrinking or steady Ricci soliton. Then it isrotationally symmetric.Any complete ancient solution to the Ricci flow has nonnegativecurvature operator (n = 3 Chen, n ≥ 4 Zhang)

RmN(X ,Y ,Y ,X ) = RmM(X ,Y ,Y ,X )+II(X ,X )II(Y ,Y )−II(X ,Y )2

N is a standard sphere

(Mn,g) is rotationally symmetric

B. Kotschwar; On rotationally invariant shrinking gradientRicci solitons

H.-D. Cao and Q. Chen; On Locally Conformally FlatGradient Steady Ricci Solitons

Page 39: On gradient Ricci solitons

Theorem (E. García Río and MFL, 2010)Let (Mn,g) be a simply connected complete locally conformallyflat gradient shrinking or steady Ricci soliton. Then it isrotationally symmetric.Any complete ancient solution to the Ricci flow has nonnegativecurvature operator (n = 3 Chen, n ≥ 4 Zhang)

RmN(X ,Y ,Y ,X ) = RmM(X ,Y ,Y ,X )+II(X ,X )II(Y ,Y )−II(X ,Y )2

N is a standard sphere

(Mn,g) is rotationally symmetric

B. Kotschwar; On rotationally invariant shrinking gradientRicci solitons

H.-D. Cao and Q. Chen; On Locally Conformally FlatGradient Steady Ricci Solitons

Page 40: On gradient Ricci solitons

Theorem (E. García Río and MFL, 2010)Let (Mn,g) be a simply connected complete locally conformallyflat gradient shrinking or steady Ricci soliton. Then it isrotationally symmetric.Any complete ancient solution to the Ricci flow has nonnegativecurvature operator (n = 3 Chen, n ≥ 4 Zhang)

RmN(X ,Y ,Y ,X ) = RmM(X ,Y ,Y ,X )+II(X ,X )II(Y ,Y )−II(X ,Y )2

N is a standard sphere

(Mn,g) is rotationally symmetric

B. Kotschwar; On rotationally invariant shrinking gradientRicci solitons

H.-D. Cao and Q. Chen; On Locally Conformally FlatGradient Steady Ricci Solitons

Page 41: On gradient Ricci solitons

Theorem (E. García Río and MFL, 2010)Let (Mn,g) be a simply connected complete locally conformallyflat gradient shrinking or steady Ricci soliton. Then it isrotationally symmetric.Any complete ancient solution to the Ricci flow has nonnegativecurvature operator (n = 3 Chen, n ≥ 4 Zhang)

RmN(X ,Y ,Y ,X ) = RmM(X ,Y ,Y ,X )+II(X ,X )II(Y ,Y )−II(X ,Y )2

N is a standard sphere

(Mn,g) is rotationally symmetric

B. Kotschwar; On rotationally invariant shrinking gradientRicci solitons

H.-D. Cao and Q. Chen; On Locally Conformally FlatGradient Steady Ricci Solitons

Page 42: On gradient Ricci solitons

Theorem (E. García Río and MFL, 2010)Let (Mn,g) be a simply connected complete locally conformallyflat gradient shrinking or steady Ricci soliton. Then it isrotationally symmetric.Any complete ancient solution to the Ricci flow has nonnegativecurvature operator (n = 3 Chen, n ≥ 4 Zhang)

RmN(X ,Y ,Y ,X ) = RmM(X ,Y ,Y ,X )+II(X ,X )II(Y ,Y )−II(X ,Y )2

N is a standard sphere

(Mn,g) is rotationally symmetric

B. Kotschwar; On rotationally invariant shrinking gradientRicci solitons

H.-D. Cao and Q. Chen; On Locally Conformally FlatGradient Steady Ricci Solitons

Page 43: On gradient Ricci solitons

Outline

Rigidity of Ricci solitonsRigidity: compact caseRigidity: non-compact caseLocally conformally flat case

Gap theoremsDiameter boundsGap theorems: compact caseGap theorems: non-compact case

Maximum principlesIntroductionOmori-Yau maximum principleApplications

Steady solitonsLower bound for the curvature of a steady soliton

Page 44: On gradient Ricci solitons

Theorem (E. García Río and MFL, 2008)Let (Mn,g) be a compact gradient Ricci soliton. Then

diam2(M,g) ≥ 2max

fmax − fmin

λ− c,fmax − fmin

C − λ,4

fmax − fmin

C − c

where c ≤ Ric ≤ C.

Theorem (E. García Río and MFL, 2008)Let (Mn,g) be a compact gradient Ricci soliton with Ric > 0.Then

diam2(M,g) ≥ max

Rmax − Rmin

λ(λ− c),Rmax − Rmin

λ(C − λ),4

Rmax − Rmin

λ(C − c)

where c ≤ Ric ≤ C.

Page 45: On gradient Ricci solitons

Theorem (E. García Río and MFL, 2008)Let (Mn,g) be a compact gradient Ricci soliton. Then

diam2(M,g) ≥ 2max

fmax − fmin

λ− c,fmax − fmin

C − λ,4

fmax − fmin

C − c

where c ≤ Ric ≤ C.

Theorem (E. García Río and MFL, 2008)Let (Mn,g) be a compact gradient Ricci soliton with Ric > 0.Then

diam2(M,g) ≥ max

Rmax − Rmin

λ(λ− c),Rmax − Rmin

λ(C − λ),4

Rmax − Rmin

λ(C − c)

where c ≤ Ric ≤ C.

Page 46: On gradient Ricci solitons

Outline

Rigidity of Ricci solitonsRigidity: compact caseRigidity: non-compact caseLocally conformally flat case

Gap theoremsDiameter boundsGap theorems: compact caseGap theorems: non-compact case

Maximum principlesIntroductionOmori-Yau maximum principleApplications

Steady solitonsLower bound for the curvature of a steady soliton

Page 47: On gradient Ricci solitons

Theorem (A. Futaki and Y. Sano, 2010)Let (M,g) be an n-dimensional compact shrinking Ricci soliton.Then

diam(M,g) ≥ 10π13√λ.

Theorem (E. García Río and MFL, 2010)Let (M,g) be an n-dimensional compact shrinking Ricci soliton.Then (M,g) is Einstein if and only if one of the followingconditions holds:

(i) Ric ≥(

1− Rmax − Rmin

(n − 1)λπ2 + Rmax − Rmin

)λg,

(ii) cg ≤ Ric ≤(λ+

c(Rmax − Rmin)

(n − 1)λπ2

)g, for some c > 0

(iii) cg ≤ Ric ≤(

1 +4(Rmax − Rmin)

(n − 1)λπ2

)cg, for some c > 0.

Page 48: On gradient Ricci solitons

Theorem (A. Futaki and Y. Sano, 2010)Let (M,g) be an n-dimensional compact shrinking Ricci soliton.Then

diam(M,g) ≥ 10π13√λ.

Theorem (E. García Río and MFL, 2010)Let (M,g) be an n-dimensional compact shrinking Ricci soliton.Then (M,g) is Einstein if and only if one of the followingconditions holds:

(i) Ric ≥(

1− Rmax − Rmin

(n − 1)λπ2 + Rmax − Rmin

)λg,

(ii) cg ≤ Ric ≤(λ+

c(Rmax − Rmin)

(n − 1)λπ2

)g, for some c > 0

(iii) cg ≤ Ric ≤(

1 +4(Rmax − Rmin)

(n − 1)λπ2

)cg, for some c > 0.

Page 49: On gradient Ricci solitons

Assume (i) holds

c =(n − 1)λ2π2

(n − 1)λπ2 + Rmax − Rmin

diam2(M,g) ≥ Rmax − Rmin

λ(λ− c)≥ (n − 1)π2

c

Myers’ theorem:

Ric ≥ cg > 0 =⇒ diam(M,g) ≤ π√

n − 1c

By Cheng M must be the standard sphere

CONTRADICTION!

Page 50: On gradient Ricci solitons

Assume (i) holds

c =(n − 1)λ2π2

(n − 1)λπ2 + Rmax − Rmin

diam2(M,g) ≥ Rmax − Rmin

λ(λ− c)≥ (n − 1)π2

c

Myers’ theorem:

Ric ≥ cg > 0 =⇒ diam(M,g) ≤ π√

n − 1c

By Cheng M must be the standard sphere

CONTRADICTION!

Page 51: On gradient Ricci solitons

Assume (i) holds

c =(n − 1)λ2π2

(n − 1)λπ2 + Rmax − Rmin

diam2(M,g) ≥ Rmax − Rmin

λ(λ− c)≥ (n − 1)π2

c

Myers’ theorem:

Ric ≥ cg > 0 =⇒ diam(M,g) ≤ π√

n − 1c

By Cheng M must be the standard sphere

CONTRADICTION!

Page 52: On gradient Ricci solitons

Assume (i) holds

c =(n − 1)λ2π2

(n − 1)λπ2 + Rmax − Rmin

diam2(M,g) ≥ Rmax − Rmin

λ(λ− c)≥ (n − 1)π2

c

Myers’ theorem:

Ric ≥ cg > 0 =⇒ diam(M,g) ≤ π√

n − 1c

By Cheng M must be the standard sphere

CONTRADICTION!

Page 53: On gradient Ricci solitons

Assume (i) holds

c =(n − 1)λ2π2

(n − 1)λπ2 + Rmax − Rmin

diam2(M,g) ≥ Rmax − Rmin

λ(λ− c)≥ (n − 1)π2

c

Myers’ theorem:

Ric ≥ cg > 0 =⇒ diam(M,g) ≤ π√

n − 1c

By Cheng M must be the standard sphere

CONTRADICTION!

Page 54: On gradient Ricci solitons

Assume (i) holds

c =(n − 1)λ2π2

(n − 1)λπ2 + Rmax − Rmin

diam2(M,g) ≥ Rmax − Rmin

λ(λ− c)≥ (n − 1)π2

c

Myers’ theorem:

Ric ≥ cg > 0 =⇒ diam(M,g) ≤ π√

n − 1c

By Cheng M must be the standard sphere

CONTRADICTION!

Page 55: On gradient Ricci solitons

Theorem (E. García Río and MFL, 2010)Let (M,g) be an n-dimensional compact shrinking Ricci soliton.Then (M,g) is Einstein if and only if

Rmax − nλ ≤(

1 +2n

)1

vol (M,g)

∫M|∇f |2.

Theorem (E. García Río and MFL, 2010)Let (M,g) be an n-dimensional compact shrinking Ricci soliton.Then (M,g) is Einstein if and only if

|Ric − λg| ≤ c ≤ −Λ +√

Λ2 + 8(n − 1)λΛ

4(n − 1),

where Λ = 1vol(M,g)

∫M |∇f |2 denotes the average of the L2-norm

of |∇f |.

Page 56: On gradient Ricci solitons

Theorem (E. García Río and MFL, 2010)Let (M,g) be an n-dimensional compact shrinking Ricci soliton.Then (M,g) is Einstein if and only if

Rmax − nλ ≤(

1 +2n

)1

vol (M,g)

∫M|∇f |2.

Theorem (E. García Río and MFL, 2010)Let (M,g) be an n-dimensional compact shrinking Ricci soliton.Then (M,g) is Einstein if and only if

|Ric − λg| ≤ c ≤ −Λ +√

Λ2 + 8(n − 1)λΛ

4(n − 1),

where Λ = 1vol(M,g)

∫M |∇f |2 denotes the average of the L2-norm

of |∇f |.

Page 57: On gradient Ricci solitons

(i)∫

M(∆f )2 =

∫M

((n + 2)λ− R) |∇f |2

(ii) |∇f |2 ≤ Rmax − R∫M

(∆f )2 = (n + 2)λ

∫M|∇f |2 −

∫M

R|∇f |2

≥ (n + 2)λ

∫M|∇f |2 − nλRmaxvol (M,g) +

∫M

R2

= (n + 2)λ

∫M|∇f |2 − nλRmaxvol (M,g)

+n2λ2vol (M,g) +∫

M(∆f )2

Rmax − nλ ≥ n + 2n

1vol (M,g)

∫M|∇f |2

2λf − R = |∇f |2 = Rmax − R ⇒ f is constant

Page 58: On gradient Ricci solitons

(i)∫

M(∆f )2 =

∫M

((n + 2)λ− R) |∇f |2

(ii) |∇f |2 ≤ Rmax − R∫M

(∆f )2 = (n + 2)λ

∫M|∇f |2 −

∫M

R|∇f |2

≥ (n + 2)λ

∫M|∇f |2 − nλRmaxvol (M,g) +

∫M

R2

= (n + 2)λ

∫M|∇f |2 − nλRmaxvol (M,g)

+n2λ2vol (M,g) +∫

M(∆f )2

Rmax − nλ ≥ n + 2n

1vol (M,g)

∫M|∇f |2

2λf − R = |∇f |2 = Rmax − R ⇒ f is constant

Page 59: On gradient Ricci solitons

(i)∫

M(∆f )2 =

∫M

((n + 2)λ− R) |∇f |2

(ii) |∇f |2 ≤ Rmax − R∫M

(∆f )2 = (n + 2)λ

∫M|∇f |2 −

∫M

R|∇f |2

≥ (n + 2)λ

∫M|∇f |2 − nλRmaxvol (M,g) +

∫M

R2

= (n + 2)λ

∫M|∇f |2 − nλRmaxvol (M,g)

+n2λ2vol (M,g) +∫

M(∆f )2

Rmax − nλ ≥ n + 2n

1vol (M,g)

∫M|∇f |2

2λf − R = |∇f |2 = Rmax − R ⇒ f is constant

Page 60: On gradient Ricci solitons

(i)∫

M(∆f )2 =

∫M

((n + 2)λ− R) |∇f |2

(ii) |∇f |2 ≤ Rmax − R∫M

(∆f )2 = (n + 2)λ

∫M|∇f |2 −

∫M

R|∇f |2

≥ (n + 2)λ

∫M|∇f |2 − nλRmaxvol (M,g) +

∫M

R2

= (n + 2)λ

∫M|∇f |2 − nλRmaxvol (M,g)

+n2λ2vol (M,g) +∫

M(∆f )2

Rmax − nλ ≥ n + 2n

1vol (M,g)

∫M|∇f |2

2λf − R = |∇f |2 = Rmax − R ⇒ f is constant

Page 61: On gradient Ricci solitons

Outline

Rigidity of Ricci solitonsRigidity: compact caseRigidity: non-compact caseLocally conformally flat case

Gap theoremsDiameter boundsGap theorems: compact caseGap theorems: non-compact case

Maximum principlesIntroductionOmori-Yau maximum principleApplications

Steady solitonsLower bound for the curvature of a steady soliton

Page 62: On gradient Ricci solitons

Theorem (E. García Río and MFL, 2010)Let (M,g) be a complete gradient shrinking Ricci soliton withbounded scalar curvature. Then (M,g) is compact Einstein if

Ric(∇f ,∇f ) ≥ ε

r(x)2 g(∇f ,∇f ),

for sufficiently large r(x), where ε > 0 and r(x) denotes thedistance from a fixed point.

Theorem (E. García Río and MFL, 2010)Let (M,g) be an n-dimensional complete gradient steady Riccisoliton. If

Ric(∇f ,∇f ) ≥ εg(∇f ,∇f ),

where ε is any positive constant, then (M,g) is Ricci flat.

Page 63: On gradient Ricci solitons

Theorem (E. García Río and MFL, 2010)Let (M,g) be a complete gradient shrinking Ricci soliton withbounded scalar curvature. Then (M,g) is compact Einstein if

Ric(∇f ,∇f ) ≥ ε

r(x)2 g(∇f ,∇f ),

for sufficiently large r(x), where ε > 0 and r(x) denotes thedistance from a fixed point.

Theorem (E. García Río and MFL, 2010)Let (M,g) be an n-dimensional complete gradient steady Riccisoliton. If

Ric(∇f ,∇f ) ≥ εg(∇f ,∇f ),

where ε is any positive constant, then (M,g) is Ricci flat.

Page 64: On gradient Ricci solitons

Theorem (P. Li)If a complete manifold has Ricci curvature bounded from belowby εr(x)−2, for some constant ε > 1/4 and all r(x) > 1, then Mmust be compact.

2λf = R + |∇f |2

There exists c such that f (x) ≥ 14(r(x)− c)2

H.-D. Cao and D. Zhou; On complete gradient shrinkingsolitons

γ : [0,+∞)→ M an integral curve of ∇f (note that ∇f is acomplete vector field)

Z.-H. Zhang; On the completeness of gradient Ricci solitons

Page 65: On gradient Ricci solitons

Theorem (P. Li)If a complete manifold has Ricci curvature bounded from belowby εr(x)−2, for some constant ε > 1/4 and all r(x) > 1, then Mmust be compact.

2λf = R + |∇f |2

There exists c such that f (x) ≥ 14(r(x)− c)2

H.-D. Cao and D. Zhou; On complete gradient shrinkingsolitons

γ : [0,+∞)→ M an integral curve of ∇f (note that ∇f is acomplete vector field)

Z.-H. Zhang; On the completeness of gradient Ricci solitons

Page 66: On gradient Ricci solitons

Theorem (P. Li)If a complete manifold has Ricci curvature bounded from belowby εr(x)−2, for some constant ε > 1/4 and all r(x) > 1, then Mmust be compact.

2λf = R + |∇f |2

There exists c such that f (x) ≥ 14(r(x)− c)2

H.-D. Cao and D. Zhou; On complete gradient shrinkingsolitons

γ : [0,+∞)→ M an integral curve of ∇f (note that ∇f is acomplete vector field)

Z.-H. Zhang; On the completeness of gradient Ricci solitons

Page 67: On gradient Ricci solitons

Theorem (P. Li)If a complete manifold has Ricci curvature bounded from belowby εr(x)−2, for some constant ε > 1/4 and all r(x) > 1, then Mmust be compact.

2λf = R + |∇f |2

There exists c such that f (x) ≥ 14(r(x)− c)2

H.-D. Cao and D. Zhou; On complete gradient shrinkingsolitons

γ : [0,+∞)→ M an integral curve of ∇f (note that ∇f is acomplete vector field)

Z.-H. Zhang; On the completeness of gradient Ricci solitons

Page 68: On gradient Ricci solitons

For r ≥ r1

(R γ)′(t) = 2Ric(∇f (γ(t)),∇f (γ(t)) ≥ 2εr(x)2 |∇f |2

Since R is bounded, for some k1 > 0 and k2 > 0

|∇f |2 = 2λf − R ≥ λ2(r(x)− c)2 − R ≥ k1r(x)2 ≥ k2R2r(x)2

for r(x) ≥ r2 ≥ r1

p ∈ Ω = x ∈ M /2λf (x) ≥ k3 such that B(x0, r2) ⊂ Ω

Since f is increasing along the integral curves of ∇f , if wesuppose that γ(0) = p, then γ(t) ∈ M \ Ω for all t ≥ 0

Page 69: On gradient Ricci solitons

For r ≥ r1

(R γ)′(t) = 2Ric(∇f (γ(t)),∇f (γ(t)) ≥ 2εr(x)2 |∇f |2

Since R is bounded, for some k1 > 0 and k2 > 0

|∇f |2 = 2λf − R ≥ λ2(r(x)− c)2 − R ≥ k1r(x)2 ≥ k2R2r(x)2

for r(x) ≥ r2 ≥ r1

p ∈ Ω = x ∈ M /2λf (x) ≥ k3 such that B(x0, r2) ⊂ Ω

Since f is increasing along the integral curves of ∇f , if wesuppose that γ(0) = p, then γ(t) ∈ M \ Ω for all t ≥ 0

Page 70: On gradient Ricci solitons

For r ≥ r1

(R γ)′(t) = 2Ric(∇f (γ(t)),∇f (γ(t)) ≥ 2εr(x)2 |∇f |2

Since R is bounded, for some k1 > 0 and k2 > 0

|∇f |2 = 2λf − R ≥ λ2(r(x)− c)2 − R ≥ k1r(x)2 ≥ k2R2r(x)2

for r(x) ≥ r2 ≥ r1

p ∈ Ω = x ∈ M /2λf (x) ≥ k3 such that B(x0, r2) ⊂ Ω

Since f is increasing along the integral curves of ∇f , if wesuppose that γ(0) = p, then γ(t) ∈ M \ Ω for all t ≥ 0

Page 71: On gradient Ricci solitons

For r ≥ r1

(R γ)′(t) = 2Ric(∇f (γ(t)),∇f (γ(t)) ≥ 2εr(x)2 |∇f |2

Since R is bounded, for some k1 > 0 and k2 > 0

|∇f |2 = 2λf − R ≥ λ2(r(x)− c)2 − R ≥ k1r(x)2 ≥ k2R2r(x)2

for r(x) ≥ r2 ≥ r1

p ∈ Ω = x ∈ M /2λf (x) ≥ k3 such that B(x0, r2) ⊂ Ω

Since f is increasing along the integral curves of ∇f , if wesuppose that γ(0) = p, then γ(t) ∈ M \ Ω for all t ≥ 0

Page 72: On gradient Ricci solitons

We have that

(R γ)′(t) = g(∇R(γ(t)), γ′(t)) ≥ 2εk2R2(γ(t)),

along γ ∫ t

0

(R γ)′(t)(R γ)2(t)

ds ≥∫ t

02εk2dt

1R(γ(0))

− 1R(γ(t))

≥ 2εk2t

Contradiction for t going to infinite.

Page 73: On gradient Ricci solitons

We have that

(R γ)′(t) = g(∇R(γ(t)), γ′(t)) ≥ 2εk2R2(γ(t)),

along γ ∫ t

0

(R γ)′(t)(R γ)2(t)

ds ≥∫ t

02εk2dt

1R(γ(0))

− 1R(γ(t))

≥ 2εk2t

Contradiction for t going to infinite.

Page 74: On gradient Ricci solitons

We have that

(R γ)′(t) = g(∇R(γ(t)), γ′(t)) ≥ 2εk2R2(γ(t)),

along γ ∫ t

0

(R γ)′(t)(R γ)2(t)

ds ≥∫ t

02εk2dt

1R(γ(0))

− 1R(γ(t))

≥ 2εk2t

Contradiction for t going to infinite.

Page 75: On gradient Ricci solitons

We have that

(R γ)′(t) = g(∇R(γ(t)), γ′(t)) ≥ 2εk2R2(γ(t)),

along γ ∫ t

0

(R γ)′(t)(R γ)2(t)

ds ≥∫ t

02εk2dt

1R(γ(0))

− 1R(γ(t))

≥ 2εk2t

Contradiction for t going to infinite.

Page 76: On gradient Ricci solitons

Outline

Rigidity of Ricci solitonsRigidity: compact caseRigidity: non-compact caseLocally conformally flat case

Gap theoremsDiameter boundsGap theorems: compact caseGap theorems: non-compact case

Maximum principlesIntroductionOmori-Yau maximum principleApplications

Steady solitonsLower bound for the curvature of a steady soliton

Page 77: On gradient Ricci solitons

A Riemannian manifold (M,g) is said to satisfy the Omori-Yaumaximum principle if given any function u ∈ C2(M) withu∗ = supM u < +∞, there exists a sequence (xk ) of points onM satisfying

i) u(xk ) > u∗ − 1k, ii) |(∇u)(xk )| < 1

k, iii) (∆u)(xk ) <

1k,

for each k ∈ N. If, instead of iii) we assume that

Hu(xk ) <1k

g,

in the sense of quadratic forms, then it is said that theRiemannian manifold satisfies the Omori-Yau maximumprinciple for the Hessian.The f -Laplacian is

∆f = ef div(e−f∇) = ∆− g(∇f , ·)

Page 78: On gradient Ricci solitons

A Riemannian manifold (M,g) is said to satisfy the Omori-Yaumaximum principle if given any function u ∈ C2(M) withu∗ = supM u < +∞, there exists a sequence (xk ) of points onM satisfying

i) u(xk ) > u∗ − 1k, ii) |(∇u)(xk )| < 1

k, iii) (∆u)(xk ) <

1k,

for each k ∈ N. If, instead of iii) we assume that

Hu(xk ) <1k

g,

in the sense of quadratic forms, then it is said that theRiemannian manifold satisfies the Omori-Yau maximumprinciple for the Hessian.The f -Laplacian is

∆f = ef div(e−f∇) = ∆− g(∇f , ·)

Page 79: On gradient Ricci solitons

In 1967 Omori showed that the Omori-Yau maximum principlefor the Hessian is satisfied by Riemannian manifolds withcurvature bounded from below.

H. Omori; Isometric immersions of Riemannian manifolds

In 1975 Yau proved that the Omori-Yau maximum principle issatisfied by Riemannian manifolds with Ricci curvaturebounded from below.

S. T. Yau; Harmonic functions on complete Riemannianmanifolds

From now on we will work with Ricci solitons normalized in thesense

Rc + Hf = ±12

g

Page 80: On gradient Ricci solitons

In 1967 Omori showed that the Omori-Yau maximum principlefor the Hessian is satisfied by Riemannian manifolds withcurvature bounded from below.

H. Omori; Isometric immersions of Riemannian manifolds

In 1975 Yau proved that the Omori-Yau maximum principle issatisfied by Riemannian manifolds with Ricci curvaturebounded from below.

S. T. Yau; Harmonic functions on complete Riemannianmanifolds

From now on we will work with Ricci solitons normalized in thesense

Rc + Hf = ±12

g

Page 81: On gradient Ricci solitons

In 1967 Omori showed that the Omori-Yau maximum principlefor the Hessian is satisfied by Riemannian manifolds withcurvature bounded from below.

H. Omori; Isometric immersions of Riemannian manifolds

In 1975 Yau proved that the Omori-Yau maximum principle issatisfied by Riemannian manifolds with Ricci curvaturebounded from below.

S. T. Yau; Harmonic functions on complete Riemannianmanifolds

From now on we will work with Ricci solitons normalized in thesense

Rc + Hf = ±12

g

Page 82: On gradient Ricci solitons

Outline

Rigidity of Ricci solitonsRigidity: compact caseRigidity: non-compact caseLocally conformally flat case

Gap theoremsDiameter boundsGap theorems: compact caseGap theorems: non-compact case

Maximum principlesIntroductionOmori-Yau maximum principleApplications

Steady solitonsLower bound for the curvature of a steady soliton

Page 83: On gradient Ricci solitons

Theorem (E. García Río and MFL, 2010)Let (Mn,g) be an n-dimensional complete noncompact gradientshrinking Ricci soliton. Then (M,g) satisfies the Omori-Yaumaximum principle.Moreover, if there exists C > 0 such that Ric ≥ −Cr(x)2, wherer(x) denotes the distance to a fixed point, then the Omori-Yaumaximum principle for the Hessian holds on (M,g).

Theorem (E. García Río and MFL, 2010)Let (Mn,g) be an n-dimensional complete noncompact gradientshrinking Ricci soliton. Then (M,g) satisfies the Omori-Yaumaximum principle for the f -Laplacian.

Page 84: On gradient Ricci solitons

Theorem (E. García Río and MFL, 2010)Let (Mn,g) be an n-dimensional complete noncompact gradientshrinking Ricci soliton. Then (M,g) satisfies the Omori-Yaumaximum principle.Moreover, if there exists C > 0 such that Ric ≥ −Cr(x)2, wherer(x) denotes the distance to a fixed point, then the Omori-Yaumaximum principle for the Hessian holds on (M,g).

Theorem (E. García Río and MFL, 2010)Let (Mn,g) be an n-dimensional complete noncompact gradientshrinking Ricci soliton. Then (M,g) satisfies the Omori-Yaumaximum principle for the f -Laplacian.

Page 85: On gradient Ricci solitons

S. Pigola, M. Rigoli and A. Setti; Maximum principles onRiemannian manifolds and applications

(M,g) satisfies the Omori-Yau maximum principle if ∃0 ≤ ϕ ∈ C2, s. t.

ϕ(x) −→ +∞ as x −→∞, (1)

∃A < 0 such that |∇ϕ| ≤ A√ϕ off a compact set, and (2)

∃B > 0 s. t. ∆ϕ ≤ B√ϕ√

G(√ϕ), off a compact set, (3)

where G is a smooth function on [0,+∞) satisfying

i) G(0) > 0, ii) G′(t) ≥ 0, on [0,+∞),

iii)∫ ∞

0

dt√G(t)

=∞, iv) lim supt→∞

tG(√

t)G(t)

<∞.(4)

∃B > 0 s. t. Hϕ ≤ B√ϕ√

G(√ϕ), off a compact set (5)

(M,g) satisfies the Omori-Yau maximum principle for Hessian.

Page 86: On gradient Ricci solitons

S. Pigola, M. Rigoli and A. Setti; Maximum principles onRiemannian manifolds and applications

(M,g) satisfies the Omori-Yau maximum principle if ∃0 ≤ ϕ ∈ C2, s. t.

ϕ(x) −→ +∞ as x −→∞, (1)

∃A < 0 such that |∇ϕ| ≤ A√ϕ off a compact set, and (2)

∃B > 0 s. t. ∆ϕ ≤ B√ϕ√

G(√ϕ), off a compact set, (3)

where G is a smooth function on [0,+∞) satisfying

i) G(0) > 0, ii) G′(t) ≥ 0, on [0,+∞),

iii)∫ ∞

0

dt√G(t)

=∞, iv) lim supt→∞

tG(√

t)G(t)

<∞.(4)

∃B > 0 s. t. Hϕ ≤ B√ϕ√

G(√ϕ), off a compact set (5)

(M,g) satisfies the Omori-Yau maximum principle for Hessian.

Page 87: On gradient Ricci solitons

Theorem (S. Pigola, M. Rimoldi and A. Setti, 2009)Let (M,g) be a complete gradient (shrinking, steady orexpanding) Ricci solitons. Then, the weak maximum principleat infinity for the f -Laplacian holds.Given any function u ∈ C2(M) with u∗ = supM u < +∞, thereexists a sequence (xk ) of points on M satisfying

i) u(xk ) > u∗ − 1k, ii) (∆f u)(xk ) <

1k,

for each k ∈ N.

Theorem (S. Pigola, M. Rimoldi and A. Setti, 2009)Let (M,g) be a complete gradient (shrinking, steady orexpanding) Ricci solitons. Then it is stochastically complete.

Page 88: On gradient Ricci solitons

Theorem (S. Pigola, M. Rimoldi and A. Setti, 2009)Let (M,g) be a complete gradient (shrinking, steady orexpanding) Ricci solitons. Then, the weak maximum principleat infinity for the f -Laplacian holds.Given any function u ∈ C2(M) with u∗ = supM u < +∞, thereexists a sequence (xk ) of points on M satisfying

i) u(xk ) > u∗ − 1k, ii) (∆f u)(xk ) <

1k,

for each k ∈ N.

Theorem (S. Pigola, M. Rimoldi and A. Setti, 2009)Let (M,g) be a complete gradient (shrinking, steady orexpanding) Ricci solitons. Then it is stochastically complete.

Page 89: On gradient Ricci solitons

Theorem (S. Pigola, M. Rimoldi and A. Setti, 2009)Let (M,g) be a complete gradient (shrinking, steady orexpanding) Ricci solitons. Then, the weak maximum principleat infinity for the f -Laplacian holds.Given any function u ∈ C2(M) with u∗ = supM u < +∞, thereexists a sequence (xk ) of points on M satisfying

i) u(xk ) > u∗ − 1k, ii) (∆f u)(xk ) <

1k,

for each k ∈ N.

Theorem (S. Pigola, M. Rimoldi and A. Setti, 2009)Let (M,g) be a complete gradient (shrinking, steady orexpanding) Ricci solitons. Then it is stochastically complete.

Page 90: On gradient Ricci solitons

Outline

Rigidity of Ricci solitonsRigidity: compact caseRigidity: non-compact caseLocally conformally flat case

Gap theoremsDiameter boundsGap theorems: compact caseGap theorems: non-compact case

Maximum principlesIntroductionOmori-Yau maximum principleApplications

Steady solitonsLower bound for the curvature of a steady soliton

Page 91: On gradient Ricci solitons

Theorem (E. García Río and MFL, 2010)Let (Mn,g) be an n-dimensional complete gradient shrinkingRicci soliton. Then:

(i) (M,g) has constant scalar curvature if and only if

2|Ric|2 ≤ R + c|∇R|2

R + 1, for some c ≥ 0.

(ii) (M,g) is isometric to (Rn,geuc) if and only if

2|Ric|2 ≤ (1− ε)R + c|∇R|2

R + 1, for some c ≥ 0 and ε > 0.

Page 92: On gradient Ricci solitons

Theorem (E. García Río and MFL, 2010)Let (M,g) be a complete gradient shrinking Ricci soliton withbounded nonnegative Ricci tensor. Then (M,g) is rigid if andonly if the sectional curvature is bounded from above by|Ric|2

2(R2−|Ric|2).

We consider an orthonormal frame E1, . . . ,En formed byeigenvectors of the Ricci operator.

∆Rii = g(∇Rii ,∇f ) + Rii − 2RijjiR jj ,

where Rii = Ric(Ei ,Ei), Rijji = R(Ei ,Ej ,Ej ,Ei)

∆f |Ric|2 = 2|Ric|2−4R iiRijjiR jj+2∇Rii∇R ii ≥ 2|Ric|2−4R iiRijjiR jj .

Page 93: On gradient Ricci solitons

Theorem (E. García Río and MFL, 2010)Let (M,g) be a complete gradient shrinking Ricci soliton withbounded nonnegative Ricci tensor. Then (M,g) is rigid if andonly if the sectional curvature is bounded from above by|Ric|2

2(R2−|Ric|2).

We consider an orthonormal frame E1, . . . ,En formed byeigenvectors of the Ricci operator.

∆Rii = g(∇Rii ,∇f ) + Rii − 2RijjiR jj ,

where Rii = Ric(Ei ,Ei), Rijji = R(Ei ,Ej ,Ej ,Ei)

∆f |Ric|2 = 2|Ric|2−4R iiRijjiR jj+2∇Rii∇R ii ≥ 2|Ric|2−4R iiRijjiR jj .

Page 94: On gradient Ricci solitons

Theorem (E. García Río and MFL, 2010)Let (M,g) be a complete gradient shrinking Ricci soliton withbounded nonnegative Ricci tensor. Then (M,g) is rigid if andonly if the sectional curvature is bounded from above by|Ric|2

2(R2−|Ric|2).

We consider an orthonormal frame E1, . . . ,En formed byeigenvectors of the Ricci operator.

∆Rii = g(∇Rii ,∇f ) + Rii − 2RijjiR jj ,

where Rii = Ric(Ei ,Ei), Rijji = R(Ei ,Ej ,Ej ,Ei)

∆f |Ric|2 = 2|Ric|2−4R iiRijjiR jj+2∇Rii∇R ii ≥ 2|Ric|2−4R iiRijjiR jj .

Page 95: On gradient Ricci solitons

Theorem (E. García Río and MFL, 2010)Let (M,g) be a complete gradient shrinking Ricci soliton withbounded nonnegative Ricci tensor. Then (M,g) is rigid if andonly if the sectional curvature is bounded from above by|Ric|2

2(R2−|Ric|2).

We consider an orthonormal frame E1, . . . ,En formed byeigenvectors of the Ricci operator.

∆Rii = g(∇Rii ,∇f ) + Rii − 2RijjiR jj ,

where Rii = Ric(Ei ,Ei), Rijji = R(Ei ,Ej ,Ej ,Ei)

∆f |Ric|2 = 2|Ric|2−4R iiRijjiR jj+2∇Rii∇R ii ≥ 2|Ric|2−4R iiRijjiR jj .

Page 96: On gradient Ricci solitons

Under our assumption one has

4(

R iiRijjiR jj)≤ 4|Ric|2

2(R2 − |Ric|2)(R2 − |Ric|2) = 2|Ric|2.

Then ∆f |Ric|2 ≥ 0, and by f -parabolicity it follows that |Ric|2 isconstant.

0 = ∆f |Ric|2 = 2|Ric|2 − 4R iiRijjiR jj + 2∇Rii∇R ii ≥ 0

⇒n∑

i=1

|∇Rii |2 = 0

The Ricci soliton is rigid.

Page 97: On gradient Ricci solitons

Under our assumption one has

4(

R iiRijjiR jj)≤ 4|Ric|2

2(R2 − |Ric|2)(R2 − |Ric|2) = 2|Ric|2.

Then ∆f |Ric|2 ≥ 0, and by f -parabolicity it follows that |Ric|2 isconstant.

0 = ∆f |Ric|2 = 2|Ric|2 − 4R iiRijjiR jj + 2∇Rii∇R ii ≥ 0

⇒n∑

i=1

|∇Rii |2 = 0

The Ricci soliton is rigid.

Page 98: On gradient Ricci solitons

Under our assumption one has

4(

R iiRijjiR jj)≤ 4|Ric|2

2(R2 − |Ric|2)(R2 − |Ric|2) = 2|Ric|2.

Then ∆f |Ric|2 ≥ 0, and by f -parabolicity it follows that |Ric|2 isconstant.

0 = ∆f |Ric|2 = 2|Ric|2 − 4R iiRijjiR jj + 2∇Rii∇R ii ≥ 0

⇒n∑

i=1

|∇Rii |2 = 0

The Ricci soliton is rigid.

Page 99: On gradient Ricci solitons

Under our assumption one has

4(

R iiRijjiR jj)≤ 4|Ric|2

2(R2 − |Ric|2)(R2 − |Ric|2) = 2|Ric|2.

Then ∆f |Ric|2 ≥ 0, and by f -parabolicity it follows that |Ric|2 isconstant.

0 = ∆f |Ric|2 = 2|Ric|2 − 4R iiRijjiR jj + 2∇Rii∇R ii ≥ 0

⇒n∑

i=1

|∇Rii |2 = 0

The Ricci soliton is rigid.

Page 100: On gradient Ricci solitons

Theorem (E. García Río and MFL, 2010)Let (M,g) be a complete gradient steady Ricci soliton. ThenR∗ = infM R = 0.

∆f R = −2|Ric|2.

There exists a sequence (xk ) of points of M such thatR(xk ) < R∗ + 1

k and (∆f R)(xk ) > − 1k .

1k≥ 2|Ric(xk )|2 ≥ 2R(xk )2

n.

Taking the limit when k goes to infinity we get that R∗ = 0.

Page 101: On gradient Ricci solitons

Theorem (E. García Río and MFL, 2010)Let (M,g) be a complete gradient steady Ricci soliton. ThenR∗ = infM R = 0.

∆f R = −2|Ric|2.

There exists a sequence (xk ) of points of M such thatR(xk ) < R∗ + 1

k and (∆f R)(xk ) > − 1k .

1k≥ 2|Ric(xk )|2 ≥ 2R(xk )2

n.

Taking the limit when k goes to infinity we get that R∗ = 0.

Page 102: On gradient Ricci solitons

Theorem (E. García Río and MFL, 2010)Let (M,g) be a complete gradient steady Ricci soliton. ThenR∗ = infM R = 0.

∆f R = −2|Ric|2.

There exists a sequence (xk ) of points of M such thatR(xk ) < R∗ + 1

k and (∆f R)(xk ) > − 1k .

1k≥ 2|Ric(xk )|2 ≥ 2R(xk )2

n.

Taking the limit when k goes to infinity we get that R∗ = 0.

Page 103: On gradient Ricci solitons

Theorem (E. García Río and MFL, 2010)Let (M,g) be a complete gradient steady Ricci soliton. ThenR∗ = infM R = 0.

∆f R = −2|Ric|2.

There exists a sequence (xk ) of points of M such thatR(xk ) < R∗ + 1

k and (∆f R)(xk ) > − 1k .

1k≥ 2|Ric(xk )|2 ≥ 2R(xk )2

n.

Taking the limit when k goes to infinity we get that R∗ = 0.

Page 104: On gradient Ricci solitons

Theorem (E. García Río and MFL, 2010)Let (M,g) be a complete gradient steady Ricci soliton. ThenR∗ = infM R = 0.

∆f R = −2|Ric|2.

There exists a sequence (xk ) of points of M such thatR(xk ) < R∗ + 1

k and (∆f R)(xk ) > − 1k .

1k≥ 2|Ric(xk )|2 ≥ 2R(xk )2

n.

Taking the limit when k goes to infinity we get that R∗ = 0.

Page 105: On gradient Ricci solitons

Theorem (E. García Río and MFL, 2010)Let (M,g) be a complete gradient expanding Ricci soliton withRic ≤ 0. If R∗ = supM R < 0 then −n

2 ≤ R ≤ −12 .

∆f R = −R − 2|Ric|2 ≥ −R − 2R2 = −R(1 + 2R)

R∗(1 + 2R∗) ≥ 0⇒ R∗ ≤ −12

Page 106: On gradient Ricci solitons

Theorem (E. García Río and MFL, 2010)Let (M,g) be a complete gradient expanding Ricci soliton withRic ≤ 0. If R∗ = supM R < 0 then −n

2 ≤ R ≤ −12 .

∆f R = −R − 2|Ric|2 ≥ −R − 2R2 = −R(1 + 2R)

R∗(1 + 2R∗) ≥ 0⇒ R∗ ≤ −12

Page 107: On gradient Ricci solitons

Theorem (E. García Río and MFL, 2010)Let (M,g) be a complete gradient expanding Ricci soliton withRic ≤ 0. If R∗ = supM R < 0 then −n

2 ≤ R ≤ −12 .

∆f R = −R − 2|Ric|2 ≥ −R − 2R2 = −R(1 + 2R)

R∗(1 + 2R∗) ≥ 0⇒ R∗ ≤ −12

Page 108: On gradient Ricci solitons

Outline

Rigidity of Ricci solitonsRigidity: compact caseRigidity: non-compact caseLocally conformally flat case

Gap theoremsDiameter boundsGap theorems: compact caseGap theorems: non-compact case

Maximum principlesIntroductionOmori-Yau maximum principleApplications

Steady solitonsLower bound for the curvature of a steady soliton

Page 109: On gradient Ricci solitons

TheoremLet (Mn,g, f ) be a complete noncompact nonflat shrinkinggradient Ricci soliton. Then for any given point O ∈ M thereexists a constant CO > 0 such that R(x)d(x ,O)2 ≥ C−1

Owherever d(x ,O) ≥ CO.

B. Chow, P. Lu and B. Yang; A lower bound for the scalarcurvature of noncompact nonflat Ricci shrinkers

TheoremLet (Mn,g, f ) be a complete steady gradient Ricci solitons withRc = −Hf and R + |∇f |2 = 1. If limx→∞ f (x) = −∞ and f ≤ 0,then R ≥ 1√

n2 +2

ef .

B. Chow, P. Lu and B. Yang; A lower bound for the scalarcurvature of certain steady gradient Ricci solitons

Page 110: On gradient Ricci solitons

TheoremLet (Mn,g, f ) be a complete noncompact nonflat shrinkinggradient Ricci soliton. Then for any given point O ∈ M thereexists a constant CO > 0 such that R(x)d(x ,O)2 ≥ C−1

Owherever d(x ,O) ≥ CO.

B. Chow, P. Lu and B. Yang; A lower bound for the scalarcurvature of noncompact nonflat Ricci shrinkers

TheoremLet (Mn,g, f ) be a complete steady gradient Ricci solitons withRc = −Hf and R + |∇f |2 = 1. If limx→∞ f (x) = −∞ and f ≤ 0,then R ≥ 1√

n2 +2

ef .

B. Chow, P. Lu and B. Yang; A lower bound for the scalarcurvature of certain steady gradient Ricci solitons

Page 111: On gradient Ricci solitons

Theorem (E. García Río and MFL, 2011)Let (M,g) be a complete gradient steady Ricci soliton satisfying|Ric|2 ≤ R2

2 . Then

R(x) ≥ ksech2 r(x)

2,

where r(x) is the distance from a fixed point O ∈ M and k ≤ 1is a constant that only depends on O and R(O).

|Hf |2 = |∇∇f |2 ≥ |∇|∇f ||2 = |∇√

1− R|2 =|∇R|2

4|∇f |2

|∇R|2 ≤ 4|Hf |2|∇f |2

|Hf |2 = |Rc|2 ≤ R2

2⇒ |∇R|

R√

1− R≤ 1

Page 112: On gradient Ricci solitons

Theorem (E. García Río and MFL, 2011)Let (M,g) be a complete gradient steady Ricci soliton satisfying|Ric|2 ≤ R2

2 . Then

R(x) ≥ ksech2 r(x)

2,

where r(x) is the distance from a fixed point O ∈ M and k ≤ 1is a constant that only depends on O and R(O).

|Hf |2 = |∇∇f |2 ≥ |∇|∇f ||2 = |∇√

1− R|2 =|∇R|2

4|∇f |2

|∇R|2 ≤ 4|Hf |2|∇f |2

|Hf |2 = |Rc|2 ≤ R2

2⇒ |∇R|

R√

1− R≤ 1

Page 113: On gradient Ricci solitons

Theorem (E. García Río and MFL, 2011)Let (M,g) be a complete gradient steady Ricci soliton satisfying|Ric|2 ≤ R2

2 . Then

R(x) ≥ ksech2 r(x)

2,

where r(x) is the distance from a fixed point O ∈ M and k ≤ 1is a constant that only depends on O and R(O).

|Hf |2 = |∇∇f |2 ≥ |∇|∇f ||2 = |∇√

1− R|2 =|∇R|2

4|∇f |2

|∇R|2 ≤ 4|Hf |2|∇f |2

|Hf |2 = |Rc|2 ≤ R2

2⇒ |∇R|

R√

1− R≤ 1

Page 114: On gradient Ricci solitons

Theorem (E. García Río and MFL, 2011)Let (M,g) be a complete gradient steady Ricci soliton satisfying|Ric|2 ≤ R2

2 . Then

R(x) ≥ ksech2 r(x)

2,

where r(x) is the distance from a fixed point O ∈ M and k ≤ 1is a constant that only depends on O and R(O).

|Hf |2 = |∇∇f |2 ≥ |∇|∇f ||2 = |∇√

1− R|2 =|∇R|2

4|∇f |2

|∇R|2 ≤ 4|Hf |2|∇f |2

|Hf |2 = |Rc|2 ≤ R2

2⇒ |∇R|

R√

1− R≤ 1

Page 115: On gradient Ricci solitons

Integrating −(Rγ)′

R√

1−Ralong a minimizing geodesic γ(s)

[ln

1 +√

1− R1−√

1− R

]t

0= −

∫ l

0

(R γ)′

R√

1− Rds ≤

∫ t

0

|∇R|R√

1− Rds ≤ t

Writing c =1+√

1−R(O)

1−√

1−R(O)we get that

1 +√

1− R(γ(t)) ≤ cet (1−√

1− R(γ(t)))

R(γ(t)) ≥ 4cc2et + 2c + e−t

Since c ≥ 1 we have that

R(γ(t)) ≥ 4cc2et + 2c + e−t ≥

4cc2et + 2c2 + c2e−t =

1c

sech2 t2

Page 116: On gradient Ricci solitons

Integrating −(Rγ)′

R√

1−Ralong a minimizing geodesic γ(s)

[ln

1 +√

1− R1−√

1− R

]t

0= −

∫ l

0

(R γ)′

R√

1− Rds ≤

∫ t

0

|∇R|R√

1− Rds ≤ t

Writing c =1+√

1−R(O)

1−√

1−R(O)we get that

1 +√

1− R(γ(t)) ≤ cet (1−√

1− R(γ(t)))

R(γ(t)) ≥ 4cc2et + 2c + e−t

Since c ≥ 1 we have that

R(γ(t)) ≥ 4cc2et + 2c + e−t ≥

4cc2et + 2c2 + c2e−t =

1c

sech2 t2

Page 117: On gradient Ricci solitons

Integrating −(Rγ)′

R√

1−Ralong a minimizing geodesic γ(s)

[ln

1 +√

1− R1−√

1− R

]t

0= −

∫ l

0

(R γ)′

R√

1− Rds ≤

∫ t

0

|∇R|R√

1− Rds ≤ t

Writing c =1+√

1−R(O)

1−√

1−R(O)we get that

1 +√

1− R(γ(t)) ≤ cet (1−√

1− R(γ(t)))

R(γ(t)) ≥ 4cc2et + 2c + e−t

Since c ≥ 1 we have that

R(γ(t)) ≥ 4cc2et + 2c + e−t ≥

4cc2et + 2c2 + c2e−t =

1c

sech2 t2

Page 118: On gradient Ricci solitons

Integrating −(Rγ)′

R√

1−Ralong a minimizing geodesic γ(s)

[ln

1 +√

1− R1−√

1− R

]t

0= −

∫ l

0

(R γ)′

R√

1− Rds ≤

∫ t

0

|∇R|R√

1− Rds ≤ t

Writing c =1+√

1−R(O)

1−√

1−R(O)we get that

1 +√

1− R(γ(t)) ≤ cet (1−√

1− R(γ(t)))

R(γ(t)) ≥ 4cc2et + 2c + e−t

Since c ≥ 1 we have that

R(γ(t)) ≥ 4cc2et + 2c + e−t ≥

4cc2et + 2c2 + c2e−t =

1c

sech2 t2

Page 119: On gradient Ricci solitons

The scalar curvature of Hamilton’s cigar soliton(R2,

dx2 + dy2

1 + x2 + y2

)satisfies

R(x) = 4sech2r(x)

The scalar curvature of normalized Hamilton’s cigar soliton(R2,

4(dx2 + dy2)

1 + x2 + y2

)satisfies

R(x) = sech2 r(x)

2Our inequality is SHARP

Page 120: On gradient Ricci solitons

The scalar curvature of Hamilton’s cigar soliton(R2,

dx2 + dy2

1 + x2 + y2

)satisfies

R(x) = 4sech2r(x)

The scalar curvature of normalized Hamilton’s cigar soliton(R2,

4(dx2 + dy2)

1 + x2 + y2

)satisfies

R(x) = sech2 r(x)

2Our inequality is SHARP

Page 121: On gradient Ricci solitons

The scalar curvature of Hamilton’s cigar soliton(R2,

dx2 + dy2

1 + x2 + y2

)satisfies

R(x) = 4sech2r(x)

The scalar curvature of normalized Hamilton’s cigar soliton(R2,

4(dx2 + dy2)

1 + x2 + y2

)satisfies

R(x) = sech2 r(x)

2Our inequality is SHARP

Page 122: On gradient Ricci solitons

Theorem (E. García Río and MFL, 2011)Let (M,g) be a complete gradient steady Ricci soliton withnonnegative Ricci curvature normalized as before. Then

R(x) ≥ ksech2r(x),

where r(x) is the distance from a fixed point O ∈ M and k ≤ 1is a constant that only depends on O and R(O).

|∇R|2 ≤ 4|Hf |2|∇f |2

Since |Hf |2 = |Rc|2 ≤ R2 one has

|∇R|R√

1− R≤ 2

Page 123: On gradient Ricci solitons

Theorem (E. García Río and MFL, 2011)Let (M,g) be a complete gradient steady Ricci soliton withnonnegative Ricci curvature normalized as before. Then

R(x) ≥ ksech2r(x),

where r(x) is the distance from a fixed point O ∈ M and k ≤ 1is a constant that only depends on O and R(O).

|∇R|2 ≤ 4|Hf |2|∇f |2

Since |Hf |2 = |Rc|2 ≤ R2 one has

|∇R|R√

1− R≤ 2

Page 124: On gradient Ricci solitons

Theorem (E. García Río and MFL, 2011)Let (M,g) be a complete gradient steady Ricci soliton withnonnegative Ricci curvature normalized as before. Then

R(x) ≥ ksech2r(x),

where r(x) is the distance from a fixed point O ∈ M and k ≤ 1is a constant that only depends on O and R(O).

|∇R|2 ≤ 4|Hf |2|∇f |2

Since |Hf |2 = |Rc|2 ≤ R2 one has

|∇R|R√

1− R≤ 2

Page 125: On gradient Ricci solitons

THANK YOU VERY MUCHFOR YOUR ATTENTION