on modification of properties of p-n-junctions during overgrowth

Upload: alejandro-carver

Post on 03-Mar-2018

221 views

Category:

Documents


0 download

TRANSCRIPT

  • 7/26/2019 ON MODIFICATION OF PROPERTIES OF P-N-JUNCTIONS DURING OVERGROWTH

    1/20

    International Journal of Information Technology, Modeling and Computing (IJITMC) Vol. 4, No.2, May 2016

    DOI: 10.5121/ijitmc.2016.4203 35

    ON MODIFICATION OF PROPERTIES OFP-N-JUNCTIONS DURING OVERGROWTH

    E.L. Pankratov1, E.A. Bulaeva

    1,2

    1Nizhny Novgorod State University, 23 Gagarin avenue, Nizhny Novgorod, 603950,

    Russia2Nizhny Novgorod State University of Architecture and Civil Engineering,65 Il'insky

    street, Nizhny Novgorod,603950, Russia

    ABSTRACT

    In this paper we consider influence of overgrowth of doped by diffusion and ion implantation areas of hete-

    rostructures on distributions of concentrations of dopants. Several conditions to increase sharpness of p-n-

    junctions (single and framework bipolar transistors), which were manufactured during considered technol-ogical process, have been determined. At the same time we analyzed influence of speed of overgrowth of

    doped areas and mechanical stress in the considered heterostructure on distribution of concentrations of

    dopants in the structure.

    KEYWORDS

    Diffusion-junction heterorectifier; implanted-junction heterorectifier; overgrowth of doped area; analytical

    approach for modeling

    1.INTRODUCTION

    In the present time they are several approaches could be used to manufacturep-n-junctions diffu-sion of dopants in a homogenous sample or an epitaxial layer of heterostructure, implantation of

    ions of dopants in the same situations or doping during epitaxial growth [1-7]. The same ap-

    proaches could be used to manufacture systems of p-n-junctions: bipolar transistors and thyris-tors. The first and the second ways of doping are preferable in comparison with the third one be-

    cause the approaches give us possibility to dope locally materials during manufacture integrated

    circuits easily in comparison with epitaxial growth. Using diffusion and ion implantation in ho-mogenous sample to manufacturing p-n-junctions leads to production fluently varying and wide

    distributions of dopants. One of actual problems is increasing sharpness of p-n- junctions [5,7].The increasing of sharpness gives us possibility to decrease switching time of p-n-junctions. In-

    creasing of homogeneity of dopant distribution in enriched by the dopant area is also attracted an

    interest [5]. The increasing of homogeneity gives us possibility to decrease local overheat of thedoped materials due to streaming of electrical current during operating of p-n-junction or to de-

    crease depth ofp-n-junction for fixed value of local overheats. One way to increase sharpness ofp-n-junction based on using near-surficial (laser or microwave) types of annealing [8-15].

    Framework the types of annealing one can obtain near-surficial heating of the doped materials. In

    this situation due to the Arrhenius low one can obtain increasing of dopant diffusion coefficient ofnear-surficial area in comparison with volumetric dopant diffusion coefficient. The increasing ofdopant diffusion coefficient of near-surficial area leads to increasing of sharpness ofp-n-junction.

    The second way to increase sharpness ofp-n-junction based on using high doping of materials. In

    this case contribution of nonlinearity of diffusion process increases [4]. The third way to increase

  • 7/26/2019 ON MODIFICATION OF PROPERTIES OF P-N-JUNCTIONS DURING OVERGROWTH

    2/20

    International Journal of Information Technology, Modeling and Computing (IJITMC) Vol. 4, No.2, May 2016

    36

    sharpness of p-n-junction is using of inhomogeneity of heterostructure [16,17]. Framework the

    approach we consider simplest heterostructure, which consist of substrate and epitaxial layer. Onecan find increasing of sharpness of p-n-junction after annealing with appropriate annealing time

    in the case, when dopant diffusion coefficient in the substrate is smaller, than in the epitaxial

    layer. The fourth way to increase sharpness of p-n-junction is radiation processing of materials.The radiation processing leads to radiation-enhanced diffusion [18]. However using radiation

    processing of materials leads to necessity of annealing of radiation defects. Density of elements ofintegrated circuits could be increases by using mismatch-induced stress [19]. However one could

    obtain increased unsoundness of doped material (for example, to generation of dislocation of dis-

    agreement) by using the approach [7].

    Theconsideredapproaches gives a possibility to increase sharpness of p-n-junction with increas-ing of homogeneity of dopant distribution in enriched by the dopant area. Using combination of

    the above approaches gives us possibility to increase sharpness of p-n-junction and increasing ofhomogeneity of dopant distribution in enriched area at one time.

    z

    D(z

    ),

    P(z

    )

    D2

    D3

    0 Lza

    fC impl(z)

    fC diff(z)

    P2

    P3

    Substrate

    Epitaxial layer

    Overlayer

    D1

    P1

    Fig. 1. Substrate, epitaxial and overlayers framework heterostructure

    Framework this paper we consider a substrate with known type of conductivity ( nor p) and anepitaxial layer, included into a heterostructure. The epitaxial layer have been doped by diffusion

    or by ion implantation to manufacture another type of conductivity (por n). Farther we considerovergrowth of the epitaxial layer by an overlayer (see Fig. 1). The overlayer has type of conduc-

    tivity, which coincide with type of conductivity of the substrate. In this paper we analyzed influ-ence of overgrowth of the doped epitaxial layer on distribution of dopants in the considered hete-

    rostructure.

    2.METHOD OF SOLUTION

    In this section we calculate spatio-temporal distribution of concentration of dopant in the consi-dered heterostructure to solve our aim. To calculate the distribution we solved the following

    boundary problem [1,20-22]

    ( ) ( ) ( ) ( )+

    +

    +

    =

    z

    tzyxCD

    zy

    tzyxCD

    yx

    tzyxCD

    xt

    tzyxC ,,,,,,,,,,,, (1)

  • 7/26/2019 ON MODIFICATION OF PROPERTIES OF P-N-JUNCTIONS DURING OVERGROWTH

    3/20

    International Journal of Information Technology, Modeling and Computing (IJITMC) Vol. 4, No.2, May 2016

    37

    ( ) ( ) ( ) ( )

    +

    +

    zz L

    tvS

    SL

    tvS

    S WdtWyxCtzyxTk

    D

    yWdtWyxCtzyx

    Tk

    D

    x,,,,,,,,,,,, .

    Boundary and initial conditions for our case could be written as

    ( )0

    ,,,

    0

    =

    =xx

    tzyxC,

    ( )0

    ,,,=

    = xLxx

    tzyxC,

    ( )0

    ,,,

    0

    =

    =yy

    tzyxC,

    ( )0

    ,,,=

    = yLxy

    tzyxC,

    ( )0

    ,,,=

    = tvzz

    tzyxC,

    ( )0

    ,,,=

    = zLxz

    tzyxC, C(x,y,z,0)=fC(x,y,z).

    In the above relations we used the function C(x,y,z,t) as the spatio-temporal distribution of con-

    centration of dopant; is the atomic volume; surface concentration of dopant on interface be-

    tween layers of heterostructure could be determined as the following integral ( )

    zL

    tv

    zdtzyxC ,,,

    (we assume, that the interface between layers of heterostructure is perpendicular to the direction

    Oz); surface gradient we denote as symbol S; (x,y,z,t) is the chemical potential (reason of ac-counting of the chemical potential is mismatch-induced stress); the parameters DandDSare the

    coefficients of volumetric and surface diffusions. One can find the surface diffusions due to mis-match-induced stress. Diffusion coefficients depends on temperature and speed of heating andcooling of heterostructure, properties of materials of heterostructure, spatio-temporal distributions

    of concentrations of dopant and radiation defects after ion implantation. Approximations of thesedependences could be approximated by the following functions [22,23]

    ( ) ( )

    ( )( ) ( )

    ( )

    ++

    +=

    2*

    2

    2*1

    ,,,,,,1

    ,,,

    ,,,1,,,

    V

    tzyxV

    V

    tzyxV

    TzyxP

    tzyxCTzyxDD

    SLSS

    . (2)

    FunctionsDL(x,y,z,T) andDLS(x,y,z,T) described dependences of diffusion coefficients on coordi-

    nate (due to presents several layers in heterostructure, manufactured by using different materials)and temperature of annealing T(due to Arrhenius law); function P(x,y,z,T) describes dependence

    of limit of solubility of dopant on coordinate and temperature; parameter could be integer anddepends on properties of materials of heterostructure [23]; V (x,y,z,t) is the spatio-temporal con-centration of radiation vacancies; V

    *is the equilibrium concentration of vacancies. Concentration-

    al dependence of dopant diffusion coefficients has been described in details in [23].

    We determine distributions of concentrations of point defects in space and time as solutions of thefollowing system of equations [1,20-22]

    ( )( )

    ( )( )

    ( )( )

    +

    = Tzyxk

    y

    tzyxITzyxD

    yx

    tzyxITzyxD

    xt

    tzyxIIIII

    ,,,,,,

    ,,,,,,

    ,,,,,,

    ,

    ( ) ( ) ( ) ( ) ( ) ( )tzyxVtzyxITzyxkz

    tzyxITzyxD

    ztzyxI

    VII,,,,,,,,,

    ,,,,,,,,,

    ,

    2

    +

    (3)

  • 7/26/2019 ON MODIFICATION OF PROPERTIES OF P-N-JUNCTIONS DURING OVERGROWTH

    4/20

    International Journal of Information Technology, Modeling and Computing (IJITMC) Vol. 4, No.2, May 2016

    38

    ( ) ( ) ( ) ( )

    +

    +

    zz L

    tvS

    SIL

    tvS

    SIWdtWyxItzyx

    Tk

    D

    yWdtWyxItzyx

    Tk

    D

    x,,,,,,,,,,,,

    ( )( )

    ( )( )

    ( )( )

    +

    = Tzyxk

    y

    tzyxVTzyxD

    yx

    tzyxVTzyxD

    xt

    tzyxVVVVV ,,,

    ,,,,,,

    ,,,,,,

    ,,,,

    ( ) ( ) ( ) ( ) ( ) ( )+

    + tzyxVtzyxITzyxkz

    tzyxVTzyxD

    ztzyxV

    VIV,,,,,,,,,

    ,,,,,,,,,

    ,

    2

    ( ) ( ) ( ) ( )

    +

    +

    zz L

    tvS

    VSL

    tvS

    VS WdtWyxVtzyxTk

    D

    yWdtWyxVtzyx

    Tk

    D

    x,,,,,,,,,,,, .

    Boundary and initial conditions for these equations could be written as

    ( )0

    ,,,

    0

    =

    =xx

    tzyxI

    ,

    ( )0

    ,,,=

    = xLxx

    tzyxI

    ,

    ( )0

    ,,,

    0

    =

    =yy

    tzyxI

    ,

    ( )0

    ,,,=

    = yLyy

    tzyxI

    ,

    ( )

    0

    ,,,=

    = tvzz

    tzyxI

    ,

    ( )

    0

    ,,,=

    = zLzz

    tzyxI

    ,

    ( )

    0

    ,,,

    0

    =

    =xx

    tzyxV

    ,

    ( )

    0

    ,,,=

    = xLxx

    tzyxV

    ,

    ( )0

    ,,,

    0

    =

    =yy

    tzyxV

    ,

    ( )0

    ,,,=

    = yLyy

    tzyxV

    ,

    ( )0

    ,,,=

    = tvzz

    tzyxV

    ,

    ( )0

    ,,,=

    = zLzz

    tzyxV

    ,

    I(x,y,z,0)=fI(x,y,z), V(x,y,z,0)=fV(x,y,z). (4)

    HereI(x,y,z,t) is the distribution of concentration of radiation interstitials in space and time;I*is

    the equilibrium concentration interstitials;DI(x,y,z,T),DV(x,y,z,T),DIS(x,y,z,T),DVS(x,y,z,T) are thecoefficients of volumetric and surface diffusion; terms V

    2(x,y,z,t) and I

    2(x,y,z,t) corresponds to

    generation divacancies and analogous complexes of interstitials (see, for example, [22] and ap-propriate references in this work); the functions kI,V(x,y,z,T), kI,I(x,y,z,T) and kV,V(x,y,z,T) describeddependences of parameters of recombination of point defects and generation their complexes on

    coordinate and temperature; kis the Boltzmann constant.

    We calculate spatio-temporal distributions of concentrations of divacancies V(x,y,z,t) and diin-terstitials I(x,y,z,t) by solution of the equations [20-22]

    ( )( )

    ( )( )

    ( )( ) +

    +

    =

    Tzyxky

    tzyxTzyxD

    yx

    tzyxTzyxD

    xt

    tzyxI

    III

    II,,,

    ,,,,,,

    ,,,,,,

    ,,,

    ( ) ( ) ( )

    ( ) ( ) +

    +

    +

    zI

    I

    L

    tvIS

    SI WdtWyxtzyxTk

    D

    xz

    tzyxTzyxD

    ztzyxI ,,,,,,

    ,,,,,,,,,

    ( ) ( ) ( ) ( )tzyxITzyxkWdtWyxtzyxTk

    D

    y II

    L

    tvIS

    ISz

    ,,,,,,,,,,,, 2,

    +

    +

    (5)

    ( )( )

    ( )( )

    ( )( ) +

    +

    =

    Tzyxky

    tzyxTzyxD

    yx

    tzyxTzyxD

    xt

    tzyxV

    VVV

    VV,,,

    ,,,,,,

    ,,,,,,

    ,,,

    ( ) ( ) ( )

    ( ) ( ) +

    +

    +

    zV

    V

    L

    tvVS

    SV WdtWyxtzyxTk

    D

    xz

    tzyxTzyxD

    ztzyxV ,,,,,,

    ,,,,,,,,,

  • 7/26/2019 ON MODIFICATION OF PROPERTIES OF P-N-JUNCTIONS DURING OVERGROWTH

    5/20

    International Journal of Information Technology, Modeling and Computing (IJITMC) Vol. 4, No.2, May 2016

    39

    ( ) ( ) ( ) ( )tzyxVTzyxkWdtWyxtzyxTk

    D

    y VV

    L

    tvVS

    S z

    V ,,,,,,,,,,,, 2,

    +

    +

    .

    Boundary and initial conditions could be written as

    ( )0

    ,,,

    0

    =

    =x

    I

    x

    tzyx

    ,

    ( )0

    ,,,=

    = xLx

    I

    x

    tzyx

    ,

    ( )0

    ,,,

    0

    =

    =y

    I

    y

    tzyx

    ,

    ( )0

    ,,,=

    = yLy

    I

    y

    tzyx

    ,

    ( )0

    ,,,=

    = tvz

    I

    z

    tzyx

    ,

    ( )0

    ,,,=

    = zLzz

    tzyxI

    ,

    ( )0

    ,,,

    0

    =

    =x

    V

    x

    tzyx

    ,

    ( )0

    ,,,=

    = xLxx

    tzyxV

    ,

    ( )0

    ,,,

    0

    =

    =y

    V

    y

    tzyx

    ,

    ( )0

    ,,,=

    = yLy

    V

    y

    tzyx

    ,

    ( )0

    ,,,=

    = tvz

    V

    z

    tzyx

    ,

    ( )0

    ,,,=

    = zLz

    V

    z

    tzyx

    ,

    I(x,y,z,0)=fI(x,y,z), V(x,y,z,0)=fV(x,y,z). (6)

    Here DI(x,y,z,T), DV(x,y,z,T), DIS(x,y,z,T) and DVS(x,y,z,T) are the coefficients of volumetric

    and surface diffusion; the functions kI(x,y,z,T) and kV(x,y,z,T) described dependences of parame-ters of decay of complexes of point defects on coordinate and temperature. One can determine

    chemical potentialin the Eq.(1) by the following relation [20]

    =E(z)ij[uij(x,y,z,t)+uji(x,y,z,t)]/2. (7)

    HereEis the tension (Young) modulus;

    +

    =

    i

    j

    j

    i

    ijx

    u

    x

    uu

    2

    1is the deformation tensor; ijis the

    stress tensor; ui, ujare the components ux(x,y,z,t), uy(x,y,z,t) and uz(x,y,z,t) of the displacement ten-

    sor ( )tzyxu ,,,r

    ;xi,xjare the coordinates x,y,z. The relation (3) could be transformed to the fol-

    lowing form

    ( ) ( ) ( ) ( ) ( ) ( )

    +

    +

    +

    =

    ij

    i

    j

    j

    i

    i

    j

    j

    i

    x

    tzyxu

    x

    tzyxu

    x

    tzyxu

    x

    tzyxuzEtzyx 0

    ,,,,,,

    2

    1,,,,,,

    2,,,

    ( )

    ( )

    ( )( ) ( ) ( )[ ]

    + ij

    k

    kij TtzyxTzzKx

    tzyxu

    z

    z

    00

    ,,,3,,,

    21,

    where is the Poisson coefficient; the parameter 0=(as-aEL)/aELdescribes the displacement pa-rameter with lattice distances of the substrate and the epitaxial layer as, aEL; K is the modulus of

    uniform compression; the parameterbdescribes the thermal expansion; we assume, that the equi-librium temperature Tr coincides with the room temperature. Components of the displacement

    vector could be described by solving the following system of equations [24]

    ( ) ( ) ( ) ( ) ( )

    z

    tzyx

    y

    tzyx

    x

    tzyx

    t

    tzyxuz xz

    xyxxx

    +

    +

    =

    ,,,,,,,,,,,,2

    2

    ( ) ( ) ( ) ( ) ( )

    z

    tzyx

    y

    tzyx

    x

    tzyx

    t

    tzyxuz

    yzyyyxy

    +

    +

    =

    ,,,,,,,,,,,,2

    2

    ( ) ( ) ( ) ( ) ( )

    z

    tzyx

    y

    tzyx

    x

    tzyx

    t

    tzyxuz zz

    zyzxz

    +

    +

    =

    ,,,,,,,,,,,,2

    2

  • 7/26/2019 ON MODIFICATION OF PROPERTIES OF P-N-JUNCTIONS DURING OVERGROWTH

    6/20

    International Journal of Information Technology, Modeling and Computing (IJITMC) Vol. 4, No.2, May 2016

    40

    where( )

    ( )[ ]( ) ( ) ( )

    ( ) ( )

    +

    +

    +=

    k

    k

    ij

    k

    kij

    i

    j

    j

    i

    ijx

    tzyxuzK

    x

    tzyxu

    x

    tzyxu

    x

    tzyxu

    z

    zE ,,,,,,

    3

    ,,,,,,

    12

    ( ) ( ) ( )[ ]rTtzyxTzKz ,,, , (z) describes the density of materials of heterostructure. The ten-sor ijdescribes the Kronecker symbol. Accounting relation for ijin the previous system of equa-

    tions last system of equation could be written as

    ( ) ( )

    ( ) ( )

    ( )[ ]( )

    ( ) ( )

    ( )[ ]

    ( )+

    ++

    ++=

    yx

    tzyxu

    z

    zEzK

    x

    tzyxu

    z

    zEzK

    t

    tzyxuz

    yxx,,,

    13

    ,,,

    16

    5,,,2

    2

    2

    2

    2

    ( )( )[ ]

    ( ) ( )( )

    ( )( )[ ]

    ( )

    +++

    +

    ++

    zx

    tzyxu

    z

    zEzK

    z

    tzyxu

    y

    tzyxu

    z

    zE zzy ,,,

    13

    ,,,,,,

    12

    2

    2

    2

    2

    2

    ( ) ( ) ( )

    ( )[ ]

    ( ) ( )( ) ( )

    ( )+

    +

    +=

    y

    tzyxTzKz

    yx

    tzyxu

    x

    tzyxu

    z

    zE

    t

    tzyxuz x

    yy ,,,,,,,,,

    12

    ,,, 2

    2

    2

    2

    2

    ( )( )[ ]

    ( ) ( ) ( )( )[ ]

    ( ) ( )

    +

    ++

    +

    +

    +

    +

    2

    2 ,,,

    112

    5,,,,,,

    12 y

    tzyxuzK

    z

    zE

    y

    tzyxu

    z

    tzyxu

    z

    zE

    z

    yzy

    ( ) ( )

    ( )[ ]

    ( )( )

    ( )

    yx

    tzyxuzK

    zy

    tzyxu

    z

    zEzK

    yy

    +

    ++

    ,,,,,,

    16

    22

    (8)

    ( ) ( ) ( )

    ( )[ ]( ) ( ) ( ) ( )

    +

    +

    +

    +

    +=

    zy

    tzyxu

    zx

    tzyxu

    y

    tzyxu

    x

    tzyxu

    z

    zE

    t

    tzyxuz

    yxzzz,,,,,,,,,,,,

    12

    ,,,22

    2

    2

    2

    2

    2

    2

    ( ) ( ) ( ) ( )

    ( ) ( ) ( )

    +

    +

    +

    +

    z

    tzyxTzzK

    z

    tzyxu

    y

    tzyxu

    x

    tzyxuzK

    z

    xyx ,,,,,,,,,,,,

    ( )( )

    ( ) ( ) ( ) ( )

    +

    +

    z

    tzyxu

    y

    tzyxu

    x

    tzyxu

    z

    tzyxu

    z

    zE

    z

    zyxz,,,,,,,,,,,,

    616

    1

    .

    Systems of conditions for these equations could be written as

    ( )0

    ,,,

    0

    =

    =xx

    tzyxur

    ;( )

    0,,,

    =

    = xLxx

    tzyxur

    ;( )

    0,,,

    0

    =

    =yy

    tzyxur

    ;( )

    0,,,

    =

    = yLyy

    tzyxur

    ;

    ( )0

    ,,,=

    = tvzz

    tzyxur

    ;( )

    0,,,

    =

    = zLzz

    tzyxur

    ; ( )0

    0,,, uzyxu rr

    = ; ( )0

    ,,, uzyxu rr

    = .

    We calculate distribution of concentration of dopant in space in time by method of averaging of

    function corrections [25-30]. To use the method we re-write Eqs. (1), (3) and (5) with accountappropriate initial distributions (see Appendix). In future we replace the required concentrations

    in right sides of the obtained equations on their average values 1, which are not yet known. Theequations modified after the replacement and solution of these equations are presented in the Ap-

    pendix.

    We determined average values of the first-order approximations of the considered concentrations

    by using the following standard relations [25-30]

  • 7/26/2019 ON MODIFICATION OF PROPERTIES OF P-N-JUNCTIONS DURING OVERGROWTH

    7/20

    International Journal of Information Technology, Modeling and Computing (IJITMC) Vol. 4, No.2, May 2016

    41

    ( )

    =

    0 0 011

    ,,,1 x y zL L L

    tvzyx

    tdxdydzdtzyxLLL

    . (9)

    Substitution of the solutions of the modified equations into the relation (9) gives a possibility to

    obtain appropriate average values in the following form

    ( ) =

    0 0 01

    ,,1 x y zL L L

    tvC

    zyx

    C tdxdydzdzyxf

    LLL ,

    ( )

    4

    3

    4

    1

    2

    3

    2

    4

    2

    3

    14

    44 a

    Aa

    a

    aLLLBaB

    a

    Aa zyxI

    +

    ++

    += ,

    ( )

    =

    zyxIII

    L L L

    tvI

    IIV

    V LLLStdxdydzdzyxf

    S

    x y z

    0010 0 0100

    1,,

    1

    ,

    ( ) +

    +

    =

    0 0 0

    2011

    ,,1 x y z

    II

    L L L

    tvzyxzyx

    II

    zyx

    I tdxdydzdzyxfLLLLLL

    S

    LLL

    R ,

    ( ) +

    +

    =

    0 0 0

    201

    1,,

    1 x y z

    VV

    L L L

    tvzyxzyx

    VV

    zyx

    V tdxdydzdzyxfLLLLLL

    S

    LLL

    R .

    Relations for calculations parameters Sij, ai,A,B, q,pare presented in the Appendix.

    Weusedstandard iterative procedure of method of averaging of function corrections to calculatethe second- and higher-order approximations of the considered concentrations [25-30]. Frame-work the procedure to calculate approximations of the n-th order of the above concentrations we

    replace the functions C(x,y,z,t),I(x,y,z,t), V(x,y,z,t), I(x,y,z,t) and V(x,y,z,t) in the Eqs. (1), (3),(5) with account initial distributions (see Eqs. (1a), (3a), (5a) in the Appendix) on the sums of thenot yet known average values of the considered approximations and approximations of the pre-

    vious order, i.e. n+n-1(x,y,z,t). These obtained equations and their solutions, which calculatedare presented in the Appendix.

    We calculate average values of the second-order approximations of required functions by using

    the following standard relation [25-30]

    ( ) ( )[ ]

    =

    0 0 0 0122

    ,,,,,,1 x y zL L L

    zyx

    tdxdydzdtzyxtzyxLLL

    . (10)

    Substitution of the second-order approximations of concentrations of dopant into Eq.(10) leads to

    the considered average values 2

    2C=0, 2I =0, 2V =0,( )

    4

    3

    4

    1

    2

    3

    2

    4

    2

    3

    24

    44 b

    Eb

    b

    bLLLFaF

    b

    Eb zyxV

    +

    ++

    += ,

    ( )

    00201

    11021001200

    2

    22

    2

    IVVIV

    VIVVzyxVIVVVVVVVI

    SS

    SSLLLSSSC

    +

    ++

    = .

    Relations for parameters bi, C, F, r, sare presented in the Appendix.

    Further we determine solutions of Eqs.(8). In this situation we determine approximation of dis-

    placement vector. To determine the first-order approximations of the considered components

    framework method of averaging of function corrections we replace the required values on their

    not yet known average values 1i. The replacement leads to the following result

  • 7/26/2019 ON MODIFICATION OF PROPERTIES OF P-N-JUNCTIONS DURING OVERGROWTH

    8/20

    International Journal of Information Technology, Modeling and Computing (IJITMC) Vol. 4, No.2, May 2016

    42

    ( ) ( )

    ( ) ( ) ( )

    x

    tzyxTzzK

    t

    tzyxuz x

    =

    ,,,,,,2

    1

    2

    ,

    ( ) ( )

    ( ) ( ) ( )

    y

    tzyxTzzK

    t

    tzyxuz

    y

    =

    ,,,,,,2

    1

    2

    ,

    ( ) ( ) ( ) ( ) ( )z

    tzyxTzzKt

    tzyxuz z

    =

    ,,,,,,

    2

    1

    2

    .

    Integration of the left and right sides of the previous relations on time tgives a possibility to ob-tain the required components to the following result

    ( ) ( ) ( )

    ( ) ( ) ( )

    ( )( )

    ( ) x

    t

    x uddzyxTxz

    zzKddzyxT

    xz

    zzKtzyxu

    00 00 0

    1,,,,,,,,, +

    =

    ,

    ( ) ( ) ( )

    ( ) ( ) ( )

    ( )( )

    ( ) y

    t

    y uddzyxTyz

    zzKddzyxT

    yz

    zzKtzyxu

    00 00 0

    1,,,,,,,,, +

    =

    ,

    ( ) ( ) ( )

    ( ) ( ) ( )

    ( )

    ( ) ( )

    z

    t

    z uddzyxT

    zz

    zzKddzyxT

    zz

    zzKtzyxu

    00 00 0

    1,,,,,,,,, +

    =

    .

    We calculate the second-order approximations of components of the displacement vector by stan-dard replacement of the required functions in the right sides of the Eqs.(8) on the standard sums

    1i+ui(x,y,z,t) [19,26]. Equations for components of the displacement vector are presented in theAppendix. Solutions of these equations are also presented in the Appendix.

    Frameworkthispaperallrequiredconcentrations(concentrationsofdopantandradiation defects)and components of displacement vector have been calculated as the appropriate second-order ap-

    proximations by using the method of averaging of function corrections. The second-order approx-imation gives usually enough information on quantitative behavior of spatio- temporal distribu-

    tions of concentrations of dopant and radiation defects and also several quantitative results. We

    check all analytical results by using numerical approaches.

    3.DISCUSSION

    In this section we analyzed redistribution of dopant (for the ion doping of heterostructure) withaccount redistribution of radiation defects and their interaction with another defects. If growth

    rate is small (v t

  • 7/26/2019 ON MODIFICATION OF PROPERTIES OF P-N-JUNCTIONS DURING OVERGROWTH

    9/20

    International Journal of Information Technology, Modeling and Computing (IJITMC) Vol. 4, No.2, May 2016

    43

    the overlayer increases (see Fig. 3). Qualitatively similar results could be obtained for diffusion

    type of doping. Further we analyzed influence of mismatch-induced stress on distribution of con-centration

    z

    0.0

    0.5

    1.0

    1.5

    2.0

    C(x,y,z,

    )

    0 Lz/4 Lz/2 3Lz/4 Lz

    1

    2

    Fig. 2. Calculated spatial distributions of concentration of implanted dopant in homogenous sample (curve

    1) and in heterostructure from Fig. 1 (curve 2) after annealing with the same continuance. Interfaces be-

    tween layers of heterostructure are: a1=Lz/4 and a2=3Lz/4

    z

    0.00001

    0.00010

    0.00100

    0.01000

    0.10000

    1.00000

    C(x,y,z,

    )

    C(x,y,z,0)

    Lz/40 Lz/2 3Lz/4 Lzx0

    1

    2

    3

    4

    Fig. 3. Curves 1 and 2 are the calculated spatial distributions of concentration of implanted dopant in the

    system of two layers: overlayer and epitaxial layer. Curves 3 and 4 are the calculated spatial distributions of

    concentration of implanted dopant in the epitaxial layer only. Increasing of number of curves corresponds

    to increasing of value of relationD1/D2. Coordinates of interfaces between layers of heterostructure are:

    a1=Lz/4 (between overlayer and epitaxial layer) and a2=3Lz/4 (between epitaxial layer and substrate)

  • 7/26/2019 ON MODIFICATION OF PROPERTIES OF P-N-JUNCTIONS DURING OVERGROWTH

    10/20

    International Journal of Information Technology, Modeling and Computing (IJITMC) Vol. 4, No.2, May 2016

    44

    0.0

    1.0

    2.0

    C(x,y,z

    ,)

    0 Lz

    12

    3

    Fig. 4. Spatial distributions of concentration of dopant in diffusion-junction rectifier after annealing with

    equal continuance. Curve 1 corresponds to 00

    0.0

    1.0

    2.0

    C(x,y,z,

    )

    Lz-Lz 0

    12

    3

    Fig. 5. Spatial distributions of concentration of dopant in implanted-junction rectifier after annealing with

    equal continuance. Curve 1 corresponds to 00

    z

    0.0

    0.2

    0.4

    0.6

    0.8

    1.0

    Uz 1

    2

    0.0 a

    Fig.6. Normalized dependences of component uzof displacement vector on coordinatezfor epitaxial layers

    before radiation processing (curve 1) and after radiation processing (curve 2)

  • 7/26/2019 ON MODIFICATION OF PROPERTIES OF P-N-JUNCTIONS DURING OVERGROWTH

    11/20

    International Journal of Information Technology, Modeling and Computing (IJITMC) Vol. 4, No.2, May 2016

    45

    of dopant. We obtain during the analysis, thatp-n-junctions, manufactured near interface between

    layers of heterostructures, have higher sharpness and higher homogeneity of concentration of do-pant in enriched area. Existing mismatch-induced stress leads to changing of distribution of con-

    centration of dopant in directions, which are parallel to the considered interface. For example, for

    00 one can obtain opposite effect (see Fig.5). It should be noted, that radiation processing of materials of heterostructure during ion doping

    of materials gives a possibility to decrease mismatch-induced stress (see Fig. 6).

    Further we analyzed influence of mismatch-induced stress on distribution of concentration of do-

    pant. We obtain during the analysis, that p-n-junctions, manufactured near interface between lay-ers of heterostructures, have higher sharpness and higher homogeneity of concentration of dopantin enriched area. Existing mismatch-induced stress leads to changing of distribution of concentra-

    tion of dopant in directions, which are parallel to the considered interface. For example, for 00 one canobtain opposite effect (see Fig. 5). It should be noted, that radiation processing of materials of

    heterostructure during ion doping of materials gives a possibility to decrease mismatch-induced

    stress (see Fig. 6). In this situation component of displacement vector perpendicular to interfacebetween materials of heterostructure became smaller after radiation processing in comparison

    with analogous component of displacement vector in non processed heterostructure.

    4.CONCLUSIONS

    In this paper we analyzed influence of overgrowth of doped by diffusion or ion implantation areasof heterostructures on distributions of concentrations of dopants. We determine conditions to in-

    crease sharpness if implanted-junction and diffusion- junction rectifiers (single rectifiers and rec-

    tifiers framework bipolar transistors). At the same time we analyzed influence of overgrowth rateof doped areas and mismatch-induced stress in the considered heterostructure on distributions ofconcentrations of dopants.

    ACKNOWLEDGEMENTS

    This work is supported by the agreement of August 27, 2013 02..49.21.0003 between The

    Ministry of education and science of the Russian Federation and Lobachevsky State University of

    Nizhni Novgorod, educational fellowship for scientific research of Government of Russian, edu-cational fellowship for scientific research of Government of Nizhny Novgorod region of Russia

    and educational fellowship for scientific research of Nizhny Novgorod State University of Archi-

    tecture and Civil Engineering.

    REFERENCES

    [1] V.I. Lachin, N.S. Savelov. Electronics (Phoenix, Rostov-na-Donu, 2001).

    [2] N.A. Avaev, Yu.E. Naumov, V.T. Frolkin. Basis of microelectronics (Radio and communication,

    Moscow, 1991).

    [3] V.G. Gusev, Yu.M. Gusev. Electronics (Higher School, Moscow, 1991).

    [4] Z.Yu. Gotra. Technology of microelectronic devices (Radio and communication, Moscow 1991).

    [5] I.P. Stepanenko. Basis of microelectronics (Soviet Radio, Moscow 1980).

    [6] A.G. Alexenko, I.I. Shagurin. Microcircuitry (Radio and communication, Moscow, 1990).

    [7] K.V. Shalimova. Physics of semiconductors. (Energoatomizdat, Moscow, 1985.

    [8] Yu.V. Bykov, A.G. Yeremeev, N.A. Zharova, I.V. Plotnikov, K.I. Rybakov, M.N. Drozdov, Yu.N.

    Drozdov, V.D. Skupov. Diffusion processes in semiconductor structures during microwave annealing.

    Radiophysics and Quantum Electronics. Vol. 43 (3). P. 836 (2003).

  • 7/26/2019 ON MODIFICATION OF PROPERTIES OF P-N-JUNCTIONS DURING OVERGROWTH

    12/20

    International Journal of Information Technology, Modeling and Computing (IJITMC) Vol. 4, No.2, May 2016

    46

    [9] A.V. Dvurechensky, G.A. Kachurin, E.V. Nidaev, L.S. Smirnov. Impulse annealing of semiconductor

    materials (Science, Moscow, 1982).

    [10] A.F. Corballo Sanchez, G. Gonzalez de la Cruz, Yu.G. Gurevich, G.N. Logvinov. Transient heat

    transport by carriers and phonons in semiconductors. Phys. Rev. B. Vol. 59 (16). P. 10630 (1999).

    [11] V.I. Mazhukin, V.V. Nosov, U. Semmler. Investigation of heat and thermo-elastic fields in semicon-

    ductors at pulse processing. Mathematical modelling. Vol. 12 (2), 75 (2000).

    [12] K.K. Ong, K.L. Pey, P.S. Lee, A.T.S. Wee, X.C. Wang, Y.F. Chong. Dopant activation in subamor-phized silicon upon laser annealing. Appl. Phys. Lett. Vol. 89 (17), 172111 (2006).

    [13] J.A. Sharp, N.E. B. Cowern, R.P. Webb, K.J. Kirkby, D. Giubertoni, S. Genarro, M. Bersani, M.A.

    Foad, F. Cristiano, P.F. Fazzini. Appl. Phys. Lett. Vol. 89, 192105 (2006).

    [14] J.E. Epler, F.A. Ponce, F.J. Endicott, T.L. Paoli. J. Appl. Phys. Vol. 64, 3439 (1988).[15] S.T. Sisianu, T.S. Sisianu, S.K. Railean. Semiconductors. Vol. 36, 581 (2002).

    [16] E.L. Pankratov. Influence of spatial, temporal and concentrational dependence of diffusion coefficient

    on dopant dynamics: Optimization of annealing time. Phys. Rev. B. Vol. 72 (7). P. 075201 (2005).

    [17] E.L. Pankratov. Dopant diffusion dynamics and optimal diffusion time as influenced by diffusion-

    coefficient nonuniformity. Russian Microelectronics. Vol. 36 (1). P. 33 (2007).

    [18] V.V. Kozlivsky. Modification of semiconductors by proton beams (Science, Sant- Peterburg, 2003).

    [19] E.L. Pankratov. Influence of mechanical stress in a multilayer structure on spatial distribution of

    dopants in implanted-junction and diffusion-junction rectifiers. Mod. Phys. Lett. B. Vol. 24 (9). P.

    867 (2010).

    [20] Y.W. Zhang, A.F. Bower. Numerical simulations of island formation in a coherent strained epitaxialthin film system. Journal of the Mechanics and Physics of Solids. Vol. 47 (11). P. 2273-2297 (1999).

    [21] P.M. Fahey, P.B. Griffin, J.D. Plummer. Point defects and dopant diffusion in silicon. Rev. Mod.

    Phys. Vol. 61 (2). P. 289-388 (1989).

    [22] V.L. Vinetskiy, G.A. Kholodar', Radiative physics of semiconductors. ("Naukova Dumka", Kiev,

    1979, in Russian).

    [23] Z.Yu. Gotra, Technology of microelectronic devices (Radio and communication, Moscow, 1991).

    [24] L.D. Landau, E.M. Lefshits. Theoretical physics. 7 (Theory of elasticity) (Physmatlit, Moscow, 2001,

    in Russian).

    [25] Yu.D. Sokolov. About the definition of dynamic forces in the mine lifting. Applied Mechanics. Vol. 1

    (1). P. 23-35 (1955).

    [26] E.L. Pankratov, E.A. Bulaeva. Doping of materials during manufacture p-n-junctions and bipolar

    transistors. Analytical approaches to model technological approaches and ways of optimization of dis-

    tributions of dopants. Reviews in Theoretical Science. Vol. 1 (1). P. 58-82 (2013).

    [27] E.L. Pankratov, E.A. Bulaeva. Increasing of sharpness of diffusion-junction heterorectifier by usingradiation processing. Int. J. Nanoscience. Vol. 11 (5). P. 1250028-1-1250028-8 (2012).

    [28] E.L. Pankratov, E.A. Bulaeva. Optimization of manufacturing of emitter-coupled logic to decrease

    surface of chip. International Journal of Modern Physics B. Vol. 29 (5). P. 1550023-1-1550023-12

    (2015).

    [29] E.L. Pankratov, E.A. Bulaeva. An approach to manufacture of bipolar transistors in thin film struc-

    tures. On the method of optimization. Int. J. Micro-Nano Scale Transp. Vol. 4 (1). P. 17-31 (2014).

    [30] E.L. Pankratov, E.A. Bulaeva. Decreasing of mechanical stress in a semiconductor heterostructure by

    radiation processing. J. Comp. Theor. Nanoscience. Vol. 11 (1). P. 91-101 (2014).

    APPENDIX

    Eqs. (1), (3) and (5) with account initial distributions could be written as

    ( ) ( ) ( ) ( ) ( ) ( )++

    +

    +

    =

    tzyxf

    z

    tzyxCD

    zy

    tzyxCD

    yx

    tzyxCD

    xt

    tzyxCC ,,

    ,,,,,,,,,,,,

    ( ) ( ) ( ) ( )

    +

    +

    zz L

    tvS

    SL

    tvS

    S WdtWyxCtzyxTk

    D

    yWdtWyxCtzyx

    Tk

    D

    x,,,,,,,,,,,, (1a)

  • 7/26/2019 ON MODIFICATION OF PROPERTIES OF P-N-JUNCTIONS DURING OVERGROWTH

    13/20

    International Journal of Information Technology, Modeling and Computing (IJITMC) Vol. 4, No.2, May 2016

    47

    ( )( )

    ( )( )

    ( )( ) ( )++

    +

    = tzyxf

    y

    tzyxITzyxD

    yx

    tzyxITzyxD

    xt

    tzyxIIII

    ,,

    ,,,,,,

    ,,,,,,

    ,,,

    ( ) ( )

    ( ) ( ) ( ) ( ) ( )+

    + tzyxITzyxktzyxVtzyxITzyxk

    z

    tzyxITzyxD

    z IIVII

    ,,,,,,,,,,,,,,,,,,

    ,,, 2,,

    ( ) ( ) ( ) ( )

    +

    +

    zz L

    tvS

    ISL

    tvS

    IS WdtWyxItzyxTk

    D

    yWdtWyxItzyx

    Tk

    D

    x,,,,,,,,,,,, (3a)

    ( )( )

    ( )( )

    ( )( ) ( )++

    +

    = tzyxf

    y

    tzyxVTzyxD

    yx

    tzyxVTzyxD

    xt

    tzyxVVVV

    ,,

    ,,,,,,

    ,,,,,,

    ,,,

    ( ) ( )

    ( ) ( ) ( ) ( ) ( )+

    + tzyxVTzyxktzyxVtzyxITzyxk

    z

    tzyxVTzyxD

    z VVVIV

    ,,,,,,,,,,,,,,,,,,

    ,,, 2,,

    ( ) ( ) ( ) ( )

    +

    +

    zz L

    tvS

    VSL

    tvS

    VS WdtWyxVtzyxTk

    D

    yWdtWyxVtzyx

    Tk

    D

    x,,,,,,,,,,,,

    ( )( )

    ( )( )

    ( )( ) +

    +

    =

    t

    y

    tzyxTzyxD

    yx

    tzyxTzyxD

    xt

    tzyxIII

    II

    ,,,,,,

    ,,,,,,

    ,,,

    ( ) ( ) ( )

    ( ) ( ) +

    +

    +

    zI

    II

    L

    tvIS

    SI WdtWyxtzyxTk

    D

    xz

    tzyxTzyxD

    zzyxf ,,,,,,

    ,,,,,,,,

    ( ) ( ) ( ) ( ) ( ) ( )tzyxITzyxktzyxITzyxkWdtWyxtzyxTk

    D

    y III

    L

    tvIS

    S z

    I ,,,,,,,,,,,,,,,,,, 2,

    ++

    +

    ( )( )

    ( )( )

    ( )( )+

    +

    =

    ty

    tzyxTzyxD

    yx

    tzyxTzyxD

    xt

    tzyxVVV

    VV

    ,,,,,,

    ,,,,,,

    ,,,(5a)

    ( ) ( ) ( )

    ( ) ( ) +

    +

    +

    zV

    VV

    L

    tvVS

    SV WdtWyxtzyxTk

    D

    xz

    tzyxTzyxD

    zzyxf ,,,,,,

    ,,,,,,,,

    ( ) ( ) ( ) ( ) ( ) ( )tzyxVTzyxktzyxVTzyxkWdtWyxtzyxTk

    D

    y VVV

    L

    tvVS

    S z

    V ,,,,,,,,,,,,,,,,,, 2,

    ++

    +

    .

    The first-order approximations of concentrations of dopant and radiation defects could by calcu-

    lated by solution of the following equations

    ( )( ) ( ) +

    +

    =

    tzyx

    Tk

    Dz

    ytzyx

    Tk

    Dz

    xt

    tzyxCS

    S

    CS

    S

    C,,,,,,

    ,,,11

    1

    ( ) ( )tzyxfC ,,+ (1b)

    ( ) ( ) ( ) ( ) ( )+

    +

    = tzyxftzyx

    TkDz

    ytzyx

    TkD

    xz

    ttzyxI ISISISISI

    ,,,,,,,,,,, 111

    ( ) ( )TzyxkTzyxkVIVIIII

    ,,,,,,,11,

    2

    1 (3b)

    ( )( ) ( ) ( ) ( )+

    +

    = tzyxftzyx

    Tk

    Dz

    ytzyx

    Tk

    D

    xz

    t

    tzyxVVS

    VS

    VS

    VS

    V

    ,,,,,,,,

    ,,,11

    1

    ( ) ( )TzyxkTzyxk VIVIVVV ,,,,,, ,11,2

    1

  • 7/26/2019 ON MODIFICATION OF PROPERTIES OF P-N-JUNCTIONS DURING OVERGROWTH

    14/20

    International Journal of Information Technology, Modeling and Computing (IJITMC) Vol. 4, No.2, May 2016

    48

    ( )( ) ( ) ( ) ( ) ( ) ( )+++=

    tzyxftzyxITzyxktzyxITzyxkt

    tzyxIIII

    I

    ,,,,,,,,,,,,,,

    ,,, 2,

    1

    ( ) ( )

    +

    +

    tzyx

    Tk

    D

    yztzyx

    Tk

    D

    xz S

    S

    S

    S I

    I

    I

    I,,,,,, 11 (5b)

    ( )( ) ( ) ( ) ( ) ( ) ( )+++=

    tzyxftzyxVTzyxktzyxVTzyxkt

    tzyxVVVV

    V

    ,,,,,,,,,,,,,,

    ,,, 2,

    1

    ( ) ( )

    +

    +

    tzyx

    Tk

    D

    yztzyx

    Tk

    D

    xz S

    S

    S

    S V

    V

    V

    V,,,,,, 11

    The first-order approximations of the considered concentrations in the following form

    ( ) ( )( )

    ( ) ( )

    ( )

    ++

    +

    =

    tCS

    SC

    V

    zyxV

    V

    zyxV

    TzyxPzyx

    xtzyxC

    02*

    2

    2*1

    1

    111

    ,,,,,,1

    ,,,1,,,,,,

    ( ) ( ) ( ) ( )( )

    ++

    +

    t

    SCLS

    VzyxV

    VzyxVzyx

    yd

    TkzTzyxD

    02*

    2

    2*111,,,,,,1,,,,,,

    ( )( )

    ( )zyxfdTzyxPTk

    zTzyxD

    C

    CS

    LS,,

    ,,,1,,, 1 +

    +

    (1c)

    ( ) ( ) ( ) ( )+

    +

    = zyxfdzyx

    Tk

    D

    yzdzyx

    Tk

    D

    xztzyxI

    I

    t

    S

    IS

    I

    t

    S

    IS

    I,,,,,,,,,,,

    01

    011

    ( ) ( )t

    VIVI

    t

    III dTzyxkdTzyxk0

    ,110

    ,

    2

    1,,,,,, (3c)

    ( ) ( ) ( ) ( )+

    +

    = zyxfdzyxTk

    D

    yzdzyxTk

    D

    xztzyxVV

    t

    SISV

    t

    SISV ,,,,,,,,,,,0

    110

    111

    ( ) ( )t

    VIVI

    t

    VVV dTzyxkdTzyxk

    0,11

    0,

    2

    1,,,,,,

    ( ) ( ) ( ) +

    +

    =

    t

    S

    St

    S

    S

    I dzyx

    Tk

    D

    xzdzyx

    Tk

    D

    xztzyx I

    I

    I

    I0

    10

    11,,,,,,,,,

    ( ) ( ) ( ) ( ) ( )+++ t

    II

    t

    I dzyxITzyxkdzyxITzyxkzyxf

    I0

    2

    ,0

    ,,,,,,,,,,,,,, (5c)

    ( ) ( ) ( ) +

    +

    =

    t

    S

    St

    S

    S

    V dzyxTk

    D

    xzdzyx

    Tk

    D

    xztzyx V

    V

    V

    V0

    10

    11,,,,,,,,,

    ( ) ( ) ( ) ( ) ( )+++ t

    VV

    t

    V dzyxVTzyxkdzyxVTzyxkzyxf

    V0

    2,

    0

    ,,,,,,,,,,,,,, .

    Relations for calculations parameters Sij, ai,A,B, q,pcould be written as

    ( ) ( ) ( ) ( ) =

    0 0 011,

    ,,,,,,,,,x y zL L L

    tv

    ji

    ij tdxdydzdtzyxVtzyxITzyxktS , ( )= 0000

    2

    004 VVIIIV SSSa

  • 7/26/2019 ON MODIFICATION OF PROPERTIES OF P-N-JUNCTIONS DURING OVERGROWTH

    15/20

    International Journal of Information Technology, Modeling and Computing (IJITMC) Vol. 4, No.2, May 2016

    49

    00IIS ,

    0000

    2

    0000003 VVIIIVIIIV SSSSSa += , ( ) +=

    0 0 0

    222

    002,,2

    x y zL L L

    tvIzyxIV tdxdydzdzyxfLLLSa

    ( ) ( ) +

    2

    0 0 0

    2

    000 0 0

    2

    00000000,,,, x

    L L L

    tvIIV

    L L L

    tvVIVIVIIVV

    LtdxdydzdzyxfStdxdydzdzyxfSSSSx y zx y z

    0022

    VVzy SLL , ( ) =

    0 0 0001 ,,

    x y zL L L

    tvIIV tdxdydzdzyxfSa , ++++= 3 323 32 qpqqpqB

    4

    2

    6a

    a+ , ( )

    2

    0 0 0000

    ,,

    =

    x y zL L L

    tvIVV tdxdydzdzyxfSa ,

    2

    1

    4

    2

    2

    4

    2

    32 84

    += y

    a

    a

    a

    aA ,

    =

    2

    4

    2

    3

    24a

    aq

    2

    4

    2

    1

    4

    222

    3

    4

    3

    2

    3

    4

    2

    32

    22

    4

    02

    4

    31

    0854

    48

    4a

    aLLL

    a

    a

    a

    aa

    a

    a

    a

    aaLLLa

    zyxzyx

    , =

    2

    4

    402

    12

    4

    a

    aap

    ( ) 244231

    2 3623 aaaaaLLL zyx + , ( ) ( ) ( ) =

    0 0 01

    ,,,,,,x y zL L L

    tv

    i

    Ii tdxdydzdtzyxITzyxktR .

    Equations for the second-order approximations of concentrations of dopant and radiation defects

    could be written as

    ( )( )

    ( )[ ]( )

    ( ) ( )

    ( )

    ++

    ++

    =

    2*

    2

    2*1

    122,,,,,,

    1,,,

    ,,,1,,,

    ,,,

    V

    tzyxV

    V

    tzyxV

    TzyxP

    tzyxCTzyxD

    xt

    tzyxC CL

    ( ) ( ) ( )

    ( )( )[ ]

    ( )( )

    ++

    ++

    +

    y

    tzyxC

    TzyxP

    tzyxC

    V

    tzyxV

    V

    tzyxV

    yx

    tzyxC C ,,,

    ,,,

    ,,,1

    ,,,,,,1

    ,,,112

    2*

    2

    2*1

    1

    ( )) ( ) ( )( )

    ( )[ ]( )

    ++

    ++

    +

    TzyxP

    tzyxC

    V

    tzyxV

    V

    tzyxV

    zTzyxD C

    L,,,

    ,,,1

    ,,,,,,1,,, 12

    2*

    2

    2*1

    ( ) ( )

    ( ) ( )[ ] +

    +

    +

    zL

    tv

    CS

    S

    L WdtWyxCtzyx

    Tk

    D

    xz

    tzyxCTzyxD ,,,,,,

    ,,,,,,

    22

    1

    ( ) ( )[ ] ( ) ( )tzyxfWdtWyxCtzyxTk

    D

    y C

    L

    tvCS

    Sz

    ,,,,,,,,22

    +

    +

    +

    (1d)

    ( )( )

    ( )( )

    ( )( )

    +

    = Tzyxk

    y

    tzyxITzyxD

    yx

    tzyxITzyxD

    xt

    tzyxIVIII

    ,,,,,,

    ,,,,,,

    ,,,,,,

    ,

    112

    ( )[ ] ( )[ ] ( ) ( )

    ( )[ ] +

    +++

    2

    11

    1

    1111,,,

    ,,,,,,,,,,,, tzyxI

    z

    tzyxITzyxD

    ztzyxVtzyxI

    IIVI

    ( ) ( ) ( )[ ] +

    +

    +

    zL

    tvIS

    IS

    II WdtWyxItzyx

    Tk

    D

    xTzyxk ,,,,,,,,,

    12,

    ( ) ( )[ ]

    +

    +

    zL

    tvIS

    IS WdtWyxItzyxTk

    D

    y,,,,,,

    12 (3d)

    ( )( )

    ( )( )

    ( )( )

    +

    = Tzyxk

    y

    tzyxVTzyxD

    yx

    tzyxVTzyxD

    xt

    tzyxVVIVV

    ,,,,,,

    ,,,,,,

    ,,,,,,

    ,

    112

    ( )[ ] ( )[ ] ( ) ( )

    ( )[ ] +

    +++

    2

    11

    1

    1111,,,

    ,,,,,,,,,,,, tzyxV

    z

    tzyxVTzyxD

    ztzyxVtzyxI

    VVVI

  • 7/26/2019 ON MODIFICATION OF PROPERTIES OF P-N-JUNCTIONS DURING OVERGROWTH

    16/20

    International Journal of Information Technology, Modeling and Computing (IJITMC) Vol. 4, No.2, May 2016

    50

    ( ) ( ) ( )[ ] +

    +

    +

    zL

    tvVS

    VS

    VV WdtWyxVtzyx

    Tk

    D

    xTzyxk ,,,,,,,,,

    12,

    ( ) ( )[ ]

    +

    +

    zL

    tvVS

    VS WdtWyxVtzyxTk

    D

    y,,,,,,

    12

    ( ) ( ) ( ) ( ) ( ) ( ) +

    +

    =

    Tzyxky

    tzyxTzyxD

    yx

    tzyxTzyxD

    xt

    tzyxII

    III

    II,,,

    ,,,,,,

    ,,,,,,

    ,,,,

    112

    ( ) ( ) ( )[ ] ( ) ( )++

    +

    +

    tzyxfWdtWyxtzyxTk

    D

    xtzyxI

    I

    z

    I

    I

    L

    tvIS

    S ,,,,,,,,,,,

    12

    2

    ( ) ( )[ ] ( ) ( ) +

    +

    +

    +

    z

    tzyxTzyxD

    zWdtWyxtzyx

    Tk

    D

    y

    IL

    tvIS

    S

    I

    z

    I

    I

    ,,,,,,,,,,,, 112

    ( ) ( )tzyxITzyxkI

    ,,,,,,+ (5d)

    ( )( )

    ( )( )

    ( )( )+

    +

    =

    Tzyxky

    tzyxTzyxD

    yx

    tzyxTzyxD

    xt

    tzyxVV

    VVV

    VV,,,

    ,,,,,,

    ,,,,,,

    ,,,,

    112

    ( ) ( ) ( )[ ] ( ) ( )++

    +

    +

    tzyxfWdtWyxtzyxTk

    D

    xtzyxV V

    z

    V

    V

    L

    tvVS

    S ,,,,,,,,,,, 122

    ( ) ( )[ ] ( ) ( ) +

    +

    +

    +

    z

    tzyxTzyxD

    zWdtWyxtzyx

    Tk

    D

    y

    VL

    tvVS

    S

    V

    z

    V

    V

    ,,,,,,,,,,,, 112

    ( ) ( )tzyxVTzyxkV ,,,,,,+ .The second-order approximations of concentrations of dopant and radiation defects could be writ-ten as

    ( ) ( ) ( )[ ]

    ( )

    ( ) ( )

    ( )

    ++

    ++

    =

    tC

    L

    V

    zyxV

    V

    zyxV

    TzyxP

    zyxCTzyxD

    xtzyxC

    02*

    2

    2*1

    12

    2

    ,,,,,,1

    ,,,

    ,,,1,,,,,,

    ( ) ( ) ( )

    ( )

    ( )[ ]

    ( )

    ++

    ++

    +

    tC

    TzyxP

    zyxC

    V

    zyxV

    V

    zyxV

    y

    d

    x

    zyxC

    0

    12

    2*

    2

    2*1

    1

    ,,,

    ,,,1

    ,,,,,,1

    ,,,

    ( ) ( )

    ( ) ( ) ( )

    ( )

    ++

    +

    t

    LL

    V

    zyxV

    V

    zyxVTzyxD

    zd

    y

    zyxCTzyxD

    02*

    2

    2*1

    1 ,,,,,,1,,,,,,

    ,,,

    ( ) ( )[ ]( )

    ( )[ ] +

    +

    ++

    t L

    vC

    SCz

    WdWyxCTk

    D

    xd

    TzyxP

    zyxC

    z

    zyxC

    012

    121 ,,,,,,

    ,,,1

    ,,,

    ( ) ( ) ( )[ ] + +

    +

    t L

    vCS

    S

    S ddWdWyxCzyx

    Tk

    D

    yddzyx

    z

    012

    ,,,,,,,,,

    ( )zyxfC ,,+ (1e)

    ( ) ( ) ( )

    ( ) ( )

    ++=t

    I

    t

    I d

    y

    zyxITzyxD

    yd

    x

    zyxITzyxD

    xtzyxI

    0

    1

    0

    12

    ,,,,,,

    ,,,,,,,,,

    ( ) ( )

    ( ) ( )[ ] ( )++ ++ zyxfdzyxITzyxkdz

    zyxITzyxD

    z I

    t

    III

    t

    I,,,,,,,,

    ,,,,,,

    0

    2

    12,0

    1

    ( ) ( )[ ] ( )

    + +

    +

    t

    S

    ISt L

    vIS

    IS zyxTk

    D

    yddWdWyxIzyx

    Tk

    D

    x

    z

    0012

    ,,,,,,,,,

    ( )[ ] ( ) ( )[ ] ( )[ ] ++ +

    t

    VIVI

    L

    vI

    dzyxVzyxITzyxkddWdWyxIz

    01212,12

    ,,,,,,,,,,,,

    (3e)

  • 7/26/2019 ON MODIFICATION OF PROPERTIES OF P-N-JUNCTIONS DURING OVERGROWTH

    17/20

    International Journal of Information Technology, Modeling and Computing (IJITMC) Vol. 4, No.2, May 2016

    51

    ( ) ( ) ( )

    ( ) ( )

    ++=t

    V

    t

    V dy

    zyxVTzyxD

    yd

    x

    zyxVTzyxD

    xtzyxV

    0

    1

    0

    1

    2

    ,,,,,,

    ,,,,,,,,,

    ( ) ( )

    ( ) ( )[ ] ( )++ ++ zyxfdzyxVTzyxkdz

    zyxVTzyxD

    z V

    t

    VVV

    t

    V ,,,,,,,,,,,

    ,,,0

    2

    12,0

    1

    ( ) ( )[ ] ( )

    + +

    +

    t

    SVS

    t L

    vVS

    VS zyxTk

    Dy

    ddWdWyxVzyxTk

    Dx

    z

    0012 ,,,,,,,,,

    ( )[ ] ( ) ( )[ ] ( )[ ] ++ +

    t

    VIVI

    L

    vI dzyxVzyxITzyxkddWdWyxV

    z

    01212,12

    ,,,,,,,,,,,,

    ( ) ( ) ( )

    ( ) ( )

    +

    +

    =

    tI

    tI

    I dy

    zyxTzyxD

    yd

    x

    zyxTzyxD

    xtzyx

    II0

    1

    0

    1

    2

    ,,,,,,

    ,,,,,,,,,

    ( ) ( )

    ( ) ( )[ ] +

    +

    +

    t L

    vIS

    tI

    z

    IIWdWyxzyx

    xd

    z

    zyxTzyxD

    z 012

    0

    1 ,,,,,,,,,

    ,,,

    ( ) ( )[ ] ( )++ +

    +

    zyxfddWdWyxzyxTk

    D

    yd

    Tk

    D

    I

    z

    I

    IIt L

    vIS

    SS,,,,,,,,

    012

    ( ) ( ) ( ) ( )++

    t

    I

    t

    II dzyxITzyxkdzyxITzyxk00

    2

    , ,,,,,,,,,,,, (5e)

    ( ) ( ) ( )

    ( ) ( )

    +

    +

    =

    tV

    tV

    V dy

    zyxTzyxD

    yd

    x

    zyxTzyxD

    xtzyx

    VV0

    1

    0

    1

    2

    ,,,,,,

    ,,,,,,,,,

    ( ) ( )

    ( ) ( )[ ] +

    +

    +

    t L

    vVS

    tV

    z

    VVWdWyxzyx

    xd

    z

    zyxTzyxD

    z 012

    0

    1 ,,,,,,,,,

    ,,,

    ( ) ( )[ ] ( )++ +

    +

    zyxfddWdWyxzyxTk

    D

    yd

    Tk

    D

    V

    z

    V

    VVt L

    vVS

    SS,,,,,,,,

    012

    ( ) ( ) ( ) ( )++t

    V

    t

    VV dzyxVTzyxkdzyxVTzyxk

    00

    2

    ,,,,,,,,,,,,, .

    Parameters bi, C, F, r, shave been determined by the following relations

    00

    2

    0000

    2

    004

    11IIVV

    zyx

    VVIV

    zyx

    SSLLL

    SSLLL

    b

    = , ( ) +

    ++=

    zyx

    VVII

    zyxIVVVLLL

    SSLLLSSb 0000

    100132

    ( ) ( )3333

    10

    2

    00

    1001

    2

    00

    011001

    0000 22zyx

    IVIV

    zyxIVVV

    zyx

    IV

    zyxIVIIIV

    zyx

    VVIV

    LLL

    SSLLLSS

    LLL

    SLLLSSS

    LLL

    SS

    ++

    ++++

    + ,

    ( ) ( ) ( )++

    ++++

    =0110

    012

    10011102

    0000

    2 22 IVIIzyxx

    IV

    IVVVzyxVIVVV

    zyx

    VVII SSLLLL

    SSSLLLCSS

    LLL

    SSb

    ( ) ( )

    ++++++

    +

    zyx

    IV

    IVzyxVVIVIIIVzyx

    zyx

    IV

    zy

    VV

    LLL

    SSLLLSSSSLLL

    LLL

    S

    LL

    S 200

    1001011001

    0000 222

    ( )01

    0010

    2222

    2

    00

    1102

    2IV

    zyx

    IVIV

    zyx

    IVI

    IVVVV SLLL

    SS

    LLL

    SCSSC

    + , ( +

    ++=

    xIV

    zyx

    VVVIV

    II LS

    LLL

    CSSSb

    10

    0211

    001

    ) ( )

    ++

    ++++

    zyx

    IVVVV

    zyxIVVV

    zyx

    IVIIzyx

    IVVVzyLLL

    SSCLLLSS

    LLL

    SSLLLSSLL 1102

    1001

    0110

    01012

    22

    ( )zyx

    IVIV

    IVIVIzyxIIIVIVLLL

    SSSSCLLLSSS

    +++

    2

    0110

    0100100100223 ,

    ( )

    += 01

    2

    0200

    000 IV

    zyx

    VVIV

    II S

    LLL

    SSSb

  • 7/26/2019 ON MODIFICATION OF PROPERTIES OF P-N-JUNCTIONS DURING OVERGROWTH

    18/20

    International Journal of Information Technology, Modeling and Computing (IJITMC) Vol. 4, No.2, May 2016

    52

    ( ) ( )++

    ++

    0110

    1102

    0110

    1102 22IVIIzyx

    zyx

    IVVVV

    IVIIzyx

    zyx

    IVVVV SSLLLLLL

    SSCSSLLL

    LLL

    SSC

    ( )0110

    1102

    01

    2

    010122

    IVIIzyx

    zyx

    IVVVV

    IVIVIIV SSLLL

    LLL

    SSCSSCS ++

    + , +

    =

    zyx

    VI

    IVILLL

    SC 1100

    zyx

    IV

    zyx

    IIII

    zyx

    III

    LLLS

    LLLSS

    LLLS

    +

    11202000

    2

    1 ,110200

    2

    10011 IVVVVVVIVVIV SSSSC += ,4

    2

    2

    4

    2

    32 48aa

    aayE += ,

    2

    4

    2

    1

    4

    222

    3

    4

    3

    2

    3

    4

    2

    32

    22

    4

    2

    0

    4

    31

    02

    4

    2

    3

    8544

    84

    24 b

    bLLL

    b

    b

    b

    bb

    bb

    b

    bbLLLb

    b

    br

    zyxzyx

    = , (

    =

    402

    4

    2

    412

    bbb

    s

    423118bbbbLLL

    zyx ,

    3 323 32

    4

    2

    6rsrrsr

    a

    aF ++++

    = .

    Equations for components of the displacement vector could be presented in the form

    ( )

    ( )

    ( )

    ( )

    ( )[ ]

    ( )

    ( )

    ( )

    ( )[ ]

    ( )

    +

    ++

    ++=

    yx

    tzyxu

    z

    zE

    zKx

    tzyxu

    z

    zE

    zKt

    tzyxu

    z

    yxx,,,

    13

    ,,,

    16

    5,,, 12

    2

    1

    2

    2

    2

    2

    ( )( )[ ]

    ( ) ( )( )

    ( )( )[ ]

    ( )

    +++

    +

    ++

    zx

    tzyxu

    z

    zEzK

    z

    tzyxu

    y

    tzyxu

    z

    zE zzy ,,,

    13

    ,,,,,,

    12

    1

    2

    2

    1

    2

    2

    1

    2

    ( ) ( ) ( )

    x

    tzyxTzzK

    ,,,

    ( ) ( ) ( )

    ( )[ ]

    ( ) ( )( ) ( )

    ( )+

    +

    +=

    y

    tzyxTzzK

    yx

    tzyxu

    x

    tzyxu

    z

    zE

    t

    tzyxuz x

    yy ,,,,,,,,,

    12

    ,,,1

    2

    2

    1

    2

    2

    2

    2

    ( )( )[ ]

    ( ) ( ) ( ) ( )( )[ ]

    ( ) +

    ++

    +

    +

    +

    + zK

    z

    zE

    y

    tzyxu

    y

    tzyxu

    z

    tzyxu

    z

    zE

    z

    yzy

    112

    5,,,,,,,,,

    12 21

    2

    11

    ( ) ( )( )[ ]

    ( ) ( ) ( )yx

    tzyxuzK

    zy

    tzyxu

    z

    zEzK

    yy

    +

    ++

    ,,,,,,

    16

    12

    12

    ( ) ( ) ( ) ( ) ( ) ( )

    +

    +

    +

    =

    zy

    tzyxu

    zx

    tzyxu

    y

    tzyxu

    x

    tzyxu

    t

    tzyxuz

    yxzzz,,,,,,,,,,,,,,, 1

    2

    1

    2

    2

    1

    2

    2

    1

    2

    2

    2

    2

    ( )( )[ ]

    ( ) ( ) ( ) ( ) ( )

    ( )[ ]

    +

    +

    +

    +

    +

    +

    z

    zE

    zz

    tzyxu

    y

    tzyxu

    x

    tzyxuzK

    zz

    zE xyx

    16

    ,,,,,,,,,

    12

    111

    ( ) ( ) ( ) ( )( ) ( )

    ( )

    z

    tzyxTzzK

    z

    tzyxu

    y

    tzyxu

    x

    tzyxu

    z

    tzyxuzyxz

    ,,,,,,,,,,,,,,,6 1

    111 .

    Integration of the left and the right sides of the above equations on time tleads to final relationsfor components of displacement vector

    ( )( )

    ( ) ( )

    ( )[ ] ( )

    ( ) ( )

    ( )( )[ ]

    ++

    ++=

    z

    zEzK

    zddzyxu

    xz

    zEzK

    ztzyxu

    t

    xx

    13

    1,,,

    16

    51,,,

    0 012

    2

    2

    ( ) ( ) ( )

    +

    +

    t

    z

    t

    y

    t

    y ddzyxu

    zddzyxu

    yddzyxu

    yx 0 012

    2

    0 012

    2

    0 01

    2

    ,,,,,,,,,

  • 7/26/2019 ON MODIFICATION OF PROPERTIES OF P-N-JUNCTIONS DURING OVERGROWTH

    19/20

    International Journal of Information Technology, Modeling and Computing (IJITMC) Vol. 4, No.2, May 2016

    53

    ( )( ) ( )[ ] ( )

    ( ) ( ) ( )

    ( )[ ] ( )

    ( )( )

    ++

    +

    +

    z

    zzK

    z

    zEzKddzyxu

    zxzzz

    zE tz

    13,,,

    1

    12 0 01

    2

    ( )( )

    ( ) ( )

    ( )[ ] ( )

    ( )

    ++

    zddzyxu

    xz

    zEzK

    zddzyxT

    x x

    t

    1,,,

    16

    51,,,

    0 012

    2

    0 0

    ( ) ( )( )[ ]

    ( )( )

    ( )

    +

    +

    0 012

    2

    0 01

    2

    ,,,2

    1,,,

    13

    ddzyxuyz

    ddzyxuyxz

    zEzK

    yy

    ( ) ( )

    ( ) ( )

    ( )( )[ ]

    ( )

    ++

    +

    +

    0 01

    2

    0 012

    2

    ,,,131

    ,,,

    ddzyxuzxz

    zEzK

    z

    zEddzyxu

    z zz

    ( ) ( )

    ( )( )

    ( )

    ++

    0 00

    ,,,1

    ddzyxT

    xz

    zzKu

    z x

    ( ) ( )

    ( ) ( )[ ] ( ) ( ) +

    +

    +=

    t

    x

    t

    xy ddzyxu

    yxddzyxu

    xzz

    zEtzyxu

    0 01

    2

    0 012

    2

    2,,,,,,

    12,,,

    ( )( ) ( ) ( ) ( ) ( )

    ( )( )[ ] +

    ++

    +

    + z

    zE

    zKddzyxuyzddzyxuyxz

    zK t

    x

    t

    y

    112

    5

    ,,,

    1

    ,,,0 0

    12

    2

    0 01

    2

    ( )( )[ ] ( )

    ( )( )

    ( ) ( )

    +

    +

    +

    ++

    t

    z

    t

    y ddzyxuy

    ddzyxuzz

    zE

    zzz

    zE

    0 01

    0 01 ,,,,,,

    12

    1

    112

    5

    ( ) ( )

    ( ) ( )

    ( ) ( ) ( )

    ( )( )[ ]

    +

    +

    z

    zEzKddzyxu

    zyzddzyxT

    z

    zzK

    t

    y

    t

    16,,,

    1,,,

    0 01

    2

    0 0

    ( )( ) ( )[ ]

    ( ) ( ) ( ) ( )

    ( )

    +

    +

    z

    zzKddzyxu

    yxddzyxu

    xzz

    zExx

    0 01

    2

    0 012

    2

    ,,,,,,12

    ( ) ( )

    ( ) ( )

    ( ) ( )

    0 012

    2

    0 01

    2

    0 0

    ,,,1

    ,,,,,,

    ddzyxuyz

    ddzyxuyxz

    zKddzyxT

    xy

    ( ) ( )( )[ ]

    ( )( )

    ( ) ( )

    +

    +

    ++

    0 01

    0 01

    ,,,,,,1112

    5

    ddzyxu

    yddzyxu

    zz

    zE

    zz

    zEzK

    zy

    ( ) ( ) ( )

    ( )( )[ ]

    ( ) yy

    uddzyxuzyz

    zEzK

    zz0

    0 01

    2

    ,,,16

    1

    2

    1+

    +

    ( ) ( )

    ( ) ( )[ ] ( ) ( )

    +

    +

    +=

    0 012

    2

    0 012

    2

    ,,,,,,12

    ,,,

    ddzyxuy

    ddzyxuxzz

    zEtzyxu

    zzz

    ( ) ( ) ( )

    +

    +

    +

    +

    0 01

    0 01

    2

    0 01

    2

    ,,,,,,,,,

    ddzyxuxz

    ddzyxuzy

    ddzyxuzx

    xyx

    ( ) ( ) ( )( ) ( )

    ( )( )

    +

    +

    +

    +

    zzE

    zzzzKddzyxu

    zddzyxu

    y xx

    1611,,,,,,

    0 01

    0 01

    ( ) ( ) ( )

    0 01

    0 01

    0 01

    ,,,,,,,,,6

    ddzyxuy

    ddzyxux

    ddzyxuz

    yxz

    ( ) ( ) ( )

    ( ) ( )

    zz uddzyxTzz

    zzKddzyxu

    z0

    0 00 01

    ,,,,,, +

    .

  • 7/26/2019 ON MODIFICATION OF PROPERTIES OF P-N-JUNCTIONS DURING OVERGROWTH

    20/20

    International Journal of Information Technology, Modeling and Computing (IJITMC) Vol. 4, No.2, May 2016

    54

    AUTHORS

    Pankratov Evgeny Leonidovichwas born at 1977. From 1985 to 1995 he was educated in a secondary

    school in Nizhny Novgorod. From 1995 to 2004 he was educated in Nizhny Novgorod State University:

    from 1995 to 1999 it was bachelor course in Radiophysics, from 1999 to 2001 it was master course in Ra-

    diophysics with specialization in Statistical Radiophysics, from 2001 to 2004 it was PhD course in Radio-

    physics. From 2004 to 2008 E.L. Pankratov was a leading technologist in Institute for Physics of Micro-structures. From 2008 to 2012 E.L. Pankratov was a senior lecture/Associate Professor of Nizhny Novgo-

    rod State University of Architecture and Civil Engineering. 2012-2015 Full Doctor course in Radiophysical

    Department of Nizhny Novgorod State University. Since 2015 E.L. Pankratov is an Associate Professor of

    Nizhny Novgorod State University. He has 155 published papers in area of his researches.

    Bulaeva Elena Alexeevnawas born at 1991. From 1997 to 2007 she was educated in secondary school ofvillage Kochunovo of Nizhny Novgorod region. From 2007 to 2009 she was educated in boarding school

    Center for gifted children. From 2009 she is a student of Nizhny Novgorod State University of Architec-

    ture and Civil Engineering (spatiality Assessment and management of real estate). At the same time she

    is a student of courses Translator in the field of professional communication and Design (interior art) in

    the University. Since 2014 E.A. Bulaeva is in a PhD program in Radiophysical Department of Nizhny

    Novgorod State University. She has 105 published papers in area of her researches.