on predator-prey modelsjxshix.people.wm.edu/math-410-2010/2010-csums.pdf · on predator-prey models...

44
Predator-prey Junping Shi On predator-prey models Junping Shi Department of Mathematics College of William and Mary Math 410/CSUMS Talk February 3, 2010

Upload: others

Post on 10-Jun-2020

4 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: On predator-prey modelsjxshix.people.wm.edu/Math-410-2010/2010-CSUMS.pdf · On predator-prey models Junping Shi $ ² Department of Mathematics College of William and Mary Math 410/CSUMS

Predator-prey

Junping Shi

On predator-prey models

Junping Shi $�²

Department of Mathematics

College of William and Mary

Math 410/CSUMS TalkFebruary 3, 2010

Page 2: On predator-prey modelsjxshix.people.wm.edu/Math-410-2010/2010-CSUMS.pdf · On predator-prey models Junping Shi $ ² Department of Mathematics College of William and Mary Math 410/CSUMS

spatial

predator-prey

systems

Junping Shi

Background

ODE Model

Limit Cycle Profile

Subcritical Hopf

Connected Patches

Reaction-Diffusion

Conclusion

Collaborators

Sze-Bi Hsu (Tsinghua University, Hsinchu, Taiwan)

Junjie Wei (Harbin Institute of Technology, Harbin/Weihai,China)

Rui Peng (University of New England, Armidale, Australia)

Fengqi Yi (Harbin Engineering University, Harbin, China)Ph.D. 2008

Jinfeng Wang (Harbin Institute of Technology/HarbinNormal University, Harbin, China)Ph.D. expected 2010

Yuanyuan Liu (William & Mary, Williamsburg, USA)B.S. expected (math and econ) 2010

Page 3: On predator-prey modelsjxshix.people.wm.edu/Math-410-2010/2010-CSUMS.pdf · On predator-prey models Junping Shi $ ² Department of Mathematics College of William and Mary Math 410/CSUMS

spatial

predator-prey

systems

Junping Shi

Background

ODE Model

Limit Cycle Profile

Subcritical Hopf

Connected Patches

Reaction-Diffusion

Conclusion

Fur trade of Hudson Bay Company (1670-1950)

Page 4: On predator-prey modelsjxshix.people.wm.edu/Math-410-2010/2010-CSUMS.pdf · On predator-prey models Junping Shi $ ² Department of Mathematics College of William and Mary Math 410/CSUMS

spatial

predator-prey

systems

Junping Shi

Background

ODE Model

Limit Cycle Profile

Subcritical Hopf

Connected Patches

Reaction-Diffusion

Conclusion

Hudson Bay Company lynx-hare data

Charles Elton (1924), “Periodic fluctuations In the numbersof animals: their causes and effects”, British Journal of

Experimental Biology , was first (of MANY) publications toanalyze this data setRebecca Tyson, et.al. (2009), “Modelling the Canada lynxand snowshoe hare population cycle: the role of specialistpredators”, Theoretical Ecology , one of the latest.

Page 5: On predator-prey modelsjxshix.people.wm.edu/Math-410-2010/2010-CSUMS.pdf · On predator-prey models Junping Shi $ ² Department of Mathematics College of William and Mary Math 410/CSUMS

Predator-prey

Junping Shi

Lotka-Volterra Predator-Prey Model

Alfred Lotka (1880-1949) Vito Volterra (1860-1940)

du

dt= au − buv ,

dv

dt= −cv + duv .

see Math 302 Chapter 2http://en.wikipedia.org/wiki/Lotka-Volterra_equation

Page 6: On predator-prey modelsjxshix.people.wm.edu/Math-410-2010/2010-CSUMS.pdf · On predator-prey models Junping Shi $ ² Department of Mathematics College of William and Mary Math 410/CSUMS

spatial

predator-prey

systems

Junping Shi

Background

ODE Model

Limit Cycle Profile

Subcritical Hopf

Connected Patches

Reaction-Diffusion

Conclusion

Predator-prey system with functional response

du

dt= u(a − bu) − cφ(u)v ,

dv

dt= −dv + f φ(u)v .

φ(u): predator functional responseφ(u) = u (Lotka-Volterra)

φ(u) =u

1 + mu(Holling type II, m: prey handling time)

[Holling, 1959](Michaelis-Menton biochemical kinetics)

Biological work:[Rosenzweig-MacArthur, American Naturalist 1963][Rosenzweig, Science, 1971] (Paradox of enrichment)[May, Science, 1972] (Existence/uniqueness of limit cycle)

Page 7: On predator-prey modelsjxshix.people.wm.edu/Math-410-2010/2010-CSUMS.pdf · On predator-prey models Junping Shi $ ² Department of Mathematics College of William and Mary Math 410/CSUMS

spatial

predator-prey

systems

Junping Shi

Background

ODE Model

Limit Cycle Profile

Subcritical Hopf

Connected Patches

Reaction-Diffusion

Conclusion

Rosenzweig-MacArthur model

du

dt= u

(1 −

u

K

)−

muv

1 + u,

dv

dt= −dv +

muv

1 + u

Nullcline: u = 0, v =(K − u)(1 + u)

m; v = 0, d =

mu

1 + u.

Solving d =mu

1 + u, one have u = λ ≡

d

m − d.

Equilibria: (0, 0), (1, 0), (λ, vλ) where vλ =(K − λ)(1 + λ)

mWe take λ as a bifurcation parameter

Case 1: λ ≥ K : (K , 0) is globally asymptotically stableCase 2: (K − 1)/2 < λ < K : (K , 0) is a saddle, and (λ, vλ)is a locally stable equilibriumCase 3: 0 < λ < (K − 1)/2: (K , 0) is a saddle, and (λ, vλ) isa locally unstable equilibrium (λ = (K − 1)/2 is a Hopfbifurcation point)

Page 8: On predator-prey modelsjxshix.people.wm.edu/Math-410-2010/2010-CSUMS.pdf · On predator-prey models Junping Shi $ ² Department of Mathematics College of William and Mary Math 410/CSUMS

spatial

predator-prey

systems

Junping Shi

Background

ODE Model

Limit Cycle Profile

Subcritical Hopf

Connected Patches

Reaction-Diffusion

Conclusion

Phase Portraits

Left: (K − 1)/2 < λ < K : (K , 0) is a saddle, and (λ, vλ) is alocally stable equilibriumRight: 0 < λ < (K − 1)/2: (K , 0) is a saddle, and (λ, vλ) isa locally unstable equilibrium; there exists a limit cycle

A supercritical Hopf bifurcation occurs.

Page 9: On predator-prey modelsjxshix.people.wm.edu/Math-410-2010/2010-CSUMS.pdf · On predator-prey models Junping Shi $ ² Department of Mathematics College of William and Mary Math 410/CSUMS

spatial

predator-prey

systems

Junping Shi

Background

ODE Model

Limit Cycle Profile

Subcritical Hopf

Connected Patches

Reaction-Diffusion

Conclusion

Global stability

[Hsu, Hubble, Waltman, SIAM J. Appl. Math., 1978][Hsu, Math. Biosci., 1978] (λ, vλ) is globally asymptoticallystable if K ≤ 1, or K > 1 and (K − 1)/2 < λ < K .

[Cheng, SIAM J. Math. Anal., 1981] If 0 < λ < (K − 1)/2,then (λ, vλ) is unstable, and there is a unique periodic orbitwhich is globally asymptotically stable.

More on uniqueness of limit cycle:[Zhang, 1986], [Kuang-Freedman, 1988][Hsu-Hwang, 1995,1998], [Xiao-Zhang, 2003, 2008]

Page 10: On predator-prey modelsjxshix.people.wm.edu/Math-410-2010/2010-CSUMS.pdf · On predator-prey models Junping Shi $ ² Department of Mathematics College of William and Mary Math 410/CSUMS

spatial

predator-prey

systems

Junping Shi

Background

ODE Model

Limit Cycle Profile

Subcritical Hopf

Connected Patches

Reaction-Diffusion

Conclusion

Summary of ODE

du

dt= u

(1 −

u

K

)−

muv

1 + u,

dv

dt= −dv +

muv

1 + u

Nullcline: u = 0, v =(K − u)(1 + u)

m; v = 0, d =

mu

1 + u.

Solving d =mu

1 + u, one have u = λ ≡

d

m − d.

Equilibria: (0, 0), (K , 0), (λ, vλ) where vλ =(K − λ)(1 + λ)

mWe take λ as a bifurcation parameter

Case 1: λ ≥ K : (K , 0) is globally asymptotically stableCase 2: (K − 1)/2 < λ < K : (λ, vλ) is globallyasymptotically stableCase 3: 0 < λ < (K − 1)/2: unique limit cycle is globallyasymptotically stable (λ = (K − 1)/2: Hopf bifurcationpoint)

Page 11: On predator-prey modelsjxshix.people.wm.edu/Math-410-2010/2010-CSUMS.pdf · On predator-prey models Junping Shi $ ² Department of Mathematics College of William and Mary Math 410/CSUMS

spatial

predator-prey

systems

Junping Shi

Background

ODE Model

Limit Cycle Profile

Subcritical Hopf

Connected Patches

Reaction-Diffusion

Conclusion

Phase portrait (1)du

dt= u

(1 −

u

K

)−

muv

1 + u,

dv

dt= −dv +

muv

1 + u

Case 1: λ ≥ K : (K , 0) is globally asymptotically stable

u(0,0) (k,0)

v

(0,0) (k,0)

v=f(u)

• •

d=g(u)

Page 12: On predator-prey modelsjxshix.people.wm.edu/Math-410-2010/2010-CSUMS.pdf · On predator-prey models Junping Shi $ ² Department of Mathematics College of William and Mary Math 410/CSUMS

spatial

predator-prey

systems

Junping Shi

Background

ODE Model

Limit Cycle Profile

Subcritical Hopf

Connected Patches

Reaction-Diffusion

Conclusion

Phase portrait (2)du

dt= u

(1 −

u

K

)−

muv

1 + u,

dv

dt= −dv +

muv

1 + u

Case 2: (K − 1)/2 < λ < K : (K , 0) is a saddle, and (λ, vλ)is a locally stable equilibrium

u(0,0) (k,0)

v

(0,0) (k,0)

v=f(u)

• •

d=g(u)

•(λ,f(λ))

Page 13: On predator-prey modelsjxshix.people.wm.edu/Math-410-2010/2010-CSUMS.pdf · On predator-prey models Junping Shi $ ² Department of Mathematics College of William and Mary Math 410/CSUMS

spatial

predator-prey

systems

Junping Shi

Background

ODE Model

Limit Cycle Profile

Subcritical Hopf

Connected Patches

Reaction-Diffusion

Conclusion

Phase portrait (3)du

dt= u

(1 −

u

K

)−

muv

1 + u,

dv

dt= −dv +

muv

1 + u

Case 3: 0 < λ < (K − 1)/2: (K , 0) is a saddle, and (λ, vλ) isa locally unstable equilibrium

u(0,0) (k,0)

v

(0,0) (k,0)

v=f(u)

• •

d=g(u)

• (λ,f(λ))

Page 14: On predator-prey modelsjxshix.people.wm.edu/Math-410-2010/2010-CSUMS.pdf · On predator-prey models Junping Shi $ ² Department of Mathematics College of William and Mary Math 410/CSUMS

spatial

predator-prey

systems

Junping Shi

Background

ODE Model

Limit Cycle Profile

Subcritical Hopf

Connected Patches

Reaction-Diffusion

Conclusion

A new result of this ODE

[Hsu-Shi, Disc. Cont. Dyna. Syst.-B, 2009]Relaxation oscillator profile of limit cycle in predator-preysystem. (Motivated by numerical observation)du

dt= u (1 − u) −

muv

a + u,

dv

dt= −dv +

muv

a + u

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

u

v

Page 15: On predator-prey modelsjxshix.people.wm.edu/Math-410-2010/2010-CSUMS.pdf · On predator-prey models Junping Shi $ ² Department of Mathematics College of William and Mary Math 410/CSUMS

spatial

predator-prey

systems

Junping Shi

Background

ODE Model

Limit Cycle Profile

Subcritical Hopf

Connected Patches

Reaction-Diffusion

Conclusion

Graph of limit cycle

Parameters: a = 0.5, m = 1, d = 0.1, λ = 1/18 ≈ 0.056,period T ≈ 37.

0 20 40 60 80 100

0

0.2

0.4

0.6

0.8

1

1.2

1.4

t

u an

d v

Page 16: On predator-prey modelsjxshix.people.wm.edu/Math-410-2010/2010-CSUMS.pdf · On predator-prey models Junping Shi $ ² Department of Mathematics College of William and Mary Math 410/CSUMS

spatial

predator-prey

systems

Junping Shi

Background

ODE Model

Limit Cycle Profile

Subcritical Hopf

Connected Patches

Reaction-Diffusion

Conclusion

Small d

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

u

v

Page 17: On predator-prey modelsjxshix.people.wm.edu/Math-410-2010/2010-CSUMS.pdf · On predator-prey models Junping Shi $ ² Department of Mathematics College of William and Mary Math 410/CSUMS

spatial

predator-prey

systems

Junping Shi

Background

ODE Model

Limit Cycle Profile

Subcritical Hopf

Connected Patches

Reaction-Diffusion

Conclusion

Graph of limit cycle

Parameters: a = 0.5, m = 1, d = 0.01, λ = 1/198 ≈ 0.005,period T ≈ 336.

0 100 200 300 400 500 600 700 800 900

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

t

u an

d v

Page 18: On predator-prey modelsjxshix.people.wm.edu/Math-410-2010/2010-CSUMS.pdf · On predator-prey models Junping Shi $ ² Department of Mathematics College of William and Mary Math 410/CSUMS

spatial

predator-prey

systems

Junping Shi

Background

ODE Model

Limit Cycle Profile

Subcritical Hopf

Connected Patches

Reaction-Diffusion

Conclusion

Illustration of limit cyclev

O1

O2 O3

O4

v4(u)

v6(u)

v5(u)

a/m O5

Page 19: On predator-prey modelsjxshix.people.wm.edu/Math-410-2010/2010-CSUMS.pdf · On predator-prey models Junping Shi $ ² Department of Mathematics College of William and Mary Math 410/CSUMS

spatial

predator-prey

systems

Junping Shi

Background

ODE Model

Limit Cycle Profile

Subcritical Hopf

Connected Patches

Reaction-Diffusion

Conclusion

Relaxation oscillation

Theorem[Hsu-Shi, 2009] If 0 < a < 1 and m > 0 are fixed,and as d → 0 (thus λ → 0), thenC1λ

−1 ≤ T (O1O2) ≤ C2λ−1, T (O2O3) = O(| lnλ|),

T (O4O1) = O(| lnλ|), and T (O3O4) = O(1). In particular,the period T → ∞ as d → 0. The shape of the graph of thelimit cycle is a relaxation oscillator.

Other known relaxation oscillators:Van der Pol oscillator in electrical circuitsFitzHugh-Nagumo oscillator in action potentials of neuronsMany other physiology models: heart beat, calcium signaling

[Liu-Xiao-Yi, JDE, 2003] oscillations in singularly perturbed3-D predator-prey system[Zhang-Wang-Wang-Shi, preprint] extend it to more generalpredator-prey system

Page 20: On predator-prey modelsjxshix.people.wm.edu/Math-410-2010/2010-CSUMS.pdf · On predator-prey models Junping Shi $ ² Department of Mathematics College of William and Mary Math 410/CSUMS

spatial

predator-prey

systems

Junping Shi

Background

ODE Model

Limit Cycle Profile

Subcritical Hopf

Connected Patches

Reaction-Diffusion

Conclusion

Relaxation oscillation

(left) Van der Pol oscillator;(right) FitzHugh-Nagumo oscillator.

Page 21: On predator-prey modelsjxshix.people.wm.edu/Math-410-2010/2010-CSUMS.pdf · On predator-prey models Junping Shi $ ² Department of Mathematics College of William and Mary Math 410/CSUMS

spatial

predator-prey

systems

Junping Shi

Background

ODE Model

Limit Cycle Profile

Subcritical Hopf

Connected Patches

Reaction-Diffusion

Conclusion

More general predator-prey system

du

dt= g(u) (f (u) − v) ,

dv

dt= v (g(u) − d) .

(a1) f ∈ C 3(R+), f (0) > 0, there exists K > 0, such thatfor any u > 0, u 6= K , f (u)(u − K ) < 0 and f (K ) = 0; thereexists λ̄ ∈ (0,K ) such that f ′(u) > 0 on [0, λ̄), f ′(u) < 0 on(λ̄,K ];(a2) g ∈ C 2(R+), g(0) = 0; g(u) > 0 for u > 0 andg ′(u) > 0 for u ≥ 0; there exists a unique λ ∈ (0,K ) suchthat g(λ) = d .

g(u): functional response, f (u): prey isocline

Rosenzweig-MacArthur model: g(u) =mu

1 + uand

f (u) =(K − u)(1 + u)

m

Page 22: On predator-prey modelsjxshix.people.wm.edu/Math-410-2010/2010-CSUMS.pdf · On predator-prey models Junping Shi $ ² Department of Mathematics College of William and Mary Math 410/CSUMS

spatial

predator-prey

systems

Junping Shi

Background

ODE Model

Limit Cycle Profile

Subcritical Hopf

Connected Patches

Reaction-Diffusion

Conclusion

Phase portraits

du

dt= g(u) (f (u) − v) ,

dv

dt= v (g(u) − d) .

u(0,0) (k,0)

v

(0,0) (k,0)

v=f(u)

• •

d=g(u)

•(λ,f(λ))

u(0,0) (k,0)

v

(0,0) (k,0)

v=f(u)

• •

d=g(u)

• (λ,f(λ))

Left: (λ, f (λ)) stable;Right: (λ, f (λ)) unstable, exist limit cycle

Page 23: On predator-prey modelsjxshix.people.wm.edu/Math-410-2010/2010-CSUMS.pdf · On predator-prey models Junping Shi $ ² Department of Mathematics College of William and Mary Math 410/CSUMS

spatial

predator-prey

systems

Junping Shi

Background

ODE Model

Limit Cycle Profile

Subcritical Hopf

Connected Patches

Reaction-Diffusion

Conclusion

History

du

dt= g(u) (f (u) − v) ,

dv

dt= v (g(u) − d) .

[Hsu, 1979] If λ > λ̄ and f (u) is concave in [0,K ], then(λ, f (λ)) is globally stable. (λ̄ is the top of the hump)

[Kuang-Freedman, 1988] If 0 < λ < λ̄, andd

du

(f ′(u)g(u)

g(u) − d

)≤ 0 for all x ∈ [0,K ], then the limit cycle

is unique and globally stable.

[Hofbauer-So, 1989] counterexample: f (u) is concave, butHopf bifurcation is subcritical, so there are two periodicorbits for λ ∈ (λ̄, λ̄ + ǫ), one of them is locally stable.

More work:[Ruan-Xiao, 2001] [Xiao-Zhang, 2003] [Liu, 2005]

Page 24: On predator-prey modelsjxshix.people.wm.edu/Math-410-2010/2010-CSUMS.pdf · On predator-prey models Junping Shi $ ² Department of Mathematics College of William and Mary Math 410/CSUMS

spatial

predator-prey

systems

Junping Shi

Background

ODE Model

Limit Cycle Profile

Subcritical Hopf

Connected Patches

Reaction-Diffusion

Conclusion

Our resultdu

dt= g(u) (f (u) − v) ,

dv

dt= v (g(u) − d) .

Theorem[Wang-Shi-Wei, submitted] If λ > λ̄, and(a8) (uf ′(u))′′ ≤ 0, (u/g(u))′′ ≥ 0 for u ∈ [0,K ], and(uf ′(u))′ ≤ 0 for u ∈ (λ̄,K ); or(a9) f ′′′(u) ≤ 0, (1/g(u))′′ ≥ 0 for u ∈ [0,K ], andf ′′(u) ≤ 0 for u ∈ (λ̄,K ),then (λ, f (λ)) is globally stable.

Sharpness: If (uf ′(u))′′|u=λ̄> 0 and g(u) = u/(a + u) or

g(u) = u, then Hopf bifurcation is subcritical and globalstability does not hold.

Realistic example:du

dt= ru

(1 −

u

K

)(1 −

A + C

u + C

)−Buv ,

dv

dt= −dv + Buv .

Prey growth: weak Allee effect when A < 0 and C > −A.C large: global stability;C small: subcritical Hopf bifurcation.

Page 25: On predator-prey modelsjxshix.people.wm.edu/Math-410-2010/2010-CSUMS.pdf · On predator-prey models Junping Shi $ ² Department of Mathematics College of William and Mary Math 410/CSUMS

spatial

predator-prey

systems

Junping Shi

Background

ODE Model

Limit Cycle Profile

Subcritical Hopf

Connected Patches

Reaction-Diffusion

Conclusion

Global stability vs. Multiple periodic orbits

du

dt= ru

(1 −

u

K

)(1 −

A + C

u + C

)−Buv ,

dv

dt= −dv + Buv .

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

u

v

0.2 0.4 0.6 0.8 1 1.2

0.1

0.2

0.3

0.4

0.5

0.6

u

v•

Both: r = B = 1, A = −0.028, K = 1;(left) d = 0.10199, C = 0.05; (subcritical Hopf)(right) d = 0.6, C = 2 (supercritical Hopf).

Page 26: On predator-prey modelsjxshix.people.wm.edu/Math-410-2010/2010-CSUMS.pdf · On predator-prey models Junping Shi $ ² Department of Mathematics College of William and Mary Math 410/CSUMS

spatial

predator-prey

systems

Junping Shi

Background

ODE Model

Limit Cycle Profile

Subcritical Hopf

Connected Patches

Reaction-Diffusion

Conclusion

Habitat for predator and prey

Habitat fragmentation

Page 27: On predator-prey modelsjxshix.people.wm.edu/Math-410-2010/2010-CSUMS.pdf · On predator-prey models Junping Shi $ ² Department of Mathematics College of William and Mary Math 410/CSUMS

spatial

predator-prey

systems

Junping Shi

Background

ODE Model

Limit Cycle Profile

Subcritical Hopf

Connected Patches

Reaction-Diffusion

Conclusion

Habitat Restoration: connecting patches

Crossing bridges built in Banff, Canada; (for elks)under-cross built in Florida, USA (for deers)

Page 28: On predator-prey modelsjxshix.people.wm.edu/Math-410-2010/2010-CSUMS.pdf · On predator-prey models Junping Shi $ ² Department of Mathematics College of William and Mary Math 410/CSUMS

spatial

predator-prey

systems

Junping Shi

Background

ODE Model

Limit Cycle Profile

Subcritical Hopf

Connected Patches

Reaction-Diffusion

Conclusion

Habitat network

Habitat with a network structure

Page 29: On predator-prey modelsjxshix.people.wm.edu/Math-410-2010/2010-CSUMS.pdf · On predator-prey models Junping Shi $ ² Department of Mathematics College of William and Mary Math 410/CSUMS

spatial

predator-prey

systems

Junping Shi

Background

ODE Model

Limit Cycle Profile

Subcritical Hopf

Connected Patches

Reaction-Diffusion

Conclusion

Habitats as graph theory

Network connectivity

Page 30: On predator-prey modelsjxshix.people.wm.edu/Math-410-2010/2010-CSUMS.pdf · On predator-prey models Junping Shi $ ² Department of Mathematics College of William and Mary Math 410/CSUMS

spatial

predator-prey

systems

Junping Shi

Background

ODE Model

Limit Cycle Profile

Subcritical Hopf

Connected Patches

Reaction-Diffusion

Conclusion

Effect of network structure on dynamics

Matthew Holland, Alan Hastings, (2008), “Strong effect ofdispersal network structure on ecological dynamics”, Nature.

David Vasseur, Jeremy Fox, (2009), “Phase-locking andenvironmental fluctuations generate synchrony in apredator‘prey community”, Nature.

dNi

dt= Ni

(1 −

Ni

K

)−

mNiPi

1 + Ni+ dn

n∑

j=1

dij(Nj − Ni ),

dPi

dt=

mNiPi

1 + Ni− ePi + dp

n∑

j=1

dij(Pj − Pi ).

Homogeneous patches, dispersal matrix (dij) (dij = dji)single patch: Rosenzweig–MacArthur model

[Holland-Hastings]: n = 10, random network; clustersolutions, long transient dynamics.

Page 31: On predator-prey modelsjxshix.people.wm.edu/Math-410-2010/2010-CSUMS.pdf · On predator-prey models Junping Shi $ ² Department of Mathematics College of William and Mary Math 410/CSUMS

spatial

predator-prey

systems

Junping Shi

Background

ODE Model

Limit Cycle Profile

Subcritical Hopf

Connected Patches

Reaction-Diffusion

Conclusion

Stability in network model

Local dynamics:du

dt= u

(1 −

u

K

)−

muv

1 + u,

dv

dt= −ev +

muv

1 + u

Case 1: λ ≥ K : (K , 0) is globally stableCase 2: (K − 1)/2 < λ < K : (λ, vλ) is globally stableCase 3: 0 < λ < (K − 1)/2: unique limit cycle is globallystable (λ = (K − 1)/2: Hopf bifurcation point)

Theorem[Wang-Shi-Liu, in preparation]If λ ≥ K , then (K , 0)n is globally stable;and if K − 1 < λ < K , then (λ, vλ)n is globally stable.

[Li-Shuai (2010), JDE] Lyapunov funct. ODE on network

Note: same result holds for reaction-diffusion model.

Page 32: On predator-prey modelsjxshix.people.wm.edu/Math-410-2010/2010-CSUMS.pdf · On predator-prey models Junping Shi $ ² Department of Mathematics College of William and Mary Math 410/CSUMS

spatial

predator-prey

systems

Junping Shi

Background

ODE Model

Limit Cycle Profile

Subcritical Hopf

Connected Patches

Reaction-Diffusion

Conclusion

Two-patch model

u′ = F (u, v) + a(w − u),

v ′ = G (u, v) + c(x − v),

w ′ = F (w , x) − a(w − u),

x ′ = G (w , x) − c(x − v),

where

F (u, v) = u(1 −

u

K

)−

muv

1 + u, G (u, v) =

muv

1 + u− ev .

where a, c > 0 are the diffusion rates.Can we completely classify the dynamics?

Page 33: On predator-prey modelsjxshix.people.wm.edu/Math-410-2010/2010-CSUMS.pdf · On predator-prey models Junping Shi $ ² Department of Mathematics College of William and Mary Math 410/CSUMS

spatial

predator-prey

systems

Junping Shi

Background

ODE Model

Limit Cycle Profile

Subcritical Hopf

Connected Patches

Reaction-Diffusion

Conclusion

Some Partial Results for Two-patch model

[Liu-Shi, in preparation]Let U(t) = u(t) + w(t), V (t) = v(t) + x(t) (sum)and W (t) = u(t) − w(t), X (t) = v(t) − x(t) (difference)

1. When a, c are large, then W (t), X (t) → 0 as t → ∞ so thesystem is synchronized.2. For 0 < a < a0, there exists c0 = c0(a) such that when0 ≤ c < c0, there are two additional Hopf bifurcation pointsλ−

H , λ+H , and there exists a non-symmetrical periodic orbit for

λ ∈ (λ−

H , λ+H). (numerical result shows the non-symmetrical

periodic orbit is unique and unstable)

3. For 0 ≤ a < a1, there exists c1 = c1(a) such that when c > c1,

there are two additional bifurcation points λ−

S , λ+S such that there

exists two non-symmetrical equilibrium points for λ ∈ (λ−

S , λ+S ).

((a) equilibrium points can be algebraically solved with a

complicated formula; (b) for any a ≥ 0 and c ≥ 0, there are at

most 9 equilibrium points.)

Page 34: On predator-prey modelsjxshix.people.wm.edu/Math-410-2010/2010-CSUMS.pdf · On predator-prey models Junping Shi $ ² Department of Mathematics College of William and Mary Math 410/CSUMS

spatial

predator-prey

systems

Junping Shi

Background

ODE Model

Limit Cycle Profile

Subcritical Hopf

Connected Patches

Reaction-Diffusion

Conclusion

Numerical bifurcation diagrams

Software: Matlab and MatCont (Govaerts, Kuznetsov)similar to Auto, but works under MatlabBifurcation/continuation of equilibrium, limit cycles,homoclinic orbits of ODEs

−0.1 0 0.1 0.2 0.3 0.4

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

e

Max

(u)

H

H

H

H

H

H BP

BP

LPCLPCLPCLPCLPCLPCLPCLPC

k = 4, m = 0.5, a = 0.06, c = 0.01, bifurcation parameter 0 < e < 0.4;

symmetric Hopf: e = 0.3, non-symmetric Hopf: e = 0.2387 and e = 0.1173

Page 35: On predator-prey modelsjxshix.people.wm.edu/Math-410-2010/2010-CSUMS.pdf · On predator-prey models Junping Shi $ ² Department of Mathematics College of William and Mary Math 410/CSUMS

spatial

predator-prey

systems

Junping Shi

Background

ODE Model

Limit Cycle Profile

Subcritical Hopf

Connected Patches

Reaction-Diffusion

Conclusion

Numerical solution

Software: Matlab

0 50 100 1500

1

2

3

4

5

6

time

coup

led

popu

latio

n

prey−1predator−1prey−2predator−2

k = 4, m = 0.5, a = 0.06, c = 0.01, bifurcation parameter 0 < e < 0.4;

symmetric Hopf: e = 0.3, non-symmetric Hopf: e = 0.2387 and e = 0.1173

Here e = 0.2

Page 36: On predator-prey modelsjxshix.people.wm.edu/Math-410-2010/2010-CSUMS.pdf · On predator-prey models Junping Shi $ ² Department of Mathematics College of William and Mary Math 410/CSUMS

spatial

predator-prey

systems

Junping Shi

Background

ODE Model

Limit Cycle Profile

Subcritical Hopf

Connected Patches

Reaction-Diffusion

Conclusion

Numerical solution

Software: Matlab

0 100 200 300 400 500 600 700 800 900 1000−2

0

2

4

time

patc

h−1

popu

latio

n

0 100 200 300 400 500 600 700 800 900 1000−2

0

2

4

time

patc

h−2

popu

latio

n

0 100 200 300 400 500 600 700 800 900 10000

1

2

3

time

coup

led

popu

latio

n

0 100 200 300 400 500 600 700 800 900 10000

1

2

3

time

coup

led

popu

latio

n

prey−1predator−1

prey−2predator−2

prey−1predator−1prey−2predator−2

total prey populationtotal predator population

k = 5, m = 9.96, a = 0, c = 0.6, bifurcation parameter 0 < e < 10;

symmetric Hopf: e = 6.64, no non-symmetric Hopf

Here e = 1 and solution appears to be chaotic

Page 37: On predator-prey modelsjxshix.people.wm.edu/Math-410-2010/2010-CSUMS.pdf · On predator-prey models Junping Shi $ ² Department of Mathematics College of William and Mary Math 410/CSUMS

spatial

predator-prey

systems

Junping Shi

Background

ODE Model

Limit Cycle Profile

Subcritical Hopf

Connected Patches

Reaction-Diffusion

Conclusion

Attractor? Chaos?

An attractor exists as all positive solutions are bounded.

When there are non-symmetrical equilibrium points (EQ) orperiodic orbits (PO), there is only one stable state(symmetrical PO) in the attractor, but more than 2 unstablestates (symmetric EQ, non-symmetric EQ and/or PO).

Hence there exist connecting orbits between the two unstablestates, which become a heteroclinic loop. This may implychaotic behavior on a lower dimensional invariant manifold.

Conjecture: Chaos occurs on a zero measure set, but thegeneric dynamics is eventual synchronization (despitepossible long transient dynamics) and converges tosymmetric PO.

Page 38: On predator-prey modelsjxshix.people.wm.edu/Math-410-2010/2010-CSUMS.pdf · On predator-prey models Junping Shi $ ² Department of Mathematics College of William and Mary Math 410/CSUMS

spatial

predator-prey

systems

Junping Shi

Background

ODE Model

Limit Cycle Profile

Subcritical Hopf

Connected Patches

Reaction-Diffusion

Conclusion

Non-symmetric patches (spatial heterogeneity)

u′ = F1(u, v) + a(w − u),

v ′ = G1(u, v) + c(x − v),

w ′ = F2(w , x) − a(w − u),

x ′ = G2(w , x) − c(x − v),

where for i = 1, 2,

Fi (u, v) = u

(1 −

u

Ki

)−

miuv

1 + u, Gi(u, v) =

miuv

1 + u− eiv .

where a, c > 0 are the diffusion rates.

1. synchronization of coupled oscillators2. synchronization of equilibrium and oscillatorGoldwyn, E.E. and Hastings, A. (2008) When can dispersal synchronize populations? Theoretical

Population Biology 73:395-402

Goldwyn, E.E. and Hastings, A. (2009) Small heterogeneity has large effects on synchronization of

ecological oscillators. Bulletin of Mathematical Biology 71:130-144.

Page 39: On predator-prey modelsjxshix.people.wm.edu/Math-410-2010/2010-CSUMS.pdf · On predator-prey models Junping Shi $ ² Department of Mathematics College of William and Mary Math 410/CSUMS

spatial

predator-prey

systems

Junping Shi

Background

ODE Model

Limit Cycle Profile

Subcritical Hopf

Connected Patches

Reaction-Diffusion

Conclusion

Non-symmetric patches: numerical results

Y.Y. Liu (undergraduate research)x0 = [0.95; 0.05; 0.2; 0.5]; k = 3; m = 2; e1 = 0.2; e2 = 0.9Left: a = 0.1; c = 0.2; Right: a = 1; c = 2.

0 10 20 30 40 50 60 70 80 90 1000

2

4

time

patc

h−1

popu

latio

n

prey−1predator−1

0 10 20 30 40 50 60 70 80 90 1000

1

2

3

time

patc

h−2

popu

latio

n

prey−2predator−2

0 10 20 30 40 50 60 70 80 90 1000

1

2

3

time

coup

led

popu

latio

n

prey−1predator−1prey−2predator−2

0 10 20 30 40 50 60 70 80 90 1000

2

4

time

coup

led

popu

latio

n

total prey populationtotal predator population

0 10 20 30 40 50 60 70 80 90 1000

2

4

time

patc

h−1

popu

latio

n

prey−1predator−1

0 10 20 30 40 50 60 70 80 90 1000

2

4

time

patc

h−2

popu

latio

n

prey−2predator−2

0 10 20 30 40 50 60 70 80 90 1000

2

4

time

coup

led

popu

latio

n

prey−1predator−1prey−2predator−2

0 10 20 30 40 50 60 70 80 90 1000

2

4

time

coup

led

popu

latio

n

total prey populationtotal predator population

Larger diffusion rates help to achieve synchronization;smaller diffusion rates may not result in synchronization

Page 40: On predator-prey modelsjxshix.people.wm.edu/Math-410-2010/2010-CSUMS.pdf · On predator-prey models Junping Shi $ ² Department of Mathematics College of William and Mary Math 410/CSUMS

spatial

predator-prey

systems

Junping Shi

Background

ODE Model

Limit Cycle Profile

Subcritical Hopf

Connected Patches

Reaction-Diffusion

Conclusion

Non-symmetric patches: numerical results

Y.Y. Liu (undergraduate research)x0 = [0.95; 0.05; 0.2; 0.5]; k = 3; m = 2; e1 = 1.8; e2 = 0.45Left: a = 0.1; c = 0.2; Right: a = 1; c = 2.

0 50 100 150 200 250 300 350 400 450 5000

2

4

time

patc

h−1

popu

latio

n

prey−1predator−1

0 50 100 150 200 250 300 350 400 450 5000

2

4

time

patc

h−2

popu

latio

n

prey−2predator−2

0 50 100 150 200 250 300 350 400 450 5000

2

4

time

coup

led

popu

latio

n

prey−1predator−1prey−2predator−2

0 50 100 150 200 250 300 350 400 450 5000

2

4

time

coup

led

popu

latio

n

total prey populationtotal predator population

0 50 100 150 200 250 300 350 400 450 5000

2

4

time

patc

h−1

popu

latio

n

prey−1predator−1

0 50 100 150 200 250 300 350 400 450 5000

2

4

time

patc

h−2

popu

latio

n

prey−2predator−2

0 50 100 150 200 250 300 350 400 450 5000

2

4

time

coup

led

popu

latio

n

prey−1predator−1prey−2predator−2

0 50 100 150 200 250 300 350 400 450 5000

2

4

time

coup

led

popu

latio

n

total prey populationtotal predator population

Connecting a prey-only (predator extinction) system to anoscillatory system could make a stable coexistence

Page 41: On predator-prey modelsjxshix.people.wm.edu/Math-410-2010/2010-CSUMS.pdf · On predator-prey models Junping Shi $ ² Department of Mathematics College of William and Mary Math 410/CSUMS

spatial

predator-prey

systems

Junping Shi

Background

ODE Model

Limit Cycle Profile

Subcritical Hopf

Connected Patches

Reaction-Diffusion

Conclusion

Non-symmetric patches: numerical results

x0 = [0.95; 0.05; 0.2; 0.5]; k = 3; m = 2; e1 = 0.2; e2 = 0.9Left: a = 0.1; c = 0.2

The limit cycle is non-symmetrical, and not synchronized.

0 50 100 150 200 250 300−2

0

2

4

time

patc

h−1

popu

latio

n

0 50 100 150 200 250 3000

1

2

3

time

patc

h−2

popu

latio

n

0 50 100 150 200 250 3000

1

2

3

time

coup

led

popu

latio

n

0 50 100 150 200 250 3000

1

2

3

4

time

coup

led

popu

latio

n

prey−1predator−1

prey−2predator−2

prey−1predator−1prey−2predator−2

total prey populationtotal predator population

Page 42: On predator-prey modelsjxshix.people.wm.edu/Math-410-2010/2010-CSUMS.pdf · On predator-prey models Junping Shi $ ² Department of Mathematics College of William and Mary Math 410/CSUMS

Predator-prey

Junping Shi

Future Work (for CSUMS)

1. Further work on 2-patch model (complete bifurcationdiagram)2. Impact or network structure (small number of patches):3-patch (linear or triangle)3. If there is a cycle in the network, is there a periodicsolution with population running around the cycle?4. Computer work: writing better Matlab programs forbifurcation diagram calculation

Page 43: On predator-prey modelsjxshix.people.wm.edu/Math-410-2010/2010-CSUMS.pdf · On predator-prey models Junping Shi $ ² Department of Mathematics College of William and Mary Math 410/CSUMS

spatial

predator-prey

systems

Junping Shi

Background

ODE Model

Limit Cycle Profile

Subcritical Hopf

Connected Patches

Reaction-Diffusion

Conclusion

References

◮ Sze-Bi Hsu; Junping Shi Relaxation oscillator profile of

limit cycle in predator-prey system. Discrete and

Continuous Dynamical Systems B, 11, (2009) no. 4,893–911.

◮ Fengqi Yi, Junjie Wei and Junping Shi, Bifurcation and

spatiotemporal patterns in a homogeneous diffusive

predator-prey system. Journal of Differential Equations,246, (2009), no. 5, 1944–1977.

◮ Rui Peng, Junping Shi, Non-existence of Non-constant

Positive Steady States of Two Holling Type-II

Predator-prey Systems: Strong Interaction Case.Journal of Differential Equations, 247, (2009), no. 3,866–886.

Page 44: On predator-prey modelsjxshix.people.wm.edu/Math-410-2010/2010-CSUMS.pdf · On predator-prey models Junping Shi $ ² Department of Mathematics College of William and Mary Math 410/CSUMS

Predator-prey

Junping Shi