on quadratic hamilton-poisson systems fileon quadratic hamilton-poisson systems rory biggs and...

42
On Quadratic Hamilton-Poisson Systems Rory Biggs * and Claudiu C. Remsing Department of Mathematics (Pure and Applied) Rhodes University, Grahamstown 6140, South Africa Geometry, Integrability & Quantization June 7–12, 2013, Varna, Bulgaria R. Biggs, C.C. Remsing (Rhodes) On Quadratic Hamilton-Poisson Systems GIQ 2013 1 / 40

Upload: ngonhi

Post on 11-Aug-2019

216 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: On Quadratic Hamilton-Poisson Systems fileOn Quadratic Hamilton-Poisson Systems Rory Biggs and Claudiu C. Remsing Department of Mathematics (Pure and Applied) Rhodes University, Grahamstown

On Quadratic Hamilton-Poisson Systems

Rory Biggs∗ and Claudiu C. Remsing

Department of Mathematics (Pure and Applied)Rhodes University, Grahamstown 6140, South Africa

Geometry, Integrability & QuantizationJune 7–12, 2013, Varna, Bulgaria

R. Biggs, C.C. Remsing (Rhodes) On Quadratic Hamilton-Poisson Systems GIQ 2013 1 / 40

Page 2: On Quadratic Hamilton-Poisson Systems fileOn Quadratic Hamilton-Poisson Systems Rory Biggs and Claudiu C. Remsing Department of Mathematics (Pure and Applied) Rhodes University, Grahamstown

Outline

1 Introduction

2 Classification

3 Stability

4 Invariants

5 Conclusion

R. Biggs, C.C. Remsing (Rhodes) On Quadratic Hamilton-Poisson Systems GIQ 2013 2 / 40

Page 3: On Quadratic Hamilton-Poisson Systems fileOn Quadratic Hamilton-Poisson Systems Rory Biggs and Claudiu C. Remsing Department of Mathematics (Pure and Applied) Rhodes University, Grahamstown

Outline

1 Introduction

2 Classification

3 Stability

4 Invariants

5 Conclusion

R. Biggs, C.C. Remsing (Rhodes) On Quadratic Hamilton-Poisson Systems GIQ 2013 3 / 40

Page 4: On Quadratic Hamilton-Poisson Systems fileOn Quadratic Hamilton-Poisson Systems Rory Biggs and Claudiu C. Remsing Department of Mathematics (Pure and Applied) Rhodes University, Grahamstown

Problem Statement

Context

Quadratic Hamilton-Poisson systems: H = p>Q p

3D (minus) Lie-Poisson spaces: g∗−

Problem

Classification, under linear equivalence

Stability

Invariants

R. Biggs, C.C. Remsing (Rhodes) On Quadratic Hamilton-Poisson Systems GIQ 2013 4 / 40

Page 5: On Quadratic Hamilton-Poisson Systems fileOn Quadratic Hamilton-Poisson Systems Rory Biggs and Claudiu C. Remsing Department of Mathematics (Pure and Applied) Rhodes University, Grahamstown

Motivation

Dynamical systemsEuler’s classic equations for the rigid body

Invariant optimal control / sub-Riemannian geometryHamiltonian reduction T ∗G ∼= G× g∗−

Recent papers

Tudoran 2009: The free rigid body dynamics

Biggs & Remsing 2012: Cost-extended control systems

J. Biggs & Holderbaum 2010, Sachkov 2008: optimal control

Aron, Craioveanu, Daniasa, Pop, Puta 2007–2010: QHP systems

R. Biggs, C.C. Remsing (Rhodes) On Quadratic Hamilton-Poisson Systems GIQ 2013 5 / 40

Page 6: On Quadratic Hamilton-Poisson Systems fileOn Quadratic Hamilton-Poisson Systems Rory Biggs and Claudiu C. Remsing Department of Mathematics (Pure and Applied) Rhodes University, Grahamstown

Lie-Poisson formalism

(Minus) Lie-Poisson space g∗−

{F ,G}(p) = −p([dF (p),dG(p)]), p ∈ g∗

Hamiltonian vector field: ~H[F ] = {F ,H}Casimir function: {C,F} = 0

Quadratic Hamilton-Poisson system (g∗−,HQ)

HQ(p) = p>Q pEquations of motion:

pi = −p([Ei ,dH(p)])

R. Biggs, C.C. Remsing (Rhodes) On Quadratic Hamilton-Poisson Systems GIQ 2013 6 / 40

Page 7: On Quadratic Hamilton-Poisson Systems fileOn Quadratic Hamilton-Poisson Systems Rory Biggs and Claudiu C. Remsing Department of Mathematics (Pure and Applied) Rhodes University, Grahamstown

Outline

1 Introduction

2 Classification

3 Stability

4 Invariants

5 Conclusion

R. Biggs, C.C. Remsing (Rhodes) On Quadratic Hamilton-Poisson Systems GIQ 2013 7 / 40

Page 8: On Quadratic Hamilton-Poisson Systems fileOn Quadratic Hamilton-Poisson Systems Rory Biggs and Claudiu C. Remsing Department of Mathematics (Pure and Applied) Rhodes University, Grahamstown

Linear equivalence

Definition

(g∗−,HQ) and (h∗−,HR) are linearly equivalent if∃ linear isomorphism ψ : g∗ → h∗

such that ψ∗~HQ = ~HR.

Classification approach

Step 1. Classification by algebra

Step 2. General classification

R. Biggs, C.C. Remsing (Rhodes) On Quadratic Hamilton-Poisson Systems GIQ 2013 8 / 40

Page 9: On Quadratic Hamilton-Poisson Systems fileOn Quadratic Hamilton-Poisson Systems Rory Biggs and Claudiu C. Remsing Department of Mathematics (Pure and Applied) Rhodes University, Grahamstown

Bianchi-Behr classification

Type Unimodular Global Casimirs Representatives

g2.1 ⊕ g1 p3 aff(R)⊕ R

g3.1 • p1 h3

g3.2 —

g3.3 —

g03.4 • p2

1 − p22 se (1,1)

gα3.4 —

g03.5 • p2

1 + p22 se (2)

gα3.5 —

g3.6 • p21 + p2

2 − p23 sl (2,R), so (2,1)

g3.7 • p21 + p2

2 + p23 so (3), su (2)

Table: Three-dimensional real Lie algebrasR. Biggs, C.C. Remsing (Rhodes) On Quadratic Hamilton-Poisson Systems GIQ 2013 9 / 40

Page 10: On Quadratic Hamilton-Poisson Systems fileOn Quadratic Hamilton-Poisson Systems Rory Biggs and Claudiu C. Remsing Department of Mathematics (Pure and Applied) Rhodes University, Grahamstown

Coadjoint orbits (admit global Casimirs)

E1*

E2*

E3*

aff(R)⊕ RE1*

E2*

E3*

h3

E1*E2

*

E3*

se (1, 1)

E1*E2

*

E3*

se (2)

E1*

E2*

E3*

so (2, 1)

E1*E2

*

E3*

so (3)

R. Biggs, C.C. Remsing (Rhodes) On Quadratic Hamilton-Poisson Systems GIQ 2013 10 / 40

Page 11: On Quadratic Hamilton-Poisson Systems fileOn Quadratic Hamilton-Poisson Systems Rory Biggs and Claudiu C. Remsing Department of Mathematics (Pure and Applied) Rhodes University, Grahamstown

Classification by algebra (positive semidefinite quadratic systems)

(aff (R)⊕ R)∗−p2

1

p22

p21 + p2

2

(p1 + p3)2

p22 + (p1 + p3)

2

(h3)∗−

p23

p22 + p2

3

se (1,1)∗−p2

1

p23

p21 + p2

3

(p1 + p2)2

(p1 + p2)2 + p2

3

se (2)∗−p2

2

p23

p22 + p2

3

so (2,1)∗−p2

1

p23

p21 + p2

3

(p2 + p3)2

p22 + (p1 + p3)

2

so (3)∗−p2

1

p21 + 1

2p22

R. Biggs, C.C. Remsing (Rhodes) On Quadratic Hamilton-Poisson Systems GIQ 2013 11 / 40

Page 12: On Quadratic Hamilton-Poisson Systems fileOn Quadratic Hamilton-Poisson Systems Rory Biggs and Claudiu C. Remsing Department of Mathematics (Pure and Applied) Rhodes University, Grahamstown

Proof sketch 1/4

Proposition

The following systems on g∗− are equivalent to HQ:

(E1) HQ ◦ ψ, where ψ : g∗− → g∗− is a linear Poisson automorphism;(E2) HrQ, where r 6= 0;(E3) HQ + C, where C is a Casimir function.

Case: (h3)∗−

Casimir: p21

Linear Poisson automorphisms:

yw − zv 0 0x y zu v w

R. Biggs, C.C. Remsing (Rhodes) On Quadratic Hamilton-Poisson Systems GIQ 2013 12 / 40

Page 13: On Quadratic Hamilton-Poisson Systems fileOn Quadratic Hamilton-Poisson Systems Rory Biggs and Claudiu C. Remsing Department of Mathematics (Pure and Applied) Rhodes University, Grahamstown

Proof sketch 2/4

HQ(p) = p>Q p, Q =

a1 b1 b2b1 a2 b3b2 b3 a3

Suppose a3 > 0. Then ψ =

1 0 00 1 0−b2

a3−b3

a31

∈ Aut ((h3)∗−),

ψ>Q ψ =

a1 −b2

2a3

b1 − b2b3a3

0

b1 − b2b3a3

a2 −b2

3a3

00 0 a3

=

a′1 b′1 0b′1 a′2 00 0 a3

.If a′2 = 0, then HQ ∼ H(p) = p2

3.Suppose a′2 > 0. Then ∃ψ′ ∈ Aut ((h3)

∗−), such that

ψ′> ψ>Q ψ ψ′ = diag(a′′1,1,1

). Thus HQ ∼ H(p) = p2

2 + p23.

R. Biggs, C.C. Remsing (Rhodes) On Quadratic Hamilton-Poisson Systems GIQ 2013 13 / 40

Page 14: On Quadratic Hamilton-Poisson Systems fileOn Quadratic Hamilton-Poisson Systems Rory Biggs and Claudiu C. Remsing Department of Mathematics (Pure and Applied) Rhodes University, Grahamstown

Proof sketch 3/4

Suppose a3 = 0. Likewise, HQ ∼ H(p) = p23.

Remains to be shown: H1(p) = p23 and H2 = p2

2 + p23 distinct.

Suppose ∃ ψ such that ψ · ~H1 = ~H2 ◦ ψ. Then−2ψ12p1p3

−2ψ22p1p3

−2ψ32p1p3

=

0−2 (ψ11p1 + ψ12p2 + ψ13p3) (ψ31p1 + ψ32p2 + ψ33p3)2 (ψ11p1 + ψ12p2 + ψ13p3) (ψ21p1 + ψ22p2 + ψ23p3)

.Yields contradiction.

Case: (so (3)∗−)

Casimir: p21 + p2

2 + p23 Automorphisms: SO (3)

Orthogonal matrices diagonalize PSD quadratic formsConsequently H ∼ p2

1 or H ∼ p21 + αp2

2, 0 < α < 1

ψ = diag (−√

2√

1− α,2√α(1− α),−

√2√α)

brings p21 + α p2

2 into p21 + 1

2p22

R. Biggs, C.C. Remsing (Rhodes) On Quadratic Hamilton-Poisson Systems GIQ 2013 14 / 40

Page 15: On Quadratic Hamilton-Poisson Systems fileOn Quadratic Hamilton-Poisson Systems Rory Biggs and Claudiu C. Remsing Department of Mathematics (Pure and Applied) Rhodes University, Grahamstown

Proof sketch 4/4

Case: so (2,1)∗−

Casimir: K = p21 + p2

2 − p23 Automorphisms: SO (2,1)

Direct application of automorphisms (E1) not fruitful

Using rotation: Q′ = ρ3(θ)>Q ρ3(θ) =

a1 0 b20 a2 b3b2 b3 a3

.

Assume a1,a2 6= 0. Then Q′ + xK has a Cholesky decomposition

Q′ + xK = R>R, R =

r1 0 r30 r2 r40 0 0

for some x ≥ 0.

Use automorphisms to normalise R.After normalization, we can apply similar approach to R>R.

R. Biggs, C.C. Remsing (Rhodes) On Quadratic Hamilton-Poisson Systems GIQ 2013 15 / 40

Page 16: On Quadratic Hamilton-Poisson Systems fileOn Quadratic Hamilton-Poisson Systems Rory Biggs and Claudiu C. Remsing Department of Mathematics (Pure and Applied) Rhodes University, Grahamstown

General classification

Consider equivalence of systems on different spaces— direct computation with MATHEMATICA

Types of systems

Linear: integral curves contained in lines(sufficient: has two linear constants of motion)

Planar: integral curves contained in planes, not linear(sufficient: has one linear constant of motion)

otherwise: non-Planar

R. Biggs, C.C. Remsing (Rhodes) On Quadratic Hamilton-Poisson Systems GIQ 2013 16 / 40

Page 17: On Quadratic Hamilton-Poisson Systems fileOn Quadratic Hamilton-Poisson Systems Rory Biggs and Claudiu C. Remsing Department of Mathematics (Pure and Applied) Rhodes University, Grahamstown

Classification by algebra (positive semidefinite quadratic systems)

(aff (R)⊕ R)∗−p2

1

p22

p21 + p2

2

(p1 + p3)2

p22 + (p1 + p3)

2

(h3)∗−

p23

p22 + p2

3

se (1,1)∗−p2

1

p23

p21 + p2

3

(p1 + p2)2

(p1 + p2)2 + p2

3

se (2)∗−p2

2

p23

p22 + p2

3

so (2,1)∗−p2

1

p23

p21 + p2

3

(p2 + p3)2

p22 + (p1 + p3)

2

so (3)∗−p2

1

p21 + 1

2p22

R. Biggs, C.C. Remsing (Rhodes) On Quadratic Hamilton-Poisson Systems GIQ 2013 17 / 40

Page 18: On Quadratic Hamilton-Poisson Systems fileOn Quadratic Hamilton-Poisson Systems Rory Biggs and Claudiu C. Remsing Department of Mathematics (Pure and Applied) Rhodes University, Grahamstown

Linear systems

(aff (R)⊕ R)∗−p2

1

p22

p21 + p2

2

(p1 + p3)2

p22 + (p1 + p3)

2

(h3)∗−

p23

p22 + p2

3

se (1,1)∗−p2

1

p23

p21 + p2

3

(p1 + p2)2

(p1 + p2)2 + p2

3

se (2)∗−p2

2

p23

p22 + p2

3

so (2,1)∗−p2

1

p23

p21 + p2

3

(p2 + p3)2

p22 + (p1 + p3)

2

so (3)∗−p2

1

p21 + 1

2p22

R. Biggs, C.C. Remsing (Rhodes) On Quadratic Hamilton-Poisson Systems GIQ 2013 18 / 40

Page 19: On Quadratic Hamilton-Poisson Systems fileOn Quadratic Hamilton-Poisson Systems Rory Biggs and Claudiu C. Remsing Department of Mathematics (Pure and Applied) Rhodes University, Grahamstown

Linear systems (3 classes)

(aff (R)⊕ R)∗−p2

1

p22

p21 + p2

2

(p1 + p3)2

p22 + (p1 + p3)

2

(h3)∗−

p23

p22 + p2

3

se (1,1)∗−p2

1

p23

p21 + p2

3

(p1 + p2)2

(p1 + p2)2 + p2

3

se (2)∗−p2

2

p23

p22 + p2

3

so (2,1)∗−p2

1

p23

p21 + p2

3

(p2 + p3)2

p22 + (p1 + p3)

2

so (3)∗−p2

1

p21 + 1

2p22

R. Biggs, C.C. Remsing (Rhodes) On Quadratic Hamilton-Poisson Systems GIQ 2013 19 / 40

Page 20: On Quadratic Hamilton-Poisson Systems fileOn Quadratic Hamilton-Poisson Systems Rory Biggs and Claudiu C. Remsing Department of Mathematics (Pure and Applied) Rhodes University, Grahamstown

Linear systems L (1), L (2), L(3)

(aff (R)⊕ R)∗−p2

1

1 : p22

p21 + p2

2

(p1 + p3)2

p22 + (p1 + p3)

2

(h3)∗−

p23

p22 + p2

3

se (1,1)∗−p2

1

p23

p21 + p2

3

2 : (p1 + p2)2

(p1 + p2)2 + p2

3

se (2)∗−

3 : p22

p23

p22 + p2

3

so (2,1)∗−p2

1

p23

p21 + p2

3

(p2 + p3)2

p22 + (p1 + p3)

2

so (3)∗−p2

1

p21 + 1

2p22

R. Biggs, C.C. Remsing (Rhodes) On Quadratic Hamilton-Poisson Systems GIQ 2013 20 / 40

Page 21: On Quadratic Hamilton-Poisson Systems fileOn Quadratic Hamilton-Poisson Systems Rory Biggs and Claudiu C. Remsing Department of Mathematics (Pure and Applied) Rhodes University, Grahamstown

Planar systems

(aff (R)⊕ R)∗−p2

1

p22

p21 + p2

2

(p1 + p3)2

p22 + (p1 + p3)

2

(h3)∗−

p23

p22 + p2

3

se (1,1)∗−p2

1

p23

p21 + p2

3

(p1 + p2)2

(p1 + p2)2 + p2

3

se (2)∗−p2

2

p23

p22 + p2

3

so (2,1)∗−p2

1

p23

p21 + p2

3

(p2 + p3)2

p22 + (p1 + p3)

2

so (3)∗−p2

1

p21 + 1

2p22

R. Biggs, C.C. Remsing (Rhodes) On Quadratic Hamilton-Poisson Systems GIQ 2013 21 / 40

Page 22: On Quadratic Hamilton-Poisson Systems fileOn Quadratic Hamilton-Poisson Systems Rory Biggs and Claudiu C. Remsing Department of Mathematics (Pure and Applied) Rhodes University, Grahamstown

Planar systems (5 classes)

(aff (R)⊕ R)∗−p2

1

p22

p21 + p2

2

(p1 + p3)2

p22 + (p1 + p3)

2

(h3)∗−

p23

p22 + p2

3

se (1,1)∗−p2

1

p23

p21 + p2

3

(p1 + p2)2

(p1 + p2)2 + p2

3

se (2)∗−p2

2

p23

p22 + p2

3

so (2,1)∗−p2

1

p23

p21 + p2

3

(p2 + p3)2

p22 + (p1 + p3)

2

so (3)∗−p2

1

p21 + 1

2p22

R. Biggs, C.C. Remsing (Rhodes) On Quadratic Hamilton-Poisson Systems GIQ 2013 22 / 40

Page 23: On Quadratic Hamilton-Poisson Systems fileOn Quadratic Hamilton-Poisson Systems Rory Biggs and Claudiu C. Remsing Department of Mathematics (Pure and Applied) Rhodes University, Grahamstown

Planar systems P(1), . . . ,P(5)

(aff (R)⊕ R)∗−p2

1

p22

1 : p21 + p2

2

(p1 + p3)2

2 : p22 + (p1 + p3)

2

(h3)∗−

p23

p22 + p2

3

se (1,1)∗−p2

1

3 : p23

p21 + p2

3

(p1 + p2)2

(p1 + p2)2 + p2

3

se (2)∗−p2

2

4 : p23

p22 + p2

3

so (2,1)∗−p2

1

p23

p21 + p2

3

5 : (p2 + p3)2

p22 + (p1 + p3)

2

so (3)∗−p2

1

p21 + 1

2p22

R. Biggs, C.C. Remsing (Rhodes) On Quadratic Hamilton-Poisson Systems GIQ 2013 23 / 40

Page 24: On Quadratic Hamilton-Poisson Systems fileOn Quadratic Hamilton-Poisson Systems Rory Biggs and Claudiu C. Remsing Department of Mathematics (Pure and Applied) Rhodes University, Grahamstown

Non-planar systems

(aff (R)⊕ R)∗−p2

1

p22

p21 + p2

2

(p1 + p3)2

p22 + (p1 + p3)

2

(h3)∗−

p23

p22 + p2

3

se (1,1)∗−p2

1

p23

p21 + p2

3

(p1 + p2)2

(p1 + p2)2 + p2

3

se (2)∗−p2

2

p23

p22 + p2

3

so (2,1)∗−p2

1

p23

p21 + p2

3

(p2 + p3)2

p22 + (p1 + p3)

2

so (3)∗−p2

1

p21 + 1

2p22

R. Biggs, C.C. Remsing (Rhodes) On Quadratic Hamilton-Poisson Systems GIQ 2013 24 / 40

Page 25: On Quadratic Hamilton-Poisson Systems fileOn Quadratic Hamilton-Poisson Systems Rory Biggs and Claudiu C. Remsing Department of Mathematics (Pure and Applied) Rhodes University, Grahamstown

Non-planar systems (2 classes)

(aff (R)⊕ R)∗−p2

1

p22

p21 + p2

2

(p1 + p3)2

p22 + (p1 + p3)

2

(h3)∗−

p23

p22 + p2

3

se (1,1)∗−p2

1

p23

p21 + p2

3

(p1 + p2)2

(p1 + p2)2 + p2

3

se (2)∗−p2

2

p23

p22 + p2

3

so (2,1)∗−p2

1

p23

p21 + p2

3

(p2 + p3)2

p22 + (p1 + p3)

2

so (3)∗−p2

1

p21 + 1

2p22

R. Biggs, C.C. Remsing (Rhodes) On Quadratic Hamilton-Poisson Systems GIQ 2013 25 / 40

Page 26: On Quadratic Hamilton-Poisson Systems fileOn Quadratic Hamilton-Poisson Systems Rory Biggs and Claudiu C. Remsing Department of Mathematics (Pure and Applied) Rhodes University, Grahamstown

Non-planar systems H(1), H(2)

(aff (R)⊕ R)∗−p2

1

p22

p21 + p2

2

(p1 + p3)2

p22 + (p1 + p3)

2

(h3)∗−

p23

p22 + p2

3

se (1,1)∗−p2

1

p23

p21 + p2

3

(p1 + p2)2

1 : (p1 + p2)2 + p2

3

se (2)∗−p2

2

p23

2 : p22 + p2

3

so (2,1)∗−p2

1

p23

p21 + p2

3

(p2 + p3)2

p22 + (p1 + p3)

2

so (3)∗−p2

1

p21 + 1

2p22

R. Biggs, C.C. Remsing (Rhodes) On Quadratic Hamilton-Poisson Systems GIQ 2013 26 / 40

Page 27: On Quadratic Hamilton-Poisson Systems fileOn Quadratic Hamilton-Poisson Systems Rory Biggs and Claudiu C. Remsing Department of Mathematics (Pure and Applied) Rhodes University, Grahamstown

Remarks

Interesting features

Systems on (h3)∗− or so (3)∗−

— equivalent to ones on se (2)∗−

Systems on (aff(R)⊕ R)∗− or (h3)∗−

— planar or linear

Systems on (h3)∗−, se (1,1)∗−, se (2)∗− and so (3)∗−

— may be realized on multiple spaces.(for so (2,1)∗− exception is P (5))

R. Biggs, C.C. Remsing (Rhodes) On Quadratic Hamilton-Poisson Systems GIQ 2013 27 / 40

Page 28: On Quadratic Hamilton-Poisson Systems fileOn Quadratic Hamilton-Poisson Systems Rory Biggs and Claudiu C. Remsing Department of Mathematics (Pure and Applied) Rhodes University, Grahamstown

Outline

1 Introduction

2 Classification

3 Stability

4 Invariants

5 Conclusion

R. Biggs, C.C. Remsing (Rhodes) On Quadratic Hamilton-Poisson Systems GIQ 2013 28 / 40

Page 29: On Quadratic Hamilton-Poisson Systems fileOn Quadratic Hamilton-Poisson Systems Rory Biggs and Claudiu C. Remsing Department of Mathematics (Pure and Applied) Rhodes University, Grahamstown

Types of stability

Stability of equilibrium point ze

(Lyapunov) stable∀ nbd N ∃ nbd N ′ s.t. Ft(N ′) ⊂ Nspectrally stableRe (λi) ≤ 0 for eigenvalues of D~H(ze)

weakly assymptotically stable [Ortega et al. 2005]stable & ∃ nhd N s.t. Ft(N) ⊂ Fs(N) whenever t > s.

weak asymptotic stab =⇒ (Lyapunov) stab =⇒ spectral stab

Methods (Positive results)

Energy Casimir:d(H + C)(ze) = 0 and d2(H + C)(ze) > 0

Extended Energy Casimir:d(λ0H + λ1C + λ2F )(ze) = 0 and d2(λ0H + λ1C + λ2F )(ze) > 0

R. Biggs, C.C. Remsing (Rhodes) On Quadratic Hamilton-Poisson Systems GIQ 2013 29 / 40

Page 30: On Quadratic Hamilton-Poisson Systems fileOn Quadratic Hamilton-Poisson Systems Rory Biggs and Claudiu C. Remsing Department of Mathematics (Pure and Applied) Rhodes University, Grahamstown

Linear systems

L(1) L(2) L(3)

Figure: Equilibria (and vector fields) for linear systems

R. Biggs, C.C. Remsing (Rhodes) On Quadratic Hamilton-Poisson Systems GIQ 2013 30 / 40

Page 31: On Quadratic Hamilton-Poisson Systems fileOn Quadratic Hamilton-Poisson Systems Rory Biggs and Claudiu C. Remsing Department of Mathematics (Pure and Applied) Rhodes University, Grahamstown

Planar systems

P(1) P(2) P(3)

P(4) P(5)

Figure: Equilibria of planar systems

R. Biggs, C.C. Remsing (Rhodes) On Quadratic Hamilton-Poisson Systems GIQ 2013 31 / 40

Page 32: On Quadratic Hamilton-Poisson Systems fileOn Quadratic Hamilton-Poisson Systems Rory Biggs and Claudiu C. Remsing Department of Mathematics (Pure and Applied) Rhodes University, Grahamstown

P(2) : ((aff (R)⊕ R)∗−,p22 + (p1 + p3)

2)

02 E1

*

-2

0

2

E2*

-2

0

E3*

02 E1

*

-2

0

2

E2*

-2

0

E3*

(a) c0 < −√

h0 < 0

02 E1

*

-2

0

2

E2*

-2

0

E3*

02 E1

*

-2

0

2

E2*

-2

0

E3*

(b) c0 = −√

h0 < 0

02 E1

*

-2

0

2

E2*

-2

0

E3*

02 E1

*

-2

0

2

E2*

-2

0

E3*

(c) −√

h0 < c0 <√

h0

Figure: Planar system P(2)

R. Biggs, C.C. Remsing (Rhodes) On Quadratic Hamilton-Poisson Systems GIQ 2013 32 / 40

Page 33: On Quadratic Hamilton-Poisson Systems fileOn Quadratic Hamilton-Poisson Systems Rory Biggs and Claudiu C. Remsing Department of Mathematics (Pure and Applied) Rhodes University, Grahamstown

P(2) : ((aff (R)⊕ R)∗−,p22 + (p1 + p3)

2)

eη,µ1 = (0, η, µ) 6= 0, η < 0

Linearization D~H has eigenvalues{0,0,−2η}. Spectrally unstable.

eη,µ1 = (0, η, µ), η > 0, µ 6= 0 (Case µ = 0 similar.)

Hλ = F , F = p21

~H[F ](p) = −4p21p2 ≤ 0 for p in some nhd of (0, η, µ)

d Hλ(eη,µ1 ) = 0 and d2Hλ(e

η,µ1 ) = diag (2,0,0)

d H(eη,µ1 ) =[2µ 2η 2µ

]and d C2(eη,µ1 ) =

[0 0 µ

]d2 Hλ(e

η,µ1 ) is PD on W = ker d H(eη,µ1 ) ∩ ker d C2(eη,µ1 )

Weakly asymptotically stable

R. Biggs, C.C. Remsing (Rhodes) On Quadratic Hamilton-Poisson Systems GIQ 2013 33 / 40

Page 34: On Quadratic Hamilton-Poisson Systems fileOn Quadratic Hamilton-Poisson Systems Rory Biggs and Claudiu C. Remsing Department of Mathematics (Pure and Applied) Rhodes University, Grahamstown

P(2) : ((aff (R)⊕ R)∗−,p22 + (p1 + p3)

2)

eµ2 = (µ,0,−µ), µ 6= 0 (Case µ = 0 similar.)

Hλ = H, dHλ(eµ2) = 0, d2Hλ(e

µ2) =

2 0 20 2 02 0 2

d C2(eµ2) =

[0 0 −2µ

]d2Hλ(e

µ2) is PD on W = ker d C2(eµ2) — stable

e0,µ1 = (0,0, µ), µ 6= 0

p(t) = ( −2µ1+4µ2t2 ,

4µ2t1+4µ2t2 , µ) is integral curve

∀ nhd N of e0,µ1 ∃ t0 < 0 s.t. p(t0) ∈ N

‖p(0)− e0,µ1 ‖ = 2|µ|

Unstable

R. Biggs, C.C. Remsing (Rhodes) On Quadratic Hamilton-Poisson Systems GIQ 2013 34 / 40

Page 35: On Quadratic Hamilton-Poisson Systems fileOn Quadratic Hamilton-Poisson Systems Rory Biggs and Claudiu C. Remsing Department of Mathematics (Pure and Applied) Rhodes University, Grahamstown

Non-planar systems

H(1) H(2)

Figure: Equilibria states of non-planar systems

R. Biggs, C.C. Remsing (Rhodes) On Quadratic Hamilton-Poisson Systems GIQ 2013 35 / 40

Page 36: On Quadratic Hamilton-Poisson Systems fileOn Quadratic Hamilton-Poisson Systems Rory Biggs and Claudiu C. Remsing Department of Mathematics (Pure and Applied) Rhodes University, Grahamstown

Outline

1 Introduction

2 Classification

3 Stability

4 Invariants

5 Conclusion

R. Biggs, C.C. Remsing (Rhodes) On Quadratic Hamilton-Poisson Systems GIQ 2013 36 / 40

Page 37: On Quadratic Hamilton-Poisson Systems fileOn Quadratic Hamilton-Poisson Systems Rory Biggs and Claudiu C. Remsing Department of Mathematics (Pure and Applied) Rhodes University, Grahamstown

Equilibria and invariants

E-equivalence

Systems (g∗−,H) and ((g′)∗−,H ′) are E-equivalent if thereexists a linear isomorphism ψ : g∗− → (g′)∗−

such that ψ · Es = E ′s and ψ · Eu = E ′u

PropositionNon-planar systems equivalent ⇐⇒ E-equivalentPlanar systems equivalent ⇐⇒ E-equivalentLinear systems equivalent ⇐⇒ E-equivalent

Equilibrium index

Set of equilibria is union of i lines and j planes.Pair (i , j): equilibrium index

R. Biggs, C.C. Remsing (Rhodes) On Quadratic Hamilton-Poisson Systems GIQ 2013 37 / 40

Page 38: On Quadratic Hamilton-Poisson Systems fileOn Quadratic Hamilton-Poisson Systems Rory Biggs and Claudiu C. Remsing Department of Mathematics (Pure and Applied) Rhodes University, Grahamstown

Taxonomy

Algebra Class Equilibrium Index(lines, planes)

Normal Form(s)

se (1, 1)

linear(0, 1) L(2)(0, 2) L(3)

planar (1, 1) P(3)

non-planar(2, 0) H(1)(3, 0) H(2)

se (2)linear (0, 2) L(3)planar (1, 1) P(4)

non-planar (3, 0) H(2)

so (2, 1)planar

(1, 1) P(3); P(4)(0, 1) P(5)

non-planar(2, 0) H(1)(3, 0) H(2)

so (3)planar (1, 1) P(4)

non-planar (3, 0) H(2)

R. Biggs, C.C. Remsing (Rhodes) On Quadratic Hamilton-Poisson Systems GIQ 2013 38 / 40

Page 39: On Quadratic Hamilton-Poisson Systems fileOn Quadratic Hamilton-Poisson Systems Rory Biggs and Claudiu C. Remsing Department of Mathematics (Pure and Applied) Rhodes University, Grahamstown

Outline

1 Introduction

2 Classification

3 Stability

4 Invariants

5 Conclusion

R. Biggs, C.C. Remsing (Rhodes) On Quadratic Hamilton-Poisson Systems GIQ 2013 39 / 40

Page 40: On Quadratic Hamilton-Poisson Systems fileOn Quadratic Hamilton-Poisson Systems Rory Biggs and Claudiu C. Remsing Department of Mathematics (Pure and Applied) Rhodes University, Grahamstown

Conclusion

SummaryClassification of PSD quadratic systems in 3DBehaviour of equilibriaInvariants & taxonomy

OutlookIntegrationRelax restrictions: PSD, global CasimirAffine case: HA,Q = p(A) + p>Q p4D case

R. Biggs, C.C. Remsing (Rhodes) On Quadratic Hamilton-Poisson Systems GIQ 2013 40 / 40

Page 41: On Quadratic Hamilton-Poisson Systems fileOn Quadratic Hamilton-Poisson Systems Rory Biggs and Claudiu C. Remsing Department of Mathematics (Pure and Applied) Rhodes University, Grahamstown

R.M. Adams, R. Biggs and C.C. RemsingOn some quadratic Hamilton-Poisson systemsAppl. Sci. 15(2013), (to appear).

A. Aron, C. Daniasa and M. PutaQuadratic and homogeneous Hamilton-Poisson system on so (3)∗

Int. J. Geom. Methods Mod. Phys. 4(2007), 1173–1186.

A. Aron, M. Craioveanu, C. Pop and M. PutaQuadratic and homogeneous Hamilton-Poisson systems on A∗

3,6,−1

Balkan J. Geom. Appl. 15(2010), 1–7.

A. Aron, C. Pop and M. PutaSome remarks on (sl(2,R))∗ and Kahan’s IntegratorAn. Stiint. Univ. Al. I. Cuza Iasi. Mat. 53(suppl.)(2007), 49–60.

J. Biggs and W. HolderbaumIntegrable quadratic Hamiltonian on the Euclidean group of motionsJ. Dyn. Control Syst. 16(3)(2010), 301–317.

R. Biggs and C.C. RemsingOn the equivalence of cost-extended control systems on Lie groupsIn Recent Researches in Automatic Control, Systems Science andCommunications (H.R. Karimi, ed.). WSEAS Press (2012) 60–65.

R. Biggs, C.C. Remsing (Rhodes) On Quadratic Hamilton-Poisson Systems GIQ 2013 40 / 40

Page 42: On Quadratic Hamilton-Poisson Systems fileOn Quadratic Hamilton-Poisson Systems Rory Biggs and Claudiu C. Remsing Department of Mathematics (Pure and Applied) Rhodes University, Grahamstown

A. Krasinski et alThe Bianchi classification in the Schucking-Behr approachGen. Relativ. Gravit. 35(2003), 475–489.

G.M. MubarakzyanovOn solvable Lie algebras (in Russian)Izv. Vyssh. Uchebn. Zaved. 32(1)(1963), 114–123.

J-P. Ortega, V. Planas-Bielsa and T.S. RatiuAsymptotic and Lyapunov stability of constrained and Poisson equilibriaJ. Diff. Equations 214 (2005), 92–127.

J. Patera, R.T. Sharp, P. Wintemitz, H. ZassenhausInvariants of low dimensional Lie algebrasJ. Math. Phys. 17(1976), 986–994.

R.M. TudoranThe free rigid body dynamics: generalized versus classic.arXiv:1102.2725v5 [math-ph].

R.M. Tudoran and R.A. TudoranOn a large class of three-dimensional Hamiltonian systemsJ. Math. Phys. 50(2009) 012703.

R. Biggs, C.C. Remsing (Rhodes) On Quadratic Hamilton-Poisson Systems GIQ 2013 40 / 40