on secret sharing schemes based on regenerating codes · on secret sharing schemes based on...

54
On Secret Sharing Schemes based on Regenerating Codes Masazumi Kurihara (University of Electro-Communications) 2012 IEICE General Conference, Okayama, Japan, 20-23, March, 2012. (Proc. of 2012 IEICE General Conference, AS-2-1, pp.S17-S18) 1 Masazumi Kurihara(UEC, Tokyo, Japan)

Upload: nguyenngoc

Post on 15-Jul-2018

228 views

Category:

Documents


2 download

TRANSCRIPT

On Secret Sharing Schemes based on Regenerating Codes

Masazumi Kurihara

(University of Electro-Communications)

2012 IEICE General Conference, Okayama, Japan, 20-23, March, 2012.

(Proc. of 2012 IEICE General Conference, AS-2-1, pp.S17-S18)

1 Masazumi Kurihara(UEC, Tokyo, Japan)

Distributed Storage System (Secret Sharing Scheme ?)

Failed node (Repair the failed node) (Regeneration)

Data Collector (Reconstruction)

Data file

Helper node Helper node

2

encoding

Network

Masazumi Kurihara(UEC, Tokyo, Japan)

Helper node

Regenerating Codes

• A.G.Dimakis, P.B.Godfrey, Y.Wu, M.J.Wainwright, K.Ramchandran,

“Network Coding for Distributed Storage Systems,”

IEEE IT Trans. Vol.56, no.9, 2010. [Dimakis, et al.,2010]

• Repair Problem ( --- symmetry --- )

-- Repairing a failed node

-- Regenerating data that was stored in the failed node

3 Masazumi Kurihara(UEC, Tokyo, Japan)

Contents

1. Concept of regenerating codes

2. Relation between network-coding and distributed-storage (The results of Dimakis, et al.)

3. Several current regenerating codes

4. Secret sharing scheme based on regenerating codes

(Secure regenerating codes)

Masazumi Kurihara(UEC, Tokyo, Japan) 4

Keywords and their relation

• Codes for Distributed Storage – Reconstruction(Recovery) Erasure codes (MDS codes, RS codes, etc.)

– Reconstruction and Regeneration Regenerating codes

• Network Coding (for multicast, non-multicast) – Liner network Coding

– Random linear network Coding

• Secret Sharing – MDS-code-based Secret Sharing

– Regenerating-code-based Secret Sharing

(Secure Regenerating Codes)

5 Masazumi Kurihara(UEC, Tokyo, Japan)

Distributed Storage using ( n , k ) MDS codes

6

Message (one symbol)

( n , 1 ) MDS code ( n , k ) MDS code Share

Node 1

Node 2

Node n

Message

Share Node 1

Node 2

Node n

( k symbols)

Node k

at most n-k failed nodes

at most n-1 failed nodes

DC DC

Tradeoff between Redundancy and Reliability

k 1

Masazumi Kurihara(UEC, Tokyo, Japan)

Performance metric

Regenerating Codes

7

Erasure codes

Regenerating codes

Masazumi Kurihara(UEC, Tokyo, Japan)

• Collection of six parameters ( n, k, d, α, β, B )

• Reconstruction property – A data collector can reconstruct the original data by using the data

downloaded from any k active nodes.

• Regeneration property – A failed node can regenerate the data, which was stored in itself, by

using the data downloaded from any d active nodes.

Message, Encoding , and Shares

8

,,,,,,

65

43

21

uuuuuu

2,11,1 ,cc

2,21,2 ,cc

2,31,3 ,cc

2,41,4 ,cc

2,51,5 ,cc

Node 1

Node 2

Node 3

Node 4

Node 5

Share

message

B= 6 (Message size)

α=2 (Share size = storage )

encoding

n=5 (Total number of nodes in a network)

( n, k, d, α, β, B )

Masazumi Kurihara(UEC, Tokyo, Japan)

Reconstruction Property( k )

9

1

2

3

4

5

Share

message

B= 6 (message size)

α=2 (Share size = storage )

DC

2,11,1 ,cc

2,21,2 ,cc

2,41,4 ,ccReconstruction

k=3

encoding

n=5

,,,,,,

65

43

21

uuuuuu

( n, k, d, α, β, B )

Original message

Masazumi Kurihara(UEC, Tokyo, Japan)

k shares provide is the minimum data for reconstructing the original message.

,,,,,,

65

43

21

uuuuuu

2,11,1 ,cc

2,21,2 ,cc

2,31,3 ,cc

2,41,4 ,cc

2,51,5 ,cc

Maintaining the reliable distributed storage system (Repair a failed node, i.e., regenerate the share of it)

10

1

2

3

4

5

Share

message

B= 6

α=2

cut

Masazumi Kurihara(UEC, Tokyo, Japan)

Failed node ,,,,,,

65

43

21

uuuuuu

2,11,1 ,cc

2,21,2 ,cc

2,31,3 ,cc

2,41,4 ,cc

2,51,5 ,cc

Regeneration by reconstruction

11

1

2

3

4

5

Share

message

B= 6

α=2

2,11,1 ,cc

2,21,2 ,cc

2,41,4 ,cc

Reconstruction

encoding

k=3

encoding

3

cut Repair-Bandwidth kα=3x2=6(=B)

The original message

Share

Masazumi Kurihara(UEC, Tokyo, Japan)

,,,,,,

65

43

21

uuuuuu

2,11,1 ,cc

2,21,2 ,cc

2,31,3 ,cc

2,41,4 ,cc

2,51,5 ,cc ,,,,,,

65

43

21

uuuuuu

2,31,3 ,cc

Regeneration Property ( d and β )

12

1

2

3

4

5

Share

message

B= 6 1,3d

d=4

encoding

Repair the failed node 3

Regeneration

Piece β=1 (piece size )

2,3dPiece

4,3dPiece

5,3dPiece

),,,( 5,34,32,31,33 ddddd =Piece-vector

2,31,3 ,ccNode 3

( Exact-regeneration )

dβ=4 (piece-vector size )

Repair-Bandwidth dβ=4x1=4 (<6=B)

cut

Point ( d ≧ k )

α=2 (Share size = storage )

( n, k, d, α, β, B )

Masazumi Kurihara(UEC, Tokyo, Japan)

,,,,,,

65

43

21

uuuuuu

2,11,1 ,cc

2,21,2 ,cc

2,31,3 ,cc

2,41,4 ,cc

2,51,5 ,cc

Why d ≧ k ? If d<k, then …

13

1

2

3

4

5

Share

message

B= 6 1,3d

d=2

encoding

Repair the failed nodes 3,4,5

Piece β=1 (piece size )

2,3dPiece

2,31,3 ,ccNode 3

Repair-Bandwidth dβ x k =2 x 3

cut

α=2 (Share size = storage )

2,41,4 ,cc

2,51,5 ,ccNode 4

Node 5

( d=2<3=k )

k shares provide is the minimum data for reconstructing the message.

Masazumi Kurihara(UEC, Tokyo, Japan)

,,,,,,

65

43

21

uuuuuu

2,11,1 ,cc

2,21,2 ,cc

2,31,3 ,cc

2,41,4 ,cc

2,51,5 ,cc

skip

1. Reducing the repair-bandwidth 2. Tradeoff between Storage, α, and Repair-Bandwidth, dβ

14

1

2

3

4

5

Share

message

B 1,3d

d

encoding

Repair the failed node 3

Regeneration

Piece β (piece size )

2,3dPiece

4,3dPiece

5,3dPiece

),,,( 5,34,32,31,33 ddddd =Piece-vector

2,31,3 ,ccNode 3

dβ (piece-vector size )

Repair-Bandwidth dβ

cut

( Fixed k and d )

α (Share size = Storage )

Trade-off

Masazumi Kurihara(UEC, Tokyo, Japan)

,,,,,,

65

43

21

uuuuuu

2,11,1 ,cc

2,21,2 ,cc

2,31,3 ,cc

2,41,4 ,cc

2,51,5 ,cc

Tradeoff between Storage, α, and Repair-Bandwidth, dβ

15

( B=1, k=3, d=4 )

4/9

2/3

3/8 1/3 4/9

1/2

α

Storage per node α

Band

wid

th to

repa

ir o

ne n

ode

Minimum Storage Regenerating(MSR) point

Minimum Bandwidth Regenerating(MBR) point

(α,dβ) point

O

Masazumi Kurihara(UEC, Tokyo, Japan)

Contents

1. Concept of regenerating codes

2. Relation between network-coding and distributed-storage

3. Several current regenerating codes

4. Secret sharing scheme based on regenerating codes

(Secure regenerating codes)

Masazumi Kurihara(UEC, Tokyo, Japan) 16

(Linear) Network Coding for multicast

terminal Single source

terminal

terminal

s

1t

it

Capacity for network code for multicast

},...,2,1),,(maxflow{mim mits i =

mt

17 Masazumi Kurihara(UEC, Tokyo, Japan)

Max-flow min-cut theorem Min-cut

s

1t

Max-flow from source s to terminal t_{1}

2t

2),(maxflow 1 =ts

18

disjoint path

Masazumi Kurihara(UEC, Tokyo, Japan)

Information flow graph

Repairable distributed storage system ( Network coding for multicast )(1/3)

19

DC

DC

d

d

d

Message B

1

2

n

n-1

3

4

k

k

Repaired nodes

Keep n active nodes in a network

Masazumi Kurihara(UEC, Tokyo, Japan)

20

DC

DC

d

d

d

Message B

1

2

n

n-1

3

4

k

k

Masazumi Kurihara(UEC, Tokyo, Japan)

Repairable distributed storage system ( Network coding for multicast )(2/3)

21

DC

DC

d

d

d

Message B

1

2

n

n-1

3

4

k

k

Multicast

Masazumi Kurihara(UEC, Tokyo, Japan)

Repairable distributed storage system ( Network coding for multicast )(3/3)

Capacity for (n,k,d,α,β,B)Regenerating Codes(1/5)

22

DC

DC

d

d

d

Message B

1

2

n

n-1

3

4

k

k

disjoint path

Masazumi Kurihara(UEC, Tokyo, Japan)

Capacity for (n,k,d,α,β,B)Regenerating Codes(2/5)

23

DC

d

d

d

Message B

1

2

3

4

k

DC

d

d-1

k

d-2

α dβ≧α

in out

α in out

α in out

Zoom in

Masazumi Kurihara(UEC, Tokyo, Japan)

β

β β

β

β β β

β β

β

β

Capacity for (n,k,d,α,β,B)Regenerating Codes(3/5)

24

Message B

DC

d

d-1

k

d-2

α in out

α in out

α in out

β

β

β

β

β

Flow from Source to DC

disjoint path

Masazumi Kurihara(UEC, Tokyo, Japan)

β

β

β

β

Capacity for (n,k,d,α,β,B)Regenerating Codes(4/5)

25

Message B

DC

d

d-1

k

d-2

α in out

α in out

α in out

β

β

β

β β

Masazumi Kurihara(UEC, Tokyo, Japan)

disjoint path

Capacity for (n,k,d,α,β,B)Regenerating Codes(5/5)

26

Message B

DC

d

d-1

k

d-2

α in out

α in out

α in out

β

β

β

β β min{ dβ , α }

min{ (d-1)β , α }

min{ (d-2)β , α }

Min-cut

∑=

≥+−=k

iBidC

1},)1min{( αβ

The Capacity for (n,k,d,α,β,B)Regenerating Codes C

Information flow graph

Masazumi Kurihara(UEC, Tokyo, Japan)

disjoint path

MSR and MBR points (α,dβ)

• Capacity for (n,k,d,α,β,B) regenerating codes

• Minimum Storage Regenerating(MSR) point

• Minimum Bandwidth Regenerating(MBR) point

27

∑=

+−=k

iidC

1},)1min{( αβ

+−

==)1(

,kd

ddkB αβα

+−

==)12(

2 ,kdk

Bddd ββα

Masazumi Kurihara(UEC, Tokyo, Japan)

Tradeoff between Storage, α, and Repair-Bandwidth, dβ

28

( B=1, k=3, d=4 )

4/9

2/3

3/8 1/3 4/9

1/2

α

Storage per node α

Band

wid

th to

repa

ir o

ne n

ode

Minimum Storage Regenerating(MSR) point

Minimum Bandwidth Regenerating(MBR) point

(α,dβ) point

O

Masazumi Kurihara(UEC, Tokyo, Japan)

Contents

1. Concept of regenerating codes

2. Relation between network-coding and distributed-storage

3. Several current regenerating codes

4. Secret sharing scheme based on regenerating codes

(Secure regenerating codes)

Masazumi Kurihara(UEC, Tokyo, Japan) 29

Exact vs. Functional Regeneration [Rashmi, et al.,2011]

• Functional-Regeneration(Functional-Repair) The resulting network of n nodes continues to possess reconstruction and

regeneration properties

• Exact-Regeneration(Exact-Repair) The repaired node stores exactly the same data as was stored in it prior to

failure.

30

Functional-Repair

Exact-Repair

Partial Exact-Repair

(Credit : Fig.3 in [Suh, et al., 2010]) Masazumi Kurihara(UEC, Tokyo, Japan)

Codes for regenerations • Functional-Regeneration

– Network Coding for multicast

(Multicasting Problem on information flow graph)

[Dimakis, et al.,2007],[Wu, et al.,2007] [Dimakis, et al.,2010] • Partial Exact-Regeneration

– Interference alignment (MSR codes, d=n-1)[Shah, et al.,2010]

( MSR codes with systematic-nodes and parity-nodes )

• Exact-Regeneration

– Interference alignment (MSR codes) [Suh, et al.,2011], [Shah, et al.,2012b]

– Complete graph and MDS code (MBR codes) [Shah, et al., 2012a]

– Product-Matrix framework [Rashmi, et al.,2011]

• (n,k,d) MBR codes for all values of (n,k,d)

• (n,k,d) MSR codes for all values of (n,k,d), d>=2k-2

(the first-, general-, explicit-, exact-constructions of MSR and MBR codes)

31 Masazumi Kurihara(UEC, Tokyo, Japan)

MSR codes by Interference alignment (Fig.4 in [Suh, et al.,2010])

32

2

1,aa

1

2

3

4

Share (size α=2)

Message B=4

( n=4, k=α=2, d=3, β=1, B=4 ) MSR code

21

21

,,,

bbaa

2

1,bb

22

11

2,ba

ba+

+

22

11 ,2baba

++

21 bb +

2121 2 bbaa +++

21212 bbaa +++

Regeneration d=3

Systematic node

Parity node

piece (size β=1)

piece (size β=1)

piece (size β=1)

2

1,aa

Node 1 Masazumi Kurihara(UEC, Tokyo, Japan)

example

MBR and MSR codes on Product-Matrix framework [Rashmi, et al.,2011]

• Using the property of symmetric matrices such that

if a matrix M is a symmetric matrix, then

where

since

33

matrix symmetric x : ddM

ttt MAMAAM ) () ( t ==

tMM =

tt BAABBAAB≠

)(matrix x : ddA

tt MAAM =)(

Masazumi Kurihara(UEC, Tokyo, Japan)

example

( n, k )MBR codes by complete graph and ( , B )MDS code[Shah, et al.,2012](1/2)

(d=α=n-1, β=1, B= (n-1)k - )

34

321 ,, ccc

541 ,, ccc

642 ,, ccc

653 ,, ccc

1

2

3

4

Share

message 1c

3c

2c

,,,,,,

654

321

uuuuuu

6c

1 3

2

4

4c5c

Complete graph with n=4 nodes and edges

2n

2n

(n=4, k=d=α=3, β=1, B=6) MBR code

2k

Masazumi Kurihara(UEC, Tokyo, Japan)

example

MBR codes by Complete graph and MDS code (2/2)

35

321 ,, ccc

541 ,, ccc

642 ,, ccc

653 ,, ccc

1

2

3

4

Share

message

Regeneration

1cPiece

3cPiece

2cPiece

Node 1

,,,,,,

654

321

uuuuuu

321 ,, ccc

DC

Reconstruction

321 ,, ccc

54 ,cc

6c

1 3

2

4

1 3

2

4

(n=4, k=d=α=3, β=1, B=6) MBR code

Masazumi Kurihara(UEC, Tokyo, Japan)

example

Contents

1. Concept of regenerating codes

2. Relation between network-coding and distributed-storage

3. Several current regenerating codes

4. Secret sharing scheme based on regenerating codes

(Secure regenerating codes)

Masazumi Kurihara(UEC, Tokyo, Japan) 36

Information flow

37

2,11,1 ,cc

2,21,2 ,cc

2,31,3 ,cc

2,41,4 ,cc

2,51,5 ,cc

1

2

3

4

5

message ( size B )

1,3d

Regeneration

Piece

( size β )

2,3dPiece

4,3dPiece

5,3dPiece

),,,( 5,34,32,31,33 ddddd =Piece-vector

2,31,3 ,ccNode 3

( size α ) DC 2,11,1 ,cc

2,41,4 ,cc

Share

Share

Reconstruction

(size dβ )

Share

Masazumi Kurihara(UEC, Tokyo, Japan)

Share Piece

Piece-vector

,,,,,,

65

43

21

uuuuuu

Secure Regenerating Codes (Secret Sharing based on Regenerating Codes)

38

1

2

3

4

5

message ( size B )

1,3d

Regeneration

Piece

( size β )

2,3dPiece

4,3dPiece

5,3dPiece

),,,( 5,34,32,31,33 ddddd =Piece-vector

2,31,3 ,ccNode 3

( size α ) DC 2,11,1 ,cc

2,41,4 ,cc

Share

Share

Reconstruction

(size dβ )

Share

R

Ssecret

Random symbols

Masazumi Kurihara(UEC, Tokyo, Japan)

Share Piece

Piece-vector

2,11,1 ,cc

2,21,2 ,cc

2,31,3 ,cc

2,41,4 ,cc

2,51,5 ,cc

Regeneration by reconstruction

39

1

2

3

4

5

Share

message

B

α

2,11,1 ,cc

2,21,2 ,cc

2,41,4 ,cc

Reconstruction

encoding

k

encoding

2,31,3 ,cc3

cut

Entire message

Share

43

21

21

,,,,,

RRRRSS

Repair-Bandwidth kα=B

Masazumi Kurihara(UEC, Tokyo, Japan)

2,11,1 ,cc

2,21,2 ,cc

2,31,3 ,cc

2,41,4 ,cc

2,51,5 ,cc 43

21

21

,,,,,

RRRRSS

Regeneration by regenerating codes

40

1

2

3

4

5

Share

message

B 1,3d

d

encoding

Repair the failed node 3

Regeneration

Piece

2,3dPiece

4,3dPiece

5,3dPiece

),,,( 5,34,32,31,33 ddddd =Piece-vector

2,31,3 ,ccNode 3

( Exact-regeneration )

dβ (piece-vector size )

Repair-Bandwidth dβ<B)

cut

α

Masazumi Kurihara(UEC, Tokyo, Japan)

2,11,1 ,cc

2,21,2 ,cc

2,31,3 ,cc

2,41,4 ,cc

2,51,5 ,cc

43

21

21

,,,,,

RRRRSS

Secure Regenerating Codes (Secret sharing based on Regenerating codes)

• Exact-Regeneration(MSR and MBR codes)

• Informationally secure regenerating codes

– Secure MBR codes

• Complete graph and MDS code : [Pawar, et al., 2011]

• Product-Matrix framework :

[Kurihara and Kuwakado,2011d]( non-linear ramp scheme),

[Shah, et al., 2011]

– Secure MSR codes

• Product-Matrix framework : [Kurihara and Kuwakado,2011a,b], [Kuwakado and Kurihara,2011],

[Shah, et al., 2011]

• Computationally secure regenerating codes

[Kuwakado and Kurihara,2011]

41 Masazumi Kurihara(UEC, Tokyo, Japan)

42

Computationally-Secure Regenerating(CS-R) codes [Kuwakado and Kurihara,2011]

Regenerating code

secret

Informationally-Secure Regenerating(IS-R) code

Random symbols

share share

Credit: Kuwakado and Kurihara , “Computationally-Secure Regenerating code,” CSS2011 Masazumi Kurihara(UEC, Tokyo, Japan)

message

43

Computationally-Secure Regenerating(CS-R) codes [Kuwakado and Kurihara,2011]

ciphertext

Regenerating code Regenerating code

encripting

secret

Key

share

Improve Coding Rate

Credit: Kuwakado and Kurihara , “Computationally-Secure Regenerating code,” CSS2011

share share

Com

puta

tiona

l sec

urity

Info

rmat

iona

l se

curi

ty

(IS-R

cod

e)

Random symbols

Masazumi Kurihara(UEC, Tokyo, Japan)

message

Recall ( n, k )MBR codes by complete graph and ( , B )MDS code[Shah, et al.,2012a]

(d=α=n-1, β=1, B= (n-1)k - )

44

321 ,, ccc

541 ,, ccc

642 ,, ccc

653 ,, ccc

1

2

3

4

Share

message 1c

3c

2c

,,,,,,

654

321

uuuuuu

6c

1 3

2

4

4c5c

Complete graph with n=4 nodes and edges

2n

2n

(n=4, k=d=α=3, β=1, B=6) MBR code

2k

Masazumi Kurihara(UEC, Tokyo, Japan)

example

Secure ( n, k )MBR codes [Pawar, et al., 2011] by Complete graph and MDS code

45

321 ,, ccc

541 ,, ccc

642 ,, ccc

653 ,, ccc

1

2

3

4

Share

Message B=6

,,,,,,

654

321

uuuuuu

(n=4, k=d=α=3, β=1, l= 2) secure MBR code

symbols Random : ,...,,,Secret :

521 RRRS

5216 ...,5,...,2,1for RRRSc

iRc ii

++++===

Setting :

Encoding :

Perfect secrecy for at most two shares

(Fig.5 in [Pawar, et al., 2011]) Masazumi Kurihara(UEC, Tokyo, Japan)

example

543

21

,,,,,

RRRRRS

Secure Regenerating Codes (Secret Sharing based on Regenerating Codes)

46

1

2

3

4

5

message ( size B )

1,3d

Regeneration

Piece

( size β )

2,3dPiece

4,3dPiece

5,3dPiece

),,,( 5,34,32,31,33 ddddd =Piece-vector

2,31,3 ,ccNode 3

( size α ) DC 2,11,1 ,cc

2,41,4 ,cc

Share

Share

Reconstruction

(size dβ )

Share

R

Ssecret

Random symbols

Masazumi Kurihara(UEC, Tokyo, Japan)

Share Piece

Piece-vector

2,11,1 ,cc

2,21,2 ,cc

2,31,3 ,cc

2,41,4 ,cc

2,51,5 ,cc

Secrecy Capacity for secure regenerating code [Pawar, et al., 2011](1/3)

• Random variables

• Reconstruction Property

For any k shares

• Regeneration Property ( failed node ) For any d pieces for repair the failed node ,

that is, piece-vector ,

47

}),...,1{( , ),,(

}){\},...,1{ },,...,1{( ),,2,1(

,1,

,

nfDDDfnhnfD

niCS

dfff

hf

i

∈=

∈∈=

- Secret :

- Piece : - Piece-Vector :

- Share :

0),,|( 1 =kCCSH

,,,1 kCC

dff DD ,1, ,,fD0)|( =ff DCH

ff

Masazumi Kurihara(UEC, Tokyo, Japan)

Secrecy Capacity for secure regenerating code [Pawar, et al., 2011](2/3)

• Regeneration Property ( failed node ) For any d pieces for repair the failed node ,

that is, piece-vector ,

(The share is uniquely determined from the piece-vector .)

• In general, , i.e., ,

since the Markov chain .

Thus, if then , because

• However, it is not always true that .

48

dff DD ,1, ,,fD0)|( =ff DCH

ff

)|()|( ff CSHDSH ≤

ff CDS →→

0)|( ≠ff CDH

fDfC

)()|()|()( SHCSHDSHSH ff ≤≤=

0);( =fDSI 0);( =fCSI

Masazumi Kurihara(UEC, Tokyo, Japan)

);();( ff CSIDSI ≥

Secrecy Capacity for secure regenerating code [Pawar, et al., 2011](3/3)

• Secrecy property

For m piece-vector for any m repaired nodes ,

• Secrecy capacity for (n, k, d, α, β, B ; m ) secure regeneration code :

• The upper bound of the secrecy capacity :

49

)( sup SHCS =SC

)(),,|(0),,|(

1

1

SHDDSHCCSH

m

k

==

fmf DD ,,1 mff ,,1

)(),,|( 1 SHDDSH fmf =

∑+=

+−≤k

miS idC

1},)1min{( αβ

Masazumi Kurihara(UEC, Tokyo, Japan)

Information flow graph

Reconstruction Property

Conclusions • Regenerating codes for distributed storage [Dimakis, et al.,2010]

– Reconstruction and Regeneration(repair failed node)

– Reducing bandwidth to repair

– Tradeoff between Storage and Repair-Bandwidth

• MSR and MBR codes

• Network coding for distributed storage [Dimakis, et al.,2010] – Capacity for regenerating codes

– Linear network coding for multicast

• Exact-regeneration vs. Functional-regeneration

• Secure Regenerating Codes – Secret sharing based on (exact-)regenerating codes

– Share, piece, and piece-vector

50 Masazumi Kurihara(UEC, Tokyo, Japan)

References(1/3) • [Dimakis, et al.,2010] Dimakis, A.G.; Godfrey, P.B.; Yunnan Wu; Wainwright, M.J.; Ramchandran, K.;

Network Coding for Distributed Storage Systems

Information Theory, IEEE Transactions on, Volume: 56 , Issue: 9 , Publication Year: 2010 , Page(s): 4539 – 4551

• [Dimakis, et al.,2007]A. G. Dimakis , P. B. Godfrey , Y. Wu , M. Wainwright and K. Ramchandran

"Network coding for distributed storage systems", Proc. IEEE INFOCOM, 2007

• [Wu, et al.,2007]Y. Wu , A. G. Dimakis and K. Ramchandran

"Deterministic regenerating codes for distributed storage",

Proc. Allerton Conf. Control, Computing and Communication, 2007

• [Rashmi, et al.,2011] Rashmi, K.V.; Shah, N.B.; Kumar, P.V.;

Optimal Exact-Regenerating Codes for Distributed Storage at the MSR and MBR Points via a Product-Matrix Construction

Information Theory, IEEE Transactions on , Volume: 57 , Issue: 8, Publication Year: 2011 , Page(s): 5227 - 5239

• [Suh, et al.,2011] Changho Suh; Ramchandran, K.;

Exact-Repair MDS Code Construction Using Interference Alignment

Information Theory, IEEE Transactions on ,Volume: 57 , Issue: 3, Publication Year: 2011 , Page(s): 1425 - 1442

Masazumi Kurihara(UEC, Tokyo, Japan) 51

References(2/3) • [Shah, et al.,2010]N. B. Shah, K. V. Rashmi, P. V. Kumar, and K. Ramchandran,

“Explicit codes minimizing repair bandwidth for distributed storage,”

in Proc. IEEE Information Theory Workshop, Cairo, Egypt, Jan.2010.

• [Shah, et al.,2011] Shah, N.B.; Rashmi, K.V.; Kumar, P.V.;

Information-Theoretically Secure Regenerating Codes for Distributed Storage

Global Telecommunications Conference (GLOBECOM 2011), 2011 IEEE , Publication Year: 2011 , Page(s): 1 – 5

• [Shah, et al.,2012a] Shah, N.B.; Rashmi, K.V.; Vijay Kumar, P.; Ramchandran, K.;

Distributed Storage Codes With Repair-by-Transfer and Nonachievability of Interior Points on the Storage-Bandwidth Tradeoff

Information Theory, IEEE Transactions on , Volume: 58 , Issue: 3, 2012 , Page(s): 1837 - 1852

• [Shah, et al.,2012b] Shah, N. B.; Rashmi, K. V.; Kumar, P. V.; Ramchandran, K.;

Interference Alignment in Regenerating Codes for Distributed Storage: Necessity and Code Constructions

Information Theory, IEEE Transactions on , Volume: 58 , Issue: 4 , 2012 , Page(s): 2134 - 2158

• [Pawaer, et al.,2011] Pawar, S.; El Rouayheb, S.; Ramchandran, K.;

Securing Dynamic Distributed Storage Systems Against Eavesdropping and Adversarial Attacks

Information Theory, IEEE Transactions on , Volume: 57 , Issue: 10 , 2011 , Page(s): 6734 - 6753

Masazumi Kurihara(UEC, Tokyo, Japan) 52

References(3/3) • [Kurihara and Kuwakado,2011a]M.Kurihara and H.Kuwakado,

``On regenerating codes and secret sharing for distributed storage,''

IEICE Technical Report(in Japanese), IT2010-56(2011-01), pp.13-18(in Japanese), Jan. 2011.

• [Kurihara and Kuwakado,2011b]M.Kurihara and H.Kuwakado,

`On an extended version of Rashmi-Shah-Kumar regenerating codes and secret sharing for distributed storage,''

IEICE Technical Report, IT2010-114(2011-03), pp.303-310(in Japanese), Mar. 2011.

• [Kurihara and Kuwakado,2011c]M.Kurihara and H.Kuwakado,

``On ramp secret sharing schemes for distributed storage systems under repair dynamics,''

IEICE Technical Report, IT2011-17(2011-7), pp.41-46(in Japanese), July 2011.

• [Kurihara and Kuwakado,2011d]M.Kurihara and H.Kuwakado,

``Ramp secret sharing schemes based on MBR codes,''

IEICE Technical Report, ISEC2011-43(2011-11), pp.61-68(in Japanese), Nov. 2011.

• [Kuwakado and Kurihara and,2011]H.Kuwakado and M.Kurihara,

``Computationally-Secure Regenerating Code,''

Proceedings of Computer Security Symposium 2011, pp.131-136, 19-21 Oct. 2011.

Masazumi Kurihara(UEC, Tokyo, Japan) 53

The last slide

Deleted 6 pages in which recent results ware written. [Kurihara and Kuwakado, 2012]

(See the full version)

Masazumi Kurihara(UEC, Tokyo, Japan) 54 12/3/22 13時45分