ontogeny of hepatic transporters and drug-metabolizing … · hepatic clearance of the opioid...

82
1521-0081/73/2/597678$35.00 https://doi.org/10.1124/pharmrev.120.000071 PHARMACOLOGICAL REVIEWS Pharmacol Rev 73:597678, April 2021 Copyright © 2021 by The Author(s) This is an open access article distributed under the CC BY-NC Attribution 4.0 International license. ASSOCIATE EDITOR: HYUNYOUNG JEONG Ontogeny of Hepatic Transporters and Drug-Metabolizing Enzymes in Humans and in Nonclinical Species s B. D. van Groen, J. Nicolaï, A. C. Kuik, S. Van Cruchten, E. van Peer, A. Smits, S. Schmidt, S. N. de Wildt, K. Allegaert, L. De Schaepdrijver, P. Annaert, 1 and J. Badée 1 Intensive Care and Department of Pediatric Surgery, Erasmus MC-Sophia Childrens Hospital, Rotterdam, The Netherlands (B.D.v.G., K.A.); Development Science, UCB BioPharma SRL, Braine-lAlleud, Belgium (J.N.); Leiden Academic Center for Drug Research, Leiden University, Leiden, The Netherlands (A.C.K.); Department of Veterinary Sciences, Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, Wilrijk, Belgium (S.V.C.); Fendigo sa/nvbv, An Alivira Group Company, Brussels, Belgium (E.v.P.); Department of Development and Regeneration KU Leuven, Leuven, Belgium (A.S.); Neonatal intensive care unit, University Hospitals Leuven, Leuven, Belgium (A.S.); Department of Pharmaceutics, Center for Pharmacometrics and Systems Pharmacology, College of Pharmacy, University of Florida, Orlando, Florida (S.S.); Department of Pharmacology and Toxicology, Radboud Institute of Health Sciences, Radboud University Medical Center, Nijmegen, The Netherlands (S.N.d.W.); Departments of Development and Regeneration and of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium (K.A.); Department of Hospital Pharmacy, Erasmus MC, University Medical Center, Rotterdam, The Netherlands (K.A.); Nonclinical Safety, Janssen R&D, Beerse, Belgium (L.D.S.); Drug Delivery and Disposition, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium (P.A.); and Department of PK Sciences, Novartis Institutes for BioMedical Research, Basel, Switzerland (J.B.) Abstract..................................................................................... 599 Significance Statement ...................................................................... 599 I. Introduction ................................................................................. 599 II. Methods .................................................................................... 601 A. Search Methods and Selection of Literature .............................................. 601 B. Raw Data Extraction, Normalization, and Pooling ........................................ 601 C. Graphs .................................................................................. 601 D. Summary Tables ........................................................................ 602 E. Results Section Text ..................................................................... 602 F. Nomenclature ........................................................................... 602 III. Results...................................................................................... 602 A. Uptake Transporters .................................................................... 602 1. Human............................................................................... 602 a. Age-related increase in activity/expression ......................................... 602 b. Age-related decrease in activity/expression......................................... 602 c. No age-related differences in activity/expression ................................... 602 2. Rat .................................................................................. 602 a. Age-related increase in activity/expression ......................................... 602 b. Age-related decrease in activity/expression......................................... 605 Address correspondence to: P. Annaert, Campus Gasthuisberg, Herestraat 49-box 921, 3000 Leuven, Belgium. E-mail: pieter.annaert@ kuleuven.be This manuscript received external funding from the Health and Environmental Sciences Institute (HESI) (https://hesiglobal.org). HESI is a publicly supported, tax-exempt organization that provides an international forum to advance the understanding of scientific issues related to human health, toxicology, risk assessment, and the environment through the engagement of scientists from academia, government, industry, nongovernmental organizations, and other strategic partners. This HESI scientific initiative is primarily supported by in-kind contributions from public and private sector participants of time, expertise, and experimental effort. These contributions are supplemented by direct funding that largely supports program infrastructure and management that was provided by HESIs corporate sponsors. s This article has supplemental material available at pharmrev.aspetjournals.org. 1 P.A. and J.B. contributed equally to this work. The research activities of A.S. are supported by the Clinical Research and Education Council of the University Hospitals Leuven. Part of this work was previously presented in the following: van Groen BD (2020) From baby steps to mature strides: maturation of drug metabolism and transport studied using innovative approaches. Ph.D. thesis, Erasmus University Rotterdam. https://doi.org/10.1124/pharmrev.120.000071. 597 by guest on August 25, 2021 Downloaded from /content/suppl/2021/07/14/73.2.597.DC1.html Supplemental Material can be found at:

Upload: others

Post on 01-Apr-2021

2 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Ontogeny of Hepatic Transporters and Drug-Metabolizing … · hepatic clearance of the opioid morphine in newborns and young infants (Knibbe et al., 2009). Morphine is actively transported

1521-0081/73/2/597–678$35.00 https://doi.org/10.1124/pharmrev.120.000071PHARMACOLOGICAL REVIEWS Pharmacol Rev 73:597–678, April 2021Copyright © 2021 by The Author(s)This is an open access article distributed under the CC BY-NC Attribution 4.0 International license.

ASSOCIATE EDITOR: HYUNYOUNG JEONG

Ontogeny of Hepatic Transporters andDrug-Metabolizing Enzymes in Humans and in

Nonclinical Speciess

B. D. van Groen, J. Nicolaï, A. C. Kuik, S. Van Cruchten, E. van Peer, A. Smits, S. Schmidt, S. N. de Wildt, K. Allegaert,L. De Schaepdrijver, P. Annaert,1 and J. Badée1

Intensive Care and Department of Pediatric Surgery, Erasmus MC-Sophia Children’s Hospital, Rotterdam, The Netherlands (B.D.v.G.,K.A.); Development Science, UCB BioPharma SRL, Braine-l’Alleud, Belgium (J.N.); Leiden Academic Center for Drug Research, LeidenUniversity, Leiden, The Netherlands (A.C.K.); Department of Veterinary Sciences, Faculty of Pharmaceutical, Biomedical and Veterinary

Sciences, University of Antwerp, Wilrijk, Belgium (S.V.C.); Fendigo sa/nvbv, An Alivira Group Company, Brussels, Belgium (E.v.P.);Department of Development and Regeneration KU Leuven, Leuven, Belgium (A.S.); Neonatal intensive care unit, University HospitalsLeuven, Leuven, Belgium (A.S.); Department of Pharmaceutics, Center for Pharmacometrics and Systems Pharmacology, College ofPharmacy, University of Florida, Orlando, Florida (S.S.); Department of Pharmacology and Toxicology, Radboud Institute of Health

Sciences, Radboud University Medical Center, Nijmegen, The Netherlands (S.N.d.W.); Departments of Development and Regeneration and ofPharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium (K.A.); Department of Hospital Pharmacy, Erasmus MC,

University Medical Center, Rotterdam, The Netherlands (K.A.); Nonclinical Safety, Janssen R&D, Beerse, Belgium (L.D.S.); Drug Deliveryand Disposition, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium (P.A.); and Department of PK

Sciences, Novartis Institutes for BioMedical Research, Basel, Switzerland (J.B.)

Abstract. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 599Significance Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 599

I. Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 599II. Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 601

A. Search Methods and Selection of Literature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 601B. Raw Data Extraction, Normalization, and Pooling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 601C. Graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 601D. Summary Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 602E. Results Section Text . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 602F. Nomenclature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 602

III. Results. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 602A. Uptake Transporters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 602

1. Human. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 602a. Age-related increase in activity/expression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 602b. Age-related decrease in activity/expression. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 602c. No age-related differences in activity/expression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 602

2. Rat . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 602a. Age-related increase in activity/expression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 602b. Age-related decrease in activity/expression. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 605

Address correspondence to: P. Annaert, Campus Gasthuisberg, Herestraat 49-box 921, 3000 Leuven, Belgium. E-mail: [email protected]

This manuscript received external funding from the Health and Environmental Sciences Institute (HESI) (https://hesiglobal.org). HESI isa publicly supported, tax-exempt organization that provides an international forum to advance the understanding of scientific issues relatedto human health, toxicology, risk assessment, and the environment through the engagement of scientists from academia, government,industry, nongovernmental organizations, and other strategic partners. This HESI scientific initiative is primarily supported by in-kindcontributions from public and private sector participants of time, expertise, and experimental effort. These contributions are supplemented bydirect funding that largely supports program infrastructure and management that was provided by HESI’s corporate sponsors.

s This article has supplemental material available at pharmrev.aspetjournals.org.1P.A. and J.B. contributed equally to this work.The research activities of A.S. are supported by the Clinical Research and Education Council of the University Hospitals Leuven.Part of this work was previously presented in the following: van Groen BD (2020) From baby steps to mature strides: maturation of drug

metabolism and transport studied using innovative approaches. Ph.D. thesis, Erasmus University Rotterdam.https://doi.org/10.1124/pharmrev.120.000071.

597

by guest on August 25, 2021

Dow

nloaded from

/content/suppl/2021/07/14/73.2.597.DC1.html Supplemental Material can be found at:

Page 2: Ontogeny of Hepatic Transporters and Drug-Metabolizing … · hepatic clearance of the opioid morphine in newborns and young infants (Knibbe et al., 2009). Morphine is actively transported

c. No age-related differences in activity/expression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6053. Mouse. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 605

a. Age-related increase in activity/expression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 605b. Age-related decrease in activity/expression. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 605c. Complex and/or inconsistent ontogeny pattern in activity/expression . . . . . . . . . . . . . . . 607

4. Nonrodents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 607B. Efflux Transporters. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 607

1. Human. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 607a. Age-related increase in activity/expression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 607b. Complex and/or inconsistent ontogeny pattern in activity/expression . . . . . . . . . . . . . . . 607

2. Rat . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 607a. Age-related increase in activity/expression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 607b. Age-related decrease in activity/expression. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 608c. Complex and/or inconsistent ontogeny pattern in activity/expression . . . . . . . . . . . . . . . 608

3. Mouse. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 608a. Age-related increase in activity/expression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 608b. Age-related decrease in activity/expression. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 608c. No age-related differences in activity/expression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 608d. Complex and/or inconsistent ontogeny pattern in activity/expression . . . . . . . . . . . . . . . 608

4. Nonrodents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 610C. Phase I Drug-Metabolizing Enzymes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 610

1. Human. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 610a. Age-related increase in activity/expression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 610b. Age-related decrease in activity/expression. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 620c. Complex ontogeny pattern in activity/expression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 620

2. Rat . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 620a. Age-related increase in activity/expression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 620b. Age-related decrease in activity/expression. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 623c. No age-related changes in activity/expression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 623d. Inconsistent ontogeny pattern of expression levels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 623

3. Mouse. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 623a. Age-related increase in mRNA expression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 623b. Age-related decrease in mRNA expression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 623c. No age-related changes in mRNA expression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 627d. Complex and/or inconsistent ontogeny pattern of mRNA expression . . . . . . . . . . . . . . . . 627

4. Nonrodents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 627a. Göttingen minipig. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 627b. Cynomolgus monkey . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 627c. Beagle dog . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 627d. Domestic pig . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 629

D. Phase II Drug-Metabolizing Enzymes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6291. Human. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 629

a. Age-related increase in activity/expression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 629b. Age-related decrease in activity/expression. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 629c. No age-related changes in activity/expression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 629

2. Rat . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 629a. Age-related increase in activity/expression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 629

ABBREVIATIONS: ABC, ATP-binding cassette; ADH, alcohol dehydrogenase; ALDH, aldehyde dehydrogenase; BCRP, breast cancer re-sistance protein; BSEP, bile salt export pump; CES, carboxylesterase; COMT, catechol-O-methyltransferase; CNT, concentrative nucleosidetransporter; DHEAS, dehydroepiandrosterone sulfate; DME, drug-metabolizing enzyme; DT, drug transporter; ENT, equilibrative nucleosidetransporter; FMO, flavin-containing monooxygenase; GSH, glutathione; GST, glutathione-S-transferase; LC, liquid chromatography; MATE1,multidrug and toxin extrusion 1; MRP, multidrug resistance–associated protein; MS, mass spectrometry; NAT, N-acetyltransferase; NPT1,sodium-dependent phosphate transporter 1; NTCP, sodium taurocholate cotransporting polypeptide; OATP, organic anion–transportingpolypeptide; OCT1, organic cation transporter 1; OCTN, organic cation/carnitine transporter; PBPK, physiologically based pharmacokinetic;PK, pharmacokinetics; PXR, pregnane X receptor; SNAT, system A amino acid transporter; SULT, sulfotransferase; UGT, uridine 5-diphosphoglucuronic acid glucuronyltransferase.

598 van Groen et al.

Page 3: Ontogeny of Hepatic Transporters and Drug-Metabolizing … · hepatic clearance of the opioid morphine in newborns and young infants (Knibbe et al., 2009). Morphine is actively transported

b. Complex and/or inconsistent ontogeny pattern of activity/expression levels . . . . . . . . . 635c. No age-related changes in activity/expression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 635

3. Mouse. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 640a. Age-related increase in activity/expression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 640b. Age-related decrease in expression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 640c. No age-related changes in expression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 640d. Complex and/or inconsistent ontogeny patterns in expression . . . . . . . . . . . . . . . . . . . . . . 640

4. Nonrodents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 640IV. Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 640

A. Key Findings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 640B. Discussion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 641Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 674References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 674

Abstract——The liver represents a major eliminatingand detoxifying organ, determining exposure to endog-enous compounds, drugs, and other xenobiotics. Drugtransporters (DTs) and drug-metabolizing enzymes(DMEs) are key determinants of disposition, efficacy,and toxicity of drugs. Changes in theirmRNAandproteinexpression levels and associated functional activitybetween the perinatal period until adulthood impactdrug disposition. However, high-resolution ontogenyprofiles for hepatic DTs and DMEs in nonclinicalspecies and humans are lacking. Meanwhile, increasinguse of physiologically based pharmacokinetic (PBPK)models necessitates availability of underlying ontogenyprofiles to reliably predict drug exposure in children.In addition, understanding of species similarities anddifferences in DT/DME ontogeny is crucial for selectingthe most appropriate animal species when studyingthe impact of development on pharmacokinetics.Cross-species ontogenymapping is also required foradequate translation of drug disposition data indeveloping nonclinical species to humans. This reviewpresents a quantitative cross-species compilation ofthe ontogeny of DTs and DMEs relevant to hepaticdrug disposition. A comprehensive literature search

was conducted on PubMed Central: Tables and graphs(often after digitization) in original manuscripts wereused to extract ontogeny data. Data from independentstudies were standardized and normalized beforebeing compiled in graphs and tables for furtherinterpretation. New insights gained from these high-resolution ontogeny profiles will be indispensable tounderstand cross-species differences in maturation ofhepatic DTs and DMEs. Integration of these ontogenydata into PBPK models will support improvedpredictions of pediatric hepatic drug dispositionprocesses.

Significance Statement——Hepatic drug transport-ers (DTs) and drug-metabolizing enzymes (DMEs)play pivotal roles in hepatic drug disposition.Developmental changes in expression levels andactivities of these proteins drive age-dependentpharmacokinetics. This review compiles the currentlyavailable ontogeny profiles of DTs and DMEs expressedin livers of humans and nonclinical species, enablingrobust interpretation of age-related changes in drugdisposition and ultimately optimization of pediatricdrug therapy.

I. Introduction

Hepatic drug transporters (DTs) and drug-metabolizingenzymes (DMEs) are key players in the dispositionof endogenous compounds, xenobiotics includingdrugs and their metabolites in human as well as innonclinical species (Shi and Li, 2014). The impor-tance of DMEs has been recognized for many decades(Yamazaki, 2014). The impact of DTs has more re-cently received both scientific and regulatory atten-tion, highlighting the increasing knowledge on theirsignificance in drug disposition and on efficacyand safety (European Medicines Agency; Food andDrug Administration, 2020; International Councilfor Harmonisation, 2000; Ministry of Labor andWelfare, 2018; Petzinger and Geyer, 2006).Numerous DTs are located on the apical and

basolateral membranes of the hepatocyte and facil-itate active transport of substrates into as well asout of hepatocytes to the bile canaliculi or blood

compartment (i.e., uptake DTs and efflux DTs, re-spectively) (Fig. 1) (Giacomini and Huang, 2013).Once a substrate enters the hepatocyte, it becomesavailable for metabolism by DMEs. DMEs are di-vided into two broad classes (i.e., phase I and phaseII). Phase I enzymes catalyze oxidation, hydrolysis,and reduction reactions, whereas phase II enzymescarry out conjugation reactions (Lyubimov and Ortizde Montellano, 2011).

Consequently, age-dependent variation in expres-sion levels and activities of DTs and DMEs is one ofthe factors underlying variability in functional activ-ities of DTs and DMEs and will influence homeostaticprocesses of endogenous substrates as well as phar-macokinetics (PK) and indirectly pharmacodynamicsof drug substrates (Morrissey et al., 2013). A classicexample is the case of fatal cardiovascular collapse(i.e., gray baby syndrome) due to toxic exposure tochloramphenicol in neonates as a result of underdevelop-ment of the phase II enzymeuridine 5-diphosphoglucuronic

Ontogeny of Hepatic Transport and Drug Metabolism 599

Page 4: Ontogeny of Hepatic Transporters and Drug-Metabolizing … · hepatic clearance of the opioid morphine in newborns and young infants (Knibbe et al., 2009). Morphine is actively transported

acid glucuronyltransferase (UGT) 2B7,mediating chlor-amphenicol glucuronidation (Weiss et al., 1960). Morerecently, DTs and their interplay with DMEs receivedattention in terms of drug disposition in children(Cheung et al., 2019). This is exemplified by the reducedhepatic clearance of the opioid morphine in newbornsand young infants (Knibbe et al., 2009). Morphine isactively transported by the organic cation trans-porter 1 (OCT 1) (SLC22A1) and subsequently me-tabolized by UGT2B7. Significantly lower hepaticexpression and activity of both OCT1 and UGT2B7are reported in pediatric populations versus adults,which partly explains the relatively lower hepaticc`learance of morphine in newborns and infants (Luand Rosenbaum, 2014; Prasad et al., 2016; Hahnet al., 2019). Developmental changes in hepatic DTsand DMEs and their impact on drug disposition andtoxicity have also been reported for nonclinicalspecies. For instance, neonatal rat hepatocytes areless sensitive to hepatotoxicity of phalloidin thanadult rat hepatocytes (Petzinger et al., 1979; Meier-Abt et al., 2004; Fattah et al., 2015). Phalloidin isa substrate for organic anion–transporting polypep-tide (OATP) 1B2 (SLCO1B2 gene) (Csanaky et al.,2011). Because expression of OATP1B2 is lower inneonatal than in adult rat hepatocytes, there isrelatively lower uptake of phalloidin in neonatalhepatocytes, leading to reduced sensitivity to phal-loidin hepatotoxicity (Belknap et al., 1981).These examples show how age-related changes in

DT and DME activities can impact drug disposition.At present, to determine many pediatric dosingregimens, still the standard approach is to linearlyadjust the adult dose to that of a child based on the

child’s body weight (Mahmood, 2016). However, thisapproach does not incorporate information on de-velopmental physiology like age-related changes inDT and DME expression levels or activity and couldtherefore result in subtherapeutic or suprathera-peutic doses. On the other hand, in silico methodologies,such as physiologically based pharmacokinetic (PBPK)models, allow integration of developmental changesof various aspects of PK and may improve predictionof pediatric drug disposition. The use of thesein silico models has received much research interestin recent years (Johnson et al., 2014; Maharaj andEdginton, 2014), especially to better understand theeffects of growth and maturation on drug disposition(Johnson et al., 2006; Krekels et al., 2012). However,the predictive performance is highly dependent onthe availability and quality of the ontogeny profilesthat are incorporated in these models (Zhou et al.,2018). Also, in terms of safety evaluation, extrapola-tion of drug disposition from nonclinical species tohumans is common practice during drug development(Chen et al., 2012). This extrapolation relies heavilyon our understanding of potential interspecies differ-ences in ontogeny profiles of all pharmacologicalprocesses. More specifically, insights in the ontogenyprofiles of DTs and DMEs across nonclinical speciesand humans may assist in selecting the appropriatejuvenile animal model(s) for pediatric safety test-ing and to improve prediction of drug exposure inchildren.

Over the years, knowledge on developmental changesin hepatic DTs and DMEs in terms of mRNA expres-sion levels, protein abundance, and functional activ-ity has increased significantly (Cheung et al., 2019).

Fig. 1. Overview of localization of drug membrane transporters and drug-metabolizing enzymes in the hepatocyte. 1) Influx transporter (blood tohepatocyte), 2) bidirectional transporter (blood-hepatocyte), 3) efflux transporter (hepatocyte to blood), 4) canalicular bidirectional transporter(hepatocyte-bile), 5) canalicular efflux transporter (hepatocyte to bile), 6) phase I and 7) phase II drug-metabolizing enzymes, 8) cytosolic enzymes.

600 van Groen et al.

Page 5: Ontogeny of Hepatic Transporters and Drug-Metabolizing … · hepatic clearance of the opioid morphine in newborns and young infants (Knibbe et al., 2009). Morphine is actively transported

Currently, the data that describe the developmentalpatterns of hepatic DTs and DMEs are dispersedacross individual publications with small samplesizes, largely because of scarcity of pediatric sam-ples. Hence, the reported insights are limited andfragmented. Descriptive reviews are available inliterature yet are limited to qualitative description ofdevelopmental patterns and include limited informa-tion on nonclinical species (Brouwer et al., 2015;Elmorsi et al., 2016). The process of compiling availablequantitative information on maturation profiles ofhepatic DTs and DMEs in nonclinical species andhumans and incorporating this into PBPK models isexpected to increase the predictive performance ofPBPK models for age-dependent hepatic drug disposi-tion. Therefore, we aimed to compile the hepaticontogeny profiles of individual DTs and DMEs inhuman as well as nonclinical species from literaturebased on search results of available in vitro data of theseproteins at the level of mRNA expression, proteinexpression, and activity.

II. Methods

The workflow of the employed methodology is out-lined in Fig. 2. The subsequent steps are explained inmore detail below.

A. Search Methods and Selection of Literature

PubMed was searched by appropriate search termswith Medical Subject Headings and free text terms (see

Supplemental Material 1) since creation up to June2019. All articles were retained when they containedin vitro ontogeny data on DTs and DMEs, first basedon the title or abstract and second based on thefull text.

B. Raw Data Extraction, Normalization, and Pooling

We extracted the following data from the selectedpapers: age and the corresponding expression/activ-ity levels, units of expression/activity level, methodof quantification/semiquantification, race, sex, andsubstrate used to determine activity. The raw datawere extracted from the selected articles and sum-marized in tables for individual isoforms. The datawere subdivided by mRNA expression, protein abun-dance, and activity. Nonquantitative data (e.g., dataobtained by immunoblotting) were also includedin the raw data tables. If the raw data werenot published in the article but only presented asgraphs, they were extracted using Plotdigitizer.Data for individual studies were normalized toadult values, in which adult values were definedas 100%. This was followed by pooling data of thevarious studies.

C. Graphs

Based on the pooled raw data tables, graphs weregenerated for each isoform (mRNA expression, proteinabundance, and/or activity). If multiple values wereobtained for the same age, average 6 S.D. values wereused. Data from various publications were only pooled

Fig. 2. Workflow and methodology of the search strategy.

Ontogeny of Hepatic Transport and Drug Metabolism 601

Page 6: Ontogeny of Hepatic Transporters and Drug-Metabolizing … · hepatic clearance of the opioid morphine in newborns and young infants (Knibbe et al., 2009). Morphine is actively transported

when a similar developmental pattern was seen, andotherwise, individual developmental patterns obtainedfrom separate publications were presented separatelyin the same graph. Graphs on the level of activity fora specific DT or DME are presented in the main body ofthe manuscript, and protein and mRNA expressiongraphs are included in the Supplemental Materials. Inabsence of activity data, protein expression graphs werepresented in the main manuscript body as an alterna-tive. In absence of both activity and protein expressiondata, mRNA expression graphs were presented in themain manuscript body.

D. Summary Tables

Based on the raw data tables containing quantitativeand nonquantitative data and the graphs, a summarytext table was created describing the onset of DT andDME expression/activity, the age at which adultexpression was reached, and a description of thedevelopmental pattern along with comments andreferences.When feasible and depending on data availability,

human pediatric samples were divided into subsetsas defined by the International Conference on Har-monization E11 guidance (International Council forHarmonisation, 2000) as follows: neonates (birth to,28 days), infants (28 days to,2 years), young children(2 to ,6 years), old children (6 to ,12 years), adoles-cents (12–18 years), and adults (.18–65 years). Fornonclinical species, agewas presented on a continuousscale.

E. Results Section Text

Throughout the Results section, ontogeny profiles inthe summary tables are classified in the following order:1) age-related increase in expression/activities, 2) age-related decrease in expression/activities, 3) no age-related changes, or 4) a more complex ontogeny patternin activity/expression. References to the individualstudies are provided in the summary tables and arenot included in the Results section. Also, because thetables provide supporting information for the individualgraphs, graphs and tables should be used together. Thefigure legends contain references to the correspondingtables.

F. Nomenclature

Throughout the manuscript upper-case proteinnames of DTs and DMEs have been consistently used;they have also been used whenmRNA expression levelsof the DTs and DMEs are discussed. This approach hasbeen adopted for humans as well as for rodent andnonrodent animal species. Supplemental Table 1 pro-vides an overview of all included DT isoforms with theircorresponding gene names.

III. Results

A. Uptake Transporters

1. Human. The results (including references) areincluded in Fig. 3, Supplemental Fig. 1, and Table 1.

a. Age-related increase in activity/expression.Sodium taurocholate cotransporting polypeptide(NTCP) showed a pronounced increase early in life.In fetal tissue, mRNA and protein expression levelswere 3% and 6% of adult, respectively, reaching fullmaturation at the age of 28 days. OCT1, on the otherhand, showed a more gradual increase in its expres-sion, with 54% of adult protein expression levels infetal tissue and adult values from adolescent ageonward.

b. Age-related decrease in activity/expression.Three transporters showed high abundance in fetaltissue, with a subsequent decrease with increasingage. The glucose transporter 1 transporter showed themost distinct decrease, with 45-fold higher proteinexpression in fetal tissue than in adult tissue,whereas organic cation/carnitine transporter (OCTN)2 expression appeared 2-fold higher in fetal tissue anddecreased slowly toward adult levels during child-hood. OATP1B1 is the third transporter that showedan overall decline in protein expression. However, theresults on OATP1B1 protein expression were conflict-ing, as fetal values corresponding to 50%–165% of adultvalues were reported.

c. No age-related differences in activity/expression.Protein expression of the transporters monocarboxylatetransporter 1, OATP2B1, and OATP1B3 did not showage-related changes. However, data on mRNA expres-sion of OATP1B3 are conflicting, as one study reportedno age-related changes, whereas another study found5% in fetal tissue and 1% in infant tissue compared withadult values.

2. Rat. The results aredepicted inFig. 4, SupplementalFigs. 2 and S3, and Table 2.

a. Age-related increase in activity/expression.The literature contained activity data for four hepaticuptake transporter(s) (families) [i.e., OATP, NTCP, OCT1,and concentrative nucleoside transporter (CNT) 1/2] injuvenile rats. The ontogeny of other hepatic uptaketransporters was established based on either proteinexpression levels [i.e., systemA amino acid transporter(SNAT) 1] or mRNA expression levels (i.e., OATP1A1,OATP1A4/OATP2, OATP1A5, OATP1B2/OATP4, OATP2,OATP2B1, and OATP4A1).

OATP and NTCP activity levels rose progressivelyfrom birth (10%–50%) to achieve maximal activitylevels at 21 and 29 days of age in male rats based onthe uptake activity levels using sodium fluorescein andtaurocholate (1–200 mM), respectively.

The ontogeny profiles of distinct OATP trans-porters were characterized based on protein andmRNA expression levels. Percentage of maximal

602 van Groen et al.

Page 7: Ontogeny of Hepatic Transporters and Drug-Metabolizing … · hepatic clearance of the opioid morphine in newborns and young infants (Knibbe et al., 2009). Morphine is actively transported

Fig. 3. Pooled literature data on the ontogeny of protein expression of hepatic uptake transporters in humans: GLUT1 (A), MCT1 (B), NTCP (C),OATP1B1 (D), OATP2B1 (E), OATP1B3 (F), OCT1 (G), and OCTN2 (H). The symbols represent the relative protein expression in each age group andthe dotted line indicates the adult value defined as 100%. If multiple values were obtained for the same age group, the symbols represent the averagerelative protein expression, and the error bars show the S.D. See Table 1 for explanation on the ontogeny profiles and literature references. GLUT1,glucose transporter 1; MCT1, monocarboxylate transporter 1.

Ontogeny of Hepatic Transport and Drug Metabolism 603

Page 8: Ontogeny of Hepatic Transporters and Drug-Metabolizing … · hepatic clearance of the opioid morphine in newborns and young infants (Knibbe et al., 2009). Morphine is actively transported

TABLE

1Ontog

enypr

ofileof

hepa

ticup

take

tran

sporters

inhu

man

sba

sedon

proteinex

pression

andmRNA

expr

ession

leve

lsPercentage

srepr

esen

tex

pression

/activityrelative

toad

ult

leve

ls.

Transp

orters

Onsetof

Exp

ression/

Activity

Adu

ltLev

els

Rea

ched

Age

-Related

Chan

ges(%

ofAdu

lt)in

Exp

ression/Activity

afterBirth

Com

men

tsReferen

ces

GLUT1

Protein

Fetal

deve

lopm

ent

(450

0%)

4yr

Decreas

edpr

ogressively

Metho

ds:LC-M

S/M

Smixed

Mooijet

al.(201

6);va

nGroen

etal.(201

8)

MCT1

Protein

Fetal

deve

lopm

ent

(100

%)

Noch

ange

sMethod

s:LC-M

S/M

SMoo

ijet

al.(201

6);va

nGroen

etal.(201

8)

NTCP

Protein

Fetal

deve

lopm

ent

(6%)

28da

ysIn

crea

sedrapidly

Rep

ortedne

onatal

values

arehigh

lyva

riab

le.Metho

ds:Western

blot

(Yan

niet

al.,20

11)an

dLC-M

S/M

S(Prasa

det

al.,20

16;va

nGroen

etal.,20

18)

Yan

nie

tal.(20

11);Prasa

det

al.(20

16);va

nGroen

etal.(201

8)mRNA

Fetal

deve

lopm

ent

(3%)

NR

NR

Method

s:RT-PCR

Chen

etal.(200

5);Sharmaet

al.(201

3)

OATP1B

1Protein

Fetal

deve

lopm

ent

(50%

–16

5%)

6–12

yrDecreas

edslow

lyThe

resu

ltsareconflicting,

asfetalva

lues

of50

%–16

5%of

adult

values

were

repo

rted

.Method

s:LC-M

S/M

S(M

ooijet

al.,20

16;Prasa

det

al.,20

16;va

nGroen

etal.,20

18)an

dWestern

blot

(Yan

niet

al.,20

11;Thom

sonet

al.,

2016

)

Yan

niet

al.(201

1);Prasa

det

al.(201

4,20

16);Moo

ijet

al.(20

16);Thom

sonet

al.

(201

6);va

nGroen

etal.(201

8)

mRNA

Fetal

deve

lopm

ent

NR

Inconsisten

tpa

ttern

Method

s:RT-PCR

Sharmaet

al.(201

3);Moo

ijet

al.(201

4)OATP1B

3Protein

Fetal

deve

lopm

ent

(100

%)

Noch

ange

sMethod

s:LC-M

S/M

S(Prasa

det

al.,20

14,20

16;va

nGroen

etal.,20

18)an

dWestern

blot

(Yan

niet

al.,20

11;Thom

sonet

al.,20

16)

Yan

niet

al.(201

1);Prasa

det

al.(201

4,20

16);Tho

msonet

al.(20

16);va

nGroen

etal.(201

8)mRNA

Fetal

deve

lopm

ent

(5%–10

0%)

NR

(0–7yr:

1%)

Decreas

edrapidly,

increa

sed

rapidly

Method

s:RT-PCR

Sharmaet

al.(201

3);Moo

ijet

al.(201

4)

OATP2B

1Protein

Fetal

deve

lopm

ent

(100

%)

Noch

ange

sMetho

ds:LC-M

S/M

SPrasa

det

al.(201

4,20

16);Mooijet

al.

(201

6);va

nGroen

etal.(201

8)OCT1

Protein

Fetal

deve

lopm

ent

(54%

)12

–16

yrIn

crea

sedslow

lyMethod

s:LC-M

S/M

S(Prasa

det

al.,20

16;v

anGroen

etal.,20

18)a

ndWestern

blot

(Hah

net

al.,20

17)

Prasa

det

al.(20

16);Hah

net

al.(20

17);va

nGroen

etal.(201

8)OCTN2

Protein

Fetal

deve

lopm

ent

(210

%)

NR

Decreas

edslow

lyMetho

ds:LC-M

S/M

SMooijet

al.(201

6)

GLUT1,

glucose

tran

sporter1;

MCT1,

mon

ocarbo

xylate

tran

sporter1;

NR,not

repo

rted

;RT-PCR,reve

rse-tran

scriptas

epo

lymeras

ech

ainreaction

.

604 van Groen et al.

Page 9: Ontogeny of Hepatic Transporters and Drug-Metabolizing … · hepatic clearance of the opioid morphine in newborns and young infants (Knibbe et al., 2009). Morphine is actively transported

mRNA levels during fetal development comparedwith adults represented ,10% for OATP1A1, OATP1A4,and OATP1B2; up to 30% for OATP1A5 and OATP2B1;and 100% for OATP4A1. Based on one study, OATP2(OATP1A4) adult values were reached at 25 days(male) and 30 days (female). For the other OATPtransporters, adult values were reached only atadulthood. Notably, a 55% decrease in protein abun-dances of OATP1A1, OATP1A4, and OATP1B2 inelderly rats was observed in comparison with those ofadult levels.b. Age-related decrease in activity/expression. The de-

velopmental patterns of CNT1/2 and SNAT1 sug-gested that CNT1/2 and SNAT1 are fetal uptaketransporters. Maximal uptake activity levels of uri-dine mediated by CNT1/2 were achieved during fetaldevelopment (300% of adult levels) and then rapidlydecreased in neonates (200% of adult levels). Simi-larly, fetal protein expression levels of SNAT1 wereup to 2.5-fold and 5-fold greater than those reportedin very young and adult rats, respectively.c. No age-related differences in activity/expression.

OCT1 activity was stable from birth to adulthood.This is supported by maximal uptake activity levelsof OCT1 that were rapidly reached at 1 day after

birth using 1-methyl-4-phenylpyridinium as testsubstrate.

3. Mouse. The results are depicted in Fig. 5,Supplemental Fig. 4, and Table 3 and are furtherexplained below.

a. Age-related increase in activity/expression.The majority of the uptake transporters showeda lower expression in younger versus older agegroups. Most data were available for mRNA expres-sion of the OATP family. OATP1A1 and OATP1A4showed a slow rise in expression over age, whereasOATP1A6, OATP1B2, OATP2A1, and OATP2B1 in-creased more rapidly. The amount in fetal tissuewas transporter-dependent (e.g., only 1% of adultvalues was detected for OATP1B2 compared with32%–57% of adult values for OATP1A6). The OCT1and apical sodium-dependent bile acid transportersboth showed a very low expression in fetal tissue,with adult values reached at day 22 and at adult age,respectively.

b. Age-related decrease in activity/expression.The transporters that showed a decrease in expres-sion all declined very rapidly from fetal age. OAT3showed very high fetal levels, and adult levels werereached between day 25 and day 30. OCTN1 showed

Fig. 4. Pooled literature data on activity levels of hepatic uptake transporters in rats: OATP (A), NTCP (B), OCT1 (C), and CNT1/2 (D). The symbolsrepresent the relative activity in each age group, and the dotted line indicates the adult value defined as 100%. See Table 2 for explanation on theontogeny profiles and literature references.

Ontogeny of Hepatic Transport and Drug Metabolism 605

Page 10: Ontogeny of Hepatic Transporters and Drug-Metabolizing … · hepatic clearance of the opioid morphine in newborns and young infants (Knibbe et al., 2009). Morphine is actively transported

TABLE

2Ontog

enypr

ofileof

hepa

ticup

take

tran

sporters

inrats

basedon

uptake

activity,pr

oteinex

pression

,an

dmRNA

expr

ession

leve

lsPercentage

srepr

esen

tex

pression

/activityrelative

toad

ult

leve

ls.

Onsetof

Activityan

d/or

Exp

ression

Adu

ltLev

elsRea

ched

Age

-Related

Cha

nges

inActivity/Exp

ression

Com

men

tsReferen

ces

NTCP

Uptak

eactivity

2da

ys:10

%–20

%29

days

Increa

sedpr

ogressively

Adu

ltag

e:55

days.Fetal

deve

lopm

ent:

NR

Subs

trate:

3H-tau

roch

olate.

Strainan

dsex:

Wistar(M

).Matrix:

hepa

tocytesin

susp

ension

.Metho

ds:liqu

idscintillation

coun

ting

Fattahet

al.(201

5)

mRNA

expr

ession

Fetal

deve

lopm

ent:

,36

%Birth:75

%In

crea

sedrapidlydu

ring

fetal

deve

lopm

ent

Adu

ltag

e:NR.Birth–ad

ult:NR.Strainan

dsex:

Wistar(F).

Method

s:RT-PCR

St-Pierreet

al.(20

04)

OCT1

Uptak

eactivity

1da

y:13

0%1da

ysPea

kedat

7da

ys(150

%)

Adu

ltag

e:49

days.Fetal

deve

lopm

ent:

NR.Subs

trate:

[3H]-1-

methyl-4-phen

ylpy

ridinium.Strainan

dsex:

Wistar(M

/F).

Matrix:

live

rslices.Metho

ds:liqu

idscintillationcoun

ting

Martelet

al.(199

8)

CNT1

Protein

expr

ession

Fetal

deve

lopm

ent:

35%–50

%21

days:70

%In

crea

sedslow

lyAdu

ltag

e:NR.Strainan

dsex:

Wistar(F).Metho

ds:Western

blotting

delSan

toet

al.(200

1)

CNT2

Protein

expr

ession

Fetal

deve

lopm

ent:

40%–70

%21

days:70

%In

crea

sedslow

lyAdu

ltag

e:NR.Strainan

dsex:

Wistar(F).Metho

ds:Western

blotting

delSan

toet

al.(200

1)

mRNA

expr

ession

Fetal

deve

lopm

ent:

20%

45da

ysIn

crea

sedslow

lyAdu

ltag

e:45

days.Strainan

dsex:

Wistar(F).Method

s:Northernblotting

delSan

toet

al.(200

1)

CNT1/2

Uptak

eactivity

Fetal

deve

lopm

ent:

300%

Fetal

deve

lopm

ent

Decreas

edrapidlyin

neo

nates

(200

%)

Adu

ltag

e:NR.Subs

trate:

uridine.

Strainan

dsex:

Wistar(F).

Matrix:

hep

atocytes

insu

spen

sion

.Metho

ds:Rad

ioactivity

delSan

toet

al.(200

1)

SNAT1

Protein

expr

ession

Fetal

deve

lopm

ent:

300%

–50

0%Fetal

deve

lopm

ent

Decreas

edrapidlyin

neo

nates

(200

%)

Adu

ltag

e:NR.S

trainan

dsex:

Spr

agueDaw

ley(M

/F).Method

s:im

munob

lotting

Weiss

etal.(200

5)

OATP1A

1Protein

expr

ession

NR

NR

Decreas

edin

elde

rlyM:80

0da

ys(40%

).F:80

0da

ys(10%

)Adu

ltag

e:60

days.Fetal

deve

lopm

ent–ad

ult:NR.Strainan

dsex:

Spr

agueDaw

ley(M

/F).Method

s:Western

blotting

Hou

etal.(201

4)

mRNA

expr

ession

Fetal

deve

lopm

ent:

,2%

M:3

5da

ys(78%

).F:

35da

ys(44%

)In

crea

sedslow

lythen

decrea

sedin

elde

rly

Adu

ltag

e:56

–70

days.Strainan

dsex:

Spr

agueDaw

ley(M

/F).

Method

s:RT-PCR

St-Pierreet

al.(20

04);Macias

etal.(201

1);Hou

etal.

(201

4);K

awas

eet

al.(20

15)

OATP1A

4Protein

expr

ession

Birth:15

%–40

%28

days:40

%.M

:25

days.F

:30

days

Increa

sedslow

lythen

decrea

sedin

elde

rlyor

increa

sedpr

ogressivelywith

noch

ange

safter25

days

Adu

ltag

e:60

days.Strainan

dsex:

Spr

agueDaw

ley(M

/F).

Metho

ds:Western

blotting

Guoet

al.(200

2);H

ouet

al.

(201

4)

mRNA

expr

ession

Fetal

deve

lopm

ent:

,2%

;Birth:

30%–76

%

M:1

0–35

days

(65%

).F:2

5–35

days

(20%

)

Interstudy

variab

ility:

increa

sedslow

lythen

decrea

sedin

elde

rly,

orincrea

sed

rapidly(M

)vs.pr

ogressively(F)

Adu

ltag

e:45

–60

days.Strainan

dsex:

Spr

agueDaw

ley(M

/F).

Method

s:RT-PCR,bran

ched

DNA

sign

alam

plificationas

say

Guoet

al.(200

2);S

t-Pierre

etal.(200

4);Maciaset

al.

(201

1);Hou

etal.(201

4)OATP1A

5mRNA

expr

ession

Fetal

deve

lopm

ent:

,30

%35

days:65

%–70

%In

crea

sedslow

lythen

decrea

sedin

elde

rly

Adu

ltag

e:60

days.Strainan

dsex:

Spr

agueDaw

ley(M

/F).

Method

s:RT-PCR

Hou

etal.(201

4)

OATP1B

2Uptak

eactivity

2da

ys:25

%55

days

Som

ede

crea

sebe

twee

nbirthan

dwea

ning(10%

at3wk)

then

rapid

increa

seto

adultva

lues

Adu

ltag

e:55

days.Fetal

deve

lopm

ent:

NR.Subs

trate:

sodium

fluo

rescein.

Strainan

dsex:

Wistar(M

).Matrix:

hepa

tocytesin

susp

ension

.Metho

ds:fluo

rescen

cesp

ectrom

etry

Fattahet

al.(201

5)

Protein

expr

ession

NR

M:2

8da

ys(50%

).F:

28da

ys(70%

)In

crea

sedslow

lythen

decrea

sedin

elde

rly

Adu

ltag

e:60

days

Fetal

deve

lopm

ent–28

days:N

RStrainan

dsex:

Spr

agueDaw

ley(M

/F)

Hou

etal.(201

4)

mRNA

expr

ession

Fetal

deve

lopm

ent:

,10

%;birth:20

%M:3

5da

ys(78%

).F:

60da

ysM:In

crea

sedpr

ogressively.

F:I

ncreas

edslow

ly.Decreas

edin

elde

rly

Adu

ltag

e:45

–60

days.Strainan

dsex:

Spr

agueDaw

leyan

dWistar(M

/F).Method

s:RT-PCR,bran

ched

DNA

sign

alam

plificationas

say

Lie

tal.(20

02);St-Pierreet

al.

(200

4);Maciaset

al.(201

1);

Hou

etal.(201

4)

(con

tinued

)

606 van Groen et al.

Page 11: Ontogeny of Hepatic Transporters and Drug-Metabolizing … · hepatic clearance of the opioid morphine in newborns and young infants (Knibbe et al., 2009). Morphine is actively transported

similarly high fetal values, which were followed bya more gradual decrease toward adult values.

c. Complex and/or inconsistent ontogeny pattern inactivity/expression. For NTCP, mRNA expressiondata from four studies as well as protein expressiondata from one study were available. mRNA expres-sion was clearly present in fetal tissue. No distinctontogeny profile could be defined, as the studiesreported varying results. The transporters equili-brative nucleoside transporter (ENT) 1, OAT2, andOCTN2 fluctuated between age groups because theyhad an overall increased developmental pattern fromfetal age onward but also showed a decrease inexpression between various age groups. ENT3 hadrelatively high fetal levels, and adult levels werereached at day 25.

4. Nonrodents. Data on ontogeny profiles of hepaticuptake transporters were lacking for nonrodent species,including Beagle dog, cynomolgus monkey, GöttingenMinipig, and the domestic pig.

B. Efflux Transporters

1. Human. The results are depicted in Fig. 6,Supplemental Fig. 5, and Table 4 and are furtherexplained below.

a. Age-related increase in activity/expression.Most efflux transporters showed a developmental pat-tern with rise in expression with increasing age. Forall studies that included fetal tissue, the transporterswere detectable at fetal age, yet maturation ratesdiffered. For example, bile salt export pump (BSEP),multidrug resistance–associated protein (MRP) 3,and multi-resistance protein (MDR) 1 (or P-glycopro-tein) showed a rapid increase from fetal tissue toneonatal tissue. In contrast, MRP1 and MRP2 in-creased more gradually, with 50% of adult values inneonates and 30%–100% of adult values in infants,respectively. Data on MDR3 were scarce, but fetaltissue showed 6% of adult values.

b. Complex and/or inconsistent ontogeny pattern inactivity/expression. The breast cancer resistance pro-tein (BCRP) transporter ontogeny is well described inliterature, yet results are inconsistent. Fetal valueswere reported to be between 94% and 235%, and adultvalues were likely reached at neonatal age. However,higher values than those of adults were detected atinfant age, which decrease again thereafter to adultvalues.

2. Rat. The results are depicted in Fig. 7,Supplemental Fig. 6, and Table 5 and are furtherexplained below.

a. Age-related increase in activity/expression. No ac-tivity data for hepatic efflux transporters in juvenilerats were found in literature. The ontogeny of hepaticefflux transporters was established based on eitherprotein expression levels (MRP2 and BSEP) or mRNAexpression levels (MRPs, BCRP, and BSEP).

TABLE

2—Con

tinued

Onsetof

Activityan

d/or

Exp

ression

Adu

ltLev

elsRea

ched

Age

-Related

Cha

nges

inActivity/Exp

ression

Com

men

tsReferen

ces

OATP2B

1mRNA

expr

ession

Fetal

deve

lopm

ent:

,16

%Birth:20

%NR

Adu

ltag

e:NR.Birth–ad

ult:NR.Strainan

dsex:

Wistar(M

/F).

Method

s:RT-PCR

St-Pierreet

al.(200

4)

OATP4A

1mRNA

expr

ession

Fetal

deve

lopm

ent:

255%

Fetal

deve

lopm

ent

Increa

sedrapidlyat

birth(310

%)

Adu

ltag

e:NR.Birth–ad

ult:NR.Strainan

dsex:

Wistar(M

/F).

Method

s:RT-PCR

St-Pierreet

al.(200

4)

F,fem

ale;

M,m

ale;

NR,no

trepo

rted

;RT-PCR,reve

rse-tran

scriptas

epo

lymeras

ech

ainreaction

.

Ontogeny of Hepatic Transport and Drug Metabolism 607

Page 12: Ontogeny of Hepatic Transporters and Drug-Metabolizing … · hepatic clearance of the opioid morphine in newborns and young infants (Knibbe et al., 2009). Morphine is actively transported

Protein and mRNA expression levels of BSEP repre-sented ,10% of adult levels during fetal development,suggesting an onset of expression after birth. Matura-tion of BSEP rapidly increased after birth, with 50% ofmaximal protein expression levels achieved at 1 dayandmaximal levels achieved at 21 days in rats. Onset ofMRP2 and MRP3 expression started during fetal de-velopment as fetal mRNA expression levels reached upto 60% of maximal levels in female and male rats.However, maximal levels of MRP2 were achieved atdifferent maturational age: within the first week inmale rats and at adulthood in female rats.b. Age-related decrease in activity/expression.

AdultmRNA expression levels ofMRP1 andBCRPwerehigh during the fetal development and decreased pro-gressively to adult levels after birth.c. Complex and/or inconsistent ontogeny pattern in

activity/expression. mRNA expression levels of MRP6corresponded to 20% and 40% of adult levels duringfetal development and at birth, respectively. mRNAexpression levels of MRP4 rose progressively to reachadult levels at 28 days in male rats, whereas no changesin mRNA expression levels were observed in femalerats. Fetal expression levels of MRP4 ranged from30% in male rats to more than 200% in female rats.3. Mouse. The results are depicted in Fig. 8,

Supplemental Fig. 7, and Table 6 and are furtherexplained below.a. Age-related increase in activity/expression. The

mRNA expression of BSEP and MRP2 is well studiedcompared with other transporters. Both transportersshowed 30% expression in fetal tissue compared withadults and an increase in expression up to birth, withhigher expression than adult levels for BSEP andsimilar expression to adult levels for MRP2. Afterbirth, the expression of both transporters fluctuateduntil adult values were reached at adult age, with46%–153% for BSEP and 40%–90% for MRP2.

Interestingly, not onlyBSEPandMRP2had630%ex-pression at fetal age, as this was also observed forMRP3and MRP6. MRP3 expression showed a gradual in-crease from fetal to adult levels, whereas MRP6 meanadult levels were reached at day 3.

In one study, mRNA expression of MDR2/3, sodium-dependent phosphate transporter 1 (NPT1), and multi-drug and toxin extrusion 1 (MATE1) was measured byRNA sequencing (Cui et al., 2012a). Both MATE1 andNPT1 showed a steep increase in expression from birthto day 1 with a more gradual increase thereafter.

b. Age-related decrease in activity/expression.The mRNA expression of MRP1 and MRP5 was mea-sured by RNA sequencing in one study (Cui et al.,2012a) and showed high expression in fetal tissue(558%–1200% of adult values), which was followed byan overall decrease in expression. The age at whichadult values were reached was transporter-dependentand varied between day 25 and day 30.

For MRP4, a high mRNA expression in fetal tissue(200%) was captured, and a more rapid decrease inexpression was observed, reaching adult values at day10. Interestingly, there was a slightly higher expressionin females than in males.

c. No age-related differences in activity/expression.Protein and mRNA expression of MDR1b showed noage-related changes.

d. Complex and/or inconsistent ontogeny pattern inactivity/expression. MDR1 [ATP-binding cassette(ABCB1)] expression was higher in fetal tissue than atbirth, and the overall developmental pattern showed anincrease from birth up to 15 days of age (160%–250%)with a subsequent decrease up to adult age. In addition,for MDR2/3 a complex pattern was observed. Onset ofexpression was in fetal tissue and increased to 156% atbirth. At day 5, a steep decrease to 48% was observed,and this was followed by an increase to adult levels atday 30. For the ABCG5 and the ABCG8 transporter,

Fig. 5. Pooled literature data on the ontogeny of protein expression levels of hepatic uptake transporters in mice: NTCP (A) and OATP1A4 (B). Thesymbols represent the relative protein expression in each age group, and the dotted line indicates the adult value defined as 100%. If multiple valueswere obtained for the same age group, the symbols represent the average relative protein expression, and the error bars show the S.D. See Table 3 forexplanation on the ontogeny profiles and literature references.

608 van Groen et al.

Page 13: Ontogeny of Hepatic Transporters and Drug-Metabolizing … · hepatic clearance of the opioid morphine in newborns and young infants (Knibbe et al., 2009). Morphine is actively transported

TABLE

3Ontog

enypr

ofileof

hepa

ticup

take

tran

sporters

inmiceba

sedon

proteinex

pression

andmRNA

expr

ession

leve

lsPercentage

srepr

esen

tex

pression

/activityrelative

toad

ult

leve

ls.

Uptak

eTransp

orters

Onsetof

Exp

ression/Activity

Adu

ltLev

els

Rea

ched

Age

-Related

Chan

ges(%

ofAdu

lt)in

Exp

ression/Activity

afterBirth

Com

men

tsReferen

ces

ASBT

mRNA

expr

ession

Fetal

deve

lopm

ent(0.17%

)NR

Increa

sedrapidly

Adu

ltag

e:60

days.Strain:C57

BL/6J(M

).Method

s:RNA-seq

Cuiet

al.(201

2a)

ENT1

mRNA

expr

ession

Fetal

deve

lopm

ent(.

100%

)15

days

Incons

istent

pattern

Statistical

differen

cesin

expr

ession

betw

eenCV

andGFstrains(Selwyn

etal.,

2015

).Adu

ltag

e:60

days

(Cuie

tal.,20

12a)

and90

d43.S

train:C

57BL/6J(C

ui

etal.,20

12a)

andCV

+GF(Selwyn

etal.,20

15)(M

).Method

s:RNA-seq

(Cui

etal.,20

12a)

andRT-PCR43

Cuiet

al.(201

2a);Selwyn

etal.(201

5)

ENT3

mRNA

expr

ession

Fetal

deve

lopm

ent(253

%)

25da

ysIn

consisten

tpa

ttern

Adu

ltag

e:60

days.Strain:C57

BL/6J(M

).Method

s:RNA-seq

Cuiet

al.(201

2a)

NTCP

mRNA

expr

ession

Fetal

deve

lopm

ent(17%

)F:30

days.M

:0da

ysIn

consisten

tpa

ttern

Adu

ltag

e:56

(Chen

get

al.,20

07),60

days

(Cuiet

al.,20

12a),90

d43.S

train:

C57

BL/6J(C

hen

get

al.,20

07;Cuiet

al.,20

12a)

(mixed

)an

dCV

+GF

(Selwyn

etal.,20

15)(M).Method

s:bD

NA(C

hen

get

al.,20

07),RNA-seq

,(Cui

etal.,20

12a)

andRT-PCR43.

Chen

get

al.(200

7);Cui

etal.(201

2a);Selwyn

etal.(201

5)

Protein

expr

ession

NR

(15da

ys:CV

95%;GF

75%)

NR

Incons

istent

pattern

Statistical

differen

cesin

expr

ession

betw

eenCV

andGFstrains(Selwyn

etal.,

2015

).Adu

ltag

e:90

days.S

train:CV

+GF

(M).Method

s:Western

blotting

Selwyn

etal.,20

15)

OAT2

mRNA

expr

ession

1da

ys(0.6%)

60da

ysIn

crea

sedpr

ogressively

Adu

ltag

e:60

days.Strain:C57

BL/6J(M

).Method

s:RNA-seq

Cuiet

al.(201

2a)

OAT3

mRNA

expr

ession

Fetal

deve

lopm

ent(483

72%)

25–30

days

Decreas

edpr

ogressively

Adu

ltag

e:60

days.Strain:C57

BL/6J(M

).Method

s:RNA-seq

Cuiet

al.(201

2a)

OATP1A

1mRNA

expr

ession

Fetal

deve

lopm

ent

(0.01%

–0.77

%)

30–40

days

Increa

sedslow

lyAdu

ltag

e:45

days

(Chen

get

al.,20

05),60

days

(Cuiet

al.,20

12a),90

days

(Selwyn

etal.,20

15).Strain:C

57BL/6J(C

hen

get

al.,20

05;C

uie

tal.,20

12a)

(mixed

)an

dCV

+GF

(Selwyn

etal.,20

15)(m

ixed

).Method

s:RNA-seq

(Cui

etal.,20

12a)

andRT-PCR

(Chen

get

al.,20

05;Cuiet

al.,20

12a)

(Selwyn

etal.,20

15)

Chen

get

al.(200

5);Cui

etal.(201

2a);Selwyn

etal.(201

5)

OATP1A

4mRNA

expr

ession

M:fetalde

velopm

ent(35%

).F:fetal

deve

lopm

ent(4%)

M:5–

10da

ys.F:

23da

ysIn

crea

sedslow

lyAdu

ltag

e:45

days

(Chen

get

al.,20

05)an

d60

days

(Cuiet

al.,20

12a;

Liet

al.,

2016

).Strain:C57

BL/6

(mixed

).Method

s:bD

NA

(Chen

get

al.,20

05),RNA-

seq(C

uiet

al.,20

12a),an

dRT-PCR

(Cuiet

al.,20

12a;

Liet

al.,20

16).

Chen

get

al.(200

5);Cui

etal.(201

2a);Liet

al.

(201

6)Protein

expr

ession

NR

5da

ysNR

Adu

ltag

e:60

days.Strain:C57

BL/6

(M).Method

s:Western

blotting

Liet

al.(20

16)

OATP1A

6mRNA

expr

ession

M:fetalde

velopm

ent(57%

).F:fetal

deve

lopm

ent(32%

)M:5da

ys.F:

10–15

days

Increa

sedslow

lyAdu

ltag

e:45

days.Strain:C57

BL/6

(mixed

).Method

s:bD

NA

Chen

get

al.(200

5)

OATP1B

2mRNA

expr

ession

Fetal

deve

lopm

ent(1%)

60da

ysIn

crea

sedslow

lyAdu

ltag

e:60

days

(Cuiet

al.,20

12a)

and90

d43.S

train:C57

BL/6J(C

uiet

al.,

2012

a)an

dCV

+GF(Selwyn

etal.,20

15)(M

).Method

s:RNA-seq

(Cuiet

al.,

2012

a)an

dRT-PCR43

Cuiet

al.(201

2a);Selwyn

etal.(201

5)

OATP2A

1mRNA

expr

ession

Fetal

deve

lopm

ent

(21%

–13

5%)

23da

ysIn

crea

sedslow

lyAdu

ltag

e:45

days

(Chen

get

al.,20

05),60

days

(Cuiet

al.,20

12a).Strain:

C57

BL/6J(C

hen

get

al.,20

05;Cuiet

al.,20

12a)

(mixed

).Method

s:RNA-seq

(Cuiet

al.,20

12a)

andRT-PCR

(Chen

get

al.,20

05;Cuiet

al.,20

12a)

Chen

get

al.(200

5);Cui

etal.(201

2a)

OATP2B

1mRNA

expr

ession

Low

expr

ession

infetaltissu

e23

days

Increa

sedslow

lyAdu

ltag

e:45

days

(Chen

get

al.,20

05),60

days

(Cuiet

al.,20

12a),90

days

(Selwyn

etal.,20

15).Strain:C

57BL/6J(C

hen

get

al.,20

05;C

uie

tal.,20

12a)

(mixed

)an

dCV

+GF

(Selwyn

etal.,20

15)(m

ixed

).Method

s:RNA-seq

(Cui

etal.,20

12a)

andRT-PCR

(Cuiet

al.,20

12a),(C

hen

get

al.,20

05)(Selwyn

etal.,20

15)

Chen

get

al.(200

5);Cui

etal.(201

2a);Selwyn

etal.(201

5)

(con

tinued

)

Ontogeny of Hepatic Transport and Drug Metabolism 609

Page 14: Ontogeny of Hepatic Transporters and Drug-Metabolizing … · hepatic clearance of the opioid morphine in newborns and young infants (Knibbe et al., 2009). Morphine is actively transported

protein expression levels were available formice at days15, 30, and 90, and statistical difference in expressionwas found between the strains. For both transporters,protein expression was very high at day 15, anda distinct decrease was captured thereafter. This wassupported by mRNA expression data that alsoshowed a decrease in expression from day 15 onward.Interestingly, mRNA expression was available fromyounger mice, and an increase was seen from fetaltissue up to day 15. The mRNA expression of thecopper-transporting P-type ATPase (ATP) 7B andBCRP (ABCG2) showed high expression in fetal tissue(280% of adult values) followed by an overall decrease inexpression. The age at which adult values were reachedwas transporter-dependent and varied between day 25and adult age.

4. Nonrodents. Data on ontogeny profiles of he-patic efflux transporters were lacking for the Beagledog, cynomolgus, monkey and domestic pig. For theGöttingen minipig, a semiquantitative assessment ofP-glycoprotein showed no difference between livers from84 days of gestation versus adult animals (1.5–3 yearsof age).

C. Phase I Drug-Metabolizing Enzymes

1. Human. The results are depicted in Fig. 9,Supplemental Figs. 9 and S10, and Table 7 and arefurther explained below.

a. Age-related increase in activity/expression.Except cytochrome P450 (CYP) enzymes, very few dataabout ontogeny of phase I enzymes in human liver couldbe found in literature. Among the non-CYP phase Ienzymes, all showed a lower expression in neonates andpediatrics than in adults (ADH1A, ADH1B, ADH1C,ALDH1A1, CES1, CES2, and FMO3). Activity wasreported only for CES1 and was lower in neonates andpediatrics than in adults. For most of the CYP enzymes,data on catalytic activity in various age groups wereavailable. The isoforms CYP2D6, CYP2E1, andCYP1A2 had low activity during fetal age ,30 weeksof gestation and reached adult levels between neonataland infant age. For CYP2C18, only data on fetal age.30 weeks of gestation were available, showing a lowmRNA expression that reached adult levels betweenneonatal and infant age. The best-characterized CYPenzyme in terms of ontogeny is CYP2D6, for which onsetof expression and activity is captured during fetal life,with a rapid increase during neonatal development. Thepatterns for CYP2D6 activity, protein expression, andmRNA expression lack similarity other than that theyall increase with increasing age. Similar to CYP2D6,CYP1A2 showed very low activity and protein/mRNAexpression in fetuses. Adult values of activity andprotein expression were reached at 5–15 years and1–5 years of age, respectively. The catalytic activity ofCYP2E1 showed low activity in fetuses ,30 weeks ofgestation (3%–20% of adult values) and increased to

TABLE

3—Con

tinued

Uptak

eTransp

orters

Onsetof

Exp

ression/Activity

Adu

ltLev

els

Rea

ched

Age

-Related

Chan

ges(%

ofAdu

lt)in

Exp

ression/Activity

afterBirth

Com

men

tsReferen

ces

OCT1

mRNA

expr

ession

M:fetalde

velopm

ent

(0.05%

).F:ND

M:1

5–22

days.F

:22

–30

days

Increa

sedpr

ogressively

Adu

ltag

e:45

days

(Alnou

tiet

al.,20

06),60

days

(Cui

etal.,20

12a).Strain:

C57

BL/6J(m

ixed

).Method

s:RNA-seq

(Cuiet

al.,20

12a)

andRT-PCR

(Alnou

tiet

al.,20

06;Cuiet

al.,20

12a)

Alnou

tiet

al.(200

6);Cui

etal.(201

2a)

OCTN1

mRNA

expr

ession

Fetal

deve

lopm

ent

(157

8%–19

75%)

60da

ysDecreas

edpr

ogressively

Adu

ltag

e:60

days

(Cuiet

al.,20

12a)

and90

days

(Selwyn

etal.,20

15).Strain:

C57

BL/6J(C

uie

tal.,20

12a)

andCV+GF(Selwyn

etal.,20

15)(M).Method

s:RNA-seq

(Cuiet

al.,20

12a)

andRT-PCR

(Selwyn

etal.,20

15)

Cuiet

al.(201

2a);Selwyn

etal.(201

5)

OCTN2

mRNA

expr

ession

Fetal

deve

lopm

ent

(20%

–50

%)

1da

ysIn

consisten

tpa

ttern

Adu

ltag

e:60

days.Strain:C57

BL/6J(M

).Method

s:RNA-seq

Cuiet

al.(201

2a)

ASBT,ap

ical

sodium-dep

ende

ntbile

acid

tran

sporter;

bDNA,bran

ched

DNA

sign

alam

plificationas

say;

F,female;

M,male;

ND,not

detectab

le;NR,not

repo

rted

;RNA-seq

,RNA-seq

uen

cing;

RT-PCR,reve

rse-tran

scriptas

epo

lymeras

ech

ainreaction

.

610 van Groen et al.

Page 15: Ontogeny of Hepatic Transporters and Drug-Metabolizing … · hepatic clearance of the opioid morphine in newborns and young infants (Knibbe et al., 2009). Morphine is actively transported

Fig. 6. Pooled literature data on the ontogeny of protein expression of hepatic efflux transporters in humans: BCRP (A), BSEP (B), MATE1 (C), MDR1(D), MRP1 (E), MRP2 (F), and MRP3 (G). The symbols represent the relative protein expression in each age group, and the dotted line indicates theadult value defined as 100%. If multiple values were obtained for the same age group, the symbols represent the average relative protein expression,and the error bars show the S.D. See Table 4 for explanation on the ontogeny profiles and literature references.

Ontogeny of Hepatic Transport and Drug Metabolism 611

Page 16: Ontogeny of Hepatic Transporters and Drug-Metabolizing … · hepatic clearance of the opioid morphine in newborns and young infants (Knibbe et al., 2009). Morphine is actively transported

TABLE

4Ontog

enypr

ofileof

hepa

ticefflux

tran

sporters

inhu

man

sba

sedon

proteinan

dmRNA

expr

ession

leve

lsPercentage

srepr

esen

tex

pression

/activityrelative

toad

ult

leve

ls.

Transp

orters

Onsetof

Exp

ression/Activity

Adu

ltLev

els

Rea

ched

Age

-Related

Chan

ges(%

ofAdu

lt)in

Exp

ression/Activity

afterBirth

Com

men

tsReferen

ces

MATE1

Protein

NR

(28da

ys:7

4%)

29da

ys–1y

rIn

crea

sedslow

lyMethod

s:LC-M

S/M

SPrasa

det

al.(201

6)MDR1

Protein

Fetal

deve

lopm

ent

(46%

–81

%)

28da

ysIn

crea

sedslow

lyWideva

rietyin

values

from

variou

spu

blications

.Metho

ds:LC-M

S/M

S(Prasa

det

al.,20

14,20

16;Moo

ijet

al.,20

16;va

nGroen

etal.,20

18),

immun

ohistoch

emistry(C

izko

vaet

al.,20

05;Kon

ieczna

etal.,20

11;

Aba

nda

etal.,20

17),an

dWestern

blot

(Tan

g,20

07;K

oniecznaet

al.,20

11;

Aba

nda

etal.,20

17)

Cizko

vaet

al.(20

05);Tan

g(200

7);K

oniecznaet

al.

(201

1);Prasa

det

al.(201

4,20

16);Mooijet

al.

(201

6);Aba

nda

etal.(20

17);va

nGroen

etal.

(201

8)

mRNA

Fetal

deve

lopm

ent

(4%–64

%)

NR

(0–17

yr:51

%)

Increa

sedslow

lyWideva

rietyin

values

from

variou

spu

blications

.Metho

ds:RT-PCR

(Fak

hou

ryet

al.,20

09;Sharmaet

al.,20

13;Moo

ijet

al.,20

14;Aba

nda

etal.,20

17)an

dim

munoh

istoch

emistry(van

Kalke

net

al.,19

92)

vanKalke

net

al.(199

2);Fak

hou

ryet

al.(200

9);

Sharmaet

al.(20

13);Moo

ijet

al.(20

14);Aba

nda

etal.(201

7)MRP1

Protein

Fetal

deve

lopm

ent

(38%

)In

crea

sedslow

lyMethod

s:LC-M

S/M

S54an

dWestern

blot

71

Kon

iecznaet

al.(201

1);va

nGroen

etal.(201

8)

MRP2

Protein

Fetal

deve

lopm

ent

(27%

–44

%)

29da

ys–1

yrIn

crea

sedslow

lyMethod

s:LC-M

S/M

S(D

eoet

al.,20

12;M

ooijet

al.,20

16;P

rasa

det

al.,20

16;

vanGroen

etal.,20

18),im

mun

ohistoch

emistry(C

henet

al.,20

05;C

izko

vaet

al.,20

05),an

dWestern

blot

(Tan

g,20

07)

Chen

etal.(200

5);Cizko

vaet

al.(200

5);Tan

g(200

7);Deo

etal.(201

2);Mooijet

al.(201

6);

Prasa

det

al.(201

6);va

nGroen

etal.(201

8)mRNA

Fetal

deve

lopm

ent

(3%–50

%)

NR

Inconsisten

tpa

ttern

Method

s:RT-PCR

(Chen

etal.,20

05;S

harmaet

al.,20

13;M

ooijet

al.,20

14)

Chen

etal.(20

05);Klaas

senan

dAleks

unes

(201

0);

Sharmaet

al.(201

3);Moo

ijet

al.(201

4)MRP3

Protein

Fetal

deve

lopm

ent

(30%

)28

days

Increa

sedrapidly

Method

s:LC-M

S/M

S(M

ooijet

al.,20

16;P

rasa

det

al.,20

16;v

anGroen

etal.,

2018

)an

dWestern

blot

(Yan

niet

al.,20

11)

Yan

niet

al.(20

11);Mooijet

al.(20

16);Prasa

det

al.

(201

6);va

nGroen

etal.(201

8)BSEP

Protein

Fetal

deve

lopm

ent

(30%

)28

days

Increa

sedpr

ogressively

Metho

ds:L

C-M

S/M

S(M

ooijet

al.,20

16;P

rasa

det

al.,20

16;v

anGroen

etal.,

2018

),Western

blot

(Yan

niet

al.,20

11),an

dim

mun

ohistoch

emistry

Che

net

al.(200

5);Yan

niet

al.(201

1);Mooijet

al.

(201

6);Prasa

det

al.(201

6);va

nGroen

etal.

(201

8)mRNA

Fetal

deve

lopm

ent

(40%

)NR

NR

Method

s:RT-PCR

(Chen

etal.,20

05;Sharmaet

al.,20

13)

Chen

etal.(20

05);Klaas

senan

dAleks

unes

(201

0);

Sharmaet

al.(201

3)BCRP

Protein

Fetal

deve

lopm

ent

(94%

–23

5%)

28da

ysDecreas

edpr

ogressively

Metho

ds:LC-M

S/M

S(Prasa

det

al.,20

13;Mooijet

al.,20

16;Prasa

det

al.,

2016

;va

nGroen

etal.,20

18),Western

blot

(Yan

niet

al.,20

11),an

dim

mun

ohistoch

emistry(K

onieczna

etal.,20

11)

Kon

iecznaet

al.(20

11);Yan

niet

al.(20

11);Prasa

det

al.(201

3);Mooijet

al.(201

6);Prasa

det

al.

(201

6);va

nGroen

etal.(201

8)MDR3

mRNA

Fetal

deve

lopm

ent

(6%)

NR

NR

Method

s:RT-PCR

Chen

etal.(20

05);Klaas

senan

dAleks

unes,(20

10)

NR,n

otrepo

rted

;RT-PCR,r

everse-transcriptas

epo

lymeras

ech

ainreaction

.

612 van Groen et al.

Page 17: Ontogeny of Hepatic Transporters and Drug-Metabolizing … · hepatic clearance of the opioid morphine in newborns and young infants (Knibbe et al., 2009). Morphine is actively transported

50% activity of adult values in infants. The results onprotein expression show awide interstudy range in fetalCYP2E1 expression (1.5%–70% of adult values), andadult values were reached at 1–5 years of age. Thepattern of low activity/protein expression in fetuses is

also seen for mRNA expression, with concordant ex-pression of 50% in infants.

For the isoforms CYP3A4, CYP2A6, and CYP2C8,a more gradual increase in activity and expression wasseen. The CYP3A family consists of the isoforms

Fig. 7. Pooled literature data on the ontogeny of protein expression levels of hepatic efflux transporters in rats: BSEP (A) and MRP2 (B). The symbolsrepresent the relative protein expression in mixed-sex rat population (open), male rats (gray), and female rats (black). If multiple values were obtainedfor the same age group, the symbols represent the average relative protein expression, and the error bars show the S.D. See Table 5 for explanation onthe ontogeny profiles and literature references.

Fig. 8. Pooled literature data on the ontogeny of protein expression levels of hepatic efflux transporters in mice: ABCG5 (A), ABCG8 (B), MDR1 (C),and MRP4 (D). The symbols represent the relative protein expression in each age group, and the dotted line indicates the adult value defined as 100%.If multiple values were obtained for the same age group, the symbols represent the average relative protein expression, and the error bars show theS.D. See Table 6 for explanation on the ontogeny profiles and literature references.

Ontogeny of Hepatic Transport and Drug Metabolism 613

Page 18: Ontogeny of Hepatic Transporters and Drug-Metabolizing … · hepatic clearance of the opioid morphine in newborns and young infants (Knibbe et al., 2009). Morphine is actively transported

TABLE

5Ontoge

nypr

ofileof

hepa

ticefflux

tran

sporters

inrats

basedon

efflux

activity,pr

oteinex

pression

,an

dmRNA

expr

ession

leve

lsPercentage

srepr

esen

tex

pression

/activityrelative

toad

ult

leve

ls.

Onsetof

Activityan

d/or

Exp

ression

Adu

ltLev

els

Rea

ched

Age

-Related

Chan

gesin

Activity/

Exp

ression

Com

men

tsReferen

ces

BSEP

Protein

expr

ession

Fetal

deve

lopm

ent:

,3%

28da

ys:78

%In

crea

sedslow

lyAdu

ltag

e:NR.Strainan

dsex:

Spr

agueDaw

ley(F).Method

s:Western

blotting

Tom

eret

al.(200

3)

mRNA

expr

ession

Fetal

deve

lopm

ent:

,10

%21

days

Increa

sedpr

ogressively

Adu

ltag

e:60

days.S

trainan

dsex:

Spr

agueDaw

ley(F)an

dWistar(M

/F).Method

s:RT-PCR,Northernblotting

Zinch

uket

al.(200

2);Tom

eret

al.(200

3);

St-Pierreet

al.(200

4)MRP1

mRNA

expr

ession

Fetal

deve

lopm

ent:

300%

–50

0%Fetal

deve

lopm

ent

Decreas

edrapidly(14da

ys:

200%

)Adu

ltag

e:60

days.S

trainan

dsex:

Spr

agueDaw

leyan

dWistar

(M/F).Method

s:RT-PCR

St-Pierreet

al.(200

4);Zhuet

al.(20

17)

MRP2

Protein

expr

ession

Birth

(50%

–60

%)

M:5da

ys;F:

35da

ys(73%

)M:increa

sedrapidly;

F:

increa

sedslow

lyAdu

ltag

e:35

days.F

etal

deve

lopm

ent:

NR.Strainan

dsex:

Spr

agueDaw

ley(M

/F).Method

s:Western

blotting.

Johnsonet

al.(200

2);Tom

eret

al.(200

3)

mRNA

expr

ession

Fetal

deve

lopm

ent(M

:60

%,F:1

00%)

M:1da

ys;F:fetal

deve

lopm

ent

Incons

istent

pattern

Adu

ltag

e:60

–70

days.S

trainan

dsex:

Spr

agueDaw

leyan

dWistar(M

/F).Method

s:RT-PCR,Northernblotting,

bran

ched

DNA

sign

alam

plificationas

say

Johnsonet

al.(20

02);Zinch

uket

al.(20

02);

Tom

eret

al.(200

3);St-Pierreet

al.

(200

4);Zhuet

al.(201

7)MRP3

mRNA

expr

ession

Fetal

deve

lopm

ent(M

:60

%,F:1

0%)

M:1da

ys;F:

35da

ysM:no

chan

ges;

F:increa

sed

prog

ressively.

Decreas

edin

elde

rly

Adu

ltag

e:60

days.S

trainan

dsex:

Spr

agueDaw

leyan

dWistar

(M/F).Method

s:RT-PCR

St-Pierreet

al.(200

4);Zhuet

al.,(201

7)

MRP4

mRNA

expr

ession

Fetal

deve

lopm

ent(M

:,30

%,F:2

00%)

M:28

days;F:fetal

deve

lopm

ent

M:de

crea

sedin

elde

rly(540

days:40

%);F:noch

ange

sAdu

ltag

e:60

days.S

trainan

dsex:

Spr

agueDaw

ley(M

/F).

Method

s:RT-PCR

Zhuet

al.(201

7)

MRP6

mRNA

expr

ession

Fetal

deve

lopm

ent:

,20

%Birth:40

%NR

Birth–ad

ult:N

R.A

dult

age:

NR.S

trainan

dsex:

Wistar(M

/F).

Method

s:RT-PCR

St-Pierreet

al.(200

4)

BCRP

mRNA

expr

ession

Fetal

deve

lopm

ent(M

:20

0%,F:1

00%)

Fetal

deve

lopm

ent

Incons

istent

pattern

Adu

ltag

e:60

–70

days.S

trainan

dsex:

Spr

agueDaw

ley(M

/F)

andWistar(M

).Method

s:RT-PCR

Kaw

aseet

al.(201

5);Zhuet

al.(201

7)

F,fem

ale;

M,m

ale;

NR,no

trepo

rted

;RT-PCR,reve

rse-tran

scriptas

epo

lymeras

ech

ainreaction

.

614 van Groen et al.

Page 19: Ontogeny of Hepatic Transporters and Drug-Metabolizing … · hepatic clearance of the opioid morphine in newborns and young infants (Knibbe et al., 2009). Morphine is actively transported

TABLE

6Ontoge

nypr

ofileof

hep

atic

efflux

tran

sporters

inmiceba

sedon

proteinex

pression

andmRNA

expr

ession

leve

lsPercentage

srepr

esen

tex

pression

/activityrelative

toad

ult

leve

ls.

EffluxTransp

orter

Onsetof

Exp

ression/Activity

Adu

ltLev

els

Rea

ched

Age

-Related

Chan

ges(%

ofAdu

lt)in

Exp

ression/ActivityafterBirth

Com

men

tsReferen

ces

CERP

mRNA

expr

ession

Fetal

deve

lopm

ent

(97%

–17

9%)

0da

ysIn

consisten

tpa

ttern

Adu

ltag

e:60

days.S

train:C

57BL/6J(M

).Method

s:RNA-seq

and

RT-PCR

Cuiet

al.(201

2a)

MDR1B

mRNA

expr

ession

Fetal

deve

lopm

ent(100

%)

Noch

ange

sAdu

ltag

e:45

days.S

train:C

57BL/6J(m

ixed

).Method

s:RNA-seq

.Cuiet

al.(200

9)

Protein

expr

ession

NR

NR

Noch

ange

sAdu

ltag

e:NR.Strain:FVB

(NR).Method

s:Western

blotting

Mah

moo

det

al.(200

1)

MDR2

mRNA

expr

ession

Fetal

deve

lopm

ent

(;43

%–44

%at

day22)

1da

ysPea

ks1.1–

1.5-fold

adultleve

lsim

med

iately

afterbirthin

Man

dF,

fallingba

ckto

;50

%ad

ult

leve

lsbe

twee

nda

ys5–

45

Adu

ltag

e:60

days.Strain:C57

BL/6J(M

/mixed

).Method

s:RNA-

seq

Cuiet

al.(200

9,20

12a)

ABCG5

mRNA

expr

ession

Fetal

deve

lopm

ent(1.3%)

5da

ysIn

cons

istent

pattern

Statistical

differen

cein

expr

ession

betw

eenCV

andGF

strain

(Selwyn

etal.,20

15).Adu

ltag

e:60

days

(Cuiet

al.,20

12a)

and

90da

ys(Selwyn

etal.,20

15).Strain:C57

BL/6J(C

uiet

al.,

2012

a)an

dCV

+GF

(Selwyn

etal.,20

15)(M

).Method

s:RNA-

seq(C

uiet

al.,20

12a)

andRT-PCR

(Selwyn

etal.,20

15)

Cuiet

al.(201

2a);Selwyn

etal.(201

5)

Protein

expr

ession

NR

(15da

ys:

1867

%–33

71%)

NR

Decreas

edpr

ogressively

Statistical

differen

cein

expr

ession

betw

eenCV

andGF

strain.

Adu

ltag

e:90

days.Strain:CV

+GF

(M).Method

s:Western

blotting

Selwyn

etal.(201

5)

ABCG8

mRNA

expr

ession

Low

expr

ession

infetal

tissue

5da

ysIn

consisten

tpa

ttern

Adu

ltag

e:60

days

(Cuiet

al.,20

12a)

and90

days

(Selwyn

etal.,

2015

).Strain:C

57BL/6J(C

uie

tal.,20

12a)

andCV+GF(Selwyn

etal.,20

15)(M

).Method

s:RNA-seq

(Cuiet

al.,20

12a)

andRT-

PCR

(Selwyn

etal.,20

15)

Cuiet

al.(201

2a);Selwyn

etal.(201

5)

Protein

expr

ession

NR

(15da

ys:20

8%–45

20%)

NR

Decreas

edpr

ogressively

Statistical

differen

cein

expr

ession

betw

eenCV

andGF

strain.

Adu

ltag

e:90

days.Strain:CV

+GF

(M).Method

s:Western

blotting

Selwyn

etal.(201

5)

ATP7B

mRNA

expr

ession

Fetal

deve

lopm

ent(280

%)

25da

ysIn

consisten

tpa

ttern

Adu

ltag

e:60

days.Strain:C57

BL/6J(M

).Method

s:RNA-seq

Cuiet

al.(201

2a)

BCRP

mRNA

expr

ession

Fetal

deve

lopm

ent(271

%)

asmea

suredby

RNA

sequ

encing

60da

ysIn

crea

sedslow

lyAdu

ltag

e:60

days.Strain:C57

BL/6J(M

).Method

s:RNA-seq

Cuiet

al.(201

2a)

BSEP

mRNA

expr

ession

Fetal

deve

lopm

ent(30%

)5da

ysIn

consisten

tpa

ttern

Adu

ltag

e:56

days

(Chen

get

al.,20

07)an

d60

days

(Cuiet

al.,

2012

a).S

train:C

57BL/6J(m

ixed

).Method

s:bD

NA(C

hen

get

al.,

2007

)an

dRNA-seq

(Cuiet

al.,20

12a)

Chen

get

al.(200

7);Cui

etal.(201

2a)

MATE1

mRNA

expr

ession

Fetal

deve

lopm

ent(28%

)15

days

Increa

sedrapidly

Adu

ltag

e:60

days.Strain:C57

BL/6J(M

).Method

s:RNA-seq

Cuiet

al.(201

2a)

MRP1

mRNA

expr

ession

Fetal

deve

lopm

ent(558

%)

25–30

days

Decreas

edrapidly

Adu

ltag

e:60

days.Strain:C57

BL/6J(M

).Method

s:RNA-seq

Cuiet

al.(201

2a)

MRP2

(con

tinued

)

Ontogeny of Hepatic Transport and Drug Metabolism 615

Page 20: Ontogeny of Hepatic Transporters and Drug-Metabolizing … · hepatic clearance of the opioid morphine in newborns and young infants (Knibbe et al., 2009). Morphine is actively transported

TABLE

6—Con

tinued

EffluxTransp

orter

Onsetof

Exp

ression/Activity

Adu

ltLev

els

Rea

ched

Age

-Related

Chan

ges(%

ofAdu

lt)in

Exp

ression/ActivityafterBirth

Com

men

tsReferen

ces

mRNA

expr

ession

Fetal

deve

lopm

ent(30%

)10

days

Increa

sedslow

lyAdu

ltag

e:45

days

(Mah

eret

al.,20

05),60

days

(Cuiet

al.,20

12a;

Lie

tal.,20

16),an

d90

days

(Selwyn

etal.,20

15).Strain:C

57BL/

6J(M

aher

etal.,20

05;C

uiet

al.,20

12a;

Selwyn

etal.,20

15;L

iet

al.,20

16)(m

ixed

)an

dCV

+GF

(Selwyn

etal.,20

15)(M

).Method

s:RNA-seq

(Cuiet

al.,20

12a),RT-PCR

(Selwyn

etal.,

2015

;Liet

al.,20

16),an

dbD

NA44

Mah

eret

al.(200

5);Cui

etal.(201

2a);Selwyn

etal.(201

5);Liet

al.

(201

6)

MRP3

mRNA

expr

ession

Fetal

deve

lopm

ent(26%

)30

days

Increa

sedslow

lyAdu

ltag

e:45

days

(Mah

eret

al.,20

05)an

d60

days

(Cuiet

al.,

2012

a;Lie

tal.,20

16).Strain:C

57BL/6J(M

aher

etal.,20

05;C

ui

etal.,20

12a;

Selwyn

etal.,20

15;Liet

al.,20

16)(m

ixed

).Method

s:RNA-seq

(Cuiet

al.,20

12a),RT-PCR

(Selwyn

etal.,

2015

;Liet

al.,20

16),an

dbD

NA

(Mah

eret

al.,20

05)

Mah

eret

al.(200

5);Cui

etal.(201

2a);Liet

al.

(201

6)

MRP4

mRNA

expr

ession

Fetal

deve

lopm

ent(200

%)

10da

ysDecreas

edslow

lyAdu

ltag

e:45

days

(Mah

eret

al.,20

05)an

d60

days

(Cuiet

al.,

2012

a;Lie

tal.,20

16).Strain:C

57BL/6J(M

aher

etal.,20

05;C

ui

etal.,20

12a;

Selwyn

etal.,20

15;Liet

al.,20

16)(m

ixed

).Method

s:RNA-seq

(Cuiet

al.,20

12a),RT-PCR

(Selwyn

etal.,

2015

;Liet

al.,20

16),an

dbD

NA44

Mah

eret

al.(200

5);Cui

etal.(201

2a);Liet

al.

(201

6)

Protein

expr

ession

NR

NR

Increa

sedslow

lyAdu

ltag

e:60

days.Strain:

C57

BL/6.Metho

ds:Western

blotting

Liet

al.(201

6)

MRP5

mRNA

expr

ession

Fetal

deve

lopm

ent(120

0%)

25–30

days

Decreas

edrapidly

Adu

ltag

e:60

days.Strain:C57

BL/6J(M

).Method

s:RNA-seq

Cuiet

al.(201

2a)

MRP6

mRNA

expr

ession

Fetal

deve

lopm

ent

(0%–30

%)

3da

ysIn

crea

sedrapidly

Adu

ltag

e:45

days

(Mah

eret

al.,20

05)an

d60

days

(Cuiet

al.,

2012

a).S

train:C

57BL/6J(m

ixed

).Method

s:RNA-seq

(Cuie

tal.,

2012

a)an

dbD

NA

(Mah

eret

al.,20

05)

Mah

eret

al.(200

5);Cui

etal.(201

2a)

NPT1

mRNA

expr

ession

Fetal

deve

lopm

ent(3%)

20da

ysIn

crea

sedpr

ogressively

Adu

ltag

e:60

days.Strain:C57

BL/6J(M

).Method

s:RNA-seq

Cuiet

al.(201

2a)

bDNA,bran

ched

DNA

sign

alam

plificationas

say;

CERP,c

holesteroleffluxregu

latory

protein;M,m

ale;

NR,not

repo

rted

;RT-PCR,r

everse-trans

criptase

polymeras

ech

ainreaction

;RNA-seq

,RNA-seq

uen

cing.

616 van Groen et al.

Page 21: Ontogeny of Hepatic Transporters and Drug-Metabolizing … · hepatic clearance of the opioid morphine in newborns and young infants (Knibbe et al., 2009). Morphine is actively transported

Fig. 9. Pooled literature data on the ontogeny of metabolic activity of hepatic phase I enzymes in humans: CYP1A2 (A), CYP2A6 (B), CYP2D6 (C),CYP2E1 (D), CYP3A4 (E), CYP3A7 (F), and CES1 (G). The symbols represent the relative activity in each age group, and the dotted line indicates theadult value defined as 100%. If multiple values were obtained for the same age group, the symbols represent the average relative activity, and the errorbars show the S.D. See Table 7 for explanation on the ontogeny profiles and literature references.

Ontogeny of Hepatic Transport and Drug Metabolism 617

Page 22: Ontogeny of Hepatic Transporters and Drug-Metabolizing … · hepatic clearance of the opioid morphine in newborns and young infants (Knibbe et al., 2009). Morphine is actively transported

TABLE

7Ontoge

nypr

ofileof

hep

atic

phas

eIen

zymes

inhu

man

sba

sedon

metab

olic

activity,pr

oteinex

pression

,an

dmRNA

expr

ession

leve

lsPercentage

srepr

esen

tex

pression

/activityrelative

toad

ult

leve

ls.

Ons

etof

Exp

ression/

Activity

Adu

ltLev

elsRea

ched

Age

-Related

Chan

ges(%

ofAdu

lt)in

Exp

ression/

ActivityafterBirth

Com

men

tsReferen

ces

ADH1A

Protein

expr

ession

Birth:37

.0%

1–6yr

Increa

sedpr

ogressively

Age

atwhich

50%

ofmax

imum

proteinex

pression

was

reache

d:10

.1mo.

Adu

ltag

e:18

yr.M

ethod

s:LC-M

S/M

SBha

ttet

al.(201

7)

ADH1B

Protein

expr

ession

Birth:12

.6%

1–6yr

Increa

sedpr

ogressively

Age

atwhich

50%

ofmax

imum

proteinex

pression

was

reache

d:9.3mo.

Adu

ltag

e:18

yr.M

ethod

s:LC-M

S/M

SBha

ttet

al.(201

7)

ADH1C

Protein

expr

ession

Birth:2.7%

1–6yr

Increa

sedpr

ogressively

Age

atwhich

50%

ofmax

imum

proteinex

pression

was

reache

d:12

.3mo.

Adu

ltag

e:18

yr.M

ethod

s:LC-M

S/M

SBha

ttet

al.(201

7)

ALDH1A

1Protein

expr

ession

Birth:36

.5%

1–6yr

Increa

sedpr

ogressively

Age

atwhich

50%

ofmax

imum

proteinex

pression

was

reache

d:10

.9mo.

Adu

ltag

e:18

yr.M

ethod

s:LC-M

S/M

SBhattet

al.,(201

7)

CES1

Catalytic

activity

Ped

iatric:42

.0%

NR

Increa

sed

Adu

ltag

e:18

yr.Sub

strate:oseltamivir

Metho

ds:de

pletion

assa

y.Bob

erget

al.(201

7)

Protein

expr

ession

Birth:19

%–34

%3wkto

6yr

(Bob

erg

etal.,20

17);18

yr(H

ines

etal.,20

16)

Increa

sedrapidly

Adu

ltag

e:18

yr.Metho

ds:LC-M

S/M

S(B

oberget

al.,20

17),

Western

blotting

(Hines

etal.,20

16)

Hines

etal.(201

6);Bob

erget

al.(201

7)

CES2

Protein

expr

ession

Birth:34

%–43

%3wkto

6yr

Increa

sedpr

ogressively

Adu

ltag

e:18

yr.Metho

ds:LC-M

S/M

S(B

oberget

al.,20

17),

Western

blotting

(Hines

etal.,20

16)

Hines

etal.(201

6);Bob

erget

al.(201

7)

FMO3

Protein

expr

ession

Birth:46

.4%

6–12

yrIn

crea

sedslow

lyAdu

ltag

e:18

yr.Metho

ds:LC-M

S/M

SXuet

al.(201

7)

CYP

total

Protein

Fetal

deve

lopm

ent

(57%

–21

%)

NR

Incons

istent

pattern

Metho

ds:Western

blot,im

mun

oblot

Caz

eneu

veet

al.(19

94);Shimad

aet

al.(19

94,

1996

);Tateish

iet

al.(19

97);Treluye

ret

al.

(199

7)mRNA

Fetal

deve

lopm

ent

(40%

)NR

NR

Method

s:RNas

epr

otection

assa

yShep

hardet

al.(199

2)

CYP1A

2Catalytic

activity

Fetal

deve

lopm

ent

(4%)

5–15

yrIn

crea

sedslow

lySubs

trates:ECOD

(Mäe

npä

äet

al.,19

93),Im

ipramine,

Metho

xyresoru

fin(Son

nier

andCresteil,19

98),caffeine

(Caz

eneu

veet

al.,19

94).Matrix:

microsomes.Metho

ds:

spectrop

hotometry

(Mäe

npää

etal.,19

93),radioa

ctivity

(Son

nier

andCresteil,19

98),fluo

rimetry

(Son

nier

andCresteil,

1998

),HPLC

(Caz

eneu

veet

al.,19

94)

Mäe

npä

äet

al.(199

3);Caz

eneu

veet

al.

(199

4);Son

nieran

dCresteil(199

8)

Protein

Fetal

deve

lopm

ent

(0%–13

%)

1–5yr:50

%–10

0%In

crea

sedslow

lyMetho

ds:im

mun

oblot,Western

blot

Berthou

etal.(198

8);Ratan

asav

anhet

al.

(199

1);Shim

adaet

al.,(199

4);Tateish

iet

al.(199

7);Son

nier

andCresteil,(199

8);

Son

get

al.(201

7)mRNA

NR

(ND

infetal

tissue

)NR

NR

(Din

adult

tissue)

Method

s:PCR,RNA

blot

Ratan

asav

anhet

al.(199

1);Hak

kola

etal.

(199

4);Yan

get

al.(199

5)CYP2A

6Catalytic

activity

Fetal

deve

lopm

ent

(0.6%)

5–15

yrIn

crea

sedpr

ogressively

Sub

strate:c

oumarin,n

icotine.

Matrix:

microsomes.M

etho

ds:N

RShimad

aet

al.(199

6);Hak

kola

etal.(19

98);

Upr

etian

dWah

lstrom

,(201

6)Protein

Fetal

deve

lopm

ent

(T3:

65%)

1–15

yrIn

consisten

tpa

ttern

Method

s:Western

blot,im

munob

lot

Shim

adaet

al.(199

4);Shim

adaet

al.(199

6);

Tateish

iet

al.(199

7);Upr

etian

dWah

lstrom

(201

6)mRNA

NR

(ND

infetal

tissue

)NR

NR

(Din

adulttissue

)Metho

ds:PCR

Hak

kola

etal.(199

4)

CYP2C

(con

tinued

)

618 van Groen et al.

Page 23: Ontogeny of Hepatic Transporters and Drug-Metabolizing … · hepatic clearance of the opioid morphine in newborns and young infants (Knibbe et al., 2009). Morphine is actively transported

TABLE

7—Con

tinued

Ons

etof

Exp

ression/

Activity

Adu

ltLev

elsRea

ched

Age

-Related

Chan

ges(%

ofAdu

lt)in

Exp

ression/

ActivityafterBirth

Com

men

tsReferen

ces

Protein

Fetal

deve

lopm

ent

(,1%

)NR

(3–12

mo:

34%)

Increa

sedrapidly

Metho

ds:Western

blot,im

mun

oblot

Shimad

aet

al.(199

4,19

96);Treluye

ret

al.

(199

7)mRNA

Fetal

deve

lopm

ent

(6%–60

%)

NR

(1–5yr:87

%)

Increa

sedslow

lyMetho

ds:Northernblot,RNA

blot

Ratan

asav

anhet

al.(199

1);Treluye

ret

al.

(199

6);Treluye

ret

al.(199

7)CYP2C

8Protein

Fetal

deve

lopm

ent

(28%

)NR

(.7yr:10

0%)

NR

(inc

reas

ed)

Metho

ds:Western

blot,im

mun

oblot

Tateish

iet

al.(199

7);Narah

arisetti

etal.

(201

0);Son

get

al.(201

7)mRNA

Fetal

deve

lopm

ent

(D)

NR

(.7yr:10

0%)

NR

(noch

ange

s.

7yr)

Metho

ds:PCR

Hak

kola

etal.(199

4);Narah

arisetti

etal.

(201

0)CYP2C

9Protein

Fetal

deve

lopm

ent

(100

%)

Noch

ange

sMetho

ds:Western

blot,im

mun

oblot

Tateish

iet

al.(199

7);Kou

kour

itak

iet

al.

(200

4)mRNA

Fetal

deve

lopm

ent

(T1-2:

ND

andT3:

13%)

28da

ysIn

crea

sedpr

ogressively

Metho

ds:Northernblot

Treluye

ret

al.(199

7)

CYP2C

18mRNA

Fetal

deve

lopm

ent

(40%

)28

days

Incons

istent

pattern

Metho

ds:Northernblot

Treluye

ret

al.(199

7)

CYP2D

6Catalytic

activity

Fetal

deve

lopm

ent

(1.2%–3.7%

)NR

(28da

ys:27

.5%)

Increa

sedrapidly

Sub

strate:de

xtrometho

rpha

n.Matrix:

microsomes.Metho

ds:

HPLC

Treluye

ret

al.(199

1);Ja

cqz-Aigrain

and

Cresteil(199

2);Steve

nset

al.(200

8)Protein

Fetal

deve

lopm

ent

(8%–82

%)

1–5yr

Increa

serapidly

Metho

ds:Western

blotting

(Tateish

iet

al.,19

97;Steve

nset

al.,

2008

),im

munob

lotting(Treluye

ret

al.,19

91;Ja

cqz-Aigrain

andCresteil,19

92;Shim

adaet

al.,19

96)

Treluye

ret

al.(199

1);Ja

cqz-Aigrain

and

Cresteil(199

2);Shim

adaet

al.(199

6);

Tateish

iet

al.(199

7);Steve

nset

al.(200

8)mRNA

Fetal

deve

lopm

ent

(50%

–90

%)

1da

ysNon

-linea

rpa

ttern

Metho

ds:slot

blot

(Treluye

ret

al.,19

91;Ja

cqz-Aigrain

and

Cresteil,19

92),PCR

(Hak

kola

etal.,19

94)

Treluye

ret

al.(199

1);Ja

cqz-Aigrain

and

Cresteil(199

2);Hak

kola

etal.(19

94)

CYP2E

1Catalytic

activity

Fetal

deve

lopm

ent

(3%–20

%)

NR

(5–15

yr:81

%)

Increa

sedslow

lySub

strate:EtO

H(C

arpe

nter

etal.,19

96;Milleret

al.,19

96),

chlorzox

azon

e(V

ieiraet

al.,19

96).Matrix:

microsomes.

Metho

ds:im

mun

oblot

Carpe

nteret

al.(199

6);Milleret

al.(199

6);

Vieiraet

al.(199

6)

Protein

Fetal

deve

lopm

ent

(1.5%–70

%)

1–5yr

Increa

sedslow

lyMetho

ds:Western

blot,im

mun

oblot

Shimad

aet

al.(199

4,19

96);Milleret

al.

(199

6);Treluye

ret

al.(199

6);Vieiraet

al.

(199

6);Tateish

iet

al.(199

7);Jo

hnsrud

etal.(200

3)mRNA

Fetal

deve

lopm

ent

(2%–6%

)NR

(3–12

mo:

40%)

Increa

sedslow

lyMethod

s:PCR

Hak

kola

etal.(199

4);Vieiraet

al.(199

6)

CYP4A

Protein

Fetal

deve

lopm

ent

(200

%)

NR

(1–5yr:16

9%)

Decreas

edslow

lyMetho

ds:Slotblot

Treluye

ret

al.(199

6)

CYP

total

Protein

Fetal

deve

lopm

ent

(57%

–21

%)

NR

Incons

istent

pattern

Metho

ds:Western

blot,im

mun

oblot

Caz

eneu

veet

al.(19

94);Shimad

aet

al.(19

94,

1996

);Tateish

iet

al.(19

97);Treluye

ret

al.

(199

7)mRNA

Fetal

deve

lopm

ent

(40%

)NR

NR

Method

s:RNas

epr

otection

assa

yShep

hardet

al.(199

2)

CYP3A

Protein

Fetal

deve

lopm

ent

(65%

–80

%)

1–5yr

Increa

sedslow

lyMetho

ds:Western

blot,im

mun

oblot

Ratan

asav

anhet

al.(199

1);Shimad

aet

al.

(199

4,19

96);Lacroix

etal.(199

7);Tateish

iet

al.(199

7)CYP3A

4Catalytic

activity

Fetal

deve

lopm

ent

(6%–3%

)1–

5yr

Increa

sedslow

lySub

strate:testosterone

.Matrix:

microsomes.Metho

ds:

radioa

ctivity(Lacroix

etal.,19

97)

Shim

adaet

al.(199

6);Lacroix

etal.(199

7);

Lee

deret

al.(200

5)Protein

Fetal

deve

lopm

ent

(T1-2:

12.5%

and

T3:

33%)

NR

(5–15

yr:33

%)

Increa

sedslow

lyMetho

ds:im

mun

oblot

Steve

nset

al.(200

3);Pop

eet

al.(200

5)

(con

tinued

)

Ontogeny of Hepatic Transport and Drug Metabolism 619

Page 24: Ontogeny of Hepatic Transporters and Drug-Metabolizing … · hepatic clearance of the opioid morphine in newborns and young infants (Knibbe et al., 2009). Morphine is actively transported

CYP3A4, CYP3A5, and CYP3A7. The total CYP3Aprotein expression was 65%–80% in fetuses butappeared to be relatively constant across other agegroups. CYP3A4 is an extensively studied enzyme thatshows low activity in fetuses, with 50% of adult levels inchildren up to 1 year old. Adult levels are reached inchildren between 1 and 5 years old. Protein expressiondata showed an increase, but activity data showeda decrease during fetal life. The activity of CYP2A6 isvery low during fetal age (,1% of adult values) butreaches 50% activity of adult values at neonatal age.This is also reported for protein expression of CYP2A6.Activity and protein expression both reach adult valuesbetween 1 and 15 years of age. For CYP2C8, activitydata are missing, but the maturational pattern isdelayed compared with CYP2A6. Protein expression ofCYP2C8 in fetuses shows 28% of adult values, withadult values reached in children .7 years.

b. Age-related decrease in activity/expression. TheCYP3A family consist of various isoforms as notedbefore, of which CYP3A7 is known as the fetalisoform. This is confirmed by literature data, asCYP3A7 is highly active in fetuses. Also, the proteinexpression is 2000% of adult expression. However,mRNA expression in fetuses was found to be only185% of adult values. For CYP4A, only data onprotein expression were available. From neonatesto children, protein expression was higher than inadults (130%–200% of adult values). Expression datafor age groups between children (1–5 years) and adultswere lacking.

c. Complex ontogeny pattern in activity/expression.Total CYP enzyme protein levels and mRNA expressionin fetuses were 21%–57% and 40% of adult values,respectively. Adult values are not yet reached at infantage, and data were lacking between infant and adultage. The CYP2C9 maturational pattern was discrepantbetween protein and mRNA expression. Protein expres-sion did not show age-related differences. In contrast,mRNA expression was not detected in fetuses andshowed neonatal development with 60% of adult values1 week postnatally. Adult values were reached 1 monthpostnatally. For the enzyme CYP2C18, only mRNAexpression is available, with 40% in fetuses, and rapidneonatal development to adult levels decreasing to87% of adult levels 1 week postnatally. CYP3A5 ispolymorphic and is only expressed in 23% of the adultpopulation. The expression shows no clear developmen-tal pattern.

2. Rat. The results are depicted in Fig. 10,Supplemental Fig. 11 and S12, and Table 8 and arefurther explained below.

a. Age-related increase in activity/expression.Metabolic activity gradually increased with age, reach-ingmaximal activity levels from 3 to 4 days (CYP2E andCYP2B1/2), 7 days (CYP4A1), and 21 days of age (CYP1Aand CYP3A). For CYP2C11, a sex-related pattern was

TABLE

7—Con

tinued

Ons

etof

Exp

ression/

Activity

Adu

ltLev

elsRea

ched

Age

-Related

Chan

ges(%

ofAdu

lt)in

Exp

ression/

ActivityafterBirth

Com

men

tsReferen

ces

mRNA

Fetal

deve

lopm

ent

(T1-2:

10%

andT3:

20%)

3–12

mo

Increa

sedslow

lyMetho

ds:PCR,slot

blot,RT-PCR

Yan

get

al.(199

4);Lacroix

etal.(199

7);

Lee

deret

al.(200

5)

CYP3A

5Protein

Fetal

deve

lopm

ent

(42%

)NR

(9yr:19

6%)

Incons

istent

pattern

Metho

ds:im

mun

oblot

Wrigh

tonet

al.(199

0);Steve

nset

al.(200

3)

mRNA

Fetal

deve

lopm

ent

(D)

NR

NR

Method

s:PCR,Northernblot

Sch

uetzet

al.(199

4);Yan

get

al.(199

4)

CYP3A

7Catalytic

activity

Fetal

deve

lopm

ent

(T1-2:

915%

)NR

(3–12

mo:

232%

)Decreas

edpr

ogressively

Subs

trate:

DHEAS.Matrix:

microsomes.Method

s:radioa

ctivity,

HPLC

Lacroix

etal.(199

7);Lee

deret

al.(200

5)

Protein

Fetal

deve

lopm

ent

(T1-2:

2000

%)

1–5yr

Decreas

edpr

ogressively

Metho

ds:Western

blot,im

mun

oblot

Lacroix

etal.(199

7);Tateish

iet

al.(199

7);

Steve

nset

al.(200

3)mRNA

Fetal

deve

lopm

ent

(185

%)

NR

NR

Method

s:PCR,RT-PCR,Northernblot

Hak

kola

etal.(199

4);Sch

uetzet

al.(199

4);

Lee

deret

al.(200

5)

D,d

ay;E

COD,7-ethox

ycou

marin

O-dee

thylas

e;HPLC,h

igh-perform

ance

LC;N

D,no

tde

tectab

le;N

R,n

otrepo

rted

;PCR,p

olym

eras

ech

ainreaction

;RT-PCR,reve

rse-tran

scriptas

epo

lymeras

ech

ainreaction

.

620 van Groen et al.

Page 25: Ontogeny of Hepatic Transporters and Drug-Metabolizing … · hepatic clearance of the opioid morphine in newborns and young infants (Knibbe et al., 2009). Morphine is actively transported

Fig. 10. Pooled literature data on the ontogeny of metabolic activity of hepatic CYP enzymes in rats: CYP1A (A), CYP1A1 (B), CYP1A2 (C), CYP1A1/2(D), CYP2A (E), CYP2A1 (F), CYP2A2 (G), CYP2B (H), CYP2B1 (I), CYP2B1/2 (J), CYP2C (K), CYP2C6 (L), CYP2C11 (M), CYP2D (N), CYP2E1 (O),CYP3A (P), CYP3A1 (Q), CYP3A2 (R), CYP3A1/2 (S), and CYP4A1 (T). The symbols represent the relative activity in each age group, and the dottedline indicates the adult value defined as 100%. If multiple values were obtained for the same age group, the symbols represent the average relativeactivity, and the error bars show the S.D. See Table 8 for explanation on the ontogeny profiles and literature references.

Ontogeny of Hepatic Transport and Drug Metabolism 621

Page 26: Ontogeny of Hepatic Transporters and Drug-Metabolizing … · hepatic clearance of the opioid morphine in newborns and young infants (Knibbe et al., 2009). Morphine is actively transported

Fig. 10. Continued.

622 van Groen et al.

Page 27: Ontogeny of Hepatic Transporters and Drug-Metabolizing … · hepatic clearance of the opioid morphine in newborns and young infants (Knibbe et al., 2009). Morphine is actively transported

observed, reaching adult levels of activity at 7 days forfemale rats and 21 days for male rats.Activity of CYP4A2 and CYP4A3 rose from 20% at

birth until adulthood, except for female rats showing.100% of adult CYP4A2 activity at 7 days after birth.Age- and sex-dependent increase in mRNA expres-

sion levels of CYP3A9, CYP3A11, CYP3A18, CYP3A23,CYP2D3, CYP7A1, CYP8B1, and CYP27 was reported.Maximal mRNA expression levels were achieved after7 days of age for CYP3A11 and CYP3A23 or duringadulthood for CYP3A9. Interstudy discrepancies existwith regard to the ontogeny of CYP3A18 reachingmaximal mRNA expression levels at various ages, from7 days in both female and male rats to 4 days in femalerats and adulthood in male rats.b. Age-related decrease in activity/expression.

The ontogeny of CYP2C6 activity levels was notreported in juvenile rats below 28 days of age, buta 50-fold decrease in activity from 28 days to adult ratswas seen. However, CYP2C6 protein and mRNA ex-pression levels were inconsistent with activity levels:The more detailed ontogeny of CYP2C6 mRNA/proteinlevels revealed an age-related increase in expressionfrom birth until adulthood in bothmale and female rats.c. No age-related changes in activity/expression.

Little to no change in metabolic activity of CYP2A,CYP2C12, and CYP2D isoforms was observed withadvancing age in rats. No apparent sex differences in

activity were associated with ontogeny of CYP2A,whereas only male rats were studied for other CYPisoforms.

d. Inconsistent ontogeny pattern of expression levels.Fetal mRNA values of CYP7A1 and CYP8B1 repre-sented .30% of adult levels. However, their mRNAexpression levels rapidly declinedafter birth (,25%of adultlevels after 7–14 days) and then increased throughoutadulthood and peaked in elderly rats (.300%). However,mRNA protein levels of CYP27 reached maximal valuesafter birth and remained unchanged until adulthood.

3. Mouse. The results are depicted in Fig. 11 andTable 9 and are further explained below.

a. Age-related increase in mRNA expression.The majority of the phase I enzymes showed a lowermRNA expression in younger age groups than inolder age groups, and an important number of theseenzymes reached adult levels at 20 days postnatal,including CYP1A2, CYP2A4, CYP2A5, CYP2B26,CYP2C50, CYP2D22, CYP3A11, CYP3A25, CYP4F14,and ALDH1. All but CYP1A1, CYP1A2, CYP2B10,CYP2B13, CYP2B23, CYP2F2, CYP4A10, CYP4A32,FMO2, and alternative oxidase were expressed in fetaltissue.

b. Age-related decrease in mRNA expression.CYP3A16 was the only isoform that showed a cleardecrease in expression with a slow decrease from fetallife until adult values were reached at 25 days.

Fig. 10. Continued.

Ontogeny of Hepatic Transport and Drug Metabolism 623

Page 28: Ontogeny of Hepatic Transporters and Drug-Metabolizing … · hepatic clearance of the opioid morphine in newborns and young infants (Knibbe et al., 2009). Morphine is actively transported

TABLE

8Ontog

enypr

ofileof

hep

atic

CYPen

zymes

inrats

basedon

metab

olic

activity,pr

oteinex

pression

andmRNA

expr

ession

leve

lsPercentage

srepr

esen

tex

pression

/activityrelative

toad

ult

leve

ls.

Onsetof

Activityan

d/or

Exp

ression

Adu

ltLev

elsRea

ched

Age

-Related

Chan

gesin

Activity/

Exp

ression

Com

men

tsReferen

ces

CYP1A

Catalytic

activity

4da

ys:UD

M:3

0da

ys;F:

30da

ys(77%

)M:increa

sedpr

ogressively;

F:

increa

sedslow

lyAdu

ltag

e:56

days.Fetal

deve

lopm

ent–4da

ys:NR.Subs

trate:

ethox

yresorufin.S

trainan

dsex:

Spr

agueDaw

ley(M

/F).Matrix:

live

rmicrosomes.Metho

ds:HPLC

Asa

okaet

al.(201

0)

CYP1A

1Catalytic

activity

4da

ys:5%

21da

ysIn

crea

sedpr

ogressively

Adu

ltag

e:49

–60

days.Fetal

deve

lopm

ent–4da

ys:N

R.Subs

trate:

ethox

yresorufin.S

trainan

dsex:

Spr

agueDaw

leyan

dLon

g-Eva

ns

(M/F).Matrix:

live

rmicrosomes.Method

s:HPLC

Geb

remichae

letal.(19

95);Sza

boet

al.

(200

9)

Protein

expr

ession

7da

ys:76

%21

days

Increa

sedpr

ogressively;

no

chan

gesafter21

days

Fetal

deve

lopm

ent–7da

ys:N

R.Strainan

dsex:

Wistar(M

/F).

Metho

ds:Western

blotting

Imao

kaet

al.,(199

1)

mRNA

expr

ession

Fetal

deve

lopm

ent:

.10

0%Fetal

deve

lopm

ent

Inconsisten

tpa

ttern

Adu

ltag

e:42

days.S

trainan

dsex:

Spr

agueDaw

ley(M

/F).Method

s:qR

T-PCR

deZwartet

al.(20

08)

CYP1A

2Catalytic

activity

5da

ys:10

%21

days

Increa

sedpr

ogressively;

decrea

sedin

elde

rly(112

days:70

%)

Adu

ltag

e:62

–65

days.Sub

strate:metho

xyresoru

fin.

Fetal

deve

lopm

ent–1da

y:NR.Strainan

dsex:

Spr

agueDaw

ley(M

).Matrix:

live

rmicrosomes.Method

s:HPLC

Alcornet

al.(200

7)

Protein

expr

ession

3da

ys:35

%28

days:7

8%In

crea

sedslow

lyAdu

ltag

e:42

–50

days.Fetal

deve

lopm

ent–3da

ys:N

R.Strainan

dsex:

Spr

agueDaw

ley(M

/F)an

dWistar(M

/F).Method

s:Western

blotting

Imao

kaet

al.(199

1);Alcornet

al.

(200

7)

mRNA

expr

ession

Fetal:,1%

11da

ysIn

crea

sedrapidly;

peak

edat

15da

ys(300

%)

Adu

ltag

e:42

–11

2da

ys.Strainan

dsex:

Spr

agueDaw

ley(M

/F).

Method

s:qR

T-PCR

deZwartet

al.(20

08);Asa

okaet

al.

(201

0)CYP1A

1/2

Catalytic

activity

M:1da

y(40%

);F:

1da

y(60%

)18

days

Increa

sedpr

ogressivelythen

decrea

sedin

elde

rly

Adu

ltag

e:42

–50

days.Sub

strate:etho

xyresoru

fin.

Strainan

dsex:

Spr

agueDaw

ley(M

/F).Matrix:

live

rmicrosomes.Method

s:sp

ectrop

hotometry

deZwartet

al.(20

08);McP

hailet

al.

(201

6)

Protein

expr

ession

5da

ys:45

%21

days

Increa

sedpr

ogressivelythen

decrea

sedin

elde

rly

Adu

ltag

e:49

–50

days.Fetal

deve

lopm

ent–5da

ys:N

R.Strainan

dsex:

Spr

ague

Daw

ley(M

/F).Metho

ds:Western

blotting

McP

hailet

al.(20

16)

CYP2A

Catalytic

activity

4da

ys:UD

16da

ysIn

crea

sedrapidly

Adu

ltag

e:56

days.Fetal

deve

lopm

ent–4da

ys:NR.Subs

trate:

testosterone

.Strainan

dsex:

Spr

ague

Daw

ley(M

/F).Matrix:

live

rmicrosomes.Metho

ds:HPLC

Asa

okaet

al.(201

0)

CYP2A

1Catalytic

activity

1da

ys:55

%M:7

days;F

:21da

ysIn

crea

sedrapidly(M

);increa

sedpr

ogressively(F)

Adu

ltag

e:49

–65

days.Fetal

deve

lopm

ent–1da

ys:N

R.Subs

trates:

testosterone

,an

drostene

dion

e.Strainan

dsex:

Spr

ague

Daw

ley

andWistar(M

/F).Matrix:

live

rmicrosomes.Method

s:HPLC

Imao

kaet

al.(199

1);Wrigh

tet

al.

(199

7);Che

rala

etal.(20

07)

Protein

expr

ession

M:7da

ys(95%

);F:

7da

ys(40%

)M:7

days;F

:21da

ysM:pe

aked

at21

days

(300

%);

F:noch

ange

safter21

days

Adu

ltag

e:49

–50

days.Fetal

deve

lopm

ent–7da

ys:N

R.Strainan

dsex:

Wistar(M

/F).Metho

ds:Western

blotting

Imao

kaet

al.(199

1)

mRNA

expr

ession

M:4

days

(100

%);F:

4da

ys(78%

)M:4

days;F

:16da

ysNoch

ange

safter4da

ysAdu

ltag

e:56

days.F

etal

deve

lopm

ent–4da

ys:N

R.Strainan

dsex:

Spr

agueDaw

ley(M

/F).Method

s:qR

T-PCR

Asa

okaet

al.(201

0)

CYP2A

2Catalytic

activity

7da

ys:70

%21

days:6

7%In

crea

sedslow

lythen

decrea

sedin

elde

rly

Adu

ltag

e:49

–50

days.Fetal

deve

lopm

ent–7da

ys:N

R.Subs

trate:

testosterone

.Strainan

dsex:

Wistar(M

/F).Matrix:

live

rmicrosomes.Metho

ds:HPLC

Imao

kaet

al.(199

1)

Protein

expr

ession

M:7da

ys(30%

);F:

7da

ys(80%

)M:2

1da

ys(30%

);F:

21da

ys(80%

)M:increa

sedslow

ly;F:

increa

sedrapidly

Adu

ltag

e:49

–50

days.Fetal

deve

lopm

ent–7da

ys:N

R.Strainan

dsex:

Wistar(M

/F).Metho

ds:Western

blotting

Imao

kaet

al.(199

1)

mRNA

expr

ession

M:4da

ys(,

3%);F:

4da

ys(.

200%

)M:3

0da

ys(10%

);F:

4da

ys(.

200%

)M:increa

sedslow

ly;F:no

chan

gesafter4da

ysAdu

ltag

e:56

days.F

etal

deve

lopm

ent–4da

ys:N

R.Strainan

dsex:

Spr

agueDaw

ley(M

/F).Method

s:qR

T-PCR

Asa

okaet

al.(201

0)

CYP2B

Catalytic

activity

M:4da

ys(20%

);F:

4da

ys(90%

)M:3

0da

ys(80%

);F:

4da

ys(90%

)M:increa

sedslow

ly;F:

increa

sedrapidly

Adu

ltag

e:56

days.Fetal

deve

lopm

ent–4da

ys:NR.Subs

trate:

testosterone

.Strainan

dsex:

Spr

ague

Daw

ley(M

/F).Matrix:

live

rmicrosomes.Metho

ds:HPLC

Asa

okaet

al.(201

0)

(con

tinued

)

624 van Groen et al.

Page 29: Ontogeny of Hepatic Transporters and Drug-Metabolizing … · hepatic clearance of the opioid morphine in newborns and young infants (Knibbe et al., 2009). Morphine is actively transported

TABLE

8—Con

tinued

Onsetof

Activityan

d/or

Exp

ression

Adu

ltLev

elsRea

ched

Age

-Related

Chan

gesin

Activity/

Exp

ression

Com

men

tsReferen

ces

CYP2B

1Catalytic

activity

M:7da

ys(50%

);F:

7da

ys(.

100%

)14

days

Increa

sedrapidlythen

decrea

sedin

elde

rly

Adu

ltag

e:49

–50

days.Fetal

deve

lopm

ent–7da

ys:N

R.Subs

trate:

testosterone,

pentoxy

resoru

fin.Strainan

dsex:

Spr

agueDaw

ley

(M)an

dWistar(M

/F).Matrix:

live

rmicrosomes.Metho

ds:HPLC

Imao

kaet

al.(199

1);Geb

remichae

let

al.(19

95)

Protein

expr

ession

M:7da

ys(75%

);F:

7da

ys(.

120%

)M:2

1da

ys(77%

);F:

7da

ysM:increa

sedslow

ly;F:

increa

sedrapidly.

Decreas

edin

elde

rly

Adu

ltag

e:49

–50

days.Fetal

deve

lopm

ent–7da

ys:N

R.Strainan

dsex:

Wistar(M

/F).Metho

ds:Western

blotting

Imao

kaet

al.(199

1)

mRNA

expr

ession

M:4da

ys(50%

);F:

4da

ys(20%

)4da

ysNoch

ange

safter4da

ysAdu

ltag

e:56

days.F

etal

deve

lopm

ent–4da

ys:N

R.Strainan

dsex:

Spr

agueDaw

ley(M

/F).Method

s:qR

T-PCR

Asa

okaet

al.(201

0)

CYP2B

2Protein

expr

ession

M:7da

ys(70%

);F:

7da

ys(40%

)M:2

1da

ys;F:

21da

ys(80%

)M:increa

sedpr

ogressively

Adu

ltag

e:49

–50

days.Fetal

deve

lopm

ent–7da

ys:N

R.Strainan

dsex:

Wistar(M

/F).Metho

ds:Western

blotting

Imao

kaet

al.(199

1)

mRNA

expr

ession

M:4

days

(700

%);F:

4da

y(280

%)

4da

ysDecreas

edslow

lyAdu

ltag

e:56

days.F

etal

deve

lopm

ent–4da

ys:N

R.Strainan

dsex:

Spr

agueDaw

ley(M

/F)an

dLon

g-Eva

ns(M

).Method

s:qR

T-PCR

Sza

boet

al.(200

9);Asa

okaet

al.

(201

0))

CYP2B

1/2

Catalytic

activity

Fetal

deve

lopm

ent:

,25

%M:4

days;F:7da

ysIn

crea

sedrapidly

Adu

ltag

e:56

days.Subs

trate:

pentoxy

resoru

fin.Strainan

dsex:

Spr

agueDaw

ley(M

/F).Matrix:

live

rmicrosomes.Method

s:sp

ectrop

hotometry

deZwartet

al.(20

08);McP

hailet

al.

(201

6)

Protein

expr

ession

5da

ys:80

%–90

%M:2

1da

ys;F:

15da

ysIn

crea

sedpr

ogressively

Adu

ltag

e:49

–50

days.Fetal

deve

lopm

ent–5da

ys:N

R.Strainan

dsex:

Spr

ague

Daw

ley(M

/F).Metho

ds:Western

blotting

McP

hailet

al.(20

16)

CYP2C

Catalytic

activity

4da

ys:UD

30da

ys:1

%In

crea

sedslow

lyAdu

ltag

e:56

days.Fetal

deve

lopm

ent–4da

ys:NR.Subs

trate:

testosterone

.Strainan

dsex:

Spr

ague

Daw

ley(M

/F).Matrix:

live

rmicrosomes.Metho

ds:HPLC

Asa

okaet

al.(201

0)

CYP2C

6Catalytic

activity

28da

ys:30

00%

NR

Decreas

edafter28

days

Adu

ltag

e:63

–65

days.Fetal

deve

lopm

ent–28

days:N

R.Subs

trate:

testosterone.

Strainan

dsex:

Spr

agueDaw

ley(F).Matrix:

live

rmicrosomes.Metho

ds:HPLC

Che

rala

etal.(20

07)

Protein

expr

ession

7da

ys:,10

%21

days:4

5%In

crea

sedslow

lyAdu

ltag

e:49

to50

days.F

etal

deve

lopm

ent–7da

ys:N

R.S

trainan

dsex:

Wistar(M

/F).Metho

ds:Western

blotting

Imao

kaet

al.(199

1)

mRNA

expr

ession

4da

ys:25

%–30

%30

days

Increa

sedpr

ogressively

Adu

ltag

e:56

days.F

etal

deve

lopm

ent–4da

ys:N

R.Strainan

dsex:

Spr

agueDaw

ley(M

/F).Method

s:qR

T-PCR

Asa

okaet

al.(201

0)

CYP2C

11Catalytic

activity

M:7da

ys(20%

);F:

7da

ys(90%

)M:2

8da

ys;F

:7da

ysM:increa

sedpr

ogressively;

F:

increa

sedrapidly

Adu

ltag

e:63

–65

days.Fetal

deve

lopm

ent–7da

ys:N

R.Subs

trate:

testosterone

,an

drostene

dion

e.Strainan

dsex:

Spr

ague

Daw

ley

andWistar(M

/F).Matrix:

live

rmicrosomes.Method

s:HPLC

Imao

kaet

al.(199

1);Wrigh

tet

al.

(199

7);Che

rala

etal.(20

07)

Protein

expr

ession

M:7da

ys(6%);F:

7da

ys(100

%)

M:2

1da

ys(17%

);F:

21da

ys(90%

)M:increa

sedslow

ly;F:

increa

sedpr

ogressively

Adu

ltag

e:49

–50

days.Fetal

deve

lopm

ent–7da

ys:N

R.Strainan

dsex:

Wistar(M

/F).Metho

ds:Western

blotting

Imao

kaet

al.(199

1)

mRNA

expr

ession

4da

ys:,1%

30da

ys:1

4%In

crea

sedslow

lyAdu

ltag

e:56

days.F

etal

deve

lopm

ent–4da

ys:N

R.Strainan

dsex:

Spr

agueDaw

ley(M

/F).Method

s:qR

T-PCR

Asa

okaet

al.(201

0)

CYP2C

12Catalytic

activity

1da

ys:UD

NR

Decreas

edin

elde

rly(365

days:85

%)

Adu

ltag

e:40

days.Fetal

deve

lopm

ent–1da

y:NR.Subs

trate:

testosterone

.Strainan

dsex:

Wistar(M

).Matrix:

live

rslices.

Method

s:HPLC

Lupp

etal.(200

8)

Protein

expr

ession

M:7da

ys(65%

);F:

7da

ys(,

4%)

M:2

1da

ys;F:

21da

ys(16%

)M:increa

sedpr

ogressively;

F:

incons

istent

pattern

Adu

ltag

e:49

–50

days.Fetal

deve

lopm

ent–7da

ys:N

R.Strainan

dsex:

Wistar(M

/F).Metho

ds:Western

blotting

Imao

kaet

al.(199

1)

CYP2D

Catalytic

activity

7da

ys:75

%–80

%21

days:7

5%In

crea

sedslow

lyAdu

ltag

e:49

days.Fetal

deve

lopm

ent–7da

ys:NR.Subs

trate:

bufuralol.Strainan

dsex:

Wistar(M

/F).Matrix:

live

rmicrosomes.

Method

s:HPLC

Chow

etal.(199

9)

Protein

expr

ession

7da

ys:65

%–75

%21

days:6

5%In

crea

sedslow

lyAdu

ltag

e:49

days.F

etal

deve

lopm

ent–7da

ys:N

R.Strainan

dsex:

Wistar(M

/F).Metho

ds:im

mun

oblotting

Chow

etal.(199

9)

CYP2D

1mRNA

expr

ession

7da

ys:.80

%21

days

Increa

sedpr

ogressivelythen

decrea

sedin

elde

rly

Adu

ltag

e:49

days.F

etal

deve

lopm

ent–7da

ys:N

R.Strainan

dsex:

Wistar(M

/F).Method

s:RT-PCR

Chow

etal.(199

9)

(con

tinued

)

Ontogeny of Hepatic Transport and Drug Metabolism 625

Page 30: Ontogeny of Hepatic Transporters and Drug-Metabolizing … · hepatic clearance of the opioid morphine in newborns and young infants (Knibbe et al., 2009). Morphine is actively transported

TABLE

8—Con

tinued

Onsetof

Activityan

d/or

Exp

ression

Adu

ltLev

elsRea

ched

Age

-Related

Chan

gesin

Activity/

Exp

ression

Com

men

tsReferen

ces

CYP2D

2mRNA

expr

ession

7da

ys:10

0%7da

ysIn

crea

sedrapidly.

Noch

ange

safter7da

ysAdu

ltag

e:49

days.F

etal

deve

lopm

ent–7da

ys:N

R.Strainan

dsex:

Wistar(M

/F).Method

s:RT-PCR

Chow

etal.(199

9)

CYP2D

3mRNA

expr

ession

M:7da

ys(15%

);F:

7da

ys(40%

)21

days:3

0%–50

%In

crea

sedslow

lyAdu

ltag

e:49

days.F

etal

deve

lopm

ent–7da

ys:N

R.Strainan

dsex:

Wistar(M

/F).Method

s:RT-PCR

Chow

etal.(199

9)

CYP2E

1Catalytic

activity

M:1da

y(10%

);F:

5da

ys(60%

)7da

ysIn

crea

sedrapidly

Adu

ltag

e:42

–50

days.Fetal

deve

lopm

ent–1da

y:NR.Subs

trates:

aniline,

p-nitro-ph

enol.Strainan

dsex:

Spr

ague

Daw

ley(M

/F).

Matrix:

live

rmicrosomes.Metho

ds:sp

ectrop

hotometry

deZwartet

al.(20

08);McP

hailet

al.

(201

6)

Protein

expr

ession

M:3da

ys(40%

);F:

5da

ys(180

%)

M:1

0da

ys;F:fetal

deve

lopm

ent

M:increa

sedrapidly.

F:no

chan

gesafter5–

10da

ysAdu

ltag

e:42

–11

2da

ys.F

etal

deve

lopm

ent–3da

ys:N

R.S

trainan

dsex:

Spr

agueDaw

leyan

dWistar(M

/F).Method

s:Western

blotting

Imao

kaet

al.(199

1);Alcornet

al.

(200

7);McP

hailet

al.(20

16)

mRNA

expr

ession

Fetal

deve

lopm

ent

(M:9%

,F:2

0%)

M:1

0da

ys;F

:7da

ysIn

crea

sedrapidly.

Pea

kedat

15da

ys(F:50

0%)

Adu

ltag

e:42

–11

2da

ys.Strainan

dsex:

Spr

agueDaw

ley(M

/F).

Method

s:qR

T-PCR

Elbarbryet

al.(200

7);de

Zwartet

al.

(200

8)CYP3A

Catalytic

activity

1da

ys:,10

%M:2

1da

ys;F

:4da

ysM:increa

sedpr

ogressively.

F:

increa

sedrapidly.

Decreas

edin

elde

rly

Adu

ltag

e:50

–65

days.Sub

strate:testosterone

,an

drostene

dion

e,be

nzoxy

resoru

fin.S

trainan

dsex:

Spr

agueDaw

leyan

dWistar(M

/F)an

dLon

g-Eva

ns(M

).Matrix:

Method

s:HPLC

Imao

kaet

al.(199

1);Jo

hnsonet

al.

(200

0);Sza

boet

al.(200

9);Asa

oka

etal.(20

10);Wrigh

tet

al.(201

0)Protein

expr

ession

M:1

days

(180

%);F:

1da

ys(70%

)M:1

day;

F:1

0da

ysIn

crea

sedrapidly

Adu

ltag

e:60

–63

days.Strainan

dsex:

Wistar(M

/F).Method

s:Western

blotting

Johnsonet

al.(20

00)

CYP3A

1/2

Catalytic

activity

1da

y:,2%

28da

ys:8

0%–90

%In

crea

sedpr

ogressively

Adu

ltag

e:42

days.Sub

strate:etho

xyresofurin.

Fetal

deve

lopm

ent–1da

y:NR.Strainan

dsex:

Spr

agueDaw

ley(M

/F).

Matrix:

live

rmicrosomes.Metho

ds:sp

ectrop

hotometry

deZwartet

al.(20

08)

CYP3A

1Catalytic

activity

NR

NR

Incons

istent

pattern

Fetal

deve

lopm

ent–28

days:N

R.S

ubs

trate:

testosterone.

Strainan

dsex:

Spr

agueDaw

ley(M

).Matrix:

live

rmicrosomes.Method

s:HPLC

Che

rala

etal.(20

07)

Protein

expr

ession

NR

NR

Decreas

edin

elde

rly(728

days:45

%)

Adu

ltag

e:NR.Fetal

deve

lopm

ent–ad

ult:NR.Strainan

dsex:

Fisch

er-344

(M).Metho

ds:Western

blotting

Warrington

etal.(200

4)

mRNA

expr

ession

4da

ys:20

0%–60

0%Fetal

deve

lopm

ent

Noch

ange

sAdu

ltag

e:56

–60

days.S

trainan

dsex:

Spr

agueDaw

leyan

dWistar

(M/F).Method

s:qR

T-PCR

Asa

okaet

al.(201

0);Kaw

aseet

al.

(201

5)CYP3A

2Catalytic

activity

1da

y:,1%

M:2

1da

ys(75%

);F:

7da

ysM:increa

sedslow

lythen

decrea

sedin

elde

rly;

F:

peak

edat

7da

ys(500

%)

Fetal

deve

lopm

ent–1da

y:NR.Subs

trate:

testosterone.

Strainan

dsex:

Wistar(M

/F).Matrix:

live

rmicrosomes

andlive

rslices.

Method

s:HPLC

Imao

kaet

al.(19

91);Lupp

etal.(20

08)

Protein

expr

ession

M:7da

ys(45%

);F:

7da

ys(170

%)

M:2

1da

ys(60%

);F:

7da

ysM:increa

sedslow

lythen

decrea

sedin

elde

rly

Adu

ltsag

e:42

–63

days.Fetal

deve

lopm

ent–7da

ys:NR.Strain:

Fisch

er-344

(M)an

dWistar(M

/F).Metho

ds:Western

blotting

Imao

kaet

al.(19

91);Warring

tonet

al.

(200

4)mRNA

expr

ession

Fetal

deve

lopm

ent:

30%–10

00%

Fetal

deve

lopm

entor

M:7

days,F:

16da

ys

Pea

kedat

16da

ysor

increa

sed

rapidly

Adu

ltsag

e:42

–60

days.Strainan

dsex:

Spr

agueDaw

ley(M

/F).

Method

s:qR

T-PCR

Mah

nke

etal.(199

7);de

Zwartet

al.

(200

8)

CYP3A

9mRNA

expr

ession

4da

ys:20

%or

7da

ys:,3%

M:3

0da

ys(36%

);F:

30da

ys(80%

)In

crea

sedslow

lyAdu

ltag

e:49

–56

days.Fetal

deve

lopm

ent–4da

ys:N

R.Strainan

dsex:

Spr

agueDaw

ley(M

/F).Method

s:qR

T-PCR

Mah

nke

etal.(199

7);Asa

okaet

al.

(201

0)CYP3A

11mRNA

expr

ession

Fetal

deve

lopm

ent:

,5%

7da

ysIn

crea

sedrapidlythen

decrea

sedin

elde

rly

Adu

ltag

e:56

days.S

trainan

dsex:

Wistar(M

).Method

s:qR

T-PCR

Cuesta

deJu

anet

al.20

07

CYP3A

18mRNA

expr

ession

M:4da

ys(4%);F:

4da

ys(78%

)M:N

Ror

7da

ys;F

:7–

16da

ysM:inc

reas

edslow

lyor

rapidly.

F:increa

sedrapidly

Adu

ltag

e:49

–56

days.Fetal

deve

lopm

ent–4da

ys:N

R.Strainan

dsex:

Spr

agueDaw

ley(M

/F).Method

s:qR

T-PCR

Mah

nke

etal.(199

7);Asa

okaet

al.

(201

0)CYP3A

23mRNA

expr

ession

M:4da

ys(20%

);F:

4da

ys(55%

)7da

ysIn

crea

sedrapidly

Adu

ltag

e:49

–56

days.Fetal

deve

lopm

ent–4da

ys:N

R.Strainan

dsex:

Spr

agueDaw

ley(M

/F).Method

s:qR

T-PCR

Mah

nke

etal.(199

7);Asa

okaet

al.

(201

0)

(con

tinued

)

626 van Groen et al.

Page 31: Ontogeny of Hepatic Transporters and Drug-Metabolizing … · hepatic clearance of the opioid morphine in newborns and young infants (Knibbe et al., 2009). Morphine is actively transported

c. No age-related changes in mRNA expression.CYP2D26 did not show age-related changes in itsontogeny profile.

d. Complex and/or inconsistent ontogeny patternof mRNA expression. For the isoforms CYP2B13,CYP2B23, CYP2B9, CYP3A41B, CYP3A59, CYP4A31,CYP4A32, and CYP4F16, no clear developmental patterncould be distinguished. CYP2B13 and CYP2B23 were notexpressed in fetal tissue. CYP2B13 and CYP2B9 expres-sion was higher in male mice than in female mice.Expression of CYP2B23 increased from birth to 10 daysand subsequently decreased.

4. Nonrodents.a. Göttingen minipig. The results are depicted in

Fig. 12, Supplemental Fig. 13, and Table 10. Themetabolic activity of CYP1A2 and CYP2D6 showeda rapid increase, with adult levels reached at 28 daysof age. CYP2C9 and CYP3A4 showed a more gradualincrease with lower activity at 28 days of age comparedwith adults. All CYPs mentioned above showed detect-able albeit very low (0.2%–3%) fetal activity.

Only CYP3A protein expression has been reported.It was low (about 20% of adult) during the late fetalstages and gradually increased postnatally with stilla lower expression at 28 days of age compared withadults.

b. Cynomolgus monkey. Results are depicted inFig. 13 and Table 11. For this species, only mRNA dataare reported. Several CYPs show a rapid increase andnormalize at adult values (CYP2A23, CYP2A24, CYP2B6,CYP2C9, CYP2C19, CYP2C76, CYP2D17, CYP2E1,CYP3A4, and CYP4F2). CYP2C18 mRNA levels, on theother hand, increase very slowly. Others show a moreparticular profile that either increases well above adultexpression levels before declining (CYP1A1, CYP2C8,CYP2J2, CYP3A5, CYP4A11, CYP4F3, and CYP4F11) orstarts above adult values to first fluctuate and eventuallydecrease toward adult age (CYP3A43). CYP4F12 was theonly enzyme with a more or less stable profile from fetal toadult age. No sex differences were reported.

c. Beagle dog. The results are depicted in Fig. 14,Supplemental Fig. 14, and Table 12. The data need to beinterpreted with caution because they are derived fromanimals of 7 days and older, and CYP activity alreadyreached values around 50% of adult levels at this youngage. CYP1A1 activity and metabolism mediated byCYP3A and CYP2B already showed adult levels inmaleBeagle dogs at 1 week of age, whereas CYP1A2 in-creased after birth and reached adult values at 30weeksof age. Combined activity of CYP2C, CYP2E1, andCYP3A was higher at 3 weeks of age, whereas the olderage groups showed similar levels as dogs at 1 week ofage. Activity levels of especially CYP2C9 and alsoCYP2E1 increased from 7 days and valued well aboveadult values around 100 days, after which they steadilydeclined to adult values. CYP3A4/5 activity decreasedbetween 7 days and 50 days, after which it increased

TABLE

8—Con

tinued

Onsetof

Activityan

d/or

Exp

ression

Adu

ltLev

elsRea

ched

Age

-Related

Chan

gesin

Activity/

Exp

ression

Com

men

tsReferen

ces

CYP4A

1Catalytic

activity

Fetal

deve

lopm

ent

(M:7

0%,F

:190

%)

M:7

days;F:fetal

deve

lopm

ent

Incons

istent

pattern

Adu

ltag

e:42

days.Sub

strate:laur

icacid.Strainan

dsex:

Spr

ague

Daw

ley(M

/F).Matrix:

live

rmicrosomes.Metho

ds:

spectrop

hotometry

deZwartet

al.(20

08)

mRNA

expr

ession

Fetal

deve

lopm

ent:

100%

Fetal

deve

lopm

ent

Inconsisten

tpa

ttern

Adu

ltag

e:42

days.S

trainan

dsex:

Spr

agueDaw

ley(M

/F).Method

s:qR

T-PCR

deZwartet

al.(20

08)

CYP4A

2Protein

expr

ession

M:7da

ys(20%

);F:

7da

ys(100

%)

M:2

1da

ys(20%

);F:

7da

ysM:increa

sedslow

ly;F:no

chan

gesafter7da

ysAdu

ltag

e:49

–50

days.Fetal

deve

lopm

ent–7da

ys:N

R.Strainan

dsex:

Wistar(M

/F).Metho

ds:Western

blotting

Imao

kaet

al.(199

1)

CYP4A

3Protein

expr

ession

7da

ys:20

%–30

%21

days:2

0%–30

%In

crea

sedslow

lyAdu

ltag

e:49

–50

days.Fetal

deve

lopm

ent–7da

ys:N

R.Strainan

dsex:

Wistar(M

/F).Metho

ds:Western

blotting

Imao

kaet

al.(199

1)

CYP7A

1mRNA

expr

ession

Fetal

deve

lopm

ent:

30%–13

0%Fetal

deve

lopm

ent

Inconsisten

tpa

ttern

Adu

ltag

e:56

days.S

trainan

dsex:

Wistar(M

).Method

s:qR

T-PCR

Cuesta

deJu

anet

al.(200

7)

CYP8B

1mRNA

expr

ession

Fetal

deve

lopm

ent:

2%–40

%1da

yIn

consisten

tpa

ttern

Adu

ltag

e:56

days.S

trainan

dsex:

Wistar(M

).Method

s:qR

T-PCR

Cuesta

deJu

anet

al.(200

7)

CYP27

mRNA

expr

ession

Fetal

deve

lopm

ent:

20%–40

%1da

yIn

crea

sedrapidly

Adu

ltag

e:56

days.S

trainan

dsex:

Wistar(M

).Method

s:qR

T-PCR

Cuesta

deJu

anet

al.(200

7)

F,fem

ale;

HPLC,h

igh-perform

ance

LC;M

,male;

NR,n

otrepo

rted

;qR

T-PCR,q

uan

titative

RT-PCR;RT-PCR,r

everse-transcriptas

epo

lymeras

ech

ainreaction

;UD,u

nde

tected

.

Ontogeny of Hepatic Transport and Drug Metabolism 627

Page 32: Ontogeny of Hepatic Transporters and Drug-Metabolizing … · hepatic clearance of the opioid morphine in newborns and young infants (Knibbe et al., 2009). Morphine is actively transported

Fig. 11. Pooled literature data on the ontogeny of hepatic mRNA expression of phase I drug-metabolizing enzymes in mice: ADH1 (A), ALDH1A1 (B),ALDH1B1 (C), ALDH3A2 (D), ALDH1A7 (E), ALDH7A1 (F), AOX (G), CES2A (H), CYP1A2 (I), CYP2A4 (J), CYP2A5 (K), CYP2B10 (L), CYP2B13 (M),CYP2B23 (N), CYP2B9 (O), CYP2C29 (P), CYP2C37 (Q), CYP2C40 (R), CYP2C44 (S), CYP2C50 (T), CYP2C54 (U), CYP2C67 (V), CYP2C69 (W),CYP2C70 (X), CYP2D10 (Y), CYP2D22 (Z), CYP2D26 (AA), CYP2D9 (AB), CYP2E1 (AC), CYP2F2 (AD), CYP3A11 (AE), CYP3A13 (AF), CYP3A16(AG), CYP3A25 (AI), CYP3A41A (AJ), CYP3A41B (AK), CYP3A44 (AL), CYP3A59 (AM), CYP4A10 (AN), CYP4A14 (AO), CYP4A31 (AP), CYP4A32

628 van Groen et al.

Page 33: Ontogeny of Hepatic Transporters and Drug-Metabolizing … · hepatic clearance of the opioid morphine in newborns and young infants (Knibbe et al., 2009). Morphine is actively transported

gradually to adult values. No mRNA or protein expres-sion level data were available.d. Domestic pig. The results are depicted in Fig. 15,

Supplemental Figs. 15 and S16, and Table 13. Activitydatawere available frommale and female animals 2, 28,56, and 180 days of age. Female CYP2C as well as male/female CYP2E activity levels were high at birth (650%)and gradually increased to adult values. Male CYP2Eand male/female CYP3A activity levels were low atbirth and rapidly increased to 675% of adult values,which was followed by a gradual increase to adultvalues (180 days). Microsomal protein content washigh at birth and gradually decreased to adult valuesat 30 days.Protein expression levels as determined by LC-MS/

MS were reported for male and female animals at 2, 28,56, and 180 days of age. Expression levels of CYP1A2,CYP2C34, and CYP2C49 increased rapidly after birth.A sex difference was observed for CYP1A2, with femaleexpression reaching well above adult levels before de-clining back to adult levels. A more gradual increasewithout sex differences was observed for CYP2A19,CYP2D6, CYP3A22, CYP3A46, CYP4A21, CYP20A1,and CYP51A1. Protein expression levels of CYP2B22,CYP2C33, male CYP2C36, and female CYP2E1 andCYP4A24 were stable postnatal until 56 days of age,and then this was followed by an increase to adult levelsat 180 days of age. Female CYP2C36 and male CYP2E1levels were stable from birth to adulthood.

D. Phase II Drug-Metabolizing Enzymes

1. Human. The results are depicted in Fig. 16,Supplemental Fig. 17 and S18, and Table 14 and arefurther explained below.a. Age-related increase in activity/expression.

Metabolic conjugating activity gradually increased withage, reaching maximal levels at various ages frominfancy [,2 years, for N-acetyltransferase (NAT) andUGT1A9], early childhood [7 years, for glutathione-S-transferase (GST) z 1], or adulthood [.18 years forcatechol-O-methyltransferase (COMT), sulfotransferase(SULT) 1E1, UGT2B7, UGT2B15, and UGT2B17].Activity was readily apparent by either the fetal periodfor COMT, GSTZ1, NAT, UGT2B7, UGT2B17, andSULT1E1 or at least within a few days after birth forUGT1A9 and UGT2B15—there was no fetal activitydata available.The developmental pattern of several phase II

enzymes has been characterized only based on eitherprotein expression levels [GSTA2, GSTM, and SULT2A1]ormRNAexpression levels (UGT2B4). Protein abundancelevels of GSTA2, GSTM, and SULT2A1 gradually

increased with advancing age, reaching maximal levelswithin 2 years of age andwith onset of protein expressionstarted during fetal life. Although no data were reportedbelow 6 months of age, 50% of adult mRNA expressionlevels of UGT2B4 was achieved after 6 months andremained unchanged until adulthood.

b. Age-related decrease in activity/expression.SULT1A3 activity levels and GSTP1 protein abundan-ces decreased by 2.5- and 20-fold from fetal to neonatalpopulation, respectively. Although no data were reportedduring childhood, SULT1A3 activity levels increased by10-fold, whereas GSTP1 protein levels further decreasedby 10-fold from neonates to adulthood.

c. No age-related changes in activity/expression.Little to no change in SULT1A1 activity levels wasobserved during fetal life, being more than 80% of adultlevels. However, activity data were not reported be-tween 6 months and adult age, with 3-fold higheractivity at 6 months of age compared with adult levels.Similar results were observed in protein abundancelevels of SULT1A1 and GSTA1.

2. Rat. The results are depicted in Fig. 17,Supplemental Figs. 19 and S20, and Table 15 and arefurther explained below.

a. Age-related increase in activity/expression.Activity of UGT1A1, UGT1A6, and UGT2B1 was pres-ent at 1 to 2 weeks before birth and rapidly increased toadult levels around 3 weeks postnatally. The mRNAprofile of UGT2B2 followed a similar pattern. Althoughincreasing, UGT1A6 activity was variable and fluctu-ated in three distinct ages, namely 0–15 days, 15–45days, and 45–300 days. This was also observed for themRNA maturation profile of UGT1A6. UGT1A1 mRNAexpression showed a marked peak after birth thatrapidly declined during the first week of life andgradually increased until 56 days.

SULT1A1 (activity and mRNA), SULT2A1 (activityand mRNA), SULT-40/41 (mRNA) bile-salt sulfotrans-ferase (activity), and 3b-hydroxy-5-cholenoate sulfo-transferase (activity) increased gradually after birth,reaching a maximum around 20 (SULT2A1, bile-saltsulfotransferase, and 3b-hydroxy-5-cholenoate) to 40(SULT1A1) days postnatally. SULT1A1 activity andmRNA levels remained stable through adolescence andadulthood. However, for SULT2A1, bile-salt sulfotrans-ferase, and 3b-hydroxy-5-cholenoate, activity in malelivers decreased between day 20 and days 60–80 post-natally, whereas activity in female livers remainedstable. The decrease in SULT2A1 levels was alsoobserved in the corresponding mRNA levels (SULT-20/21). SULT-40/41 mRNA levels also showed a decreaseafter 20 days of age, which was observed in both sexes.

(AQ), CYP4F13 (AR), CYP4F14 (AS), CYP4F15 (AT), CYP4F16 (AU), FMO1 (AV), FMO2 (AW), FMO5 (AX), NQO1 (AY), and POR (AZ). The symbolsrepresent the relative mRNA expression in each age group, and the dotted line indicates the adult value defined as 100%. See Table 9 for explanationon the ontogeny profiles and literature references. AOX, alternative oxidase; NOR, nitric oxide reductase; NQO1, NAD(P)H:quinone acceptoroxidoreductase.

Ontogeny of Hepatic Transport and Drug Metabolism 629

Page 34: Ontogeny of Hepatic Transporters and Drug-Metabolizing … · hepatic clearance of the opioid morphine in newborns and young infants (Knibbe et al., 2009). Morphine is actively transported

Fig. 11. Continued.

630 van Groen et al.

Page 35: Ontogeny of Hepatic Transporters and Drug-Metabolizing … · hepatic clearance of the opioid morphine in newborns and young infants (Knibbe et al., 2009). Morphine is actively transported

Fig. 11. Continued.

Ontogeny of Hepatic Transport and Drug Metabolism 631

Page 36: Ontogeny of Hepatic Transporters and Drug-Metabolizing … · hepatic clearance of the opioid morphine in newborns and young infants (Knibbe et al., 2009). Morphine is actively transported

Fig. 11. Continued.

632 van Groen et al.

Page 37: Ontogeny of Hepatic Transporters and Drug-Metabolizing … · hepatic clearance of the opioid morphine in newborns and young infants (Knibbe et al., 2009). Morphine is actively transported

Fig. 11. Continued.

Ontogeny of Hepatic Transport and Drug Metabolism 633

Page 38: Ontogeny of Hepatic Transporters and Drug-Metabolizing … · hepatic clearance of the opioid morphine in newborns and young infants (Knibbe et al., 2009). Morphine is actively transported

Fig. 11. Continued.

634 van Groen et al.

Page 39: Ontogeny of Hepatic Transporters and Drug-Metabolizing … · hepatic clearance of the opioid morphine in newborns and young infants (Knibbe et al., 2009). Morphine is actively transported

Glutathione-S-transferase, GSH peroxidase, andGSH reductase activity steadily increased from severaldays before birth and reached adult levels around30 days of age, after which activity became variable.GSH reductase activity appeared to gradually declinebetween 60 and 800 days of age. Cytosolic GST activitycomprised a conglomerate of GST activity of differentclasses of GST. For GSTA1, GSTM1, and GSTP1, bothmRNA and protein expression levels were determined.GSTA1 and GSTP1 mRNA levels reached adult valuesa few days after birth and remained stable until 180 dayspostpartum, which was followed by a gradual increaseuntil 800 days. GSTA1 and GSTP1 protein expressionlevels differed frommRNA expression levels in that theysteadily increased frombirthuntil 800 days. ForGSTM1,the maturation profile of mRNA expression levelsincreased gradually from birth until 60 days, afterwhich it steadily declined until reaching 30% ofmaximum levels. Protein expression levels followeda similar trend. GSTA4, GSTM3, GSTK1, GSTO1,GSTT1, and GSTT2 mRNA expression levels allshowed a similar maturation profile with a startaround birth, a steady increase until 60 days of age,and a gradual decline until 800 days. The latterdecline did differ between different classes of GST.

b. Complex and/or inconsistent ontogeny pattern ofactivity/expression levels. UGT1A5 mRNA expres-sion was observed at birth and persisted during thefirst 10 days of life, after which mRNA levels de-creased until 30 days and remained stable until56 days of age.

Rat hepatic SULT1B1 activity appeared stablebetween 2 days and 25 days of age with a gradualdecline until 25 days. At 50 days, a 2–4-fold increasein activity was observed in liver samples from maleand female rats, respectively. SULT1C1 and SULT1E1mRNA profiles shared a similar pattern with lowmaleand female levels at birth until 20 days of age.Subsequently, male levels increased markedly, reach-ing a maximum around 40 days of age. A comparablematuration profile was reported for male and fe-male SULT-60 mRNA levels; however, the sex dif-ference was inversed as compared with SULT1C1and SULT1E1.

NAT1 activity was high during fetal development andgradually decreased until birth, after which it stabi-lized, whereas NAT1 mRNA levels increased suddenlyat 15–20 days and remained stable.

c. No age-related changes in activity/expression.NAT2 (mRNA) levels were stable across all age ranges.

Fig. 11. Continued.

Ontogeny of Hepatic Transport and Drug Metabolism 635

Page 40: Ontogeny of Hepatic Transporters and Drug-Metabolizing … · hepatic clearance of the opioid morphine in newborns and young infants (Knibbe et al., 2009). Morphine is actively transported

TABLE

9Ontoge

nypr

ofileof

hep

atic

phas

eIen

zymes

inmiceba

sedon

metab

olic

activity,pr

oteinex

pression

,an

dmRNA

expr

ession

leve

lsPercentage

srepr

esen

tex

pression

/activityrelative

toad

ult

leve

ls.

Onsetof

Exp

ression/

Activity

Adu

ltLev

els

Rea

ched

Age

-Related

Chan

ges(%

ofAdu

lt)

inExp

ression/ActivityafterBirth

Com

men

tsReferen

ces

CYP1A

1mRNA

NR

(3da

ys:35

%)

10da

ysIn

consisten

tpa

ttern

Adu

ltag

e:45

days.S

train:C

57BL/6

(mixed

).Method

s:bD

NAan

dRT-

PCR

Cuiet

al.(201

2b)

CYP1A

2mRNA

0da

ys(2%)

20da

ysIn

crea

sedrapidly

Adu

ltag

e:45

days

(Cuiet

al.,20

12b),60

days

(Pen

get

al.,20

12;Li

etal.,20

16),90

days

(Selwyn

etal.,20

15).Strain:C

57BL/6

(mixed

).Method

s:RT-PCR

(Cuiet

al.,20

12b;

Selwyn

etal.,20

15;Liet

al.,

2016

),RNA-seq

(Pen

get

al.,20

12),bD

NA

(Cuiet

al.,20

12b)

Cuiet

al.(201

2b);Pen

get

al.(201

2);

Selwyn

etal.(201

5);Liet

al.(201

6)

CYP2A

4mRNA

Fetal

deve

lopm

ent(7%)

20da

ysIn

crea

sedslow

lyAdu

ltag

e:45

days

(Cuiet

al.,20

12b),60

days

(Pen

get

al.,20

12).

Strain:C57

BL/6

(mixed

).Method

s:RT-PCR

(Cuiet

al.,20

12b),

RNA-seq

(Pen

get

al.,20

12),bD

NA

(Cuiet

al.,20

12b)

Cuiet

al.(201

2b);Pen

get

al.(201

2)

CYP2A

5mRNA

Fetal

deve

lopm

ent

(1.7%)

20da

ysIn

crea

sedslow

lyAdu

ltag

e:45

days

(Cuiet

al.,20

12b),60

days

(Pen

get

al.,20

12),

90da

ys(Selwyn

etal.,20

15).Strain:C57

BL/6

(mixed

).Method

s:RT-PCR

(Cuiet

al.,20

12b;

Selwyn

etal.,20

15),RNA-seq

(Pen

get

al.,20

12),bD

NA

(Cuiet

al.,20

12b)

Cuiet

al.(201

2b);Pen

get

al.(201

2);

Selwyn

etal.(201

5)

CYP2B

10mRNA

0da

ys(20%

)5da

ysIn

crea

sedslow

lyAdu

ltag

e:45

days

(Cuiet

al.,20

12b),60

days

(Pen

get

al.,20

12;Li

etal.,20

16;P

ieko

set

al.,20

18),90

days

(Selwyn

etal.,20

15).Strain:

C57

BL/6

(mixed

).Method

s:RT-PCR(C

uie

tal.,20

12b;

Selwyn

etal.,

2015

;Liet

al.,20

16;Pieko

set

al.,20

18),RNA-seq

(Pen

get

al.,

2012

),bD

NA

(Cuiet

al.,20

12b)

Cuiet

al.(201

2b);Pen

get

al.(201

2);

Selwyn

etal.(201

5);Liet

al.(201

6);

Pieko

set

al.(20

18)

CYP2B

13mRNA

M:0

day(100

%);F:N

R(10da

ys:17

%)

M:0da

ys;F:

45da

ysM:incons

istent

pattern;

F:

increa

sedslow

lyAdu

ltag

e:45

days

(Cuiet

al.,20

12b),60

days

(Pen

get

al.,20

12).

Strain:C57

BL/6

(mixed

).Method

s:RT-PCR

(Cuiet

al.,20

12b),

RNA-seq

(Pen

get

al.,20

12),bD

NA

(Cuiet

al.,20

12b)

Cuiet

al.(201

2b);Pen

get

al.(201

2)

CYP2B

23mRNA

M:0

days

(100

%);F:NR

(10da

ys:40

0%)

M:30

days;F:

45da

ysM:incons

istent

pattern,

decrea

sedrapidly;

F:

Incons

istent

pattern,

decrea

sedrapidly

Adu

ltag

e:45

days

(Cuiet

al.,20

12b),60

days

(Pen

get

al.,20

12).

Strain:C57

BL/6

(mixed

).Method

s:RT-PCR

(Cuiet

al.,20

12b),

RNA-seq

(Pen

get

al.,20

12),bD

NA

(Cuiet

al.,20

12b)

Cuiet

al.(201

2b);Pen

get

al.(201

2)

CYP2B

9mRNA

M:0

days

(33%

);F:NR

(10da

ys:85

%)

M:3da

ys;F:

10da

ysM:incons

istent

pattern;

F:n

och

ange

sAdu

ltag

e:45

days

(Cuiet

al.,20

12b),60

days

(Pen

get

al.,20

12),

90da

ys(Selwyn

etal.,20

15).Strain:C57

BL/6

(mixed

).Method

s:RT-PCR

(Cuiet

al.,20

12b;

Selwyn

etal.,20

15),RNA-seq

(Pen

get

al.,20

12),bD

NA

(Cuiet

al.,20

12b)

Cuiet

al.(201

2b);Pen

get

al.(201

2);

Selwyn

etal.(201

5)

CYP2C

29mRNA

M:fetal

deve

lopm

ent

(4%);F:N

R(10da

ys:

4%)

20da

ysIn

crea

sedrapidly

Adu

ltag

e:45

days

(Cuiet

al.,20

12b),60

days

(Pen

get

al.,20

12).

Strain:C57

BL/6

(mixed

).Method

s:RT-PCR

(Cuiet

al.,20

12b),

RNA-seq

(Pen

get

al.,20

12),bD

NA

(Cuiet

al.,20

12b)

Cuiet

al.(201

2b);Pen

get

al.(201

2)

CYP2C

37mRNA

Fetal

deve

lopm

ent(20%

)15

days

Inconsisten

tpa

ttern

Adu

ltag

e:45

days

(Cuiet

al.,20

12b),60

days

(Pen

get

al.,20

12).

Strain:C57

BL/6

(mixed

).Method

s:RT-PCR

(Cuiet

al.,20

12b),

RNA-seq

(Pen

get

al.,20

12),bD

NA

(Cuiet

al.,20

12b)

Cuiet

al.(201

2b);Pen

get

al.(201

2)

CYP2C

40mRNA

M:N

R(1

day:

23%);F:

NR

(10da

ys:9%

)M:30

days;F:

45da

ysIn

crea

sedslow

lyAdu

ltag

e:45

days

(Cuiet

al.,20

12b),90

days

(Selwyn

etal.,20

15).

Strain:C57

BL/6

(mixed

).Method

s:RT-PCR

(Cuiet

al.,20

12b;

Selwyn

etal.,20

15),bD

NA

(Cuiet

al.,20

12b)

Cuiet

al.(201

2b);Selwyn

etal.(201

5)

CYP2C

44mRNA

M:fetal

deve

lopm

ent

(15%

);F:N

R(15da

ys:

59%)

M:45

days;F:

30da

ysIn

crea

sedslow

lyAdu

ltag

e:45

days

(Cuiet

al.,20

12b),60

days

(Pen

get

al.,20

12).

Strain:C57

BL/6

(mixed

).Method

s:RT-PCR

(Cuiet

al.,20

12b),

RNA-seq

(Pen

get

al.,20

12),bD

NA

(Cuiet

al.,20

12b)

Cuiet

al.(201

2b);Pen

get

al.(201

2)

(con

tinued

)

636 van Groen et al.

Page 41: Ontogeny of Hepatic Transporters and Drug-Metabolizing … · hepatic clearance of the opioid morphine in newborns and young infants (Knibbe et al., 2009). Morphine is actively transported

TABLE

9—Con

tinued

Onsetof

Exp

ression/

Activity

Adu

ltLev

els

Rea

ched

Age

-Related

Chan

ges(%

ofAdu

lt)

inExp

ression/ActivityafterBirth

Com

men

tsReferen

ces

CYP2C

50mRNA

M:fetal

deve

lopm

ent

(1%–3%

);F:NR

(10

days:23

%)

M:20

days;F:

20da

ysIn

crea

sedrapidly

Adu

ltag

e:45

days

(Cuiet

al.,20

12b),60

days

(Pen

get

al.,20

12),

90da

ys(Selwyn

etal.,20

15).Strain:C57

BL/6

(mixed

).Method

s:RT-PCR

(Cuiet

al.,20

12b;

Selwyn

etal.,20

15),RNA-seq

(Pen

get

al.,20

12),bD

NA

(Cuiet

al.,20

12b)

Cuiet

al.(201

2b);Pen

get

al.(201

2);

Selwyn

etal.(201

5)

CYP2C

54mRNA

M:fetal

deve

lopm

ent

(2%);F:N

R(20da

ys:

12%)

M:45

days;F:

45da

ysIn

crea

sedrapidly

Adu

ltag

e:45

days

(Cuiet

al.,20

12b),90

days

(Selwyn

etal.,20

15).

Strain:C57

BL/6

(mixed

).Method

s:RT-PCR

(Cuiet

al.,20

12b;

Selwyn

etal.,20

15),bD

NA

(Cuiet

al.,20

12b)

Cuiet

al.(201

2b);Selwyn

etal.(201

5)

CYP2C

67mRNA

NR

(mixed

0da

ys:33

%)

M:30

days;F:

45da

ysIn

crea

sedslow

lyAdu

ltag

e:45

days

(Cuiet

al.,20

12b),90

days

(Selwyn

etal.,20

15).

Strain:C57

BL/6

(mixed

).Method

s:RT-PCR

(Cuiet

al.,20

12b;

Selwyn

etal.,20

15),bD

NA

(Cuiet

al.,20

12b)

Cuiet

al.(201

2b);Selwyn

etal.(201

5)

CYP2C

69mRNA

M:fetal

deve

lopm

ent

(18%

);F:N

R(m

ixed

0da

ys:61

%)

M:15

days;F:

45da

ysIn

crea

sedslow

lyAdu

ltag

e:45

days

(Cuiet

al.,20

12b),60

days

(Pen

get

al.,20

12),

90da

ys(Selwyn

etal.,20

15).Strain:C57

BL/6

(mixed

).Method

s:RT-PCR

(Cuiet

al.,20

12b;

Selwyn

etal.,20

15),RNA-seq

(Pen

get

al.,20

12),bD

NA

(Cuiet

al.,20

12b)

Cuiet

al.(201

2b);Pen

get

al.(201

2);

Selwyn

etal.(201

5)

CYP2C

70mRNA

Fetal

deve

lopm

ent(7%)

15da

ysIn

crea

sedrapidly

Adu

ltag

e:45

days

(Cuiet

al.,20

12b),60

days

(Pen

get

al.,20

12).

Strain:C57

BL/6

(mixed

).Method

s:RT-PCR

(Cuiet

al.,20

12b),

RNA-seq

(Pen

get

al.,20

12),bD

NA

(Cuiet

al.,20

12b)

Cuiet

al.(201

2b);Pen

get

al.(201

2)

CYP2D

10mRNA

M:fetal

deve

lopm

ent

(2%);F:N

R(m

ixed

0da

ys:8%

)

45da

ysIn

crea

sedslow

lyAdu

ltag

e:45

days

(Cuiet

al.,20

12b),60

days

(Pen

get

al.,20

12).

Strain:C57

BL/6

(mixed

).Method

s:RT-PCR

(Cuiet

al.,20

12b),

RNA-seq

(Pen

get

al.,20

12),bD

NA

(Cuiet

al.,20

12b)

Cuiet

al.(201

2b);Pen

get

al.(201

2)

CYP2D

22mRNA

Fetal

deve

lopm

ent

(10%

–15

%)

20da

ysIn

crea

sedslow

lyAdu

ltag

e:45

days

(Cuiet

al.,20

12b),60

days

(Pen

get

al.,20

12).

Strain:C57

BL/6

(mixed

).Method

s:RT-PCR

(Cuiet

al.,20

12b),

RNA-seq

(Pen

get

al.,20

12),bD

NA

(Cuiet

al.,20

12b)

Cuiet

al.(201

2b);Pen

get

al.(201

2)

CYP2D

26mRNA

Fetal

deve

lopm

ent(33%

)0da

ysIn

crea

sedrapidly

Adu

ltag

e:45

days

(Cuiet

al.,20

12b),60

days

(Pen

get

al.,20

12).

Strain:C57

BL/6

(mixed

).Method

s:RT-PCR

(Cuiet

al.,20

12b),

RNA-seq

(Pen

get

al.,20

12),bD

NA

(Cuiet

al.,20

12b)

Cuiet

al.(201

2b);Pen

get

al.(201

2)

CYP2D

9mRNA

M:fetal

deve

lopm

ent

(2%);F:N

R(m

ixed

0da

ys:8.5%

)

30da

ysIn

crea

sedslow

lyAdu

ltag

e:45

days

(Cuiet

al.,20

12b),60

days

(Pen

get

al.,20

12).

Strain:C57

BL/6

(mixed

).Method

s:RT-PCR

(Cuiet

al.,20

12b),

RNA-seq

(Pen

get

al.,20

12),bD

NA

(Cuiet

al.,20

12b)

Cuiet

al.(201

2b);Pen

get

al.(201

2)

CYP2E

1mRNA

M:fetal

deve

lopm

ent

(1%);F:N

R(m

ixed

0da

ys:33

%)

5da

ysIn

crea

sedrapidly

Adu

ltag

e:45

days

(Cuiet

al.,20

12b),60

days

(Pen

get

al.,20

12),

90da

ys(Selwyn

etal.,20

15).Strain:C57

BL/6

(mixed

).Method

s:RT-PCR

(Cuiet

al.,20

12b;

Selwyn

etal.,20

15),RNA-seq

(Pen

get

al.,20

12),bD

NA

(Cuiet

al.,20

12b)

Cuiet

al.(201

2b);Pen

get

al.(201

2);

Selwyn

etal.(201

5)

CYP2F

2mRNA

0da

ys(3.5%–5%

)30

days

Increa

sedslow

lyAdu

ltag

e:45

days

(Cuiet

al.,20

12b),60

days

(Pen

get

al.,20

12).

Strain:C57

BL/6

(mixed

).Method

s:RT-PCR

(Cuiet

al.,20

12b),

RNA-seq

(Pen

get

al.,20

12),bD

NA

(Cuiet

al.,20

12b)

Cuiet

al.(201

2b);Pen

get

al.(201

2)

CYP3A

11mRNA

Fetal

deve

lopm

ent(2%)

20da

ysIn

crea

sedrapidly

Adu

ltag

e:45

days

(Liet

al.,20

09;Cuiet

al.,20

12b),60

days

(Pen

get

al.,20

12;Liet

al.,20

16;Pieko

set

al.,20

18),90

days

(Selwyn

etal.,20

15).Strain:C57

BL/6

(mixed

).Method

s:RT-PCR

(Liet

al.,

2009

;Cuiet

al.,20

12b;

Selwyn

etal.,20

15;Liet

al.,20

16;Pieko

set

al.,20

18),RNA-seq

(Pen

get

al.,20

12),bD

NA

(Lie

tal.,20

09;C

ui

etal.,20

12b)

Liet

al.(200

9);Cuiet

al.(201

2b);Pen

get

al.(201

2);Selwyn

etal.(201

5);Li

etal.(201

6);Pieko

set

al.(201

8)

CYP3A

13

(con

tinued

)

Ontogeny of Hepatic Transport and Drug Metabolism 637

Page 42: Ontogeny of Hepatic Transporters and Drug-Metabolizing … · hepatic clearance of the opioid morphine in newborns and young infants (Knibbe et al., 2009). Morphine is actively transported

TABLE

9—Con

tinued

Onsetof

Exp

ression/

Activity

Adu

ltLev

els

Rea

ched

Age

-Related

Chan

ges(%

ofAdu

lt)

inExp

ression/ActivityafterBirth

Com

men

tsReferen

ces

mRNA

Fetal

deve

lopm

ent

(10%

–75

%)

0da

ysNon

linea

rpa

ttern

Adu

ltag

e:45

days

(Cuiet

al.,20

12b),60

days

(Pen

get

al.,20

12).

Strain:C57

BL/6

(mixed

).Method

s:RT-PCR

(Cuiet

al.,20

12b),

RNA-seq

(Pen

get

al.,20

12),bD

NA

(Cuiet

al.,20

12b)

Cuiet

al.(201

2b);Pen

get

al.(201

2)

CYP3A

25mRNA

Fetal

deve

lopm

ent

(0%–30

%)

20da

ysIn

crea

sedslow

lyAdu

ltag

e:45

days

(Liet

al.,20

09;Cuiet

al.,20

12b),60

days

(Pen

get

al.,20

12),90

days

(Selwyn

etal.,20

15).Strain:C

57BL/6

(mixed

).Method

s:RT-PCR

(Cuiet

al.,20

12b;

Selwyn

etal.,20

15),RNA-seq

(Pen

get

al.,20

12),bD

NA

(Liet

al.,20

09;Cuiet

al.,20

12b)

Liet

al.(200

9);Cuiet

al.(201

2b);Pen

get

al.(201

2);Selwyn

etal.(201

5)

CYP3A

16mRNA

Fetal

deve

lopm

ent

(75%

–77

5%)

25da

ysDecreas

edslow

lyAdu

ltag

e:45

days

(Liet

al.,20

09;Cuiet

al.,20

12b),60

days

(Pen

get

al.,20

12;Liet

al.,20

16;Pieko

set

al.,20

18).Strain:C57

BL/6

(mixed

).Method

s:RT-PCR(Lie

tal.,20

09;C

uie

tal.,20

12b;

Lie

tal.,

2016

;Pieko

set

al.,20

18),RNA-seq

(Pen

get

al.,20

12),bD

NA

(Li

etal.,20

09;Cuiet

al.,20

12b)

Liet

al.(200

9);Cuiet

al.(201

2b);Pen

get

al.(201

2);Pieko

set

al.(201

8)

CYP3A

41A

mRNA

Fetal

deve

lopm

ent(75%

)25

days

Increa

sedslow

lyAdu

ltag

e:45

days

(Cuiet

al.,20

12b),60

days

(Pen

get

al.,20

12).

Strain:C57

BL/6

(mixed

).Method

s:RT-PCR

(Cuiet

al.,20

12b),

RNA-seq

(Pen

get

al.,20

12),bD

NA

(Cuiet

al.,20

12b)

Cuiet

al.(201

2b);Pen

get

al.(201

2)

CYP3A

41B

mRNA

Fetal

deve

lopm

ent

(15%

–70

0%)

25da

ysIn

consisten

tpa

ttern

Adu

ltag

e:45

days

(Cuiet

al.,20

12b)

(Liet

al.,20

09),60

days

(Pen

get

al.,20

12).Strain:C57

BL/6

(mixed

).Method

s:RT-PCR

(Liet

al.,

2009

;Cuie

tal.,20

12b),R

NA-seq

(Pen

get

al.,20

12),bD

NA(Lie

tal.,

2009

;Cuiet

al.,20

12b)

Liet

al.(200

9);Cuiet

al.(201

2b);Pen

get

al.(201

2)

CYP3A

44mRNA

M:fetal

deve

lopm

ent

(75%

);F:N

R(m

ixed

:5%

)

10da

ysIn

crea

sedrapidly

Adu

ltag

e:45

days

(Cuiet

al.,20

12b),60

days

(Pen

get

al.,20

12),

90da

ys(Selwyn

etal.,20

15).Strain:C57

BL/6

(mixed

).Method

s:RT-PCR

(Cuiet

al.,20

12b;

Selwyn

etal.,20

15),RNA-seq

(Pen

get

al.,20

12),bD

NA

(Cuiet

al.,20

12b)

Cuiet

al.(201

2b);Pen

get

al.(201

2);

Selwyn

etal.(201

5)

CYP3A

59mRNA

M:fetal

deve

lopm

ent

(75%

);F:N

R(10da

ys:

100%

)

45da

ysIn

consisten

tpa

ttern

Adu

ltag

e:45

days

(Cuiet

al.,20

12b),60

days

(Pen

get

al.,20

12).

Strain:C57

BL/6

(mixed

).Method

s:RT-PCR

(Cuiet

al.,20

12b),

RNA-seq

(Pen

get

al.,20

12),bD

NA

(Cuiet

al.,20

12b)

Cuiet

al.(201

2b);Pen

get

al.(201

2)

CYP4A

10mRNA

M:0

days

(656

%);F:NR

(10da

ys:69

%)

Fluctuating

arou

ndad

ult

values

Inconsisten

tpa

ttern

Adu

ltag

e:45

days

(Cuiet

al.,20

12b),60

days

(Pen

get

al.,20

12),

90da

ys(Selwyn

etal.,20

15).Strain:C57

BL/6

(mixed

).Method

s:RT-PCR

(Cuiet

al.,20

12b;

Selwyn

etal.,20

15),RNA-seq

(Pen

get

al.,20

12),bD

NA

(Cuiet

al.,20

12b)

Cuiet

al.(201

2b);Pen

get

al.(201

2);

Selwyn

etal.(201

5)

CYP4A

14mRNA

M:fetal

deve

lopm

ent

(7%);F:N

R(10da

ys:

133%

)

Fluctuating

arou

ndad

ult

values

Inconsisten

tpa

ttern

Adu

ltag

e:45

days

(Cuiet

al.,20

12b),60

days

(Pen

get

al.,20

12),

90da

ys(Selwyn

etal.,20

15).Strain:C57

BL/6

(mixed

).Method

s:RT-PCR

(Cuiet

al.,20

12b;

Selwyn

etal.,20

15),RNA-seq

(Pen

get

al.,20

12),bD

NA

(Cuiet

al.,20

12b)

Cuiet

al.(201

2b);Pen

get

al.(201

2);

Selwyn

etal.(201

5)

CYP4A

31mRNA

NR

(0da

ys:30

%)

Fluctuating

arou

ndad

ult

values

Inconsisten

tpa

ttern

Adu

ltag

e:45

days

(Cuiet

al.,20

12b),90

days

(Selwyn

etal.,20

15).

Strain:C57

BL/6

(mixed

).Method

s:RT-PCR

(Cuiet

al.,20

12b;

Selwyn

etal.,20

15),bD

NA

(Cuiet

al.,20

12b)

Cuiet

al.(201

2b);Selwyn

etal.(201

5)

CYP4A

32mRNA

M:0

days

(313

%);F:NR

(10da

ys:43

%)

Fluctuating

arou

ndad

ult

values

Inconsisten

tpa

ttern

Adu

ltag

e:45

days

(Cuiet

al.,20

12b),60

days

(Pen

get

al.,20

12),

90da

ys(Selwyn

etal.,20

15).Strain:C57

BL/6

(mixed

).Method

s:RT-PCR

(Cuiet

al.,20

12b;

Selwyn

etal.,20

15),RNA-seq

(Pen

get

al.,20

12),bD

NA

(Cuiet

al.,20

12b)

Cuiet

al.(201

2b);Pen

get

al.(201

2);

Selwyn

etal.(201

5)

CYP4F

13mRNA

M:fetal

deve

lopm

ent

(16%

);F:N

R(10da

ys:

61%)

45da

ysIn

crea

sedslow

lyAdu

ltag

e:45

days

(Cuiet

al.,20

12b),60

days

(Pen

get

al.,20

12).

Strain:C57

BL/6

(mixed

).Method

s:RT-PCR

(Cuiet

al.,20

12b),

RNA-seq

(Pen

get

al.,20

12),bD

NA

(Cuiet

al.,20

12b)

Cuiet

al.(201

2b);Pen

get

al.(201

2)

CYP4F

14

(con

tinued

)

638 van Groen et al.

Page 43: Ontogeny of Hepatic Transporters and Drug-Metabolizing … · hepatic clearance of the opioid morphine in newborns and young infants (Knibbe et al., 2009). Morphine is actively transported

TABLE

9—Con

tinued

Onsetof

Exp

ression/

Activity

Adu

ltLev

els

Rea

ched

Age

-Related

Chan

ges(%

ofAdu

lt)

inExp

ression/ActivityafterBirth

Com

men

tsReferen

ces

mRNA

M:fetal

deve

lopm

ent

(4%);F:N

R(10da

ys:

12%)

M:20

days;F:

30da

ysIn

crea

sedrapidly

Adu

ltag

e:45

days

(Cuiet

al.,20

12b),60

days

(Pen

get

al.,20

12).

Strain:C57

BL/6

(mixed

).Method

s:RT-PCR

(Cuiet

al.,20

12b),

RNA-seq

(Pen

get

al.,20

12),bD

NA

(Cuiet

al.,20

12b)

Cuiet

al.(201

2b);Pen

get

al.(201

2)

CYP4F

15mRNA

Fetal

deve

lopm

ent(10%

)10

days

Increa

sedslow

lyAdu

ltag

e:45

days

(Cuiet

al.,20

12b),60

days

(Pen

get

al.,20

12).

Strain:C57

BL/6

(mixed

).Method

s:RT-PCR

(Cuiet

al.,20

12b),

RNA-seq

(Pen

get

al.,20

12),bD

NA

(Cuiet

al.,20

12b)

Cuiet

al.(201

2b);Pen

get

al.(201

2)

CYP4F

16mRNA

Fetal

deve

lopm

ent

(100

%)

25da

ysIn

consisten

tpa

ttern

Adu

ltag

e:45

days

(Cuiet

al.,20

12b),60

days

(Pen

get

al.,20

12).

Strain:C57

BL/6

(mixed

).Method

s:RT-PCR

(Cuiet

al.,20

12b),

RNA-seq

(Pen

get

al.,20

12),bD

NA

(Cuiet

al.,20

12b)

Cuiet

al.(201

2b);Pen

get

al.(201

2)

FMO1

mRNA

Fetal

deve

lopm

ent(40%

)30

days

Inconsisten

tpa

ttern

Adu

ltag

e:56

days

(Jan

moh

amed

etal.,20

04),60

days

(Pen

get

al.,

2013

),90

days

(Selwyn

etal.,20

15).Strain:C57

BL/6

(M)(Pen

get

al.,20

13;S

elwyn

etal.,20

15)an

d12

9/SV

(mixed

)(Jan

moh

amed

etal.,20

04).Method

s:RT-PCR(Selwyn

etal.,20

15),RNA-seq

(Pen

get

al.,20

13),RNas

epr

otection

assa

y(Jan

moh

amed

etal.,20

04)

Janmoh

amed

etal.(200

4);Pen

get

al.

(201

3);Selwyn

etal.(201

5)

FMO2

mRNA

0da

ys(6%)

45da

ysIn

consisten

tpa

ttern

Adu

ltag

e:56

days

(Jan

moh

amed

etal.,20

04),60

days

(Pen

get

al.,

2013

),90

days

(Selwyn

etal.,20

15).Strain:C57

BL/6

(M)(Pen

get

al.,20

13;S

elwyn

etal.,20

15)an

d12

9/SV

(mixed

)(Jan

moh

amed

etal.,20

04).Method

s:RT-PCR(Selwyn

etal.,20

15),RNA-seq

(Pen

get

al.,20

13),RNas

epr

otection

assa

y(Jan

moh

amed

etal.,20

04)

Janmoh

amed

etal.(200

4);Pen

get

al.

(201

3);Selwyn

etal.(201

5)

FMO3

mRNA

Fetal

deve

lopm

ent

(132

%)

60da

ysIn

consisten

tpa

ttern

Adu

ltag

e:56

days

(Jan

moh

amed

etal.,20

04),60

days

(Pen

get

al.,

2013

).Strain:C57

BL/6

(M)(Pen

get

al.,20

13;Selwyn

etal.,20

15)

and12

9/SV

(mixed

)(Jan

moh

amed

etal.,20

04).Method

s:RNA-seq

(Pen

get

al.,20

13),RNas

epr

otection

assa

y(Jan

moh

amed

etal.,

2004

)

Janmoh

amed

etal.(200

4);Pen

get

al.

(201

3)

FMO4

mRNA

Fetal

deve

lopm

ent(81%

)60

days

Inconsisten

tpa

ttern

Adu

ltag

e:56

days

(Jan

moh

amed

etal.,20

04),60

days

(Pen

get

al.,

2013

).Strain:C57

BL/6

(M)(Pen

get

al.,20

13;Selwyn

etal.,20

15)

and12

9/SV

(mixed

)(Jan

moh

amed

etal.,20

04).Method

s:RNA-seq

(Pen

get

al.,20

13),RNas

epr

otection

assa

y(Jan

moh

amed

etal.,

2004

)

Janmoh

amed

etal.(200

4);Pen

get

al.

(201

3)

FMO5

mRNA

Fetal

deve

lopm

ent(2%)

45da

ysIn

crea

sedslow

lyAdu

ltag

e:56

days

(Jan

moh

amed

etal.,20

04),60

days

(Pen

get

al.,

2013

),90

days

(Selwyn

etal.,20

15).Strain:C57

BL/6

(M)(Pen

get

al.,20

13;S

elwyn

etal.,20

15)an

d12

9/SV

(mixed

)(Jan

moh

amed

etal.,20

04).Method

s:RT-PCR(Selwyn

etal.,20

15),RNA-seq

(Pen

get

al.,20

13),RNas

epr

otection

assa

y(Jan

moh

amed

etal.,20

04)

Janmoh

amed

etal.(200

4);Pen

get

al.

(201

3);Selwyn

etal.(201

5)

NQO1

mRNA

Fetal

deve

lopm

ent

(255

%)

Fluctuating

arou

ndad

ult

values

Inconsisten

tpa

ttern

Adu

ltag

e:60

days

(Pen

get

al.,20

13),90

days

(Selwyn

etal.,20

15).

Strain:C

57BL/6

(M).Method

s:RT-PCR

(Selwyn

etal.,20

15),RNA-

seq(Pen

get

al.,20

13)

Pen

get

al.(201

3);Selwyn

etal.(201

5)

POR mRNA

Fetal

deve

lopm

ent(41%

)30

days

Inconsisten

tpa

ttern

Adu

ltag

e:60

days

(Pen

get

al.,20

13),90

days

(Selwyn

etal.,20

15).

Strain:C

57BL/6

(M).Method

s:RT-PCR

(Selwyn

etal.,20

15),RNA-

seq(Pen

get

al.,20

13)

Pen

get

al.(201

3);Selwyn

etal.(201

5)

ADH1

mRNA

Fetal

deve

lopm

ent

(3%–41

%)

20da

ysIn

crea

sedrapidly

Adu

ltag

e:60

days.Strain:C57

BL/6

(M).Method

s:RNA-seq

Pen

get

al.(201

3)

ALDH1A

1mRNA

Fetal

deve

lopm

ent(6%)

45da

ysIn

crea

sedslow

lyAdu

ltag

e:45

days

(Alnou

tian

dKlaas

sen,2

008)

and60

days

(Lie

tal.,

2016

).Strain:C57

BL/6

(mixed

).Method

s:RT-PCR

(Liet

al.,20

16)

andbD

NA

(Alnou

tian

dKlaas

sen,20

08)

Alnou

tian

dKlaas

sen(200

8);(Liet

al.,

2016

)

(con

tinued

)

Ontogeny of Hepatic Transport and Drug Metabolism 639

Page 44: Ontogeny of Hepatic Transporters and Drug-Metabolizing … · hepatic clearance of the opioid morphine in newborns and young infants (Knibbe et al., 2009). Morphine is actively transported

3. Mouse. The results are depicted in Fig. 18,Supplemental Fig. 21, and Table 16 and are furtherexplained below.

a. Age-related increase in activity/expression.The majority of phase II enzymes showed a lowerexpression in younger age groups than in older age groups.For some enzymes, the expression increased progressivelydirectly after birth, often reaching adult values before or at22 days postnatal age (PNA) [CES1B, CES1C, CES1G,CES2E,CES5,GSTA3,GSTA4,GSTK1,GSTM1,GSTM2,GSTM3, GSTM4, GSTT1, GSTT3, GSTZ1, NAT1, NAT12,SULT1B1, and UGT1A1 (male)], whereas for otherenzymes the expression increased more gradually,reaching adult levels after 22 days PNA [CES1A, CES1D,CES1E, CES1F, CES2A, CES3B, CES6, CES7, micro-somal glutathione S-transferase (MGST1), NAT2, NAT6,SULT3A1 (female), UGT1A1 (female), and UGT3A2].

b. Age-related decrease in expression. Only a fewphase II enzymes showed a consistently higher expres-sion at younger age groups than in older age groups(GSTCD, GSTM5, MGST2, NAT5, NAT11, NAT13).

c. No age-related changes in expression. There arefew phase II enzymes that show no age-related changesin expression [CES2G, GSTT2, GSTM7, and SULT3A1(male)].

d. Complex and/or inconsistent ontogeny patterns inexpression. A number of phase II enzymes showedparticular patterns of age-related changes in expres-sion. These enzymes showed low expression at fetal age,which was followed by a peak in expression generallybetween 5 and 30 days PNA, after which expressiondropped back to adult levels (SULT1A1, SULT1C2,SULT1D1, SULT2A1, SULT2A12, SULT2A2, SULT2A3,SULT2A4, SULT2A5, SULT2A6, and UGT1A9).

A few enzymes showed peaks and troughs in expres-sion between younger and older age groups with an overallincreasing trend (CES2B,CES2C,CES2D,CESPS,CES2F,CES3A, CES4A, GSTA1, GSTA2, GSTP1, GSTP2, NAT8,SULT2A7, SULT5A1, UGT1A2, UGT1A5, UGT1A6A,UGT1A6B, UGT1A10, UGT2B1, UGT2B5, UGT2B34,UGT2B35, UGT2B36, UGT2B37, UGT2B38, UGT3A1,and UGT3A2), whereas others did so with a generaldecreasing trend (SULT1E1, SULT2B1, and UGT1A7C).

Some enzymes showed contradictory (i.e., study-de-pendent) age-related expression profiles (MGST3,SULT1C1, GSTO1, and NAT10).

4. Nonrodents. The results are depicted in Fig. 19and Table 17. For Göttingen minipig only, general UGTactivity was studied. UGT activity gradually increasedas a function of age, although only three data points arereported in literature.

IV. Discussion

A. Key Findings

• Multilevel and cross-species compilation of pub-lished ontogeny profiles of hepatic DTs and DMEs

TABLE

9—Con

tinued

Onsetof

Exp

ression/

Activity

Adu

ltLev

els

Rea

ched

Age

-Related

Chan

ges(%

ofAdu

lt)

inExp

ression/ActivityafterBirth

Com

men

tsReferen

ces

ALDH1B

1mRNA

Fetal

deve

lopm

ent(35%

)15

days

Increa

sedslow

lyAdu

ltag

e:45

days

(Alnou

tian

dKlaas

sen,2

008)

and90

days

(Selwyn

etal.,20

15).Strain:C57

BL/6

(mixed

).Method

s:RT-PCR

(Selwyn

etal.,20

15)an

dbD

NA

(Alnou

tian

dKlaas

sen,20

08)

Alnou

tian

dKlaas

sen(200

8);Selwyn

etal.(201

5)

ALDH3A

2mRNA

Fetal

deve

lopm

ent(M

:32

%,F

:16

%)

M:10

days;F:

45da

ysIn

crea

sedrapidly

Adu

ltag

e:45

days

(Alnou

tian

dKlaas

sen,2

008)

and90

days

(Selwyn

etal.,20

15).Strain:C57

BL/6

(mixed

).Method

s:RT-PCR

(Selwyn

etal.,20

15)an

dbD

NA

(Alnou

tian

dKlaas

sen,20

08)

Alnou

tian

dKlaas

sen(200

8);Selwyn

etal.(201

5)

ALDH1A

7mRNA

Fetal

deve

lopm

ent

(2%–3%

)25

days

Increa

sedslow

lyAdu

ltag

e:45

days

(Alnou

tian

dKlaas

sen,2

008)

and60

days

(Lie

tal.,

2016

).Strain:C57

BL/6

(mixed

).Method

s:RT-PCR

(Liet

al.,20

16)

andbD

NA

(Alnou

tian

dKlaas

sen,20

08)

Alnou

tian

dKlaas

sen(200

8;Liet

al.

(201

6)

ALDH7A

1mRNA

Fetal

deve

lopm

ent(25%

)22

days

Increa

sedslow

lyAdu

ltag

e:45

days

(Alnou

tian

dKlaas

sen,2

008)

and60

days

(Lie

tal.,

2016

).Strain:C57

BL/6

(mixed

).Method

s:RT-PCR

(Liet

al.,20

16)

andbD

NA

(Alnou

tian

dKlaas

sen,20

08)

Alnou

tian

dKlaas

sen(200

8);Liet

al.

(201

6)

AOX mRNA

1da

y(2%)

60da

ysIn

crea

sedslow

lyAdu

ltag

e:60

days

(Pen

get

al.,20

13),90

days

(Selwyn

etal.,20

15).

Strain:C57

BL/6

(M)

Pen

get

al.(201

3);Selwyn

etal.(201

5)

CES2A

mRNA

Fetal

deve

lopm

ent(3%)

60da

ysIn

crea

sedslow

lyAdu

ltag

e:60

days

(Pen

get

al.,20

13),90

days

(Selwyn

etal.,20

15).

Strain:C57

BL/6

(M)

Pen

get

al.(201

3);Selwyn

etal.(201

5)

AOX,altern

ativeox

idas

e;bD

NA,bran

ched

DNA

sign

alam

plificationas

say;

F,female;

M,male;

NQO1,

NAD(P)H

:quinon

eacceptor

oxidored

uctas

e-1;

NR,not

repo

rted

;POR,NADPH–cytoch

romeP45

0redu

ctas

e;RNA-seq

,RNA-seq

uen

cing

;RT-PCR,r

everse-trans

criptase

polymeras

ech

ainreaction

.

640 van Groen et al.

Page 45: Ontogeny of Hepatic Transporters and Drug-Metabolizing … · hepatic clearance of the opioid morphine in newborns and young infants (Knibbe et al., 2009). Morphine is actively transported

was used to obtain a quantitative understandingof the developmental biology of drug metabolismand transport.

• Most DTs and DMEs undergo substantial matu-ration after birth, typically showing developmen-tal patterns with either significant increase ordecrease in expression or activity levels withprogressing age.

• The limitations associated with interpretationand application of ontogeny profiles across mul-tiple studies should be acknowledged: technical,methodological, and analytical sources of vari-ability confound accurate registration of interin-dividual variability in activity or expressionlevels. Examples of study-specific sources ofvariability include postmortem versus surgicalbiopsies, lack of subject demographic information,Western blotting versus LC-MS/MS–based pro-teomic quantitative methods, and different unitsof normalization or expression.

• Substantial knowledge gaps regarding the ontog-eny of hepatic DTs/DMEs remain to be addressed.A notable example is the clear lack of informationregarding ontogeny of DTs and DMEs in monkeysdespite their frequent use in ontogeny-relatedstudies. Also, no sex- or ethnicity-related differences

in ontogeny profile of human hepatic DTs andDMEs could be identified based on the currentlyavailable data.

B. Discussion

The overarching goal of this review was to compilemultilevel (i.e., at mRNA expression, protein expres-sion, and activity levels) ontogeny profiles of hepaticDTs and DMEs in humans and in nonclinical species.For many isoforms, data from multiple studies werecombined, thus frequently yielding high-resolutionontogeny profiles sometimes at the protein activitylevel as well as the mRNA/protein expression levels.Subsequent interpretation of these profiles allowedobtaining more complete quantitative insight intothe developmental changes in expression and activ-ity levels of these pivotal hepatic DTs and DMEs.

Various developmental patterns emerged, whichwere classified as follows: 1) age-associated increase inactivity/expression; 2) age-associated decrease in activ-ity/expression; 3) no obvious associations of age withactivity/expression; and 4) complex and/or inconsistentontogeny profile(s). For those that showed an age-related change in activity/expression, developmentalpatterns were particularly isoform-dependent and

Fig. 12. Pooled literature data on the ontogeny of metabolic activity of hepatic phase I enzymes in Göttingen minipig: CYP1A2 (A), CYP2C9 (B),CYP2D6 (C), and CYP3A4 (D). The symbols represent the relative activity in each age group, and the dotted line indicates the adult value defined as100%. If multiple values were obtained for the same age group, the symbols represent the average relative activity, and the error bars show the S.D.See Table 10 for explanation on the ontogeny profiles and literature references.

Ontogeny of Hepatic Transport and Drug Metabolism 641

Page 46: Ontogeny of Hepatic Transporters and Drug-Metabolizing … · hepatic clearance of the opioid morphine in newborns and young infants (Knibbe et al., 2009). Morphine is actively transported

TABLE

10Ontog

enypr

ofileof

hepa

ticCYP

enzy

mes

inGötting

enminipig

basedon

metab

olic

activity,pr

oteinex

pression

,an

dmRNA

expr

ession

leve

lsPercentage

srepr

esen

tex

pression

/activityrelative

toad

ult

leve

ls.

Onsetof

Activityan

d/or

Exp

ression

Adu

ltLev

elsRea

ched

Age

-Related

Chan

gesin

Activity/

Exp

ression

Com

men

tsReferen

ces

CYP1A

2Catalytic

activity

M:228

days

(0.5%);F:

228

days

(3%)

M:NR

(60%

at28

days);F:NR

(81%

at28

days)

Increa

sedrapidly

Singlestud

y,no

tclea

rwhe

ther

subs

trateis

specific

inGöttinge

nminipigs.

Adu

ltag

e:82

2da

ys.Subs

trate:

phen

acetin

O-dee

thylation.Method

s:PLM.Strain:

Göttinge

nminipig

(M/F)

Van

Peeret

al.(201

7)

CYP2C

9Catalytic

activity

M:2

28da

ys(2%);F:2

28da

ys(1.5%)

M:NR

(45%

at28

days);F:NR

(28%

at28

days)

Increa

sedrapidly

Singlestud

y,no

tclea

rwhe

ther

subs

trateis

specific

inGöttinge

nminipigs.

Adu

ltag

e:82

2da

ys.S

ubs

trate:

4-hyd

roxy

lation

oftolbutamide.

Method

s:PLM.Strain:

Göttinge

nminipig

(M/F)

Van

Peeret

al.(201

7)

CYP2D

6Catalytic

activity

M:228

days

(0.4%);F:

228

days

(1%)

M:28

days;F:NR

(61%

at28

days)

Increa

sedrapidly

Singlestud

y,no

tclea

rwhe

ther

subs

trateis

specific

inGöttinge

nminipigs.

Adu

ltag

e:82

2da

ys.Subs

trate:

dextromethorph

anO-dem

ethylation.Method

s:PLM.

Strain:

Götting

enminipig

(M/F)

Van

Peeret

al.(201

7)

CYP3A

Catalytic

activity

M:228

days

(0.8%);F:

228

days

(0.3%)

M:NR

(39%

at28

days);F:NR

(41%

at28

days)

Increa

sedrapidly

Singlestud

y,no

tclea

rwhe

ther

subs

trateis

specific

inGöttinge

nminipigs.

Adu

ltag

e:82

2da

ys.Subs

trate:

Luciferin-IPA,Midaz

olam

.Method

s:PLM.Strain:

Göttinge

nminipig

(M/F)

Van

Peeret

al.,(201

4,20

15,20

17)

Protein

expr

ession

M/F:230

days

(31%

)15

0da

ys(85%

)In

crea

sedrapidly

Singlestudy

,con

flictingda

tabe

twee

npa

pers.A

dultag

e:82

2da

ys.Subs

trate:

rabb

itpo

lyclon

alan

ti-human

anti-C

YP3A

4an

tibo

dy/CYP3A

22,CYP3A

29,

CYP3A

39,CYP3A

46.Method

s:PLM.Strain:

Göttinge

nminipig

(M/F)

F,fem

ale;

IPA,isopr

opyl

acetale;

M,m

ale;

NR,n

otrepo

rted

;PLM,p

iglive

rmicrosome.

642 van Groen et al.

Page 47: Ontogeny of Hepatic Transporters and Drug-Metabolizing … · hepatic clearance of the opioid morphine in newborns and young infants (Knibbe et al., 2009). Morphine is actively transported

Fig. 13. Pooled literature data on the ontogeny of hepatic mRNA expression of hepatic phase I enzymes in cynomolgus monkey: CYP1A1 (A), CYP2A23(B), CYP2A24 (C), CYP2B6 (D), CYP2C18 (E), CYP2C8 (F), CYP2C9 (G), CYP2C19 (H), CYP2C76 (I), CYP2D17 (J), CYP2E1 (K), CYP2J2 (L), CYP3A4(M), CYP3A5 (N), CYP3A43 (O), CYP4A11 (P), CYP4F3 (Q), CYP4F11 (R), CYP4F12 (S), and CYP4F2 (T). The symbols represent the relative mRNAexpression in each age group, and the dotted line indicates the adult value defined as 100%. See Table 11 for explanation on the ontogeny profiles andliterature references.

Ontogeny of Hepatic Transport and Drug Metabolism 643

Page 48: Ontogeny of Hepatic Transporters and Drug-Metabolizing … · hepatic clearance of the opioid morphine in newborns and young infants (Knibbe et al., 2009). Morphine is actively transported

Fig. 13. Continued.

644 van Groen et al.

Page 49: Ontogeny of Hepatic Transporters and Drug-Metabolizing … · hepatic clearance of the opioid morphine in newborns and young infants (Knibbe et al., 2009). Morphine is actively transported

emerged at various rates. This resulted in identificationof DTs and DMEs that reached adult levels shortly afterbirth [e.g., mRNA expression of MRP6 in mice (Table 6)or CYP27 in rats (Table 8) both increased rapidly],whereas others showed a more gradual increase/de-crease [e.g., mRNA expression of CYP2A5 in miceincreased slowly from fetal age until adult values werereached at 20 days of age (Table 9)].Despite the increase in literature data, important

knowledge gaps were identified while compiling theseontogeny data. One of the reasons is the scarcity ofpediatric liver tissue, especially neonates (Brouweret al., 2015). Human protein expression data remainlimited for CYP2A6, CYP2C8, CYP2C9, CYP2C19,GSTP1, and SULT1A1, as data on older age groupswere missing. The same holds true for mRNA expres-sion of CYP3A7 and SULT2A1. In mice and cynomolgusmonkey, all ontogeny profiles on CYP enzymes werederived from mRNA data only, and several CYPenzymes lack activity data in all other nonclinicalspecies. In mice, most ontogeny profiles of phase IIenzymes were derived frommRNA expression, whereasno phase II ontogeny data were available in nonrodentspecies. Finally, the mechanisms underlying the ontog-eny of DTs and DMEs are largely unknown. A potential

mechanism is that nuclear transcription factor activity/expression involved in the expression of DTs and DMEsis also subject to age-related changes. For example, themRNA expression of the nuclear transcription factorpregnane X receptor (PXR) was correlated with age inhuman livers (0–25 yr of age) (Neumann et al., 2016). Inmouse livers the induction potential using substratesfor aryl hydrocarbon receptor, PXR, and constitutiveandrostane receptor was age-specific (Li et al., 2016).The same was seen in rat livers for aryl hydrocarbonreceptor, PXR, and constitutive androstane receptormRNA expression (Xu et al., 2019). However, how thesefindings relate to DT and DME ontogeny should befurther studied. The same considerations can be madefor cofactors involved in metabolism, such as uridinediphosphate glucuronic acid, which supports compoundglucuronidation. However, to the best of our knowledge,no literature is available on age-related changes inthese cofactors levels.

Interestingly, in the case of DTs, data on mRNAexpression were more limited than data on proteinexpression, whereas for DMEs, this was the other wayaround. A potential explanation is that the impact ofDTs on drug disposition was recognized later than thatof DMEs. In the earlier days, information on DMEs

Fig. 13. Continued.

Ontogeny of Hepatic Transport and Drug Metabolism 645

Page 50: Ontogeny of Hepatic Transporters and Drug-Metabolizing … · hepatic clearance of the opioid morphine in newborns and young infants (Knibbe et al., 2009). Morphine is actively transported

TABLE

11Ontog

enypr

ofileof

hepa

ticph

aseIen

zymes

incyno

molgu

smon

keyba

sedon

mRNA

expr

ession

leve

lsPercentage

srepr

esen

tex

pression

/activityrelative

toad

ult

leve

ls.

Onsetof

Activityan

d/or

Exp

ression

Adu

ltLev

elsRea

ched

Age

-Related

Chan

gesin

Activity/

Exp

ression

Com

men

tsReferen

ces

CYP1A

1mRNA

expr

ession

F:274

days

(3.6%)

NR

(156

%at

183

days)

Incons

istent

pattern/increa

sedrapidly

Singlestud

y,on

lyM

at6moan

d2to

3yr,o

nlyFat

274

days.A

dult

age:

2to

3yr.F

etal

deve

lopm

ent:274

days

only

F.M

ethod

s:DNA

microarray.

Strain:cynom

olgu

smacaq

ue(M

/F)

Iseet

al.(20

11)

CYP2A

23mRNA

expr

ession

F:274

days

(1.3%)

NR

(130

%at

365

days)

Increa

sedrapidly

Singlestudy

,only

Mat

6moan

d2to

3yr,o

nly

Fat

274

days.A

dult

age:

2to

3yr.F

etal

deve

lopm

ent:274

days

only

F.M

ethod

s:DNA

microarray.

Strain:cynom

olgu

smacaq

ue(M

/F)

Iseet

al.(20

11)

CYP2A

24mRNA

expr

ession

F:274

days

(2%)

NR

(118

%at

365

days)

Increa

sedrapidly

Singlestudy

,only

Mat

6moan

d2to

3yr,o

nly

Fat

274

days.A

dult

age:

2to

3yr.F

etal

deve

lopm

ent:274

days

only

F.M

ethod

s:DNA

microarray.

Strain:cynom

olgu

smacaq

ue(M

/F)

Iseet

al.(20

11)

CYP2B

6mRNA

expr

ession

F:274

days

(0.3%)

NR

(183

%at

365

days)

Increa

sedslow

lySinglestud

y,on

lyM

at6moan

d2to

3yr,o

nlyFat

274

days.A

dult

age:

2to

3yr.F

etal

deve

lopm

ent:274

days

only

F.M

ethod

s:DNA

microarray.

Strain:cynom

olgu

smacaq

ue(M

/F)

Iseet

al.(20

11)

CYP2C

8mRNA

expr

ession

F:274

days

(32%

)NR

(75%

at36

5da

ys)

Inconsisten

tpa

ttern

Singlestudy

,only

Mat

6moan

d2to

3yr,o

nly

Fat

274

days.A

dult

age:

2to

3yr.F

etal

deve

lopm

ent:274

days

only

F.M

ethod

s:DNA

microarray.

Strain:cynom

olgu

smacaq

ue(M

/F)

Iseet

al.(20

11)

CYP2C

9mRNA

expr

ession

F:274

days

(0.2%)

183da

ysIn

crea

sedrapidly

Singlestudy

,only

Mat

6moan

d2to

3yr,o

nly

Fat

274

days.A

dult

age:

2to

3yr.F

etal

deve

lopm

ent:274

days

only

F.M

ethod

s:DNA

microarray.

Strain:cynom

olgu

smacaq

ue(M

/F)

Iseet

al.(20

11)

CYP2C

18mRNA

expr

ession

F:274

days

(14%

)NR

(38%

at36

5da

ys)

Increa

sedslow

lySinglestudy

,only

Mat

6moan

d2to

3yr,o

nly

Fat

274

days.A

dult

age:

2to

3yr.F

etal

deve

lopm

ent:274

days

only

F.M

ethod

s:DNA

microarray.

Strain:cynom

olgu

smacaq

ue(M

/F)

Iseet

al.(20

11)

CYP2C

19mRNA

expr

ession

F:274

days

(0.2%)

NR

(75%

at54

8da

ys)

Increa

sedrapidly/increa

sed

prog

ressively

Singlestudy

,only

Mat

6moan

d2to

3yr,o

nly

Fat

274

days.A

dult

age:

2to

3yr.F

etal

deve

lopm

ent:274

days

only

F.M

ethod

s:DNA

microarray.

Strain:cynom

olgu

smacaq

ue(M

/F)

Iseet

al.(20

11)

CYP2C

76mRNA

expr

ession

F:274

days

(0.3%)

NR

(70%

at54

8da

ys)

Increa

sedrapidly/increa

sed

prog

ressively

Singlestudy

,only

Mat

6moan

d2to

3yr,o

nly

Fat

274

days.A

dult

age:

2to

3yr.F

etal

deve

lopm

ent:274

days

only

F.M

ethod

s:DNA

microarray.

Strain:cynom

olgu

smacaq

ue(M

/F)

Iseet

al.(20

11)

CYP2D

17mRNA

expr

ession

F:274

days

(0.5%)

183da

ysIn

crea

sedrapidly

Singlestudy

,only

Mat

6moan

d2to

3yr,o

nly

Fat

274

days.A

dult

age:

2to

3yr.F

etal

deve

lopm

ent:274

days

only

F.M

ethod

s:DNA

microarray.

Strain:cynom

olgu

smacaq

ue(M

/F)

Iseet

al.(20

11)

CYP2E

1mRNA

expr

ession

F:274

days

(0.07%

)NR

(46%

at54

8da

ys)

Increa

sedrapidly/increa

sed

prog

ressively

Singlestudy

,only

Mat

6moan

d2to

3yr,o

nly

Fat

274

days.A

dult

age:

2to

3yr.F

etal

deve

lopm

ent:274

days

only

F.M

ethod

s:DNA

microarray.

Strain:cynom

olgu

smacaq

ue(M

/F)

Iseet

al.(20

11)

CYP2J

2mRNA

expr

ession

F:274

days

(20%

)NR

(81%

at18

3da

ys)

Non

linea

rpa

ttern/in

crea

sedrapidly

Singlestudy

,only

Mat

6moan

d2to

3yr,o

nly

Fat

274

days.A

dult

age:

2to

3yr.F

etal

deve

lopm

ent:274

days

only

F.M

ethod

s:DNA

microarray.

Strain:cynom

olgu

smacaq

ue(M

/F)

Iseet

al.(20

11)

CYP3A

4mRNA

expr

ession

F:274

days

(0.2%)

NR

(68%

at30

days)

Increa

sedrapidly

Singlestudy

,only

Mat

6moan

d2to

3yr,o

nly

Fat

274

days.A

dult

age:

2to

3yr.F

etal

deve

lopm

ent:274

days

only

F.M

ethod

s:DNA

microarray.

Strain:cynom

olgu

smacaq

ue(M

/F)

Iseet

al.(20

11)

CYP3A

5

(con

tinued

)

646 van Groen et al.

Page 51: Ontogeny of Hepatic Transporters and Drug-Metabolizing … · hepatic clearance of the opioid morphine in newborns and young infants (Knibbe et al., 2009). Morphine is actively transported

TABLE

11—

Con

tinued

Onsetof

Activityan

d/or

Exp

ression

Adu

ltLev

elsRea

ched

Age

-Related

Chan

gesin

Activity/

Exp

ression

Com

men

tsReferen

ces

mRNA

expr

ession

F:274

days

(0.2%)

30da

ysIn

consisten

tpa

ttern

Singlestudy

,only

Mat

6moan

d2to

3yr,o

nly

Fat

274

days.A

dult

age:

2to

3yr.F

etal

deve

lopm

ent:274

days

only

F.M

ethod

s:DNA

microarray.

Strain:cynom

olgu

smacaq

ue(M

/F)

Iseet

al.(20

11)

CYP3A

43mRNA

expr

ession

F:274

days

(149

%)

274

days

Noch

ange

s/inconsisten

tpa

ttern

Singlestudy

,only

Mat

6moan

d2to

3yr,o

nly

Fat

274

days.A

dult

age:

2to

3yr.F

etal

deve

lopm

ent:274

days

only

F.M

ethod

s:DNA

microarray.

Strain:cynom

olgu

smacaq

ue(M

/F)

Iseet

al.(20

11)

CYP4A

11mRNA

expr

ession

F:274

days

(21%

)NR

(216

%at

30da

ys)

Inconsisten

tpa

ttern/in

crea

sedrapidly

Singlestudy

,only

Mat

6moan

d2to

3yr,o

nly

Fat

274

days.A

dult

age:

2to

3yr.F

etal

deve

lopm

ent:274

days

only

F.M

ethod

s:DNA

microarray.

Strain:cynom

olgu

smacaq

ue(M

/F)

Iseet

al.(20

11)

CYP4F

3mRNA

expr

ession

F:274

days

(11%

)NR

(152

%at

183

days)

Incons

istent

pattern/increa

sedrapidly

Singlestud

y,on

lyM

at6moan

d2to

3yr,o

nlyFat

274

days.A

dult

age:

2to

3yr.F

etal

deve

lopm

ent:274

days

only

F.M

ethod

s:DNA

microarray.

Strain:cynom

olgu

smacaq

ue(M

/F)

Iseet

al.(20

11)

CYP4F

11mRNA

expr

ession

F:274

days

(15%

)NR

(230

%at

183

days)

Incons

istent

pattern/increa

sedrapidly

Singlestud

y,on

lyM

at6moan

d2to

3yr,o

nlyFat

274

days.A

dult

age:

2to

3yr.F

etal

deve

lopm

ent:274

days

only

F.M

ethod

s:DNA

microarray.

Strain:cynom

olgu

smacaq

ue(M

/F)

Iseet

al.(20

11)

CYP4F

12mRNA

expr

ession

F:274

days

(52%

)274

–30

days

Noch

ange

s(variable)

Singlestudy

,only

Mat

6moan

d2to

3yr,o

nly

Fat

274

days.A

dult

age:

2to

3yr.F

etal

deve

lopm

ent:274

days

only

F.M

ethod

s:DNA

microarray.

Strain:cynom

olgu

smacaq

ue(M

/F)

Iseet

al.(20

11)

CYP4F

2mRNA

expr

ession

F:274

days

(10%

)18

3da

ysIn

crea

sedrapidly

Singlestudy

,only

Mat

6moan

d2to

3yr,o

nly

Fat

274

days.A

dult

age:

2to

3yr.F

etal

deve

lopm

ent:274

days

only

F.M

ethod

s:DNA

microarray.

Strain:cynom

olgu

smacaq

ue(M

/F)

Iseet

al.(20

11)

F,fem

ale;

M,m

ale;

NR,no

trepo

rted

.

Ontogeny of Hepatic Transport and Drug Metabolism 647

Page 52: Ontogeny of Hepatic Transporters and Drug-Metabolizing … · hepatic clearance of the opioid morphine in newborns and young infants (Knibbe et al., 2009). Morphine is actively transported

Fig. 14. Pooled literature data on the ontogeny of hepatic metabolic activity of phase I enzymes in Beagle dogs: CYP1A1 (A), CYP1A2 (B), CYP2C9 (C),CYP2C/2E1/3A (D), CYP2E1 (E), CYP3A/2B (F), CYP3A4/5 (G), and P450 content (H). The symbols represent the relative activity in each age group,and the dotted line indicates the adult value defined as 100%. If multiple values were obtained for the same age group, the symbols represent theaverage relative activity, and the error bars show the S.D. See Table 12 for explanation on the ontogeny profiles and literature references. P450,cytochrome P450.

648 van Groen et al.

Page 53: Ontogeny of Hepatic Transporters and Drug-Metabolizing … · hepatic clearance of the opioid morphine in newborns and young infants (Knibbe et al., 2009). Morphine is actively transported

TABLE

12Ontog

enypr

ofileof

hepa

ticCYP

enzy

mes

andhe

paticCYPconten

tin

Bea

gledo

gba

sedon

metab

olic

activity

andpr

oteinex

pression

leve

lsPercentage

srepr

esen

tex

pression

/activityrelative

toad

ult

leve

ls.

Onsetof

Activityan

d/or

Exp

ression

Adu

ltLev

elsRea

ched

Age

-Related

Chan

gesin

Activity/

Exp

ression

Com

men

tsReferen

ces

CYP1A

1Catalytic

activity

7da

ys(59%

)21

days

Noch

ange

sSinglestudy

,not

clea

rwhether

subs

trateis

specific

inBea

gledo

gs.

Fetal

deve

lopm

ent:

NR.Adu

ltag

e:10

50da

ys.Subs

trate:

p-nitroan

isoleO-dem

ethylation.Method

s:DLM.Strain:Bea

gle

dog(M

)

Tan

akaet

al.

(199

8)

CYP1A

2Catalytic

activity

7da

ys(58%

)10

5da

ysIn

crea

sedrapidly/noch

ange

sSinglestudy

,not

clea

rwhether

subs

trateis

specific

inBea

gledo

gs.

Fetal

deve

lopm

ent:NR.A

dultag

e:10

50da

ys.S

ubs

trate:

caffeine

N-dem

ethylation.Method

s:DLM.Strain:Bea

gledo

g(M

)

Tan

akaet

al.

(199

8)

CYP2C

9Catalytic

activity

7da

ys(94%

)7da

ysIn

crea

sedrapidly/incons

istent

pattern

Singlestudy

,not

clea

rwhether

subs

trateis

specific

inBea

gledo

gs.

Fetal

deve

lopm

ent:

NR.Adu

ltag

e:10

50da

ys.Subs

trate:

phen

ytoinhyd

roxy

lation

.Method

s:DLM.S

train:B

eagledo

g(M

)

Tan

akaet

al.

(199

8)

CYP2E

1Catalytic

activity

7da

ys(66%

)21

days

Increa

sedrapidly/noch

ange

sSinglestudy

,not

clea

rwhether

subs

trateis

specific

inBea

gledo

gs.

Fetal

deve

lopm

ent:NR.A

dultag

e:10

50da

ys.S

ubs

trate:

aniline

hyd

roxy

lation

.Method

s:DLM.Strain:Bea

gledo

g(M

)

Tan

akaet

al.

(199

8)

CYP3A

4/5

Catalytic

activity

7da

ys(77%

)NR

(variable)

Incons

istent

pattern

Singlestud

y,no

tclea

rwhe

ther

subs

trateis

specific

inBea

gledo

gs.

Fetal

deve

lopm

ent:

NR.Adu

ltag

e:10

50da

ys.Subs

trate:

erythromycin

N-dem

ethylation.Method

s:DLM.Strain:Bea

gle

dog(M

)

Tan

akaet

al.

(199

8)

CYP3A

/2B

Catalytic

activity

7da

ys(65%

)49

days

Increa

sedrapidly/noch

ange

sSinglestudy

,not

clea

rwhether

subs

trateis

specific

inBea

gledo

gs.

Fetal

deve

lopm

ent:

NR.Adu

ltag

e:10

50da

ys.Subs

trate:

benzp

hetam

ineN-dem

ethylation.M

ethod

s:DLM.S

train:B

eagle

dog(M

)

Tan

akaet

al.

(199

8)

CYP2C

/2E1/3A

Catalytic

activity

7da

ys(50%

)NR

(154

%at

21da

ys)

Increa

sedrapidly/incons

istent

pattern

Singlestudy

,not

clea

rwhether

subs

trateis

specific

inBea

gledo

gs.

Fetal

deve

lopm

ent:

NR.Adu

ltag

e:10

50da

ys.Subs

trate:

trim

ethad

ionN-dem

ethylation.Method

s:DLM.Strain:Bea

gle

dog(M

)

Tan

akaet

al.

(199

8)

CytochromeP45

0content

Protein

expr

ession

NR

NR

Inconsisten

tpa

ttern

Singlestudy

.Fetal

deve

lopm

ent:NR.Adu

ltag

e:10

50da

ys.

Method

s:Omura

andSato(D

LM).Unit:n

anom

oles

per

milligram

microsomal

protein

Tan

akaet

al.

(199

8)

DLM,do

glive

rmicrosome;

M,m

ale;

NR,n

otrepo

rted

.

Ontogeny of Hepatic Transport and Drug Metabolism 649

Page 54: Ontogeny of Hepatic Transporters and Drug-Metabolizing … · hepatic clearance of the opioid morphine in newborns and young infants (Knibbe et al., 2009). Morphine is actively transported

mostly came from mRNA expression data becauseanalytical methods for protein quantification becamemore advanced just recently. There is still a major lackof knowledge on transporter ontogeny in all species. Atthe activity level, few studies were published on age-dependent activity of OATP, OCT1, and NTCP insuspended rat hepatocytes. This represents a criticalgap because gene expression or protein abundancerarely correlates well with transporter activity. Hence,activity data are essential to accurately predict theimpact of age-related changes on drug disposition(Brouwer et al., 2015). For several DMEs, validatedin vivo markers are available, as exemplified by thedrug midazolam that is often used for CYP3A activity(deWildt et al., 2009) or dextromethorphan for CYP2D6activity (Leeder et al., 2008). However, transportersubstrates most often rely on multiple DTs; hencevalidated markers are lacking, which makes it chal-lenging to fill this knowledge gap. Furthermore, thelack of data on hepatic DTs in nonclinical speciesprecludes straightforward translation of in vivo dataanimal with a transporter substrate from nonclinicalspecies to humans. Still, DTs and DMEs in animalsthat are orthologs of human isoforms do not alwaysrecognize the same substrates. This adds anotherlayer of complexity to translating nonclinical animaldata to humans.

Filling the knowledge gaps on ontogeny of human DTand DME activity remains challenging. Even if biologicmaterial were available to perform in vitro experi-ments, the in vitro–to–in vivo extrapolation would notbe straightforward. The isolation process of cells orenzymes from biologic material is known to impactenzyme and transporter activity. Even the isolationefficiency of enzymes from donormaterial from differentage groups can be subject to age (unpublished observa-tion). The importance of age-specific scaling is alsoreflected by the reported age dependency of hepatocel-lularity (i.e., the number of hepatocytes per gram liverin rat liver). Standard (i.e., age-independent) scalingfactors to extrapolate catalytic activity from in vitro toin vivo could therefore introduce bias to the data andskew predictions of in vivo drug disposition. Morestudies should attempt to translate in vitro observa-tions to the clinical setting to better understand howthese ontogeny profiles, which are often determinedin vitro, can aid in clinical dose predictions. In thiscontext, it also needs to be emphasized that reliableprediction and understanding of the effect of age on thedisposition of a given drug require consideration andintegration of combined influences of ontogeny of allenzymes/transporters mediating the disposition of saiddrug. Consistently, developmental patterns based onin vitro activity measurements should also be validated

Fig. 15. Pooled literature data on the ontogeny of hepatic metabolic activity of phase I enzymes in the domestic pig: CYP2C (A), CYP2E (B), andCYP3A (C). The symbols represent the relative activity in each age group and the dotted line indicates the adult value defined as 100%. If multiplevalues were obtained for the same age group, the symbols represent the average relative activity and the error bars show the S.D. See Table 13 forexplanation on the ontogeny profiles and literature references.

650 van Groen et al.

Page 55: Ontogeny of Hepatic Transporters and Drug-Metabolizing … · hepatic clearance of the opioid morphine in newborns and young infants (Knibbe et al., 2009). Morphine is actively transported

TABLE

13Ontog

enypr

ofileof

hep

atic

CYP

enzy

mes

indo

mesticpigba

sedon

metab

olic

activity,pr

oteinex

pression

,an

dmRNA

expr

ession

leve

lsPercentage

srepr

esen

tex

pression

/activityrelative

toad

ult

leve

ls.

Onsetof

Activityan

d/or

Exp

ression

Adu

ltLev

els

Rea

ched

Age

-Related

Cha

nges

inActivity/Exp

ression

Com

men

tsReferen

ces

CYP1A

2Protein

expr

ession

M:2da

ys(5.4%);F:2da

ys(2.2%)

NR

(180

days)

M:increa

sedrapidly;

F:increa

sedslow

lySinglestudy

,sp

arse

data.Adu

ltag

e:18

0da

ys.Fetal

deve

lopm

ent:NR.M

ethod

s:LC-M

S/M

S(PLM).Strain:S

eghers

hyb

rid(M

/F)

Millecam

etal.

(201

8)

CYP2A

19Protein

expr

ession

M:2da

ys(11%

);F:2

days

(2.3%)

NR

(180

days)

Increa

sedslow

lySinglestudy

,sp

arse

data.Adu

ltag

e:18

0da

ys.Fetal

deve

lopm

ent:NR.M

ethod

s:LC-M

S/M

S(PLM).Strain:S

eghers

hyb

rid(M

/F)

Millecam

etal.

(201

8)

CYP2B

22Protein

expr

ession

M:2da

ys(8.6%);F:2da

ys(10%

)18

0da

ysIn

crea

sedslow

lySinglestudy

,sp

arse

data.Adu

ltag

e:18

0da

ys.Fetal

deve

lopm

ent:NR.M

ethod

s:LC-M

S/M

S(PLM).Strain:S

eghers

hyb

rid(M

/F)

Millecam

etal.

(201

8)

CYP2C

Catalytic

activity

M:2da

ys(14%

);F:2

days

(45%

)M:NR;F:5

6da

ysM:increa

sedpr

ogressively;

F:increa

sed

rapidly

Singlestudy

,sp

arse

data.Adu

ltag

e:18

0da

ys.Fetal

deve

lopm

ent:NR.Subs

trate:

Tolbu

tamide4-hyd

roxy

lation

.Method

s:PLM.Strain:Seg

hershyb

rid(M

/F)

Millecam

etal.

(201

8)

CYP2C

33Protein

expr

ession

M:2da

ys(8.6%);F:2da

ys(10%

)18

0da

ysIn

crea

sedpr

ogressively

Singlestud

y,sp

arse

data.Adu

ltag

e:18

0da

ys.Fetal

deve

lopm

ent:NR.M

ethod

s:LC-M

S/M

S(PLM).Strain:S

eghers

hyb

rid(M

/F)

Millecam

etal.

(201

8)

CYP2C

34Protein

expr

ession

M:2da

ys(38%

);F:2

days

(30%

)M:NR

(210

%at

28da

ys);F:NR

(165

%at

28da

ys)

Increa

sedrapidly

Singlestudy

,sp

arse

data.Adu

ltag

e:18

0da

ys.Fetal

deve

lopm

ent:NR.M

ethod

s:LC-M

S/M

S(PLM).Strain:S

eghers

hyb

rid(M

/F)

Millecam

etal.

(201

8)

CYP2C

35Protein

expr

ession

M:2da

ys(30%

);F:2

days

(24%

)M:NR

(155

%at

28da

ys);F:NR

(129

%at

28da

ys)

Increa

sedrapidly/incons

istent

pattern

Singlestud

y,sp

arse

data.Adu

ltag

e:18

0da

ys.Fetal

deve

lopm

ent:NR.M

ethod

s:LC-M

S/M

S(PLM).Strain:S

eghers

hyb

rid(M

/F)

Millecam

etal.

(201

8)

CYP2C

36Protein

expr

ession

M:2da

ys(9%);F:2

days

(58%

)M:N

R(180

days);F:

28da

ysM:increa

sedslow

ly;F:inc

reas

edrapidly

Singlestud

y,sp

arse

data.Adu

ltag

e:18

0da

ys.Fetal

deve

lopm

ent:NR.M

ethod

s:LC-M

S/M

S(PLM).Strain:S

eghers

hyb

rid(M

/F)

Millecam

etal.

(201

8)

CYP2C

49Protein

expr

ession

M:2da

ys(12%

);F:2

days

(10%

)28

days

Increa

sedrapidly

Singlestudy

,sp

arse

data.Adu

ltag

e:18

0da

ys.Fetal

deve

lopm

ent:NR.M

ethod

s:LC-M

S/M

S(PLM).Strain:S

eghers

hyb

rid(M

/F)

Millecam

etal.

(201

8)

CYP2D

6Protein

expr

ession

M: 2

days

(6%);F:2

days

(5%)

NR

(180

days)

Increa

sedrapidly/increa

sedpr

ogressively

Singlestudy

,sp

arse

data.Adu

ltag

e:18

0da

ys.Fetal

deve

lopm

ent:NR.M

ethod

s:LC-M

S/M

S(PLM).Strain:S

eghers

hyb

rid(M

/F)

Millecam

etal.

(201

8)

CYP2E

Catalytic

activity

M:2da

ys(49%

);F:2

days

(78%

)NR

(180

days)

Increa

sedslow

ly/noch

ange

sSinglestudy

,sp

arse

data.Adu

ltag

e:18

0da

ys.Fetal

deve

lopm

ent:NR.Subs

trate:

Chlorzox

azon

e6-hyd

roxy

lation

.Method

s:PLM.Strain:Seg

hershyb

rid(M

/F)

Millecam

etal.

(201

8)

CYP2E

1Protein

expr

ession

M:2da

ys(108

%);F:2

days

(31%

)M:2da

ys;F

:NR

(180

days)

M:noch

ange

s;F:increa

sedslow

lySinglestudy

,sp

arse

data.Adu

ltag

e:18

0da

ys.Fetal

deve

lopm

ent:NR.M

ethod

s:LC-M

S/M

S(PLM).Strain:S

eghers

hyb

rid(M

/F)

Millecam

etal.

(201

8)

CYP3A

Catalytic

activity

M:2da

ys(13%

);F:2

days

(8%)

NR

(180

days)

Increa

sedslow

lySinglestudy

,sp

arse

data.Adu

ltag

e:18

0da

ys.Fetal

deve

lopm

ent:NR.Subs

trate:

Midaz

olam

1-hyd

roxy

lation

.Method

s:PLM.Strain:Seg

hershyb

rid(M

/F)

Millecam

etal.

(201

8)

CYP3A

22

(con

tinued

)

Ontogeny of Hepatic Transport and Drug Metabolism 651

Page 56: Ontogeny of Hepatic Transporters and Drug-Metabolizing … · hepatic clearance of the opioid morphine in newborns and young infants (Knibbe et al., 2009). Morphine is actively transported

because, for example, the isolation process of cells orsubcellular fractions from biologic material could im-pact protein activity. Moreover, since substrates differin their affinity for DT and/or DME isoforms, the resultsfrom one substrate may not be translated directly toanother drug substrate. Understanding the dispositionkinetics of the substrate itself is therefore a crucial stepin the interpretation of age-dependent activities. Ex-emplar of this is the interplay between different in-dividual DTs and/or, subsequently, with DMEs, whichhampers reliable deconvolution and extraction of in-dividual DT and DME ontogeny profiles from popula-tion PK data (Nigam, 2015). However, PBPK modelsallow incorporation of multiple ontogeny profiles andcan be used for hypothesis-driven exploration andultimately verification of developmental patternsagainst pediatric PK data (Emoto et al., 2018; Zhouet al., 2018; Cheung et al., 2019). Also, PBPKmodels areincreasingly used for pediatric dose finding—for exam-ple, for oseltamivir for pediatric clinical trials (Parrottet al., 2011).

Currently, an opportunity lies in the fact that endog-enous substrates/metabolites have been identified aspotential markers to phenotype the activity of DTs andDMEs in vivo. Examples include the use of the urinary6-b-hydroxycortisol/cortisol ratio for CYP3A activity,thiamine for OCT1 activity, and dehydroepiandroster-one sulfate (DHEAS) for OATP1B1/3 activity (Mulleret al., 2018). Recently, testosterone glucuronide nor-malized by andosterone glucuronide was shown to bepromising as a urinary biomarker to phenotypeUGT2B17 activity in children 7–18 years (Zhanget al., 2020). Using endogenous substrates to phenotypeDTs and DMEs does not require administration of anexogenous probe, thereby overcoming one of thechallenges in pediatric research. However, pediatrichomeostatic levels may differ from those in adults,and reference values of endogenous substrate levelsin children are lacking. For example, DHEAS levelsat birth are high and decrease drastically over thefirst month of life, which is then followed by a moreprogressive decrease until reaching 6 months of age (dePeretti and Forest, 1978). Hence, specific reference valuesfor these endogenous substrates/metabolites in variousage groups should be obtained in the near future.

Our data compilation effort also revealed notableinconsistencies between results obtained in differentstudies on the same protein isoforms. Clearly, under-standing differential contributions of technical, meth-odological, analytical, and interindividual variability inactivity or expression levels remains challenging. First,several studies that were included in this review usedhuman pediatric liver tissue—mostly postmortem tis-sue—obtained from biobanks. Not all biobanks collectdata on the primary diagnosis, age, and sex. Moreover,it is challenging to determine the severity of disease,comedication, ethnicity, feeding status, smoking, drug

TABLE

13—

Con

tinued

Onsetof

Activityan

d/or

Exp

ression

Adu

ltLev

els

Rea

ched

Age

-Related

Cha

nges

inActivity/Exp

ression

Com

men

tsReferen

ces

Protein

expr

ession

M:2da

ys(35%

);F:2

days

(20%

)NR

(180

days)

Increa

sedslow

lySinglestudy

,sp

arse

data.Adu

ltag

e:18

0da

ys.Fetal

deve

lopm

ent:NR.M

ethod

s:LC-M

S/M

S(PLM).Strain:S

eghers

hyb

rid(M

/F)

Millecam

etal.

(201

8)

CYP3A

46Protein

expr

ession

M:2da

ys(2.3%);F:2da

ys(2.9%)

NR

(180

days)

Increa

sedslow

lySinglestudy

,sp

arse

data.Adu

ltag

e:18

0da

ys.Fetal

deve

lopm

ent:NR.M

ethod

s:LC-M

S/M

S(PLM).Strain:S

eghers

hyb

rid(M

/F)

Millecam

etal.

(201

8)

CYP4A

21Protein

expr

ession

M:2da

ys(16%

);F:2

days

(17%

)NR

(180

days)

Increa

sedslow

lySinglestudy

,sp

arse

data.Adu

ltag

e:18

0da

ys.Fetal

deve

lopm

ent:NR.M

ethod

s:LC-M

S/M

S(PLM).Strain:S

eghers

hyb

rid(M

/F).Matrix:

PLM

Millecam

etal.

(201

8)

CYP4A

24Protein

expr

ession

M:2da

ys(44%

);F:2

days

(60%

)NR

(180

days)

Increa

sedslow

lySinglestudy

,sp

arse

data.Adu

ltag

e:18

0da

ys.Fetal

deve

lopm

ent:NR.M

ethod

s:LC-M

S/M

S(PLM).Strain:S

eghers

hyb

rid(M

/F)

Millecam

etal.

(201

8)

CYP20

A1

Protein

expr

ession

M:2da

ys(60%

);F:2

days

(45%

)NR

(180

days)

Increa

sedslow

ly/noch

ange

sSinglestudy

,sp

arse

data.Adu

ltag

e:18

0da

ys.Fetal

deve

lopm

ent:NR.M

ethod

s:LC-M

S/M

S(PLM).Strain:S

eghers

hyb

rid(M

/F)

Millecam

etal.

(201

8)

CYP51

A1

Protein

expr

ession

M:2da

ys(26%

);F:2

days

(17%

)1NR

(180

days)

Increa

sedslow

lySinglestudy

,sp

arse

data.Adu

ltag

e:18

0da

ys.Fetal

deve

lopm

ent:NR.M

ethod

s:LC-M

S/M

S(PLM).Strain:S

eghers

hyb

rid(M

/F)

Millecam

etal.

(201

8)

F,fem

ale;

M,m

ale;

NR,no

trepo

rted

;PLM,piglive

rmicrosome.

652 van Groen et al.

Page 57: Ontogeny of Hepatic Transporters and Drug-Metabolizing … · hepatic clearance of the opioid morphine in newborns and young infants (Knibbe et al., 2009). Morphine is actively transported

Fig. 16. Pooled literature data on the ontogeny of metabolic activity of hepatic phase II enzymes in humans: COMT (A), GSTZ1 (B), NAT (C),SULT1A1 (D), SULT1A3 (E), SULT1E1 (F), TMPT (G), UGT1A1 (H), UGT1A4 (I), UGT1A6 (J), UGT1A9 (K), UGT2B7 (L), UGT2B15 (M), andUGT2B17 (N). The symbols represent the relative activity in each age group, and the dotted line indicates the adult value defined as 100%. If multiplevalues were obtained for the same age group, the symbols represent the average relative activity, and the error bars show the S.D. See Table 14 forexplanation on the ontogeny profiles and literature references. TMPT, thiopurine-methyltransferase.

Ontogeny of Hepatic Transport and Drug Metabolism 653

Page 58: Ontogeny of Hepatic Transporters and Drug-Metabolizing … · hepatic clearance of the opioid morphine in newborns and young infants (Knibbe et al., 2009). Morphine is actively transported

history, or alcohol intake and the impact of thesefactors. For data obtained in tissues from nonclinicalanimals, strain differences may have an especiallysignificant impact apart from housing conditions anddiet. Taken together, this implies that data compiled in

this review were obtained in various subpopulations.Second, the exact experimental conditions and specificanalytical methods used to quantify mRNA expres-sion, protein abundance, or activity may differ betweenstudies and may thus complicate the meta-analysis of

Fig. 16. Continued.

654 van Groen et al.

Page 59: Ontogeny of Hepatic Transporters and Drug-Metabolizing … · hepatic clearance of the opioid morphine in newborns and young infants (Knibbe et al., 2009). Morphine is actively transported

TABLE

14Ontog

enypr

ofileof

hep

atic

phas

eII

enzy

mes

inhu

man

sba

sedon

metab

olic

activity,pr

oteinex

pression

,an

dmRNA

expr

ession

leve

lsPercentage

srepr

esen

tex

pression

/activityrelative

toad

ult

leve

ls.

Onsetof

Activityan

d/or

Exp

ression

Adu

ltLev

elsRea

ched

Age

-Related

Chan

gesin

Activityan

d/or

Exp

ression

Com

men

tsReferen

ces

COMT

Catalytic

activity

Birth

(T3:

,2%

)NR

(12yr:2

5%)

Increa

sedslow

lythen

decrea

sedin

elde

rly

12–18

yr:N

R.Subs

trate:

methye

pinep

hrine.

Matrix:

live

rcytosol.Metho

ds:HLC,

spectrop

hotom

etry

Aga

thop

ouloset

al.(197

1)

GSTA1

Protein

expr

ession

Fetal

deve

lopm

ent(T1–

T3:

70%)

Neo

nates–1yr

Increa

sedrapidly

1–18

yr:N

D.Method

s:electrop

horesis

and

radioimmunoa

ssay

Stran

geet

al.(19

89);McC

arve

ran

dHines

(200

2)GSTA2

Protein

expr

ession

Fetal

deve

lopm

ent(T1–

T3:

25%)

.1yr

(60%

)In

crea

sedpr

ogressively

1–18

yr:N

D.Method

s:electrop

horesis

and

radioimmunoa

ssay

Stran

geet

al.(19

89);McC

arve

ran

dHines

(200

2)GSTM

Protein

expr

ession

Fetal

deve

lopm

ent(T1–

T3:

20%)

Neo

nates–1y

rIn

crea

sedrapidly

1–18

yr:N

D.Method

s:electrop

horesis

and

radioimmunoa

ssay

Stran

geet

al.(19

89);McC

arve

ran

dHines

(200

2)GSTP1

Protein

expr

ession

Fetal

deve

lopm

ent(T1–

T3:

.10

00%)

Fetal

deve

lopm

ent

Incons

istent

pattern

1–18

yr:N

D.Method

s:electrop

horesis

and

radioimmunoa

ssay

Stran

geet

al.(19

89);McC

arve

ran

dHines

(200

2)GSTZ1

Catalytic

activity

Fetal

deve

lopm

ent(T1–

T3:

,30

%)

.7yr

Increa

sedslow

ly(7

yr:7

5%)

7–18

yr:N

R.Subs

trate:

dich

loroacetic

acid.

Matrix:

live

rcytosol.Metho

ds:HPLC

coup

led

withradioa

ctivityflow

detector

Liet

al.(201

2)

Protein

expr

ession

Birth

(2.5

wk:

,10

%)

.7yr

Increa

sedslow

ly(7

yr:7

5%)

7–18

yr:N

R.Method

s:Western

blotting

Liet

al.(201

2)

NAT Catalytic

activity

Birth

(T1–

T3:

,3%

)1.5yr

Increa

sedpr

ogressively

11–18

yr:N

R.Subs

trates:glycine,

benzoic

acid.

Matrix:

live

rho

mog

enates.Metho

ds:

radioa

ctivity,

spectrop

hotometry

Pacificiet

al.(19

91a);Maw

alet

al.(19

97)

SULT1A

1Catalytic

activity

Fetal

deve

lopm

ent(T1–

T3:

.80

%)

Fetal

deve

lopm

ent

Pea

kedat

6mo(3-fold)

6moto

18yr:NR.Subs

trates:1-nap

htol,2-

nap

htol,4-nitroph

enol,N-hyd

roxy

-4-

aminob

iphen

il,N-hyd

roxy

-4-

acetylam

inob

iphe

nyl.Matrix:

live

rcytosol.

Metho

ds:radioa

ctivityHPLC,

chromatog

raph

y

Pacificiet

al.(19

88);Cap

piello

etal.

(199

1);Gilissenet

al.(199

4);Richa

rdet

al.(200

1)

Protein

expr

ession

Fetal

deve

lopm

ent(T1–

T3:

93%)

Fetal

deve

lopm

ent

Noch

ange

sMethod

s:electrop

horesis

andradioimmunoa

ssay

McC

arve

ran

dHines

(200

2);D

uan

muet

al.

(200

6)SULT1A

3Catalytic

activity

Fetal

deve

lopm

ent(T1–

T3:

.20

0%)

Fetal

deve

lopm

ent

Decreas

edin

neona

tes(2.5-fold)

Neona

tes–

18yr:NR.Subs

trate:

dopa

mine.

Matrix:

live

rcytosol.Metho

ds:radioa

ctivity,

chromatog

raph

y

Pow

iset

al.(19

88);Cap

piello

etal.(19

91);

Pacificiet

al.(19

93);Richa

rdet

al.

(200

1)SULT1E

1Catalytic

activity

Birth

(T1–

T3:

,2%

)19

wk:

35%

Increa

sedpr

ogressively

19–18

yr:N

R.Subs

trate:

dehy

droepian

drosterone

.Matrix:

live

rcytosol

Barke

ret

al.(199

4)

Protein

expr

ession

Fetal

deve

lopm

ent(T1–

T3:

.10

0%or

20%)

Fetal

deve

lopm

entor

19wk(92%

)Decreas

edin

infants(2-fold)

orincrea

sedrapidly(3

wk:

69%)

19–18

yr:N

R.Method

s:im

munob

lotting,

Western

blotting

Barke

ret

al.(199

4);Duan

muet

al.(200

6)

SULT2A

1Protein

expr

ession

Fetal

deve

lopm

ent(T1–

T3:

,10

%)

Neo

nates–1yr

(160

%)

Increa

sedrapidly

Method

s:electrop

horesis

andradioimmunoa

ssay

McC

arve

ran

dHines

(200

2);D

uan

muet

al.

(200

6)mRNA

expr

ession

Fetal

deve

lopm

ent(T1:

30%)

NR

NR

T2–

30yr:N

R.Method

s:qR

T-PCR

Eks

tröm

andRan

e(201

5)

TMPT

Catalytic

activity

Fetal

deve

lopm

ent(T2:

30%)

NR

NR

Birth–18

yr:NR.Subs

trate:

6-mercaptop

urine.

Matrix:

live

rcytosol.Metho

ds:radioa

ctivity

Pacificiet

al.(19

91b)

UGT1A

1

(con

tinued

)

Ontogeny of Hepatic Transport and Drug Metabolism 655

Page 60: Ontogeny of Hepatic Transporters and Drug-Metabolizing … · hepatic clearance of the opioid morphine in newborns and young infants (Knibbe et al., 2009). Morphine is actively transported

TABLE

14—

Con

tinued

Onsetof

Activityan

d/or

Exp

ression

Adu

ltLev

elsRea

ched

Age

-Related

Chan

gesin

Activityan

d/or

Exp

ression

Com

men

tsReferen

ces

Catalytic

activity

Birth

(T1–

T3:

,10

%)

Neo

nates

or1–

2yr

(90%

)In

crea

sedrapidlyor

prog

ressively

Con

flicting

resu

lts.

Sub

strates:

biliru

bin,

2-am

inop

hen

ol,b-estradiol*.

Matrix:

live

rmicrosomes,live

rho

mog

enates.Metho

ds:

high-pressure

LC,sp

ectrop

hotom

etry,H

PLC

(-MS\MS)

Onishiet

al.(197

9);Kaw

adean

dOnishi

(198

1);Lea

keyet

al.(198

7);Cou

ghtrie

etal.(198

8);Burchellet

al.(198

9);

Miyag

ian

dCollier

(201

1);Nie

etal.

(201

7);Bhattet

al.(201

9)Protein

expr

ession

Fetal

deve

lopm

ent(T1–

T3:

10%)

1–2yr

(90%

)In

crea

sedpr

ogressively

Metho

ds:Western

blotting

,pr

oteomics-HPLC

Miyag

ian

dCollier

(201

1);Nie

etal.,

(201

7);Bhattet

al.(201

9)mRNA

expr

ession

Birth

(T1–

T3:

0.5%

)6mo

Increa

sedpr

ogressively

Birth–6mo:

NR.2–

18yr:N

R.Method

s:qR

T-

PCR

Stras

sburg

etal.(200

2);Nie

etal.(20

17)

UGT1A

3Catalytic

activity

Fetal

deve

lopm

ent(T2:

30%)

NR

NR

T1:

UD.Subs

trate:

NA.Matrix:

NA

deWildt

etal.,(199

9);McC

arve

ran

dHines

(200

2)UGT1A

4Catalytic

activity

Birth

(neona

tes:

50%

or10

%)

NR

(12–

18yr:4

4%)or

2–6

yr(80%

)In

crea

sedslow

lyor

prog

ressively

Fetal

deve

lopm

ent:

NR.Sub

strate:

trifluop

eraz

ine.

Con

flicting

resu

lts.

Matrix:

live

rmicrosomes.Metho

ds:fluo

rometry,

HPLC-M

S/M

S.

Miyag

ian

dCollier

(200

7);Bhattet

al.

(201

9)

Protein

expr

ession

Birth

(neona

tes:

,2%

)6–

12yr

(70%

)In

crea

sedslow

lyFetal

deve

lopm

ent:

NR.Method

s:pr

oteo

mics-

HLPC

Bhattet

al.(201

9)

UGT1A

6Catalytic

activity

Birth

(neonates:10

%or

100%

)NR

(12–

18yr:5

0%)or

neona

tes

Increa

sedpr

ogressivelyor

noch

ange

sFetal

deve

lopm

ent:NR.S

ubs

trates:s

eroton

in,4

-hy

drox

yind

ole.

Con

flicting

resu

lts.

Matrix:

live

rmicrosomes.Method

s:ELIS

Aas

say,

HPLC

(-MS/M

S)

Miyag

ian

dCollier

(200

7);N

euman

net

al.

(201

6);Bhattet

al.(201

9)

Protein

expr

ession

Birth

(neona

tes:

,5%

)NR

(12–

18yr:4

1%)or

2–6

yrIn

crea

sedslow

lyor

prog

ressively

Fetal

deve

lopm

ent:

NR.Con

flicting

resu

lts.

Metho

ds:Western

blotting

,pr

oteomics-HLPC

Miyag

ian

dCollier

(200

7);Bhattet

al.

(201

9)UGT1A

9Catalytic

activity

Birth

(neonates:,20

%)

1moto

1yr

or1to

2yr

(80%

)Noch

ange

sor

increa

sed

prog

ressively

Fetal

deve

lopm

ent:

NR.Subs

trates:4-

methy

lumbe

lliferon

e**,

prop

ofol.Con

flicting

resu

lts.

Matrix:

live

rmicrosomes.Metho

ds:

fluorom

etry,HPLC-M

S/M

S

Miyag

ian

dCollier

(200

7);Bhattet

al.

(201

9)

Protein

expr

ession

Birth

(neona

tes:

,20

%)

NR

(12–

18yr:3

7%)or

1moto

1yr:85

%In

crea

sedpr

ogressivelyor

decrea

sed

at2yr

(50%

)Fetal

deve

lopm

ent:

NR.Con

flicting

resu

lts.

Metho

ds:pr

oteomics-HPLC,Western

blotting

Miyag

ian

dCollier

(200

7);Bhattet

al.

(201

9)mRNA

expr

ession

Birth

(T2:

UD)

.2yr

(2yr:68

%)

Increa

sedslow

lyFetal

deve

lopm

ent–6mo:

NR.2–

18yr:NR.

Method

s:qR

T-PCR

Stras

sburg

etal.(200

2)

UGT2B

4mRNA

expr

ession

Birth

(T2:

UD)

.2yr

(2yr:,40

%)

NR

Fetal

deve

lopm

ent–6mo:

NR.2–

18yr:NR.

Method

s:qR

T-PCR

Stras

sburg

etal.(200

2)

UGT2B

7Catalytic

activity

Fetal

deve

lopm

ent(T1–

T3:

13%)

NR

(12–

18yr:4

0%–50

%)

Increa

sedslow

lyCon

flicting

resu

lts.

Sub

strates:

epirub

icine,

morph

ine,

nalox

one.

Matrix:

live

rmicrosomes.

Method

s:HPLC-M

S/M

S,HPLC

coupled

with

fluo

rescen

ce

Pacificiet

al.(19

82,19

89);Za

yaet

al.

(200

6);Bhattet

al.(201

9)

Protein

expr

ession

Birth

(neona

tes:

,13

%)

NR

(12–

18yr:7

0%)

Increa

sedslow

lyFetal

deve

lopm

ent:

NR.Con

flicting

resu

lts.

Method

s:electrop

horesis

andim

munob

lotting,

proteo

mics-HPLC

Zay

aet

al.(200

6);Bhattet

al.(201

9)

mRNA

expr

ession

Birth

(T2:

UD)

6moto

1yr

Increa

sedrapidly

Fetal

deve

lopm

ent–6mo:

NR.Method

s:qR

T-

PCR,qP

CR

Stras

sburg

etal.(200

2);Neu

man

net

al.

(201

6)UGT2B

15Catalytic

activity

Birth

(neonates:,10

%)

NR

(12–

18yr:5

0%)

Increa

sedslow

lyFetal

deve

lopm

ent:

NR.Subs

trate:

oxaz

epam

.Matrix:

live

rmicrosomes.Method

s:HPLC-

MS/M

S

Bhattet

al.,(201

9)

Protein

expr

ession

Fetal

deve

lopm

ent(T3:

,20

%)

12–18

yr:(80%

)In

crea

sedslow

lyMethod

s:im

munoq

uan

tification

,pr

oteo

mics-

HPLC

Divak

aran

etal.(20

14);Bhattet

al.(20

19)

UGT2B

17

(con

tinued

)

656 van Groen et al.

Page 61: Ontogeny of Hepatic Transporters and Drug-Metabolizing … · hepatic clearance of the opioid morphine in newborns and young infants (Knibbe et al., 2009). Morphine is actively transported

ontogeny profiles. This is most obvious for proteinabundance, wherein Western blot and LC-MS/MS donot necessarily give the same results (Aebersold et al.,2013; Achour et al., 2017). Third, for LC-MS/MS–basedquantification, there is a significant interlaboratoryvariability in absolute protein levels (Wegler et al.,2017; Prasad et al., 2019). Sources of variability includetype of membrane fractionation, tissue homogenization,degree of protein solubility, digestion conditions ofproteins (e.g., type of digestion enzyme), digestion time,and temperature and amount of enzymes per totalprotein, quantification method, and choice of specificpeptides and probe substrate (Badée et al., 2019). Inaddition, the units to express protein abundance are ofimportance when comparing between studies and whenextrapolating normalized values for protein abundanceto, for instance, the organ level. One example is thatPrasad et al. (2016) used protein abundance in relationto “microgram membrane protein,” whereas van Groenet al. (2018) used protein abundance in relation to “gramliver tissue.” The reason for the latter is that membraneprotein yield per gram tissue showed an age-relatedpattern and needed a correction factor to scale up tototal organ expression (van Groen et al., 2018). Consis-tently, the number of isolated liver cells per gram liver(i.e., hepatocellularity) was also shown to be age-dependent in rats, necessitating the use of age-specificvalues for hepatocellularity, such as, for instance, whenextrapolating in vitro hepatocytic uptake data to thein vivo level (Fattah et al., 2016). Despite the fact thatwe have normalized the results presented in this reviewto adult levels in an attempt to correct for interstudyvariability, readers should consider the implications ofthese differences in data generation when using thedata (e.g., for PBPK modeling). Moreover, becauseconsensus is lacking on standard practice for perform-ing LC-MS/MS–based protein quantitation studies(Prasad et al., 2019), the scientific community shouldharmonize guidelines in these areas to further improveuse of the quantitative data presented in this review.

Not surprisingly, we identified several asynchronousontogeny profiles of DTs and DMEs when comparingmRNA expression, protein expression, and activitylevels. This was, for instance, the case for protein andmRNA expression levels of CNT2 in rats that increasedwith age, reaching maximal levels at either 21 or 45days, respectively (Supplemental Fig. 3), whereas max-imal uptake activity levels of uridine mediated byCNT1/2 were achieved during fetal development andthen rapidly decreased in neonatal animals (Fig. 4C)(del Santo et al., 2001). In addition, UGT2B7 mRNAexpression levels decreased with increasing age inhumans, showing maximal levels during fetal life andreaching adult levels in older children of 12 years of age(Supplemental Fig. 18B), but this expression profile wasinconsistent with the respective protein (SupplementalFig. 17B) and activity (Fig. 16L) levels. Taken together,

TABLE

14—

Con

tinued

Onsetof

Activityan

d/or

Exp

ression

Adu

ltLev

elsRea

ched

Age

-Related

Chan

gesin

Activityan

d/or

Exp

ression

Com

men

tsReferen

ces

Catalytic

activity

Fetal

deve

lopm

ent(T1–

T3:

10%)

12–18

yr:(80%

)In

crea

sedslow

lySubs

trate:

testosterone.

Matrix:

live

rmicrosomes.Method

s:High-pressure

LC,

HPLC

(-MS/M

S)

Lea

keyet

al.(198

7);Cou

ghtrie

etal.

(198

8);Neu

man

net

al.(201

6);Bhatt

etal.(201

8)Protein

expr

ession

Birth

(neona

tes:

,5%

)NR

(12–

18yr:6

0%)

Increa

sedslow

lyFetal

deve

lopm

ent:

NR.Method

s:pr

oteo

mics-

HPLC

Bhattet

al.(201

8)

HLC,high

performan

celiqu

idch

romatog

raph

y;HPLC,high

-perform

ance

LC;NA,no

tav

ailable;

ND,not

detectab

le;NR,not

repo

rted

;qP

CR,qu

antitative

polymeras

ech

ain

reaction

;qR

T-PCR,qu

antitative

reve

rse-

tran

scriptas

epo

lymeras

ech

ainreaction

;TMPT,thiopu

rine-methyltran

sferas

e;T1,

trim

ester1of

fetallife;T

2,trim

ester2of

fetallife;T

3,trim

ester3of

fetallife;U

D,u

nde

tected

.* b-estrsdiol-3-glucu

ronideform

ation,**

4-MU

coincu

batedwithniflumic

acid.

Ontogeny of Hepatic Transport and Drug Metabolism 657

Page 62: Ontogeny of Hepatic Transporters and Drug-Metabolizing … · hepatic clearance of the opioid morphine in newborns and young infants (Knibbe et al., 2009). Morphine is actively transported

Fig. 17. Pooled literature data on the ontogeny of metabolic activity of hepatic phase II enzymes in rats: UGT1A1 (A), UGT1A6 (B), UGT2B1 (C),SULT1A1 (D), SULT1B1 (E), Bile salt sulfotransferase (F), 3b-hydroxy-5-cholenoate sulfotransferase (G), Thiaridaminde O-sulfation (H), Piperizinederivate (DETR) N-sulfation (I), Aniline N-sulfation (J), Piperizine derivate (PTHP) N-sulfation (K), Desipramine N-sulfation (SULT2A1) (L),Androsterone O-sulfation (low activity) (M), Androsterone O-sulfation (high activity) (N), GST (O), NAT1 (P), GSH reductase (Q), and GSH peroxidase(R). The symbols represent the relative activity in each age group, and the dotted line indicates the adult value defined as 100%. If multiple values wereobtained for the same age group, the symbols represent the average relative activity, and the error bars show the S.D. See Table 15 for explanation onthe ontogeny profiles and literature references. DETR, Piperazine derivate; PTHP, Piperidine derivative.

658 van Groen et al.

Page 63: Ontogeny of Hepatic Transporters and Drug-Metabolizing … · hepatic clearance of the opioid morphine in newborns and young infants (Knibbe et al., 2009). Morphine is actively transported

Fig. 17. Continued.

Ontogeny of Hepatic Transport and Drug Metabolism 659

Page 64: Ontogeny of Hepatic Transporters and Drug-Metabolizing … · hepatic clearance of the opioid morphine in newborns and young infants (Knibbe et al., 2009). Morphine is actively transported

these examples of asynchronous maturation in expres-sion and activity further demonstrate the need for cross-validation of DT/DME ontogeny profiles for individualisoforms. Importantly, for several transporter isoforms,the prior identification and characterization of isoform-selective drug/probe substrates will be required tosupport the generation of reliable activity data. Thecurrent review may show that mRNA expression levelscould correlate quantitatively and qualitatively with

protein expression levels for some DMEs and DTs (vanGroen et al., 2018). However, caution is warranted forderiving quantitative maturation functions solely frommRNA expression levels. Any correlation betweenmRNA and protein expression levels that may comeup from the current literature review could apply solelyto the patient population that was studied in theoriginal research papers. Demographic and environ-mental factors may affect transcription factors and

Fig. 17. Continued.

Fig. 18. Pooled literature data on the ontogeny of metabolic activity of hepatic esterases and phase II enzymes in mice: mCES1 (A), mCES2 (B), NAT1(C), and NAT2 (D). The symbols represent the relative activity in each age group, and the dotted line indicates the adult value defined as 100%. SeeTable 16 for explanation on the ontogeny profiles and literature references. mCES, mice carboxylesterase.

660 van Groen et al.

Page 65: Ontogeny of Hepatic Transporters and Drug-Metabolizing … · hepatic clearance of the opioid morphine in newborns and young infants (Knibbe et al., 2009). Morphine is actively transported

TABLE

15Ontoge

nypr

ofileof

hepa

ticph

aseII

enzy

mes

inrats

basedon

metab

olic

activity,pr

oteinex

pression

,an

dmRNA

expr

ession

leve

lsPercentage

srepr

esen

tex

pression

/activityrelative

toad

ult

leve

ls.

Onsetof

Activityan

d/or

Exp

ression

Adu

ltLev

els

Rea

ched

Age

-Related

Cha

nges

inActivity/Exp

ression

Com

men

tsReferen

ces

UGT1A

1Catalytic

activity

25da

ys(5%)

20da

ysIn

crea

sedrapidly

Ontoge

nypr

ofileestablished

.Adu

ltag

e:80

days.S

ubs

trates:biliru

bin,

furosemide.

Method

s:RLM,RLH.

Strain:Wistar(m

ixed

sex),W

AG

(M)

Wishart(197

8);Cam

pbellan

dWishart

(198

0);Rachm

elan

dHaz

elton(198

6);

Cou

ghtrie

etal.(198

8))

mRNA

expr

ession

21da

y(3%)

.30

days

Incons

istent

pattern/increa

sed

prog

ressively

Singlestudy

,pe

ak(200

%)after1da

y.Adu

ltag

e:56

days.Method

s:qP

CR.

Strain:Wistar(M

)

Kishiet

al.(20

08)

UGT1A

5mRNA

expr

ession

25da

ys(3%)

0–56

days

Inconsisten

tpa

ttern/in

crea

sedrapidly

Singlestudy

,pe

ak(300

%)after7da

ys.

Adu

ltag

e:56

days.Method

s:qP

CR.

Strain:Wistar(M

)

Kishiet

al.(20

08)

UGT1A

6Catalytic

activity

22wk(3%)

0da

ysIn

cons

istent

pattern/increa

sedrapidly

Singlestud

y,high

resolution

,large

variab

ility.

Adu

ltag

e:80

0da

ys.

Subs

trates:2-am

inop

hen

ol,1-

nitrop

heno

l,4-nitrop

heno

l.Metho

ds:

RLH,RLM,live

rsn

ips.

Strain:

Wistar(m

ixed

),Spr

ague-Daw

ley

(mixed

),WAG

(M)

Wishart(197

8);M

atsu

iandWatan

abe(198

2);

Scrag

get

al.(19

83);Rachm

elan

dHaz

elton

(198

6);San

taMaria

andMachad

o(198

8);

Matsu

motoet

al.(20

02);Kishiet

al.(20

08)

mRNA

expr

ession

25da

ys(2%)

20.528

days

Incons

istent

pattern/increa

sedrapidly

Singlestud

y,low

resolution

.Adu

ltag

e:56

days.Method

s:qP

CR.Strain:

Wistar(M

)

Kishiet

al.(20

08)

UGT2B

1Catalytic

activity

25da

ys(23%

)3wk

Increa

sedpr

ogressively

Highresolution

,ninecompo

unds

over

17da

tasets.Adu

ltag

e:80

days.

Sub

strates:

testosterone

,an

drosterone,

bisp

hen

olA,

non

ylph

enol,octylphen

ol,

diethy

lstilbestrol,4

-hyd

roxy

biph

enyl,

estron

e,morph

ine.

Metho

ds:RLM,

RLH.Strain:Wistar(m

ixed

),Spr

ague-Daw

ley(m

ixed

),WAG

(M)

Cam

pbellan

dWishart(198

0);Matsu

ian

dWatan

abe(198

2);Rachmel

andHaz

elton

(198

6);Cou

ghtrie

etal.(198

8);Matsu

moto

etal.(200

2)

UGT2B

2mRNA

expr

ession

22da

ys(3%)

14da

ysIn

crea

sedrapidly

Singlestudy

,sem

iquan

titative

,noda

taafter21

days.Adu

ltag

e:21

days.

Method

s:Northernblot.Strain:

Wistar(m

ixed

)

Kishiet

al.(20

08)

SULT1A

1Catalytic

activity

2da

ys(14%

)40

days

Increa

sedrapidly

Singlestudy

,da

taforhighan

dlow

sulfationactivity

werepo

oled

(S.D

.pr

ovided

ingrap

hs).Adu

ltag

e:80

days.Fetal

deve

lopm

ent:

NR.

Sub

strate:4-nitrop

heno

lO-sulfation

.Method

s:RLC.Strain:Wistar(M

/F)

Matsu

ian

dWatan

abe(198

2)

mRNA

expr

ession

M:1

.5da

ys(28%

);F:

1.5da

ys(75%

)M:1

5da

ys;F:

7da

ysIn

cons

istent

pattern/increa

sedrapidly

Singlestud

y.Adu

ltag

e:90

days.Fetal

deve

lopm

ent:

NR.Method

s:qP

CR.

Strain:NR

(M/F)

Klaas

senet

al.(199

8)

SULT1B

1Catalytic

activity

M:2

days

(26%

);F:2

days

(49%

)49

days

(100

%)

Incons

istent

pattern/increa

sedslow

lySinglestud

y.Adu

ltag

e:49

days.Fetal

deve

lopm

ent:

NR.Subs

trate:

nap

hthol

O-sulfation.Method

s:RLC.

Strain:

not

define

d(M

/F)

Iwas

akiet

al.(19

94)

(con

tinued

)

Ontogeny of Hepatic Transport and Drug Metabolism 661

Page 66: Ontogeny of Hepatic Transporters and Drug-Metabolizing … · hepatic clearance of the opioid morphine in newborns and young infants (Knibbe et al., 2009). Morphine is actively transported

TABLE

15—

Con

tinued

Onsetof

Activityan

d/or

Exp

ression

Adu

ltLev

els

Rea

ched

Age

-Related

Cha

nges

inActivity/Exp

ression

Com

men

tsReferen

ces

SULT1C

1mRNA

expr

ession

M:1

.5da

ys(5%);F:

1.5da

ys(46%

)M:4

5da

ys;F:

15da

ysM:increa

sedslow

ly;F:inc

reas

edrapidly

Singlestud

y.Adu

ltag

e:90

days.Fetal

deve

lopm

ent:

NR.Method

s:qP

CR.

Strain:NR

(M/F)

Klaas

senet

al.(199

8)

SULT1E

1mRNA

expr

ession

M:1

.5da

ys(2.5%);F:

1.5da

ys(35%

)M:6

0da

ys;F:

90da

ysM:incons

istent

pattern/increa

seslow

ly;F:

increa

sedrapidly

Singlestudy

.Adu

ltag

e:90

days.Fetal

deve

lopm

ent:

NR.Method

s:qP

CR.

Strain:NR

(M/F)

Klaas

senet

al.(199

8)

SULT2A

1/su

lt-20/21

Catalytic

activity

M:(25

%–30

0%);F:2da

ys(13%

–30

%)

M:2

5–49

days;F:

17da

ysM:incons

istent

pattern/increa

sedrapidly;

F:increa

sedpr

ogressively

Allsu

bstrateda

tarepo

rted

byIw

asak

ian

dcoworke

rs(199

4)correlatewith

desipr

aminesu

lfation[Tiaramide

O-sulfation

,Piperaz

inede

riva

te(D

ETR)N-sulfation,Aniline

N-sulfation,Piperidinede

riva

tive

(PTHP),N-sulfation,Desipramine

N-sulfation

).Desipraminesu

lfation

has

been

associated

withSULT2A

1.And

rosteron

esu

lfationsh

owed

asimilar

variab

lepr

ofile(distinc

tion

betw

eenhighan

dlow

activity).Adu

ltag

e:49

/80da

ys.Fetal

deve

lopm

ent:

NR.Method

s:RLC.Strain:Wistar

(M/F)an

dunkn

own(M

/F)

Matsu

ian

dWatan

abe(198

2);Iw

asak

iet

al.

(199

4)

mRNA

expr

ession

(SULT-20/21

)M:1

.5da

ys(25%

);F:

1.5da

ys(8%)

M:6

0da

ys;F:

60da

ysIn

crea

sedslow

lySinglestudy

.Adu

ltag

e:90

days.Fetal

deve

lopm

ent:

NR.Method

s:qP

CR.

Strain:NR

(M/F)

Klaas

senet

al.(199

8)

Bile-sa

ltsu

lfotrans

ferase/sult2a1

Catalytic

activity

2da

ys(7%)

M:N

R;F:NR

Inconsisten

tpa

ttern

Singlestudy

.Adu

ltag

e:30

days.

Sub

strate:bile

salt

mixture.

Subs

trate:

unkn

own.Method

s:RLC.

Strain:Spr

ague-Daw

ley(M

/F)

Chen

(198

2)

3b-hyd

roxy

-5-cho

leno

atesu

lfotrans

ferase

(not

define

d)Catalytic

activity

M:2

2da

ys(5%);F:

22da

ys(24%

)M:2

1da

ys;F:

077

days

M:increa

sedrapidly;

F:inc

onsisten

tpa

ttern/increa

sedrapidly

Singlestudy

,isoform

unkn

own.Adu

ltag

e:77

days.F

etal

deve

lopm

ent:

NR

(F).Sub

strate:3b

-hyd

roxy

-5-

cholen

oate.Method

s:RLC.Strain:

Spr

ague-Daw

ley(M

/F)

Kan

ean

dChen

(199

1))

SULT-40/41

/hyd

roxy

steroidsu

lfotransferas

e/su

lt2a

6mRNA

expr

ession

M:N

R;F:NR

M:N

R;F:NR

M:inconsisten

tpa

ttern;F:inconsisten

tpa

ttern

Singlestudy

.Adu

ltag

e:90

days.Fetal

deve

lopm

ent:

NR.Method

s:qP

CR.

Strain:NR

(M/F)

Klaas

senet

al.(199

8)

SULT-60/hy

drox

ysteroid

sulfotrans

ferase/sult2a2

mRNA

expr

ession

M:1

.5da

ys(50%

);F:

1.5da

ys(1.5%)

M:0

days;F:

45da

ysM:incons

istent

pattern/no

chan

ges;

F:

increa

sedslow

lySinglestudy

.Adu

ltag

e:90

days.Fetal

deve

lopm

ent:

NR.Method

s:qP

CR.

Strain:NR

(M/F)

Klaas

senet

al.(199

8)

NAT1

Catalytic

activity

NR

NR

(195

%at

28

days)

Noch

ange

sSinglestudy

.Adu

ltag

e:21

days.Fetal

deve

lopm

ent:

NR

(28da

ys).

Subs

trate:

p-am

inobe

nzoic

acid.

Method

s:RLC.Strain:CD

(Charles

River)(M

/F)

Lucier

etal.(197

5)

mRNA

expr

ession

1da

y(3%)

182da

ysIn

crea

sedslow

lySinglestudy

.Adu

ltag

e:36

5da

ys.F

etal

deve

lopm

ent:

NR.Method

s:qP

CR.

Strain:F34

4(M

)an

dSpr

ague-

Daw

ley(M

)

Heinet

al.(200

8)

(con

tinued

)

662 van Groen et al.

Page 67: Ontogeny of Hepatic Transporters and Drug-Metabolizing … · hepatic clearance of the opioid morphine in newborns and young infants (Knibbe et al., 2009). Morphine is actively transported

TABLE

15—

Con

tinued

Onsetof

Activityan

d/or

Exp

ression

Adu

ltLev

els

Rea

ched

Age

-Related

Cha

nges

inActivity/Exp

ression

Com

men

tsReferen

ces

NAT2

mRNA

expr

ession

1da

y(58%

)Variable

Noch

ange

sSinglestudy

.Adu

ltag

e:36

5da

ys.F

etal

deve

lopm

ent:

NR.Method

s:qP

CR.

Strain:F34

4(M

)an

dSpr

ague-

Daw

ley(M

)

Heinet

al.(200

8)

GST Catalytic

activity

28(2%)

30da

ysIn

crea

sedrapidly

Adu

ltag

e:60

0da

ys.Subs

trates:1-

chloro-2,4-dinitrobe

nzene,

1,2-ep

oxy-

(3-nitroph

enox

y)pr

opan

e,1-ch

loro-

3,4d

initrobe

nzen

e,3,4_

dich

loronitrob

enzene

,brom

osulfop

hthalein,ethacrynic

acid,tran

s-4-ph

enyl-3-buten-2-one.

Method

s:RLC.Strain:Wistar(M

/F)

andSpr

ague-Daw

ley(M

/F)

Gregu

set

al.(19

85);Tee

etal.(199

2);Ja

ng

etal.(199

8);Elbarbryan

dAlcorn(200

9)

GSH

peroxida

seCatalytic

activity

23da

ys(7%)

NR

(720

days)

Increa

sedslow

lyAdu

ltag

e:72

0da

ys.Subs

trate:

GSSG

redu

ctioncoupled

toNADPH

oxidation;Glutathionepe

roxida

sekit.Method

s:RLC,RLH.Strain:

Wistar(M

/F)an

dSpr

ague-Daw

ley

(M)

San

taMaria

andMachad

o(198

8);J

anget

al.

(199

8);Elbarbryan

dAlcorn(200

9)

GSH

redu

ctas

eCatalytic

activity

23da

ys(30%

)21

days

Inconsisten

tpa

ttern

Adu

ltag

e:72

0da

ys.Fetal

deve

lopm

ent:

NR

(23da

ys).

Subs

trates:NADPH

oxidationan

dGSH

redu

ctas

ekit.Method

s:RLH,

RLC.Strain:Wistar(M

/F)an

dSpr

ague-Daw

ley(M

)

San

taMaria

andMachad

o(198

8);Elbarbry

andAlcorn(200

9)

F,fem

ale;

GSSG,g

lutathionedisu

lfide;

M,male;

NR,n

otrepo

rted

;qP

CR,q

uan

titative

polymeras

ech

ainreaction

;RLC,r

atlive

rcytosol;RLH,ratlive

rho

mog

enate;

RLM,r

atlive

rmicrosome.

Ontogeny of Hepatic Transport and Drug Metabolism 663

Page 68: Ontogeny of Hepatic Transporters and Drug-Metabolizing … · hepatic clearance of the opioid morphine in newborns and young infants (Knibbe et al., 2009). Morphine is actively transported

TABLE

16Ontog

enypr

ofileof

hep

atic

phas

eII

enzy

mes

inmiceba

sedon

metab

olic

activity,pr

oteinex

pression

,an

dmRNA

expr

ession

leve

lsPercentage

srepr

esen

tex

pression

/activityrelative

toad

ult

leve

ls.

Onsetof

Activity

and/or

Exp

ression

Adu

ltLev

els

Rea

ched

Age

-Related

Chan

gesin

Activity/Exp

ression

Com

men

tsReferen

ces

mCES1

Protein

activity

Beforeor

at1da

y(30%

)14

days

Increa

sedrapidly

Subs

trate:

MPH.Adu

ltag

e:9wk.

Method

s:hyd

rolysisreaction

study

.Strain:FVB

mice

(M)

Zhuet

al.(200

9)

mRNA

expr

ession

Beforeor

at1da

y(30%

)28

days

Increa

sedpr

ogressively

Adu

ltag

e:67

days.Method

s:RNA-seq

.Strain:

FVB

mice(M

)Lee

etal.(201

1)

mCES2

Protein

activity

Duringor

before

1da

y(20%

)14

days

Increa

sedrapidly

Subs

trate:

irinotecan

.Adu

ltag

e:9wk.

Method

s:hyd

rolysisreaction

study

.Strain:FVB

mice

(M).

Zhuet

al.(200

9)

mRNA

expr

ession

Beforeor

at1da

y(20%

)14

days

Increa

sedrapidly

Adu

ltag

e:67

days.Method

s:RNA-seq

.Strain:

FVB

mice(M

)Lee

etal.(201

1)

CES1A

mRNA

expr

ession

3da

ys(14%

)60

days

Increa

sedslow

lyTheam

ountde

tected

was

very

low

through

out

theen

tire

agerange

.Adu

ltag

e:60

days.

Method

s:RNA-seq

.Strain:C57

BL/6

(M)

Pen

get

al.(201

3)

CES1B

mRNA

expr

ession

Fetal

deve

lopm

ent

(0.036

%)

20da

ysIn

crea

sedrapidly

Adu

ltag

e:60

days.Method

s:RNA-seq

.Strain:

C57

BL/6

(M)

Pen

get

al.(201

3)

CES1C

mRNA

expr

ession

Fetal

deve

lopm

ent

(0.19%

)15

days

Increa

sedrapidly

Mostab

unda

ntof

theCes1family.

Adu

ltag

e:60

days.Method

s:RNA-seq

.Strain:C57

BL/6

(M)

Pen

get

al.(201

3)

CES1D

mRNA

expr

ession

Fetal

deve

lopm

ent

(2%)

30da

ysIn

crea

sedrapidly

Adu

ltag

e:60

days.Method

s:RNA-seq

.Strain:

C57

BL/6

(M)

Pen

get

al.(201

3)

CES1E

mRNA

expr

ession

Fetal

deve

lopm

ent

(2%)

60da

ysIn

crea

sedslow

lyAdu

ltag

e:60

days.Method

s:RNA-seq

.Strain:

C57

BL/6

(M)

Pen

get

al.(201

3)

CES1F

mRNA

expr

ession

Fetal

deve

lopm

ent

(0.146

%)

60da

ysIn

crea

sedslow

lyAdu

ltag

e:60

days.Method

s:RNA-seq

.Strain:

C57

BL/6

(M)

Pen

get

al.(201

3)

CES1G

mRNA

expr

ession

Fetal

deve

lopm

ent

(3%)

20da

ysIn

crea

sedrapidly

Adu

ltag

e:60

days.Method

s:RNA-seq

.Strain:

C57

BL/6

(M)

Pen

get

al.(201

3)

CES2A

mRNA

expr

ession

Fetal

deve

lopm

ent

(1%)

45da

ysIn

crea

sedrapidly

Adu

ltag

e:60

days.Method

s:RNA-seq

.Strain:

C57

BL/6

(M)

Pen

get

al.(201

3)

CES2B

mRNA

expr

ession

Fetal

deve

lopm

ent

(20%

)30

days

Inconsisten

tpa

ttern

Adu

ltag

e:60

days.Method

s:RNA-seq

.Strain:

C57

BL/6

(M)

Pen

get

al.(201

3))

CES2C

mRNA

expr

ession

Fetal

deve

lopm

ent

(0.86%

)45

days

Inconsisten

tpa

ttern

Adu

ltag

e:60

days.Method

s:RNA-seq

.Strain:

C57

BL/6

(M)

Pen

get

al.(201

3)

CES2D

-PS

mRNA

expr

ession

Fetal

deve

lopm

ent

(0.80%

)30

days

Inconsisten

tpa

ttern

Adu

ltag

e:60

days.Method

s:RNA-seq

.Strain:

C57

BL/6

(M)

Pen

get

al.(201

3)

CES2E

mRNA

expr

ession

Fetal

deve

lopm

ent

(0.67%

)25

days

Increa

sedpr

ogressively

Adu

ltag

e:60

days.Method

s:RNA-seq

.Strain:

C57

BL/6

(M)

Pen

get

al.(201

3)

CES2F

mRNA

expr

ession

Fetal

deve

lopm

ent

(4%)

45da

ysIn

consisten

tpa

ttern

Adu

ltag

e:60

days.Method

s:RNA-seq

.Strain:

C57

BL/6

(M)

Pen

get

al.(201

3)

CES2G

(con

tinued

)

664 van Groen et al.

Page 69: Ontogeny of Hepatic Transporters and Drug-Metabolizing … · hepatic clearance of the opioid morphine in newborns and young infants (Knibbe et al., 2009). Morphine is actively transported

TABLE

16—

Con

tinued

Onsetof

Activity

and/or

Exp

ression

Adu

ltLev

els

Rea

ched

Age

-Related

Chan

gesin

Activity/Exp

ression

Com

men

tsReferen

ces

mRNA

expr

ession

Fetal

deve

lopm

ent

(76%

)0da

ysHov

eringarou

ndad

ult

value

Adu

ltag

e:60

days.Method

s:RNA-seq

.Strain:

C57

BL/6

(M)

Pen

get

al.(201

3)

CES3

mRNA

expr

ession

Fetal

deve

lopm

ent

(14%

)7da

ysIn

crea

sedpr

ogressively

Adu

ltag

e:12

mo.

Method

s:RT-PCR.S

train:F

VB

mice(M

)Lee

etal.(201

1)

CES3A

mRNA

expr

ession

Fetal

deve

lopm

ent

(0.04%

)30

days

Increa

sedmod

erately

Adu

ltag

e:60

days.Method

s:RNA-seq

.Strain:

C57

BL/6

(M)

Pen

get

al.(201

3)

CES3B

mRNA

expr

ession

Fetal

deve

lopm

ent

(0.01%

)30

days

Inconsisten

tpa

ttern

Adu

ltag

e:60

days.Method

s:RNA-seq

.Strain:

C57

BL/6

(M)

Pen

get

al.(201

3)

CES4A

mRNA

expr

ession

0da

ys(3%)

25da

ysIn

crea

sedrapidly

Theam

ountde

tected

was

very

low

through

out

theen

tire

agerange

.Adu

ltag

e:60

days.

Method

s:RNA-seq

.Strain:C57

BL/6

(M)

Pen

get

al.(201

3)

GSTA1

mRNA

expr

ession

Fetal

deve

lopm

ent

(2%)

60da

ysIn

consisten

tpa

ttern

Adu

ltag

e:60

days.Method

s:RNA-seq

.Strain:

C57

BL/6

(M)

Luet

al.(201

3)

GSTA1/2

mRNA

expr

ession

M:fetal

deve

lopm

ent

(12%

);F:fetal

deve

lopm

ent

(6%);M:7

days

(0.04%

)

30da

ysM:increa

sedrapidly;

F:inc

onsisten

tpa

ttern;

M:increa

sedpr

ogressively

Differentiation

ofsexe

sat

thepr

enatal

stag

eis

difficult,

sopo

olingof

sexe

smight

have

occu

rred

atthesetimep

oints.

Adu

ltag

e:45

days

(Cuiet

al.,20

10),12

mo(Lee

etal.,

2011

).Metho

ds:ChI

P-Seq

analysis

(Cui

etal.,

2010

),RT-PCR

(Lee

etal.,20

11).Strain:

C57

BL/6

(M&

F)(C

uiet

al.,20

10),FVB

Mice

(M)(Lee

etal.,20

11)

Cuiet

al.(201

0);Lee

etal.(201

1))

GSTA2

mRNA

expr

ession

Fetal

deve

lopm

ent

(0.15%

)(Lu

etal.,20

13)

7da

ys(0.02%

)(Lee

etal.,20

11)

30da

ysIn

crea

sedrapidly

Adu

ltag

e:60

days

(Luet

al.,20

13),12

mo(Lee

etal.,20

11).Method

s:RNA-seq

(Luet

al.,

2013

),RT-PCR

(Lee

etal.,20

11).Strain:

C57

BL/6

(M)(Luet

al.,20

13),FVB

mice(M

)(Lee

etal.,20

11)

Lee

etal.(201

1);Luet

al.(201

3)

GSTA3

mRNA

expr

ession

Fetal

deve

lopm

ent

(16%

)30

days

Increa

sedrapidly

Adu

ltag

e:45

days

(Cuiet

al.,20

10),12

mo(Lee

etal.,20

11),60

days

(Luet

al.,20

13).Method

s:ChIP

-Seq

analysis

(Cuiet

al.,20

10),RT-PCR

(Lee

etal.,20

11),RNA-seq

(Luet

al.,20

13).

Strain:C

57BL/6

(M&

F)(C

uiet

al.,20

10)(Lu

etal.,20

13),FVB

mice(M

)(Lee

etal.,20

11)

Cuiet

al.(201

0);Lee

etal.(201

1);Luet

al.

(201

3)

GSTA4

mRNA

expr

ession

Fetal

deve

lopm

ent

(2%–50

%)

10da

ysIn

crea

sedrapidly

Adu

ltag

e:45

days

(Cuiet

al.,20

10),12

mo(Lee

etal.,20

11),60

days

(Luet

al.,20

13).Method

s:ChIP

-Seq

analysis

(Cuiet

al.,20

10),RT-PCR

(Lee

etal.,20

11),RNA-seq

(Luet

al.,20

13).

Strain:C57

BL/6

(M&

F)(C

uiet

al.,20

10;Lu

etal.,20

13),FVB

mice(M

)(Lee

etal.,20

11)

Cuiet

al.(201

0);Lee

etal.(201

1);Luet

al.

(201

3)

GSTCD

mRNA

expr

ession

Fetal

deve

lopm

ent

(560

%)

7da

ysDecreas

edrapidly

Adu

ltag

e:12

mo.

Method

s:RT-PCR,S

train:F

VB

mice(M

)Lee

etal.(201

1)

GSTK1

(con

tinued

)

Ontogeny of Hepatic Transport and Drug Metabolism 665

Page 70: Ontogeny of Hepatic Transporters and Drug-Metabolizing … · hepatic clearance of the opioid morphine in newborns and young infants (Knibbe et al., 2009). Morphine is actively transported

TABLE

16—

Con

tinued

Onsetof

Activity

and/or

Exp

ression

Adu

ltLev

els

Rea

ched

Age

-Related

Chan

gesin

Activity/Exp

ression

Com

men

tsReferen

ces

mRNA

expr

ession

Fetal

deve

lopm

ent

(5%)

15da

ysIn

crea

sedrapidly

Adu

ltag

e:45

days

(Cuiet

al.,20

10),12

mo(Lee

etal.,20

11),60

days

(Luet

al.,20

13).Method

s:ChIP

-Seq

analysis

(Cuiet

al.,20

10),RT-PCR

(Lee

etal.,20

11),RNA-seq

(Luet

al.,20

13).

Strain:C57

BL/6

(M&

F)(C

uiet

al.,20

10;Lu

etal.,20

13),FVB

mice(M

)(Lee

etal.,20

11)

Cuiet

al.(201

0);Lee

etal.(201

1);Luet

al.

(201

3)

GSTM1

mRNA

expr

ession

Fetal

deve

lopm

ent

(10%

)(M

&F)

22da

ysIn

crea

sedrapidly

Adu

ltag

e:45

days

(Cuiet

al.,20

10),12

mo(Lee

etal.,20

11),60

days

(Luet

al.,20

13).Method

s:ChIP

-Seq

analysis

(Cuiet

al.,20

10),RT-PCR

(Lee

etal.,20

11),RNA-seq

(Luet

al.,20

13).

Strain:C57

BL/6

(M&

F)(C

uiet

al.,20

10;Lu

etal.,20

13),FVB

mice(M

)(Lee

etal.,20

11)

Cuiet

al.(201

0);Lee

etal.(201

1);Luet

al.

(201

3)

GSTM2

mRNA

expr

ession

Fetal

deve

lopm

ent

(6%)

10da

ys(Luet

al.,

2013

)(Cuie

tal.,

2010

);32

days

(Lee

etal.,20

11)

Incons

istent

pattern(Luet

al.,20

13)(Cui

etal.,

2010

);increa

sedpr

ogressively(Lee

etal.,

2011

)

Adu

ltag

e:45

days

(Cuiet

al.,20

10),12

mo(Lee

etal.,20

11),60

days

(Luet

al.,20

13).Method

s:ChIP

-Seq

analysis

(Cuiet

al.,20

10),RT-PCR

(Lee

etal.,20

11),RNA-seq

(Luet

al.,20

13).

Strain:C57

BL/6

(M&

F)(C

uiet

al.,20

10;Lu

etal.,20

13),FVB

mice(M

)(Lee

etal.,20

11)

Cuiet

al.(201

0);Lee

etal.(201

1);Luet

al.

(201

3)

GSTM3

mRNA

expr

ession

Fetal

deve

lopm

ent

(0.02%

–11

%)

15da

ys(Luet

al.,

2013

;Cuiet

al.,

2010

);32

days

(Lee

etal.,20

11)

Increa

sedmod

erately(Luet

al.,20

13)(C

uiet

al.,20

10);increa

sedpr

ogressively(Lee

etal.,20

11)

Adu

ltag

e:45

days

(Cuiet

al.,20

10),12

mo(Lee

etal.,20

11),60

days

(Luet

al.,20

13).Method

s:ChIP

-Seq

analysis

(Cuiet

al.,20

10),RT-PCR

(Lee

etal.,20

11),RNA-seq

(Luet

al.,20

13).

Strain:C57

BL/6

(M&

F)(C

uiet

al.,20

10;Lu

etal.,20

13),FVB

mice(M

)(Lee

etal.,20

11)

Cuiet

al.(201

0);Lee

etal.(201

1);Luet

al.

(201

3)

GSTM4

mRNA

expr

ession

Fetal

deve

lopm

ent

(10%

)22

days

Increa

sedrapidly

Adu

ltag

e:45

days

(Cuiet

al.,20

10),12

mo(Lee

etal.,20

11),60

days

(Luet

al.,20

13).Method

s:ChIP

-Seq

analysis

(Cuiet

al.,20

10),RT-PCR

(Lee

etal.,20

11),RNA-seq

(Luet

al.,20

13).

Strain:C57

BL/6

(M&

F)(C

uiet

al.,20

10;Lu

etal.,20

13),FVB

mice(M

)(Lee

etal.,20

11)

Cuiet

al.(201

0);Lee

etal.(201

1);Luet

al.

(201

3)

GSTM5

mRNA

expr

ession

Fetal

deve

lopm

ent

(392

2%)(M

&F)

15da

ysDecreas

edrapidly

Adu

ltag

e:45

days

(Cuiet

al.,20

10),12

mo(Lee

etal.,20

11),60

days

(Luet

al.,20

13).Method

s:ChIP

-Seq

analysis

(Cuiet

al.,20

10),RT-PCR

(Lee

etal.,20

11),RNA-seq

(Luet

al.,20

13).

Strain:C57

BL/6

(M&

F)(C

uiet

al.,20

10;Lu

etal.,20

13),FVB

mice(M

)(Lee

etal.,20

11)

Cuiet

al.(201

0);Lee

etal.(201

1);Luet

al.

(201

3)

GSTM6

mRNA

expr

ession

Fetal

deve

lopm

ent

(20%

)(Cuie

tal.,

2010

;Luet

al.,

2013

)7da

ys(1%)(Lee

etal.,

2011

)

22da

ys(C

uie

tal.,

2010

;Luet

al.,

2013

);32

days

(Lee

etal.,20

11)

Increa

sedmod

erately(C

uiet

al.,20

10;Lu

etal.,20

13);increa

sedpr

ogressively(Lee

etal.,20

11)

Adu

ltag

e:45

days

(Cuiet

al.,20

10),12

mo(Lee

etal.,20

11),60

days

(Luet

al.,20

13).Method

s:ChIP

-Seq

analysis

(Cuiet

al.,20

10),RT-PCR

(Lee

etal.,20

11),RNA-seq

(Luet

al.,20

13).

Strain:C57

BL/6

(M&

F)(C

uiet

al.,20

10;Lu

etal.,20

13),FVB

mice(M

)(Lee

etal.,20

11)

Cuiet

al.(201

0);Lee

etal.(201

1);Luet

al.

(201

3)

GSTM7

mRNA

expr

ession

Fetal

deve

lopm

ent

(100

%)(Lu

etal.,20

13);

fetal

deve

lopm

ent

(100

%)(12%

)(Lee

etal.,20

11)

Noch

ange

(Lu

etal.,20

13);

32da

ys(Lee

etal.,20

11)

Noch

ange

(Luet

al.,20

13);increa

sed

mod

erately(Lee

etal.,20

11)

Adu

ltag

e:60

days

(Luet

al.,20

13),12

mo(Lee

etal.,20

11).Method

s:RNA-seq

(Luet

al.,

2013

),RT-PCR

(Lee

etal.,20

11).Strain:

C57

BL/6

(M)(Luet

al.,20

13),FVB

mice(M

)(Lee

etal.,20

11)

Lee

etal.(201

1);Luet

al.(201

3)

(con

tinued

)

666 van Groen et al.

Page 71: Ontogeny of Hepatic Transporters and Drug-Metabolizing … · hepatic clearance of the opioid morphine in newborns and young infants (Knibbe et al., 2009). Morphine is actively transported

TABLE

16—

Con

tinued

Onsetof

Activity

and/or

Exp

ression

Adu

ltLev

els

Rea

ched

Age

-Related

Chan

gesin

Activity/Exp

ression

Com

men

tsReferen

ces

GSTO1

mRNA

expr

ession

Fetal

deve

lopm

ent

(64%

)(M

);fetal

deve

lopm

ent

(31%

or23

5%)

M:0

day(22da

ys);

F:NR

Incons

istent

pattern(C

uiet

al.,20

10;L

uet

al.,

2013

);de

crea

sedor

increa

sedslow

ly(Lee

etal.,20

11)

Adu

ltag

e:45

days

(Cuiet

al.,20

10),12

mo(Lee

etal.,20

11),60

days

(Luet

al.,20

13).Method

s:ChIP

-Seq

analysis

(Cuiet

al.,20

10),RT-PCR

(Lee

etal.,20

11),RNA-seq

(Luet

al.,20

13).

Strain:C57

BL/6

(M&

F)(C

uiet

al.,20

10;Lu

etal.,20

13),FVB

mice(M

)(Lee

etal.,20

11)

Cuiet

al.(201

0);Lee

etal.(201

1);Luet

al.

(201

3))

GSTP1

mRNA

expr

ession

Fetal

deve

lopm

ent

(13%

)30

days

Non

linea

rpa

ttern

Adu

ltag

e:60

days

(Luet

al.,20

13),12

mo(Lee

etal.,20

11).Method

s:RNA-seq

(Luet

al.,

2013

),RT-PCR

(Lee

etal.,20

11).Strain:

C57

BL/6

(M)(Luet

al.,20

13),FVB

mice(M

)(Lee

etal.,20

11)

Lee

etal.(201

1);Luet

al.(201

3)

GSTP1/2

mRNA

expr

ession

M:fetal

deve

lopm

ent

(16%

);F:n

och

ange

M:45

days;F:N

och

ange

M:increa

sedrapidly(C

uiet

al.,20

10;Pen

get

al.,20

13);F:noch

ange

(Cuiet

al.,20

10)

Adu

ltag

e:45

days

(Cuiet

al.,20

10),60

days

(Pen

get

al.,20

13).Method

s:ChIP

-Seq

(Cui

etal.,20

10),RNA-seq

(Pen

get

al.,20

13).

Strain:C57

BL/6

(M&

F)(C

uiet

al.,20

10),

C57

BL/6

(M)(Pen

get

al.,20

13)

Cuiet

al.(201

0);Pen

get

al.(201

3)

GSTP2

mRNA

expr

ession

Fetal

deve

lopm

ent

(11%

)(M

)25

days

Increa

sedrapidly

Adu

ltag

e:60

days.Method

s:RNA-Seq

.Strain:

C57

BL/6

(M)

Luet

al.(201

3)

GSTT1

mRNA

expr

ession

Fetal

deve

lopm

ent

(15%

–81

%)

M:10

days;F:

30da

ysIn

crea

sedrapidly

Adu

ltag

e:45

days

(Cuiet

al.,20

10),12

mo(Lee

etal.,20

11),60

days

(Luet

al.,20

13).Method

s:ChIP

-Seq

analysis

(Cuiet

al.,20

10),RT-PCR

(Lee

etal.,20

11),RNA-seq

(Luet

al.,20

13).

Strain:C57

BL/6

(M&

F)(C

uiet

al.,20

10;Lu

etal.,20

13),FVB

mice(M

)(Lee

etal.,20

11)

Cuiet

al.(201

0);Lee

etal.(201

1);Luet

al.

(201

3)

GSTT2

mRNA

expr

ession

Noch

ange

sNoch

ange

sNoch

ange

sAdu

ltag

e:45

days

(Cuiet

al.,20

10),12

mo(Lee

etal.,20

11),60

days

(Luet

al.,20

13).Method

s:ChIP

-Seq

analysis

(Cuiet

al.,20

10),RT-PCR

(Lee

etal.,20

11),RNA-seq

(Luet

al.,20

13).

Strain:C57

BL/6

(M&

F)(C

uiet

al.,20

10;Lu

etal.,20

13),FVB

mice(M

)(Lee

etal.,20

11)

Cuiet

al.(201

0);Lee

etal.(201

1);Luet

al.

(201

3)

GSTT3

mRNA

expr

ession

Fetal

deve

lopm

ent

(7%–55

%)

Betwee

n0an

d32

days

Increa

sedrapidly

Adu

ltag

e:45

days

(Cuiet

al.,20

10),12

mo(Lee

etal.,20

11),60

days

(Luet

al.,20

13).Method

s:ChIP

-Seq

analysis

(Cuiet

al.,20

10),RT-PCR

(Lee

etal.,20

11),RNA-seq

(Luet

al.,20

13).

Strain:C57

BL/6

(M&

F)(C

uiet

al.,20

10;Lu

etal.,20

13),FVB

mice(M

)(Lee

etal.,20

11)

Cuiet

al.(201

0);Lee

etal.(201

1);Luet

al.

(201

3)

GSTZ1

mRNA

expr

ession

Fetal

deve

lopm

ent

(29%

)3da

ysIn

crea

sedpr

ogressively

Adu

ltag

e:45

days

(Cuiet

al.,20

10),12

mo(Lee

etal.,20

11),60

days

(Luet

al.,20

13).Method

s:ChIP

-Seq

analysis

(Cuiet

al.,20

10),RT-PCR

(Lee

etal.,20

11),RNA-seq

(Luet

al.,20

13).

Strain:C57

BL/6

(M&

F)(C

uiet

al.,20

10;Lu

etal.,20

13),FVB

mice(M

)(Lee

etal.,20

11)

Cuiet

al.(201

0);Lee

etal.(201

1);Luet

al.

(201

3)

MGST1

(con

tinued

)

Ontogeny of Hepatic Transport and Drug Metabolism 667

Page 72: Ontogeny of Hepatic Transporters and Drug-Metabolizing … · hepatic clearance of the opioid morphine in newborns and young infants (Knibbe et al., 2009). Morphine is actively transported

TABLE

16—

Con

tinued

Onsetof

Activity

and/or

Exp

ression

Adu

ltLev

els

Rea

ched

Age

-Related

Chan

gesin

Activity/Exp

ression

Com

men

tsReferen

ces

mRNA

expr

ession

Fetal

deve

lopm

ent

(7%)

30da

ysIn

crea

sedrapidly

Fem

aleex

pression

was

generally

lower.Adu

ltag

e:45

days

(Cuiet

al.,20

10),60

days

(Lu

etal.,20

13).Method

s:ChIP

-Seq

(Cuiet

al.,

2010

),RNA-seq

(Luet

al.,20

13).Strain:

C57

BL/6

(M&

F)(C

uiet

al.,20

10),C57

BL/6

(M)(Luet

al.,20

13)

Cuiet

al.(201

0);Luet

al.(201

3)

MGST2

mRNA

expr

ession

NR

15da

ysDecreas

edrapidly

Adu

ltag

e:45

days.Method

s:ChIP

-Seq

.Strain:

C57

BL/6

(M&

F)

Cuiet

al.(201

0)

MGST3

mRNA

expr

ession

Fetal

deve

lopm

ent

(50%

);fetal

deve

lopm

ent

(230

9%)

0da

ys(C

uiet

al.,

2010

);5da

ys(Luet

al.,20

13)

Increa

sedpr

ogressively(C

uiet

al.,20

10);

decrea

sedpr

ogressively(Luet

al.,20

13)

Adu

ltag

e:45

days

(Cuiet

al.,20

10),60

days

(Lu

etal.,20

13).Method

s:ChIP

-Seq

(Cuiet

al.,

2010

),RNA-seq

(Luet

al.,20

13).Strain:

C57

BL/6

(M&

F)(C

uiet

al.,20

10),C57

BL/6

(M)(Luet

al.,20

13)

Cuiet

al.(201

0);Luet

al.(201

3)

NAT1

Protein

activity

Beforeor

at4da

ys(1%)

NR

Increa

sedrapidly

Sub

strateswereison

iazid(INH),p-am

inob

enzoic

acid

(PABA),4A

BP,an

d2A

F.Adu

ltag

e:not

defined

.Method

s:RNAas

say.

Strain:C

57BL/6

(M&

F)

McQ

uee

nan

dChau

(200

3)

mRNA

expr

ession

Beforeor

at4da

ys(7%)

25da

ysIn

crea

sedpr

ogressively

Adu

ltag

e:60

days

(Luet

al.,20

13),12

mo(Lee

etal.,20

11).Method

s:RNA-seq

(Luet

al.,

2013

),RT-PCR

(Lee

etal.,20

11).Strain:

C57

BL/6

(M)(Luet

al.,20

13),FVB

mice(M

)(Lee

etal.,20

11)

Lee

etal.(201

1);Luet

al.(201

3)

NAT2

Protein

activity

Beforeor

at4da

ys(3%)

NR

Increa

sedrapidly

Sub

strateswereison

iazid(INH),p-am

inob

enzoic

acid

(PABA),4A

BP,an

d2A

F.Adu

ltag

e:not

defined

.Method

s:RNAas

say.

Strain:C

57BL/6

(M&

F)

McQ

uee

nan

dChau

(200

3)

mRNA

expr

ession

Hov

eringarou

nd

adult

value

–In

consisten

tpa

ttern

Adu

ltag

e:60

days

(Luet

al.,20

13),12

mo(Lee

etal.,20

11).Method

s:RNA-seq

(Luet

al.,

2013

),RT-PCR

(Lee

etal.,20

11).Strain:

C57

BL/6

(M)(Luet

al.,20

13),FVB

mice(M

)(Lee

etal.,20

11)

Lee

etal.(201

1);Luet

al.(201

3)

NAT5

mRNA

expr

ession

Fetal

deve

lopm

ent

(147

%)

32da

ysDecreas

edrapidly

Adu

ltag

e:12

mo.

Method

s:RT-PCR.S

train:F

VB

mice(M

)Lee

etal.(201

1)

NAT6

mRNA

expr

ession

Fetal

deve

lopm

ent

(37%

)32

days

Increa

sedrapidly

Adu

ltag

e:12

mo.

Method

s:RT-PCR.S

train:F

VB

mice(M

)Lee

etal.(201

1)

NAT8

mRNA

expr

ession

0da

ys(1%)

0da

ysIn

consisten

tpa

ttern

Adu

ltag

e:60

days.M

ethod

s:RNA

assa

y.Strain:

C57

BL/6

(M)

Luet

al.(201

3)

NAT10

mRNA

expr

ession

Fetal

deve

lopm

ent

(34%

–14

25%)

32da

ysIn

cons

istent

pattern

The

articlerepo

rted

both

anincrea

sing

and

decrea

singpa

ttern.A

dultag

e:12

mo.

Method

s:RT-PCR.Strain:FVB

mice(M

)

Lee

etal.(201

1)

NAT11

mRNA

expr

ession

Fetal

deve

lopm

ent

(643

%)

32da

ysDecreas

edrapidly

Adu

ltag

e:12

mo.

Method

s:RT-PCR.S

train:F

VB

mice(M

)Lee

etal.(201

1)

NAT12

mRNA

expr

ession

Fetal

deve

lopm

ent

(43%

)7da

ysIn

crea

sedrapidly

Adu

ltag

e:12

mo.

Method

s:RT-PCR.S

train:F

VB

mice(M

)Lee

etal.(201

1)

NAT13

(con

tinued

)

668 van Groen et al.

Page 73: Ontogeny of Hepatic Transporters and Drug-Metabolizing … · hepatic clearance of the opioid morphine in newborns and young infants (Knibbe et al., 2009). Morphine is actively transported

TABLE

16—

Con

tinued

Onsetof

Activity

and/or

Exp

ression

Adu

ltLev

els

Rea

ched

Age

-Related

Chan

gesin

Activity/Exp

ression

Com

men

tsReferen

ces

mRNA

expr

ession

Fetal

deve

lopm

ent

(200

%)

32da

ysDecreas

edslow

lyAdu

ltag

e:12

mo.

Method

s:RT-PCR.S

train:F

VB

mice(M

)Lee

etal.(201

1)

SULT1A

1mRNA

expr

ession

Fetal

deve

lopm

ent

(20%

–10

0%)

1da

ysIn

crea

sedpr

ogressively

Adu

ltag

e:45

days

(Alnou

tian

dKlaas

sen,20

06),

60da

ys(Luet

al.,20

13;Pen

get

al.,20

13),12

mo(Lee

etal.,20

11).Method

s:bD

NA

sign

alam

plificationas

say(A

lnou

tian

dKlaas

sen,

2006

),RNA

assa

y(Luet

al.,20

13),RNA-seq

(Pen

get

al.,20

13),RT-PCR

(Lee

etal.,20

11).

Strain:C57

BL/6

(M)(Luet

al.,20

13;Pen

get

al.,20

13),C57

BL/6

(M&

F)(A

lnou

tian

dKlaas

sen,20

06),FVB

mice(M

)(Lee

etal.,

2011

)

Alnou

tian

dKlaas

sen(200

6);Lee

etal.

(201

1);Luet

al.(201

3);Pen

get

al.(201

3)

SULT1B

1mRNA

expr

ession

Fetal

deve

lopm

ent

(10%

)5da

ysIn

crea

sedrapidly

Adu

ltag

e:60

days

(Luet

al.,20

13;Pen

get

al.,

2013

),12

mo(Lee

etal.,20

11).Method

s:RNA

assa

y(Luet

al.,20

13),RNA-seq

(Pen

get

al.,

2013

),RT-PCR

(Lee

etal.,20

11).Strain:

C57

BL/6

(M)(Luet

al.,20

13;P

enget

al.,20

13),

FVB

mice(M

)(Lee

etal.,20

11)

Lee

etal.(201

1);Luet

al.(201

3);Pen

get

al.

(201

3)

SULT1C

1mRNA

expr

ession

Fetal

deve

lopm

ent

(29%

)(Luet

al.,

2013

);fetal

deve

lopm

ent

(222

20%)

(mixed

)(A

lnou

tian

dKlaas

sen,

2006

)

5da

ys(Luet

al.,

2013

);22

days

(Alnou

tian

dKlaas

sen,20

06)

Increa

sedpr

ogressively(Luet

al.,20

13);

decrea

sedrapidly

Adu

ltag

e:45

days

(Alnou

tian

dKlaas

sen,2

006),

60da

ys(Luet

al.,20

13).Method

s:bD

NA

amplificationas

say(A

lnou

tian

dKlaas

sen,

2006

),RNA

assa

y(Luet

al.,20

13).Strain:

C57

BL/6

(M&

F)(Alnou

tian

dKlaas

sen,2

006),

C57

BL/6

(M)(Luet

al.,20

13)

Alnou

tian

dKlaas

sen(200

6);L

uet

al.(20

13)

SULT1C

2mRNA

expr

ession

0da

ys(6%)

1da

yIn

crea

sedpr

ogressively

Adu

ltag

e:45

days

(Alnou

tian

dKlaas

sen,20

06),

60da

ys(Luet

al.,20

13;Pen

get

al.,20

13),12

mo(Lee

etal.,20

11).Method

s:bD

NA

sign

alam

plificationas

say(A

lnou

tian

dKlaas

sen,

2006

),RNA

assa

y(Luet

al.,20

13),RNA-seq

(Pen

get

al.,20

13),RT-PCR

(Lee

etal.,20

11).

Strain:C57

BL/6

(M)(Luet

al.,20

13;Pen

get

al.,20

13),C57

BL/6

(M&

F)(A

lnou

tian

dKlaas

sen,20

06),FVB

mice(M

)(Lee

etal.,

2011

)

Alnou

tian

dKlaas

sen(200

6);Lee

etal.

(201

1);Luet

al.(201

3);Pen

get

al.(201

3)

SULT1D

1mRNA

expr

ession

Fetal

deve

lopm

ent

(13%

)1da

yIn

consisten

tpa

ttern

Adu

ltag

e:45

days

(Alnou

tian

dKlaas

sen,20

06),

60da

ys(Luet

al.,20

13;Pen

get

al.,20

13),12

mo(Lee

etal.,20

11).Method

s:bD

NA

sign

alam

plificationas

say(A

lnou

tian

dKlaas

sen,

2006

),RNA

assa

y(Luet

al.,20

13),RNA-seq

(Pen

get

al.,20

13),RT-PCR

(Lee

etal.,20

11).

Strain:C57

BL/6

(M)(Luet

al.,20

13;Pen

get

al.,20

13),C57

BL/6

(M&

F)(A

lnou

tian

dKlaas

sen,20

06),FVB

mice(M

)(Lee

etal.,

2011

)

Alnou

tian

dKlaas

sen(200

6);Lee

etal.

(201

1);Luet

al.(201

3);Pen

get

al.(201

3)

SULT1E

1mRNA

expr

ession

Fetal

deve

lopm

ent

(207

%)

10da

ysIn

consisten

tpa

ttern

Adu

ltag

e:60

days.Method

s:RNA-seq

.Strain:

C57

BL/6

(M)

Pen

get

al.(201

3)

SULT2A

1

(con

tinued

)

Ontogeny of Hepatic Transport and Drug Metabolism 669

Page 74: Ontogeny of Hepatic Transporters and Drug-Metabolizing … · hepatic clearance of the opioid morphine in newborns and young infants (Knibbe et al., 2009). Morphine is actively transported

TABLE

16—

Con

tinued

Onsetof

Activity

and/or

Exp

ression

Adu

ltLev

els

Rea

ched

Age

-Related

Chan

gesin

Activity/Exp

ression

Com

men

tsReferen

ces

mRNA

expr

ession

Fetal

deve

lopm

ent

(900

%)

30da

ysIn

consisten

tpa

ttern

Adu

ltag

e:60

days

(Luet

al.,20

13;Pen

get

al.,

2013

).Metho

ds:RNA-seq

(Pen

get

al.,20

13),

RNA

assa

y(Luet

al.,20

13).Strain:C57

BL/6

(M)(Luet

al.,20

13;Pen

get

al.,20

13)

Luet

al.(201

3);Pen

get

al.(201

3)

SULT2A

12mRNA

expr

ession

0da

ys(10%

)10

days

Inconsisten

tpa

ttern

Adu

ltag

e:45

days.Method

s:bD

NA

sign

alam

plificationas

say.

Strain:C57

BL/6

(F)

Alnou

tian

dKlaas

sen(200

6)

SULT2A

2mRNA

expr

ession

Fetal

deve

lopm

ent

(600

%)

30da

ysIn

consisten

tpa

ttern

Adu

ltag

e:60

days

(Luet

al.,20

13;Pen

get

al.,

2013

).Metho

ds:RNA-seq

(Pen

get

al.,20

13),

RNA

assa

y(Luet

al.,20

13).Strain:C57

BL/6

(M)(Luet

al.,20

13;Pen

get

al.,20

13)

Luet

al.(201

3);Pen

get

al.(201

3)

SULT2A

3mRNA

expr

ession

Beforeor

at5da

ys(248

%)

60da

ysIn

consisten

tpa

ttern

Adu

ltag

e:60

days.Method

s:RNA-seq

.Strain:

C57

BL/6

(M)

Pen

get

al.(201

3)

SULT2A

4mRNA

expr

ession

Beforeor

at5da

ys(248

%)

60da

ysIn

consisten

tpa

ttern

Adu

ltag

e:60

days.Method

s:RNA-seq

.Strain:

C57

BL/6

(M)

Pen

get

al.(201

3)

SULT2A

5mRNA

expr

ession

Beforeor

at5da

ys(248

%)

60da

ysIn

consisten

tpa

ttern

Adu

ltag

e:60

days.Method

s:RNA-seq

.Strain:

C57

BL/6

(M)

Pen

get

al.(201

3)

SULT2A

6mRNA

expr

ession

Beforeor

at1da

y(447

%)

60da

ysIn

consisten

tpa

ttern

Adu

ltag

e:60

days.Method

s:RNA-seq

.Strain:

C57

BL/6

(M)

Pen

get

al.(201

3)

SULT2A

7mRNA

expr

ession

15da

ys(200

%)

30da

ysIn

consisten

tpa

ttern

Adu

ltag

e:60

days.M

ethod

s:RNA

assa

y.Strain:

C57

BL/6

(M)

Luet

al.(201

3)

SULT2B

1mRNA

expr

ession

Fetal

deve

lopm

ent

(300

%)

15da

ysIn

consisten

tpa

ttern

Adu

ltag

e:60

days.M

ethod

s:RNA

assa

y.Strain:

C57

BL/6

(M)

Luet

al.(201

3)

SULT3A

1mRNA

expr

ession

M:fetal

deve

lopm

ent

(200

%);F:fetal

deve

lopm

ent

(6%)

M:15

days;F:

45da

ysM:inconsisten

tpa

ttern;F:increa

sedslow

lyAdu

ltag

e:45

days.Method

s:bD

NA

sign

alam

plificationas

say.

Strain:C57

BL/6

(M&

F)

Alnou

tian

dKlaas

sen(200

6)

SULT3A

1mRNA

expr

ession

Noda

ta7da

ysDecreas

edpr

ogressively

Adu

ltag

e:12

mo.

Method

s:RT-PCR.S

train:F

VB

mice(M

)Lee

etal.(201

1)

SULT5A

1mRNA

expr

ession

Fetal

deve

lopm

ent

(2%)

15da

ysIn

crea

sesrapidly(Luet

al.,20

13;Pen

get

al.,

2013

);incons

istent

pattern(Lee

etal.,20

11)

Adu

ltag

e:60

days

(Luet

al.,20

13;Pen

get

al.,

2013

),12

mo(Lee

etal.,20

11).Method

s:RNA

assa

y(Luet

al.,20

13),RNA-seq

(Pen

get

al.,

2013

),RT-PCR

(Lee

etal.,20

11).Strain:

C57

BL/6

(M)(Luet

al.,20

13;P

enget

al.,20

13),

FVB

mice(M

)(Lee

etal.,20

11)

Lee

etal.(201

1);Luet

al.(201

3);Pen

get

al.

(201

3)

UGT1A

1mRNA

expr

ession

M:fetal

deve

lopm

ent

(11%

);F:fetal

deve

lopm

ent

(3%)

M:5da

ys;F:

45da

ysM:increa

sedpr

ogressively;

F:inc

reas

espr

ogressivelyun

til5da

ysthen

rapidly

Primer:Mm02

6033

37_m

1(N

akajim

aet

al.,

2012

).Adu

ltag

e:60

days

(Luet

al.,20

13),.9

wk(N

akajim

aet

al.,20

12).Method

s:real-tim

ePCR

(Nak

ajim

aet

al.,20

12),RNA

assa

y(Lu

etal.,20

13).Strain:BALB/c

(M&

F)

(Nak

ajim

aet

al.,20

12),C57

BL/6

(M)(Luet

al.,

2013

)

Nak

ajim

aet

al.(201

2);Luet

al.(201

3))

UGT1A

2

(con

tinued

)

670 van Groen et al.

Page 75: Ontogeny of Hepatic Transporters and Drug-Metabolizing … · hepatic clearance of the opioid morphine in newborns and young infants (Knibbe et al., 2009). Morphine is actively transported

TABLE

16—

Con

tinued

Onsetof

Activity

and/or

Exp

ression

Adu

ltLev

els

Rea

ched

Age

-Related

Chan

gesin

Activity/Exp

ression

Com

men

tsReferen

ces

mRNA

expr

ession

Fetal

deve

lopm

ent

(8%)

1da

yIn

consisten

tpa

ttern

Adu

ltag

e:60

days.M

ethod

s:RNA

assa

y.Strain:

C57

BL/6

(M)

Luet

al.(201

3)

UGT1A

5mRNA

expr

ession

Fetal

deve

lopm

ent

(2%)

3da

ysIn

consisten

tpa

ttern

Adu

ltag

e:60

days.M

ethod

s:RNA

assa

y.Strain:

C57

BL/6

(M)

Luet

al.(201

3)

UGT1A

6mRNA

expr

ession

Fetal

deve

lopm

ent

(30%

)(m

ixed

)3da

ysIn

crea

sedrapidly

Dataarenot

normalized

asthehighestrepo

rted

ageis

toolow.Adu

ltag

e:21

days.Method

s:RT-PCR.Strain:C57

BL/6

(M&

F)

Yab

usa

kiet

al.(201

5)

UGT1A

6AmRNA

expr

ession

Fetal

deve

lopm

ent

(10%

)60

days

Increa

sedrapidly

Adu

ltag

e:60

days.M

ethod

s:RNA

assa

y.Strain:

C57

BL/6

(M)

Luet

al.(201

3)

UGT1A

6BmRNA

expr

ession

Fetal

deve

lopm

ent

(9%)

10da

ysIn

crea

sedrapidly

Adu

ltag

e:60

days.M

ethod

s:RNA

assa

y.Strain:

C57

BL/6

(M)

Luet

al.(201

3)

UGT1A

7CmRNA

expr

ession

Fetal

deve

lopm

ent

(380

%)

5da

ysDecreas

edpr

ogressively

Adu

ltag

e:60

days.M

ethod

s:RNA

assa

y.Strain:

C57

BL/6

(M)

Luet

al.(201

3)

UGT1A

9mRNA

expr

ession

1da

y(1%)

60da

ysIn

crea

sedpr

ogressivelyuntil5da

ysthen

rapidlyuntil30

days

Adu

ltag

e:60

days.M

ethod

s:RNA

assa

y.Strain:

C57

BL/6

(M)

Luet

al.(201

3)

UGT1A

10mRNA

expr

ession

Fetal

deve

lopm

ent

(133

%)

1da

yIn

consisten

tpa

ttern

Adu

ltag

e:60

days.M

ethod

s:RNA

assa

y.Strain:

C57

BL/6

(M)

Luet

al.(201

3)

UGT2A

3mRNA

expr

ession

1da

y(1%)

60da

ysIn

crea

sedpr

ogressivelyuntil5da

ysthen

rapidlyuntil30

days

Adu

ltag

e:60

days

(Luet

al.,20

13),12

mo(Lee

etal.,20

11).Method

s:RNA-seq

(Luet

al.,

2013

),RT-PCR

(Lee

etal.,20

11).Strain:

C57

BL/6

(M)(Luet

al.,20

13),FVB

mice(M

)(Lee

etal.,20

11)

Lee

etal.(201

1);Luet

al.(201

3)

UGT2B

1mRNA

expr

ession

Fetal

deve

lopm

ent

(0.5%)

25da

ysIn

crea

sedpr

ogressivelyun

til5da

ysthen

rapidlyuntil30

days

Primer:Mm02

6033

37_m

1(N

akajim

aet

al.,

2012

).Adu

ltag

e:60

days

(Luet

al.,20

13),.9

wk(N

akajim

aet

al.,20

12),12

mo(Lee

etal.,

2011

).Method

s:real-tim

ePCR

(Nak

ajim

aet

al.,20

12),RNA

assa

y(Luet

al.,20

13),RT-

PCR

(Lee

etal.,20

11).Strain:B

ALB/c

(M&

F)

(Nak

ajim

aet

al.,20

12),C57

BL/6

(M)(Luet

al.,

2013

),FVB

mice(M

)(Lee

etal.,20

11)

(Lee

etal.(201

1);Nak

ajim

aet

al.(201

2);Lu

etal.(201

3)

UGT2B

34mRNA

expr

ession

Fetal

deve

lopm

ent

(23%

)60

days

Increa

sedrapidly

Adu

ltag

e:60

days

(Luet

al.,20

13),12

mo(Lee

etal.,20

11).Method

s:RNA-seq

(Luet

al.,

2013

),RT-PCR

(Lee

etal.,20

11).Strain:

C57

BL/6

(M)(Luet

al.,20

13),FVB

mice(M

)(Lee

etal.,20

11)

Lee

etal.(201

1);Luet

al.(201

3)

UGT2B

35mRNA

expr

ession

Fetal

deve

lopm

ent

(13%

)60

days

Increa

sedrapidly

Adu

ltag

e:60

days

(Luet

al.,20

13),12

mo(Lee

etal.,20

11).Method

s:RNA-seq

(Luet

al.,

2013

),RT-PCR

(Lee

etal.,20

11).Strain:

C57

BL/6

(M)(Luet

al.,20

13),FVB

mice(M

)(Lee

etal.,20

11)

Lee

etal.(201

1);Luet

al.(201

3)

UGT2B

36

(con

tinued

)

Ontogeny of Hepatic Transport and Drug Metabolism 671

Page 76: Ontogeny of Hepatic Transporters and Drug-Metabolizing … · hepatic clearance of the opioid morphine in newborns and young infants (Knibbe et al., 2009). Morphine is actively transported

TABLE

16—

Con

tinued

Onsetof

Activity

and/or

Exp

ression

Adu

ltLev

els

Rea

ched

Age

-Related

Chan

gesin

Activity/Exp

ression

Com

men

tsReferen

ces

mRNA

expr

ession

Fetal

deve

lopm

ent

(5%)

25da

ysIn

crea

sedrapidly

Adu

ltag

e:60

days

(Luet

al.,20

13),12

mo(Lee

etal.,20

11).Method

s:RNA-seq

(Luet

al.,

2013

),RT-PCR

(Lee

etal.,20

11).Strain:

C57

BL/6

(M)(Luet

al.,20

13),FVB

mice(M

)(Lee

etal.,20

11)

Lee

etal.(201

1);Luet

al.(201

3)

UGT2B

37mRNA

expr

ession

Fetal

deve

lopm

ent

(3%)

25da

ysIn

crea

sedrapidly

Adu

ltag

e:60

days

(Luet

al.,20

13),12

mo(Lee

etal.,20

11).Method

s:RNA-seq

(Luet

al.,

2013

),RT-PCR

(Lee

etal.,20

11).Strain:

C57

BL/6

(M)(Luet

al.,20

13),FVB

mice(M

)(Lee

etal.,20

11)

Lee

etal.(201

1);Luet

al.(201

3)

UGT2B

38mRNA

expr

ession

Fetal

deve

lopm

ent

(2%)

60da

ysIn

crea

sedrapidly

Adu

ltag

e:60

days

(Luet

al.,20

13),12

mo(Lee

etal.,20

11).Method

s:RNA-seq

(Luet

al.,

2013

),RT-PCR

(Lee

etal.,20

11).Strain:

C57

BL/6

(M)(Luet

al.,20

13),FVB

mice(M

)(Lee

etal.,20

11)

Lee

etal.(201

1);Luet

al.(201

3)

UGT2B

38mRNA

expr

ession

Noda

ta32

days

Inconsisten

tpa

ttern

Adu

ltag

e:12

mo.

Method

s:RT-PCR.S

train:F

VB

mice(M

)Lee

etal.(201

1)

UGT2B

5mRNA

expr

ession

Fetal

deve

lopm

ent

(2%–18

%)

32da

ysIn

crea

sedrapidly

Adu

ltag

e:60

days

(Luet

al.,20

13),12

mo(Lee

etal.,20

11).Method

s:RNA-seq

(Luet

al.,

2013

),RT-PCR

(Lee

etal.,20

11).Strain:

C57

BL/6

(M)(Luet

al.,20

13),FVB

mice(M

)(Lee

etal.,20

11)

Lee

etal.(201

1);Luet

al.(201

3)

UGT3A

1mRNA

expr

ession

Fetal

deve

lopm

ent

(2%)

30da

ysIn

cons

istent

pattern(Luet

al.,20

13);increa

ses

prog

ressively(Lee

etal.,20

11)

Adu

ltag

e:60

days

(Luet

al.,20

13),12

mo(Lee

etal.,20

11).Method

s:RNA-seq

(Luet

al.,

2013

),RT-PCR

(Lee

etal.,20

11).Strain:

C57

BL/6

(M)(Luet

al.,20

13),FVB

mice(M

)(Lee

etal.,20

11)

Lee

etal.(201

1);Luet

al.(201

3)

UGT3A

2mRNA

expr

ession

Fetal

deve

lopm

ent

(0.5%)

30da

ysIn

crea

sedpr

ogressivelyun

til5da

ysthen

rapidlyuntil30

days

Adu

ltag

e:60

days

(Luet

al.,20

13),12

mo(Lee

etal.,20

11).Method

s:RNA-seq

(Luet

al.,

2013

),RT-PCR

(Lee

etal.,20

11).Strain:

C57

BL/6

(M)(Luet

al.,20

13),FVB

mice(M

)(Lee

etal.,20

11)

Lee

etal.(201

1);Luet

al.(201

3)

4ABP,4-am

inob

iphen

il;2A

F,2-am

inofluoren

e;bD

NA,bran

ched

DNA

sign

alam

plification

assa

y;ChiP-Seq

,ch

romatin

immunop

recipitation

sequ

encing;

F,female;

M,male;

mCES,mou

seCES;NR,not

repo

rted

;PCR,

polymeras

ech

ainreaction

;RNA-seq

,RNA-seq

uencing;

RT-PCR,r

everse-transcriptas

ePCR.

672 van Groen et al.

Page 77: Ontogeny of Hepatic Transporters and Drug-Metabolizing … · hepatic clearance of the opioid morphine in newborns and young infants (Knibbe et al., 2009). Morphine is actively transported

post-translational modifications, which could removethe correlation in the study populations of futureresearch. This could lead to false conclusions. Wetherefore encourage future researchers to first establishthe correlation between mRNA expression, proteinexpression, and, if possible, even protein activity fortheir study population interest before relying entirelyon mRNA expression levels as a surrogate for proteinexpression or activity.Numerous other covariates apart from age, such

as sex or genotype, will also influence expressionand activity of DTs and DMEs. However, because ofa lack of available data and/or a limited number ofindividual measurements, no sex-related differen-ces in ontogeny profile of human hepatic DTs andDMEs have been reported. In nonclinical species,including rats and mice, distinct profiles were identi-fied between male and female animals. For instance,CYP2B13 in male mice was at adult values at birth,but in female mice adult values were only reached at45 days (see Table 9), whereas SULT1A1 mRNAexpression in 1.5-day-old rats was 28% and 75% ofadults values for males and females, respectively (seeTable 15).

In this review, no genetic differences in ontogenyprofiles were explored. Nevertheless, for the polymor-phic DMECYP2D6, for instance, both age and genotypeare known to contribute to interindividual variabilityin CYP2D6 metabolism during human development(Stevens et al., 2008). For DTs (e.g., OATP1B1), it hasbeen shown that some polymorphisms can influencemRNA and/or protein expression levels. Yet there areconflicting reports, as one study did not find a genotype-protein expression relationship for OATP1B1 in humanliver tissue of fetuses and children ,3 months old(van Groen et al., 2018). Another group reported thatOATP1B1 expression was associated with genotypein children .1 year of age (Prasad et al., 2016). Suchapparent discrepancies can be explained by the in-terplay between genotype and ontogeny, in whicha lower expression at young age may obscure an effectof genotype. Also for in vivo data, this was shown for theCYP3A5 substrate tacrolimus, in which younger ageand CYP3A5 expresser genotype were independentlyassociated with higher dosing requirements and lowertacrolimus concentration/dose ratios (Gijsen et al.,2011). Further studying the interplay between ageand genotype would be of help to improve prediction of

Fig. 19. Pooled literature data on the ontogeny of metabolic activity of hepatic UGT activity in Göttingen minipig. The symbols represent the relativeactivity in each age group, and the dotted line indicates the adult value defined as 100%. If multiple values were obtained for the same age group, thesymbols represent the average relative activity, and the error bars show the S.D. See Table 17 for explanation on the ontogeny profiles and literaturereferences.

TABLE 17Ontogeny profile of hepatic phase II enzymes in Göttingen minipig based on metabolic activity, protein expression, and mRNA expression levelsPercentages represent expression/activity relative to adult levels.

Onset of Activity and/orExpression

Adult LevelsReached

Age-RelatedChanges inActivity/

ExpressionComments References

UGTCatalyticactivity

M: 7 days (35%); F: 7 days(38%)

M: NR (52% at 28days); F: NR(60% at 28 days)

Increasedrapidly

Single study, sparse data. Adult age: 822 days.Substrate: UGT-Glo. Methods: PLM. Strain:Göttingen minipig (M/F)

Van Peer et al.(2017)

F, female; M, male; NR, not reported; PLM, pig liver microsome.

Ontogeny of Hepatic Transport and Drug Metabolism 673

Page 78: Ontogeny of Hepatic Transporters and Drug-Metabolizing … · hepatic clearance of the opioid morphine in newborns and young infants (Knibbe et al., 2009). Morphine is actively transported

drug PK mainly when polymorphic proteins, such asCYP2D6, CYP2C19, or UGT2B10, are involved.Several suggestions can bemade for further research.

Because the strength of this review lies in the fact thatall raw data from available literature were extracted,normalized, and pooled, we believe that this shouldbecome standard of practice. As such, to accelerate dataavailability, we encourage publishing the data set asa supplementary file along with the publication andinitiatives for data-sharing platforms or repositories inwhich all raw data of published articles are available—the added value of this was recently shown by Ladumoret al. (2019). Scientists are encouraged to follow guide-lines from initiatives like the go-FAIR initiative tomakedata “Findable, Accessible, Interoperable, and Reusable(FAIR)” (Wilkinson et al., 2016). Also, to further accel-erate data generation, international databases withinformation on which samples are stored in variousbiobanks would have added value to overcome thescarcity of pediatric tissue. Lastly, current develop-ments may make it possible to fill the knowledge gapsthat were identified in this review. These include theuse of organoids (Nantasanti et al., 2016) and exosomes(Rodrigues and Rowland, 2019) to study DT and DMEactivity and the interplay between DTs and DMEs.However, these techniques are currently hampered bythe lack of knowledge regarding whether organoids andexosomes retain age-specific properties, which is a pre-requisite for studying age-related changes in expres-sion/activity of DTs and DMEs. Moreover, although thisreview is limited to ontogeny in the liver, DTs and/orDMEs are also abundant in other major organs, such asthe kidney and gastrointestinal tract, and sanctuarysites, including the central nervous system (DeGorteret al., 2012). Developmental patterns of isoforms appearto be organ-dependent (Drozdzik et al., 2018; Li et al.,2019). However, for other organs, a quantitative ap-proach as presented in this comprehensive review is notavailable but is highly needed. Once this is available,integration of ontogeny profiles in multiple tissues viaa PBPK framework could provide a more holisticsystems approach on the development of an entireorganism (Smits et al., 2013).In conclusion, we anticipate that our expedition to

compile these hepatic ontogeny data across human andvarious nonclinical species will help us understand thedevelopmental patterns of DTs and DMEs in humanand nonclinical species and provide an excellentframework to support and trigger improvement inpredicting drug disposition in pediatric and juvenilepopulations.

Acknowledgments

The authors would like to acknowledge the scientific and organiza-tional support by Connie Chen andOscar Bermudez at theHealth andEnvironmental Sciences Institute (HESI). This manuscript was re-alized as one of the deliverables of the HESI Developmental and

Reproductive Toxicology (DART) working group on neonatal pediat-rics (neonatal physiology subsection).

Authorship Contributions

Participated in research design: van Groen, Nicolaï, Van Cruchten,Smits, Schmidt, de Wildt, Allegaert, De Schaepdrijver, Annaert,Badée.Performed data analysis: van Groen, Nicolaï, Kuik, Van Cruchten,

van Peer, Annaert, Badée.Wrote or contributed to the writing of the manuscript: van Groen,

Nicolaï, Kuik, Van Cruchten, van Peer, Smits, Schmidt, de Wildt,Allegaert, De Schaepdrijver, Annaert, Badée.

ReferencesAbanda NN, Riches Z, and Collier AC (2017) Lobular distribution and variability inhepatic ATP binding cassette protein B1 (ABCB1, P-gp): ontogenetic differencesand potential for toxicity. Pharmaceutics 9:8.

Achour B, Dantonio A, Niosi M, Novak JJ, Fallon JK, Barber J, Smith PC, Rostami-Hodjegan A, and Goosen TC (2017) Quantitative characterization of major hepaticUDP-glucuronosyltransferase enzymes in human liver microsomes: comparison oftwo proteomic methods and correlation with catalytic activity. Drug Metab Dispos45:1102–1112.

Aebersold R, Burlingame AL, and Bradshaw RA (2013) Western blots versus selectedreaction monitoring assays: time to turn the tables? Mol Cell Proteomics 12:2381–2382.

Agathopoulos A, Nicolopoulos D, Matsaniotis N, and Papadatos C (1971) Biochemicalchanges of catechol-O-methyltransferase during development of human liver. Pe-diatrics 47:125–128.

Alcorn J, Elbarbry FA, Allouh MZ, and McNamara PJ (2007) Evaluation of theassumptions of an ontogeny model of rat hepatic cytochrome P450 activity. DrugMetab Dispos 35:2225–2231.

Alnouti Y and Klaassen CD (2006) Tissue distribution and ontogeny of sulfo-transferase enzymes in mice. Toxicol Sci 93:242–255.

Alnouti Y and Klaassen CD (2008) Tissue distribution, ontogeny, and regulation ofaldehyde dehydrogenase (Aldh) enzymes mRNA by prototypical microsomal en-zyme inducers in mice. Toxicol Sci 101:51–64.

Alnouti Y, Petrick JS, and Klaassen CD (2006) Tissue distribution and ontogeny oforganic cation transporters in mice. Drug Metab Dispos 34:477–482.

Asaoka Y, Sakai H, Sasaki J, Goryo M, Yanai T, Masegi T, and Okada K (2010)Changes in the gene expression and enzyme activity of hepatic cytochrome P450 injuvenile Sprague-Dawley rats. J Vet Med Sci 72:471–479.

Badée J, Fowler S, de Wildt SN, Collier AC, Schmidt S, and Parrott N (2019) Theontogeny of UDP-glucuronosyltransferase enzymes, recommendations for futureprofiling studies and application through physiologically based pharmacokineticmodelling. Clin Pharmacokinet 58:189–211.

Barker EV, Hume R, Hallas A, and Coughtrie WH (1994) Dehydroepiandrosteronesulfotransferase in the developing human fetus: quantitative biochemical andimmunological characterization of the hepatic, renal, and adrenal enzymes. En-docrinology 134:982–989.

Belknap WM, Balistreri WF, Suchy FJ, and Miller PC (1981) Physiologic cholestasisII: serum bile acid levels reflect the development of the enterohepatic circulation inrats. Hepatology 1:613–616.

Berthou F, Ratanasavanh D, Alix D, Carlhant D, Riche C, and Guillouzo A (1988)Caffeine and theophylline metabolism in newborn and adult human hepatocytes;comparison with adult rat hepatocytes. Biochem Pharmacol 37:3691–3700.

Bhatt DK, Basit A, Zhang H, Gaedigk A, Lee SB, Claw KG, Mehrotra A, ChaudhryAS, Pearce RE, Gaedigk R, et al. (2018) Hepatic abundance and activity of an-drogen- and drug-metabolizing enzyme UGT2B17 are associated with genotype,age, and sex. Drug Metab Dispos 46:888–896.

Bhatt DK, Gaedigk A, Pearce RE, Leeder JS, and Prasad B (2017) Age-dependentprotein abundance of cytosolic alcohol and aldehyde dehydrogenases in humanliver. Drug Metab Dispos 45:1044–1048.

Bhatt DK, Mehrotra A, Gaedigk A, Chapa R, Basit A, Zhang H, Choudhari P, BobergM, Pearce RE, Gaedigk R, et al. (2019) Age- and genotype-dependent variability inthe protein abundance and activity of six major uridine diphosphate-glucuronosyltransferases in human liver. Clin Pharmacol Ther 105:131–141.

Boberg M, Vrana M, Mehrotra A, Pearce RE, Gaedigk A, Bhatt DK, Leeder JS,and Prasad B (2017) Age-dependent absolute abundance of hepatic carboxylesterases(CES1 and CES2) by LC-MS/MS proteomics: application to PBPK modeling of osel-tamivir In Vivo pharmacokinetics in infants. Drug Metab Dispos 45:216–223.

Brouwer KL, Aleksunes LM, Brandys B, Giacoia GP, Knipp G, Lukacova V, MeibohmB, Nigam SK, Rieder M, and de Wildt SN; Pediatric Transporter Working Group(2015) Human ontogeny of drug transporters: review and recommendations of thepediatric transporter working group. Clin Pharmacol Ther 98:266–287.

Burchell B, Coughtrie M, Jackson M, Harding D, Fournel-Gigleux S, Leakey J,and Hume R (1989) Development of human liver UDP-glucuronosyltransferases.Dev Pharmacol Ther 13:70–77.

Campbell MT and Wishart GJ (1980) The effect of premature and delayed birth onthe development of UDP-glucuronosyltransferase activities towards bilirubin,morphine and testosterone in the rat. Biochem J 186:617–619.

Cappiello M, Giuliani L, Rane A, and Pacifici GM (1991) Dopamine sulphotransferaseis better developed than p-nitrophenol sulphotransferase in the human fetus. DevPharmacol Ther 16:83–88.

674 van Groen et al.

Page 79: Ontogeny of Hepatic Transporters and Drug-Metabolizing … · hepatic clearance of the opioid morphine in newborns and young infants (Knibbe et al., 2009). Morphine is actively transported

Carpenter SP, Lasker JM, and Raucy JL (1996) Expression, induction, and catalyticactivity of the ethanol-inducible cytochrome P450 (CYP2E1) in human fetal liverand hepatocytes. Mol Pharmacol 49:260–268.

Cazeneuve C, Pons G, Rey E, Treluyer JM, Cresteil T, Thiroux G, D’Athis P,and Olive G (1994) Biotransformation of caffeine in human liver microsomes fromfoetuses, neonates, infants and adults. Br J Clin Pharmacol 37:405–412.

Chen HL, Chen HL, Liu YJ, Feng CH, Wu CY, Shyu MK, Yuan RH, and Chang MH(2005) Developmental expression of canalicular transporter genes in human liver.J Hepatol 43:472–477.

Chen LJ (1982) Bile salt sulfotransferase in Guinea pig liver. Biochim Biophys Acta717:316–321.

Chen Y, Jin JY, Mukadam S, Malhi V, and Kenny JR (2012) Application of IVIVEand PBPK modeling in prospective prediction of clinical pharmacokinetics: strat-egy and approach during the drug discovery phase with four case studies. Bio-pharm Drug Dispos 33:85–98.

Cheng X, Buckley D, and Klaassen CD (2007) Regulation of hepatic bile acid trans-porters Ntcp and Bsep expression. Biochem Pharmacol 74:1665–1676.

Cheng X, Maher J, Chen C, and Klaassen CD (2005) Tissue distribution and ontogenyof mouse organic anion transporting polypeptides (Oatps). Drug Metab Dispos 33:1062–1073.

Cherala G, Shapiro BH, and D’mello AP (2007) Effect of perinatal low protein diets onthe ontogeny of select hepatic cytochrome p450 enzymes and cytochrome p450reductase in the rat. Drug Metab Dispos 35:1057–1063.

Cheung KWK, van Groen BD, Burckart GJ, Zhang L, de Wildt SN, and Huang SM(2019) Incorporating ontogeny in physiologically based pharmacokinetic modelingto improve pediatric drug development: what we know about developmentalchanges in membrane transporters. J Clin Pharmacol 59 (Suppl 1):S56–S69.

Chow T, Imaoka S, Hiroi T, and Funae Y (1999) Developmental changes in thecatalytic activity and expression of CYP2D isoforms in the rat liver. Drug MetabDispos 27:188–192.

Cizkova D, Mokry J, Micuda S, Osterreicher J, and Martinkova J (2005) Expressionof MRP2 and MDR1 and other hepatic markers in hepatocytes in situ and WRL 68cells in vitro. Basic Clin Pharmacol Toxicol 96:249–250.

Coughtrie MW, Burchell B, Leakey JE, and Hume R (1988) The inadequacy ofperinatal glucuronidation: immunoblot analysis of the developmental expression ofindividual UDP-glucuronosyltransferase isoenzymes in rat and human livermicrosomes. Mol Pharmacol 34:729–735.

Csanaky IL, Lu H, Zhang Y, Ogura K, Choudhuri S, and Klaassen CD (2011) Organicanion-transporting polypeptide 1b2 (Oatp1b2) is important for the hepatic uptakeof unconjugated bile acids: studies in Oatp1b2-null mice. Hepatology 53:272–281.

Cuesta de Juan S, Monte MJ, Macias RIR, Wauthier V, Calderon PB, and Marin JJG(2007) Ontogenic development-associated changes in the expression of genes in-volved in rat bile acid homeostasis. J Lipid Res 48:1362–1370.

Cui JY, Choudhuri S, Knight TR, and Klaassen CD (2010) Genetic and epigeneticregulation and expression signatures of glutathione S-transferases in developingmouse liver. Toxicol Sci 116:32–43.

Cui JY, Gunewardena SS, Yoo B, Liu J, Renaud HJ, Lu H, Zhong XB, and KlaassenCD (2012a) RNA-Seq reveals different mRNA abundance of transporters and theiralternative transcript isoforms during liver development. Toxicol Sci 127:592–608.

Cui JY, Renaud HJ, and Klaassen CD (2012b) Ontogeny of novel cytochrome P450gene isoforms during postnatal liver maturation in mice. Drug Metab Dispos 40:1226–1237.

Cui YJ, Cheng X, Weaver YM, and Klaassen CD (2009) Tissue distribution, gender-divergent expression, ontogeny, and chemical induction of multidrug resistancetransporter genes (Mdr1a, Mdr1b, Mdr2) in mice. Drug Metab Dispos 37:203–210.

DeGorter MK, Xia CQ, Yang JJ, and Kim RB (2012) Drug transporters in drugefficacy and toxicity. Annu Rev Pharmacol Toxicol 52:249–273.

del Santo B, Tarafa G, Felipe A, Casado FJ, and Pastor-Anglada M (2001) De-velopmental regulation of the concentrative nucleoside transporters CNT1 andCNT2 in rat liver. J Hepatol 34:873–880.

Deo AK, Prasad B, Balogh L, Lai Y, and Unadkat JD (2012) Interindividual vari-ability in hepatic expression of the multidrug resistance-associated protein 2(MRP2/ABCC2): quantification by liquid chromatography/tandem mass spectrom-etry. Drug Metab Dispos 40:852–855.

de Peretti E and Forest MG (1978) Pattern of plasma dehydroepiandrosterone sulfatelevels in humans from birth to adulthood: evidence for testicular production. J ClinEndocrinol Metab 47:572–577.

de Wildt SN, Ito S, and Koren G (2009) Challenges for drug studies in children:CYP3A phenotyping as example. Drug Discov Today 14:6–15.

de Wildt SN, Kearns GL, Leeder JS, and van den Anker JN (1999) Glucuronidationin humans. Pharmacogenetic and developmental aspects. Clin Pharmacokinet 36:439–452.

de Zwart L, Scholten M, Monbaliu JG, Annaert PP, Van Houdt JM, Van denWyngaert I, De Schaepdrijver LM, Bailey GP, Coogan TP, Coussement WC, et al.(2008) The ontogeny of drug metabolizing enzymes and transporters in the rat.Reprod Toxicol 26:220–230.

Divakaran K, Hines RN, and McCarver DG (2014) Human hepatic UGT2B15 de-velopmental expression. Toxicol Sci 141:292–299.

Drozdzik M, Busch D, Łapczuk J, Müller J, Ostrowski M, Kurzawski M, and OswaldS (2018) Protein abundance of clinically relevant drug transporters in the humanliver and intestine: a comparative analysis in paired tissue specimens. ClinPharmacol Ther 105:1204–1212.

Duanmu Z, Weckle A, Koukouritaki SB, Hines RN, Falany JL, Falany CN, KocarekTA, and Runge-Morris M (2006) Developmental expression of aryl, estrogen, andhydroxysteroid sulfotransferases in pre- and postnatal human liver. J PharmacolExp Ther 316:1310–1317.

Ekström L and Rane A (2015) Genetic variation, expression and ontogeny of sulfo-transferase SULT2A1 in humans. Pharmacogenomics J 15:293–297.

Elbarbry F and Alcorn J (2009) Ontogeny of glutathione and glutathione-relatedantioxidant enzymes in rat liver. Res Vet Sci 87:242–244.

Elbarbry FA, McNamara PJ, and Alcorn J (2007) Ontogeny of hepatic CYP1A2 andCYP2E1 expression in rat. J Biochem Mol Toxicol 21:41–50.

Elmorsi Y, Barber J, and Rostami-Hodjegan A (2016) Ontogeny of hepatic drugtransporters and relevance to drugs used in pediatrics. Drug Metab Dispos 44:992–998.

Emoto C, Johnson TN, Neuhoff S, Hahn D, Vinks AA, and Fukuda T (2018) PBPKmodel of morphine incorporating developmental changes in hepatic OCT1 andUGT2B7 proteins to explain the variability in clearances in neonates and smallinfants. CPT Pharmacometrics Syst Pharmacol 7:464–473.

European Medicines Agency (2012) Guideline on the investigation of drug inter-actions, Committee for Human Medicinal Products.

Fakhoury M, de Beaumais T, Guimiot F, Azougagh S, Elie V, Medard Y, DelezoideAL, and Jacqz-Aigrain E (2009) mRNA expression of MDR1 and major metabo-lising enzymes in human fetal tissues. Drug Metab Pharmacokinet 24:529–536.

Fattah S, Augustijns P, and Annaert P (2015) Age-dependent activity of the uptaketransporters Ntcp and Oatp1b2 in male rat hepatocytes: from birth till adulthood.Drug Metab Dispos 43:1–8.

Fattah S, Augustijns P, and Annaert P (2016) Effect of age on the hepatocellularitynumber for wistar rats. Drug Metab Dispos 44:366–369.

Food and Drug Administration (2020) Clinical Drug Interaction Studies — Cyto-chrome P450 Enzyme- and Transporter-Mediated Drug Interactions, Guidance forIndustry, U.S. Department of Health and Human Services, Food and Drug Ad-ministration, Center for Drug Evaluation and Research.

Gebremichael A, Chang AM, Buckpitt AR, Plopper CG, and Pinkerton KE (1995)Postnatal development of cytochrome P4501A1 and 2B1 in rat lung and liver: effectof aged and diluted sidestream cigarette smoke. Toxicol Appl Pharmacol 135:246–253.

Giacomini KM and Huang SM (2013) Transporters in drug development and clinicalpharmacology. Clin Pharmacol Ther 94:3–9.

Gijsen V, Mital S, van Schaik RH, Soldin OP, Soldin SJ, van der Heiden IP, NulmanI, Koren G, and de Wildt SN (2011) Age and CYP3A5 genotype affect tacrolimusdosing requirements after transplant in pediatric heart recipients. J Heart LungTransplant 30:1352–1359.

Gilissen RA, Hume R, Meerman JH, and Coughtrie MW (1994) Sulphation ofN-hydroxy-4-aminobiphenyl and N-hydroxy-4-acetylaminobiphenyl by humanfoetal and neonatal sulphotransferase. Biochem Pharmacol 48:837–840.

Gregus Z, Varga F, and Schmelás A (1985) Age-development and inducibility of he-patic glutathione S-transferase activities in mice, rats, rabbits and Guinea-pigs.Comp Biochem Physiol C Comp Pharmacol Toxicol 80:85–90.

Guo GL, Johnson DR, and Klaassen CD (2002) Postnatal expression and induction bypregnenolone-16alpha-carbonitrile of the organic anion-transporting polypeptide 2in rat liver. Drug Metab Dispos 30:283–288.

Hahn D, Emoto C, Euteneuer JC, Mizuno T, Vinks AA, and Fukuda T (2019) In-fluence of OCT1 ontogeny and genetic variation on morphine disposition in criti-cally ill neonates: lessons from PBPK modeling and clinical study. Clin PharmacolTher 105:761–768.

Hahn D, Emoto C, Vinks AA, and Fukuda T (2017) Developmental changes in hepaticorganic cation transporter OCT1 protein expression from neonates to children.Drug Metab Dispos 45:23–26.

Hakkola J, Pasanen M, Purkunen R, Saarikoski S, Pelkonen O, Mäenpää J, Rane A,and Raunio H (1994) Expression of xenobiotic-metabolizing cytochrome P450 formsin human adult and fetal liver. Biochem Pharmacol 48:59–64.

Hakkola J, Tanaka E, and Pelkonen O (1998) Developmental expression of cyto-chrome P450 enzymes in human liver. Pharmacol Toxicol 82:209–217.

Hein DW, Bendaly J, Neale JR, and Doll MA (2008) Systemic functional expression ofN-acetyltransferase polymorphism in the F344 Nat2 congenic rat. Drug MetabDispos 36:2452–2459.

Hines RN, Simpson PM, and McCarver DG (2016) Age-dependent human hepaticcarboxylesterase 1 (CES1) and carboxylesterase 2 (CES2) postnatal ontogeny.DrugMetab Dispos 44:959–966.

Hou WY, Xu SF, Zhu QN, Lu YF, Cheng XG, and Liu J (2014) Age- and sex-relateddifferences of organic anion-transporting polypeptide gene expression in livers ofrats. Toxicol Appl Pharmacol 280:370–377.

Imaoka S, Fujita S, and Funae Y (1991) Age-dependent expression of cytochrome P-450s in rat liver. Biochim Biophys Acta 1097:187–192.

International Council for Harmonisation (2000) ICH Harmonised TripartiteGuideline Clinical Investigation of medicinal products in the pediatric pop-ulation E11.

Ise R, Kondo S, Kato H, Imai N, Akiyama H, Iwasaki K, Yamazaki H, and Uno Y(2011) Expression of cytochromes p450 in fetal, infant, and juvenile liver of cyn-omolgus macaques. Drug Metab Pharmacokinet 26:621–626.

Iwasaki K, Tokuma Y, Noda K, and Noguchi H (1994) Age- and sex-related changes ofsulfotransferase activities in the rat. Chem Biol Interact 92:209–217.

Jacqz-Aigrain E and Cresteil T (1992) Cytochrome P450-dependent metabolism ofdextromethorphan: fetal and adult studies. Dev Pharmacol Ther 18:161–168.

Jang I, Jung K, and Cho J (1998) Age-related changes in antioxidant enzyme activ-ities in the small intestine and liver from Wistar rats. Exp Anim 47:247–252.

Janmohamed A, Hernandez D, Phillips IR, and Shephard EA (2004) Cell-, tissue-,sex- and developmental stage-specific expression of mouse flavin-containing mon-ooxygenases (Fmos). Biochem Pharmacol 68:73–83.

Johnson DR, Guo GL, and Klaassen CD (2002) Expression of rat Multidrug Re-sistance Protein 2 (Mrp2) in male and female rats during normal and pregneno-lone-16alpha-carbonitrile (PCN)-induced postnatal ontogeny. Toxicology 178:209–219.

Johnson TN, Rostami-Hodjegan A, and Tucker GT (2006) Prediction of the clearanceof eleven drugs and associated variability in neonates, infants and children. ClinPharmacokinet 45:931–956.

Johnson TN, Tanner MS, and Tucker GT (2000) A comparison of the ontogeny ofenterocytic and hepatic cytochromes P450 3A in the rat. Biochem Pharmacol 60:1601–1610.

Ontogeny of Hepatic Transport and Drug Metabolism 675

Page 80: Ontogeny of Hepatic Transporters and Drug-Metabolizing … · hepatic clearance of the opioid morphine in newborns and young infants (Knibbe et al., 2009). Morphine is actively transported

Johnson TN, Zhou D, and Bui KH (2014) Development of physiologically basedpharmacokinetic model to evaluate the relative systemic exposure to quetiapineafter administration of IR and XR formulations to adults, children and adolescents.Biopharm Drug Dispos 35:341–352.

Johnsrud EK, Koukouritaki SB, Divakaran K, Brunengraber LL, Hines RN,and McCarver DG (2003) Human hepatic CYP2E1 expression during development.J Pharmacol Exp Ther 307:402–407.

Kane RE and Chen LJ (1991) Hepatic bile salt sulfotransferases in the rat: sulfationof 3 beta-hydroxy-5-cholenoate during development. J Pediatr Gastroenterol Nutr12:260–268.

Kawade N and Onishi S (1981) The prenatal and postnatal development of UDP-glucuronyltransferase activity towards bilirubin and the effect of premature birthon this activity in the human liver. Biochem J 196:257–260.

Kawase A, Ito A, Yamada A, and Iwaki M (2015) Age-related changes in mRNA levelsof hepatic transporters, cytochrome P450 and UDP-glucuronosyltransferase in fe-male rats. Eur J Drug Metab Pharmacokinet 40:239–244.

Kishi M, Emi Y, Sakaguchi M, Ikushiro S, and Iyanagi T (2008) Ontogenic isoformswitching of UDP-glucuronosyltransferase family 1 in rat liver. Biochem BiophysRes Commun 377:815–819.

Klaassen CD and Aleksunes LM (2010) Xenobiotic, bile acid, and cholesterol trans-porters: function and regulation. Pharmacol Rev 62:1–96.

Klaassen CD, Liu L, and Dunn RT 2nd (1998) Regulation of sulfotransferase mRNAexpression in male and female rats of various ages. Chem Biol Interact 109:299–313.

Knibbe CA, Krekels EH, van den Anker JN, DeJongh J, Santen GW, van Dijk M,Simons SH, van Lingen RA, Jacqz-Aigrain EM, Danhof M, et al. (2009) Morphineglucuronidation in preterm neonates, infants and children younger than 3 years.Clin Pharmacokinet 48:371–385.

Konieczna A, Erdösová B, Lichnovská R, Jandl M, Cí�zková K, and Ehrmann J (2011)Differential expression of ABC transporters (MDR1, MRP1, BCRP) in developinghuman embryos. J Mol Histol 42:567–574.

Koukouritaki SB, Manro JR, Marsh SA, Stevens JC, Rettie AE, McCarver DG,and Hines RN (2004) Developmental expression of human hepatic CYP2C9 andCYP2C19. J Pharmacol Exp Ther 308:965–974.

Krekels EH, Johnson TN, den Hoedt SM, Rostami-Hodjegan A, Danhof M, Tibboel D,and Knibbe CA (2012) From pediatric covariate model to semiphysiological func-tion for maturation: Part II-sensitivity to physiological and physicochemicalproperties. CPT Pharmacometrics Syst Pharmacol 1:e10.

Lacroix D, Sonnier M, Moncion A, Cheron G, and Cresteil T (1997) Expression ofCYP3A in the human liver--evidence that the shift between CYP3A7 and CYP3A4occurs immediately after birth. Eur J Biochem 247:625–634.

Ladumor MK, Thakur A, Sharma S, Rachapally A, Mishra S, Bobe P, Rao VK,Pammi P, Kangne H, Levi D, et al. (2019) A repository of protein abundancedata of drug metabolizing enzymes and transporters for applications inphysiologically based pharmacokinetic (PBPK) modelling and simulation. SciRep 9:9709.

Leakey JE, Hume R, and Burchell B (1987) Development of multiple activities ofUDP-glucuronyltransferase in human liver. Biochem J 243:859–861.

Lee JS, Ward WO, Liu J, Ren H, Vallanat B, Delker D, and Corton JC (2011) Hepaticxenobiotic metabolizing enzyme and transporter gene expression through the lifestages of the mouse. PLoS One 6:e24381.

Leeder JS, Gaedigk R, Marcucci KA, Gaedigk A, Vyhlidal CA, Schindel BP,and Pearce RE (2005) Variability of CYP3A7 expression in human fetal liver.J Pharmacol Exp Ther 314:626–635.

Leeder JS, Pearce RE, Gaedigk A, Modak A, and Rosen DI (2008) Evaluation ofa [13C]-dextromethorphan breath test to assess CYP2D6 phenotype. J ClinPharmacol 48:1041–1051.

Li CY, Hosey-Cojocari C, Basit A, Unadkat JD, Leeder JS, and Prasad B (2019)Optimized renal transporter quantification by using aquaporin 1 and aquaporin 2as anatomical markers: application in characterizing the ontogeny of renal trans-porters and its correlation with hepatic transporters in paired human samples.AAPS J 21:88.

Li CY, Renaud HJ, Klaassen CD, and Cui JY (2016) Age-specific regulation of drug-processing genes in mouse liver by ligands of xenobiotic-sensing transcriptionfactors. Drug Metab Dispos 44:1038–1049.

Li N, Hartley DP, Cherrington NJ, and Klaassen CD (2002) Tissue expression, on-togeny, and inducibility of rat organic anion transporting polypeptide 4.J Pharmacol Exp Ther 301:551–560.

Li W, Gu Y, James MO, Hines RN, Simpson P, Langaee T, and Stacpoole PW (2012)Prenatal and postnatal expression of glutathione transferase z 1 in human liverand the roles of haplotype and subject age in determining activity with dichlor-oacetate. Drug Metab Dispos 40:232–239.

Li Y, Cui Y, Hart SN, Klaassen CD, and Zhong XB (2009) Dynamic patterns ofhistone methylation are associated with ontogenic expression of the Cyp3a genesduring mouse liver maturation. Mol Pharmacol 75:1171–1179.

Lu H, Gunewardena S, Cui JY, Yoo B, Zhong XB, and Klaassen CD (2013) RNA-sequencing quantification of hepatic ontogeny and tissue distribution of mRNAs ofphase II enzymes in mice. Drug Metab Dispos 41:844–857.

Lu H and Rosenbaum S (2014) Developmental pharmacokinetics in pediatric pop-ulations. J Pediatr Pharmacol Ther 19:262–276.

Lucier GW, Sonawane BR, McDaniel OS, and Hook GE (1975) Postnatal stimulationof hepatic microsomal enzymes following administration of TCDD to pregnant rats.Chem Biol Interact 11:15–26.

Lupp A, Glöckner R, Etzrodt J, and Müller D (2008) Precision-cut liver slices fromrats of different ages: basal cytochrome P450-dependent monooxygenase activitiesand inducibility. Anal Bioanal Chem 392:1173–1184.

Lyubimov AV and Ortiz de Montellano PR (2011) Structure and function of cyto-chrome P450 enzymes, Encyclopedia of Drug Metabolism and Interactions pp 1–19.

Macias RI, Hierro C, de Juan SC, Jimenez F, Gonzalez-San Martin F, and Marin JJ(2011) Hepatic expression of sodium-dependent vitamin C transporters: ontogeny,

subtissular distribution and effect of chronic liver diseases. Br J Nutr 106:1814–1825.

Mäenpää J, Rane A, Raunio H, Honkakoski P, and Pelkonen O (1993) CytochromeP450 isoforms in human fetal tissues related to phenobarbital-inducible forms inthe mouse. Biochem Pharmacol 45:899–907.

Maharaj AR and Edginton AN (2014) Physiologically based pharmacokinetic mod-eling and simulation in pediatric drug development. CPT Pharmacometrics SystPharmacol 3:e150.

Maher JM, Slitt AL, Cherrington NJ, Cheng X, and Klaassen CD (2005) Tissuedistribution and hepatic and renal ontogeny of the multidrug resistance-associatedprotein (Mrp) family in mice. Drug Metab Dispos 33:947–955.

Mahmood B, Daood MJ, Hart C, Hansen TW, and Watchko JF (2001) Ontogeny ofP-glycoprotein in mouse intestine, liver, and kidney. J Investig Med 49:250–257.

Mahmood I (2016) Prediction of drug clearance in premature and mature neonates,infants, and children #2 Years of age: a comparison of the predictive performanceof 4 allometric models. J Clin Pharmacol 56:733–739.

Mahnke A, Strotkamp D, Roos PH, Hanstein WG, Chabot GG, and Nef P (1997)Expression and inducibility of cytochrome P450 3A9 (CYP3A9) and other membersof the CYP3A subfamily in rat liver. Arch Biochem Biophys 337:62–68.

Martel F, Martins MJ, Calhau C, Hipólito-Reis C, and Azevedo I (1998) Postnataldevelopment of organic cation transport in the rat liver. Pharmacol Res 37:131–136.

Matsui M and Watanabe HK (1982) Developmental alteration of hepatic UDP-glucuronosyltransferase and sulphotransferase towards androsterone and 4-nitrophenol in Wistar rats. Biochem J 204:441–447.

Matsumoto J, Yokota H, and Yuasa A (2002) Developmental increases in rat hepaticmicrosomal UDP-glucuronosyltransferase activities toward xenoestrogens anddecreases during pregnancy. Environ Health Perspect 110:193–196.

Mawal Y, Paradis K, and Qureshi IA (1997) Developmental profile of mitochondrialglycine N-acyltransferase in human liver. J Pediatr 130:1003–1007.

McCarver DG and Hines RN (2002) The ontogeny of human drug-metabolizingenzymes: phase II conjugation enzymes and regulatory mechanisms. J PharmacolExp Ther 300:361–366.

McPhail BT, White CA, Cummings BS, Muralidhara S, Wilson JT, and Bruckner JV(2016) The immature rat as a potential model for chemical risks to children: on-togeny of selected hepatic P450s. Chem Biol Interact 256:167–177.

McQueen CA and Chau B (2003) Neonatal ontogeny of murine arylamine N-acetyl-transferases: implications for arylamine genotoxicity. Toxicol Sci 73:279–286.

Meier-Abt F, Faulstich H, and Hagenbuch B (2004) Identification of phalloidin up-take systems of rat and human liver. Biochim Biophys Acta 1664:64–69.

Millecam J, De Clerck L, Govaert E, Devreese M, Gasthuys E, Schelstraete W, De-force D, De Bock L, Van Bocxlaer J, Sys S, et al. (2018) The ontogeny of cytochromeP450 enzyme activity and protein abundance in conventional pigs in support ofpreclinical pediatric drug research. Front Pharmacol 9:470.

Miller MS, Juchau MR, Guengerich FP, Nebert DW, and Raucy JL (1996) Drugmetabolic enzymes in developmental toxicology. Fundam Appl Toxicol 34:165–175.

Ministry of Labor and Welfare (2018) Guideline on drug interaction for drug de-velopment and appropriate provision of information, notification No.0723-4,Pharmaceutical Evaluation Division, Pharmaceuticals safety and environmentalHealth bureau, Japan. July 23, 2018.

Miyagi SJ and Collier AC (2007) Pediatric development of glucuronidation: the on-togeny of hepatic UGT1A4. Drug Metab Dispos 35:1587–1592.

Miyagi SJ and Collier AC (2011) The development of UDP-glucuronosyltransferases1A1 and 1A6 in the pediatric liver. Drug Metab Dispos 39:912–919.

Mooij MG, Schwarz UI, de Koning BA, Leeder JS, Gaedigk R, Samsom JN, Spaans E,van Goudoever JB, Tibboel D, Kim RB, et al. (2014) Ontogeny of human hepaticand intestinal transporter gene expression during childhood: age matters. DrugMetab Dispos 42:1268–1274.

Mooij MG, van de Steeg E, van Rosmalen J, Windster JD, de Koning BA, Vaes WH,van Groen BD, Tibboel D, Wortelboer HM, and de Wildt SN (2016) Proteomicanalysis of the developmental trajectory of human hepatic membrane transporterproteins in the first three months of life. Drug Metab Dispos 44:1005–1013.

Morrissey KM, Stocker SL, Wittwer MB, Xu L, and Giacomini KM (2013) Renaltransporters in drug development. Annu Rev Pharmacol Toxicol 53:503–529.

Nakajima Y, Goldblum RM, and Midoro-Horiuti T (2012) Fetal exposure to bisphenolA as a risk factor for the development of childhood asthma: an animal model study.Environ Health 11:8.

Nantasanti S, de Bruin A, Rothuizen J, Penning LC, and Schotanus BA (2016)Concise review: organoids are a powerful tool for the study of liver disease andpersonalized treatment design in humans and animals. Stem Cells Transl Med 5:325–330.

Naraharisetti SB, Lin YS, Rieder MJ, Marciante KD, Psaty BM, Thummel KE,and Totah RA (2010) Human liver expression of CYP2C8: gender, age, and geno-type effects. Drug Metab Dispos 38:889–893.

Neumann E, Mehboob H, Ramírez J, Mirkov S, Zhang M, and Liu W (2016a) Age-dependent hepatic UDP-glucuronosyltransferase gene expression and activity inchildren. Front Pharmacol 7:437.

Nie Y-L, He H, Li J-F, Meng X-G, Yan L, Wang P, Wang S-J, Bi H-Z, Zhang L-R,and Kan Q-C (2017) Hepatic expression of transcription factors affecting de-velopmental regulation of UGT1A1 in the Han Chinese population. Eur J ClinPharmacol 73:29–37.

Nigam SK (2015) What do drug transporters really do? Nat Rev Drug Discov 14:29–44.Onishi S, Kawade N, Itoh S, Isobe K, and Sugiyama S (1979) Postnatal developmentof uridine diphosphate glucuronyltransferase activity towards bilirubin and 2-aminophenol in human liver. Biochem J 184:705–707.

Pacifici GM, Franchi M, Colizzi C, Giuliani L, and Rane A (1988) Sulfotransferase inhumans: development and tissue distribution. Pharmacology 36:411–419.

Pacifici GM, Franchi M, Giuliani L, and Rane A (1989) Development of the glucur-onyltransferase and sulphotransferase towards 2-naphthol in human fetus. DevPharmacol Ther 14:108–114.

676 van Groen et al.

Page 81: Ontogeny of Hepatic Transporters and Drug-Metabolizing … · hepatic clearance of the opioid morphine in newborns and young infants (Knibbe et al., 2009). Morphine is actively transported

Pacifici GM, Kubrich M, Giuliani L, de Vries M, and Rane A (1993) Sulphation andglucuronidation of ritodrine in human foetal and adult tissues. Eur J Clin Phar-macol 44:259–264.

Pacifici GM, Mogavero S, Giuliani L, and Rane A (1991a) Conjugation of benzoic acidwith glycine in the human fetal and adult liver and kidney. Dev Pharmacol Ther17:52–62.

Pacifici GM, Romiti P, Giuliani L, and Rane A (1991b) Thiopurine methyltransferasein humans: development and tissue distribution. Dev Pharmacol Ther 17:16–23.

Pacifici GM, Säwe J, Kager L, and Rane A (1982) Morphine glucuronidation in hu-man fetal and adult liver. Eur J Clin Pharmacol 22:553–558.

Parrott N, Davies B, Hoffmann G, Koerner A, Lave T, Prinssen E, Theogaraj E,and Singer T (2011) Development of a physiologically based model for oseltamivirand simulation of pharmacokinetics in neonates and infants. Clin Pharmacokinet50:613–623.

Peng L, Cui JY, Yoo B, Gunewardena SS, Lu H, Klaassen CD, and Zhong XB (2013)RNA-sequencing quantification of hepatic ontogeny of phase-I enzymes in mice.Drug Metab Dispos 41:2175–2186.

Peng L, Yoo B, Gunewardena SS, Lu H, Klaassen CD, and Zhong XB (2012) RNAsequencing reveals dynamic changes of mRNA abundance of cytochromes P450 andtheir alternative transcripts during mouse liver development. Drug Metab Dispos40:1198–1209.

Petzinger E and Geyer J (2006) Drug transporters in pharmacokinetics. NaunynSchmiedebergs Arch Pharmacol 372:465–475.

Petzinger E, Ziegler K, and Frimmer M (1979) Inhibition of 3H-demethylphalloinuptake in isolated rat hepatocytes under various experimental conditions. NaunynSchmiedebergs Arch Pharmacol 307:275–281.

Piekos SC, Chen L, Wang P, Shi J, Yaqoob S, Zhu HJ, Ma X, and Zhong XB(2018) Consequences of phenytoin exposure on hepatic cytochrome P450 ex-pression during postnatal liver maturation in mice. Drug Metab Dispos 46:1241–1250.

Pope CN, Karanth S, Liu J, and Yan B (2005) Comparative carboxylesterase activ-ities in infant and adult liver and their in vitro sensitivity to chlorpyrifos oxon.Regul Toxicol Pharmacol 42:64–69.

Powis G, Jardine I, Van Dyke R, Weinshilboum R, Moore D, Wilke T, Rhodes W,Nelson R, Benson L, and Szumlanski C (1988) Foreign compound metabolismstudies with human liver obtained as surgical waste. Relation to donor charac-teristics and effects of tissue storage. Drug Metab Dispos 16:582–589.

Prasad B, Achour B, Artursson P, Hop CECA, Lai Y, Smith PC, Barber J, WisniewskiJR, Spellman D, Uchida Y, et al. (2019) Toward a consensus on applying quanti-tative liquid chromatography-tandem mass spectrometry proteomics in trans-lational pharmacology research: a white paper. Clin Pharmacol Ther 106:525–543.

Prasad B, Evers R, Gupta A, Hop CE, Salphati L, Shukla S, Ambudkar SV,and Unadkat JD (2014) Interindividual variability in hepatic organic anion-transporting polypeptides and P-glycoprotein (ABCB1) protein expression: quan-tification by liquid chromatography tandem mass spectroscopy and influence ofgenotype, age, and sex. Drug Metab Dispos 42:78–88.

Prasad B, Gaedigk A, Vrana M, Gaedigk R, Leeder JS, Salphati L, Chu X, Xiao G,Hop C, Evers R, et al. (2016) Ontogeny of hepatic drug transporters as quantifiedby LC-MS/MS proteomics. Clin Pharmacol Ther 100:362–370.

Prasad B, Lai Y, Lin Y, and Unadkat JD (2013) Interindividual variability in thehepatic expression of the human breast cancer resistance protein (BCRP/ABCG2):effect of age, sex, and genotype. J Pharm Sci 102:787–793.

Rachmel A and Hazelton GA (1986) The inducibility and ontogeny of rat liver UDP-glucuronyltransferase toward furosemide. Biochem Pharmacol 35:3777–3782.

Ratanasavanh D, Beaune P, Morel F, Flinois JP, Guengerich FP, and Guillouzo A(1991) Intralobular distribution and quantitation of cytochrome P-450 enzymes inhuman liver as a function of age. Hepatology 13:1142–1151.

Richard K, Hume R, Kaptein E, Stanley EL, Visser TJ, and Coughtrie MW (2001)Sulfation of thyroid hormone and dopamine during human development: ontogenyof phenol sulfotransferases and arylsulfatase in liver, lung, and brain. J ClinEndocrinol Metab 86:2734–2742.

Rodrigues D and Rowland A (2019) From endogenous compounds as biomarkers toplasma-derived nanovesicles as liquid biopsy; has the golden age of translationalpharmacokinetics-absorption, distribution, metabolism, excretion-drug-drug in-teraction science finally arrived? Clin Pharmacol Ther 105:1407–1420.

Santa Maria C and Machado A (1988) Changes in some hepatic enzyme activitiesrelated to phase II drug metabolism in male and female rats as a function of age.Mech Ageing Dev 44:115–125.

Schuetz JD, Beach DL, and Guzelian PS (1994) Selective expression of cytochromeP450 CYP3A mRNAs in embryonic and adult human liver. Pharmacogenetics 4:11–20.

Scragg I, Pollard M, Burchell B, and Dutton GJ (1983) The temporary postnataldecline in glucuronidation of certain phenols by rat liver. Biochem J 214:533–537.

Selwyn FP, Cheng SL, Bammler TK, Prasad B, Vrana M, Klaassen C, and Cui JY(2015) Developmental regulation of drug-processing genes in livers of germ-freemice. Toxicol Sci 147:84–103.

Sharma S, Ellis EC, Gramignoli R, Dorko K, Tahan V, Hansel M, Mattison DR,Caritis SN, Hines RN, Venkataramanan R, et al. (2013) Hepatobiliary dispositionof 17-OHPC and taurocholate in fetal human hepatocytes: a comparison with adulthuman hepatocytes. Drug Metab Dispos 41:296–304.

Shephard EA, Palmer CN, Segall HJ, and Phillips IR (1992) Quantification of cyto-chrome P450 reductase gene expression in human tissues. Arch Biochem Biophys294:168–172.

Shi S and Li Y (2014) Interplay of drug-metabolizing enzymes and transporters indrug absorption and disposition. Curr Drug Metab 15:915–941.

Shimada T, Yamazaki H, Mimura M, Inui Y, and Guengerich FP (1994) In-terindividual variations in human liver cytochrome P-450 enzymes involved in theoxidation of drugs, carcinogens and toxic chemicals: studies with liver microsomesof 30 Japanese and 30 Caucasians. J Pharmacol Exp Ther 270:414–423.

Shimada T, Yamazaki H, Mimura M, Wakamiya N, Ueng YF, Guengerich FP,and Inui Y (1996) Characterization of microsomal cytochrome P450 enzymes in-volved in the oxidation of xenobiotic chemicals in human fetal liver and adultlungs. Drug Metab Dispos 24:515–522.

Smits A, Annaert P, and Allegaert K (2013) Drug disposition and clinical practice inneonates: cross talk between developmental physiology and pharmacology. IntJ Pharm 452:8–13.

Song G, Sun X, Hines RN, McCarver DG, Lake BG, Osimitz TG, Creek MR, ClewellHJ, and Yoon M (2017) Determination of human hepatic CYP2C8 andCYP1A2 age-dependent expression to support human health risk assessment forearly ages. Drug Metab Dispos 45:468–475.

Sonnier M and Cresteil T (1998) Delayed ontogenesis of CYP1A2 in the human liver.Eur J Biochem 251:893–898.

St-Pierre MV, Stallmach T, Freimoser Grundschober A, Dufour JF, Serrano MA,Marin JJ, Sugiyama Y, and Meier PJ (2004) Temporal expression profiles of or-ganic anion transport proteins in placenta and fetal liver of the rat. Am J PhysiolRegul Integr Comp Physiol 287:R1505–R1516.

Stevens JC, Hines RN, Gu C, Koukouritaki SB, Manro JR, Tandler PJ, and Zaya MJ(2003) Developmental expression of the major human hepatic CYP3A enzymes.J Pharmacol Exp Ther 307:573–582.

Stevens JC, Marsh SA, Zaya MJ, Regina KJ, Divakaran K, Le M, and Hines RN(2008) Developmental changes in human liver CYP2D6 expression. Drug MetabDispos 36:1587–1593.

Strange RC, Howie AF, Hume R, Matharoo B, Bell J, Hiley C, Jones P, and BeckettGJ (1989) The development expression of alpha-, mu- and pi-class glutathioneS-transferases in human liver. Biochim Biophys Acta 993:186–190.

Strassburg CP, Strassburg A, Kneip S, Barut A, Tukey RH, Rodeck B, and Manns MP(2002) Developmental aspects of human hepatic drug glucuronidation in youngchildren and adults. Gut 50:259–265.

Szabo DT, Richardson VM, Ross DG, Diliberto JJ, Kodavanti PRS, and Birnbaum LS(2009) Effects of perinatal PBDE exposure on hepatic phase I, phase II, phase III,and deiodinase 1 gene expression involved in thyroid hormone metabolism in malerat pups. Toxicol Sci 107:27–39.

Tanaka E, Narisawa C, Nakamura H, Sawa Y, Etoh H, Tadano K, Horie T,Ohkawa H, and Misawa S (1998) Changes in the enzymatic activities of beagleliver during maturation as assessed both in vitro and in vivo. Xenobiotica 28:795–802.

Tang L (2007) Age-associated hepatic drug transporter expression and its implica-tions for pediatric pharmacotherapyflexibility affect DNA topoisomerase I function.Doctor of Philosophy dissertation, University of Tennessee Health Science Center.

Tateishi T, Nakura H, Asoh M, Watanabe M, Tanaka M, Kumai T, Takashima S,Imaoka S, Funae Y, Yabusaki Y, et al. (1997) A comparison of hepatic cytochromeP450 protein expression between infancy and postinfancy. Life Sci 61:2567–2574.

Tee LB, Gilmore KS, Meyer DJ, Ketterer B, Vandenberghe Y, and Yeoh GC (1992)Expression of glutathione S-transferase during rat liver development. Biochem J282:209–218.

Thomson MM, Hines RN, Schuetz EG, and Meibohm B (2016) Expression patterns oforganic anion transporting polypeptides 1B1 and 1B3 protein in human pediatricliver. Drug Metab Dispos 44:999–1004.

Tomer G, Ananthanarayanan M, Weymann A, Balasubramanian N, and Suchy FJ(2003) Differential developmental regulation of rat liver canalicular membranetransporters Bsep and Mrp2. Pediatr Res 53:288–294.

Treluyer JM, Cheron G, Sonnier M, and Cresteil T (1996) Cytochrome P-450 ex-pression in sudden infant death syndrome. Biochem Pharmacol 52:497–504.

Treluyer JM, Gueret G, Cheron G, Sonnier M, and Cresteil T (1997) Developmentalexpression of CYP2C and CYP2C-dependent activities in the human liver: in-vivo/in-vitro correlation and inducibility. Pharmacogenetics 7:441–452.

Treluyer JM, Jacqz-Aigrain E, Alvarez F, and Cresteil T (1991) Expression ofCYP2D6 in developing human liver. Eur J Biochem 202:583–588.

Upreti VV and Wahlstrom JL (2016) Meta-analysis of hepatic cytochrome P450 on-togeny to underwrite the prediction of pediatric pharmacokinetics using physio-logically based pharmacokinetic modeling. J Clin Pharmacol 56:266–283.

van Groen BD, van de Steeg E, Mooij MG, van Lipzig MMH, de Koning BAE, VerdijkRM, Wortelboer HM, Gaedigk R, Bi C, Leeder JS, et al. (2018) Proteomics of humanliver membrane transporters: a focus on fetuses and newborn infants. Eur J PharmSci 124:217–227.

van Kalken CK, Giaccone G, van der Valk P, Kuiper CM, Hadisaputro MM, BosmaSA, Scheper RJ, Meijer CJ, and Pinedo HM (1992) Multidrug resistance gene(P-glycoprotein) expression in the human fetus. Am J Pathol 141:1063–1072.

Van Peer E, De Bock L, Boussery K, Van Bocxlaer J, Casteleyn C, Van Ginneken C,and Van Cruchten S (2015) Age-related differences in CYP3A abundance and ac-tivity in the liver of the göttingen minipig. Basic Clin Pharmacol Toxicol 117:350–357.

Van Peer E, Jacobs F, Snoeys J, Van Houdt J, Pijpers I, Casteleyn C, Van GinnekenC, and Van Cruchten S (2017) In vitro phase I- and phase II-drug metabolism inthe liver of juvenile and adult göttingen minipigs. Pharm Res 34:750–764.

Van Peer E, Verbueken E, Saad M, Casteleyn C, Van Ginneken C, and Van CruchtenS (2014) Ontogeny of CYP3A and P-glycoprotein in the liver and the small intestineof the Göttingen minipig: an immunohistochemical evaluation. Basic Clin Phar-macol Toxicol 114:387–394.

Vieira I, Sonnier M, and Cresteil T (1996) Developmental expression of CYP2E1 inthe human liver. Hypermethylation control of gene expression during the neonatalperiod. Eur J Biochem 238:476–483.

Warrington JS, Greenblatt DJ, and von Moltke LL (2004) Age-related differences inCYP3A expression and activity in the rat liver, intestine, and kidney. J PharmacolExp Ther 309:720–729.

Wegler C, Gaugaz FZ, Andersson TB, Wi�sniewski JR, Busch D, Gröer C, Oswald S,Norén A, Weiss F, Hammer HS, et al. (2017) Variability in mass spectrometry-based quantification of clinically relevant drug transporters and drug metabolizingenzymes. Mol Pharm 14:3142–3151.

Ontogeny of Hepatic Transport and Drug Metabolism 677

Page 82: Ontogeny of Hepatic Transporters and Drug-Metabolizing … · hepatic clearance of the opioid morphine in newborns and young infants (Knibbe et al., 2009). Morphine is actively transported

Weiss CF, Glazko AJ, and Weston JK (1960) Chloramphenicol in the newborn infant.A physiologic explanation of its toxicity when given in excessive doses. N EnglJ Med 262:787–794.

Weiss MD, Donnelly WH, Rossignol C, Varoqui H, Erickson JD, and Anderson KJ(2005) Ontogeny of the neutral amino acid transporter SNAT1 in the developingrat. J Mol Histol 36:301–309.

Wilkinson MD, Dumontier M, Aalbersberg IJ, Appleton G, Axton M, Baak A,Blomberg N, Boiten JW, da Silva Santos LB, Bourne PE, et al. (2016) The FAIRGuiding Principles for scientific data management and stewardship [publishedcorrection appears in Sci Data (2019) 6:6]. Sci Data 3:160018.

Wishart GJ (1978) Functional heterogeneity of UDP-glucuronosyltransferase as in-dicated by its differential development and inducibility by glucocorticoids. Dem-onstration of two groups within the enzyme’s activity towards twelve substrates.Biochem J 174:485–489.

Wright AF, Rudan I, Hastie ND, and Campbell H (2010) A ‘complexity’ of uratetransporters. Kidney Int 78:446–452.

Wright MC, Edwards RJ, Pimenta M, Ribeiro V, Ratra GS, Lechner MC, and PaineAJ (1997) Developmental changes in the constitutive and inducible expression ofcytochrome P450 3A2. Biochem Pharmacol 54:841–846.

Wrighton SA, Brian WR, Sari MA, Iwasaki M, Guengerich FP, Raucy JL, Molowa DT,and Vandenbranden M (1990) Studies on the expression and metabolic capabilitiesof human liver cytochrome P450IIIA5 (HLp3). Mol Pharmacol 38:207–213.

Xu M, Bhatt DK, Yeung CK, Claw KG, Chaudhry AS, Gaedigk A, Pearce RE,Broeckel U, Gaedigk R, Nickerson DA, et al. (2017) Genetic and nongenetic factorsassociated with protein abundance of flavin-containing monooxygenase 3 in humanliver. J Pharmacol Exp Ther 363:265–274.

Xu SF, Hu AL, Xie L, Liu JJ, Wu Q, and Liu J (2019) Age-associated changes ofcytochrome P450 and related phase-2 gene/proteins in livers of rats. PeerJ 7:e7429.

Yabusaki R, Iwano H, Tsushima S, Koike N, Ohtani N, Tanemura K, Inoue H,and Yokota H (2015) Weak activity of UDP-glucuronosyltransferase towardBisphenol analogs in mouse perinatal development. J Vet Med Sci 77:1479–1484.

Yamazaki H (2014) Fifty Years of Cytochrome P450 Research. Springer Japan,Chiyoda-ku, Japan.

Yang HY, Lee QP, Rettie AE, and Juchau MR (1994) Functional cytochrome P4503Aisoforms in human embryonic tissues: expression during organogenesis. MolPharmacol 46:922–928.

Yang HY, Namkung MJ, and Juchau MR (1995) Expression of functional cytochromeP4501A1 in human embryonic hepatic tissues during organogenesis. BiochemPharmacol 49:717–726.

Yanni SB, Smith PB, Benjamin DK Jr, Augustijns PF, Thakker DR, and AnnaertPP (2011) Higher clearance of micafungin in neonates compared with adults:role of age-dependent micafungin serum binding. Biopharm Drug Dispos 32:222–232.

Zaya MJ, Hines RN, and Stevens JC (2006) Epirubicin glucuronidation and UGT2B7developmental expression. Drug Metab Dispos 34:2097–2101.

Zhang H, Basit A, Wolford C, Chen KF, Gaedigk A, Lin YS, Leeder JS, and Prasad B(2020) Normalized testosterone glucuronide (TG/AG) as a potential urinary bio-marker for highly variable UGT2B17 in children 7–18 years. Clin Pharmacol Ther107:1149–1158.

Zhou W, Johnson TN, Bui KH, Cheung SYA, Li J, Xu H, Al-Huniti N, and Zhou D(2018) Predictive performance of physiologically based pharmacokinetic (PBPK)modeling of drugs extensively metabolized by major cytochrome P450s in children.Clin Pharmacol Ther 104:188–200.

Zhu HJ, Appel DI, Jiang Y, and Markowitz JS (2009) Age- and sex-related expressionand activity of carboxylesterase 1 and 2 in mouse and human liver. Drug MetabDispos 37:1819–1825.

Zhu QN, Hou WY, Xu SF, Lu YF, and Liu J (2017) Ontogeny, aging, and gender-related changes in hepatic multidrug resistant protein genes in rats. Life Sci 170:108–114.

Zinchuk VS, Okada T, Akimaru K, and Seguchi H (2002) Asynchronous expressionand colocalization of Bsep and Mrp2 during development of rat liver. Am J PhysiolGastrointest Liver Physiol 282:G540–G548.

678 van Groen et al.