op-amp basics - demic - feec - unicap |elnatan/ee641/opampbasi… ·  · 2012-08-08op-amp basics...

57
Op-Amp Basics Peggy Alavi Application Engineer September 3, 2003

Upload: phamthien

Post on 02-May-2018

228 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Op-Amp Basics - DEMIC - FEEC - UNICAP |elnatan/ee641/Opampbasi… ·  · 2012-08-08Op-Amp Basics – Part 3 • Op-Amp Basics • Op-Amp Parameters • Op-Amp Internal Circuit

Op-Amp Basics

Peggy AlaviApplication Engineer

September 3, 2003

Page 2: Op-Amp Basics - DEMIC - FEEC - UNICAP |elnatan/ee641/Opampbasi… ·  · 2012-08-08Op-Amp Basics – Part 3 • Op-Amp Basics • Op-Amp Parameters • Op-Amp Internal Circuit

© 2003 National Semiconductor Corporation

Op-Amp Basics – Part 1

• Op-Amp Basics– Why op-amps– Op-amp block diagram– Input modes of Op-Amps– Loop Configurations– Negative Feedback– Gain Bandwidth Product

• Op-Amp Parameters• Op-Amp Internal Circuit

Vcc

-VE E

O U T P U TIN P U T S

+

-

Page 3: Op-Amp Basics - DEMIC - FEEC - UNICAP |elnatan/ee641/Opampbasi… ·  · 2012-08-08Op-Amp Basics – Part 3 • Op-Amp Basics • Op-Amp Parameters • Op-Amp Internal Circuit

© 2003 National Semiconductor Corporation

Op-Amp Basics – Part 2

• Op-Amp Basics• Op-Amp Parameters

– Input Offset Voltage– Input Bias Current– Input Offset Current– Output Impedance– Slew Rate– Noise

– Common ModeRejection

– CMRR– CMVR– PSRR– Gain and Phase Margin– Abs Max Rating– Operating Ratings

• Op-Amp Internal Circuit

VCM

3.1mV/ V(50dB)

VOS

Page 4: Op-Amp Basics - DEMIC - FEEC - UNICAP |elnatan/ee641/Opampbasi… ·  · 2012-08-08Op-Amp Basics – Part 3 • Op-Amp Basics • Op-Amp Parameters • Op-Amp Internal Circuit

© 2003 National Semiconductor Corporation

Op-Amp Basics – Part 3

• Op-Amp Basics• Op-Amp Parameters• Op-Amp Internal Circuit

– Biasing circuit– Differential Input Stage– Voltage Gain Stage– Output Stage

Q8

Q10

Q9

R4R1 R3 R2

Q1

Q6Q5

Q2

Q7

Q3 Q4

IN + IN -

-V EE

V CC

Page 5: Op-Amp Basics - DEMIC - FEEC - UNICAP |elnatan/ee641/Opampbasi… ·  · 2012-08-08Op-Amp Basics – Part 3 • Op-Amp Basics • Op-Amp Parameters • Op-Amp Internal Circuit

© 2003 National Semiconductor Corporation

What is an Op-Amp?

• Inexpensive, efficient, versatile, and readily availablebuilding blocks for many applications

• Amplifier which has– Very large open loop gain– Differential input stage– Uses feedback to control the relationship

between the input and output

Page 6: Op-Amp Basics - DEMIC - FEEC - UNICAP |elnatan/ee641/Opampbasi… ·  · 2012-08-08Op-Amp Basics – Part 3 • Op-Amp Basics • Op-Amp Parameters • Op-Amp Internal Circuit

© 2003 National Semiconductor Corporation

What does an Op-Amp do?

• Performs many different “operations”– Addition/Subtraction– Integration/Differentiation– Buffering– Amplification

• DC and AC signals

+− ∑

×⌠⌡

dxdt

Page 7: Op-Amp Basics - DEMIC - FEEC - UNICAP |elnatan/ee641/Opampbasi… ·  · 2012-08-08Op-Amp Basics – Part 3 • Op-Amp Basics • Op-Amp Parameters • Op-Amp Internal Circuit

© 2003 National Semiconductor Corporation

Where is an Op-Amp used?

• Many applications including– Comparators– Oscillators– Filters– Sensors– Sample and Hold– Instrumentation Amplifier

Page 8: Op-Amp Basics - DEMIC - FEEC - UNICAP |elnatan/ee641/Opampbasi… ·  · 2012-08-08Op-Amp Basics – Part 3 • Op-Amp Basics • Op-Amp Parameters • Op-Amp Internal Circuit

© 2003 National Semiconductor Corporation

Operational Amplifier

• Op-Amps must have:– Very high input impedance– Very high open loop gain– Very low output impedance

Vcc

-VEE

OUTPUTINPUTS

+

-

Page 9: Op-Amp Basics - DEMIC - FEEC - UNICAP |elnatan/ee641/Opampbasi… ·  · 2012-08-08Op-Amp Basics – Part 3 • Op-Amp Basics • Op-Amp Parameters • Op-Amp Internal Circuit

© 2003 National Semiconductor Corporation

-VEE

OUTPUTINPUTS Voltage

AmplifierDifferentialAmplifier

OutputAmplifier

VCC

-

+

Op-Amp Block Diagram

Page 10: Op-Amp Basics - DEMIC - FEEC - UNICAP |elnatan/ee641/Opampbasi… ·  · 2012-08-08Op-Amp Basics – Part 3 • Op-Amp Basics • Op-Amp Parameters • Op-Amp Internal Circuit

© 2003 National Semiconductor Corporation

Differential Amplifier Stage

• Provides differential input for the op-amp• Provides dc gain• Has very high input impedance

– Draws negligible input current• Enables user to utilize ideal Op-Amp equations

for circuit analysis

-V EE

OUTPUTINPUTS VoltageAmplifier

DifferentialAmplifier

OutputAmplifier

V CC

-

+

Page 11: Op-Amp Basics - DEMIC - FEEC - UNICAP |elnatan/ee641/Opampbasi… ·  · 2012-08-08Op-Amp Basics – Part 3 • Op-Amp Basics • Op-Amp Parameters • Op-Amp Internal Circuit

© 2003 National Semiconductor Corporation

High Gain Voltage Amplifier

• Provides the “gain” of the amplifier• Gains up the differential signal from input and

conveys it to the output stage

-V EE

OUTPUTINPUTS VoltageAmplifier

DifferentialAmplifier

OutputAmplifier

V CC

-

+

Page 12: Op-Amp Basics - DEMIC - FEEC - UNICAP |elnatan/ee641/Opampbasi… ·  · 2012-08-08Op-Amp Basics – Part 3 • Op-Amp Basics • Op-Amp Parameters • Op-Amp Internal Circuit

© 2003 National Semiconductor Corporation

Low Impedance Output Stage

• Delivers current to the load• Very low impedance output stage

– To minimize loading the output of the op-amp• May have short circuit protection

-V EE

OUTPUTINPUTS VoltageAmplifier

DifferentialAmplifier

OutputAmplifier

V CC

-

+

Page 13: Op-Amp Basics - DEMIC - FEEC - UNICAP |elnatan/ee641/Opampbasi… ·  · 2012-08-08Op-Amp Basics – Part 3 • Op-Amp Basics • Op-Amp Parameters • Op-Amp Internal Circuit

© 2003 National Semiconductor Corporation

Inputs of Op-Amp

• Two Input terminals– Positive Input (Non-Inverting)– Negative Input (Inverting)

• Can be used in three different “input” modes– Differential Input Mode– Inverting Mode– Non-Inverting Mode

V cc

-VEE

OUTPUTINPUTS

+

-

Page 14: Op-Amp Basics - DEMIC - FEEC - UNICAP |elnatan/ee641/Opampbasi… ·  · 2012-08-08Op-Amp Basics – Part 3 • Op-Amp Basics • Op-Amp Parameters • Op-Amp Internal Circuit

© 2003 National Semiconductor Corporation

Differential Input Mode

• Both input terminals are used• Input signals are 180° out of phase• Output is in phase with non-inverting input

+

-

VCC

-VEE

Page 15: Op-Amp Basics - DEMIC - FEEC - UNICAP |elnatan/ee641/Opampbasi… ·  · 2012-08-08Op-Amp Basics – Part 3 • Op-Amp Basics • Op-Amp Parameters • Op-Amp Internal Circuit

© 2003 National Semiconductor Corporation

Inverting Mode

• Non-Inverting input is grounded (Connected to mid-supply)

• Signal is applied to the inverting input• Output is 180° out of phase with input

+

-

VCC

-VEE

Page 16: Op-Amp Basics - DEMIC - FEEC - UNICAP |elnatan/ee641/Opampbasi… ·  · 2012-08-08Op-Amp Basics – Part 3 • Op-Amp Basics • Op-Amp Parameters • Op-Amp Internal Circuit

© 2003 National Semiconductor Corporation

Non-Inverting Mode

• Inverting Input is grounded• Signal is applied to the non-inverting input• Output is in phase with the input

+

-

VCC

-VEE

Page 17: Op-Amp Basics - DEMIC - FEEC - UNICAP |elnatan/ee641/Opampbasi… ·  · 2012-08-08Op-Amp Basics – Part 3 • Op-Amp Basics • Op-Amp Parameters • Op-Amp Internal Circuit

© 2003 National Semiconductor Corporation

Open Loop VS Closed Loop

• Open Loop– Very high gain– Noise and other “unwanted” signals are amplified

by the same gain factor• Creates poor stability

– Used in comparators and oscillators• Closed Loop

– Reduces the gain of an amplifier– Adds stability to the amplifier– Most amplifiers are used in this configuration

• Op-Amps are normally not used in open loop mode

Page 18: Op-Amp Basics - DEMIC - FEEC - UNICAP |elnatan/ee641/Opampbasi… ·  · 2012-08-08Op-Amp Basics – Part 3 • Op-Amp Basics • Op-Amp Parameters • Op-Amp Internal Circuit

© 2003 National Semiconductor Corporation

Closed Loop

• Output is applied “back” into the inverting input• Op-Amps use negative feedback

– The “fed back” signal always opposes the effectsof the input signal

– Both inputs will be kept at the same voltage• Is used in both inverting and non-inverting

configurations

feedback

VOUTVIN Open-loopgain+

_

Page 19: Op-Amp Basics - DEMIC - FEEC - UNICAP |elnatan/ee641/Opampbasi… ·  · 2012-08-08Op-Amp Basics – Part 3 • Op-Amp Basics • Op-Amp Parameters • Op-Amp Internal Circuit

© 2003 National Semiconductor Corporation

Why Negative Feedback

• It helps overcome distortion and non-linearity• The relationship between input and output signal is

dependent on and controlled by external feedbacknetwork

• Allows user to “tailor” frequency response to thedesired values

• It makes circuit properties predictable and lessdependent on elements such as temperature orinternal properties of the device

Page 20: Op-Amp Basics - DEMIC - FEEC - UNICAP |elnatan/ee641/Opampbasi… ·  · 2012-08-08Op-Amp Basics – Part 3 • Op-Amp Basics • Op-Amp Parameters • Op-Amp Internal Circuit

© 2003 National Semiconductor Corporation

Inverting Closed Loop

• RF is used to feedback “part” of the output to theinverting input

• Negative input is at virtual ground• Characteristics of this circuit almost entirely

determined by values of RF and RG

+

-

V cc

-V EE

RF

RG

Virtualground

Ifeedback

IinVin

Vout

Page 21: Op-Amp Basics - DEMIC - FEEC - UNICAP |elnatan/ee641/Opampbasi… ·  · 2012-08-08Op-Amp Basics – Part 3 • Op-Amp Basics • Op-Amp Parameters • Op-Amp Internal Circuit

© 2003 National Semiconductor Corporation

Inverting Closed Loop

IIN =VIN

RG

Ifeedback =-Vout

RF

Ifeedback = Iin

=VIN

RG

VOUT -RF

+

-

V cc

-V E E

R F

R G

V irtu a l

g ro u n d

Ifeedback

IinV in

V out

•The two currents mustbe equal since input biascurrent is zero

Page 22: Op-Amp Basics - DEMIC - FEEC - UNICAP |elnatan/ee641/Opampbasi… ·  · 2012-08-08Op-Amp Basics – Part 3 • Op-Amp Basics • Op-Amp Parameters • Op-Amp Internal Circuit

© 2003 National Semiconductor Corporation

Example: Inverting Amplifier

-VEE

V out900mVpp

R F= 9K

+

-

Ifeedback

0 .1mA

V in =100mVpp

RG= 1K

Vcc

V = 0

Iin0 .1mA

Page 23: Op-Amp Basics - DEMIC - FEEC - UNICAP |elnatan/ee641/Opampbasi… ·  · 2012-08-08Op-Amp Basics – Part 3 • Op-Amp Basics • Op-Amp Parameters • Op-Amp Internal Circuit

© 2003 National Semiconductor Corporation

+

-

Vcc

-VE E

RF

RG

Ifeedback

Iin

Vin

Vout

Non-Inverting Closed Loop

• RF is used to feedback “part” of the output to theinverting input

• Input, output, and feedback signal in phase• The feedback is negative

Page 24: Op-Amp Basics - DEMIC - FEEC - UNICAP |elnatan/ee641/Opampbasi… ·  · 2012-08-08Op-Amp Basics – Part 3 • Op-Amp Basics • Op-Amp Parameters • Op-Amp Internal Circuit

© 2003 National Semiconductor Corporation

Non-Inverting Closed Loop

+

-

V cc

-VEE

R F

RG

Ifeedback

Iin

V in

Vout

Ifeedback = Iin

Ifeedback =VOUT - VIN

RF

=VIN

VOUT

RG

RF1+

VOUT - VIN

RF

VIN

RG=

RF and RG form a voltage divider

Page 25: Op-Amp Basics - DEMIC - FEEC - UNICAP |elnatan/ee641/Opampbasi… ·  · 2012-08-08Op-Amp Basics – Part 3 • Op-Amp Basics • Op-Amp Parameters • Op-Amp Internal Circuit

© 2003 National Semiconductor Corporation

Example: Non-Inverting Amp

+

-

Vcc

-VEE

Vin =100mVpp

RG = 1K

RF= 9K

Vout1Vpp

Iin0 .1mA

Ifeedback 0 .1mA

Page 26: Op-Amp Basics - DEMIC - FEEC - UNICAP |elnatan/ee641/Opampbasi… ·  · 2012-08-08Op-Amp Basics – Part 3 • Op-Amp Basics • Op-Amp Parameters • Op-Amp Internal Circuit

© 2003 National Semiconductor Corporation

Bandwidth Limitation

• Frequency bandwidthis measured at thepoint where gain fallsto 0.707 of maximumsignal– The -3dB

bandwidth• Open loop

configurations areextremely bandwidthlimited

• Closed loopconfigurationsignificantlyincreases an op-amp’s bandwidth

Open Loop Gain

Closed LoopGains

Unity Gain frequency

-3dB points

Gain

Frequency0dB

Page 27: Op-Amp Basics - DEMIC - FEEC - UNICAP |elnatan/ee641/Opampbasi… ·  · 2012-08-08Op-Amp Basics – Part 3 • Op-Amp Basics • Op-Amp Parameters • Op-Amp Internal Circuit

© 2003 National Semiconductor Corporation

Gain Bandwidth Product

• Gain X Bandwidth = Unity Gain Frequency• Known as GBWP• Used to determine an op-amp’s bandwidth in an

application– GBWP is specified in datasheet– Gain is set by user

Page 28: Op-Amp Basics - DEMIC - FEEC - UNICAP |elnatan/ee641/Opampbasi… ·  · 2012-08-08Op-Amp Basics – Part 3 • Op-Amp Basics • Op-Amp Parameters • Op-Amp Internal Circuit

Op-Amp Parameters

Page 29: Op-Amp Basics - DEMIC - FEEC - UNICAP |elnatan/ee641/Opampbasi… ·  · 2012-08-08Op-Amp Basics – Part 3 • Op-Amp Basics • Op-Amp Parameters • Op-Amp Internal Circuit

© 2003 National Semiconductor Corporation

Input Offset Voltage

• Ideally, output at mid-supply when the two inputsare equal

• Realistically, a voltage will appear on output whenboth input voltages are the same

• Minimal voltage difference “offset” on inputs will setthe output to mid-supply again

• This is Input Offset Voltage

VOS

Page 30: Op-Amp Basics - DEMIC - FEEC - UNICAP |elnatan/ee641/Opampbasi… ·  · 2012-08-08Op-Amp Basics – Part 3 • Op-Amp Basics • Op-Amp Parameters • Op-Amp Internal Circuit

© 2003 National Semiconductor Corporation

Input Bias Current

• Ideally should be zero• Positive input bias current:

– Small current seen on the non-inverting input ofan amplifier

• Negative input bias:– Small current seen on the inverting input of an

amplifier• Input Bias Current:

– Average of currents on inputs of an amplifier

IBIAS

Page 31: Op-Amp Basics - DEMIC - FEEC - UNICAP |elnatan/ee641/Opampbasi… ·  · 2012-08-08Op-Amp Basics – Part 3 • Op-Amp Basics • Op-Amp Parameters • Op-Amp Internal Circuit

© 2003 National Semiconductor Corporation

Input Offset Current

• Ideally input currents should be equal to obtain zerooutput voltage

• Realistically, to set output to zero, one input wouldrequire more current than the other

• Input offset current: Difference between the twoinput currents to achieve zero output

IOS

Page 32: Op-Amp Basics - DEMIC - FEEC - UNICAP |elnatan/ee641/Opampbasi… ·  · 2012-08-08Op-Amp Basics – Part 3 • Op-Amp Basics • Op-Amp Parameters • Op-Amp Internal Circuit

© 2003 National Semiconductor Corporation

Output Impedance

• Ideally should be zero• It is usually “assumed” to be zero

– This way op-amp behaves as a voltage source– Op-amp capable of driving a wide range of loads

ZOUT

Page 33: Op-Amp Basics - DEMIC - FEEC - UNICAP |elnatan/ee641/Opampbasi… ·  · 2012-08-08Op-Amp Basics – Part 3 • Op-Amp Basics • Op-Amp Parameters • Op-Amp Internal Circuit

© 2003 National Semiconductor Corporation

Slew Rate

• Maximum rate of change of the output voltage perunit time

• Expressed in

• Basically says how fast the output can “follow” theinput signal

= tVOUTSR

µsV

V(v)

T(µs)VOUT

VIN

Page 34: Op-Amp Basics - DEMIC - FEEC - UNICAP |elnatan/ee641/Opampbasi… ·  · 2012-08-08Op-Amp Basics – Part 3 • Op-Amp Basics • Op-Amp Parameters • Op-Amp Internal Circuit

© 2003 National Semiconductor Corporation

RG

RF1+

Internal Noise

• Caused by internal components, bias current, anddrift

• Noise or “unwanted” signal is amplified along withthe “wanted” signal

– Noise gain =

• Can be minimized by keeping feedback and inputseries resistor values as low as possible– Bypass capacitor on feedback resistor reduces

noise at high frequencies

Page 35: Op-Amp Basics - DEMIC - FEEC - UNICAP |elnatan/ee641/Opampbasi… ·  · 2012-08-08Op-Amp Basics – Part 3 • Op-Amp Basics • Op-Amp Parameters • Op-Amp Internal Circuit

© 2003 National Semiconductor Corporation

External Noise

• Caused by electrical devices and components– Power Supply Noise– Resistor Noise

• Proper circuit construction technique will minimizethis noise– Adequate shielding– Reduce Resistor values when possible– Use 1% or higher accuracy resistors

Page 36: Op-Amp Basics - DEMIC - FEEC - UNICAP |elnatan/ee641/Opampbasi… ·  · 2012-08-08Op-Amp Basics – Part 3 • Op-Amp Basics • Op-Amp Parameters • Op-Amp Internal Circuit

© 2003 National Semiconductor Corporation

Common Mode Rejection

• Feature of differential amplifiers• Common Mode signal is when both inputs have the

same voltage “common voltage”• Output should be zero in this case, op-amp should

“reject” this signal

-VEE

Vd

Vcc

+

-

VOUT = Ad X Vd-VEE

+

-

V cc

V CM VOUT = ACM X VCM

Page 37: Op-Amp Basics - DEMIC - FEEC - UNICAP |elnatan/ee641/Opampbasi… ·  · 2012-08-08Op-Amp Basics – Part 3 • Op-Amp Basics • Op-Amp Parameters • Op-Amp Internal Circuit

© 2003 National Semiconductor Corporation

Common Mode Rejection Ratio

• CMRR• Ratio of differential gain to common mode gain when

there is no differential voltage on the input• Usually expressed in dB• Decreases with frequency

– Common mode gain increases with frequency

Page 38: Op-Amp Basics - DEMIC - FEEC - UNICAP |elnatan/ee641/Opampbasi… ·  · 2012-08-08Op-Amp Basics – Part 3 • Op-Amp Basics • Op-Amp Parameters • Op-Amp Internal Circuit

© 2003 National Semiconductor Corporation

Common Mode Rejection Ratio

• Ability of an op-amp to reject common mode signalwhile amplifying the differential signal

Ad

ACMCMRR = 20 LOG ∆VCM

∆VOS = 20 LOG

Ad : Differential GainACM : Common Mode GainVOS : Offset VoltageVCM : Common Mode Voltage

Page 39: Op-Amp Basics - DEMIC - FEEC - UNICAP |elnatan/ee641/Opampbasi… ·  · 2012-08-08Op-Amp Basics – Part 3 • Op-Amp Basics • Op-Amp Parameters • Op-Amp Internal Circuit

© 2003 National Semiconductor Corporation

Common Mode Voltage Range

• Range of input voltage,VCM, for which thedifferential pair behavesas a linear amplifier– Upper limit determined

by one of the two inputtransistors saturating(DC value of collectors)

– Lower limit isdetermined the bytransistor supplyingbias current

VOS

V CM

3.1mV/ V(50dB)

Page 40: Op-Amp Basics - DEMIC - FEEC - UNICAP |elnatan/ee641/Opampbasi… ·  · 2012-08-08Op-Amp Basics – Part 3 • Op-Amp Basics • Op-Amp Parameters • Op-Amp Internal Circuit

© 2003 National Semiconductor Corporation

Power Supply Rejection Ratio

• Ratio of differential gain to small signal gain of thepower supply– Ratio of change in power supply voltage to the

change in offset error

-VEE

+

-Vcc

VS VOUT = A Vs X V S

VS

Page 41: Op-Amp Basics - DEMIC - FEEC - UNICAP |elnatan/ee641/Opampbasi… ·  · 2012-08-08Op-Amp Basics – Part 3 • Op-Amp Basics • Op-Amp Parameters • Op-Amp Internal Circuit

© 2003 National Semiconductor Corporation

Gain and Phase Margin

• Gain Margin:Gain of the amplifier at the point where there is

a 180° phase shift– If gain more than unity, amplifier unstable

• In dB this means negative gain stable• Phase Margin:

Difference between phase value at unity gain(0dB) and 180°– If at 0 dB, phase lag is greater than 180°, amplifier

is unstable

Page 42: Op-Amp Basics - DEMIC - FEEC - UNICAP |elnatan/ee641/Opampbasi… ·  · 2012-08-08Op-Amp Basics – Part 3 • Op-Amp Basics • Op-Amp Parameters • Op-Amp Internal Circuit

© 2003 National Semiconductor Corporation

Gain and Phase Margin

G a in

M a rg in

P h a se M a rg in

-90

-180

|A v|

0dB

0

f(H z)

f(H z)

Page 43: Op-Amp Basics - DEMIC - FEEC - UNICAP |elnatan/ee641/Opampbasi… ·  · 2012-08-08Op-Amp Basics – Part 3 • Op-Amp Basics • Op-Amp Parameters • Op-Amp Internal Circuit

© 2003 National Semiconductor Corporation

Absolute Maximum Rating

• “Maximum” means the op-amp can safely toleratethe maximum ratings as given in the datasheetwithout damaging its internal circuitry

• Operation of op-amp beyond the maximum ratinglimits will permanently damage the device

Page 44: Op-Amp Basics - DEMIC - FEEC - UNICAP |elnatan/ee641/Opampbasi… ·  · 2012-08-08Op-Amp Basics – Part 3 • Op-Amp Basics • Op-Amp Parameters • Op-Amp Internal Circuit

© 2003 National Semiconductor Corporation

Operating Ratings

• Conditions under which an amplifier is functional;however specific performance guarantees do notapply to these conditions– i.e. Table guarantee ±2.5V

Operating Rating Vs = ±5V

Page 45: Op-Amp Basics - DEMIC - FEEC - UNICAP |elnatan/ee641/Opampbasi… ·  · 2012-08-08Op-Amp Basics – Part 3 • Op-Amp Basics • Op-Amp Parameters • Op-Amp Internal Circuit

Op-Amp Internal Circuit

Page 46: Op-Amp Basics - DEMIC - FEEC - UNICAP |elnatan/ee641/Opampbasi… ·  · 2012-08-08Op-Amp Basics – Part 3 • Op-Amp Basics • Op-Amp Parameters • Op-Amp Internal Circuit

© 2003 National Semiconductor Corporation

Op-Amp Internal Circuit

VOUT

Non-InvertingInput

Inverting Input

-VEE

VCC

Q11

Q8Q12

Q10 Q22

Q9

R4

R5

CC

R1R3 R2

Q1

Q6Q5

Q2

Q7

Q3 Q4

Q16

Q17

R11R10

Q15Q18R6

Q23

Q20

R9

R8

Q14

R12

Q24

Q21

Q13a

Q13b

Q19

Page 47: Op-Amp Basics - DEMIC - FEEC - UNICAP |elnatan/ee641/Opampbasi… ·  · 2012-08-08Op-Amp Basics – Part 3 • Op-Amp Basics • Op-Amp Parameters • Op-Amp Internal Circuit

© 2003 National Semiconductor Corporation

Internal Circuit ofClassic Op-Amp LM741

Q11

Q8 Q12

Q10 Q22

Q9

R4

R5

CC

R1R3 R2

Q1

Q6Q5

Q2

Q7

Q3 Q4

Q16

Q17

R11R10

Q15Q18R6

Q23

Q20

R 9

R 8

Q14

R12

Q24

IN + IN -

OUT

-VEE

VCC

Q21

Q13a

Q13b

Q19

Page 48: Op-Amp Basics - DEMIC - FEEC - UNICAP |elnatan/ee641/Opampbasi… ·  · 2012-08-08Op-Amp Basics – Part 3 • Op-Amp Basics • Op-Amp Parameters • Op-Amp Internal Circuit

© 2003 National Semiconductor Corporation

OUT

Q11

Q8Q12

Q10 Q22

Q9

R4

R5

C C

R1 R3 R2

Q1

Q6Q5

Q2

Q7

Q3 Q4

Q16

Q17

R11R10

Q15Q18R 6

Q23

Q20

R 9

R 8

Q14

R12

Q24

IN + IN -

-VEE

V CC

Q21

Q13a

Q13b

Q19

Biasing Circuit

• This branch of provides the current• Q12, Q11, and R5• Current delivered to input stage

through Q11

Page 49: Op-Amp Basics - DEMIC - FEEC - UNICAP |elnatan/ee641/Opampbasi… ·  · 2012-08-08Op-Amp Basics – Part 3 • Op-Amp Basics • Op-Amp Parameters • Op-Amp Internal Circuit

© 2003 National Semiconductor Corporation

OUT

Q11

Q8Q12

Q10 Q22

Q9

R4

R5

CC

R1R3 R2

Q1

Q6Q5

Q2

Q7

Q3 Q4

Q16

Q17

R11R10

Q15Q18R6

Q23

Q20

R9

R8

Q14

R12

Q24

IN + IN -

-VEE

VCC

Q21

Q13a

Q13b

Q19

Op-Amp Internal CircuitDifferential Input Stage - 1

• Q10 mirrors Q11 current anddelivers it to Q3 and Q4 base

• Q3 and Q4 in series with Q1and Q2 form the differentialinput

• Q1 and Q2 connected asemitter followers– High input impedance

• Q3 and Q4 provide dc levelshifting– Also protect Q1 and Q2

form emitter-base junctionbreak down

Page 50: Op-Amp Basics - DEMIC - FEEC - UNICAP |elnatan/ee641/Opampbasi… ·  · 2012-08-08Op-Amp Basics – Part 3 • Op-Amp Basics • Op-Amp Parameters • Op-Amp Internal Circuit

© 2003 National Semiconductor Corporation

OUT

Q11

Q8Q12

Q10 Q22

Q9

R4

R5

CC

R1R3 R2

Q1

Q6Q5

Q2

Q7

Q3 Q4

Q16

Q17

R11R10

Q15Q18R6

Q23

Q20

R9

R8

Q14

R12

Q24

IN + IN -

-VEE

VCC

Q21

Q13a

Q13b

Q19

Op-Amp Internal CircuitDifferential Input Stage - 2

• Q5, Q6, Q7, R1,R2 ,and R3 loadcircuit of input stage

• High resistance load– Converts differential signal to

single ended– Provides gain– Single ended output is taken

at Q6 collector

Page 51: Op-Amp Basics - DEMIC - FEEC - UNICAP |elnatan/ee641/Opampbasi… ·  · 2012-08-08Op-Amp Basics – Part 3 • Op-Amp Basics • Op-Amp Parameters • Op-Amp Internal Circuit

© 2003 National Semiconductor Corporation

OUT

Q11

Q8Q12

Q10 Q22

Q9

R4

R5

CC

R1R3 R2

Q1

Q6Q5

Q2

Q7

Q3 Q4

Q16

Q17

R11R10

Q15Q18R6

Q23

Q20

R9

R8

Q14

R12

Q24

IN + IN -

-VEE

VCC

Q21

Q13a

Q13b

Q19

Op-Amp Internal CircuitVoltage Gain Stage - 1

• Q16 emitter follower– Gives 2nd stage high

input resistance– Minimizes loading of

input stage– Prevents gain loss

• Q17 common emitteramplifier– Load : high output

resistance of pnp (Q13b)|| with input resistanceof Q23

• Output of 2nd stage atcollector of Q17

Page 52: Op-Amp Basics - DEMIC - FEEC - UNICAP |elnatan/ee641/Opampbasi… ·  · 2012-08-08Op-Amp Basics – Part 3 • Op-Amp Basics • Op-Amp Parameters • Op-Amp Internal Circuit

© 2003 National Semiconductor Corporation

OUT

Q11

Q8Q12

Q10 Q22

Q9

R4

R5

CC

R1R3 R2

Q1

Q6Q5

Q2

Q7

Q3 Q4

Q16

Q17

R11R10

Q15Q18R6

Q23

Q20

R9

R8

Q14

R12

Q24

IN + IN -

-VEE

VCC

Q21

Q13a

Q13b

Q19

Op-Amp Internal CircuitVoltage Gain Stage - 2

• Active load: use oftransistor current source asa load resistance– high gain without high

load resistance• Saves chip area• No need for high

supply voltage• CC Miller compensation

capacitor– Frequency compensation

Page 53: Op-Amp Basics - DEMIC - FEEC - UNICAP |elnatan/ee641/Opampbasi… ·  · 2012-08-08Op-Amp Basics – Part 3 • Op-Amp Basics • Op-Amp Parameters • Op-Amp Internal Circuit

© 2003 National Semiconductor Corporation

-VE E

O U T

Q11

Q8

Q12

Q10 Q

22

Q9

R4

R5

CC

R1

R3

R2

Q1

Q6

Q5

Q2

Q7

Q3

Q4

Q16

Q17

R11

R10

Q15Q

18R6

Q23

Q20

R9

R8

Q14

R12

Q24

IN + IN -

VC C

Q21

Q13a

Q13b

Q19

Op-Amp Internal CircuitOutput Stage - 1

• Q14 (Source transistor) andQ20 (Sink transistor) formthe output complementarysymmetry stage– Output pin between R8

and R9– Output goes positive,

Q14 conducts more• Pulls output towards

positive supply– Output goes negative,

Q20 conduct more• Pulls output towards

negative supply

Page 54: Op-Amp Basics - DEMIC - FEEC - UNICAP |elnatan/ee641/Opampbasi… ·  · 2012-08-08Op-Amp Basics – Part 3 • Op-Amp Basics • Op-Amp Parameters • Op-Amp Internal Circuit

© 2003 National Semiconductor Corporation

-VE E

O U T

Q11

Q8

Q12

Q10 Q

22

Q9

R4

R5

CC

R1

R3

R2

Q1

Q6

Q5

Q2

Q7

Q3

Q4

Q16

Q17

R11

R10

Q15Q

18R6

Q23

Q20

R9

R8

Q14

R12

Q24

IN + IN -

VC C

Q21

Q13a

Q13b

Q19

Op-Amp Internal CircuitOutput Stage - 2

• Q15 current limiting protection,short circuit protection, for Q14

• Q21 current limiting protection,short circuit protection, for Q20

• Q18 and Q19 bias the outputtransistor in linear region– Fed by Q13a

Page 55: Op-Amp Basics - DEMIC - FEEC - UNICAP |elnatan/ee641/Opampbasi… ·  · 2012-08-08Op-Amp Basics – Part 3 • Op-Amp Basics • Op-Amp Parameters • Op-Amp Internal Circuit

© 2003 National Semiconductor Corporation

-VE E

O U T

Q11

Q8

Q12

Q10 Q

22

Q9

R4

R5

CC

R1

R3

R2

Q1

Q6

Q5

Q2

Q7

Q3

Q4

Q16

Q17

R11

R10

Q15Q

18R6

Q23

Q20

R9

R8

Q14

R12

Q24

IN + IN -

VC C

Q21

Q13a

Q13b

Q19

Op-Amp Internal CircuitOutput Stage - 3

• Q23 emitter follower– Minimizes loading on output

of 2nd stage

• Class AB output stage• Q14 and Q20 have larger area

– Supplies fairly large loadcurrents

– Minimal power usage• Negligible temperature

effect• Low output impedance

Page 56: Op-Amp Basics - DEMIC - FEEC - UNICAP |elnatan/ee641/Opampbasi… ·  · 2012-08-08Op-Amp Basics – Part 3 • Op-Amp Basics • Op-Amp Parameters • Op-Amp Internal Circuit

© 2003 National Semiconductor Corporation

Conclusion

During this presentation we covered• Basic op-amp configurations• Basic parameters of op-amps• Internal Circuit of the 741

Thank you for participating in this webcast!

For more information about Amplifiers products,please go to:

http://amplifiers.national.com

Page 57: Op-Amp Basics - DEMIC - FEEC - UNICAP |elnatan/ee641/Opampbasi… ·  · 2012-08-08Op-Amp Basics – Part 3 • Op-Amp Basics • Op-Amp Parameters • Op-Amp Internal Circuit

© 2003 National Semiconductor Corporation

Thank You!

• This seminar will be available in our archive shortly.

• If you have additional questions for our presenter,please send them to our customer response centerat [email protected].

• The online technical journal National Edge isavailable at http://www.national.com/nationaledge/.

• Sign up for National’s biweekly newsletter,News@National by updating your online profile athttp://www.national.com/profile/user_info.cgi.