operating instructions 2131ib profibus aif module aif module... · 2020. 10. 7. · –a)controller...

60
Operating Instructions EDB2131UB 00408822 Fieldbus module type 2131 PROFIBUS 2131 24V DC +- PROFIBUS-DP

Upload: others

Post on 26-Jan-2021

13 views

Category:

Documents


0 download

TRANSCRIPT

  • Operating Instructions

    EDB2131UB00408822

    Fieldbus module type 2131PROFIBUS

    2131

    24V DC+ -

    PROFIBUS-DP

  • These Operating Instructions are valid for fieldbus modules with the following nameplate data:

    2131 IB. 0x. 0x. PROFIBUS

    Together with the unit series as from the nameplate data:820X E. 2x. 1x. (8201 - 8204)

    820X E./C. 2x. 1x. Vxxx (8201 - 8204)

    821X E. 2x. 2x. (8211 - 8218)

    821X E./C. 2x. 2x. Vxxx (8211 - 8218)

    822X E. 1x. 1x. (8221 - 8225)

    822X E. 1x. 1x. Vxxx (8221 - 8227)

    824X E. 1x. 1x. (8241 - 8246)

    824X E./C. 1x. 1x. Vxxx (8241 - 8246)

    82EV VA 0x 8200 vector

    82EV 1x 0x 8200 vector

    93XX E. 2x. 1x. (9321 - 9333)

    93XX E./C. 2x. 1x. Vxxx (9321 - 9333)

    Type

    Design:E = Enclosure IP20IB = Module

    Hardware level and index

    Software level and index

    Variant

    Explanation

    Important:TheseOperating Instructions areonly valid in combination with the Operating Instructions of thecontroller 82XX, 8200 vector or 93XX.

    . 1996 Lenze GmbH & Co KG

    Without written approval of Lenze Lenze GmbH & Co KG no part of these Instructions must be copied or given to third parties.

    All indications given in these Operating instructions have been selected carefully and comply with the hardware and software described. Nevertheless,deviations cannot be ruled out. We do not take any responsibility or liability for damages which might possibly occur. Required corrections will be made inthe following editions.

    Version 1.0 06/99

  • Contents

    i� BA2131EN

    1 Preface and general information 1-1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1.1 How to use these Operating Instructions 1-1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    1.1.1 Terminology used 1-1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1.1.2 What is new? 1-1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    1.2 Scope of supply 1-1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1.2.1 Legal regulations 1-2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    2 Safety information 2-1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2.1 Persons responsible for safety 2-1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    2.2 General safety information 2-1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    2.3 Layout of the safety information 2-2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    3 Technical data 3-1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3.1 Features of the 2131 fieldbus module 3-1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    3.2 General data / application conditions 3-1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    3.3 Rated data 3-2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    3.4 Dimensions 3-2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    3.5 Protocol data 3-2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    3.6 Communication times 3-3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3.6.1 Data-transfer time 3-3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3.6.2 Processing time in the controller 3-3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3.6.3 Number of participants 3-4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    4 Installation 4-1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4.1 Connections of the fieldbus module 2131 4-1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    4.1.1 Overview 4-1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4.1.2 9 pole SubD pin connector 4-2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4.1.3 Plug-in terminal for 2 pole male plug (external supply voltage) 4-2. . . . . . . . . . . . . . . . . . . . . . . .

    4.2 Mechanical installation 4-3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    4.3 Electrical installation 4-3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4.3.1 Voltage supply 4-3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4.3.2 Wiring to a host 4-4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    5 Commissioning 5-1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5.1 Configuration of the host system for communication with the 2131 fieldbus module. 5-1. . . . . . . . . . . . . . .

    5.1.1 Settings with COM-ET200 DOS 5-1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5.1.2 Settings with COM-ET200 WIN 5-1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5.1.3 Program example 5-2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    5.2 Commissioning of the 2131 fieldbus module 5-2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5.2.1 Drive control via PROFIBUS 5-2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5.2.2 Enable controller 5-3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    5.3 Diagnostics 5-4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    5.4 Special features with 82XX, 8200 vector and 93XX 5-4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

  • Contents

    ii �BA2131EN

    6 Parameter setting 6-1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .6.1 Parameters 6-1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    6.1.1 Lenze parameters 6-1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .6.1.2 DRIVECOM parameters 6-2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .6.1.3 Operating mode C0001 6-3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .6.1.4 Bus address/station address 6-3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .6.1.5 Baud rate 6-4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .6.1.6 Master settings 6-4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    6.2 PROFIBUS-DP configuration 6-4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    6.3 PROFIBUS-DP parameter-setting channel 6-5. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .6.3.1 Structure of the DP parameter-setting channel 6-5. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .6.3.2 Parameter communication with the controller 6-7. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .6.3.3 Example 1: Write parameter 6-8. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .6.3.4 Example 2: Write parameter 6-9. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    6.4 Process data 6-9. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .6.4.1 Process-data assignments for 82XX 6-10. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .6.4.2 Process-data assignment for 8200 vector 6-10. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .6.4.3 Process-data assignment for 93XX 6-11. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    6.5 Controller status 6-13. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .6.5.1 Standard unit control 6-13. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .6.5.2 DRIVECOM unit control 6-14. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .6.5.3 Control word 6-17. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .6.5.4 Status word 6-20. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    6.6 Lenze-specific parameters 6-22. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .6.6.1 Only 82XX: Lenze parameter Operating Mode (L-C0001) 6-22. . . . . . . . . . . . . . . . . . . . . . . . . . . . .6.6.2 Parameter L-C0142 6-22. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    7 Troubleshooting and fault elimination 7-1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .7.1 Controller is inhibited 7-2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    7.2 Check PROFIBUS 7-4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    7.3 Activate the fieldbus module 7-5. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    7.4 Fault reset (TRIP) 7-6. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    8 Appendix 8-1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .8.1 Accessories 8-1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    8.2 List of abbreviations 8-2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    8.3 Glossary 8-3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    8.4 Table of keywords 8-4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

  • Preface and general information

    1-1� BA2131EN

    1 Preface and general information

    1.1 How to use these Operating Instructions

    l These Operating Instructions are intended for safety-relevant operations on and with the 2131fieldbus module. They contain safety information which must be observed.

    l All personnel working on and with the 2131 fieldbus module must have these OperatingInstructions available and observe the information and notes relevant for them.

    l The Operating Instructions must always be complete and perfectly readable.

    These Operating Instructions inform about the most important technical data and the installation ofthe 2131 fieldbus module. They are only valid in combination with the Operating Instructions of thecorresponding controller.

    1.1.1 Terminology used

    Controller In the following, the term ”controller” is used for ”93XX servo inverters” or ”82XX frequeny inverters”.Drive system In the following, the term ”drive system” is used for drive systems with fieldbus modules or other Lenze drive

    components.

    Fieldbus module In the following text, the term ”fieldbus module” is used for the fieldbus module type 2131 PROFIBUS.Cxxx/y Subcode y of code Cxxx (z.B. C0410/3 = subcode 3 of code C0410)L-Cxxx/y Lenze codeXk/y Terminal strip Xk/terminal y (z.B. X3/28 = terminal 28 on terminal strip X3)(xx-yyy) Cross reference (chapter - page)

    1.1.2 What is new?

    Ident. no. Edition of Important Contents394 179 27/01/1997 Format change to DIN A4408822 01/06/1999 replaces 394 179 l Adaptation to 8200 vector (all chapters)

    1.2 Scope of supply

    Scope of supply Importantl 1 2131 fieldbus module with housing (enclosure IP20)l 1 M3 fixing screw

    1 two pole male connector for voltage s pply

    After the delivered received, check immediately whether the itemssupplied match the accompanying papers. Lenze does not accept anyliability for deficiencies claimed s bseq ently

    l 1 two-pole male connector for voltage supplyl 1 diskette with:

    – a) Controller master file to DIN E 19245 part 3 (L AR00AA.GSD)

    liability for deficiencies claimed subsequently.Claiml visible transport damage immediately to the forwarder

    f– a) Controller master file to DIN E 19245 part 3 (L_AR00AA.GSD)– b) Controller type files for

    Simatic-S5 COM-ET200 V4.X (LE00AATD.200)Simatic-S5 COM-ET200 V5 X (LE00AAAX 200)

    p g yl visible deficiencies/incompleteness immediately to your Lenze

    representative.

    Simatic-S5 COM-ET200 V5.X (LE00AAAX.200)– c) Example program for Simatic-S5 (2130IBST.S5D)

    l 1 Short Instructions

  • Preface and general information

    1-2 �BA2131EN

    1.2.1 Legal regulations

    Labelling Nameplate CE mark ManufacturergLenze 2131 fieldbus modules areunambiguously identified by their nameplates.

    Conforms to the EC Low Voltage Directive Lenze GmbH & Co KGPostfach 101352D-31763 Hameln

    Application asdirected

    2131 fieldbus modulel Operate the fieldbus module only under the conditions prescribed in these Operating Instructions.l The fieldbus module is an additional module and can be optionally attached to the Lenze controller series 820X, 821X, 822X, 8200 vector

    and 93XX. The 2131 fieldbus module links these Lenze controllers with the standardized serial communication system PROFIBUS-DP.l The fieldbus module must be attached and electrically connected so that it complies with its function and does not cause any hazards when

    attached and operated as instructed.l Observe all notes given in chapter „Safety information“ ( 2-1) .l Please observe all information given in these Operating Instructions.This means:

    – Read these Operating Instructions carefully before you start to work with the system.– These Operating Instructions must always be available during operation of the fieldbus module.

    Any other use shall be deemed inappropriate!Liability l The information, data, and notes in these instructions met the state of the art at the time of printing. Claims referring to drive systems

    which have already been supplied cannot be derived from the information, illustrations, and descriptions given in these OperatingInstructions.

    l The specifications, processes, and circuitry described in these Operating Instructions are for guidance only and must be adapted to yourown specific application. Lenze does not take responsibility for the suitability of the process and circuit proposals.

    l The indications given in these Operating Instructions describe the features of the product without warranting them.l Lenze does not accept any liability for damage and operating interference caused by:

    – disregarding these Instructions– unauthorized modifications to the controller– operating errors– improper working on and with the controller

    Warranty l Warranty conditions: see Sales and Delivery Conditions of Lenze GmbH & Co KG.l Warranty claims must be made to Lenze immediately after detecting the deficiency or fault.l The warranty is void in all cases where liability claims cannot be made.

    Disposal Material recycle disposepMetal - -Plastic - -Assembled PCBs - -Short Instructions/Operating Instructions -

  • Safety information

    2-1� BA2131EN

    2 Safety information

    2.1 Persons responsible for safetyOperatorl An operator is any natural or legal person who uses the drive system or on behalf of whom the drive system is used.l The operator or his safety personnel is obliged

    – to ensure the compliance with all relevant regulations, instructions and legislation.– to ensure that only skilled personnel works on and with the2102IB fieldbus module.– to ensure that the personnel has the Operating Instructions available for all corresponding works.– to ensure that all unqualified personnel are prohibited from working on and with the drive system.

    Qualified personnelQualified personnel are persons who - because of their education, experience, instructions, and knowledge about corresponding standards and regulations, rules forthe prevention of accidents, and operating conditions - are authorized by the person responsible for the safety of the plant to perform the required actions and who areable to recognize potential hazards.(Definition for qualified personnel to VDE 105 or IEC 364)

    2.2 General safety informationl These safety notes do claim to be complete. In case of questions and problems please contact your Lenze representative.l At the time of delivery the fieldbus module meets the state of the art and ensures basically safe operation.l The indications given in these Operating Instructions refer to the stated hardware and software versions of the fieldbus modules.l The fieldbus module is hazardous if:

    – unqualified personnel works on and with the fieldbus module.– the fieldbus module is used inappropriately.

    l The processing notes and circuit sections shown in these Operating Instructions are proposals which cannot be transferred to other applications without beingtested and checked.

    l Ensure by appropriate measures that neither personal injury nor damage to property may occur in the event of failure of the fieldbus module.l The drive system must only be operated when no faults occur.l Retrofittings, modifications, or redesigns are basically prohibited.Lenze must be contacted in all cases.l The fieldbus module is electrical equipment intended for use in industrial high-power plants. The fieldbus module must be tightly screwed to the corresponding

    controller during operation. In addition, all measures described in the Operating Instructions of the used controller must be taken. Example: Fasten covers to ensureprotection against contact.

  • Safety information

    2-2 �BA2131EN

    2.3 Layout of the safety information

    l All safety information has a uniform layout:– The icon characterizes the type of danger.– The signal word characterizes the severity of danger.– The note text describes the danger and gives information how to prevent dangerous

    situations.

    Signal wordNote

    Icons used Signal wordsWarning ofdamage topersons

    Warning ofhazardous electricalvoltage

    Danger! Warns of impending dangeU.Consequences if disregarded:Death or severe injuries.

    Warning of a generaldanger

    Warning! Warns of potential, very hazardous situations.Possible consequences if disregarded:Death or severe injuries.

    Caution! Warns of potential, hazardous situations.Possible consequences if disregarded:Light or minor injuries.

    Warning ofdamage tomaterial

    Stop! Warns of potential damage to material.Possible consequences if disregarded:Damage of the controller/drive system or its environment.

    Other notes Tip! This note designates general, useful notes.If you observe it, handling of the controller/drive system is madeeasier.

  • Technical data

    3-1� BA2131EN

    3 Technical data

    3.1 Features of the 2131 fieldbus module

    The 2131 fieldbus module has the following features:

    l Attachable additional module for Lenze controller series 820X, 821X, 8200 vector, 822X and93XX

    l Slave interface module for the communication system PROFIBUS with the communicationprofile PROFIBUS-DP (DIN19245 part 1 and part 3)

    l Automatic baud rate detection

    l Baud rate between 9.6 kbaud and 12 Mbaud

    l Optionally 4 or 6 byte proces data

    l Optional parameter-setting channel

    l Access to all Lenze parameters

    l Application profile: DRIVECOM Profil 20

    3.2 General data / application conditions

    Field ValuesOrder designation 33.2131IBCommuncation medium RS485Network topology LineMax. cable length 1200 m (depending on the desired baud rate and the cable type used)PROFIBUS participants SlaveCommunication profile PROFIBUS-DP (DIN 19245 part 1 and part 3)Drive profile DRIVECOM profile 20Baud rate 9.6 kbit/s to 12000 kbit/sAmbient temperature during operation: 0 to 50 C

    Transport: -25 to 70 CStorage: -25 to 55 C

    Permissible humidity Class 3K3 to EN 50178 (without condensation, average relative humidity 85%)

    24-V-DC-Voltage supply

    l 820X / 8200 vector (observe chapter 4.3.1): only external supplyl 821X / 822X / 8200 vector (observe chapter 4.3.1) / 93XX: internal or external supply

  • Technical data

    3-2 �BA2131EN

    3.3 Rated data

    Field ValuesCommunication medium RS485Voltage supply 24 V DC 10 %; max 60 mAInsulation voltage - bus systems:to PE 50 V ACfor external supply (terminal 39/59) 0 V AC (no electrical isolation)to power stage 820X: 270 V AC (single basic insulation)

    821X: 270 V AC (single basic insulation)8200 vector: 270 V AC (double basic insulation)822X: 270 V AC (double basic insulation)93XX: 270 V AC (double basic insulation)

    to the control terminals 820X: 0 V AC (no electrical isolation)8200 vector (with internal supply):

    0 V AC (no electrical isolation)821X: 50 V AC(Electrical isolation)8200 vector (with external supply):

    100 V AC (single basic insulation)822X: 270 V AC (single basic insulation)93XX: 270 V AC (single basic insulation)

    for the external bus systems 0 V AC (no electrical isolation)Degree of pollution VDE 0110 part 2 pollution degree 2

    3.4 Dimensions

    2131

    75

    62

    18

    28

    Fig. 3-1 Dimensions of the 2131 fieldbus module (all dimensions in mm)

    3.5 Protocol data

    Field ValuesMaximum number of controllers without repeater: 31

    with repeater: 125Process-data words (PCD): l 2 words (32 bit)

    l 3 words (48 bit)DP user-data length: l 2 words (32 bit)

    l 3 words (48 bit)l Parameter-setting channel + 2 words (64 + 32 bit)l Parameter-setting channel + 3 words (64 + 48 bit)

  • Technical data

    3-3� BA2131EN

    3.6 Communication times

    The communication times depend on:

    l the data transfer time

    l the processing time in the controller

    3.6.1 Data-transfer time

    The data-transfer time depends on:

    l the baud rate

    l the user-data length

    You will find more information about the data-transfer time in the documentation for your hostsystem.

    3.6.2 Processing time in the controller

    Processing time 820X

    For the 820X series several processing steps are required, which are processed cyclically.

    A processing cycle consists of:

    l Writing of control word or setpoint, if the value has changed

    l Alternating reading of status word and actual value

    l Processing of parameter access if there is a service

    If the time tolerances caused by the cyclic reading of the status word/actual value are too large, thealternating reading of the status word and the actual value can be suppressed. This is controlled bythe bit 15 (PE inhibit) of the DRIVECOM control word:

    l PE inhibit = 0:Status and actual-value update active

    l PE inhibit = 1:Status and actual value update not active

    A suppression of the processing of parameter access is not necessary, since this is controlled bythe user.

  • Technical data

    3-4 �BA2131EN

    In the following table you will find a list of the processing times:

    Processing step Max. processing time in ms

    PE-inhibit = 0 Tolerance PE-inhibit = 1 ToleranceRead parameter 55 +48 55 +8Control word orsetpoint

    27 +48 27 +8

    Control word andsetpoint

    54 +56 54 +16

    Write parameter 108 +32 - -Status word andactual value

    200 +40 200 -

    Note:A change of the setpoint signal results in writing the control word.

    Processing time 821X / 8200 vector / 822X

    The parameter data and process data are independent of each other.

    l Parameter data: 30 ms + 20 ms tolerance

    l Proces data: approx. 3 ms + 2 ms tolerance

    Processing time 93XX

    The parameter data and process data are independent of each other.

    l Parameter data: approx. 30 ms + 20 ms tolerance (typical)– The processing time can be longer for some codes (see the 9300 Manual).

    l Process data: approx. 3 ms + 2 ms tolerance

    3.6.3 Number of participants

    l Standard: 32 particpants (including host system)

    l With repeaters: 127 participants (including host systems)

    You can build up line and tree topologies by means of repeaters. The maximum total expansion ofthe bus system depends on:

    l the baud rate used

    l the number of repeaters

    More detailed information can be obtained from the documentation for the control system.

  • Installation

    4-1� BA2131EN

    4 Installation

    4.1 Connections of the fieldbus module 2131

    4.1.1 Overview

    21312131

    8200 vector

    2131

    82XX

    93XX

    Fig. 4-1 Controllers with fieldbus module 2131

  • Installation

    4-2 �BA2131EN

    Pos. Name/Meaning

    2 1 3 1

    1

    3

    2

    54

    7

    86

    2 4 V D C+ -

    1 Green bus LED the voltage supply of the fieldbus module 2131ON:ON: 2131 fieldbus module is supplied with voltage and is connected to the controller.OFF:2131 fieldbus module is not supplied with voltage; controller or external voltage supply isswitched off.BLINKING:2131 fieldbus module is supplied with voltage but is not connected to the controller(controller is switched off, in initialization or not available).

    2131pfb001

    2 1 3 1

    1

    3

    2

    54

    7

    86

    2 4 V D C+ - 2 Yellow bus LED for the communication of the fieldbus module 2131

    ON:2131 fieldbus module is initialized but does not communicate with the PROFIBUS-DP fromthe master.OFF:2131 fieldbus module is not initialized yet.BLINKING:PROFIBUS-DP communication is active

    Fig. 4-2 2131 fieldbus module 3 Green drive LED (DRIVE)Operating status of the 82XX or 93XX controllers. (See Operating Instructions of thecontroller.)

    4 Red drive LED (DRIVE)Operating status of the 82XX or 93XX controllers. (See Operating Instructions of thecontroller.)

    5 PROFIBUS-DP connection9 pole SubD pin connector (see chapter 4.1.2)

    6 Connection for external voltage supply (24 V DC 10%)External voltage supply for the 2131 fieldbus module (see chapter4.1.3).Always required for 820X ! For others as option.

    7 Fixing screw for the 2131 fieldbus module8 Only required for 820X, 821X: additional PE screen cable, which avoids EMC related

    communication interferences in especially noisy environments.

    4.1.2 9 pole SubD pin connector

    View Pin Name Explanation1 PE Earth

    59

    2 free -45

    89

    3 RxD/TxD-P Data transfer B3

    78

    4 RTS Request To Send

    12

    67

    5 M5V2 Data reference potential1

    66 P5V2 5 V DC 1)

    7 free -8 RxD/TxD-P Data transfer A9 free -

    1) Total current approx.60 mA

    4.1.3 Plug-in terminal for 2 pole male plug (external supply voltage)

    Name Input/output Explanation+ Input External voltage supply +24 V DC/á10 %, 60 mA- Input GND; reference for external supply

  • Installation

    4-3� BA2131EN

    4.2 Mechanical installation

    l If a keypad is attached to the front of the controller, remove it.

    l Plug the 2131 fieldbus module in the corresponding interface of the controller and fasten itwith the fixing screw ( ( 4-2) , Fig. 4-2, pos. 7).

    4.3 Electrical installation

    Note!The communciation of controllers 820X and 821X may be interfered by electromagnetic radiation.

    If necessary, use an additional PE screen cable ( ( 4-2) , Fig. 4-2, pos. 9).

    4.3.1 Voltage supply

    If required, supply the 2131 fieldbus module via the plug-in contacts 1/2 ( ( 4-2) , Fig. 4-2, pos. 6)with a separate voltage supply 24 V DC/ 10 %.The 821X, 8200 vector, 822x and 93XX should always be driven without a separate voltage supply.

    The controllers 820X (8201¤8204) always require a separte voltage supply!Use a separate supply unit for the external voltage supply (24 V) of the 2131 fieldbus module.Use separate supply units for longer distances between the control cabinets.

    The following chapter describes how to connect the 2131 fieldbus module to the bus system, seechapter 4.3.2.

    Note!Internal voltage supply of the fieldbus module connected to a 8200 vector

    Controllers with an extended AIF interface (front of the 8200 vector) can be internally supplied. Thepart of the drawing highlighted with grey shows the jumper position.

    In Lenze setting, the fieldbus module is not internally supplied.For internal voltage supply, put the jumper in the position indicated below.

    Lenze setting(only external voltage supply)

    Internal voltage supply

  • Installation

    4-4 �BA2131EN

    4.3.2 Wiring to a host

    Warning!An additional potential isolation must be installed if

    l a 820X, 821X or 8200 vector controller will be connected to a host

    and

    l a safe electrical isolation (double basic insulation) to VDE 0160 is required.

    For this, you can use an interface module for the host with an additional electrical isolation (see thecorresponding manufacturer’s information).For wiring, the electrical isolation of the supply voltage must be taken into account. The supplyvoltage is assigned to the same potential as the data bus.

  • Installation

    4-5� BA2131EN

    Wiring features:

    Features:Communication medium RS485Network topology without repeater: line

    with repeater: line or treePossible number of controllers without repeater: 32

    with repeater: 127Maximum cable length 1200 m (depending on the baud rate and the cable type used)Maximum baud rate 9.6-12000 kbit/s

    The connection of the bus system PROFIBUS-DP is shown in the survey drawing. The requiredaccessories (e.g. connection cables) are listed in chapter 8.1.

    1

    93XX

    82XX

    2

    3

    8200 vector

    Fig. 4-3 PROFIBUS with RS485 wiring (without repeater)1 Host2 Bus-connector ( 4-6)3 Bus cable ( 4-6)

    Wiring

    Warning!l If the 2131 fieldbus module is no longer supplied with voltage, the bus system will continue

    operation. However, the connected controller can no longer be accessed from the host.

    l If single bus participants are to be disconnected, it must be ensured that the bus terminatorsat the physical cable ends remain active.

    l Only use cables which correspond to the listed specifications (see chapter 8.1).l Observe the bus connector drawing. ( 4-6)l Connect the controller using the bus connector.

    Note: The bus system will not be interrupted if the bus connector is pulled off the controller.l Connect a bus terminator to the physical bus ends. The bus terminator is integrated into the

    bus connector and can be activated via a switch.l Observe the wiring notes and the documentation for the control system.

  • Installation

    4-6 �BA2131EN

    Bus cable

    Connection of the bus cable in the bus connector (Siemens)

    3

    Enter approx. 16 mm

    Enter approx. 5 mm

    Enter approx. 11 mm

    4

    5

    1

    2

    Fig. 4-4 Connection of the bus cable in the bus connector1 9-pole SubD plug2 Housing screw3 Terminator

    (here not connected)4 Cable screen (bare fit

    in metal guide required)5 Bus cable

    Length of the bus cable

    The length of the bus cable depends on the baud rate:

    Baud rate [kbit/s]

    9.6 - 93.75 187.5 500 1500 12000Length [m] 1200 1000 400 200 100

  • Installation

    4-7� BA2131EN

  • Commissioning

    5-1� BA2131EN

    5 Commissioning

    Stop!l Before switching on the mains voltage check the wiring for completeness, short circuit and

    earth fault.

    l Keep to the switch-on sequence!(Chapter 5.1 to chapter 5.2.2)

    5.1 Configuration of the host system for communication with the2131 fieldbus module.

    TheLenzecontrollers arePROFIBUS-DP participants in conformity with standards. Communicationwith the Simatic-S5 is possible, provided that the following Siemens hardware and softwarecomponents are available:

    l S5-interface module IM308-B or IM308-C

    l Programming software COM-ET200

    The COM-ET200 software is available in a DOS version (COM-ET200 DOS) and in a Windowsversion (COM-ET200 WIN). The following two sections explain the specific controller settings forboth versions. The third section gives a program example which is to support the commissioning.

    5.1.1 Settings with COM-ET200 DOS

    In the following, we describe how to configure a Lenze controller for the program package COM-ET200 DOS:

    1. Copy the file LE00AATD.200 from the diskette to the COM-ET200 directory.

    2. Fill in the boxes of the menus indicated then:

    Menu: ET200 system parameter

    Bus profile: DP standard

    Menu: Configure

    Station type: Lenze 2131 Vxx

    Configuration: User data with DP parameter-setting channel0. = 115; 1. = 113 oder0. = 115; 1. = 114

    User data without DP parameter-setting channel0. = 113 or0. = 114

    5.1.2 Settings with COM-ET200 WIN

    In the following we describe how to configure a Lenze controller for the program packageCOM-ET200 WIN:

    1. Copy the file LE00AAAX.200 from the diskette to the COM-ET200 directory.

    2. Select the 2131 fieldbus module via the slave family DRIVES.

  • Commissioning

    5-2 �BA2131EN

    3. Fill in the boxes of the following menu as indicated:

    Menu: Configure

    Station type: Lenze 2131 Vxx

    Configuration: User data with DP parameter-setting channel0. = 115; 1. = 113 oder0. = 115; 1. = 114

    User data without DP parameter-setting channel0. = 113 or0. = 114

    5.1.3 Program example

    You will find a program example (file: 2130IBST.S5D) in STEP 5 on the attached diskette whichsupports your commissioning. The program example comprises the following function modules:

    l FB182: Process-data communication:This is a simplifieddrive control where thestandard functions of the Lenze drive-controllers are mapped to the DRIVECOM-Profil-DRIVECOM profile.

    l FB183: Parameter-data communication:Thus function module supports theDP parameter-setting channel. AllDRIVECOM and Lenze parameterscan be written and read.

    5.2 Commissioning of the 2131 fieldbus module

    1. Switch on the controller and, if necessary, the external supply of the 2131 fieldbus module.The green bus LED for the supply voltage (see page 4-1; Fig. 4-1pos. 1) must be on.The LED which displays the operating state of the controller must be on.

    If the LEDs are not on, see chapter 7 “Troubleshooting and fault elimination“.

    2. Set the station address (C0009) for each controller via the keypad or the host (see chapter6.1.4, page 6-3).If several controllers are interconnected in a network, it must be possible that the hostaddresses each controller uniquely. Every controller therefore needs an address.

    3. You can now communicate with the drive.

    4. The control terminal 28 (ctrl. enable = controller enable) is always active and must be set toHIGH level during operation (see Operating Instruction of the corresponding controller).Otherwise, the controller cannot be enabled.

    5.2.1 Drive control via PROFIBUS

    82XX

    1. For drive control with PROFIBUS, change the Lenze parameter operating mode (L-C0001)from 0 to 3. (See chapter 6.6.1). This change can be carried out using the 8201BB keypad orthe PROFIBUS.

    Examples for PROFIBUS Write (L-C0001=3)– Index = 5FFEhex

    (results from 5FFFhex � (L-C0001)hex; see Lenze code addressing ( 6-1)

  • Commissioning

    5-3� BA2131EN

    – Subindex: 0– Value: 30000dec (results from 3x104; see chapter 6.1.1)

    2. Terminal 28 (controller enable) is always active and must be set to HIGH level duringPROFIBUS operation (see the corresponding Operating Instructions).– Otherwise the controller cannot be enabled by the PROFIBUS (DRIVECOM controller status

    “OPERATION ENABLED“).– With 821X, 8200 vector and 822X the QSP function (quick stop) is always active. If QSP is

    assigned to an input terminal (factory setting: not assigned), this terminal must be at HIGHlevel during PROFIBUS operation (see the corresponding Operating Instructions).

    The controller now accepts control and parameter data from the PROFIBUS.

    93XX

    1. For drive control via PROFIBUS set the Lenze parameter Signal Configuration (L-C0005) to avalue xxx3. This change can be carried out via the 9371BB keypad or directly via PROFIBUS.

    Note!We recommend the signal configuration C0005 = 1013 (speed control) for first commissioning.

    Examples for PROFIBUS Write (L-C0005=1013):– Index = 5FFAhex

    (results from 5FFFhex � (L-C0005)hex; see Lenze code addressing ( 6-1)– Subindex: 0– Value: 10 130 000dec (results from 1013x104; see chapter 6.1.1)

    2. Set the parameter L-C0142 to 0.

    3. Terminal 28 (ctrl. enable = controller enable) is always active and must be set to HIGH levelduring PROFIBUS operation (see the Operating Instructions of the controller). Otherwise thecontroller cannot be enabled by the PROFIBUS (DRIVECOM controller status “OPERATIONENABLED“).– With the signal configuration L-C0005=1013, the QSP function (quick stop) and the

    CW/CCW changeover are assigned to the digital input terminals E1 and E2, and thus theyare always active. During PROFIBUS operation, E1 must be on HIGH level (see OperatingInstructions 93XX).

    Note!With the signal configuration L-C0005=xx13, terminal A1 is switched as voltage output. Therefore,only the following terminals must be connected via cable:

    l X5.A1 with X5.28 (ctrl. enable)

    l X5.A1 with X5.E1 (CW/QSP)

    The controller now accepts control and parameter data from the PROFIBUS.

    5.2.2 Enable controller

    As standard, the controller is enabled as follows:

    1. Select a speed setpoint with a value unequal 0 (see chapter 6.4.1 “Process-data assignment“( 6-10) .

    2. Change to the status “READY FOR SWITCH ON“.Value = 0000 0000 0111 1110bin (007Ehex). in the DRIVECOM control word.

  • Commissioning

    5-4 �BA2131EN

    3. Wait for the status “READY FOR SWITCH ON“.Value for DRIVECOM status word = xxxx xxxx x01x 0001bin.

    4. Change to the status “OPERATION ENABLED“.Value = 0000 0000 0111 1111bin (007Fhex) in the DRIVECOM control word.

    5. Wait for “OPERATION ENABLED“.

    See also chapter 6.5.2 “DRIVECOM unit control“ , page 6-14ff.

    5.3 Diagnostics

    If the initialization to the controller is not completed when using an external supply voltage for themodule (e.g. controller not switched on), the bit “static diagnostics” will be set (station status byte2, bit 1).

    This means that the module cannot provide valid user data. The master must then stop the user datatransfer and request diagnostics data until the bit “static diagnostics“ will not be set any longer.

    5.4 Special features with 82XX, 8200 vector and 93XX

    Please notel For safe operation it is absolutely necessary to observe the notes for the controllers given in this chapter.l Please observe the corresponding Operating Instructions of the controllers.

    820X l Parameter setting (codes except process data) is only possible when the controller is inhibited (DRIVECOM controller status unequal“OPERATION ENABLED“). Parameters are accepted when the controller is enabled, but they are not saved.

    l A TRIP must only be reset through PROFIBUS:If the controller is set to the status TRIP while being operated with PROFIBUS control (L-C0001 = 3) and if the TRIP is reset through terminal28, the drive can start for a short time. When resetting a fault via PROFIBUS, this does not occur.

    l After the command “TRIP reset“ the 820X controller is basically initialized. During this time the controller does not accept any services.l Always send the direction of rotation with a low setpoint before the new setpoint:

    If the setpoint and the direction of rotation are changed at the same time via the DRIVECOM speed setpoint, the speed can change to thewrong direction or rotation for a short time. This is because first the setpoint is sent as unipolar value to the controller and then theinformation about the direction of rotation is sent.

    821X, 822X l For first switch on, the automatic DC-injection brake must be activated in both parameter sets:– C0106 = 0– C2106 = 0

    l If the automatic DC-injection brake (DCB) is activated (DCB holding time LC106 0), the drive will automatically change from the status“OPERATION ENABLED“ to the status “SWITCHED ON“ when reaching the speed 0 and after the DCB holding time. If the setpoint is > 0, thedrive automatically changes to the status “OPERATION ENABLED“.

    8200 vector l Digital and analog input and output signals can be freely configured (see Operating Instructions for 8200 vector; codes C0410, C0412, C0417and C0421)

    l The change of the code L-C0001 to xxx3 starts the preconfiguration of the process data words in the controller93XX l Set the signal configuration L-C0005 = xxx3 instead of the operating mode L-C0001.

    l The change of the code L-C0005 to xxx3 starts the preconfiguration of the process data words in the controllerl Set the parameter L-C0142 = 0 (auto start lock), to avoid a short time start of the drive during the initialization phase.

  • Parameter setting

    6-1� BA2131EN

    6 Parameter settingThe parameter setting of the 2131 module is subdivided into:

    l Controller parameters, which can also be set with the 8201BB or 9371BB keypad.

    l 2131 parameters, which can only be accessed via the 2131 fieldbus module.

    Only the controller parameters are permanently saved in the corresponding controller.

    In the following, you will only find parameters which are important for the serial communication. Forfurther information on parameter setting of the controllers see the Manual 93XX or the OperatingInstructions of the corresponding controller.

    The PROFIBUS-DP transmits two different types of data between the host and the controllers.

    l Parameter, e.g. operation parameters, diagnostic information, motor data.In general, the transmission of parameters is not as time-critical as the transmission of thesecond group of process data, but there is a larger data volume.

    l Process data, e.g. setpoints and actual value, which must be exchanged within a minimumof time.The data volume is small (e.g. 2 words with DRIVECOM or Lenze), which are to transmittedcyclically.

    For these two different tasks the transmitted data is divided into two logical communicationchannels:

    l Parameter channel for the transfer of parameters

    l Process-data channel for fast transfer of process data. Process data are cyclicallytransferred. Thus, the latest input and output data are constantly exchanged between thehost and the controllers.

    6.1 Parameters

    The system distinguishes two parameter types: the Lenze parameters which are implemented intothe Lenze controllers, and the DRIVECOM parameters. This chapter gives a short description of thetwo parameter types and their relation to each other.

    6.1.1 Lenze parameters

    In general, the Lenze parameters of the Lenze controllers are addressed via the Lenze codes. Fordetailed information about the Lenze parameters and their value ranges, see the OperatingInstructions of the corresponding controllers.

    Lenze codes

    In these Operating Instructions Lenze codes are identified with L-Cxxxx, to ensure that they are notmixed up with the DRIVECOM index (e. g. L-C0001 for the Lenze code C0001).

    Lenze code addressing

    The access to Lenze parameters is possible. However, the addressing of the parameters (codenumbers) is shifted and calculated as follows:

    Index = 24575 - LENZE_CODENRIndexhex = 5FFFhex - LENZE_CODENRhexThe index for Lenze code numbers is between 20576 (5060hex) and 24575 (5FFFhex).

    Example:The Lenze parameter L-C0001 (operating mode) can be accessed via the PROFIBUS-DP underindex 24574 (= 24575 - 1).

  • Parameter setting

    6-2 �BA2131EN

    Lenze data types

    The possible Lenze parameters and their value ranges can be obtained from the correspondingOperating Instructions for the controller.The data of the Lenze parameters are mainly represented in a fixed-point format of the data typeInteger32 with four decimal digits. This means, that the parameter value listed in the OperatingInstructions must be multiplied with 1000.

    Example:Operating Instructions L-C0039 (JOG) = 150.4 Hzresults in 150.4 x 10000 = 1504000dec (0016F300hex)

    82Xx parameter sets

    The 82XX controller is equipped with 2 parameter sets, which can be directly addressed via thePROFIBUS. They are addressed by means of a code-digit offset:

    l Offset 0 addresses parameter set 1 with the Lenze codes L-C0000 to L-C1999

    l Offset 2000 addresses parameter set 2 with the Lenze codes L-C2000 to L-C3999

    If a parameter is only available once (see 82XX Operating Instructions), use the code offset 0.

    Example for L-C0011 (maximum field frequency):L-C0011 in parameter set 1: Lenze code = 11L-C0011 in parameter set 2: Lenze code = 2011

    Changes of the parameters are automatically saved in the controller (see Operating Instructions82XX). Exceptions are the process data, e.g. control words or setpoints.

    Parameter sets for 8200 vector

    The 8200 vector controller is equipped with 4 parameter sets, which can be directly addressed viathe PROFIBUS. They are addressed by means of a code-digit offset:

    l Offset 0 addresses parameter set 1 with the Lenze codes L-C0000 to L-C1999

    l Offset 2000 addresses parameter set 2 with the Lenze codes L-C2000 to L-C3999

    l Offset 4000 addresses parameter set 3 with the Lenze codes L-C3000 to L-C4999

    l Offset 6000 addresses parameter set 4 with the Lenze codes L-C6000 to L-C7999

    If a parameter is only available once (see Operating Instructions 8200 vector), use the code offset0.

    Example for L-C0011 (maximum field frequency):L-C0011 in parameter set 1: Lenze code = 11L-C0011 in parameter set 2: Lenze code = 2011L-C0011 in parameter set 3: Lenze code = 4011L-C0011 in parameter set 4: Lenze code = 6011

    Changes of the parameters are automatically saved in the controller (see Operating Instructions8200 vector). Exceptions are the process data, e.g. control words or setpoints.

    Parameter sets for 93XX

    The 93XX controllers are equipped with 4 parameter sets for non-volatile storage. Anotherparameter set is in the user memory of the controller. This is the current parameter set. Only thecurrent parameter set can be directly addressed via PROFIBUS. For the codes, see OperatingInstructions or Manual for 93XX. Changes of the current parameter set will be lost after switchingoff the controller. Code C0003 is for saving the current parameter set. After switching on thecontroller, parameter set 1 is automatically loaded into the current parameter set.

    6.1.2 DRIVECOM parameters

    In the following, the controller parameters, which are standardized according to the DRIVECOMprofile 20, are named DRIVECOM parameters. Each DRIVECOM parameter is addressed by meansof the index.

  • Parameter setting

    6-3� BA2131EN

    6.1.3 Operating mode C0001

    82XX / 8200 vector controllers

    Code C0001 (Operating mode) determines the source (terminal, keypad, PROFIBUS) which writesthe frequency setpoint (C0046) and the control word (C0135).

    C0001 = 0 1 2 3Read and write parameter yes yes yes yesParameter C0046 no yes no yesProcess data no no no yes

    Independently of the selected operating mode (C0001), the controller can be inhibited under thecode C0040 via the PROFIBUS.

    Please note that the operating mode C0001 is available in both parameter sets. Thus, C0001 mustbe set identically in both parameter sets.PROFIBUS control (C0001 = 3) is subject to the operating mode in parameter set 1. Terminal control( C0001 3) is subject to the operating mode in parameter set 1.

    93XX controllers

    The93XX controller does not provide an operating mode which can be changed by only one code.

    The 93XX controller i operated via the “control codes“. By means of the control codes it is possibleto select the signal source valid for an input. The signal source can be a terminal, an internal signalor a signal of a bus system.For further information refer to the 93XX Manual.

    6.1.4 Bus address/station address

    To address the controllers in the PROFIBUS system, each participant gets an address. Eachparticipant must have a different address. This address is called station address.The address can be set in two different ways:

    l Address setting via the keypad or PC program:– Set the address under code C0009 in the controller.– The valid address range is the unit address 3 ¤ 99.

    l Setting of the unit address through a master (only master class 2):– With this method only one PROFIBUS participant must be connected. This can be achieved

    by a special switch-on sequence.– The Lenze setting of C0009 is 1. This means that the station address is addressed with 126.

    If C0009 is set to 2, the station addresses 100 ¤ 125 can be selected.

  • Parameter setting

    6-4 �BA2131EN

    The following table shows the assignment of the addresses:

    PROFIBUS-DP station address Mapping to code C0009 LECOM unit address1-2 No (master addresses)3-99 Yes (3-99)100-125 Yes (C0009=2)126 (Lenze setting ) Yes (C0009=1 )

    6.1.5 Baud rate

    Baud-rate settings are not required. The 2131 fieldbus module is automatically adjusted to the baudrate of the master.

    6.1.6 Master settings

    The master needs a unit-description file (unit master-data file)for operationwith PROFIBUS-DP. Thediskette provides the following files:

    File name MeaningL_AR00AA.GSD Unit master-data file to DIN 19245 T3LE00AATD.200 Controller master data file (type file) for Simatic-S5 COM-ET200 V4.X (IM308B)LE00AAAX.200 Controller master data file (type data) for Simatic-S5 COM-ET200 V5.X (IM308C)

    You also have to set:

    Function Setting (depends on the master type)Baud rate The 2131 module is equipped with an automatic baud-rate detectionCommunication profile PROFIBUS-DP DIN E 19245 T3Slave-station address 126 (Lenze setting)

    Value the same as in controller parameter C0009 (see chapter 6.1.4 “Busaddress/station address“).

    DP-configuration data (configuration) see chapter 6.2PNO-identification number 00AAhexDP user-data length see chapter 6.2

    6.2 PROFIBUS-DP configuration

    The PROFIBUS-DP user data length is determined during the DP initialization phase (configuration).You can select from 4 fixed lengths.

    The user data lengths for input data and output data must be the same.

    For simplification we use the following abbreviations:

    l PIW:Process input word (process data from the controller to the master)

    l POW:Process output word (process data from the master to the controller)

    The 4 selectable user data lengths are:

    l 2 words process data; label 71hex (113)

    PIW/POW 1 PIW/POW 2Byte 1 Byte 2 Byte 3 Byte 4

  • Parameter setting

    6-5� BA2131EN

    l 3 words process data; label 72hex (114)

    PIW/POW 1 PIW/POW 2 PIW/POW 3Byte 1 Byte 2 Byte 3 Byte 4 Byte 5 Byte 6

    l DP parameter-setting channel1) + 2 words process data;label 73hex 71hex (115, 113)

    DP parameter-setting channel PIW/POW 1 PIW/POW 2Byte 1 Byte 8 Byte 9 Byte 10 Byte 11 Byte12

    1) see chapter 6.3

    l DP parameter-setting channel1)+ 3 words process data;label 73hex 72hex (115, 114)

    DP parameter-setting channel PIW/POW 1 PIW/POW 2 PIW/POW 3Byte 1 Byte 8 Byte 9 Byte 10 Byte 11 Byte 12 Byte 13 Byte 14

    1) see chapter 6.3

    6.3 PROFIBUS-DP parameter-setting channel

    ThePROFIBUSDPparameter-setting channeloffers aparameter setting and diagnostics possibilityfor controllers. It is therefore possible to access all Lenze parameters (codes).

    If the DP parameter-setting channel is active, it assigns the first 8 bytes of the and input and outputdata. The DP parameter-setting channel has the same structure for both transmission directions.

    6.3.1 Structure of the DP parameter-setting channel

    Byte 1 Byte 2 Byte 3 Byte 4 Byte 5 Byte 6 Byte 7 Byte 8Service Subindex Index

    High byteIndexLow byte

    Data 4(Error 4)

    Data 3(Error 3)

    Data 2(Error 2)

    Data 1(Error 1)

    Byte 1: Service

    Job and response control for the DP parameter-channel.

    Bit no. Meaning0 - 2 Service

    Job for the controller. The bits are set only by the master.l 0 = no jobl 1 = read job (read data from the controller)l 2 = write job (write data to the controller)

    3 Reserved4 - 5 Data length

    Length of the data in the field data/error.l 0 = 1 bytel 1 = 2 bytel 2 = 3 bytel 3 = 4 byte

    6 HandshakeIndicates a new job. The master changes this bit for every new job. The controller copies the bit to its response message.

    7 StatusStatus information from the controller to the master when sending acknowledgement. This bit informs the master whether the jobwas carried out without faults.l 0 = Job completed with fault.l 1 = Job not completed. A fault occured. The data in the field Data/Error are interpreted as error message.

  • Parameter setting

    6-6 �BA2131EN

    Byte 2: Subindex

    l The series 82XX do not have codes with subindex, the value is always 0.

    l With the series 93XX it is necessary for many codes to address them additionally via asubindex.Example: Code C0039 subindex 3 adresses JOG 3

    Byte 3 and 4: Index

    The parameters or the Lenze codes are selected with these two bytes according to the formula:

    Index = 24575 - Lenze code number

    Example:The parameter C0012 (acceleration time) is to be addressed:

    24575 - 12 = 24563 = 5FF3hex

    The entries for this example would be:

    l Byte 3: Index High Byte = 5Fhex

    l Byte 4: Index Low Byte = F3hex

    Byte 5 - 8: data 1 - 4; error 1 - 4

    Parameter value or fault information indicated with invalid access. The status of the bit Job/Statusdetermines the meaning of the data field.

    Data

    Parameter value, which assigns 1 to 4 bytes depending on the data format. Strings or data blockscannot be transferred.The most common data format in Lenze controllers is a fixed-point format with 4 decimal places.

    Please note, that these parameters must be multiplied by 10,000, e.g. the value 10 will be displayedas value 100,000.

    The data is filed according to the Motorola format, i.e. first high byte/high word, second low byte/lowword.

    Byte 5 High byte 1 High word Double wordByte 6 Low byte 1

    g

    Byte 7 High byte 2 Low wordByte 8 Low byte 2

    Error

    Fault detection (for description see the following table).

    l Byte 5: Error class

    l Byte 6: Error code

    l Byte 7: Additional code (high byte)

    l Byte 8: Additional code (low byte)

  • Parameter setting

    6-7� BA2131EN

    Fault messages in the error field (Data/Error)

    Error class Errorcode

    Additionalcode [hex]

    Meaning

    0 0 00 No fault6 3 00 No access permission6 5 10 Inadmissible job parameter6 5 11 Invalid subindex6 5 12 Data too long6 7 00 The object does not exist6 8 00 Data types are not identical8 0 21 Cannot be executed because of local control8 0 22 Cannot be executed because of unit status8 0 30 Leave value range8 0 40 Collision with other values8 0 20 Service cannot be executed currently

    6.3.2 Parameter communication with the controller

    Read job

    1. Determine the user data of the controller: i. e. determine the location of the DP user data inthe host.

    2. Enter the address of the desired parameter in the field ” Index and subindex“ (DP outputdata).

    3. Job/service = Read job and the bit “ job/handshake“ must be changed (DP output data).

    4. Check, whether the bit “ job/handshake“ is the same for the DP input data and the DP outputdata. If the bit “ job/handshake“ is the same, the response has been received. You shouldimplement a time monitoring.

    5. Check, whether the bit “ job/status“ is set. If the bit “ job/status“ is not set, the field“data/error“ contains the required parameter value. If the bit “ job/status“ is set, the readingjob is not executed properly and the field “data/error“ contains an error information.

    Write job

    1. Determine the user-data range of the controller, i. e. determine the location of the DPuser-data in the host system.

    2. Enter the address of the desired parameter in the field “Index and subindex“ (DP outputdata).

    3. Enter the parameter value into the field Data/Error.

    4. Job/Service = Write job and the bit job/handshake must be changed (DP output data).

    5. Check, whether the bit “ job/handshake“ is the same for the DP input data and the DP outputdata. If the bit “ job/handshake“ is the same, the response has been received. You shouldimplement a time monitoring.

    6. Check, whether the bit “ job/status“ is set. If the bit “ job/status“ is not set, the job has notbeen executed properly and the field “data/error“ contains an error information. Otherwise,the job has been executed without any faults.

  • Parameter setting

    6-8 �BA2131EN

    6.3.3 Example 1: Write parameter

    Task

    The acceleration time C0012 of the controller is to be changed to 20 s.

    Job (byte 1/service)

    Bit 0-2 = 2 Write job (xxxx x010)Bit 3 = 0 Reserved (xxxx 0010)Bit 4-5 = 3 Data length 4 byte (xx11 0010)Bit 6 = X Handshake changes frequently (xX11 0010)Bit 7 = 0 Only relevant with response (0x11 0010)

    SUBINDEX (byte 2)

    Subindex = 0, as there is not subindex under code C0012.

    INDEX (byte 3 + 4)

    Index calculation:Index = 24575 - code numberIndex = 24575 - 12 = 24563 = 5FF3hex

    DATA (byte 5 - 8)

    Calculation of the value for the acceleration time20 s x 10.000 = 200.000 = 00 03 0D 40hex

    Response to drive

    Byte 1 Byte 2 Byte 3 Byte 4 Byte 5 Byte 6 Byte 7 Byte 8Service Subindex Index

    High byteIndexLow byte

    Data 4 Data 3 Data 2 Data 1

    0x11 0010 0 5F F3 00 03 0D 40

    Response of the controller when no fault occurs

    Byte 1 Byte 2 Byte 3 Byte 4 Byte 5 Byte 6 Byte 7 Byte 8Service Subindex Index

    High byteIndexLow byte

    Data 4 Data 3 Data 2 Data 1

    0x11 0000 0 5F F3 00 00 00 00

  • Parameter setting

    6-9� BA2131EN

    6.3.4 Example 2: Write parameter

    Task

    The heatsink temperature (value = 43 C) C0061 is to be read by the controller.

    Job (byte 1/service)

    Bit 0-2 = 2 Write job (xxxx x001)Bit 3 = 0 Reserved (xxxx 0001)Bit 4-5 = 3 Data length 4 byte (xx11 0001)Bit 6 = X Handshake changes frequently (xx11 0001)Bit 7 = 0 Only relevant with response (0x11 0001)

    SUBINDEX (byte 2)

    Subindex = 0, as there is not subindex under code C0061.

    INDEX (byte 3 + 4)

    Index calculation:Index = 24575 - code numberIndex = 24575 - 61 = 24514 = 5FC2hex

    Response to drive

    Byte 1 Byte 2 Byte 3 Byte 4 Byte 5 Byte 6 Byte 7 Byte 8Service Subindex Index

    High byteIndexLow byte

    Data 4 Data 3 Data 2 Data 1

    0x11 0001 0 5F C2 00 00 00 00

    Response of the controller when no fault occurs

    Byte 1 Byte 2 Byte 3 Byte 4 Byte 5 Byte 6 Byte 7 Byte 8Service Subindex Index

    High byteIndexLow byte

    Data 4 Data 3 Data 2 Data 1

    0x11 0000 0 5F C2 00 06 8F B0

    Index of the read request = 5FC2hex

    Data 1 to data 4 = 43 C x 10000 = 430000 = 00 06 8F B0

    6.4 Process data

    Process data are data memories in which several parameters for a new parameter - the processdata - are summarized for fast transmission. The host has direct access to the process data. In thePLC, for instance, the data are directly assigned to the I/O area. These process data are cyclicallyexchanged between the controller and the master. They are subdivided into

    l Process output data (PO data)

    l Process input data (PI data)

    Here the data flow starts from the master, i.e. the PO data of the master are PI data for the controller.The controller gets the control information from the master and returns status information.

  • Parameter setting

    6-10 �BA2131EN

    6.4.1 Process-data assignments for 82XX

    Structure of the PO-data response (data to drive)

    Byte 1 Byte 2 Byte 3 Byte 4DRIVECOM control wordHigh byte

    DRIVECOM control wordLow byte

    SetpointHigh byte

    SetpointLow byte

    DRIVECOM control word: see chapter 6.5.3 or chapter 6.5.2.

    Setpoint: frequency setpointHere the frequency setpoint is preselected as process data word. The standardization differs fromC0046. It is indicated with a sign: á24000 = á480 Hz.

    Structure of the PI data response (data from drive)

    Byte 1 Byte 2 Byte 3 Byte 4DRIVECOM status wordHigh byte

    DRIVECOM status wordLow byte

    Actual valueHigh byte

    Actual valueLow byte

    DRIVECOM status word: see chapter 6.5.4 or chapter 6.5.2.

    Actual value: act. frequency valueThe actual frequency value is indicated with a sign: á24000 = á480 Hz.

    6.4.2 Process-data assignment for 8200 vector

    Structure of the PO data response

    Digital and analog input and output signals can be freely configured (see Operating Instructions for8200 vector; codes C0410, C0412, C0417 and C0421)

    Byte 1 Byte 2 Byte 3 Byte 4 Byte 5 Byte 6DRIVECOMControl wordHigh byte

    DRIVECOMControl wordLow byte

    AIF-IN.W1High byte

    AIF-IN.W1Low byte

    AIF-IN.W2High byte

    AIF-IN.W2Low byte

    Structure of the PI-data response

    Byte 1 Byte 2 Byte 3 Byte 4 Byte 5 Byte 6DRIVECOMStatus wordHigh byte

    DRIVECOMStatus wordLow byte

    AIF-OUT.W1High byte

    AIF-OUT.W1Low byte

    AIF-OUT.W2High byte

    AIF-OUT.W2Low byte

  • Parameter setting

    6-11� BA2131EN

    6.4.3 Process-data assignment for 93XX

    Unlike the 82XX controller, the process-data assignment of the 93XX controller can be changed viareconfiguration of the function blocks AIF-IN and AIF-OUT.

    Structure of the PO data response

    Byte 1 Byte 2 Byte 3 Byte 4 Byte 5 Byte 6DRIVECOMControl wordHigh byte

    DRIVECOMControl wordLow byte

    AIF-IN.W1High byte

    AIF-IN.W1Low byte

    AIF-IN.W2High byte

    AIF-IN.W2Low byte

    AIF-IN.W1 to AIF-IN.W2 depend on the signal configuration selected under L-C0005 and are thensensibly preassigned.

    Signal configuration (L-C0005) AIF-IN.W1 AIF-IN.W2Speed control100310131113

    NSET-NSpeed setpoint

    Not assigned

    Torque control400340134113

    MCTRL-MADDTorque setpoint

    Not assigned

    DF master500350135113

    NSET-NSpeed setpoint

    Not assigned

    DF-slave bus600360136113

    DFSET-A-TRIMPhase trimming

    DFSET-N-TRIMSpeed trimming

    DF-slave cascade700370137113

    DFSET-VP-DIVDF factor

    DFSET-A-TRIMPhase trimming

    Not equal to xxx3 (except ownconfigurations)

    Not assigned Not assigned

    For detailed description of the 93XX signal configuration see the Operating Instructions for 93XX(only the main configurations: 1000, 4000, 5000, etc.) or the Manual 93XX.

    In the controller other signals can be assigned to AIF-IN.W1 to AIF-IN.W2. For this, thefunction-block configuration - described in the Manual 93XX - is used. The function block AIF-INdetermines the input data of the controller as data interface for the 2131IB fieldbus module.

    For more detailed information about the function block AIF-IN, see the Manual 93XX.

  • Parameter setting

    6-12 �BA2131EN

    2111IBU003

    X 1 1 6 B i t

    1 6 B i t A I F - I N . W 2

    A I F - I N . W 3

    1 6 b i n a r ys i g n a l s

    1 6 B i tL o w W o r d

    1 6 B i tH i g h W o r d

    1 6 b i n a r ys i g n a l s

    1 6 B i tA I F - I N . W 1

    A I F - I N . B 1 5

    A I F - I N . B 0

    A I F - I N . D 1

    A I F - C T R L . B 1 2

    A I F - C T R L . B 1 3

    A I F - C T R L . B 1 4

    A I F - C T R L . B 1 5

    Byte 3,4

    Byte 5,6

    Byte 7,8

    X 1

    A I F - I N * )

    B i t 0

    B i t 1 5

    Steuerw

    ort

    A I F - C T R L . B 0

    A I F - C T R L . B 1

    A I F - C T R L . B 2

    A I F - C T R L . B 4

    A I F - C T R L . B 5

    A I F - C T R L . B 6

    A I F - C T R L . B 7

    D C T R LQ S PA I F - C T R L . B 3

    D I S A B L EA I F - C T R L . B 8

    C I N HA I F - C T R L . B 9

    T R I P - S E TA I F - C T R L . B 1 0

    T R I P - R E S E TA I F - C T R L . B 1 1

    A I F - I N . B 1 4

    A I F - I N . B 2

    A I F - I N . B 3 1

    A I F - I N . B 1 6

    A I F - I N . B 3 0

    A I F - I N . B 1 7

    1 6 B i t

    ......

    C 0 8 5 7

    C 0 8 5 6 / 1

    C 0 8 5 6 / 2

    C 0 8 5 5 / 1

    C 0 8 5 5 / 2

    C 0 8 5 6 / 3

    C 1 1 9 7

    1 6 B i tL o w W o r d

    1 6 B i tH i g h W o r d

    A I F - I N . D 2

    C 0 1 3 6 / 3

    1 6 B i t

    1 6 B i t A I F - I N . W 2

    A I F - I N . W 3

    1 6 b i n a r ys i g n a l s

    1 6 B i tL o w W o r d

    1 6 B i tH i g h W o r d

    1 6 b i n a r ys i g n a l s

    1 6 B i tA I F - I N . W 1

    A I F - I N . B 1 5

    A I F - I N . B 0

    A I F - I N . D 1

    A I F - C T R L . B 1 2

    A I F - C T R L . B 1 3

    A I F - C T R L . B 1 4

    A I F - C T R L . B 1 5

    Byte 3,4

    Byte 5,6

    Byte 7,8

    A I F - I N

    B i t 0

    B i t 1 5

    Control w

    ord

    A I F - C T R L . B 0

    A I F - C T R L . B 1

    A I F - C T R L . B 2

    A I F - C T R L . B 4

    A I F - C T R L . B 5

    A I F - C T R L . B 6

    A I F - C T R L . B 7

    D C T R L

    Q S PA I F - C T R L . B 3

    D I S A B L EA I F - C T R L . B 8

    C I N HA I F - C T R L . B 9

    T R I P - S E TA I F - C T R L . B 1 0

    T R I P - R E S E TA I F - C T R L . B 1 1

    A I F - I N . B 1 4

    A I F - I N . B 2

    A I F - I N . B 3 1

    A I F - I N . B 1 6

    A I F - I N . B 3 0

    A I F - I N . B 1 7

    1 6 B i t

    ......

    C 0 8 5 7

    C 0 8 5 6 / 1

    C 0 8 5 6 / 2

    C 0 8 5 5 / 1

    C 0 8 5 5 / 2

    C 0 8 5 6 / 3

    Fig. 6-1 Function block AIF-IN and AIF-IN*)(AIF-IN*) is available for the 9300 technology variants servo inverter, positioning controller and cam profiler as of softwareversion 2.0)

    DRIVECOM control word:The assignment of the DRIVECOM control word differs from the AIF control wordFor further information see chapter 6.5.2 or chapter 6.5.3.

    Structure of the PI-data response

    Byte 1 Byte 2 Byte 3 Byte 4 Byte 5 Byte 6DRIVECOMStatus wordHigh byte

    DRIVECOMStatus wordLow byte

    AIF-OUT.W1High byte

    AIF-OUT.W1Low byte

    AIF-OUT.W2High byte

    AIF-OUT.W2Low byte

    For more detailed information about the function block AIF-OUT, see the Manual 93XX.

  • Parameter setting

    6-13� BA2131EN

    2111IBU002

    A I F - O U T

    Status word

    B i t 0

    B i t 1 5

    B i t 0

    B i t 3 1

    Byte 7,8

    Byte 5,6

    Byte 3,4

    1

    0

    2

    C 0 8 5 3

    1

    0

    2

    C 0 8 5 2

    A I F - O U T . D 1

    1 6 B i tL o w W o r d

    1 6 B i tH i g h W o r d

    C 0 8 5 1

    1 6 B i tL o w W o r d

    1 6 B i tH i g h W o r d

    C 0 8 5 9

    F D O - 0

    A I F - O U T . W 1C 0 8 5 0 / 1

    C 0 8 5 8 / 1

    F D O - 1 5

    ...

    A I F - O U T . W 2C 0 8 5 0 / 2

    A I F - O U T . W 3C 0 8 5 0 / 3

    C 0 8 5 8 / 2

    C 0 8 5 8 / 3

    S T A T . B 0

    D C T R L - I M P

    ...

    S T A T . B 1 5

    S T A T . B 1 41 6 B i t

    F D OC 0 1 1 6 / 1

    C 0 1 1 6 / 1 6F D O - 1 6

    F D O - 3 1

    ...C 0 1 1 6 / 1 7

    C 0 1 1 6 / 3 2

    B i t 0

    B i t 1 5

    C 0 1 5 6 / 1

    S T A T

    C 0 1 5 6 / 6

    C 0 1 5 6 / 7

    X 1

    A I F - O U T * )

    Status word

    B i t 0

    B i t 1 5

    B i t 0

    B i t 3 1

    Byte 7,8

    Byte 5,6

    X 1

    Byte 3,4

    1

    0

    2

    C 0 8 5 3

    1

    0

    2

    C 0 8 5 2

    A I F - O U T . D 1

    1 6 B i tL o w W o r d

    1 6 B i tH i g h W o r d

    C 0 8 5 1

    1 6 B i tL o w W o r d

    1 6 B i tH i g h W o r d

    C 0 8 5 9

    F D O - 0

    A I F - O U T . W 1C 0 8 5 0 / 1

    C 0 8 5 8 / 1

    F D O - 1 5

    ...

    A I F - O U T . W 2C 0 8 5 0 / 2

    A I F - O U T . W 3C 0 8 5 0 / 3

    C 0 8 5 8 / 2

    C 0 8 5 8 / 3

    S T A T . B 0

    D C T R L - I M P

    ...

    S T A T . B 1 5

    S T A T . B 1 41 6 B i t

    F D OC 0 1 1 6 / 1

    C 0 1 1 6 / 1 6F D O - 1 6

    F D O - 3 1

    ...C 0 1 1 6 / 1 7

    C 0 1 1 6 / 3 2

    B i t 0

    B i t 1 5

    C 0 1 5 6 / 1

    S T A T

    C 0 1 5 6 / 6

    C 0 1 5 6 / 7

    0

    3

    C 0 8 5 4

    3

    A I F - O U T . D 2C 1 1 9 5

    C 1 1 9 6

    1 6 B i tL o w W o r d

    1 6 B i tH i g h W o r d

    Fig. 6-2 Function block AIF-OUT and AIF-OUT*) (AIF-OUT*) is available for the 9300 technology variants servo inverter, positioningcontroller and cam profiler as of software version 2.0)

    DRIVECOM status word:The assignment of the DRIVECOM status word differs from the AIF status word!For further information see chapter 6.5.2 or chapter 6.5.3.

    6.5 Controller status

    6.5.1 Standard unit control

    For standard control you enter the control information via the corresponding control inputs(terminal):

    With 82XXcontrollers, the corresponding control input is selected via the Lenze parameter L-C0001(operating mode).

    Information about the current unit status (Fig. 6-3, see below) (rectangles) are available in theDRIVECOM parameter “status word“. Commands in the DRIVECOM parameter “control word“ areswitched off and cannot change thecontroller status. The commands to change the controller statusare entered via the corresponding control inputs. These commands are marked by arrows in thefollowing diagram.

  • Parameter setting

    6-14 �BA2131EN

    Status word xxxx xxxx x0xx 0000

    NOT READY TO SWITCH ON

    QSP**

    Ctrl. enable** Ctrl. inhibit**

    automatically wheninitializing is com-pleted

    TRIP (fault)

    TRIP reset**

    Switch on unit

    READY TO SWITCH ON

    Status word xxxx xxxx x01x 0001

    SWITCHED ON

    Status word xxxx xxxx x01x 0011

    OPERATION ENABLED

    Status word xxxx xxxx x01x 0111

    automatically

    Fault

    Status word xxxx xxxx x0xx 1000

    Note:The terms marked with ** arecommands

    Fig. 6-3 Status diagram for standard unit control

    Status MeaningNOT READY TO SWITCHON

    The controller is being initialized and is not yet ready to operate.It then automatically switches to the status READY TO SWITCH ON.

    READY TO SWITCH ON The controller is inhibited and waits for the power stage to be charged. It then automatically switches to the status “SWITCHED ON“.SWITCHED ON The controller is inhibited and waits for controller enable.OPERATION ENABLED The controller is enabled. In this status, a pulse inhibit can be set automatically.FAULT The controller is in the status “FAULT“ (TRIP).

    6.5.2 DRIVECOM unit control

    With PROFIBUS control (for 82XX: Lenze parameter L-C0001 = 3; for 93XX: always)and when usingthe 2131 fieldbus module, Lenze controllers have a controller status as standardized in theDRIVECOM profile 20.

    Information about the current unit status (Fig. 6-4, see below) (rectangles) are available in theDRIVECOM parameter “status word“. Commands in the DRIVECOM parameter control word canchange the controller status. These commands are marked by arrows in the following diagram.

  • Parameter setting

    6-15� BA2131EN

    Inhibit voltagexxxx xxxx xxxx xx0x

    automatically whenfault reaction is over

    Standstillxxxx xxxxxxxx x110

    Standstillxxxx xxxx xxxxx110

    Switch onxxxx xxxxxxxx x111

    automatically when in-itializing is completed Reset fault

    xxxx xxxx 0xxx xxxx

    Switch on unit

    Status word xxxx xxxx x0xx 0000

    NOT READY TO SWITCH ON

    READY TO SWITCH ON

    Status word xxxx xxxx x01x 0001

    SWITCHED ON

    Status word xxxx xxxx x01x 0011

    OPERATION ENABLED

    Status word xxxx xxxx x01x 0111

    Fault

    Status word xxxx xxxx x0xx 1000

    Example:Status information by means of “status word“Bit 15 ... bit 0 (binary display)

    SWITCH ON INHIBIT

    Status word xxxx xxxx x0xx 0000

    QUICK STOP ACTIVE

    Status word xxxx xxxx x01x 0111

    Operation enablexxxx xxxx xxxx 1111 andact. speed value 0*

    Operation inhibitxxxx xxxx xxxx 0111 or act.speed value = 0*

    Inhibit RFG is mapped to quickstop

    Quick stopxxxx xxxx xxxx x01x

    Quick stopxxxx xxxx xxxx x01x

    Inhibit voltagexxxx xxxx xxxx xx0x

    Standstillxxxx xxxx xxxx x110

    MALFUNCTION REACTION ACTIVE

    Status word xxxx xxxx x0xx 1111

    Faultwasrecognized

    xxxx xxxx 1xxx xxxx

    Inhibit voltagexxxx xxxx xxxx xx01orquick stop completed

    9

    8

    4 5

    11

    6

    7

    10 12

    14

    13

    3

    Note:* only effective for 821X, 8200 vector when the

    automatic DC-injection brake is active (L-C0106,L-C2106 0)

    2

    Fig. 6-4 Status diagram DRIVECOM unit control

    Status MeaningNOT READY TO SWITCHON

    The controller is being initialized and is not yet ready to operate. It automatically switches to the status READY TO SWITCH ON.

    SWITCH-ON INHIBIT The controller is inhibited and waits for command 2 (shut down).READY TO SWITCH ON The controller is inhibited and waits for command 3 (switch on).SWITCHED ON The controller is inhibited and waits for command 4 (enable operation).OPERATION ENABLED The controller is enabled. In this status, a pulse inhibit can be set automatically.FAULT REACTION ACTIVE A fault (TRIP) was recognized and a fault response initiated.FAULT The controller is in the status “FAULT“ (TRIP).QUICK STOP ACTIVE While being in the status “OPERATION ENABLED“ the command “quick stop“ was set. The controller is decelerated in a controlled way

    (quick-stop ramp). After deceleration, the controller automatically changes to the controller status “SWITCH ON INHIBIT“.

  • Parameter setting

    6-16 �BA2131EN

    Command MeaningCOMMAND 2, 6, 8 (standstill)

    Control word: bit 0 = 0

    Command to change from different states to the status “READY TO SWITCH ON“.

    COMMAND 3 (switch on) Command to change to the controller status “SWITCHED ON“.COMMAND 4 (enable operation) Command to change to the controller status “OPERATION ENABLED“. The controller inhibit is deactivated.COMMAND 5 (inhibit operation) Command to change to the controller status “SWITCHED ON“. The controller inhibit is activated.COMMAND 7, 9, 10, 12 (voltage inhibit)

    Control word: bit 1 = 0

    Command to change to the controller status “SWITCH ON INHIBIT“. The controller inhibit is activated.

    COMMAND 7, 10, 11 (quick stop)

    Control word: bit 2 = 0

    Command to change to the controller status “SWITCH ON INHIBIT“. If the controller was enabled, it is decelerated in acontrolled way along the Lenze quick-stop ramp.

    COMMAND 13 (FAULT/TRIP) The controller has recognized a malfunction. For some malfunction a controlled deceleration may be necessary(depending on the controller). Once completed, the controller changes to the status FAULT.

    COMMAND 14 (reset fault/TRIP)

    Control word: bit 7 = 0A 1

    With the series 821X, 8200 vector this command acknowledges a fault. The controller changes to the status “SWITCH ONINHIBIT“ when a fault is no longer recognized.

    The individual bit-control commands of the control word depend on other bit positions. In thefollowing you will find a description of the bits required to effect the command.

    Controller status commands Bits of the control word

    Bit 7 6 5 4 3 2 1 0

    1 Standstill 1 1 0

    2 Switch on 1 1 1

    3 Operation enable 1 1 1 1

    4 Operation inhibit 0 1 1 1

    5 Voltage inhibit 0

    6 Quick stop 0 1

    8 Fault reset 01

    Fault reset

    RFG-zero

    RFG-stop

    RFG inhibit

    Operation enable

    Quick stop

    Voltage inhibit

    Switch on

    Explanation:0 = Bit status is 01 = Bit status is 1empty = Any bit status, no influence

  • Parameter setting

    6-17� BA2131EN

    The actual unit status can only be clarified by combining the unit-status information bits (bit 0 to 6).This is shown in the following:

    Unit status Bits of the status word

    Bit 6 5 4 3 2 1 0

    NOT READY TO SWITCH ON 0 0 0 0 0

    SWITCH-ON INHIBIT 1 0 0 0 0

    READY TO SWITCH ON 0 1 0 0 0 1

    SWITCHED ON 0 1 0 0 1 1

    OPERATION ENABLED 0 1 0 1 1 1

    FAULT 0 1 0 0 0

    FAULT REACTION ACTIVE 0 1 1 1 1

    QUICK STOP ACTIVE 0 0 0 1 1 1

    Switch-on inhibit

    Quick stop

    Voltage inhibit

    Fault

    Operation enabled

    Switched on

    Ready to switch on

    Explanation:0 = Bit status is 01 = Bit status is 1empty = Any bit status, no influence

    6.5.3 Control word

    Note!The single bit control commands of the control word depend on other bit positions. Chapter 6.5.2describes the bits required to effect the command.

  • Parameter setting

    6-18 �BA2131EN

    Structure of the parameter “control word“

    Bit Name Meaning0 Switch on Controller status

    0 = command 2, 6, 8 (controller inhibit)1 = command 3 (controller inhibit)

    1 Inhibit voltage Controller status0 = command 9, 10, 12 (controller inhibit)1 = command “voltage inhibit“ not active

    2 Quick stop Controller status0 = Command 7, 10, 11 (quick stop)1 = Command “quick stop“ not active

    3 Operation enable Controller status0 = Command 5 (controller inhibit)1 = Command 4 (controller inhibit not active)

    4 RFG inhibit Inhibit of the ramp-funtion generator. Quick stop is activated without the controller leaving its status.0 = RfG inhibit (quick stop)1 = RFG inhibit not active

    5 FREEDRIVECOM:RFG-stop

    820X: Not assigned821X, 822X: Output of the RFG (speed setpoint integrator) is ”frozen”.

    0 = RFG stop1 = RFG stop not active

    8200 vector, 93XX: free. Mapping to bit AIF-CTRL.B4 negated 1).

    6 FREEDRIVECOM:RFG-zero

    820X: Not assigned821X, 822X: Input of the ramp function generator (speed

    setpoint integrator) will be set to 0. Thuscontrolled deceleration along the ramp.0 = RFG zero1 = RFG zero not active

    8200 vector; 93XX: free. Mapping to bit AIF-CTRL.B5 negated 1).

    7 Fault reset Fault reset (TRIP). For this, a bit change from 0 to 1 is required.For 82XX, the controller is initialized. During this time, the controller does not accept any commands.

    8 Reserve DRIVECOM reserved9 Reserve DRIVECOM reserved10 Reserve DRIVECOM reserved11 FREE

    DRIVECOM:Manufacturer

    820X: Not assigned93XX: free. Mapping to bit AIF-CTRL.B7 1).

    12 FREEDRIVECOM:Manufacturer

    820X, 821X, 822X: Parameter set changeover:0 1 = Parameter set 21 0 = Parameter set 1

    8200 vector, 93XX: free. Mapping to bit AIF-CTRL.B12 1).

    13 FREEDRIVECOM:Manufacturer

    820X, 821X, 822X: DC-injection brake:0 = DCB not active1 = DCB active

    8200 vector: free. Mapping to bit AIF-CTRL.B1493XX: free. Mapping to bit AIF-CTRL.B13 1)

    14 FREEDRIVECOM:Manufacturer

    820X: Not assigned93XX: free. Mapping to bit AIF-CTRL.B14 1)

    15 FREEDRIVECOM:Manufacturer

    820X: PE inhibitInhibit the update of the PO data of the controller (input data for the master). The updatesof status and actual information of the process channel can be inhibited to transmit control informationmore precisely in time (see chapter 3.6.2).0 = Read status and actual value1 = Do not read status and actual value

    821X, 8200 vector,822X: Not assigned93XX: free. Mapping to bit AIF-CTRL.B15 1).

    1) For the assignment see the following table

  • Parameter setting

    6-19� BA2131EN

    The following table shows the assignment of the DRIVECOM control word 93XX depending on theselected signal configuration L-C0005:

    SignalconfigurationL-C0005

    Bit 5(AIF-CTRL.B4)

    Bit 6(AIF-CTRL.B5)

    Bit 11(AIF-CTRL.B7)

    Bit 12(AIF-CTRL.B12)

    Bit 13(AIF-CTRL.B13)

    Bit 14(AIF-CTRL.B14)

    Bit 15(AIF-CTRL.B15)

    Speed control100310131113

    NSET-RFG-STOP(RFG stop)

    NSET-CTRL.ENABLE-0 (RFGzero)

    Not assigned DCTRL-PAR*1 DCTRL-PAR-LOAD NSET-TI*1

    NSET-TI*2

    Torque control400340134113

    NSET-RFG-STOP(RFG stop)

    NSET-CTRL.ENABLE-0 (RFGzero)

    Not assigned DCTRL-PAR*1 DCTRL-PAR-LOAD NSET-JOG*1 NSET-JOG*2

    DF master500350135113

    NSET-RFG-STOP(RFG stop)

    NSET-CTRL.ENABLE-0 (RFGzero)

    Not assigned DCTRL-PAR*1 DCTRL-PAR-LOAD REF-ON NSET-TI*1

    DF-slave bus600360136113

    Not assigned Not assigned Not assigned DCTRL-PAR*1 DCTRL-PAR-LOAD REF-ON Not assigned

    DF-slave cascade700370137113

    Not assigned Not assigned Not assigned DCTRL-PAR*1 DCTRL-PAR-LOAD REF-ON Not assigned

  • Parameter setting

    6-20 �BA2131EN

    6.5.4 Status word

    Note!The current controller status can only be clarified by combining the bits with the status information(bit 0, 1, 2, 3, 4, 5 and 6). This is shown in chapter 6.5.2.

    Structure of the parameter “status word“:

    Bit Name Meaning0 Ready to switch on Controller status information

    0 = Status lower than “READY TO SWITCH ON“1 = Status at least “READY TO SWITCH ON“

    1 Switched on Controller status information0 = Status lower than “SWITCHED ON“1 = Status at least “SWITCHED ON“

    2 Operation enabled Controller status information0 = Status lower than “OPERATION ENABLED“1 = Status “OPERATION ENABLED“

    3 Fault Controller status information0 = No fault (TRIP))1 = Fault (TRIP) occured

    4 Voltage inhibited Information on command “voltage inhibit“ (see chapter 6.5.3 “control word“)0 = Command active1 = Command not active

    5 Quick stop Information on command “quick stop“ (see chapter 6.5.3 “control word“)0 = Command active1 = Command not active

    6 Switch-on inhibit Controller status information0 = Statu not “SWITCH-ON INHIBIT“1 = Status “SWITCH-ON INHIBIT“

    7 Warning Collective warning0 = No warning1 = Warning (overtemperature)

    8 Message Collective message. Automatic setting and resetting of pulse inhibit in the controller status “OPERATION ENABLED“. Reasons for thiscan be undervoltage or overvoltage as well as overcurrent (clamp) or malfunction configuration of 93xx.0 = No message1 = Message (IMP)

    9 Remote 82XX: Bus access, depends on Lenze parameter “operating mode“ (L-C0001):0 = L-C0001 � 31 = L-C0001 3

    93XX: 110 FREE DRIVECOM:

    Setpoint reachedStatus of speed/frequency deviation0 = RFGon � RFGoff1 = RFGon = RFGoff

    11 Limit value Status of the DRIVECOM speed limitation0 = Limitation not addressed1 = Limitation addressed

    12 FREE DRIVECOM:Reserve

    82XX: Not assigned93XX: free. Mapping to bit L-C0150.B14 1)

    13 FREE DRIVECOM:Reserve

    82XX: Not assigned93XX: free. Mapping to bit L-C0150.B3 1)

    14 Manufacturer 820X, 821X, 822X: Imax (current limit reached)0 = Current limit not reached1 = Current limit exceeded

    8200 vector, 93XX: free. Mapping to bit L-C0150.B2 1)

    15 Manufacturer 820X, 821X, 822X: Qmin (fd$ fdQmin)0 = Qmin not active1 = Qmin active

    8200 vector, 93XX: free. Mapping to bit L-C0150.B5 1)

    1) For the assignment see the following table

  • Parameter setting

    6-21� BA2131EN

    The following table shows the assignment of the DRIVECOM status word 93XX depending on theselected signal configuration L-C0005:

    Signal configurationL-C0005

    Bit 10(L-C0150.B4)

    Bit 12(L-C0150.B14)

    Bit 13(L-C0150.B3)

    Bit 14(L-C0150.B2)

    Bit 15(L-C0150.B5)

    Speed control100x101x111x

    NSET-RFG-I=0

    Not assigned Not assigned MCTRL-IMAX QMIN

    Torque control400x401x411x

    MCTRL-IMAX negated Not assigned Not assigned MCTRL-IMAX QMIN

    DF master500x501x511x

    NSET-RFG-I=0

    Not assigned Not assigned REF-OK REF-BUSY

    DF-slave bus600x601x611x

    MCTRL-MMAX negated Not assigned Not assigned REF-OK REF-BUSY

    DF-slave cascade700x701x711x

    MCTRL-MMAX negated Not assigned Not assigned REF-OK REF-BUSY

  • Parameter setting

    6-22 �BA2131EN

    6.6 Lenze-specific parameters

    6.6.1 Only 82XX: Lenze parameter Operating Mode (L-C0001)

    Parametername(Index)

    Sub-Index

    Datastr.

    Datatype

    Meaning(Initialization is printed in bold)

    Operatingmode(5FFEhex)

    0 S I32 Value Control source Setpoint source Parameter source

    0 Terminal Terminal PROFIBUS1 Terminal 8201 (keypad) PROFIBUS2 Terminal Terminal PROFIBUS3 PROFIBUS PROFIBUS PROFIBUS

    6.6.2 Parameter L-C0142

    This parameter L-C0142 prevents the drive from uncontrolled restarts after:

    l Mains connection and disconnection

    l Internal fault

    l Internal message (with pulse inhibit) > 0.5 s

    If the controller sets the status “Mesage“ because of an internal fault (e. g. short mains failure) andthe fault remains active longer than 0.5 s, the controller will be inhibited automatically.

    The parameter L-C0142 has the following function:

    l L-C0142 = 1:The controller restarts automatically as soon as the fault is not active any longer

    l L-C0142 = 0:The controller remains inhibited and