operational amplifier stability - texas instruments · 2012. 2. 22. · 1.95m 2.23m 2.50m vg1 0.00...

96
1 Operational Amplifier Stability Collin Wells Texas Instruments HPA Linear Applications 2/22/2012

Upload: others

Post on 17-Mar-2021

10 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Operational Amplifier Stability - Texas Instruments · 2012. 2. 22. · 1.95m 2.23m 2.50m VG1 0.00 10.00m Vfb-37.08m 62.12m Vo-1.00 1.16 Cause of Amplifier Stability Issues • Example

1

Operational Amplifier Stability

Collin Wells

Texas Instruments

HPA Linear Applications

2/22/2012

Page 2: Operational Amplifier Stability - Texas Instruments · 2012. 2. 22. · 1.95m 2.23m 2.50m VG1 0.00 10.00m Vfb-37.08m 62.12m Vo-1.00 1.16 Cause of Amplifier Stability Issues • Example

2

The CulpritsCapacitive Loads!

High Feedback Network Impedance!

Transimpedance Amplifiers!

Reference Buffers! Cable/Shield Drive! MOSFET Gate Drive!

High-Source Impedance or

Low-Power Circuits!

-

+

IOP2

R3 499kR4 499k

+

VG2

Cin 25p Vout

-

+

OPA

Cin 1u

C1 1u

C2 1u

VIN 5

Vin

Temp

GND

Vout

Trim

U1 REF5025

C3 10u

ADC_VREF

C4 100n

-

+

OPA

RL 250

Rf 20kRg 1k

+

Vin

-

+

OPA

C_Cable 10nVout

VREF 2.5

VREF

Shielded Cable

-

+

OPA

VRef 2.5

R1 20k

R2 20k

Vin 10

VReg

Q1

RL 200

Vo

Rf 1M

Rd 4.99G Cd 10p-

+

OPA

Id

Photodiode

Model

Attenuators!

V+

-

+

OPA

Rf 49kRg 4.99M

Cd 200p Vout

+Vin

D1

D2TVS

Page 3: Operational Amplifier Stability - Texas Instruments · 2012. 2. 22. · 1.95m 2.23m 2.50m VG1 0.00 10.00m Vfb-37.08m 62.12m Vo-1.00 1.16 Cause of Amplifier Stability Issues • Example

3

Just Plain Trouble!

Inverting Input Filter??

Output Filter??

-

+

OPA

VoutV1 5

R1 10k

R2 49kC1 10u C5 100n

-

+

OPA

Rf 100kRg 10k

Cin 1u

Vout

+

Vin

Oscillator

Oscillator

Time (s)

1.95m 2.23m 2.50m

VG1

0.00

10.00m

Vfb

-37.08m

62.12m

Vo

-1.00

1.16

Time (s)

1.95m 2.23m 2.50m

VG1

0.00

10.00m

Vfb

-37.08m

62.12m

Vo

-1.00

1.16

Page 4: Operational Amplifier Stability - Texas Instruments · 2012. 2. 22. · 1.95m 2.23m 2.50m VG1 0.00 10.00m Vfb-37.08m 62.12m Vo-1.00 1.16 Cause of Amplifier Stability Issues • Example

4

Recognize Amplifier Stability Issues on the Bench

• Required Tools:

– Oscilloscope

– Step Generator

• Other Useful Tools:

– Gain / Phase Analyzer

– Network / Spectrum Analyzer

Page 5: Operational Amplifier Stability - Texas Instruments · 2012. 2. 22. · 1.95m 2.23m 2.50m VG1 0.00 10.00m Vfb-37.08m 62.12m Vo-1.00 1.16 Cause of Amplifier Stability Issues • Example

5

Recognize Amplifier Stability Issues

• Oscilloscope - Transient Domain Analysis:

– Oscillations or Ringing

– Overshoots

– Unstable DC Voltages

– High Distortion

Time (s)

1.75m 2.25m 2.75m

Vo

lta

ge

(V

)

0.00

18.53m

Time (s)

1.75m 50.88m 100.00m

Ou

tpu

t

-14.83

0.00

15.00

Time (s)

1.75m 2.25m 2.75m

Vo

lta

ge

(V

)

0.00

21.88m

Page 6: Operational Amplifier Stability - Texas Instruments · 2012. 2. 22. · 1.95m 2.23m 2.50m VG1 0.00 10.00m Vfb-37.08m 62.12m Vo-1.00 1.16 Cause of Amplifier Stability Issues • Example

6

Recognize Amplifier Stability Issues

• Gain / Phase Analyzer - Frequency Domain: Peaking, Unexpected

Gains, Rapid Phase Shifts

Ga

in (

dB

)

-60.00

-40.00

-20.00

0.00

20.00

40.00

Frequency (Hz)

1.00 10.00 100.00 1.00k 10.00k 100.00k 1.00M 10.00M 100.00M

Ph

ase

[d

eg

]

-360.00

-180.00

0.00

Page 7: Operational Amplifier Stability - Texas Instruments · 2012. 2. 22. · 1.95m 2.23m 2.50m VG1 0.00 10.00m Vfb-37.08m 62.12m Vo-1.00 1.16 Cause of Amplifier Stability Issues • Example

7

Quick Op-Amp Theory and Bode Plot Review

Page 8: Operational Amplifier Stability - Texas Instruments · 2012. 2. 22. · 1.95m 2.23m 2.50m VG1 0.00 10.00m Vfb-37.08m 62.12m Vo-1.00 1.16 Cause of Amplifier Stability Issues • Example

8

Poles and Bode Plots

+90

-90

+45

+-45

10 100 1k 10k 100k 1M 10M

Frequency

(Hz)0

(d

eg

ree

s)

-45o @ fP

-45o/Decade

-90o

0o

0

20

40

60

80

100

10M1M100k10k1k100101

Frequency (Hz)

A (

dB

)

-20dB/Decade

-6dB/Octave

fPG

0.707G = -3dB

Actual

FunctionStraight-Line Approximation

R

CV

IN

VOUT

A = VOUT

/VIN

Single Pole Circuit Equivalent

X100,000

Pole Location = fP

Magnitude = -20dB/Decade Slope

Slope begins at fP and continues down as frequency increases

Actual Function = -3dB down @ fP

Phase = -45°/Decade Slope through fP

Decade Above fP Phase = -84.3°

Decade Below fP Phase = -5.7°

Page 9: Operational Amplifier Stability - Texas Instruments · 2012. 2. 22. · 1.95m 2.23m 2.50m VG1 0.00 10.00m Vfb-37.08m 62.12m Vo-1.00 1.16 Cause of Amplifier Stability Issues • Example

9

Zeros and Bode Plots

+90

-90

+45

+-45

10 100 1k 10k 100k 1M 10M

Frequency

(Hz)0

(d

eg

ree

s)

+90o

0o

+45o/Decade

+45o @ fZ

0

20

40

60

80

100

10M1M100k10k1k100101

Frequency (Hz)

A (

dB

)

fZ

+20dB/Decade

+6dB/Octave

Straight-Line Approximation

G

1.414G = +3dB

(1/0.707)G = +3dBActual

Function

R

C

VOUT

A = VOUT

/VIN

Single Zero Circuit Equivalent

X100,000

Zero Location = fZ

Magnitude = +20dB/Decade Slope

Slope begins at fZ and continues up as frequency increases

Actual Function = +3dB up @ fZ

Phase = +45°/Decade Slope through fZ

Decade Above fZ Phase = +84.3°

Decade Below fZ Phase = 5.7°

Page 10: Operational Amplifier Stability - Texas Instruments · 2012. 2. 22. · 1.95m 2.23m 2.50m VG1 0.00 10.00m Vfb-37.08m 62.12m Vo-1.00 1.16 Cause of Amplifier Stability Issues • Example

10

Capacitor Intuitive Model

frequency

controlled

resistor

OPEN SHORT

DC XC

Hi-f XCDC < X

C < Hi-f

XC = 1/(2fC)

Page 11: Operational Amplifier Stability - Texas Instruments · 2012. 2. 22. · 1.95m 2.23m 2.50m VG1 0.00 10.00m Vfb-37.08m 62.12m Vo-1.00 1.16 Cause of Amplifier Stability Issues • Example

11

Inductor Intuitive Model

frequency

controlled

resistor

SHORT OPEN

DC XL

Hi-f XLDC < X

L < Hi-f

XL = 2fL

Page 12: Operational Amplifier Stability - Texas Instruments · 2012. 2. 22. · 1.95m 2.23m 2.50m VG1 0.00 10.00m Vfb-37.08m 62.12m Vo-1.00 1.16 Cause of Amplifier Stability Issues • Example

12

Op-Amp Intuitive Model

K(f)Ro

Rin

Vo

Vout

Vdiff

+

-

IN+

IN-

x1

Page 13: Operational Amplifier Stability - Texas Instruments · 2012. 2. 22. · 1.95m 2.23m 2.50m VG1 0.00 10.00m Vfb-37.08m 62.12m Vo-1.00 1.16 Cause of Amplifier Stability Issues • Example

13

Op-Amp Loop Gain Model

+

-

RF

RI

VIN

+

-

network

Aol+

-

VOUT

VIN

VFB

VOUT

VFB

RF

RI

=VFB

/VOUT

VOUT

network

VOUT/VIN = Acl = Aol/(1+Aolβ)

If Aol >> 1 then Acl ≈ 1/β

Aol: Open Loop Gain

β: Feedback Factor

Acl: Closed Loop Gain

Page 14: Operational Amplifier Stability - Texas Instruments · 2012. 2. 22. · 1.95m 2.23m 2.50m VG1 0.00 10.00m Vfb-37.08m 62.12m Vo-1.00 1.16 Cause of Amplifier Stability Issues • Example

14

Amplifier Stability CriteriaVOUT/VIN = Aol / (1+ Aolβ)

If: Aolβ = -1

Then: VOUT/VIN = Aol / 0 ∞

If VOUT/VIN = ∞ Unbounded Gain

Any small changes in VIN will result in large changes in VOUT which will feed

back to VIN and result in even larger changes in VOUT OSCILLATIONS

INSTABILITY !!

Aolβ: Loop Gain

Aolβ = -1 Phase shift of +180°, Magnitude of 1 (0dB)

fcl: frequency where Aolβ = 1 (0dB)

Stability Criteria:

At fcl, where Aolβ = 1 (0dB), Phase Shift < +180°

Desired Phase Margin (distance from +180° Phase Shift) > 45°

Page 15: Operational Amplifier Stability - Texas Instruments · 2012. 2. 22. · 1.95m 2.23m 2.50m VG1 0.00 10.00m Vfb-37.08m 62.12m Vo-1.00 1.16 Cause of Amplifier Stability Issues • Example

15

What causes amplifier stability issues???

Page 16: Operational Amplifier Stability - Texas Instruments · 2012. 2. 22. · 1.95m 2.23m 2.50m VG1 0.00 10.00m Vfb-37.08m 62.12m Vo-1.00 1.16 Cause of Amplifier Stability Issues • Example

16

Fundamental Cause of Amplifier Stability Issues

• Too much delay in the feedback network

-

+

BUF

BUF BUF

R1 100kR2 100k+ VG1

Vfb

Vo

DELAY

DELAY

Page 17: Operational Amplifier Stability - Texas Instruments · 2012. 2. 22. · 1.95m 2.23m 2.50m VG1 0.00 10.00m Vfb-37.08m 62.12m Vo-1.00 1.16 Cause of Amplifier Stability Issues • Example

17Time (s)

1.95m 2.23m 2.50m

VG1

0.00

10.00m

Vfb

-37.08m

62.12m

Vo

-1.00

1.16

Cause of Amplifier Stability Issues

• Example circuit with too much delay in the feedback network

-

+

BUF

BUF BUF

R1 100kR2 100k+

VG1

Vfb

Vo

R3 10

C1 10uC2 20p

DELAY DELAY

Page 18: Operational Amplifier Stability - Texas Instruments · 2012. 2. 22. · 1.95m 2.23m 2.50m VG1 0.00 10.00m Vfb-37.08m 62.12m Vo-1.00 1.16 Cause of Amplifier Stability Issues • Example

18

Cause of Amplifier Stability Issues

• Real circuit translation of too much delay in the feedback network

-

+

BUF

BUF BUF

R1 100kR2 100k

+

VG1

Vfb

Vo

R3 10

C1 10uC2 20p

-

+

BUF

BUF BUF

R1 100kR2 100k

+

VG1

Vfb

Vo

Ro 10

Cin 4pCstray 16p

Cload 10u

Page 19: Operational Amplifier Stability - Texas Instruments · 2012. 2. 22. · 1.95m 2.23m 2.50m VG1 0.00 10.00m Vfb-37.08m 62.12m Vo-1.00 1.16 Cause of Amplifier Stability Issues • Example

19

Cause of Amplifier Stability Issues

• Same results as the example circuit

-

+

BUF

BUF BUF

R1 100kR2 100k

+

VG1

Vfb

Vo

Ro 10

Cin 4pCstray 16p

Cload 10u

Time (s)

1.95m 2.23m 2.50m

VG1

0.00

10.00m

Vfb

-37.08m

62.12m

Vo

-1.00

1.16

Page 20: Operational Amplifier Stability - Texas Instruments · 2012. 2. 22. · 1.95m 2.23m 2.50m VG1 0.00 10.00m Vfb-37.08m 62.12m Vo-1.00 1.16 Cause of Amplifier Stability Issues • Example

20

How do we determine if our system has too

much delay??

Page 21: Operational Amplifier Stability - Texas Instruments · 2012. 2. 22. · 1.95m 2.23m 2.50m VG1 0.00 10.00m Vfb-37.08m 62.12m Vo-1.00 1.16 Cause of Amplifier Stability Issues • Example

21

Phase Margin

• Phase Margin is a measure of the “delay” in the loop

Ga

in (

dB

)

-40.00

-20.00

0.00

20.00

40.00

60.00

80.00

100.00

120.00

Frequency (Hz)

1.00 10.00 100.00 1.00k 10.00k 100.00k 1.00M 10.00M 100.00M

Ph

ase

[de

g]

0.00

45.00

90.00

135.00

180.00

120

80

60

40

20

0

-20

-40

180

135

90

45

01 10 100 1k 10k 100k 1M 10M 100M

Ga

in (

dB

)P

ha

se (

de

gre

es)

Frequency (Hz)

100

Phase Margin

AOL

AOL

Phase

1/Beta

(Unity-Gain)fcl

V+

V-

+

VG1 353.901124n+

-

+

U2 OPA627E

VF1

Open-Loop

Page 22: Operational Amplifier Stability - Texas Instruments · 2012. 2. 22. · 1.95m 2.23m 2.50m VG1 0.00 10.00m Vfb-37.08m 62.12m Vo-1.00 1.16 Cause of Amplifier Stability Issues • Example

22

Damping Ratio vs. Phase Margin

From: Dorf, Richard C. Modern Control Systems. Addison-Wesley

Publishing Company. Reading, Massachusetts. Third Edition, 1981.

Page 23: Operational Amplifier Stability - Texas Instruments · 2012. 2. 22. · 1.95m 2.23m 2.50m VG1 0.00 10.00m Vfb-37.08m 62.12m Vo-1.00 1.16 Cause of Amplifier Stability Issues • Example

23

Small-Signal Overshoot vs. Damping Ratio

From: Dorf, Richard C. Modern Control Systems. Addison-Wesley

Publishing Company. Reading, Massachusetts. Third Edition, 1981.

Phase Margin Overshoot

90° 0

80° 2%

70° 5%

60° 10%

50° 16%

40° 25%

30° 37%

20° 53%

10° 73%

Page 24: Operational Amplifier Stability - Texas Instruments · 2012. 2. 22. · 1.95m 2.23m 2.50m VG1 0.00 10.00m Vfb-37.08m 62.12m Vo-1.00 1.16 Cause of Amplifier Stability Issues • Example

24

AC Peaking vs. Damping Ratio

From: Dorf, Richard C. Modern Control Systems. Addison-

Wesley Publishing Company. Reading, Massachusetts. Third

Edition, 1981.

Phase Margin AC Peaking

@Wn

90° -7dB

80° -5dB

70° -4dB

60° -1dB

50° +1dB

40° +3dB

30° +6dB

20° +9dB

10° +14dB

Page 25: Operational Amplifier Stability - Texas Instruments · 2012. 2. 22. · 1.95m 2.23m 2.50m VG1 0.00 10.00m Vfb-37.08m 62.12m Vo-1.00 1.16 Cause of Amplifier Stability Issues • Example

25

Frequency (Hz)

1.00 10.00 100.00 1.00k 10.00k 100.00k 1.00M 10.00M 100.00M

Gai

n (d

B)

-40.00

-20.00

0.00

20.00

40.00

60.00

80.00

100.00

120.00120

80

60

40

20

0

-20

-40

Ga

in (

dB

)

100

1 10 100 1k 10k 100k 1M 10M 100MFrequency (Hz)

AOL

AOL*B

1/Beta

Rate of Closure

= 20dB/decade

fcl

Rate of ClosureRate of Closure: Rate at which 1/Beta and AOL intersect

ROC = Slope(1/Beta) – Slope(AOL)

ROC = 0dB/decade – (-20dB/decade) = 20dB/decade

Page 26: Operational Amplifier Stability - Texas Instruments · 2012. 2. 22. · 1.95m 2.23m 2.50m VG1 0.00 10.00m Vfb-37.08m 62.12m Vo-1.00 1.16 Cause of Amplifier Stability Issues • Example

26

Rate of Closure and Phase MarginRelationship between the AOL and 1/Beta rate of closure and Loop-

Gain (AOL*B) phase margin

120

80

60

40

20

0

-20

-40

180

135

90

45

01 10 100 1k 10k 100k 1M 10M 100M

Ga

in (

dB

)P

ha

se (

de

gre

es)

Frequency (Hz)

100

Phase Margin

≥ 45 degrees!

Rate of Closure

= 20dB/decadeAOL

1/B

AOL*B

Phase

AOL*B

Page 27: Operational Amplifier Stability - Texas Instruments · 2012. 2. 22. · 1.95m 2.23m 2.50m VG1 0.00 10.00m Vfb-37.08m 62.12m Vo-1.00 1.16 Cause of Amplifier Stability Issues • Example

27

Frequency (Hz)

1.00 10.00 100.00 1.00k 10.00k 100.00k 1.00M 10.00M 100.00M

Gai

n (d

B)

-40.00

-20.00

0.00

20.00

40.00

60.00

80.00

100.00

120.00120

80

60

40

20

0

-20

-40

Ga

in (

dB

)

100

1 10 100 1k 10k 100k 1M 10M 100MFrequency (Hz)

AOL

1/Beta

Rate of Closure and Phase MarginSo a pole in AOL or a zero in 1/Beta inside the loop will decrease AOL*B Phase!!

40dB/decade

40dB/decade

AOL pole

1/B zero

Page 28: Operational Amplifier Stability - Texas Instruments · 2012. 2. 22. · 1.95m 2.23m 2.50m VG1 0.00 10.00m Vfb-37.08m 62.12m Vo-1.00 1.16 Cause of Amplifier Stability Issues • Example

28

Rate of Closure and Phase Margin

AOL Pole

1/Beta Zero

Gain

(dB)

-40.00

-20.00

0.00

20.00

40.00

60.00

80.00

100.00

120.00

Frequency (Hz)

1.00 10.00 100.00 1.00k 10.00k 100.00k 1.00M 10.00M 100.00M

Phas

e [d

eg]

0.00

45.00

90.00

135.00

180.00

120

80

40

0

-40

180

135

90

45

01 10 100 1k 10k 100k 1M 10M 100M

Gai

n (d

B)

Pha

se (

degr

ees)

Frequency (Hz)

Phase Margin

≈ 0degrees!

Rate of Closure

= 40dB/decade!

Zero in 1/B

Gain

(dB)

-40.00

-20.00

0.00

20.00

40.00

60.00

80.00

100.00

120.00

Frequency (Hz)

1.00 10.00 100.00 1.00k 10.00k 100.00k 1.00M 10.00M 100.00M

Phas

e [d

eg]

0.00

45.00

90.00

135.00

180.00

120

80

40

0

-40

180

135

90

45

01 10 100 1k 10k 100k 1M 10M 100M

Gai

n (d

B)

Pha

se (

degr

ees)

Frequency (Hz)

Phase Margin

≈ 0degrees!

Rate of Closure

= 40dB/decade!

Pole in AOL

Page 29: Operational Amplifier Stability - Texas Instruments · 2012. 2. 22. · 1.95m 2.23m 2.50m VG1 0.00 10.00m Vfb-37.08m 62.12m Vo-1.00 1.16 Cause of Amplifier Stability Issues • Example

29

Testing for Rate of Closure in SPICE

V+

V-

+

VG1 0

+

-

+

U2 OPA627E

VF1

R1 1k R2 1k

V+

V-

+

-

+

U1 OPA627E

Vo

R3 1k R4 1k

L1 1T

C1 1T

+

VG2

Vfb

VinShort out the input source

Break the loop with L1 at

the inverting input

Inject an AC stimulus

through C1

• Break the feedback loop and inject a small AC signal

Page 30: Operational Amplifier Stability - Texas Instruments · 2012. 2. 22. · 1.95m 2.23m 2.50m VG1 0.00 10.00m Vfb-37.08m 62.12m Vo-1.00 1.16 Cause of Amplifier Stability Issues • Example

30

Breaking the Loop

DC AC

V-

V+

+

-

+

U1 OPA627E

Vo

Rf 1k

Rg 1k

+

VG2Vfb

Vin

L1

C1V-

V+

+

-

+

U1 OPA627E

Vo

Rf 1kRg 1k+

VG1

Vfb

VinL1

C1

Page 31: Operational Amplifier Stability - Texas Instruments · 2012. 2. 22. · 1.95m 2.23m 2.50m VG1 0.00 10.00m Vfb-37.08m 62.12m Vo-1.00 1.16 Cause of Amplifier Stability Issues • Example

31

Plotting AOL, 1/Beta, and Loop Gain

AOL = Vo/Vin

1/Beta = Vo/Vfb

AOL*B = Vfb/Vin

Ga

in (

dB

)

-40.00

-20.00

0.00

20.00

40.00

60.00

80.00

100.00

120.00

Frequency (Hz)

1.00 14.14k 200.00M

Ph

ase

[de

g]

0.00

45.00

90.00

135.00

180.00

120

80

60

40

20

0

-20

-40

180

135

90

45

01 10 100 1k 10k 100k 1M 10M 100M

Gai

n (d

B)

Pha

se (

degr

ees)

Frequency (Hz)

100

Phase Margin

= 80degrees

AOL*B

1/B

AOL*B

Phase

AOLV+

V-

+

-

+

U1 OPA627E

Vo

+

VG1 0

L1 1T

C1 1T

Vin

Rg 1k Rf 1k

Vfb

Page 32: Operational Amplifier Stability - Texas Instruments · 2012. 2. 22. · 1.95m 2.23m 2.50m VG1 0.00 10.00m Vfb-37.08m 62.12m Vo-1.00 1.16 Cause of Amplifier Stability Issues • Example

32

Noise Gain

• Understanding Noise Gain vs. Signal Gain

Signal Gain, G = -1 Signal Gain, G = 2

Both circuits have a NOISE GAIN (NG) of 2.

NG = 1 + ΙSGΙ = 2 NG = SG = 2

V+

V-

V+

V-

+

VG1

+

-

+

U1 OPA627E

Vo

R1 1k R2 1k

+

VG1

+

-

+

U1 OPA627E

Vo

R1 1k R2 1k

Page 33: Operational Amplifier Stability - Texas Instruments · 2012. 2. 22. · 1.95m 2.23m 2.50m VG1 0.00 10.00m Vfb-37.08m 62.12m Vo-1.00 1.16 Cause of Amplifier Stability Issues • Example

33

Noise Gain

• Noise Gain vs. Signal Gain

Gain of -0.1V/V, Is it Stable?

Signal Gain, G = -0.1

If it’s unity-gain stable then it’s stable as an inverting

attenuator!!!

V+

V-

+

VG1

+

-

+

U1 OPA627E

Vo

R1 10k R2 1k

V+

V-

+

VG1

+

-

+

U1 OPA627E

Vo

R1 10k R2 1k

Noise Gain, NG = 1.1

Page 34: Operational Amplifier Stability - Texas Instruments · 2012. 2. 22. · 1.95m 2.23m 2.50m VG1 0.00 10.00m Vfb-37.08m 62.12m Vo-1.00 1.16 Cause of Amplifier Stability Issues • Example

34

Capacitive Loads

Page 35: Operational Amplifier Stability - Texas Instruments · 2012. 2. 22. · 1.95m 2.23m 2.50m VG1 0.00 10.00m Vfb-37.08m 62.12m Vo-1.00 1.16 Cause of Amplifier Stability Issues • Example

35

Capacitive LoadsUnity Gain Buffer Circuits Circuits with Gain

V+

V-

+

Vin

+

-

+

U1 OPA627E

Vo

CLoad 1uF

0 150u 300u

Time (seconds)

80m

0

Vo (V)

Time (s)

0.00 150.00u 300.00u

VF1

-40.00m

-10.00m

20.00m

50.00m

80.00m

VG1

0.00

20.00m

Vin (V)

20m

-40m20m

10m

Time (s)

0.00 150.00u 300.00u

V1

0.00

20.00m

40.00m

VG1

0.00

1.00m

0 150u 300u

Time (seconds)

40m

0

Vo (V)

Vin (V)

20m

0

1m

V+

V-

+

-

+

U1 OPA627E

Vo

R2 100kR3 4.99k

+

VinCLoad 1u

Page 36: Operational Amplifier Stability - Texas Instruments · 2012. 2. 22. · 1.95m 2.23m 2.50m VG1 0.00 10.00m Vfb-37.08m 62.12m Vo-1.00 1.16 Cause of Amplifier Stability Issues • Example

36

Capacitive Loads – Unity Gain Buffers - Results

Determine the issue:

Pole in AOL!!

ROC = 40dB/decade!!

Phase Margin 0!!

NG = 1V/V = 0dB120

80

60

40

20

0

-20

-40

180

135

90

45

01 10 100 1k 10k 100k 1M 10M 100M

Ga

in (

dB

)P

ha

se

(d

eg

ree

s)

Frequency (Hz)

100

Vo

lta

ge

(V

)

-40

-20

0

20

40

60

80

100

120

Frequency (Hz)

1.00 10.00 100.00 1.00k 10.00k 100.00k 1.00M 10.00M 100.00M

Vo

lta

ge

(V

)

0.00

45.00

90.00

135.00

180.00

Phase Margin

= 0.2degrees!

Rate of Closure

= 40dB/decade!

AOL + AOL*B

1/B

AOL*B

Phase

Pole in AOL

V+

V-

+

-

+

U1 OPA627E

Vo

CLoad 1u+

Vin

L1 1T

C4 1

T

Vin

Page 37: Operational Amplifier Stability - Texas Instruments · 2012. 2. 22. · 1.95m 2.23m 2.50m VG1 0.00 10.00m Vfb-37.08m 62.12m Vo-1.00 1.16 Cause of Amplifier Stability Issues • Example

37

Capacitive Loads – Unity Gain Buffers - Theory

+

AOL

Ro 54

CLoad 1u

Loaded AOL

V+

V-

+

-

+

U1 OPA627E

Vo

CLoad 1u+

Vin

L1 1T

C4 1

T

Vin

Loaded AOL

Ro 54

CLoad 1u

L1

+

Vin

-

+

-

+

AOL 1M

C1

Page 38: Operational Amplifier Stability - Texas Instruments · 2012. 2. 22. · 1.95m 2.23m 2.50m VG1 0.00 10.00m Vfb-37.08m 62.12m Vo-1.00 1.16 Cause of Amplifier Stability Issues • Example

38

Capacitive Loads – Unity Gain Buffers - Theory

Transfer function:

W(s)=1

1+Ro

Cload

s

Ga

in (

dB

)

-80.00

-60.00

-40.00

-20.00

0.00

Frequency (Hz)

1.00 10.00 100.00 1.00k 10.00k 100.00k 1.00M 10.00M 100.00M

Ph

ase

[d

eg

]

-90.00

-45.00

0.00

0

-20

-40

-60

-80

0

-45

-901 10 100 1k 10k 100k 1M 10M 100M

Ga

in (

dB

)P

ha

se

(d

eg

ree

s)

Frequency (Hz)

Loaded AOL

Pole

+

Vin

Ro 54

CLoad 1u

Loaded AOL

f(pole)=1

2 pi Ro CLoad s

Page 39: Operational Amplifier Stability - Texas Instruments · 2012. 2. 22. · 1.95m 2.23m 2.50m VG1 0.00 10.00m Vfb-37.08m 62.12m Vo-1.00 1.16 Cause of Amplifier Stability Issues • Example

39

Capacitive Loads – Unity Gain Buffers - Theory

X

=G

ain

(dB

)

-80.00

-60.00

-40.00

-20.00

0.00

Frequency (Hz)

1.00 10.00 100.00 1.00k 10.00k 100.00k 1.00M 10.00M 100.00M

Pha

se [d

eg]

-90.00

-45.00

0.00

0

-20

-40

-60

-80

0

-45

-901 10 100 1k 10k 100k 1M 10M 100M

Gai

n (d

B)

Pha

se (d

egre

es)

Frequency (Hz)

Gai

n (d

B)

-40.00

-20.00

0.00

20.00

40.00

60.00

80.00

100.00

120.00

Frequency (Hz)

1.00 10.00 100.00 1.00k 10.00k 100.00k 1.00M 10.00M 100.00M

Pha

se [d

eg]

0.00

45.00

90.00

135.00

180.00

120

80

60

40

20

0

-20

-40

180

135

90

45

01 10 100 1k 10k 100k 1M 10M 100M

Gai

n (d

B)

Pha

se (

degr

ees)

Frequency (Hz)

100

Volta

ge (V

)

-40

-20

0

20

40

60

80

100

120

Frequency (Hz)

1.00 10.00 100.00 1.00k 10.00k 100.00k 1.00M 10.00M 100.00M

Volta

ge (V

)

0.00

45.00

90.00

135.00

180.00

120

80

60

40

20

0

-20

-40

180

135

90

45

01 10 100 1k 10k 100k 1M 10M 100M

Gai

n (d

B)Ph

ase

(deg

rees

)

Frequency (Hz)

100

AOL AOL Load

Loaded AOL

Page 40: Operational Amplifier Stability - Texas Instruments · 2012. 2. 22. · 1.95m 2.23m 2.50m VG1 0.00 10.00m Vfb-37.08m 62.12m Vo-1.00 1.16 Cause of Amplifier Stability Issues • Example

40

Stabilize Capacitive Loads –Unity Gain Buffers

Page 41: Operational Amplifier Stability - Texas Instruments · 2012. 2. 22. · 1.95m 2.23m 2.50m VG1 0.00 10.00m Vfb-37.08m 62.12m Vo-1.00 1.16 Cause of Amplifier Stability Issues • Example

41

Unity-Gain circuits can only be stabilized by modifying the AOL load

Frequency (Hz)

1.00 10.00 100.00 1.00k 10.00k 100.00k 1.00M 10.00M 100.00M

Gai

n (d

B)

-40.00

-20.00

0.00

20.00

40.00

60.00

80.00

100.00

120.00120

80

60

40

20

0

-20

-40

Ga

in (

dB

)

100

1 10 100 1k 10k 100k 1M 10M 100MFrequency (Hz)

Stability Options

Page 42: Operational Amplifier Stability - Texas Instruments · 2012. 2. 22. · 1.95m 2.23m 2.50m VG1 0.00 10.00m Vfb-37.08m 62.12m Vo-1.00 1.16 Cause of Amplifier Stability Issues • Example

42

Method 1: Riso

V+

V-

+

-

+

U1 OPA627E CLoad 1u

Riso 6+

VG1

Vo

VLoad

Page 43: Operational Amplifier Stability - Texas Instruments · 2012. 2. 22. · 1.95m 2.23m 2.50m VG1 0.00 10.00m Vfb-37.08m 62.12m Vo-1.00 1.16 Cause of Amplifier Stability Issues • Example

43

Method 1: Riso - ResultsTheory: Adds a zero to the Loaded AOL response to cancel the pole

Ga

in (

dB

)

-40.00

-20.00

0.00

20.00

40.00

60.00

80.00

100.00

120.00

Frequency (Hz)

1.00 10.00 100.00 1.00k 10.00k 100.00k 1.00M 10.00M 100.00M

Ph

ase

[d

eg

]

0.00

45.00

90.00

135.00

180.00

120

80

60

40

20

0

-20

-40

180

135

90

45

01 10 100 1k 10k 100k 1M 10M 100M

Ga

in (

dB

)P

ha

se

(d

eg

ree

s)

Frequency (Hz)

100

Phase Margin

= 87.5degrees!

Rate of Closure

= 20dB/decade

AOL + AOL*B

Pole in AOL1/B

AOL*B

Phase

Zero in AOL

V+

V-

+

-

+

U1 OPA627E CLoad 1u

L1 1T

C1 1T

Vin

Riso 5

+

VG1

Vo

Ro 54

CLoad 1u

+

VG1

-

+

-

+

AOL 1M

Riso 5

Loaded AOL

C1

Ro 54

Riso 5

Loaded AOL

CLoad 1u

+

AOL

Page 44: Operational Amplifier Stability - Texas Instruments · 2012. 2. 22. · 1.95m 2.23m 2.50m VG1 0.00 10.00m Vfb-37.08m 62.12m Vo-1.00 1.16 Cause of Amplifier Stability Issues • Example

44

Method 1: Riso - ResultsWhen to use: Works well when DC accuracy is not important, or when

loads are very light

Vo (V)

Vload (V)

Vin (V)

Time (s)

0.00 125.00u 250.00u

V1

0.00

20.37m

V2

0.00

20.00m

VG1

0.00

20.00m

V+

V-

+

-

+

U1 OPA627E CLoad 1u

Riso 6

+

VG1

Vo

VLoad

Page 45: Operational Amplifier Stability - Texas Instruments · 2012. 2. 22. · 1.95m 2.23m 2.50m VG1 0.00 10.00m Vfb-37.08m 62.12m Vo-1.00 1.16 Cause of Amplifier Stability Issues • Example

45

Method 1: Riso - Theory

V+

V-

+

-

+

U1 OPA627E CLoad 1u

L1 1T

C1 1T

Vin

Riso 5

+

VG1

Vo

Ro 54

CLoad 1u

+

VG1

-

+

-

+

AOL 1M

Riso 5

Loaded AOL

C1

Ro 54

Riso 5

Loaded AOL

CLoad 1u

+

AOL

Page 46: Operational Amplifier Stability - Texas Instruments · 2012. 2. 22. · 1.95m 2.23m 2.50m VG1 0.00 10.00m Vfb-37.08m 62.12m Vo-1.00 1.16 Cause of Amplifier Stability Issues • Example

46

Method 1: Riso - Theory

Zero Equation:

f(zero)=1

2 pi Riso CLoad s

Pole Equation:

f(pole)=1

2 pi (Ro+Riso) CLoad s

Transfer function:

Loaded AOL(s)=1+CLoad Riso s

1+(Ro+Riso) CLoad s

Ro 54Ohm

Riso 5Ohm

Loaded AOL

CLoad 1uF

+

Vin

Ga

in (

dB

)

-40.00

-20.00

0.00

Frequency (Hz)

1.00 10.00 100.00 1.00k 10.00k 100.00k 1.00M 10.00M 100.00M

Ph

ase

[d

eg

]

-90.00

-45.00

0.00

0

-20

-40

0

-45

-901 10 100 1k 10k 100k 1M 10M 100M

Ga

in (

dB

)P

ha

se

(d

eg

ree

s)

Frequency (Hz)

Page 47: Operational Amplifier Stability - Texas Instruments · 2012. 2. 22. · 1.95m 2.23m 2.50m VG1 0.00 10.00m Vfb-37.08m 62.12m Vo-1.00 1.16 Cause of Amplifier Stability Issues • Example

47

Method 1: Riso - Theory

X

=

Gai

n (d

B)

-40.00

-20.00

0.00

20.00

40.00

60.00

80.00

100.00

120.00

Frequency (Hz)

1.00 10.00 100.00 1.00k 10.00k 100.00k 1.00M 10.00M 100.00M

Pha

se [d

eg]

0.00

45.00

90.00

135.00

180.00

120

80

60

40

20

0

-20

-40

180

135

90

45

01 10 100 1k 10k 100k 1M 10M 100M

Gai

n (d

B)

Pha

se (

degr

ees)

Frequency (Hz)

100

Gai

n (d

B)

-40.00

-20.00

0.00

Frequency (Hz)

1.00 10.00 100.00 1.00k 10.00k 100.00k 1.00M 10.00M 100.00M

Pha

se [d

eg]

-90.00

-45.00

0.00

0

-20

-40

0

-45

-901 10 100 1k 10k 100k 1M 10M 100M

Gai

n (d

B)

Pha

se (d

egre

es)

Frequency (Hz)

Gai

n (d

B)

-40.00

-20.00

0.00

20.00

40.00

60.00

80.00

100.00

120.00

Frequency (Hz)

1.00 10.00 100.00 1.00k 10.00k 100.00k 1.00M 10.00M 100.00M

Phas

e [d

eg]

0.00

45.00

90.00

135.00

180.00

120

80

60

40

20

0

-20

-40

180

135

90

45

01 10 100 1k 10k 100k 1M 10M 100M

Gai

n (d

B)Ph

ase

(deg

rees

)

Frequency (Hz)

100

Page 48: Operational Amplifier Stability - Texas Instruments · 2012. 2. 22. · 1.95m 2.23m 2.50m VG1 0.00 10.00m Vfb-37.08m 62.12m Vo-1.00 1.16 Cause of Amplifier Stability Issues • Example

48

Method 1: Riso - DesignEnsure Good Phase Margin:

1.) Find: fcl and f(AOL = 20dB)

2.) Set Riso to create AOL zero:

Good: f(zero) = Fcl for PM ≈ 45 degrees.

Better: f(zero) = F(AOL = 20dB) will yield slightly less than 90 degrees phase margin

fcl = 222.74kHz

f(AOL = 20dB) = 70.41kHz

Zero Equation:

f(zero)=1

2 pi Riso CLoad s

Pole Equation:

f(pole)=1

2 pi (Ro+Riso) CLoad s

Transfer function:

Loaded AOL(s)=1+CLoad Riso s

1+(Ro+Riso) CLoad s

Frequency (Hz)

1.00 10.00 100.00 1.00k 10.00k 100.00k 1.00M 10.00M 100.00M

Gai

n (d

B)

-40.00

-20.00

0.00

20.00

40.00

60.00

80.00

100.00

120.00

f(AOL = 20dB)

fcl

120

80

60

40

20

0

-20

-40

Ga

in (

dB

)100

1 10 100 1k 10k 100k 1M 10M 100MFrequency (Hz)

Page 49: Operational Amplifier Stability - Texas Instruments · 2012. 2. 22. · 1.95m 2.23m 2.50m VG1 0.00 10.00m Vfb-37.08m 62.12m Vo-1.00 1.16 Cause of Amplifier Stability Issues • Example

49

Method 1: Riso - DesignG

ain

(d

B)

-40.00

-20.00

0.00

20.00

40.00

60.00

80.00

100.00

120.00

Frequency (Hz)

1.00 10.00 100.00 1.00k 10.00k 100.00k 1.00M 10.00M 100.00M

Ph

ase

[d

eg

]

0.00

45.00

90.00

135.00

180.00

120

80

60

40

20

0

-20

-40

180

135

90

45

01 10 100 1k 10k 100k 1M 10M 100M

Ga

in (

dB

)P

ha

se

(d

eg

ree

s)

Frequency (Hz)

100

F(zero) =

70.41kHz

PM = 84°

Ga

in (

dB

)

-40.00

-20.00

0.00

20.00

40.00

60.00

80.00

100.00

120.00

Frequency (Hz)

1.00 10.00 100.00 1.00k 10.00k 100.00k 1.00M 10.00M 100.00M

Ph

ase

[d

eg

]

0.00

45.00

90.00

135.00

180.00

120

80

60

40

20

0

-20

-40

180

135

90

45

01 10 100 1k 10k 100k 1M 10M 100M

Ga

in (

dB

)P

ha

se

(d

eg

ree

s)

Frequency (Hz)

100

F(zero) =

222.74kHz

PM = 52°

f(AOL = 20dB) = 70.41kHz

→ Riso = 2.26Ohms

fcl = 222.74kHz

→ Riso = 0.715Ohms

Zero Equation:

f(zero)=1

2 pi Riso CLoad s

Pole Equation:

f(pole)=1

2 pi (Ro+Riso) CLoad s

Transfer function:

Loaded AOL(s)=1+CLoad Riso s

1+(Ro+Riso) CLoad s

2.26R

V+

V-

+

-

+

U1 OPA627E

CLoad 1u

L1 1T

C1 1T

Vin

Riso 714m

+

VG1

Vo

1uF

0.715R

V+

V-

+

-

+

U1 OPA627E

CLoad 1u

L1 1T

C1 1T

Vin

Riso 714m

+

VG1

Vo

1uF

Ensure Good Phase Margin: Test

Page 50: Operational Amplifier Stability - Texas Instruments · 2012. 2. 22. · 1.95m 2.23m 2.50m VG1 0.00 10.00m Vfb-37.08m 62.12m Vo-1.00 1.16 Cause of Amplifier Stability Issues • Example

50

Method 1: Riso - DesignG

ain

(d

B)

-40.00

-20.00

0.00

20.00

40.00

60.00

80.00

100.00

120.00

Frequency (Hz)

1.00 10.00 100.00 1.00k 10.00k 100.00k 1.00M 10.00M 100.00M

Ph

ase

[d

eg

]

0.00

45.00

90.00

135.00

180.00

120

80

60

40

20

0

-20

-40

180

135

90

45

01 10 100 1k 10k 100k 1M 10M 100M

Ga

in (

dB

)P

ha

se

(d

eg

ree

s)

Frequency (Hz)

100

PM_min = 35°

F(zero) =

26.5kHzF(pole) =

2.65kHz

Ga

in (

dB

)

-40.00

-20.00

0.00

20.00

40.00

60.00

80.00

100.00

120.00

Frequency (Hz)

1.00 10.00 100.00 1.00k 10.00k 100.00k 1.00M 10.00M 100.00M

Ph

ase

[d

eg

]

0.00

45.00

90.00

135.00

180.00

120

80

60

40

20

0

-20

-40

180

135

90

45

01 10 100 1k 10k 100k 1M 10M 100M

Ga

in (

dB

)P

ha

se

(d

eg

ree

s)

Frequency (Hz)

100

PM_min = 20°

F(zero) =

100.2kHz

F(pole) =

2.86kHz

Riso = Ro/9 Riso = Ro/34

Prevent Phase Dip:

Place the zero less than 1 decade from the pole, no more than 1.5 decades away

Good: 1.5 Decades: F(zero) ≤ 35*F(pole) → Riso ≥ Ro/34 → 70° Phase Shift

Better: 1 Decade: F(zero) ≤ 10*F(pole) → Riso ≥ Ro/9 → 55° Phase Shift

Page 51: Operational Amplifier Stability - Texas Instruments · 2012. 2. 22. · 1.95m 2.23m 2.50m VG1 0.00 10.00m Vfb-37.08m 62.12m Vo-1.00 1.16 Cause of Amplifier Stability Issues • Example

51

Method 1: Riso - DesignPrevent Phase Dip: Ratio of Riso to Ro

If Riso ≥ 2*Ro → F(zero) = 1.5*F(pole) → ~10° Phase Shift

**Almost completely cancels the pole.

Ga

in (

dB

)

-40.00

-20.00

0.00

20.00

40.00

60.00

80.00

100.00

120.00

Frequency (Hz)

1.00 10.00 100.00 1.00k 10.00k 100.00k 1.00M 10.00M 100.00M

Ph

ase

[d

eg

]

0.00

45.00

90.00

135.00

180.00

Riso = Ro*2

Ga

in (

dB

)P

ha

se

(d

eg

ree

s)

120

80

60

40

20

0

-20

-40

180

135

90

45

01 10 100 1k 10k 100k 1M 10M 100M

Ga

in (

dB

)P

ha

se

(d

eg

ree

s)

Frequency (Hz)

100

PM_min = 80°

Riso = Ro*2 Phase Shift vs. Riso/Ro

108R

V+

V-

+

-

+

U1 OPA627E

CLoad 1u

L1 1T

C1 1T

Vin

Riso 714m

+

VG1

Vo

1uF

Page 52: Operational Amplifier Stability - Texas Instruments · 2012. 2. 22. · 1.95m 2.23m 2.50m VG1 0.00 10.00m Vfb-37.08m 62.12m Vo-1.00 1.16 Cause of Amplifier Stability Issues • Example

52

Method 1: Riso – Design Summary

6R

V+

V-

+

-

+

U1 OPA627E

CLoad 1u

L1 1T

C1 1T

Vin

Riso 714m

+

VG1

Vo

1uF

Ga

in (

dB

)

-40.00

-20.00

0.00

20.00

40.00

60.00

80.00

100.00

120.00

Frequency (Hz)

1.00 10.00 100.00 1.00k 10.00k 100.00k 1.00M 10.00M 100.00M

Ph

ase

[d

eg

]

0.00

45.00

90.00

135.00

180.00

120

80

60

40

20

0

-20

-40

180

135

90

45

01 10 100 1k 10k 100k 1M 10M 100M

Ga

in (

dB

)P

ha

se

(d

eg

ree

s)

Frequency (Hz)

100

PM_min = 35°

PM = 87.5°

Final Circuit

Summary:

1.) Ensure stability by placing Fzero ≤ F(AOL=20dB)

2.) If Fzero is > 1.5 decades from F(pole) then increase Riso up to at least Ro/34

3.) If loads are very light consider increasing Riso > Ro for stability across all loads

Page 53: Operational Amplifier Stability - Texas Instruments · 2012. 2. 22. · 1.95m 2.23m 2.50m VG1 0.00 10.00m Vfb-37.08m 62.12m Vo-1.00 1.16 Cause of Amplifier Stability Issues • Example

53

Method 1: Riso - Disadvantage

6R

1uFV+

V-

+

-

+U1 OPA627E

CLoad 1u

Riso 6

+

VG1

Vo

Vload

RLoad 25

25R

+ -

Time (s)

0.00 125.00u 250.00u

Vo

lta

ge

(V

)

0.00

20.09m20.19m

0

0 125u 250u

Vo

lta

ge

(V

)

Time (seconds)

Riso Voltage Drop

Vo

VLoad

Disadvantage:

Voltage drop across Riso may not be acceptable

Page 54: Operational Amplifier Stability - Texas Instruments · 2012. 2. 22. · 1.95m 2.23m 2.50m VG1 0.00 10.00m Vfb-37.08m 62.12m Vo-1.00 1.16 Cause of Amplifier Stability Issues • Example

54

Method 2: Riso + Dual Feedback

V+

V-

+

-

+

U1 OPA627ECLoad 1u

Riso 6

+

VG1

VLoad

Rf 49k

Cf 100n

Vo

Page 55: Operational Amplifier Stability - Texas Instruments · 2012. 2. 22. · 1.95m 2.23m 2.50m VG1 0.00 10.00m Vfb-37.08m 62.12m Vo-1.00 1.16 Cause of Amplifier Stability Issues • Example

55

Method 2: Riso + Dual FeedbackTheory: Features a low-frequency feedback to cancel the Riso drop

and a high-frequency feedback to create the AOL pole and zero.

Ga

in (

dB

)

-40.00

-20.00

0.00

20.00

40.00

60.00

80.00

100.00

120.00

Frequency (Hz)

1.00 10.00 100.00 1.00k 10.00k 100.00k 1.00M 10.00M 100.00M

Ph

ase

[d

eg

]

0.00

45.00

90.00

135.00

180.00

120

80

60

40

20

0

-20

-40

180

135

90

45

01 10 100 1k 10k 100k 1M 10M 100M

Ga

in (

dB

)P

ha

se

(d

eg

ree

s)

Frequency (Hz)

100

Phase Margin

= 87.5degrees!

Rate of Closure

= 20dB/decade

AOL + AOL*B

Pole in AOL1/B

AOL*B

Phase

Zero in AOL

V+

V-

+

-

+

U1 OPA627ECLoad 1u

+

VG1

Rf 49k

Cf 100n

VoL1 1T

C1 1T

Vfb

Vin

Riso 6

Page 56: Operational Amplifier Stability - Texas Instruments · 2012. 2. 22. · 1.95m 2.23m 2.50m VG1 0.00 10.00m Vfb-37.08m 62.12m Vo-1.00 1.16 Cause of Amplifier Stability Issues • Example

56

Method 2: Riso + Dual FeedbackWhen to Use: Only practical solution for very large capacitive loads ≥

10uF

When DC accuracy must be preserved across different

current loads

Time (s)

0.00 150.00u 300.00u

V1

0.00

20.27m

V2

0.00

20.00m

VG1

0.00

20.00m

0 150u 300u

Time (seconds)

20.3m

0

VLoad(V)

020m

20m

0

Vo(V)

Vin(V)

V+

V-

+

-

+

U1 OPA627ECLoad 1u

Riso 5

+

VG1

Vload

R2 49k

C1 100n

Vo

Page 57: Operational Amplifier Stability - Texas Instruments · 2012. 2. 22. · 1.95m 2.23m 2.50m VG1 0.00 10.00m Vfb-37.08m 62.12m Vo-1.00 1.16 Cause of Amplifier Stability Issues • Example

57

Method 2: Riso + Dual Feedback - DesignEnsure Good Phase Margin:

1.) Find: fcl and f(AOL = 20dB)

2.) Set Riso to create AOL zero:

Good: f(zero) = Fcl for PM ≈ 45 degrees.

Better: f(zero) = F(AOL = 20dB) will yield slightly less than 90 degrees phase margin

3.) Set Rf so Rf >>Riso

Rf ≥ (Riso * 100)

4.) Set Cf ≥ (200*Riso*Cload)/Rf

fcl = 222.74kHz

f(AOL = 20dB) = 70.41kHz

Zero Equation:

f(zero)=1

2 pi Riso CLoad s

Pole Equation:

f(pole)=1

2 pi (Ro+Riso) CLoad s

Transfer function:

Loaded AOL(s)=1+CLoad Riso s

1+(Ro+Riso) CLoad s

Frequency (Hz)

1.00 10.00 100.00 1.00k 10.00k 100.00k 1.00M 10.00M 100.00M

Gai

n (d

B)

-40.00

-20.00

0.00

20.00

40.00

60.00

80.00

100.00

120.00

f(AOL = 20dB)

fcl

120

80

60

40

20

0

-20

-40

Ga

in (

dB

)

100

1 10 100 1k 10k 100k 1M 10M 100MFrequency (Hz)

Page 58: Operational Amplifier Stability - Texas Instruments · 2012. 2. 22. · 1.95m 2.23m 2.50m VG1 0.00 10.00m Vfb-37.08m 62.12m Vo-1.00 1.16 Cause of Amplifier Stability Issues • Example

58

Method 2: Riso + Dual Feedback - SummaryEnsure Good Phase Margin (Same as “Riso” Method):

1.) Set Riso so f(zero) = F(AOL = 20dB)

2.) Set Rf: Rf ≥ (Riso * 100)

3.) Set Cf: Cf ≥ (200*Riso*Cload)/Rf

V+

V-

+

-

+

U1 OPA627ECLoad 1u

Riso 5

+

VG1

Vload

R2 49k

C1 100n

Vo

Ga

in (

dB

)

-40.00

-20.00

0.00

20.00

40.00

60.00

80.00

100.00

120.00

Frequency (Hz)

1.00 10.00 100.00 1.00k 10.00k 100.00k 1.00M 10.00M 100.00M

Ph

ase

[d

eg

]

0.00

45.00

90.00

135.00

180.00

120

80

60

40

20

0

-20

-40

180

135

90

45

01 10 100 1k 10k 100k 1M 10M 100M

Ga

in (

dB

)P

ha

se

(d

eg

ree

s)

Frequency (Hz)

100

Phase Margin

= 87.5degrees!

Page 59: Operational Amplifier Stability - Texas Instruments · 2012. 2. 22. · 1.95m 2.23m 2.50m VG1 0.00 10.00m Vfb-37.08m 62.12m Vo-1.00 1.16 Cause of Amplifier Stability Issues • Example

59

Capacitive Loads – Circuits with Gain

Page 60: Operational Amplifier Stability - Texas Instruments · 2012. 2. 22. · 1.95m 2.23m 2.50m VG1 0.00 10.00m Vfb-37.08m 62.12m Vo-1.00 1.16 Cause of Amplifier Stability Issues • Example

60

Capacitive Loads – Circuits with Gain

V+

V-

+

-

+

U1 OPA627E

Vo

Rf 100kRg 4.99k

+

VG1 0CLoad 100n

0 150u 300u

Time (seconds)

40m

0

Vol

tage

(V

)

30m

20m

10m

Time (s)

0.00 150.00u 300.00u

Vol

tage

(V)

0.00

10.00m

20.00m

30.00m

40.00m

Page 61: Operational Amplifier Stability - Texas Instruments · 2012. 2. 22. · 1.95m 2.23m 2.50m VG1 0.00 10.00m Vfb-37.08m 62.12m Vo-1.00 1.16 Cause of Amplifier Stability Issues • Example

61

Capacitive Loads – Circuits With Gain - Results

Same Issues as Unity Gain Circuit

Pole in AOL!!

ROC = 40dB/decade!!

Phase Margin = 10°!!

Ga

in (

dB

)

-40.00

-20.00

0.00

20.00

40.00

60.00

80.00

100.00

120.00

Frequency (Hz)

1.00 10.00 100.00 1.00k 10.00k 100.00k 1.00M 10.00M 100.00M

Ph

ase

[d

eg

]

0.00

45.00

90.00

135.00

180.00

120

80

60

40

20

0

-20

-40

180

135

90

45

01 10 100 1k 10k 100k 1M 10M 100M

Ga

in (

dB

)P

ha

se

(d

eg

ree

s)

Frequency (Hz)

100

PM = 10.5°

AOL

1/B

AOL*B

Phase

Pole in AOL

AOL*B

ROC =

40dB/decade

V+

V-

+

-

+

U1 OPA627E

Vo

Rg 100kRf 4.99k

CLoad 100n

+

VG1

L1 1T

C1 1T

Vin

Vfb

Page 62: Operational Amplifier Stability - Texas Instruments · 2012. 2. 22. · 1.95m 2.23m 2.50m VG1 0.00 10.00m Vfb-37.08m 62.12m Vo-1.00 1.16 Cause of Amplifier Stability Issues • Example

62

Stabilize Capacitive Loads –Circuits with Gain

Page 63: Operational Amplifier Stability - Texas Instruments · 2012. 2. 22. · 1.95m 2.23m 2.50m VG1 0.00 10.00m Vfb-37.08m 62.12m Vo-1.00 1.16 Cause of Amplifier Stability Issues • Example

63

Frequency (Hz)

1.00 10.00 100.00 1.00k 10.00k 100.00k 1.00M 10.00M 100.00M

Gai

n (d

B)

-40.00

-20.00

0.00

20.00

40.00

60.00

80.00

100.00

120.00120

80

60

40

20

0

-20

-40

Ga

in (

dB

)

100

1 10 100 1k 10k 100k 1M 10M 100MFrequency (Hz)

AOL

1/Beta

Stability Options – Circuits with GainCircuits with gain can be stabilized by modifying the AOL load and by

modifying 1/Beta

Page 64: Operational Amplifier Stability - Texas Instruments · 2012. 2. 22. · 1.95m 2.23m 2.50m VG1 0.00 10.00m Vfb-37.08m 62.12m Vo-1.00 1.16 Cause of Amplifier Stability Issues • Example

64

Method 1 + Method 2

Method 1: Riso

Method 2: Riso+Dual Feedback

Methods 1 and 2 work on circuits with gain as well!

V+

V-

+

-

+U1 OPA627E

Rf 100kRg 4.99k

+

VG1CLoad 100n

Riso 10

VLoad

Vo

0 150u 300u

Time (seconds)

25m

0

VLoad(V)

0

25m

1m

0

Time (s)

0.00 150.00u 300.00u

V1

0.00

12.50m

25.00m

V2

0.00

12.50m

25.00m

VG1

0.00

1.00m

Vo(V)

Vin(V)

V+

V-

+

-

+

U1 OPA627ECLoad 100n

Riso 10

VLoad

Rf 100k

Cf 100p

Vo

Rg 4.99k

+

VG1

Time (s)

0.00 150.00u 300.00u

V1

0.00

10.00m

20.00m

V2

0.00

10.00m

20.00m

VG1

0.00

1.00m

0 150u 300u

Time (seconds)

25m

0

VLoad(V)

0

25m

1m

0

Vo(V)

Vin(V)

Page 65: Operational Amplifier Stability - Texas Instruments · 2012. 2. 22. · 1.95m 2.23m 2.50m VG1 0.00 10.00m Vfb-37.08m 62.12m Vo-1.00 1.16 Cause of Amplifier Stability Issues • Example

65

Method 3: Cf

V-

V+

+

-

+

U1 OPA627ECLoad 100n

Vo

Rf 100kRg 4.99k

C1 27p

+

VG1

Page 66: Operational Amplifier Stability - Texas Instruments · 2012. 2. 22. · 1.95m 2.23m 2.50m VG1 0.00 10.00m Vfb-37.08m 62.12m Vo-1.00 1.16 Cause of Amplifier Stability Issues • Example

66

Method 3: Cf - ResultsTheory: 1/Beta compensation. Cf feedback capacitor causes 1/Beta to

decrease at -20dB/decade and if placed correctly will cause the ROC to be

20dB/decade.

Ga

in (

dB

)

-40.00

-20.00

0.00

20.00

40.00

60.00

80.00

100.00

120.00

Frequency (Hz)

1.00 10.00 100.00 1.00k 10.00k 100.00k 1.00M 10.00M 100.00M

Ph

ase

[d

eg

]

0.00

45.00

90.00

135.00

180.00

120

80

60

40

20

0

-20

-40

180

135

90

45

01 10 100 1k 10k 100k 1M 10M 100M

Ga

in (

dB

)P

ha

se

(d

eg

ree

s)

Frequency (Hz)

100

PM = 68°

AOL

1/B

AOL*B

Phase

AOL*B

ROC =

20dB/decade

1/B Pole

1/B Zero

AOL Pole

V-

V+

+

-

+

U1 OPA627ECLoad 100n

Vo

Rf 100kRg 4.99k

Cf 27p

+

VG2

L1 1T

C1 1T

Vin

Vfb

Page 67: Operational Amplifier Stability - Texas Instruments · 2012. 2. 22. · 1.95m 2.23m 2.50m VG1 0.00 10.00m Vfb-37.08m 62.12m Vo-1.00 1.16 Cause of Amplifier Stability Issues • Example

67

Method 3: Cf - ResultsWhen to use: Especially effective when NG is high, ≥ 30dB.

Systems where a bandwidth limitation is not an issue

- Limits closed-loop bandwidth at 1/(2*pi*Rf*Cf)

Time (s)

0.00 150.00u 300.00u

Vo

lta

ge

(V

)

0.00

5.00m

10.00m

15.00m

20.00m

25.00m

V-

V+

+

-

+

U1 OPA627ECLoad 100n

Vo

Rf 100kRg 4.99k

C1 27p

+

VG1

Page 68: Operational Amplifier Stability - Texas Instruments · 2012. 2. 22. · 1.95m 2.23m 2.50m VG1 0.00 10.00m Vfb-37.08m 62.12m Vo-1.00 1.16 Cause of Amplifier Stability Issues • Example

68

Method 3: Cf - DesignEnsure Good Phase Margin:

For 20dB/decade ROC, 1/Beta must intersect AOL while its slope is -20dB/decade.

Therefore: f(1/B pole) < f(cl_unmodified)

f(1/B zero) > f(AOL = 0dB)

Frequency (Hz)

1.00 10.91 118.92 1.30k 14.14k 154.22k 1.68M 18.34M 200.00M

Ga

in (

dB

)

-40.00

-20.00

0.00

20.00

40.00

60.00

80.00

100.00

120.00120

80

60

40

20

0

-20

-40

Ga

in (

dB

)

100

1 10 100 1k 10k 100k 1M 10M 100MFrequency (Hz)

f(cl_unmodified)

f(AOL = 0dB)

f(cl_unmodified) = 152.13kHz

f(AOL = 0dB) = 704.06kHz

1/B Pole Equation:

f(1/B pole)=1

2 pi Rf Cf

1/B Zero Equation:

f(1/B zero)=1

2 pi (Rg Rf) Cf

Page 69: Operational Amplifier Stability - Texas Instruments · 2012. 2. 22. · 1.95m 2.23m 2.50m VG1 0.00 10.00m Vfb-37.08m 62.12m Vo-1.00 1.16 Cause of Amplifier Stability Issues • Example

69Frequency (Hz)

1.00 10.91 118.92 1.30k 14.14k 154.22k 1.68M 18.34M 200.00M

Gai

n (d

B)

-40.00

-20.00

0.00

20.00

40.00

60.00

80.00

100.00

120.00120

80

60

40

20

0

-20

-40

Ga

in (

dB

)100

1 10 100 1k 10k 100k 1M 10M 100MFrequency (Hz)

f(cl_unmodified)

f(AOL = 0dB)

Method 3: Cf - DesignEnsure Good Phase Margin:

1.) Find f(AOL=0dB)

2.) Set f(1/B zero) by choosing Cf:

Good: Set f(1/B zero) = f(AOL = 0dB) for PM ≈ 45 degrees.

Better: Set f(1/B zero) so AOL @ f(cl) = ½ Low-Frequency NG in dB

f(cl) @

f(AOL = ½ DC NG)

f(AOL = 0dB) = 704.06kHz

1/B Zero Equation:

f(1/B zero)=1

2 pi (Rg Rf) Cf

Page 70: Operational Amplifier Stability - Texas Instruments · 2012. 2. 22. · 1.95m 2.23m 2.50m VG1 0.00 10.00m Vfb-37.08m 62.12m Vo-1.00 1.16 Cause of Amplifier Stability Issues • Example

70

Method 3: Cf – Design - SummarySummary:

1.) Ensure stability by placing:

a) f(1/B zero) ≥ f(AOL = 0dB

b) f(1/B pole) ≤ f(cl_unmodified)

2.) Try to adjust the zero location so the 1/B curve crosses the AOL curve in the middle of the

1/B span allowing for shifts in AOL

V-

V+

+

-

+

U1 OPA627ECLoad 100n

Vo

Rf 100kRg 4.99k

C1 27p

+

VG1

Ga

in (

dB

)

-40.00

-20.00

0.00

20.00

40.00

60.00

80.00

100.00

120.00

Frequency (Hz)

1.00 10.00 100.00 1.00k 10.00k 100.00k 1.00M 10.00M 100.00M

Ph

ase

[d

eg

]

0.00

45.00

90.00

135.00

180.00

120

80

60

40

20

0

-20

-40

180

135

90

45

01 10 100 1k 10k 100k 1M 10M 100M

Ga

in (

dB

)P

ha

se

(d

eg

ree

s)

Frequency (Hz)

100

PM = 68°

Final Circuit

Page 71: Operational Amplifier Stability - Texas Instruments · 2012. 2. 22. · 1.95m 2.23m 2.50m VG1 0.00 10.00m Vfb-37.08m 62.12m Vo-1.00 1.16 Cause of Amplifier Stability Issues • Example

71

Method 4: Noise-Gain

V-

V+

+

-

+

U1 OPA627ECLoad 100n

Vo

Rf 100kRg 4.99k

Cn 820n

+

VG1

Rn 75

Page 72: Operational Amplifier Stability - Texas Instruments · 2012. 2. 22. · 1.95m 2.23m 2.50m VG1 0.00 10.00m Vfb-37.08m 62.12m Vo-1.00 1.16 Cause of Amplifier Stability Issues • Example

72

Method 4: Noise Gain - ResultsTheory: 1/Beta compensation. Raise high-frequency 1/Beta so the

ROC occurs before the AOL pole causes the AOL slope to change

Ga

in (

dB

)

-40.00

-20.00

0.00

20.00

40.00

60.00

80.00

100.00

120.00

Frequency (Hz)

1.00 10.00 100.00 1.00k 10.00k 100.00k 1.00M 10.00M 100.00M

Ph

ase

[d

eg

]

0.00

45.00

90.00

135.00

180.00

120

80

60

40

20

0

-20

-40

180

135

90

45

01 10 100 1k 10k 100k 1M 10M 100M

Ga

in (

dB

)P

ha

se

(d

eg

ree

s)

Frequency (Hz)

100

PM = 56°

AOL

1/B

AOL*B

Phase

AOL*B

ROC =

20dB/decade

1/B Pole1/B ZeroAOL Pole

V-

V+

+

-

+

U1 OPA627ECLoad 100n

Vo

Rf 100kRg 4.9k

+

VG1

L1 1T

C4 1T

Vin

Vfb

Cn 820n Rn 75

Page 73: Operational Amplifier Stability - Texas Instruments · 2012. 2. 22. · 1.95m 2.23m 2.50m VG1 0.00 10.00m Vfb-37.08m 62.12m Vo-1.00 1.16 Cause of Amplifier Stability Issues • Example

73

Method 4: Noise Gain - ResultsWhen to use: Better for lighter capacitive loading

When AOL @ f(AOL pole) < (Closed loop gain + 20dB)

Due to the increase in noise gain, this approach may not be practical

when required noise gain is greater than the low-frequency signal

gain by more than ~25-30dB.

Time (s)

0.00 150.00u 300.00u

Vo

lta

ge

(V

)

0.00

5.00m

10.00m

15.00m

20.00m

25.00m

0 150u 300u

Time (seconds)

0

25m

10m

20m

15m

5m

Vo

lta

ge

(V

)

V-

V+

+

-

+

U1 OPA627ECLoad 100n

Vo

Rf 100kRg 4.99k

Cn 820n

+

VG1

Rn 75

Page 74: Operational Amplifier Stability - Texas Instruments · 2012. 2. 22. · 1.95m 2.23m 2.50m VG1 0.00 10.00m Vfb-37.08m 62.12m Vo-1.00 1.16 Cause of Amplifier Stability Issues • Example

74

Method 4: Noise Gain - DesignEnsure Good Phase Margin:

For 20dB/decade ROC, 1/Beta must intersect AOL above the AOL pole.

Therefore: |High-Freq NG| > |AOL| @ f(AOL pole)

f(1/B zero) < f(AOL = High-Freq NG)

1/B Zero Equation:

f(1/B zero)=1

2 pi Rn Cn

1/B Pole Equation:

f(1/B pole)=1

2 pi (Rn+(Rg Rf) Cf

High-Freq Noise-Gain Equation:

HF NG = Rf

(Rg Rn)

|AOL| @ f(AOL pole) = 52.11dB

f(AOL pole) = 29.49kHz

Frequency (Hz)

1.00 10.91 118.92 1.30k 14.14k 154.22k 1.68M 18.34M 200.00M

Vo

ltag

e (

V)

-40.00

-20.00

0.00

20.00

40.00

60.00

80.00

100.00

120.00120

80

60

40

20

0

-20

-40

Ga

in (

dB

)

100

1 10 100 1k 10k 100k 1M 10M 100MFrequency (Hz)

f(AOL pole)

|AOL| @

f(AOL pole)

Page 75: Operational Amplifier Stability - Texas Instruments · 2012. 2. 22. · 1.95m 2.23m 2.50m VG1 0.00 10.00m Vfb-37.08m 62.12m Vo-1.00 1.16 Cause of Amplifier Stability Issues • Example

75

Method 4: Noise Gain - DesignEnsure Good Phase Margin:

1.) Find f(AOL pole) and |AOL| @ f(AOL pole)

2.) Set High-Freq Noise-Gain by choosing Rn:

Good: |HF NG| ≥ |AOL| @ f(AOL pole)

Better: |HF NG| ≥ |AOL| @ f(AOL pole) + 10dB

High-Freq Noise-Gain Equation:

HF NG = Rf

(Rg Rn)

|AOL| @ f(AOL pole) = 52.11dB

f(AOL pole) = 29.49kHz

Frequency (Hz)

1.00 10.91 118.92 1.30k 14.14k 154.22k 1.68M 18.34M 200.00M

Vo

ltag

e (

V)

-40.00

-20.00

0.00

20.00

40.00

60.00

80.00

100.00

120.00120

80

60

40

20

0

-20

-40

Ga

in (

dB

)

100

1 10 100 1k 10k 100k 1M 10M 100MFrequency (Hz)

f(AOL pole)

|AOL| @

f(AOL pole)

Page 76: Operational Amplifier Stability - Texas Instruments · 2012. 2. 22. · 1.95m 2.23m 2.50m VG1 0.00 10.00m Vfb-37.08m 62.12m Vo-1.00 1.16 Cause of Amplifier Stability Issues • Example

76

Method 4: Noise Gain - DesignEnsure Good Phase Margin:

3.) Find f(cl_modified) = f(AOL @ |HF NG|)

4.) Set f(1/B zero) by choosing Cn:

Good: f(1/B zero) ≤ f(cl_modified)

Better: f(1/B zero) ≤ f(cl_modified) / 3.5 (~ ½ decade)

High-Freq Noise-Gain Equation:

HF NG = Rf

(Rg Rn)

f(cl_modified) = 29.49kHz

Frequency (Hz)

1.00 10.91 118.92 1.30k 14.14k 154.22k 1.68M 18.34M 200.00M

Vo

ltag

e (

V)

-40.00

-20.00

0.00

20.00

40.00

60.00

80.00

100.00

120.00120

80

60

40

20

0

-20

-40

Ga

in (

dB

)

100

1 10 100 1k 10k 100k 1M 10M 100MFrequency (Hz)

f(AOL pole)

|AOL| @

f(AOL pole)

f(cl_modified)

Page 77: Operational Amplifier Stability - Texas Instruments · 2012. 2. 22. · 1.95m 2.23m 2.50m VG1 0.00 10.00m Vfb-37.08m 62.12m Vo-1.00 1.16 Cause of Amplifier Stability Issues • Example

77

Method 4: Noise Gain - SummarySummary:

1.) Ensure stability by setting:

a) |HF NG| ≥ (|AOL| @ f(AOL pole) + 10dB)

b) f(1/B zero) ≤ f(cl_modified) / 3.5

Final Circuit

V-

V+

+

-

+

U1 OPA627ECLoad 100n

Vo

Rf 100kRg 4.99k

Cn 820n

+

VG1

Rn 75

Ga

in (

dB

)

-40.00

-20.00

0.00

20.00

40.00

60.00

80.00

100.00

120.00

Frequency (Hz)

1.00 10.00 100.00 1.00k 10.00k 100.00k 1.00M 10.00M 100.00M

Ph

ase

[d

eg

]

0.00

45.00

90.00

135.00

180.00

120

80

60

40

20

0

-20

-40

180

135

90

45

01 10 100 1k 10k 100k 1M 10M 100M

Ga

in (

dB

)P

ha

se

(d

eg

ree

s)

Frequency (Hz)

100

PM = 56°

Page 78: Operational Amplifier Stability - Texas Instruments · 2012. 2. 22. · 1.95m 2.23m 2.50m VG1 0.00 10.00m Vfb-37.08m 62.12m Vo-1.00 1.16 Cause of Amplifier Stability Issues • Example

78

Method 4: Noise GainQuick reminder that inverting and non-inverting noise gain circuits are different!

Time (s)

0.00 150.00u 300.00u

Volta

ge (V

)

0.00

5.00m

10.00m

15.00m

20.00m

25.00m

0 150u 300u

Time (seconds)

0

25m

10m

20m

15m

5m

Volta

ge (V

)

0 150u 300u

Time (seconds)

-24m

1m

-14m

-4m

-9m

-19m

Volta

ge (V

)

Time (s)

0.00 150.00u 300.00u

Volta

ge (V

)

-24.00m

-19.00m

-14.00m

-9.00m

-4.00m

1.00m

V-

V+

+

-

+

U1 OPA627ECLoad 100n

Vo

Rf 100kRg 4.99k

Cn 820n

+

VG1

Rn 75

V-

V+

+

-

+

U1 OPA627ECLoad 100n

Vo

Rf 100kRg 4.99k

Cn 820n

Rn 75

+

VG1

Page 79: Operational Amplifier Stability - Texas Instruments · 2012. 2. 22. · 1.95m 2.23m 2.50m VG1 0.00 10.00m Vfb-37.08m 62.12m Vo-1.00 1.16 Cause of Amplifier Stability Issues • Example

79

Circuits with High Feedback Network Impedance

Page 80: Operational Amplifier Stability - Texas Instruments · 2012. 2. 22. · 1.95m 2.23m 2.50m VG1 0.00 10.00m Vfb-37.08m 62.12m Vo-1.00 1.16 Cause of Amplifier Stability Issues • Example

80

Circuits with High Feedback Network Impedance

0 150u 300u

Time (seconds)

1

0

Vo (V)

Vin (V)

0

-1

10m

Time (s)

0.00 150.00u 300.00u

Vout (V)

-1.00

0.00

1.00

VG1

0.00

10.00m

V-

V+

+

-

+

U1 OPA627E

Vo

Rf 499kRg 499k

+Vin

Cstray 20p

Page 81: Operational Amplifier Stability - Texas Instruments · 2012. 2. 22. · 1.95m 2.23m 2.50m VG1 0.00 10.00m Vfb-37.08m 62.12m Vo-1.00 1.16 Cause of Amplifier Stability Issues • Example

81

Circuits with High Feedback Network Impedance

Determine the issue:

Zero in 1/Beta!!

ROC = 40dB/decade!!

Phase Margin 2!!

Ga

in (

dB

)

-40.00

-20.00

0.00

20.00

40.00

60.00

80.00

100.00

120.00

Frequency (Hz)

1.00 10.00 100.00 1.00k 10.00k 100.00k 1.00M 10.00M 100.00M

Ph

ase

[d

eg

]

0.00

45.00

90.00

135.00

180.00

120

80

60

40

20

0

-20

-40

180

135

90

45

01 10 100 1k 10k 100k 1M 10M 100M

Ga

in (

dB

)P

ha

se

(d

eg

ree

s)

Frequency (Hz)

100

PM = 2°

AOL

1/B

AOL*B

Phase

AOL*B

ROC =

40dB/decade!

1/B Zero

V-

V+

+

-

+

U1 OPA627E

Vo

Rf 499kRg 499k

+

VG1

L1 1T

C1 1T

Vin

Vfb

Cin 27p

Page 82: Operational Amplifier Stability - Texas Instruments · 2012. 2. 22. · 1.95m 2.23m 2.50m VG1 0.00 10.00m Vfb-37.08m 62.12m Vo-1.00 1.16 Cause of Amplifier Stability Issues • Example

82

Circuits with High Feedback Network Impedance - Theory

V-

V+

+

-

+

U1 OPA627E

Vo

Rf 499kRg 499k

+

VG1

L1 1T

C1 1T

Vin

Vfb

Cin 27p

Loaded AOL

Ro 54

+

VG1

-

+

-

+

AOL 1M

Rf 499k

Rg 499k Cin 27p

Beta

C1

Loaded AOL

Ro 54

Rf 499k

Rg 499k Cin 27p

Beta

+

AOL

Page 83: Operational Amplifier Stability - Texas Instruments · 2012. 2. 22. · 1.95m 2.23m 2.50m VG1 0.00 10.00m Vfb-37.08m 62.12m Vo-1.00 1.16 Cause of Amplifier Stability Issues • Example

83

Beta Pole & 1/Beta Zero Equation:

f(B pole)=f(1/B zero)=1

2 pi (Rg Rf) Cin

Circuits with High Feedback Network Impedance - Theory

Ga

in (

dB

)-80.00

-60.00

-40.00

-20.00

0.00

Frequency (Hz)

1.00 10.00 100.00 1.00k 10.00k 100.00k 1.00M 10.00M 100.00M

Ph

ase

[d

eg

]

-90.00

-45.00

0.00

0

-20

-40

-60

-80

0

-45

-901 10 100 1k 10k 100k 1M 10M 100M

Ga

in (

dB

)P

ha

se

(d

eg

ree

s)

Frequency (Hz)

Pole in Beta =

Zero in 1/Beta

AOL

UnaffectedBeta

AOL

Load

Ro 54

Rf 499k

Rg 499k Cin 27p

+

VG1 Beta

AOL Load

Page 84: Operational Amplifier Stability - Texas Instruments · 2012. 2. 22. · 1.95m 2.23m 2.50m VG1 0.00 10.00m Vfb-37.08m 62.12m Vo-1.00 1.16 Cause of Amplifier Stability Issues • Example

84

Stabilize Circuits With High Feedback Network Impedance

Page 85: Operational Amplifier Stability - Texas Instruments · 2012. 2. 22. · 1.95m 2.23m 2.50m VG1 0.00 10.00m Vfb-37.08m 62.12m Vo-1.00 1.16 Cause of Amplifier Stability Issues • Example

85

Stability Options – Zero in 1/BetaThe only practical option is to add a pole to cancel the 1/Beta Zero

Frequency (Hz)

1.00 10.00 100.00 1.00k 10.00k 100.00k 1.00M 10.00M 100.00M

Gai

n (d

B)

-40.00

-20.00

0.00

20.00

40.00

60.00

80.00

100.00

120.00120

80

60

40

20

0

-20

-40

Ga

in (

dB

)

100

1 10 100 1k 10k 100k 1M 10M 100MFrequency (Hz)

Page 86: Operational Amplifier Stability - Texas Instruments · 2012. 2. 22. · 1.95m 2.23m 2.50m VG1 0.00 10.00m Vfb-37.08m 62.12m Vo-1.00 1.16 Cause of Amplifier Stability Issues • Example

86

Method 1: Cf

V-

V+

+

-

+

U1 OPA627E

Rf 499kRg 499k

+

VG1

Cstray 20p

Cf 21p

Vo

Page 87: Operational Amplifier Stability - Texas Instruments · 2012. 2. 22. · 1.95m 2.23m 2.50m VG1 0.00 10.00m Vfb-37.08m 62.12m Vo-1.00 1.16 Cause of Amplifier Stability Issues • Example

87

Method 1: Cf - ResultsTheory: 1/Beta compensation. Cf feedback places a pole in 1/Beta to

cancel the zero from the input capacitance.

V-

V+

+

-

+

U1 OPA627E

Vo

Rf 499kRg 499k

Cf 21p

+

VG1

L1 1T

C1 1T

Vin

Vfb

Cin 27p

Vo

lta

ge

(V

)

-40.00

-20.00

0.00

20.00

40.00

60.00

80.00

100.00

120.00

Frequency (Hz)

1.00 10.00 100.00 1.00k 10.00k 100.00k 1.00M 10.00M 100.00M

Vo

lta

ge

(V

)

0.00

45.00

90.00

135.00

180.00

120

80

60

40

20

0

-20

-40

180

135

90

45

01 10 100 1k 10k 100k 1M 10M 100M

Ga

in (

dB

)P

ha

se

(d

eg

ree

s)

Frequency (Hz)

100

PM = 81°

AOL

1/B

AOL*B

Phase

AOL*BROC =

20dB/decade!

1/B Zero 1/B Pole

Page 88: Operational Amplifier Stability - Texas Instruments · 2012. 2. 22. · 1.95m 2.23m 2.50m VG1 0.00 10.00m Vfb-37.08m 62.12m Vo-1.00 1.16 Cause of Amplifier Stability Issues • Example

88

Method 1: Cf - Results

Time (s)

0.00 150.00u 300.00u

V1

0.00

12.50m

25.00m

VG1

0.00

10.00m

0 150u 300u

Time (seconds)

25m

0

Vo (V)

Vin (V)

0

10m

When to use: Almost always a safe design practice.

Limits gain at 1/(2*pi*Rf*Cf)

V-

V+

+

-

+

U1 OPA627E

Rf 499kRg 499k

+

VG1

Cstray 20p

Cf 21p

Vo

Page 89: Operational Amplifier Stability - Texas Instruments · 2012. 2. 22. · 1.95m 2.23m 2.50m VG1 0.00 10.00m Vfb-37.08m 62.12m Vo-1.00 1.16 Cause of Amplifier Stability Issues • Example

89

Frequency (Hz)

1.00 10.00 100.00 1.00k 10.00k 100.00k 1.00M 10.00M 100.00M

Ga

in (d

B)

-40.00

-20.00

0.00

20.00

40.00

60.00

80.00

100.00

120.00120

80

60

40

20

0

-20

-40

Ga

in (

dB

)

100

1 10 100 1k 10k 100k 1M 10M 100MFrequency (Hz)

f(cl)

Method 1: Cf - DesignEnsure Good Phase Margin:

For 20dB/decade ROC, the 1/Beta pole must flatten the 1/Beta Zero before f(cl)

Therefore f(1/Beta pole) ≤ f(cl)

f(cl) = 445.6kHz

1/B Pole Equation:

f(1/B pole)=1

2 pi Rf Cf

1/B Zero Equation:

f(1/B zero)=1

2 pi (Rg Rf) Cin

Page 90: Operational Amplifier Stability - Texas Instruments · 2012. 2. 22. · 1.95m 2.23m 2.50m VG1 0.00 10.00m Vfb-37.08m 62.12m Vo-1.00 1.16 Cause of Amplifier Stability Issues • Example

90Frequency (Hz)

1.00 10.00 100.00 1.00k 10.00k 100.00k 1.00M 10.00M 100.00M

Ga

in (d

B)

-40.00

-20.00

0.00

20.00

40.00

60.00

80.00

100.00

120.00120

80

60

40

20

0

-20

-40

Ga

in (

dB

)100

1 10 100 1k 10k 100k 1M 10M 100MFrequency (Hz)

f(cl)

Method 1: Cf - DesignEnsure Good Phase Margin:

1.) Find f(cl)

2.) Set f(1/B pole) by setting Cf:

Good: f(1/B pole) ≤ f(cl)

Better: f(1/B pole) ≤ f(cl)/ 3.5 (~ ½ decade)

1/B Pole Equation:

f(1/B pole)=1

2 pi Rf Cf

1/B Zero Equation:

f(1/B zero)=1

2 pi (Rg Rf) Cin

Page 91: Operational Amplifier Stability - Texas Instruments · 2012. 2. 22. · 1.95m 2.23m 2.50m VG1 0.00 10.00m Vfb-37.08m 62.12m Vo-1.00 1.16 Cause of Amplifier Stability Issues • Example

91

Method 1: Cf - SummarySummary:

1.) Ensure stability by setting f(1/B pole) ≤ f(cl)/ 3.5 (~ ½ decade)

V-

V+

+

-

+

U1 OPA627E

Rf 499kRg 499k

+

VG1

Cstray 20p

Cf 21p

Vo

Vo

lta

ge

(V

)

-40.00

-20.00

0.00

20.00

40.00

60.00

80.00

100.00

120.00

Frequency (Hz)

1.00 10.00 100.00 1.00k 10.00k 100.00k 1.00M 10.00M 100.00M

Vo

lta

ge

(V

)

0.00

45.00

90.00

135.00

180.00

120

80

60

40

20

0

-20

-40

180

135

90

45

01 10 100 1k 10k 100k 1M 10M 100M

Ga

in (

dB

)P

ha

se

(d

eg

ree

s)

Frequency (Hz)

100

PM = 81°

Page 92: Operational Amplifier Stability - Texas Instruments · 2012. 2. 22. · 1.95m 2.23m 2.50m VG1 0.00 10.00m Vfb-37.08m 62.12m Vo-1.00 1.16 Cause of Amplifier Stability Issues • Example

92

Ro vs. Zo

Page 93: Operational Amplifier Stability - Texas Instruments · 2012. 2. 22. · 1.95m 2.23m 2.50m VG1 0.00 10.00m Vfb-37.08m 62.12m Vo-1.00 1.16 Cause of Amplifier Stability Issues • Example

93

When Ro is really Zo!!

V+

V-

+

-

+

U1 OPA627E

VoVos 80.0432u

IG1V+

V-

-

++

4

3

5

1

2

U1 OPA2376

Vo

Vos -25.3845uV

IG1

Page 94: Operational Amplifier Stability - Texas Instruments · 2012. 2. 22. · 1.95m 2.23m 2.50m VG1 0.00 10.00m Vfb-37.08m 62.12m Vo-1.00 1.16 Cause of Amplifier Stability Issues • Example

94

With Complex Zo, Accurate Models are Key!

Ga

in (

dB

)

-60.00

-40.00

-20.00

0.00

20.00

40.00

60.00

80.00

100.00

120.00

140.00

Frequency (Hz)

1.00 10.00 100.00 1.00k 10.00k 100.00k 1.00M 10.00M 100.00M

Ph

ase

[d

eg

]

-90.00

-45.00

0.00

45.00

90.00

135.00

180.00

120

80

60

40

20

0

-20

140

180

135

90

-901 10 100 1k 10k 100k 1M 10M 100M

Ga

in (

dB

)P

ha

se

(d

eg

ree

s)

Frequency (Hz)

100

PM = -77°!!

1/B

AOL +

AOL*B

ROC =

60dB/decade!

AOL*B

Phase

-40

-60

45

0

-45

V+

V-

-

++

4

3

5

1

2

U1 OPA2376

Vo

CLoad 1uF+

Vin

Time (s)

0.00 150.00u 300.00u

V1

-40.00m

10.00m

60.00m

VG1

0.00

20.00m

0 150u 300u

Time (seconds)

60m

0

Vo (V)

Vin (V)

-40m

20m

Page 95: Operational Amplifier Stability - Texas Instruments · 2012. 2. 22. · 1.95m 2.23m 2.50m VG1 0.00 10.00m Vfb-37.08m 62.12m Vo-1.00 1.16 Cause of Amplifier Stability Issues • Example

95

With Complex Zo, Accurate Models are Key!

V+

V-

-

++

4

3

5

1

2

U1 OPA2376

Vo

Vos -25.3845uV

IG1

1 10 100 1k 10k 100k 1M 10M 100M

Frequency (Hz)

100m

1k

10

1

10k

100

Imp

ed

an

ce

(O

hm

s)

Frequency (Hz)

100.00m 1.00 10.00 100.00 1.00k 10.00k 100.00k 1.00M 10.00M 100.00M

Ga

in (

dB

)

1.00

10.00

100.00

1.00k

10.00k

Page 96: Operational Amplifier Stability - Texas Instruments · 2012. 2. 22. · 1.95m 2.23m 2.50m VG1 0.00 10.00m Vfb-37.08m 62.12m Vo-1.00 1.16 Cause of Amplifier Stability Issues • Example

96

Questions/Comments?

Thank you!!Special Thanks to:

Art Kay

Bruce Trump

Marek Lis

Tim Green

PA Apps Team