opgthpskyqlmtnrgxlxsynqk%2fetd78euzzx57f7i7pm%3d

Upload: priyanka-cholleti

Post on 07-Aug-2018

212 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/21/2019 OPgTHpSKyQLmtNrGXLXSynqK%2fETd78eUzzx57f7I7PM%3d

    1/8

    Lecture 19-2 dofForced

    ResponseMEEM 3700 1

    MEEM 3700MEEM 3700

    Mechanical VibrationsMechanical Vibrations

    Mohan D. Rao

    Chuck Van Karsen

    Mechanical Engineering-Engineering MechanicsMichigan Technological University

    Copyright 2003

    Lecture 19-2 dofForced

    ResponseMEEM 3700 2

    1K  2K  3K 

    1 x 2 x

    1 M  2 M 

    1 f  2 f 

    Given a 2Given a 2--degree of freedom system with no damping the equations ofdegree of freedom system with no damping the equations of

    motion in matrix form can be generalized as:motion in matrix form can be generalized as:

    11 1 11 12 1 1

    22 2 21 22 2 2

    0

    0

    m x k k x f  

    m x k k x f  

    ⎡ ⎤ ⎧ ⎫ ⎡ ⎤ ⎧ ⎫ ⎧ ⎫+ =⎨ ⎬ ⎨ ⎬ ⎨ ⎬⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎩ ⎭ ⎣ ⎦ ⎩ ⎭ ⎩ ⎭

    &&

    &&

    2 DOF2 DOF ForcedForced VibrationVibration

  • 8/21/2019 OPgTHpSKyQLmtNrGXLXSynqK%2fETd78eUzzx57f7I7PM%3d

    2/8

    Lecture 19-2 dofForced

    ResponseMEEM 3700 3

    Assuming harmonic forcing functions of the form:Assuming harmonic forcing functions of the form:

    ( )1 12 2

    sin f F 

    t  f F 

    ω 

    ⎧ ⎫ ⎧ ⎫=⎨ ⎬ ⎨ ⎬

    ⎩ ⎭ ⎩ ⎭

    The solution (motion of xThe solution (motion of x11 and xand x22) will be of the form:) will be of the form:

    ( )1 12 2

    sin x X 

    t  x X 

    ω ⎧ ⎫ ⎧ ⎫

    =⎨ ⎬ ⎨ ⎬⎩ ⎭ ⎩ ⎭

    2 DOF Forced Vibration2 DOF Forced Vibration

    1K  2K  3K 

    1 x 2 x

    1 M  2 M 

    1 f  2 f 

    Lecture 19-2 dofForced

    ResponseMEEM 3700 4

    2 DOF Forced Vibration: Solution2 DOF Forced Vibration: Solution

    ( ) ( )11 11 12 1 1222 21 22 2 2

    0sin sin

    0

    m k k X F  t t 

    m k k X F  ω ω ω 

    ⎛ ⎞⎡ ⎤ ⎡ ⎤ ⎧ ⎫ ⎧ ⎫− + =⎜ ⎟ ⎨ ⎬ ⎨ ⎬⎢ ⎥ ⎢ ⎥

    ⎣ ⎦ ⎣ ⎦ ⎩ ⎭ ⎩ ⎭⎝ ⎠

    Substituting into the equation of motion:Substituting into the equation of motion:

    and simplifyingand simplifying

    11 11 12 1 12

    22 21 22 2 2

    0

    0

    m k k X F  

    m k k X F  ω 

    ⎛ ⎞⎡ ⎤ ⎡ ⎤ ⎧ ⎫ ⎧ ⎫− + =⎜ ⎟ ⎨ ⎬ ⎨ ⎬⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎩ ⎭ ⎩ ⎭⎝ ⎠

  • 8/21/2019 OPgTHpSKyQLmtNrGXLXSynqK%2fETd78eUzzx57f7I7PM%3d

    3/8

    Lecture 19-2 dofForced

    ResponseMEEM 3700 5

    2 DOF Forced Vibration: Impedance Matrix2 DOF Forced Vibration: Impedance Matrix

    Define:Define:   ( )   11 12 11221 22 22

    00

    k k m Z k k m

    ω ω ⎡ ⎤ ⎡ ⎤⎡ ⎤ = −⎢ ⎥ ⎢ ⎥⎣ ⎦⎣ ⎦ ⎣ ⎦

    WhereWhere   ( ) Z    ω ⎡ ⎤⎣ ⎦ is called theis called the  system system oror impedanceimpedance matrix.matrix.

    Then the responseThen the response can be solved for as:can be solved for as:1

    2

     X 

     X 

    ⎧ ⎫⎨ ⎬⎩ ⎭

    ( )  11 1

    2 2

     X F  Z 

     X F ω 

    −⎧ ⎫ ⎧ ⎫⎡ ⎤=⎨ ⎬ ⎨ ⎬⎣ ⎦⎩ ⎭ ⎩ ⎭   ( )

      ( )

    ( )

    1

    det

    adj Z 

     Z   Z 

    ω 

    ω ω 

    −   ⎡ ⎤⎣ ⎦⎡ ⎤   =⎣ ⎦ ⎡ ⎤⎣ ⎦

    ( )2

    11 11 12

    2

    21 22 22

    k m k  Z 

    k k m

    ω 

    ω 

    ω 

    ⎡ ⎤−⎡ ⎤ = ⎢ ⎥⎣ ⎦ −⎣ ⎦

    Lecture 19-2 dofForced

    ResponseMEEM 3700 6

    Inverse of AInverse of A

    [ ]11 12 13

    21 22 23

    31 32 33

    a a a A a a a

    a a a

    ⎛ ⎞⎜ ⎟= ⎜ ⎟

    ⎜ ⎟⎝ ⎠

    [ ]  [ ]

    [ ]1

    det

    adjoint A A

     A

    −=

    [ ] [ ]adjoint transpose of cofactor

    cofactors minor determinants

     A A=

    = ±

    [ ]( )( )12 33 13

    22 33 23 32

    32

    ...

    ...

    ...a acof Aa a

    aa a

    a−⎛ ⎞⎜ ⎟

    = ⎜ ⎟⎜

    +−

    ⎟⎝ ⎠

    −O

    Linear Algebra Review: Matrix OperationsLinear Algebra Review: Matrix Operations

  • 8/21/2019 OPgTHpSKyQLmtNrGXLXSynqK%2fETd78eUzzx57f7I7PM%3d

    4/8

    Lecture 19-2 dofForced

    ResponseMEEM 3700 7

    2 DOF Forced Vibration: Impedance Matrix2 DOF Forced Vibration: Impedance Matrix

    The inverse of the impedance matrix is written as:The inverse of the impedance matrix is written as:

    ( )( )( ) ( )

    2

    22 22 12

    21 21 11 11

    2

    11 11 22 22 12 21

    k m k 

    k k m Z 

    k m k m k k  

    ω 

    ω 

    ω 

    ω ω 

    ⎡ ⎤− −⎢ ⎥

    − −⎣ ⎦⎡ ⎤   =⎣ ⎦− − −

    Then the responseThen the response can be solved for as:can be solved for as:1

    2

     X 

     X 

    ⎧ ⎫⎨ ⎬⎩ ⎭

    ( )  11 1

    2 2

     X F 

     Z  X F ω 

    −⎧ ⎫ ⎧ ⎫

    ⎡ ⎤=⎨ ⎬ ⎨ ⎬⎣ ⎦⎩ ⎭ ⎩ ⎭

    Lecture 19-2 dofForced

    ResponseMEEM 3700 8

    2 DOF Forced Vibration: Impedance Matrix2 DOF Forced Vibration: Impedance Matrix

    Therefore each response can be written as:Therefore each response can be written as:

    ( )( )( )   ( )

    2

    22 22 1 12 2

    1 2 2

    11 11 22 22 12 21

    k m F k F   X 

    k m k m k k  

    ω 

    ω ω 

    − −=

    − − −

    ( )( ) ( )   ( )

    2

    11 11 2 21 1

    2 2 2

    11 11 22 22 12 21

    k m F k F  

     X  k m k m k k  

    ω 

    ω ω 

    − −

    = − − −

  • 8/21/2019 OPgTHpSKyQLmtNrGXLXSynqK%2fETd78eUzzx57f7I7PM%3d

    5/8

    Lecture 19-2 dofForced

    ResponseMEEM 3700 9

    2 DOF Forced Vibration: FRF Matrix2 DOF Forced Vibration: FRF Matrix

    DefineDefine ( ) ( )   1 H Z ω ω  −⎡ ⎤ ⎡ ⎤=⎣ ⎦ ⎣ ⎦

    as the Frequency Response Function Matrixas the Frequency Response Function Matrix

    ( )1 1 11 12 12 2 21 22 2

     X F h h F  H 

     X F h h F ω 

    ⎧ ⎫ ⎧ ⎫ ⎡ ⎤ ⎧ ⎫⎡ ⎤= =⎨ ⎬ ⎨ ⎬ ⎨ ⎬⎢ ⎥⎣ ⎦

    ⎩ ⎭ ⎩ ⎭ ⎣ ⎦ ⎩ ⎭

    Therefore each response can be written as:Therefore each response can be written as:

    1 11 1 12 2 X h F h F = +

    2 21 1 22 2 X h F h F = +

    Lecture 19-2 dofForced

    ResponseMEEM 3700 10

    2 DOF Forced Vibration: FRF2 DOF Forced Vibration: FRF

    The individualThe individual FRFFRF’’ss are defined as:are defined as:

    ( ) ( )   ( )

    2

    1 22 2211 2 2

    1   11 11 22 22 12 21

     X k mh

    F    k m k m k k  

    ω 

    ω ω 

    −= =

    − − −

    ( )( )   ( )1 12

    12 2 22   11 11 22 22 12 21

     X k h

    F    k m k m k k  ω ω 

    −= =

    − − −

    ( )( )   ( )2 21

    21 2 21   11 11 22 22 12 21

     X k h

    F    k m k m k k  ω ω 

    −= =

    − − −

    ( )( )   ( )

    22 11 11

    22 2 22   11 11 22 22 12 21

     X k mh

    F    k m k m k k  

    ω 

    ω ω 

    −= =− − −

  • 8/21/2019 OPgTHpSKyQLmtNrGXLXSynqK%2fETd78eUzzx57f7I7PM%3d

    6/8

    Lecture 19-2 dofForced

    ResponseMEEM 3700 11

    0 0.5 1 1.5 2 2.5 3 3.5 4-20

    -15

    -10

    -5

    0

    5

    10

    15

    20

    Frequency Hz

         X     2     /     F     1

    X2/F1

    0 0.5 1 1.5 2 2.5 3 3.5 4-20

    -15

    -10

    -5

    0

    5

    10

    15

    20

    Frequency Hz

         X     1     /     F     1

    X1/F1

    0 0.5 1 1.5 2 2.5 3 3.5 4-20

    -15

    -10

    -5

    0

    5

    10

    15

    20

    Frequency Hz

         X     1     /     F     2

    X1/F2

    0 0.5 1 1.5 2 2.5 3 3.5 4-20

    -15

    -10

    -5

    0

    5

    10

    15

    20

    Frequency Hz

         X     2     /     F     2

    X2/F2

    Arrows indicate that

    function goes to infinity

    Lecture 19-2 dofForced

    ResponseMEEM 3700 12

    2 DOF Forced Vibration: Damping2 DOF Forced Vibration: Damping

    If damping is considered the equations of motion become:If damping is considered the equations of motion become:

    11 1 11 12 1 11 12 1 1

    22 2 21 22 2 21 22 2 2

    0

    0

    m x c c x k k x f  

    m x c c x k k x f  

    ⎡ ⎤ ⎧ ⎫ ⎡ ⎤ ⎧ ⎫ ⎡ ⎤ ⎧ ⎫ ⎧ ⎫+ + =⎨ ⎬ ⎨ ⎬ ⎨ ⎬ ⎨ ⎬⎢ ⎥ ⎢ ⎥ ⎢ ⎥

    ⎣ ⎦ ⎩ ⎭ ⎣ ⎦ ⎩ ⎭ ⎣ ⎦ ⎩ ⎭ ⎩ ⎭

    && &

    && &

    And if the forcing functions are harmonic functions (as before)And if the forcing functions are harmonic functions (as before) the solution is:the solution is:

    11 11 12 11 12 1 12

    22 21 22 21 22 2 2

    0

    0

    m c c k k X F  

     jm c c k k X F  ω ω 

    ⎛ ⎞⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎧ ⎫ ⎧ ⎫

    − + + =⎜ ⎟ ⎨ ⎬ ⎨ ⎬⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎩ ⎭ ⎩ ⎭⎝ ⎠

  • 8/21/2019 OPgTHpSKyQLmtNrGXLXSynqK%2fETd78eUzzx57f7I7PM%3d

    7/8

    Lecture 19-2 dofForced

    ResponseMEEM 3700 13

    2 DOF Forced Vibration: FRF w/ Damping2 DOF Forced Vibration: FRF w/ Damping

    Define:Define: ( )   11 12 11 11 12221 22 22 21 22

    0

    0

    k k m c c Z j

    k k m c cω ω ω 

    ⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎡ ⎤ = − +⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦⎣ ⎦ ⎣ ⎦ ⎣ ⎦

    WhereWhere   ( ) Z    ω ⎡ ⎤⎣ ⎦ is called theis called the  system system oror impedanceimpedance matrix.matrix.

    Then the responseThen the response can be solved for as:can be solved for as:1

    2

     X 

     X 

    ⎧ ⎫⎨ ⎬⎩ ⎭

    ( )  11 1

    2 2

     X F  Z 

     X F ω 

    −⎧ ⎫ ⎧ ⎫⎡ ⎤=⎨ ⎬ ⎨ ⎬⎣ ⎦

    ⎩ ⎭ ⎩ ⎭

    WhereWhere   ( ) ( )1

     Z H ω ω −

    ⎡ ⎤ ⎡ ⎤=⎣ ⎦ ⎣ ⎦ is the Frequency Response Function Matrixis the Frequency Response Function Matrix

    ( )1 12 2

     X F  H  X F 

    ω ⎧ ⎫ ⎧ ⎫⎡ ⎤=⎨ ⎬ ⎨ ⎬⎣ ⎦⎩ ⎭ ⎩ ⎭

    Lecture 19-2 dofForced

    ResponseMEEM 3700 14

    2 DOF Forced Vibration: FRF w/ Damping2 DOF Forced Vibration: FRF w/ Damping

    The FRF matrix can be written as:The FRF matrix can be written as:

    ( )  ( )

    ( )det

    adj Z  H 

     Z 

    ω 

    ω 

    ω 

    ⎡ ⎤⎣ ⎦⎡ ⎤ =⎣ ⎦ ⎡ ⎤⎣ ⎦

    This is expanded to:This is expanded to:

    ( )

    ( )( )

    ( )( ) ( )( )

    2

    22 22 22 12 12

    2

    21 21 11 11 11

    2

    11 11 11 22 22 22 12 12 21 21

    k m j c j c k  

     j c k k m j c H 

    k m j c k m j c j c k j c k  

    ω ω ω 

    ω ω ω 

    ω 

    ω ω ω ω ω ω  

    ⎡ ⎤− + − +⎢ ⎥

    − + − +⎣ ⎦⎡ ⎤ =⎣ ⎦ − + − + − + +

    Therefore each response can be written as:Therefore each response can be written as:

    1 11 1 12 2 X h F h F = +

    2 21 1 22 2 X h F h F = +

  • 8/21/2019 OPgTHpSKyQLmtNrGXLXSynqK%2fETd78eUzzx57f7I7PM%3d

    8/8

    Lecture 19-2 dofForced

    ResponseMEEM 3700 15

    2 DOF Forced Vibration: FRF w/ Damping2 DOF Forced Vibration: FRF w/ Damping

    ( )( )( )   ( )( )

    2

    22 22 22111 2 2

    1   11 11 22 22 12 12 21 21

    k m j c X h

    F    k m k m j c k j c k  

    ω ω 

    ω ω ω ω  

    − += =

    − − − + +

    ( )

    ( )( )   ( )( )12 121

    12 2 22   11 11 22 22 12 12 21 21

    k j c X h

    F    k m k m j c k j c k  

    ω 

    ω ω ω ω  

    − += =

    − − − + +

    ( )

    ( ) ( )   ( )( )21 212

    21 2 21   11 11 22 22 12 12 21 21

    k j c X h

    F    k m k m j c k j c k  

    ω 

    ω ω ω ω  

    − += =

    − − − + +

    ( )

    ( )( )   ( )( )

    2

    11 11 11222 2 2

    2   11 11 22 22 12 12 21 21

    k m j c X h

    F   k m k m j c k j c k  

    ω ω 

    ω ω ω ω  

    − += =

    − − − + +

    The individualThe individual FRFFRF’’ss are defined as:are defined as:

    Lecture 19-2 dofForced

    ResponseMEEM 3700 16

    0 0.5 1 1.5 2 2.5 3 3.5 40

    0.5

    1

    1.5

    2

    2.5

    3

    3.5

    4

    4.5Frequency Response Function

    Frequency Hz

        m    a    g    n     i     t    u     d    e

    X1/F1

    0 0.5 1 1.5 2 2.5 3 3.5 40

    0.5

    1

    1.5

    2

    2.5

    3

    3.5

    4

    4.5Frequency Response Function

    Frequency Hz

        m    a    g    n     i     t

        u     d    e

    X2/F2

    0 0.5 1 1.5 2 2.5 3 3.5 40

    1

    2

    3

    4

    5

    6

    7

    8Frequency Response Function

    Frequency Hz

         M    a    g    n     i     t    u     d    e

    X1/F2

    0 0.5 1 1.5 2 2.5 3 3.5 40

    1

    2

    3

    4

    5

    6

    7

    8Frequency Response Function

    Frequency Hz

         M    a    g    n     i     t    u     d    e

    X2/F1