opportunities for dust polarization surveys

31
3/11/09 C. D. Dowell, Keck Institute/Dust Polarimetry Opportunities for Dust Polarization Surveys C. Darren Dowell JPL/Caltech This work was performed at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration (NASA). 1/30

Upload: others

Post on 01-Jan-2022

2 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Opportunities for Dust Polarization Surveys

3/11/09 C. D. Dowell, Keck Institute/Dust Polarimetry

Opportunities for Dust Polarization Surveys

C. Darren Dowell JPL/Caltech

This work was performed at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration (NASA).

1/30

Page 2: Opportunities for Dust Polarization Surveys

Outline •  magnetic fields in interstellar clouds •  observational and theoretical

approaches •  dust composition, shape, and alignment •  sensitivity comparison •  survey approaches

3/11/09 C. D. Dowell, Keck Institute/Dust Polarimetry 2/30

Page 3: Opportunities for Dust Polarization Surveys

3/11/09 C. D. Dowell, Keck Institute/Dust Polarimetry 3/30

Magnetic Field Strengths in Interstellar Clouds

Page 4: Opportunities for Dust Polarization Surveys

3/11/09 C. D. Dowell, Keck Institute/Dust Polarimetry 4/30

Galactic Field in AV ≈ 1 Medium

optical polarimetry

Page 5: Opportunities for Dust Polarization Surveys

3/11/09 C. D. Dowell, Keck Institute/Dust Polarimetry 5/30

Galactic Field in AV ≈ 10 Medium

BICEP: southern sky at λ = 2 mm, 1º resolution

Page 6: Opportunities for Dust Polarization Surveys

3/11/09 C. D. Dowell, Keck Institute/Dust Polarimetry 6/30

Galactic Field in AV ≈ 100 Medium FIR-bright cloud cores: no B angle correlation with Gal. plane

data from Dotson et al. (2000, 2008)

Page 7: Opportunities for Dust Polarization Surveys

Measuring Magnetic Fields •  In addition to the usual problems with

line-of-sight averaging and unresolved structure:

•  vector B = (Bx, By, Blos) – Blos: Zeeman, Faraday rotation –  tan-1(By/Bx): synchrotron, dust polarization

3/11/09 C. D. Dowell, Keck Institute/Dust Polarimetry 7/30

Page 8: Opportunities for Dust Polarization Surveys

Measuring Magnetic Fields •  In addition to the usual problems with

line-of-sight averaging and unresolved structure:

•  vector B = (Bx, By, Blos) – Blos: Zeeman, Faraday rotation –  tan-1(By/Bx): synchrotron, dust polarization – √(Bx

2+By2): dust polarization via

Chandrasekhar-Fermi approach? 3/11/09 C. D. Dowell, Keck Institute/Dust Polarimetry 8/30

Page 9: Opportunities for Dust Polarization Surveys

WMAP all-sky synchrotron map

3/11/09 C. D. Dowell, Keck Institute/Dust Polarimetry 9/30

Page 10: Opportunities for Dust Polarization Surveys

3/11/09 C. D. Dowell, Keck Institute/Dust Polarimetry 10/30

Berkhuijsen (1997)

Page 11: Opportunities for Dust Polarization Surveys

complementarity of synchrotron and dust mapping

3/11/09 C. D. Dowell, Keck Institute/Dust Polarimetry 11/30

Blue: Spitzer 8 µm red: Bolocam/CSO 1.1 mm purple: VLA 20 cm

Bally et al. (2009)

Page 12: Opportunities for Dust Polarization Surveys

complementarity of synchrotron and dust polarization

3/11/09 C. D. Dowell, Keck Institute/Dust Polarimetry 12/30

Chuss et al. (2003)

60-350 µm

Page 13: Opportunities for Dust Polarization Surveys

3/11/09 C. D. Dowell, Keck Institute/Dust Polarimetry 13/30

Far-IR polarimetry is an excellent tracer of magnetic fields at densities up to 106 cm-3.

Schleuning (1998)

Rao et al. (1998) Ward-Thompson et al. (2000)

Orion Core L183 Dark Cloud

B vec

B vec

Page 14: Opportunities for Dust Polarization Surveys

Tests of Cloud and Core Formation Theory with FIR Polarimetry

•  Ordered structures –  flow along field lines –  tidal shear – swept-up shells – accretion disks

•  Large features resulting from instabilities •  Dispersion in field

– Chandrasekhar-Fermi approach 3/11/09 C. D. Dowell, Keck Institute/Dust Polarimetry 14/30

Page 15: Opportunities for Dust Polarization Surveys

3/11/09 C. D. Dowell, Keck Institute/Dust Polarimetry 15/30

Far-IR polarimetry tests geometrical models of magnetic fields: protostars

“hourglass” field in protostellar envelope

NGC 1333 IRAS 4A

observation w/ interferometer:

Girart, Rao, & Marrone (2000) model:

Fiedler & Mouschovias 1993

B vec

Page 16: Opportunities for Dust Polarization Surveys

3/11/09 C. D. Dowell, Keck Institute/Dust Polarimetry 16/30

Far-IR polarimetry tests geometrical models of magnetic fields: cloud cores

Kirby (2008) Schleuning (1998); Houde et al. (2004)

Page 17: Opportunities for Dust Polarization Surveys

3/11/09 C. D. Dowell, Keck Institute/Dust Polarimetry 17/30

Kim & Ostriker (2006)

swing amplifier effect magneto-Jeans instability

Kim & Ostriker (2001)

Far-IR polarimetry tests geometrical models of magnetic fields: cloud formation

Page 18: Opportunities for Dust Polarization Surveys

3/11/09 C. D. Dowell, Keck Institute/Dust Polarimetry 18/30

Magnetic Field Strength from Chandrasekhar-Fermi Method

•  B = x ρ1/2 Δv / Δθ •  x: Ostriker et al.(2001); Padoan et al. (2001); Heitsch

et al. (2001); Falceta-Goncalves et al. (2008)

strong field: small dispersion weak field: large dispersion

Falceta-Gonçalves, et al. (2008)

Page 19: Opportunities for Dust Polarization Surveys

3/11/09 C. D. Dowell, Keck Institute/Dust Polarimetry 19/30

Magnetic Field Strength from Chandrasekhar-Fermi Method

•  B = x ρ1/2 Δv / Δθ •  x: Ostriker et al.(2001); Padoan et al. (2001); Heitsch

et al. (2001); Falceta-Goncalves et al. (2008)

strong field: small dispersion weak field: large dispersion

Falceta-Gonçalves, et al. (2008)

B ≈ 80 µG

Page 20: Opportunities for Dust Polarization Surveys

Grain Alignment & Composition •  current theory of grain

alignment (Lazarian et al.): –  Paramagnetic relaxation

no longer needed. –  Instead, radiative torques

on asymmetric grains will do.

–  Alignment with polarization perpendicular to field still applies.

•  Observational tests possible.

3/11/09 C. D. Dowell, Keck Institute/Dust Polarimetry 20/30

Vaillancourt et al. (2008)

Page 21: Opportunities for Dust Polarization Surveys

Into the Next Decade •  optical/near-IR: big surveys of starlight polarization •  FIR:

– BLASTpol: mapping full molecular clouds – SOFIA: precision application of

Chandrasekhar-Fermi •  submm:

– Planck: all-sky polarization survey – ALMA: great for circumstellar dust?

•  radio: EVLA, GBT

3/11/09 C. D. Dowell, Keck Institute/Dust Polarimetry 21/30

Page 22: Opportunities for Dust Polarization Surveys

HAWCpol/SOFIA

3/11/09 C. D. Dowell, Keck Institute/Dust Polarimetry 22/30

observation bands 53, 89, 155, 216 µm

angular resolution 5 – 22 arcsec

field of view 0.5×1.2 – 1.6×4.3 arcmin2

polarization modulation technique quartz half-wave plate, 15 rpm

minimum flux density to achieve σ(P) = 0.2% in 5 hour integration

9, 6, 6, 5 Jy

minimum column density to achieve σ(P) = 0.2% in 5 hour integration

AV = 1, 2, 5, 4

systematic error goal δP < 0.2%; δθ < 2°

•  started Oct. 2008 on JPL internal funds

•  permanent upgrade to HAWC

•  good for sources up to ~8’

Page 23: Opportunities for Dust Polarization Surveys

Required Polarization Sensitivity •  typical degree polarization = 3% •  typical intrinsic dispersion = 10° – 30°

 σ(θ) = 3°, σ(P) = 0.3%  photometric signal-to-noise of 500

3/11/09 C. D. Dowell, Keck Institute/Dust Polarimetry 23/30

Hildebrand et al. (1999)

Page 24: Opportunities for Dust Polarization Surveys

3/11/09 C. D. Dowell, Keck Institute/Dust Polarimetry 24/30

Far-IR polarimetry is 106 × faster from space.

sensitivity to extended emission

BLASTpol

Page 25: Opportunities for Dust Polarization Surveys

Giant Steps

•  MIDEX-class FIR polarization survey •  SAFIR polarimeter •  SPIRIT polarimeter •  EPIC (CMBPol) with extended high-

frequency coverage

•  SKA 3/11/09 C. D. Dowell, Keck Institute/Dust Polarimetry 25/30

Page 26: Opportunities for Dust Polarization Surveys

Dedicated Polarization Survey

3/11/09 C. D. Dowell, Keck Institute/Dust Polarimetry 26/30

•  PIREX/M4 (Clemens, P.I.; Goodman; Jones) –  satellite proposed to NASA 1990, 1993,

1996 –  possible reasons for non-selection:

•  Polarimetry not a scientific priority for NASA. •  Difficult for a cryogenic mission to compete on

the NASA SMEX playing field. •  Unsuccessful Origins Probe proposal

to study FIR polarimeter and C+ heterodyne spectrometer on 0.5 – 1 m telescope (Dowell, Langer et al.)

M4:

0.2 m cold telescope

Page 27: Opportunities for Dust Polarization Surveys

3/11/09 C. D. Dowell, Keck Institute/Dust Polarimetry 27/30

with SAFIR/CALISTO:

5 hours integration time (104 detectors)

5” = 20 pc resolution at λ = 100 µm

likely detection of polarization wherever AV > 0.3

MIPS 24 µm (Gordon et al.)

Page 28: Opportunities for Dust Polarization Surveys

EPIC Polariza,on Mapping 

•  EPIC/850 GHz can make accurate polariza,on maps with 108 resolu,on elements. 

coverage map, σ(P) ≤ 0.3% 

Planck/350GHz 5’  EPIC/850GHz 40K, 5’ EPIC/850GHz 4K, 1’ 

3/11/09  28 C. D. Dowell, Keck Ins,tute/Dust 

Polarimetry 

Page 29: Opportunities for Dust Polarization Surveys

3/11/09 C. D. Dowell, Keck Institute/Dust Polarimetry 29/30

Enabling Technologies for Space Far-IR Polarimetry

•  polarization-sensitive detectors •  polarization modulation

–  low-power cryogenic rotating quartz half-wave plate –  scan modulation only (Boomerang ⇒ Planck)

•  Good polarimeters usually make good cameras. –  NEP = 10-18 W Hz-1/2 is adequate for detectors.

Page 30: Opportunities for Dust Polarization Surveys

Antenna-Coupled 200 µm TES Detector

3/11/09 C. D. Dowell, Keck Institute/Dust Polarimetry 30/30

work by Peter Day et al. (JPL/Caltech)

Page 31: Opportunities for Dust Polarization Surveys

3/11/09 C. D. Dowell, Keck Institute/Dust Polarimetry 31/30

“If nuclear and gravitational forces were the only forces at work in the universe, the broad pattern of cosmic evolution would be one of gradual thermal degradation punctuated by occasional explosive events. The cosmos would resemble the serene and monotonous heavens of classical conception. There is, however, a cosmic agitator: the magnetic field. Although only a small part of the available energy in the universe is invested in magnetic fields, they are responsible for most of the continual violent activity of the cosmos, from auroral displays in the earth's atmosphere to stellar flares and X-ray emission, and the massing of clouds of interstellar gas in galaxies.”

E. Parker, Scientific American (1983)