optimal data-independent point locations for rbf interpolationdemarchi/slides.pdf · optimal...

26
Optimal data-independent point locations for RBF interpolation S. De Marchi, R. Schaback and H. Wendland Universit ` a di Verona (Italy), Universit ¨ at G ¨ ottingen (Germany) Metodi di Approssimazione: lezione dell’ 11 maggio 2004. – p.1/26

Upload: duongdieu

Post on 18-Jul-2018

229 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Optimal data-independent point locations for RBF interpolationdemarchi/slides.pdf · Optimal data-independent point locations for RBF interpolation S. De Marchi, R. Schaback and H

Optimal data-independent pointlocations for RBF interpolation

S. De Marchi, R. Schaback and H. Wendland

Universita di Verona (Italy), Universitat Gottingen (Germany)

Metodi di Approssimazione: lezione dell’ 11 maggio 2004. – p.1/26

Page 2: Optimal data-independent point locations for RBF interpolationdemarchi/slides.pdf · Optimal data-independent point locations for RBF interpolation S. De Marchi, R. Schaback and H

Preliminaries

� � � ����� � � � � � � � �

, distinct, data sites.

� ��� � � � � �

, data values to be interpolated.

RBF interpolation (easiest): fix a symmetric PD kernel��� �� � �

and form

����� � ��

� �� ! � � "$# � � �% (1)

& �� ' � � " � "��( � � �% %� )(� �) �: the interpolation matrix, invertible.

If

& �� ' is even positive definite

* � �

, then

is called a

positive definite, PD kernel. It is often radial,� "� � + % � , "- � . +-0/ %

, and therefore defined on

� � � � �

because every CPD kernel has an associated normalized PD

kernel.

We confine on the PD case.

Metodi di Approssimazione: lezione dell’ 11 maggio 2004. – p.2/26

Page 3: Optimal data-independent point locations for RBF interpolationdemarchi/slides.pdf · Optimal data-independent point locations for RBF interpolation S. De Marchi, R. Schaback and H

Some useful notations� Take

1 ' � span

� � "$# � � % � � 2 � �

. The interpolant � �� '

can be written in terms of cardinal functions 3 � 2 1 ' ,3 �"��( % � 4 �( , i.e. �5��� ' � � � �� � "� �% 3 �

� For the purpose of stability and error analysis the following

quantities are important:

separation distance: 6 ' � 7 8:9;<� ;= > '� �? � @ - � � . � @ - / A

fill-distance:

B '� C � DEF ; > C 7 89;< > ' - � . � �-G/

uniformity: H '� C � 6 'B '� C

Metodi di Approssimazione: lezione dell’ 11 maggio 2004. – p.3/26

Page 4: Optimal data-independent point locations for RBF interpolationdemarchi/slides.pdf · Optimal data-independent point locations for RBF interpolation S. De Marchi, R. Schaback and H

The problem

Are there any good or even optimal point setsfor the interpolation problem?

Metodi di Approssimazione: lezione dell’ 11 maggio 2004. – p.4/26

Page 5: Optimal data-independent point locations for RBF interpolationdemarchi/slides.pdf · Optimal data-independent point locations for RBF interpolation S. De Marchi, R. Schaback and H

Literature

1. BEYER, A. Optimale Centerverteilung bei Interpolation

mit radialen Basisfunktionen. Diplomarbeit, Universität

Göttingen, 1994.

2. BOS, L. P., AND MAIER, U., On the asymptotics of points

which maximize determinants of the form det

"�I "J � ( . � �J % %

.

In Advances in Multivariate Approximation (Berlin, 1999),

W. Haussmann, K. Jetter, and M. Reimer, Eds., vol. 107 of

Math. Res., Wiley-VCH., pp.1–22.

3. ISKE, A., Optimal distribution of centers for radial basis

function methods. Tech. Rep. M0004, Technische

Universität München, 2000.

Metodi di Approssimazione: lezione dell’ 11 maggio 2004. – p.5/26

Page 6: Optimal data-independent point locations for RBF interpolationdemarchi/slides.pdf · Optimal data-independent point locations for RBF interpolation S. De Marchi, R. Schaback and H

Literature

1. BEYER, A. considered numerical aspects of the problem.

2. BOS, L. P., AND MAIER, U., investigated on Fekete-type

points for univariate RBFs for a broad class of functions

,

proving that: Equally spaced points give asymptotically largest

determinants for the interpolation matrix

& �� ' .3. ISKE, A. constructed and characterized admissible sets by

varying the centers for stability and quality of approximation by

RBF, proving that uniformly distributed points gives better results.

He also provided a bound for the uniformity: H '� C K / L �M� N� ,

O

=

space dimension.

Metodi di Approssimazione: lezione dell’ 11 maggio 2004. – p.6/26

Page 7: Optimal data-independent point locations for RBF interpolationdemarchi/slides.pdf · Optimal data-independent point locations for RBF interpolation S. De Marchi, R. Schaback and H

Our approach(I) Power function estimates.

(II) Geometric arguments.

Metodi di Approssimazione: lezione dell’ 11 maggio 2004. – p.7/26

Page 8: Optimal data-independent point locations for RBF interpolationdemarchi/slides.pdf · Optimal data-independent point locations for RBF interpolation S. De Marchi, R. Schaback and H

Power function estimates

The kernel

defines on the space

1 C � span

� � "$# � � % � � 2 �

an inner product

�� �� ! � � "$# � � �% �

P@ ��

Q @ � "$# � + @ %�

� ��

� ��P

@ �� ! � Q @ � "� �� + @ %

so that

is a reproducing kernel of1 C. Set

R 1 C � � � " %

, the

native Hilbert space. If

� 2 � " %, then

� "� % . �5��� ' "� % � � � � "$# � � % .�

� �� 3 �"� % � "$# � � �%� �

and by Cauchy-Schwarz inequalityJ � "� % . �5�� ' "� % J K S �� ' "� % - � - � (2)

Metodi di Approssimazione: lezione dell’ 11 maggio 2004. – p.8/26

Page 9: Optimal data-independent point locations for RBF interpolationdemarchi/slides.pdf · Optimal data-independent point locations for RBF interpolation S. De Marchi, R. Schaback and H

Some properties of the Power function

1.

S �� ' "� %

is the norm of the pointwise error functional;

2. Error estimates bound

S �� ' "� %

in terms of the fill distanceB '� C;3. If

� � T

then

S �� ' "� %VU S �� W "� % � *� 2

.

X X XIf

is translation invariant, integrable and has Fourier transform

such that Y�Z "[ \ - ]- // %_^ ` K a, " ] % K b � "[ \ - ]-// %_^ `

withQdc O ef

,

bZ U Y�Z c g, then � " � � %

is norm-equivalent to the

space

`/ " � � %. Therefore

- � . �5�� ' -0h i L C N K b B `^ � j/'� C - � - k lnm Lo p N (3)

Metodi di Approssimazione: lezione dell’ 11 maggio 2004. – p.9/26

Page 10: Optimal data-independent point locations for RBF interpolationdemarchi/slides.pdf · Optimal data-independent point locations for RBF interpolation S. De Marchi, R. Schaback and H

Main resultThe hypotheses on and are as before.Theorem 1 Then for every q r there exists aconstant s r t

with the following property. If u r t

and v wyx{z |} } } | x ~ �

are given such that

� � ����� � ��� � �� � u � ��� | for all � �� � �d� |

(4)then the fill distance of satisfies

� �� � s u � ��� � �� } (5)

Comment: optimally distributed data sites are sets that cannot

have a large region in

without centers, i.e.

B '� C is sufficiently

small. Metodi di Approssimazione: lezione dell’ 11 maggio 2004. – p.10/26

Page 11: Optimal data-independent point locations for RBF interpolationdemarchi/slides.pdf · Optimal data-independent point locations for RBF interpolation S. De Marchi, R. Schaback and H

Quasi-uniformity and fill-distance

The previous theorem fails in two situations:"�� %

When ! � Q

we have   � ¡ and we don’t getB `^ p m'� C K b£¢ ."¤ % �

is the Gaussian (cfr. Paley-Wiener theory).

Now, assuming that

is already quasi-uniform, i.e.B '� C ¥ 6 ' , we can define

�n¦ � � "$# � + % . � � �� 3 �" + % � "$# � � �% for

every + 2

. For this function we have

J �¦ " + % . �5� §� ' " + % J � S �� ' " + % - �¦ - � �

i.e. there is equality in (2). Hence, the assumption on the approx-

imation properties of the set

gives

S �� ' " + % K ¢ and the desired

results follow from lower bounds on the power function .Metodi di Approssimazione: lezione dell’ 11 maggio 2004. – p.11/26

Page 12: Optimal data-independent point locations for RBF interpolationdemarchi/slides.pdf · Optimal data-independent point locations for RBF interpolation S. De Marchi, R. Schaback and H

The Greedy Method (G.M.)

Idea: we generate larger and larger data sets by adding the

maxima of the Power function w.r.t. preceeding set. This method

produces well-distributed point sets.

Greedy Algorithm (G.A.)

� starting step:

�� � ���¨� � � �¨( 2 � ©ª «¬­ ª ©ª +.

� iteration step:

� � � � �^ � ® � � �� withS �� '<°¯ ± "� �% � - S �� '<°¯ ± -0h i L C N .Convergence: we hope that

- S �� '< -0h i L C N � g

as

² � ¡ when

convex,

� 2 ³/ " � %or

� 2 ³/ " � � � %

,

� � convex.

Metodi di Approssimazione: lezione dell’ 11 maggio 2004. – p.12/26

Page 13: Optimal data-independent point locations for RBF interpolationdemarchi/slides.pdf · Optimal data-independent point locations for RBF interpolation S. De Marchi, R. Schaback and H

The greedy algorithm converges

Theorem 2 Suppose

is compact and satisfiesan interior cone condition. Suppose further that� � � z ´ z �

is a positive definite kernel definedon a convex and compact region z . Then, thegreedy algorithm converges at least like

� µ �� � �� � ¶· � �

with a constant r t.

Remark: µ ¸ v �º¹� � .

Metodi di Approssimazione: lezione dell’ 11 maggio 2004. – p.13/26

Page 14: Optimal data-independent point locations for RBF interpolationdemarchi/slides.pdf · Optimal data-independent point locations for RBF interpolation S. De Marchi, R. Schaback and H

Geometric Greedy Method (G.G.M.)

Notice: Practical experiments show that the greedy minimization

algorithm of the power function, fills the currently largest hole in

the data point close to the center of the hole.

Geometric Greedy Algorithm (G.G.A.)

� starting step:

�¼» � ½

and define

dist

"� � ½ % � � & � &c diam" %

� iteration step: given� 2 � J � J � ¾ pick� M� 2 ¿ � s.t. � M� � 7 ÀÁ ; > C Â 'ÄÃ dist

"� � � %

. Then,

form

� M� � � � ® � � M� �

.

Remark: the algorithm works very well for subsets

� of

, with

small fill-distance

B '� C and large separation distance 6 ' .Metodi di Approssimazione: lezione dell’ 11 maggio 2004. – p.14/26

Page 15: Optimal data-independent point locations for RBF interpolationdemarchi/slides.pdf · Optimal data-independent point locations for RBF interpolation S. De Marchi, R. Schaback and H

Convergence of the G.G.A.

Define 6 � � [f 7 8:9; ? �¦ > 'ÅÃ

- � . +-G/ ,

O "� % � � 7 8:9¦ > 'ÅÃ- � . +-G/ and

B � � 7 À Á; > C O "� % � 7 ÀÁ; > C 7 89¦ > 'ÄÃ- � . +- / � O "� M� % � B 'ÅÃ� C

Lemma 1 The G.G.A. produces point sets which are

quasi-uniform. To be more precise,

B U 6 U[

f B ^ � U [f B � for all ¾U f

Metodi di Approssimazione: lezione dell’ 11 maggio 2004. – p.15/26

Page 16: Optimal data-independent point locations for RBF interpolationdemarchi/slides.pdf · Optimal data-independent point locations for RBF interpolation S. De Marchi, R. Schaback and H

Remarks

If

is a bounded region in

� �

, the G.G.A. constructs

asymptotically uniformly distributed data sets that cover

in

asymptotically optimal way since

Æ " � � B %cover

whileÆ " � � 6 %

are disjoint. With

� � � + 2 � � � dist" + � % K 6 �

we find ¾ 6 � Ç� Kvol

" %

vol" % K ¾ B � Ç�

� � vol

È Æ� " � � % É, showing that both

B and 6 decay asymptot-

ically like ¾^ � j �.

Metodi di Approssimazione: lezione dell’ 11 maggio 2004. – p.16/26

Page 17: Optimal data-independent point locations for RBF interpolationdemarchi/slides.pdf · Optimal data-independent point locations for RBF interpolation S. De Marchi, R. Schaback and H

Examples

� Ê . [ � [ Ë � Ê . [ � [ Ë

discretized on a regular grid ofÌ g Í[ � Î[ � Î[

pts.

The kernels are: the Gaussian (with scale 1) and Wendland’s

function (with scale 15).X Greedy method (G.M.). Executed untill- S � - /h i L C N K f # [ g^ Ï

.

X Greedy geometric method (G.G.M.). The sets

� are com-

puted by the G.G.A. while the error is evaluated on this point set.

Metodi di Approssimazione: lezione dell’ 11 maggio 2004. – p.17/26

Page 18: Optimal data-independent point locations for RBF interpolationdemarchi/slides.pdf · Optimal data-independent point locations for RBF interpolation S. De Marchi, R. Schaback and H

G.M. and G.G.M. : Gaussian I

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

100

101

102

10−6

10−4

10−2

100

102

104

106

108

Error

N

Figure 1: Gaussian: (left) the N=48 optimal points, (right) the

error as function of N, decays as

Ð^ ÑyÒ/

Metodi di Approssimazione: lezione dell’ 11 maggio 2004. – p.18/26

Page 19: Optimal data-independent point locations for RBF interpolationdemarchi/slides.pdf · Optimal data-independent point locations for RBF interpolation S. De Marchi, R. Schaback and H

G.M. and G.G.M. : Gaussian II

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Figure 2: Gaussian: (left) the N=13 optimal points when- S � - /h i L C N K g [, (right) the power function where the maxima

are taken.Metodi di Approssimazione: lezione dell’ 11 maggio 2004. – p.19/26

Page 20: Optimal data-independent point locations for RBF interpolationdemarchi/slides.pdf · Optimal data-independent point locations for RBF interpolation S. De Marchi, R. Schaback and H

G.M. and G.G.M. : Gaussian III

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

100

101

102

10−6

10−4

10−2

100

102

104

106

108

Error

N

Figure 3: Gaussian, (left) geometric greedy data

�ÔÓÕ , (right) the

error is larger by a factor 4 and decays as ¾^ Ö Ò�

.

Metodi di Approssimazione: lezione dell’ 11 maggio 2004. – p.20/26

Page 21: Optimal data-independent point locations for RBF interpolationdemarchi/slides.pdf · Optimal data-independent point locations for RBF interpolation S. De Marchi, R. Schaback and H

G.M. and G.G.M.: Wendland’s function I

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

100

101

102

10−5

10−4

10−3

10−2

10−1

100

Error

N

Figure 4: Wendland’s fnc.: (left) the N=100 optimal points,

(right) the error as function of N that decays as

Ð^ � Ò ×

.

Metodi di Approssimazione: lezione dell’ 11 maggio 2004. – p.21/26

Page 22: Optimal data-independent point locations for RBF interpolationdemarchi/slides.pdf · Optimal data-independent point locations for RBF interpolation S. De Marchi, R. Schaback and H

G.M. and G.G.M.: Wendland’s function II

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

100

101

102

10−5

10−4

10−3

10−2

10−1

100

Error

N

Figure 5: Wendland’s fnc., (left) geometric greedy data

�� » » ,

(right) the error is larger by a factor 1.4 and decays as ¾^ � Ò Ñ/

.

Metodi di Approssimazione: lezione dell’ 11 maggio 2004. – p.22/26

Page 23: Optimal data-independent point locations for RBF interpolationdemarchi/slides.pdf · Optimal data-independent point locations for RBF interpolation S. De Marchi, R. Schaback and H

Distances

0 20 40 60 800.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5Gaussian: separation distances

geometricgreedy

0 20 40 60 800

0.5

1

1.5

2Gaussian: fill distances

geometricgreedy

Figure 6: Gaussian.Metodi di Approssimazione: lezione dell’ 11 maggio 2004. – p.23/26

Page 24: Optimal data-independent point locations for RBF interpolationdemarchi/slides.pdf · Optimal data-independent point locations for RBF interpolation S. De Marchi, R. Schaback and H

Distances

0 20 40 60 80 1000.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5Inverse multiquadrics: separation distances

geometricgreedy

0 20 40 60 80 1000

0.5

1

1.5

2Inverse multiquadrics: fill distances

geometricgreedy

Figure 7: Inverse Multiquadrics function.Metodi di Approssimazione: lezione dell’ 11 maggio 2004. – p.24/26

Page 25: Optimal data-independent point locations for RBF interpolationdemarchi/slides.pdf · Optimal data-independent point locations for RBF interpolation S. De Marchi, R. Schaback and H

Distances

0 20 40 60 800.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5Wendland: separation distances

geometricgreedy

0 20 40 60 800

0.5

1

1.5

2Wendland: fill distances

geometricgreedy

Figure 8: Wendland’s function.Metodi di Approssimazione: lezione dell’ 11 maggio 2004. – p.25/26

Page 26: Optimal data-independent point locations for RBF interpolationdemarchi/slides.pdf · Optimal data-independent point locations for RBF interpolation S. De Marchi, R. Schaback and H

Final remarks� The G.G.A. is independent on the kernel and we proved that

generates asymptotically optimal sequences. It still inferior

to the G.A. that takes maxima of the power function.

� So far, we have no proof of the fact the G.G.A. generates a

sequence with

B K b ¾^ � j �, as required by asymptotic

optimality.

Metodi di Approssimazione: lezione dell’ 11 maggio 2004. – p.26/26