optimal design for a cylindrical gear with inclined teeth

12
Volume XXII 2019 ISSUE no.2 MBNA Publishing House Constanta 2019 doi: 10.21279/1454-864X-19-I2-019 SBNAยฉ 2019. This work is licensed under the CC BY-NC-SA 4.0 License SBNA PAPER โ€ข OPEN ACCESS Optimal design for a cylindrical gear with inclined teeth To cite this article: M. Turof, Scientific Bulletin of Naval Academy, Vol. XXII 2019, pg.158-168. Available online at www.anmb.ro ISSN: 2392-8956; ISSN-L: 1454-864X

Upload: others

Post on 25-Oct-2021

5 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Optimal design for a cylindrical gear with inclined teeth

Volume XXII 2019

ISSUE no.2

MBNA Publishing House Constanta 2019

doi: 10.21279/1454-864X-19-I2-019 SBNAยฉ 2019. This work is licensed under the CC BY-NC-SA 4.0 License

SBNA PAPER โ€ข OPEN ACCESS

Optimal design for a cylindrical gear with inclined

teeth

To cite this article: M. Turof, Scientific Bulletin of Naval Academy, Vol. XXII 2019, pg.158-168.

Available online at www.anmb.ro

ISSN: 2392-8956; ISSN-L: 1454-864X

Page 2: Optimal design for a cylindrical gear with inclined teeth

Optimal design for a cylindrical gear with inclined teeth

Mihaela TUROF

Department of General Engineering Sciences, Naval Electromechanics Faculty,

Constanta Maritime University

[email protected]

Abstract. Designing is an act of creation, which is a technical activity carried out for productive

purpose, and which aims to provide all the data necessary for the implementation of correlated material and financial means, a theme or an idea in practice.

Depending on the operating conditions of the machines and their technological destination,

optimum reliability, maintainability and ergonomics must be ensured from the design stage.

For some areas where toothed gears are used, such as the aerospace industry, the automotive

construction etc., reduced gear mass (volume) can be an important parameter to become an

optimization criterion.

This paper aims to study the gearing mass and proposes to minimize this function.

๐‘€๐‘”๐‘’๐‘Ž๐‘Ÿ๐‘–๐‘›๐‘” = ๐‘‰๐‘”๐‘’๐‘Ž๐‘Ÿ๐‘–๐‘›๐‘” โˆ™ ๐œŒ๐‘š๐‘Ž๐‘ก๐‘’๐‘Ÿ๐‘–๐‘Ž๐‘™ โ†’ ๐‘š๐‘–๐‘›

1. Introduction The gear mechanism is made up of two gears, which are sequentially transmitted through the teeth and

continuously contacting (engaging) - rotating movement and torque between the two shafts.

Gears are used to transmit the rotation movement from the drive shaft to the other driven, achieving a constant transmission ratio between speeds. Transmission of movement is always accompanied by the

transmission of torque, which is a mechanical work, so a power.

A gear is made up of a pair of gears, one driving and the other driven. Relative sliding of the surfaces in contact is excluded because the movement is not transmitted by the frictional force but by a pushing

force between the teeth.

Gears have a wide use in mechanical transmissions, due to their advantages: constant transmission

ratio; safety in operation; high durability; high efficiency; reduced size; the possibility of using for a wide range of powers, speeds and transmission reports. As drawbacks, there can be mentioned: high

execution and mounting precision; complicated technology; noise and vibration in operation.

In the modern construction of machines and appliances, gearing is the most important and most used mechanism. The construction of a car like that of a lathe contains dozens of gears.

Properly groomed and properly assembled can guarantee safe operation at speeds and reduced power

up to thousands of kilowatts of power and at high speeds up to 100-150 m / s. At present, toothed wheels

with dimensions between fractions of millimeters up to 10 m in diameter can be built. When selecting the material, a number of factors must be taken into account: the load that loads the

gear; the required service life; the mechanical characteristics of the materials; how to obtain the semi-

finished product; execution technology; economic efficiency; operating conditions.

Page 3: Optimal design for a cylindrical gear with inclined teeth

2. The optimisation problem

This paper is a study on the mass of a gear speed reducer single stage and the objective function is to

minimize this value.

Figure 1 - Speed reducer single stage

Figure 2 โ€“ Kinematic scheme of the reducer

It is proposed to design a cylindrical gear with inclined teeth having the following input data:

Power of the second shaft: ๐‘ƒ2 = 24 ๐‘˜๐‘Š

Total gear ratio: ๐‘–๐‘… = 2

Speed of the second shaft: ๐‘›2 = 1000 ๐‘Ÿ๐‘œ๐‘ก/๐‘š๐‘–๐‘›

The mean time in service between two successive repairs: ๐ฟโ„Ž = 9000 โ„Ž๐‘œ๐‘ข๐‘Ÿ๐‘ 

Number of wheels in contact with the wheel gear: ๐œ’1,2 = 1

Difference in wheel width: ฮ”๐‘ = 5 ๐‘š๐‘š

Toothed wheel materials:

Pinion: 41MoCr11 - improved steel: ๐ป๐ต1 = 2800 ๐‘€๐‘ƒ๐‘Ž

Gear: 40Cr10 โ€“ improved steel: ๐ป๐ต2 = 2500 ๐‘€๐‘ƒ๐‘Ž

Density materials: ๐œŒ๐‘š๐‘Ž๐‘ฅ = 7,85 โˆ™ 10โˆ’6 ๐‘˜๐‘”/๐‘š๐‘š3

Page 4: Optimal design for a cylindrical gear with inclined teeth

Tensions limit for material gears:

- ๐œŽ๐ป lim 1 = 720 ๐‘€๐‘ƒ๐‘Ž

- ๐œŽ๐ป lim 2 = 675 ๐‘€๐‘ƒ๐‘Ž

- ๐œŽ๐น lim 1 = 460 ๐‘€๐‘ƒ๐‘Ž

- ๐œŽ๐น lim 2 = 445 ๐‘€๐‘ƒ๐‘Ž

Safety factor for contact stress:

- ๐‘†๐ป = 1,25

- ๐‘†๐น = 1,5

Flank hardness factor: ๐‘๐‘ค = 1

Elasticity factor of the wheel material: ๐‘๐ธ = 189,8 ๐‘€๐‘ƒ๐‘Ž1/2

Material factor: ๐‘๐‘€ = 271 ๐‘/๐‘š๐‘š2

Precision class (tolerance grade): 7 toothing milling with the snail cutter and grinding

Rack reference: ISO 53;

Profile of generating rack:

Pressure angle normal reference plane: ๐›ผ๐‘›=20ยฐ

Tooth head height factor: โ„Ž0๐‘Žโˆ— = 1

Match factor at the head of the reference tooth: ๐‘โˆ— = 0,25

Factor of operating mode: ๐พ๐ด = 1

Lubricant type: TIN 125 EP with kinematic viscosity 125รท140 ๐‘š๐‘š2/๐‘  at 50ยฐ๐ถ

Overloading coefficient ๐‘๐‘  = 1

3. Optimisation problem genes In the broad sense, optimization means the action of determining, on the basis of a predetermined

criterion, the best decision in a given situation where more than one decision is possible, as well as the action to implement the established decision as well as its outcome.

Narrow optimization simply means action establishing the right choice (solution) called Decision

optimal (optimal solution).

Five variables are considered to optimize the problem.

Variable 1 - ๐’‚๐’˜ โ€“ the center distance, axial distance values are those standardized in the field

40รท315 mm

Variable 2 - ๐๐’‚ โ€“ the coefficient ratio between the width and the axial distance (variable real continuous), taking values in the range of 0,1 รท0,6

Variable 3 - ๐œท โ€“ the inclination helix angle on the pitch cylinder (variable real continuous), with

value in the field 7,25ยฐ รท 15ยฐ

Variable 4 - ๐’›๐Ÿ โ€“ the number of pinion teeth (full variable),with values in range 24 รท 50

Variable 5 - ๐’™๐’” โ€“ the profile displacement coefficient sum for both gears (real continuos

variable), having values in the range -0,5 รท +1,1

4. Calculate the amount necessary for describing the problem of optimization

Taking into account the inputs and variables mentioned above, it is necessary to go through a series of

steps to determine the essential dimensions for describing the objective function and the optimization problem constraints.

4.1. Determining the power of the electric motor

๐‘ƒ๐‘ =๐‘ƒ2

๐œ‚๐‘ก๐‘œ๐‘ก=

24

0,949= 25,29 ๐‘˜๐‘Š

๐œ‚๐‘ก๐‘œ๐‘ก = ๐œ‚12 โˆ™ ๐œ‚๐‘2 โˆ™ ๐œ‚๐‘™ = 0,97 โˆ™ 0,9942 โˆ™ 0,99 = 0,949

Page 5: Optimal design for a cylindrical gear with inclined teeth

Where:

๐œ‚๐‘ก๐‘œ๐‘ก โ€“ total efficiency of the drive mechanism

๐œ‚12 = 0,97 - efficiency of the gears

๐œ‚๐‘ = 0,994 - a pair of bearings efficiency:

๐œ‚๐‘™ = 0,99 - the lubrification efficiency:

4.2. Choosing electric motor

From STAS we choose the EM type 225M-60-6 with :

The nominal power: ๐‘ƒ๐ธ๐‘€ = 30๐‘˜๐‘Š > 25,29๐‘˜๐‘Š

The loaded speed: ๐‘›1 = 2870๐‘Ÿ๐‘œ๐‘ก/๐‘š๐‘–๐‘› > ๐‘›12 = ๐‘›2 โˆ™ ๐‘–๐‘… = 1000 โˆ™ 2 = 2000 ๐‘Ÿ๐‘œ๐‘ก/๐‘š๐‘–๐‘›

4.3. Determination of the torque moments of the shafts

The moments developed for the two shafts of the reducer are:

๐‘€๐‘ก1 =30 โˆ™ ๐‘ƒ1

๐œ‹ โˆ™ ๐‘›1โˆ™ 106 = 99821๐‘๐‘š๐‘š

๐‘€๐‘ก2 =30 โˆ™ ๐‘ƒ2

๐œ‹ โˆ™ ๐‘›2โˆ™ 106 = 229299๐‘๐‘š๐‘š

4.4. Calculating the normal module, the distance between the axes and the number of teeth

The distance between axes ๐’‚

๐‘Ž โ‰ฅ (1 + ๐‘ข)โˆš๐พ๐ด โˆ™ ๐พ๐‘‰ โˆ™ ๐พ๐ป๐›ฝ โˆ™ ๐‘€๐‘ก2

2 โˆ™ ๐‘ข โˆ™ ๐œ“๐‘Žโˆ™ (

๐‘๐‘€ โˆ™ ๐‘๐ป โˆ™ ๐‘๐œ€๐œŽ๐ป ๐‘™๐‘–๐‘š

๐‘†๐ปโˆ™ ๐พ๐ป๐‘ โˆ™ ๐‘๐‘… โˆ™ ๐‘๐‘Š

)

23

= 122,761 ๐‘š๐‘š

Where:

๐‘ข = ๐‘–๐‘… = 2 The center distance is standardizedand is given in table 1 and weโ€™ll choose the next superior value

but whether the calculated value is les than 5% than the lower one, we may choose the lower one.

Table 1 โ€“ Standard center distances [mm]

I II I II I II I II I II I II

40 40

45

63 63

71

100 100

112

160 160

180

250 250

280

400 400

450

50 50

56

80 80

90

125 125

140

200 200

225

315 315

355

500 500

560

Table 1 shows the standard values for axle spacing between cylindrical and worm gears. The

values of the I string are preferential.

Weโ€™ll take ๐‘Ž๐‘ค = 125 ๐‘š๐‘š

The normal module ๐’Ž๐’

๐‘š๐‘› โ‰ฅ๐‘€๐‘ก2 โˆ™ (1 + ๐‘ข) โˆ™ ๐พ๐ด โˆ™ ๐พ๐‘‰ โˆ™ ๐พ๐›ผ โˆ™ ๐พ๐น๐›ฝ โˆ™ ๐‘Œ๐น โˆ™ ๐‘Œ๐›ฝ

ฮจ๐‘Ž โˆ™ ๐‘Ž2 ๐œŽ๐น ๐‘™๐‘–๐‘š

๐‘†๐นโˆ™ ๐พ๐น๐‘ โˆ™ ๐‘Œ๐‘ โˆ™ ๐‘Œ๐น๐‘ฅ

= 0,927 ๐‘š๐‘š

If the value is under 1 mm then ๐‘š๐‘› is selected 1 mm. Thus ๐‘š๐‘› = 1 ๐‘š๐‘š

Page 6: Optimal design for a cylindrical gear with inclined teeth

Establishing the number of teeth for the driving gear

The maximum number of teeth is calculated taking into account the center distance and the normal

module

๐‘ง1 ๐‘š๐‘Ž๐‘ฅ =2 โˆ™ ๐‘Ž๐‘ค โˆ™ ๐‘๐‘œ๐‘ ๐›ฝ

๐‘š๐‘› โˆ™ (1 + ๐‘ข)=

2 โˆ™ 125 โˆ™ cos (15ยฐ)

1 โˆ™ (1 + 2)= 80,49 ๐‘š๐‘š

๐‘ง1 < ๐‘ง1 ๐‘š๐‘Ž๐‘ฅ => ๐‘ง1 = 30 รท 35 if ๐‘ง1 ๐‘š๐‘Ž๐‘ฅ = 45 รท 80 and more

Weโ€™ll choose ๐‘ง1 = 35

4.5. The final selection of the normal module, the distance between the axes and the number of teeth

๐‘š๐‘› =2 โˆ™ ๐‘Ž๐‘ค โˆ™ ๐‘๐‘œ๐‘ ๐›ฝ

๐‘ง1 โˆ™ (1 + ๐‘ข)=

2 โˆ™ 125 โˆ™ cos (15ยฐ)

35 โˆ™ (1 + 2)= 2,30 ๐‘š๐‘š

The new module now is ๐‘š๐‘› = 2,25

With this new value one may recalculate the number of teeth:

๐‘ง1 =2 โˆ™ ๐‘Ž๐‘ค โˆ™ ๐‘๐‘œ๐‘ ๐›ฝ

๐‘š๐‘› โˆ™ (1 + ๐‘ข)=

2 โˆ™ 125 โˆ™ cos (15ยฐ)

2,25 โˆ™ (1 + 2)= 35,77

The new selected number is identical with the preliminary selected one ๐‘ง1 = 35

With ๐‘ง1 final we may calculate the number of teeth for the driven gear

๐‘ง2 = ๐‘ข โˆ™ ๐‘ง1 = 2 โˆ™ 35 = 70

The rational for selection of ๐‘ง2 is recommended that the number of teeth of both gears not to divide

exactly (relative prime number).

Weโ€™ll choose ๐‘ง2 = 71

The reference center distance is recalculated

๐‘Ž0 =๐‘š๐‘› โˆ™ (๐‘ง1 + ๐‘ง2)

2 โˆ™ ๐‘๐‘œ๐‘ ๐›ฝ=

2,25 โˆ™ (35 + 71)

2 โˆ™ cos (15ยฐ)= 123,46 ๐‘š๐‘š

4.6. Geometrical elements calculation

โ–บ The frontal pitch pressure angle ๐œถ๐’•

๐›ผ๐‘ก = ๐‘Ž๐‘Ÿ๐‘๐‘ก๐‘” (๐‘ก๐‘”๐›ผ๐‘›

๐‘๐‘œ๐‘ ๐›ฝ) = ๐‘Ž๐‘Ÿ๐‘๐‘ก๐‘” (

๐‘ก๐‘”(20ยฐ)

cos (15ยฐ)) = 20,65ยฐ

โ–บ The pitch gearing normal angle ๐’‚๐’˜๐’•

๐›ผ๐‘ค๐‘ก = ๐‘Ž๐‘Ÿ๐‘๐‘๐‘œ๐‘  (๐‘Ž0 โˆ™ ๐‘๐‘œ๐‘ ๐›ผ๐‘ก

๐‘Ž๐‘ค) = 22,45ยฐ

โ–บ The profile displacement coefficient sum for both gears ๐’™๐’”

๐‘ฅ๐‘  = ๐‘ฅ1 + ๐‘ฅ2 = (๐‘ง1 + ๐‘ง2) โˆ™๐‘–๐‘›๐‘ฃ(๐›ผ๐‘ค๐‘ก) โˆ’ ๐‘–๐‘›๐‘ฃ(๐›ผ๐‘ก)

2 โˆ™ ๐‘ก๐‘”(๐›ผ๐‘›)= 0,6931

Page 7: Optimal design for a cylindrical gear with inclined teeth

Where:

๐‘–๐‘›๐‘ฃ(๐›ผ๐‘ค๐‘ก) = ๐‘ก๐‘”(๐›ผ๐‘ค๐‘ก) โˆ’๐œ‹

180โˆ™ ๐›ผ๐‘ค๐‘ก = 0,0212

๐‘–๐‘›๐‘ฃ(๐›ผ๐‘ก) = ๐‘ก๐‘”(๐›ผ๐‘ก) โˆ’๐œ‹

180โˆ™ ๐›ผ๐‘ก = 0,0164

In order to distribute this sum on both gears weโ€™ll use the chart (Figure 3).

Figure 3 โ€“ Profile displacement distribution

From the chart we have ๐‘ฅ1 = 0,4 so that ๐‘ฅ2 = 0,293

โ–บ Pitch diameter ๐’…๐Ÿ; ๐’…๐Ÿ

๐‘‘1 =๐‘š๐‘› โˆ™ ๐‘ง1

๐‘๐‘œ๐‘ ๐›ฝ= 81,515 ๐‘š๐‘š

๐‘‘2 =๐‘š๐‘› โˆ™ ๐‘ง2

๐‘๐‘œ๐‘ ๐›ฝ= 165,359 ๐‘š๐‘š

โ–บ Top land diameter ๐’…๐’‚๐Ÿ; ๐’…๐’‚๐Ÿ

๐‘‘๐‘Ž1 = ๐‘‘1 + 2 โˆ™ โ„Ž๐‘Ž1 = 87,815 ๐‘š๐‘š

๐‘‘๐‘Ž2 = ๐‘‘2 + 2 โˆ™ โ„Ž๐‘Ž2 = 171,177 ๐‘š๐‘š Where addendum is:

โ„Ž๐‘Ž1 = ๐‘š๐‘› โˆ™ (โ„Ž0๐‘Žโˆ— + ๐‘ฅ1) = 3,15 ๐‘š๐‘š

โ„Ž๐‘Ž2 = ๐‘š๐‘› โˆ™ (โ„Ž0๐‘Žโˆ— + ๐‘ฅ2) = 2,909 ๐‘š๐‘š

โ„Ž0๐‘Žโˆ— = 1

โ–บ Root diameter ๐’…๐’‡๐Ÿ; ๐’…๐’‡๐Ÿ

๐‘‘๐‘“1 = ๐‘‘1 โˆ’ 2 โˆ™ โ„Ž๐‘“1 = 77,695 ๐‘š๐‘š

๐‘‘๐‘“2 = ๐‘‘2 โˆ’ 2 โˆ™ โ„Ž๐‘“2 = 161,053 ๐‘š๐‘š

Where dedendum is:

โ„Ž๐‘“1 = ๐‘š๐‘› โˆ™ (โ„Ž0๐‘“โˆ— โˆ’ ๐‘ฅ1) = 1,91 ๐‘š๐‘š

โ„Ž๐‘“2 = ๐‘š๐‘› โˆ™ (โ„Ž0๐‘“โˆ— โˆ’ ๐‘ฅ2) = 2,153 ๐‘š๐‘š

โ„Ž0๐‘“โˆ— = 1,25

Page 8: Optimal design for a cylindrical gear with inclined teeth

โ–บ Base circle diameter ๐’…๐’ƒ๐Ÿ ; ๐’…๐’ƒ๐Ÿ

๐‘‘๐‘1 = ๐‘‘1 โˆ™ cos(๐›ผ๐‘ก) = 76,277 ๐‘š๐‘š

๐‘‘๐‘2 = ๐‘‘2 โˆ™ cos(๐›ผ๐‘ก) = 154,735 ๐‘š๐‘š

Figure 4 โ€“ Geometrical elements for gears

โ–บ Rolling diameter ๐’…๐’˜๐Ÿ; ๐’…๐’˜๐Ÿ

๐‘‘๐‘ค1 = ๐‘‘1 โˆ™๐‘๐‘œ๐‘  (๐›ผ๐‘ก)

๐‘๐‘œ๐‘  (๐›ผ๐‘ค๐‘ก)= 82,543 ๐‘š๐‘š

๐‘‘๐‘ค2 = ๐‘‘2 โˆ™๐‘๐‘œ๐‘  (๐›ผ๐‘ก)

๐‘๐‘œ๐‘  (๐›ผ๐‘ค๐‘ก)= 167,425 ๐‘š๐‘š

โ–บ Gear width ๐’ƒ๐Ÿ; ๐’ƒ๐Ÿ

๐‘2 = ๐‘Ž๐‘ค โˆ™ ๐œ“๐‘Ž = 58 ๐‘š๐‘š

๐‘1 = ๐‘2 + ๐‘š๐‘› = 63 ๐‘š๐‘š

4.7. Echivalent gear elements

The echivalent gear teeth number ๐’›๐’๐Ÿ; ๐’›๐’๐Ÿ

๐‘ง๐‘›1 =๐‘ง1

๐‘๐‘œ๐‘ ๐›ฝ3= 38,83 => ๐‘ง๐‘›1 = 39

๐‘ง๐‘›2 =๐‘ง2

๐‘๐‘œ๐‘ ๐›ฝ3= 78,78 => ๐‘ง๐‘›2 = 79

The equivalent gear pitch diameter ๐’…๐’๐Ÿ; ๐’…๐’๐Ÿ

๐‘‘๐‘›1 =๐‘‘1

๐‘๐‘œ๐‘ 2๐›ฝ= 87,367 ๐‘š๐‘š

๐‘‘๐‘›2 =๐‘‘2

๐‘๐‘œ๐‘ 2๐›ฝ= 177,231 ๐‘š๐‘š

The equivalent top land diameter ๐’…๐’‚๐’๐Ÿ; ๐’…๐’‚๐’๐Ÿ

๐‘‘๐‘Ž๐‘›1 = ๐‘‘๐‘›1 + ๐‘‘๐‘Ž1 โˆ’ ๐‘‘1 = 93,667 ๐‘š๐‘š

๐‘‘๐‘Ž๐‘›2 = ๐‘‘๐‘›2 + ๐‘‘๐‘Ž2 โˆ’ ๐‘‘2 = 183,049 ๐‘š๐‘š

The equivalent base circle diameter ๐’…๐’ƒ๐’๐Ÿ; ๐’…๐’ƒ๐’๐Ÿ

๐‘‘๐‘๐‘›1=๐‘‘๐‘›1 โˆ™ ๐‘๐‘œ๐‘ ๐›ผ๐‘› = 82,098 ๐‘š๐‘š

๐‘‘๐‘๐‘›2=๐‘‘๐‘›2 โˆ™ ๐‘๐‘œ๐‘ ๐›ผ๐‘› = 166,543 ๐‘š๐‘š

The echivalent distance between axes, [mm]๐’‚๐’˜๐’

๐‘Ž๐‘ค๐‘› โ‰ฅ๐‘Ž๐‘ค

๐‘๐‘œ๐‘ ๐›ฝ๐‘โˆ™

๐‘๐‘œ๐‘ ๐›ผ๐‘›

๐‘๐‘œ๐‘ ๐›ผ๐‘ค๐‘›= 110,045 ๐‘š๐‘š

Page 9: Optimal design for a cylindrical gear with inclined teeth

Where:

๐›ฝ๐‘ = ๐‘Ž๐‘Ÿ๐‘๐‘ก๐‘” (๐‘‘๐‘1

๐‘‘1๐‘ก๐‘”๐›ฝ) = 14,07ยฐ

๐›ฝ๐‘ค = ๐‘Ž๐‘Ÿ๐‘๐‘ก๐‘” (๐‘‘๐‘ค1

๐‘‘1๐‘ก๐‘”๐›ฝ) = 15,18ยฐ

๐›ผ๐‘ค๐‘› = ๐‘Ž๐‘Ÿ๐‘๐‘๐‘œ๐‘  (๐‘๐‘œ๐‘ ๐›ผ๐‘ค๐‘ก โˆ™ ๐‘๐‘œ๐‘ ๐›ฝ๐‘

๐‘๐‘œ๐‘ ๐›ฝ๐‘ค) = 21,78ยฐ

From Table 1 weโ€™ll take ๐‘Ž๐‘ค๐‘› = 112 ๐‘š๐‘š

The equivalente normale module ๐’Ž๐’๐’

๐‘š๐‘›๐‘› =2 โˆ™ ๐‘Ž๐‘ค๐‘› โˆ™ ๐‘๐‘œ๐‘ ๐›ฝ๐‘ค

๐‘ง๐‘›1 + ๐‘ง๐‘›2= 1,83 ๐‘š๐‘š

The new module now is ๐‘š๐‘›๐‘› = 1,75

5. Calculating the gear mass (volume)

The gearing weight is:

๐‘€๐‘”๐‘’๐‘Ž๐‘Ÿ๐‘–๐‘›๐‘” = ๐‘‰๐‘”๐‘’๐‘Ž๐‘Ÿ๐‘–๐‘›๐‘” โˆ™ ๐œŒ๐‘š๐‘Ž๐‘ก๐‘’๐‘Ÿ๐‘–๐‘Ž๐‘™

Where:

๐‘‰๐‘”๐‘’๐‘Ž๐‘Ÿ๐‘–๐‘›๐‘” โ€“ gear unit volume

๐œŒ๐‘š๐‘Ž๐‘ก๐‘’๐‘Ÿ๐‘–๐‘Ž๐‘™ โ€“ density of the gear wheel material: ๐œŒ๐‘š๐‘Ž๐‘ฅ = 7,85 โˆ™ 10โˆ’6 ๐‘˜๐‘”/๐‘š๐‘š3

The gear unit volume is:

๐‘‰๐‘”๐‘’๐‘Ž๐‘Ÿ๐‘–๐‘›๐‘” = ๐‘‰๐‘ง1 + ๐‘‰๐‘ง2

Where:

๐‘‰๐‘ง1 โ€“ pinion volume, [๐‘š๐‘š3]

๐‘‰๐‘ง2 โ€“ gear volume, [๐‘š๐‘š3]

We write in generalized form the relationships for volume determination using the index โ€œiโ€ (i-1 for the pinion, i-2 for the gear). Based on this notation the volume of the cylindrical inclined teeth is:

๐‘‰๐‘ง ๐‘– = ๐ด๐‘– โˆ™ ๐‘๐‘–

Where:

๐ด๐‘– โ€“ area of the cylindrical front surface with inclined teeth, [๐‘š๐‘š2]

๐‘๐‘– โ€“ width of cylindrical wheels with inclined teeth, [mm]

Area of the cylindrical front surface with inclined teeth is:

๐ด๐‘– = ๐ด๐‘‘๐‘–๐‘ ๐‘ ๐‘– + ๐ด๐‘ง ๐‘– โˆ™ ๐‘ง๐‘– Where:

๐ด๐‘‘๐‘–๐‘ ๐‘ ๐‘– โ€“ front surface area of the disc

๐ด๐‘ง ๐‘– โ€“ area of the cylindrical tooth front surface

๐ด๐‘‘๐‘–๐‘ ๐‘ ๐‘– =๐œ‹ โˆ™ ๐‘‘๐‘“ ๐‘–

2

4

Where:

๐‘‘๐‘“ ๐‘– โ€“ root diameter of the cylindrical wheel

For calculating the area of the front surface of the cylindrical toothed wheel tooth, its surface has

been divided into several circular sectors of known rays and angles (Figure 5).

Page 10: Optimal design for a cylindrical gear with inclined teeth

Figure 5 โ€“ Dividing the front surface Figure 6 โ€“ Involute chart area

of the gear wheel

With notation in Figure 5, the front surface area can be written as follows:

๐ด๐‘ง ๐‘– = 2 โˆ™ ๐ด๐ด๐ธ๐‘€ ๐‘– + ๐ด๐ด๐‘€๐‘๐‘ƒ ๐‘– + ๐ด๐ธ๐ป๐พ๐น ๐‘– + 2 โˆ™ ๐ด๐‘… ๐‘–

Where:

๐ด๐ด๐ธ๐‘€ ๐‘– โ€“ contour area defined by points A, E, M, [๐‘š๐‘š2] ๐ด๐ด๐‘€๐‘๐‘ƒ ๐‘– โ€“ contour area defined by points A, M, N, P, [๐‘š๐‘š2] ๐ด๐ธ๐ป๐พ๐น ๐‘– โ€“ contour area defined by points E, H, K, F, [๐‘š๐‘š2] ๐ด๐‘… ๐‘– โ€“ zone conection area (outline bounded by points E, G, H, [๐‘š๐‘š2]

Contour area defined by points A, E and M is:

๐ด๐ด๐ธ๐‘€ ๐‘– = ๐ด๐‘‚๐‘– ๐ธ๐ด๐ต๐ท ๐‘– โˆ’ ๐ดฮ”๐‘‚๐‘– ๐ต๐ด โˆ’ ๐ด๐‘ ๐‘’๐‘๐‘ก ๐‘‚๐‘–๐ธ๐‘€ = 3428,824 ๐‘š๐‘š2

Contour area defined by points A, M, N and P is:

๐ด๐ด๐‘€๐‘๐‘ƒ ๐‘– = ๐ด๐‘ ๐‘’๐‘๐‘ก ๐‘‚๐‘–๐ด๐‘ƒ โˆ’ ๐ด๐‘ ๐‘’๐‘๐‘ก ๐‘‚๐‘–๐‘€๐‘ = 2241,68 ๐‘š๐‘š2

Contour area defined by points E, H, K and F is:

๐ด๐ธ๐ป๐พ๐น ๐‘– = ๐ด๐‘ ๐‘’๐‘๐‘ก ๐‘‚๐‘–๐ธ๐น โˆ’ ๐ด๐‘ ๐‘’๐‘๐‘ก ๐‘‚๐‘–๐ป๐พ = 3725,512 ๐‘š๐‘š2

Zone conection area is:

๐ด๐‘… ๐‘– = ๐ดฮ”๐‘‚๐‘‚๐‘–๐ธ โˆ’ ๐ด๐‘ ๐‘’๐‘๐‘ก ๐‘‚๐‘–๐บ๐ป โˆ’ ๐ด๐‘ ๐‘’๐‘๐‘ก ๐‘‚๐บ๐ธ = 2231,278 ๐‘š๐‘š2

Area of the cylindrical front surface with inclined teeth is:

๐ด๐‘– = ๐ด๐‘‘๐‘–๐‘ ๐‘ ๐‘– + ๐ด๐‘ง ๐‘– โˆ™ ๐‘ง๐‘–= = 17287,396 ๐‘š๐‘š2 The volume of the cylindrical inclined teeth is:

๐‘‰๐‘ง ๐‘– = ๐ด๐‘– โˆ™ ๐‘๐‘– = 1099910,57 ๐‘š๐‘š3 The gearing weight is:

๐‘€๐‘”๐‘’๐‘Ž๐‘Ÿ๐‘–๐‘›๐‘” = ๐‘‰๐‘”๐‘’๐‘Ž๐‘Ÿ๐‘–๐‘›๐‘” โˆ™ ๐œŒ๐‘š๐‘Ž๐‘ก๐‘’๐‘Ÿ๐‘–๐‘Ž๐‘™ = 8,634 ๐‘˜๐‘”

Page 11: Optimal design for a cylindrical gear with inclined teeth

6. The objective of the optimization problem

For some areas where toothed gears are used, such as the aerospace industry, the automotive

construction etc., reduced gear mass (volume) can be an important parameter to become an optimization

criterion. For this reazon it was considered as a function gear unit mass. We want to minimize this function.

๐‘€๐‘”๐‘’๐‘Ž๐‘Ÿ๐‘–๐‘›๐‘” = ๐‘‰๐‘”๐‘’๐‘Ž๐‘Ÿ๐‘–๐‘›๐‘” โˆ™ ๐œŒ๐‘š๐‘Ž๐‘ก๐‘’๐‘Ÿ๐‘–๐‘Ž๐‘™ โ†’ ๐‘š๐‘–๐‘›

The Mathcad 15 software was used to solve the optimal design problem. The values of the minimum

mass variable are shown in Table 2.

Tabel 2 โ€“ Values of solution variables with minimum mass

Nr. Variable Symbol Valoare

1 Distance between axes, [mm] ๐‘Ž๐‘ค 112

2 Coefficient of displacement in the normal plane for the pinion ๐‘ฅ๐‘  1

3 Coefficient ratio between the width and the axial distance ๐œ“๐‘Ž 0,45

4 Inclination helix angle on the pitch cylinder ๐›ฝ 14,07ยฐ

5 Gear teeth number ๐‘ง1 39

Table 3 presents a comparison of the main geometric elements of the gear in the two variants (classical and optimal respectively).

Tabel 3 - Comparison between the two variants of gears

Nr. Characteristic Classic version Optimal version

pinion wheel pinion wheel

1 Normal module, [mm] 2,25 1,75

2 Distance between axes, [mm] 125 112

3 Number of teeth of gears 35 71 39 79

4 Width gears, [mm] 63 58 67 62

5 Root diameter, [mm] 77,695 161,053 69,925 145,558

6 Pitch diameter, [mm] 81,515 165,359 73,363 148,823

7 Rolling diameter, [mm] 82,543 167,425 74,288 150,682

8 Top land diameter, [mm] 87,815 171,177 79,033 154,059

9 Base circle diameter, [mm] 76,277 154,735 67,124 140,808

10 Gearing weith, [kg] 8,634 7,403

7. Conclusions

For over 20 years, Mathcad is the standard recognized performing, documenting and working

collaboratively with engineering calculations, methods and algorithms in design.

Unlike spreadsheet programs, where equations are expressed cryptic and conversion between systems of different units is impossible, or programming languages, accessible mainly programmers,

Mathcad is a much better perform and manage engineering calculations, they being easy to achieve,

understood, verified, communicated and followed logically.

Page 12: Optimal design for a cylindrical gear with inclined teeth

Based on the values in Table 3, it can be noticed that in the optimal variant the wheels

of gearing are wider (coefficient of ratio between the width and the axial distance increased from

0,46 โ€“ 0,59) but with smaller diameters. The gearing weight decreased from 8,634 to 7,403 kg (which

which represents a 14,25% decrease in mass) on the idea that the same conditions function for both variants.

References [1] Cฤ‚LIMฤ‚NESCU, I., POP, V., 1981 Machine elements โ€“ Theory and Cad Induction (Constanศ›a) vol.I (Ed. Nauticฤƒ) [2] CHIศ˜IU, A., ศ™.a. 1981 Organe de maศ™ini (Bucureศ™ti) (Ed. Didacticฤƒ ศ™i Pedagogicฤƒ) [3] DRฤ‚GHICI, A., 1981 รŽndrumar de proiectare รฎn construcศ›ia de maศ™ini (Bucureศ™ti) vol.I (Ed. Tehnicฤƒ) [4] GAFIศšANU, M., ศ™.a., 1983 Organe de maศ™ini (Bucureศ™ti) vol.I (Ed. Tehnicฤƒ) [5] JOHNSON, C.R., 1980 Optimum design of mechanical elements (New York) (Ed. John Wiley Inc) [6] PAVELESCU, D., 1985 Organe de maศ™ini (Bucureศ™ti) (Ed. Didacticฤƒ ศ™i Pedagogicฤƒ) [7] POPVICI, M.M., 2003 Proiectarea optimalฤƒ a organelor de maศ™ini (Bucureศ™ti) (Ed. Tehnicฤƒ) [8] Rฤ‚DULESCU, O., 1984 Sinteze optimale รฎn construcศ›ia de maศ™ini (Bucureศ™ti) (Ed. Tehnicฤƒ) [9] Rฤ‚DULESCU, O., 1982 Organe de maศ™ini. Sinteze optimale. (Bucureศ™ti) (Ed. Academiei Militare) [10] Rฤ‚DULESCU, O., ศ™.a., 2003 Proiectarea optimalฤƒ a organelor de maศ™ini (Bucureศ™ti) (Ed. Tehnicฤƒ) [11] ZIDARU, N., 2004 Organe de maศ™ini (Bucureศ™ti) (Ed. Printech)