optimal network reconfiguration - binghamton university · 2014-04-09 · optimal network...

17
Optimal Network Reconfiguration Solar Energy Integration and Multi-objective Power Flow Optimization Gokturk Poyrazoglu , HyungSeon Oh SUNY Conversations in the Disciplines BINGHAMPTON UNIVERSITY University at Buffalo, SUNY

Upload: lethu

Post on 01-Dec-2018

215 views

Category:

Documents


0 download

TRANSCRIPT

Optimal Network Reconfiguration

Solar Energy Integration and

Multi-objective Power Flow Optimization

G o k t u r k P o y r a z o g l u , H y u n g Seo n O h

S U N Y C o n v e r s a t i o n s i n t h e D i s c i p l i n e s

B I N G H A M P T O N U N I V E R S I T Y

U n i v e r s i t y a t B u f f a l o , S U N Y

Case Study

• Reconfigure the network

• Keep the radial network structure

1. Keep the current operation policy: One directional flow

2. Allow bidirectional power flow

• Single Objective Optimization

• Multi-objective Optimization

1,500

1,700

1,900

2,100

2,300

2,500

2,700

2,900

3,100

0.8 0.85 0.9 0.95 1 1.05 1.1

Op

era

tin

g C

ost

($

)

Load factor

Minimum Operating Cost of the System with Different Topologies

Original Topology 18 Topology 14 Topology 24

TOPOLOGY 18 TOP. 14 TOP. 24

Load Level

Topology in Operation

Original Topology

80% 100%

107%

110% 103%

1,500

2,000

2,500

3,000

0.8 0.85 0.9 0.95 1 1.05 1.1

Op

era

tin

g C

ost

($

)

Load factor

Minimum Operating Cost of the System with Different Topologies

Original Topology 18 Topology 14 Topology 24

SOLAR POWER INTEGRATION with CURRENT POLICY

6

9

15

𝑉6 < 𝑉4 𝑉15 < 𝑉13 𝑉9 < 𝑉8

0

200

400

600

800

1,000

1,200

1,400

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27

Op

era

tin

g C

ost

($

)

Pe

rce

nta

ge (

10

0%

)

Various Network Topologies

High Demand - High Solar- Current Policy

Consumed Energy Spilled Energy Operating Cost

SOLAR POWER INTEGRATION with PROPOSED POLICY

6

9

15

𝑉6 < 𝑉4 𝑉15 < 𝑉13 𝑉9 < 𝑉8

0

200

400

600

800

1000

1200

1400

75%

80%

85%

90%

95%

100%

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27

Op

era

tin

g C

ost

($

)

Pe

rce

nta

ge(1

00

%)

Various Network Topologies

High Demand - High Solar - Proposed Policy

Consumed Energy Spilled Energy Operating Cost

ANNUAL DATA ANALYSIS

0

2

4

6

8

10

12

14

16

18

Current Policy -Best Topologies

Current Policy -Original

Proposed Policy -Best Topologies

Proposed Policy -Original

Op

era

tin

g C

ost

(M

illio

n $

) Annual Operating Cost Comparison

17% Cost Reduction 29%

Cost Reduction

MULTI-OBJECTIVE OPTIMIZATION

• Minimize

– Operating Cost

– Spilled Energy

• Minimize

– Operating Cost

– Real Power Losses

Multi-objective Optimization

0

200

400

600

800

1,000

1,200

1,400

0 0.5 1 1.5 2 2.5 3 3.5 4

Op

era

tin

g C

ost

($

)

Spilled Energy (MW)

Multi-objective Optimization

Min Cost Min Spilled

Energy

MULTI-OBJECTIVE OPTIMIZATION

• Minimize

– Operating Cost

– Spilled Energy

• Minimize

– Operating Cost

– Real Power Losses

0

200

400

600

800

1,000

1,200

1,400

0 2 4 6 8 10 12 14 16 18 20

Op

era

tin

g C

ost

($

)

Real Power Losses (MW)

Multi Objective Optimization Operating Cost - Real Power Losses

MIN cost MIN loss

297.07

347.07

397.07

447.07

497.07

547.07

597.07

647.07

8.16 8.66 9.16 9.66 10.16 10.66 11.16

Op

era

tin

g C

ost

($

)

Real Power Losses (MW)

Multi Objective Optimization Operating Cost - Real Power Losses

Top.1 Top.3 Top. 10 Top.24 Top.27

THANK YOU

Contact Info: [email protected]

[email protected]

S U N Y C o n v e r s a t i o n s i n t h e D i s c i p l i n e s

B I N G H A M P T O N U N I V E R S I T Y

U n i v e r s i t y a t B u f f a l o , S U N Y