optomechanics for gravitational wave detection · 2016-11-15 · optomechanics for gravitational...

180
Optomechanics for Gravitational Wave Detection David Blair Australian Interna1onal Gravita1onal Research Centre University Of Western Australia Les Houches August 2015

Upload: others

Post on 22-May-2020

8 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Optomechanics for Gravitational Wave Detection · 2016-11-15 · Optomechanics for Gravitational Wave Detection David&Blair& Australian&Internaonal& Gravitaonal&Research&Centre& University&Of&Western&Australia

Optomechanics for Gravitational Wave Detection

David  Blair  Australian  Interna1onal  

Gravita1onal  Research  Centre  University  Of  Western  Australia  

   

Les  Houches  August  2015  

Page 2: Optomechanics for Gravitational Wave Detection · 2016-11-15 · Optomechanics for Gravitational Wave Detection David&Blair& Australian&Internaonal& Gravitaonal&Research&Centre& University&Of&Western&Australia

Two  fundamental  spectrums  

150  years  ago  •  1865  Maxwell    

– EM  spectrum  predicted  •  1886  Hertz    

– EMW  discovered  •  1900  Marconi  

– First  radios  •  2015  

– Full  EM  spectrum  harnessed  

100  years  ago  •  1915  Einstein  

– GW  predicted  •  1993  Taylor  

– Proved  to  exist  •  2017??    

– GW  discovered  •  2115??  

– GW  spectrum    harnessed  

Page 3: Optomechanics for Gravitational Wave Detection · 2016-11-15 · Optomechanics for Gravitational Wave Detection David&Blair& Australian&Internaonal& Gravitaonal&Research&Centre& University&Of&Western&Australia

Four  lectures  on  electro-­‐mechanics  

•  History  of  GW  Detec1on:  impedance  matching,  sidebands,  imminent  detec1on  

•  History  of  parametric  transducers  from  30MHz  to  op1cs.  

•  Parametric  instability:  a  tool  and  a  problem  •  Towards  thermal  noise  free  optomechanics  for  noise  exceeding  the  standard  quantum  limit  

Page 4: Optomechanics for Gravitational Wave Detection · 2016-11-15 · Optomechanics for Gravitational Wave Detection David&Blair& Australian&Internaonal& Gravitaonal&Research&Centre& University&Of&Western&Australia

Gravita1onal  Wave  Detec1on,  Parametric  Transducers  and  

Optomechanics  

•  1960:  Weber  proposed  GW  detec1on  •  1965  300K  bars  with  piezo  transducers  •  1969  Weber  announced  detec1on  

•  Cryogenic  Bars  •  First  Parametric  Transducers  

–  30MHz  •  Microwave  Parametric  Transducers  

–  10GHz  •  Sapphire  whispering  gallery  oscillators  to  

solve  phase  noise  problem  –  Sapphire  transducers:  resolved  sideband  

parametric  transducers  •  Optomechanics  from  40kg  tp  ng  test  masses  

Page 5: Optomechanics for Gravitational Wave Detection · 2016-11-15 · Optomechanics for Gravitational Wave Detection David&Blair& Australian&Internaonal& Gravitaonal&Research&Centre& University&Of&Western&Australia

Weber’s  Pioneering  Work  •  Joseph  Weber    Phys  Rev  117,  306,1960  •  Gravita1onal  wave  excita1on  of  mechanical  oscillators  •  Mass  Quadrupole  Harmonic  Oscillator:  Bar,  Sphere  or  Plate  

•  Designs  to  date:   Bar    

 

Sphere  

 

Torsional  Quadrupole  Oscillator  

 

Weber’s  sugges1ons:  

Earth:  GW  at  10-­‐3  Hz.  

Piezo  crystals:  107  Hz  

Al  bars:  103  Hz  

Detectable  flux  spectral  density:  10-­‐7Jm-­‐2s-­‐1Hz-­‐1  

(  h~  10-­‐22  for  10-­‐3  s  pulse)  

Page 6: Optomechanics for Gravitational Wave Detection · 2016-11-15 · Optomechanics for Gravitational Wave Detection David&Blair& Australian&Internaonal& Gravitaonal&Research&Centre& University&Of&Western&Australia

Waves  unstopable  by  mader  •  Space1me  s1ffness    ~    c4/8πG  

•  Enormous  energy    

•  Small  amplitude  h  

•  Travel  at  the  speed  c  

For typical waves the fractional strain amplitude is ~ 10-24

The gravitational wave luminosity of black hole binary coalescence = c5/G =1023 x Lsun !

h =ΔL

L

Page 7: Optomechanics for Gravitational Wave Detection · 2016-11-15 · Optomechanics for Gravitational Wave Detection David&Blair& Australian&Internaonal& Gravitaonal&Research&Centre& University&Of&Western&Australia

10-24

10-21

10-18

10-15

1970 1980 1990 2000

h

A

SpaceVoyager

Cassini

LISACertain

LIGO IILIGO I

TAMAlaser

IGEC

certain detection

? ?

? ?

terrestrial stochastic pulsars

quantum foam?superstrings?GUTS?

Progress  in  Gravita1onal  Wave  Detec1on  108  fold  improvement  in  energy  sensi4vity  so  far  and  more  to  

come!  

ESA:2034  

A/LIGO  2015  

2015  2015  

A  slide  from  2002  

Page 8: Optomechanics for Gravitational Wave Detection · 2016-11-15 · Optomechanics for Gravitational Wave Detection David&Blair& Australian&Internaonal& Gravitaonal&Research&Centre& University&Of&Western&Australia

Response  to  Weber  1972  

Page 9: Optomechanics for Gravitational Wave Detection · 2016-11-15 · Optomechanics for Gravitational Wave Detection David&Blair& Australian&Internaonal& Gravitaonal&Research&Centre& University&Of&Western&Australia

Bar  concept    1972  

Page 10: Optomechanics for Gravitational Wave Detection · 2016-11-15 · Optomechanics for Gravitational Wave Detection David&Blair& Australian&Internaonal& Gravitaonal&Research&Centre& University&Of&Western&Australia

Proposed  Cryogenic  Detectors  

Page 11: Optomechanics for Gravitational Wave Detection · 2016-11-15 · Optomechanics for Gravitational Wave Detection David&Blair& Australian&Internaonal& Gravitaonal&Research&Centre& University&Of&Western&Australia

       

AURIGA    

Page 12: Optomechanics for Gravitational Wave Detection · 2016-11-15 · Optomechanics for Gravitational Wave Detection David&Blair& Australian&Internaonal& Gravitaonal&Research&Centre& University&Of&Western&Australia

Bar

C

Pump Oscillator

Modulated Output

Persistent Current 1

SQUIDOutput ωa

Two  Transducer  Concepts  Parametric   Direct  

Signal  detected  as  modula4on  sidebands  of  pump  frequency  

Cri1cal  requirements:  

• low  pump  noise    

• low  noise  amplifier  at      modula1on  frequency  

Signal  at  antenna  frequency  

Cri1cal  requirements:    

•  low  noise  SQUID  amplifier    

•  low  mechanical  loss      circuitry  

Page 13: Optomechanics for Gravitational Wave Detection · 2016-11-15 · Optomechanics for Gravitational Wave Detection David&Blair& Australian&Internaonal& Gravitaonal&Research&Centre& University&Of&Western&Australia

SQUID  Transducer  concept  

Page 14: Optomechanics for Gravitational Wave Detection · 2016-11-15 · Optomechanics for Gravitational Wave Detection David&Blair& Australian&Internaonal& Gravitaonal&Research&Centre& University&Of&Western&Australia

First  Superconduc1ng  Parametric  Transducer  1973  

Niobium-­‐on-­‐sapphire  RF  LC  pancake  resonator  

Nb  levitated  tube  Nb  on  sapphire  sensing  surface  

1000-­‐amp  current  levitates  test  mass  

Page 15: Optomechanics for Gravitational Wave Detection · 2016-11-15 · Optomechanics for Gravitational Wave Detection David&Blair& Australian&Internaonal& Gravitaonal&Research&Centre& University&Of&Western&Australia

Problems  

•  Sensi1vity  limited  by  pump  oscillator  phase  noise  

•  RF  Q-­‐factor  strongly  power  dependent  •  Failure  to  understand  electromechanical  impedance  matching.  

Page 16: Optomechanics for Gravitational Wave Detection · 2016-11-15 · Optomechanics for Gravitational Wave Detection David&Blair& Australian&Internaonal& Gravitaonal&Research&Centre& University&Of&Western&Australia

40  years  later:  Current  Status  of  GWD  

•  All  cryogenic  bars  are  switched  off.  •  Their  legacy  can  be  found  in  modern  opto-­‐mechanics  

•  Laser  Interferometers  are  on  the  point  of  first  detec1on.  

•  Opto-­‐mechanics  is  fundamental  to  current  detectors  and  offers  exci1ng  solu1ons  for  the  future  

Page 17: Optomechanics for Gravitational Wave Detection · 2016-11-15 · Optomechanics for Gravitational Wave Detection David&Blair& Australian&Internaonal& Gravitaonal&Research&Centre& University&Of&Western&Australia

Hot EOS: high-mass binary

Animations: Kaehler, Giacomazzo, Rezzolla

Page 18: Optomechanics for Gravitational Wave Detection · 2016-11-15 · Optomechanics for Gravitational Wave Detection David&Blair& Australian&Internaonal& Gravitaonal&Research&Centre& University&Of&Western&Australia
Page 19: Optomechanics for Gravitational Wave Detection · 2016-11-15 · Optomechanics for Gravitational Wave Detection David&Blair& Australian&Internaonal& Gravitaonal&Research&Centre& University&Of&Western&Australia

1973:  What  we  expected  to  detect  

Page 20: Optomechanics for Gravitational Wave Detection · 2016-11-15 · Optomechanics for Gravitational Wave Detection David&Blair& Australian&Internaonal& Gravitaonal&Research&Centre& University&Of&Western&Australia

Central  parsec  of  Milky  Way  •  1  supermassive  black  hole  

•  20,000  stellar  mass  black  holes  

•  50  intermediate  mass  black  holes  

•  107  stars  •  3-­‐body  interac1ons  •  Close  binary  black  holes  forming  

Bence  Kocsis  2013  

Page 21: Optomechanics for Gravitational Wave Detection · 2016-11-15 · Optomechanics for Gravitational Wave Detection David&Blair& Australian&Internaonal& Gravitaonal&Research&Centre& University&Of&Western&Australia

BH  Capture  Events  create  extreme  eccentric  binaries  

Page 22: Optomechanics for Gravitational Wave Detection · 2016-11-15 · Optomechanics for Gravitational Wave Detection David&Blair& Australian&Internaonal& Gravitaonal&Research&Centre& University&Of&Western&Australia

Kocsis  2013  

Page 23: Optomechanics for Gravitational Wave Detection · 2016-11-15 · Optomechanics for Gravitational Wave Detection David&Blair& Australian&Internaonal& Gravitaonal&Research&Centre& University&Of&Western&Australia

PSR 1913+16: prototype gw source

Prototype NS -NS: binary radio pulsar PSR B1913+16

Chirp Waveform

GW emission causes orbital shrinkage leading to higher

GW frequency and amplitude

orbital decay

PSR B1913+16

Weisberg &Taylor 03

Page 24: Optomechanics for Gravitational Wave Detection · 2016-11-15 · Optomechanics for Gravitational Wave Detection David&Blair& Australian&Internaonal& Gravitaonal&Research&Centre& University&Of&Western&Australia

Binary  Pulsars  and  Coalescence  Event  rate  Order  of  magnitude  es1mate  •  5  observed  binary  pulsars  in  Milky  Way  Correct  for  beaming  factor  and  luminosity  func4on  to  es4mate  total  popula4on  –  many  unseen  due  to  wrong  beam  direc4on  or  low  luminosity.  •  Total  popula1on  ~103  per  Milky  Way  galaxy  •  Life1me  to  coalescence  ~  108  years  •  Coalescence  rate  in  Milky  Way  ~  1  per  105  years  •  Number  of  Milky  Way  equivalent  galaxies  to  achieve  10  events  per  year:  about  106  

•  Horizon  distance  to  encompass  106  galaxies  ~  100Mpc  •   design  criterion  for  Advanced  LIGO  and  Virgo.  

Page 25: Optomechanics for Gravitational Wave Detection · 2016-11-15 · Optomechanics for Gravitational Wave Detection David&Blair& Australian&Internaonal& Gravitaonal&Research&Centre& University&Of&Western&Australia

Vladimir  Braginsky  1975  

•  Standard  quantum  limit  -   Linear  amplifier  

measurement  limit  •  Quantum  non-­‐demoli1on  -  Achievable  using  phase  

sensi1ve  amplifiers      

Page 26: Optomechanics for Gravitational Wave Detection · 2016-11-15 · Optomechanics for Gravitational Wave Detection David&Blair& Australian&Internaonal& Gravitaonal&Research&Centre& University&Of&Western&Australia

History  of  Laser  Interferometer  Gravita1onal  Wave    Detectors  

•  1990:  Large  Interferometers  designed  to  detect  known  sources  at  reasonable  rate.  

•   Three  stages    – 1990s:  Proof  of  principle:  40m  – 2000s:  LIGO  1:  4km  facility,  cau1ous  design,  expected  signals:  2  events  per  100  years.    

– 2015-­‐2020:  Advanced  LIGO:  10  x  beder  sensi1vity,  1000  x  larger  volume,  expected  signals  40  per  year    

Hoped  for  

events  

Predicted  events  

Page 27: Optomechanics for Gravitational Wave Detection · 2016-11-15 · Optomechanics for Gravitational Wave Detection David&Blair& Australian&Internaonal& Gravitaonal&Research&Centre& University&Of&Western&Australia

Ron  Drever,  Les  Houches  1983  

Power  recycling  

Page 28: Optomechanics for Gravitational Wave Detection · 2016-11-15 · Optomechanics for Gravitational Wave Detection David&Blair& Australian&Internaonal& Gravitaonal&Research&Centre& University&Of&Western&Australia

Brian  Meers  1988  

•  Signal  Recycling  

•  Tuned  output  stage  allows  greater  power  build-­‐up  and  significantly  improved  sensi1vity  if  combined  with  improved  test  masses.  

Page 29: Optomechanics for Gravitational Wave Detection · 2016-11-15 · Optomechanics for Gravitational Wave Detection David&Blair& Australian&Internaonal& Gravitaonal&Research&Centre& University&Of&Western&Australia

end test mass

beam splitter signal

Laser

input test mass

Very long optical cavities build up light by resonance

Power recycling mirror

Photodetector

Light intensity ~MW can create optical spring stiffer than diamond!

Signal recycling mirror

Gravita1onal  Wave  Interferometer  

Page 30: Optomechanics for Gravitational Wave Detection · 2016-11-15 · Optomechanics for Gravitational Wave Detection David&Blair& Australian&Internaonal& Gravitaonal&Research&Centre& University&Of&Western&Australia

Radia1on  Pressure  and  Op1cal  Springs  

•  Detuned optical cavities •  Radiation pressure creates

optical spring •  Changes the detector

dynamics to enable more GW energy to be absorbed

P=  1MW  op1cal  power  F=2P/c  ~  10mN    

P=  100kW  op1cal  power  F=2P/c  ~  1mN    

F  =Kx  K=ΔF/Δx  ~10mN/nm  =  107N/m  =  1000  tonnes/m  

Δx  =  1nm  or  much  less  

Page 31: Optomechanics for Gravitational Wave Detection · 2016-11-15 · Optomechanics for Gravitational Wave Detection David&Blair& Australian&Internaonal& Gravitaonal&Research&Centre& University&Of&Western&Australia

Virgo  Cascina,  Italy  

Gravita1onal  Wave  Detector    

Page 32: Optomechanics for Gravitational Wave Detection · 2016-11-15 · Optomechanics for Gravitational Wave Detection David&Blair& Australian&Internaonal& Gravitaonal&Research&Centre& University&Of&Western&Australia

Advanced LIGO and the Dawn of Gravitational Astronomy

David ReitzeLIGO Laboratory

California Institute of Technology

for the LSC and Virgo

LIGO-­‐G1500451-­‐v1     LIGO  Hanford  Observatory  

The Next Detectors for Gravitational Wave Astronomy, Beijing, April-May, 2015

Kilometer-­‐scale  precision  laser  interferometers:  •  4km  x  4km  high  vacuum  •  Nanometer  precision  op?cs  •  180W  ultrastable  CW  lasers  •  Most  sensi?ve  instrument  ever  created  •  Working  near  quantum  limits  of  precision  measurement  

Page 33: Optomechanics for Gravitational Wave Detection · 2016-11-15 · Optomechanics for Gravitational Wave Detection David&Blair& Australian&Internaonal& Gravitaonal&Research&Centre& University&Of&Western&Australia

Adv  LIGO  Strain  Sensi1vity  Early  commissioning  results  Feb  2015  

33  

10-24

10-23

10-22

10-21

10-20

10-19

Str

ain

(1/

Hz)

102 3 4 5 6 7 8 9

1002 3 4 5 6 7 8 9

10002 3 4 5

Frequency (Hz)

Hanford 4 km S6

Livingston 4 km S6

AdvLIGO Design, ZeroDetuning (High Power)

Preliminary:  Calibra1on  is  uncertain  by  20%  

D  Reitze  KITPC,  Beijing  2015  

Horizon  range  already  70  Mpc,  sufficient  to  expect  detec1on  quite  soon.  

Page 34: Optomechanics for Gravitational Wave Detection · 2016-11-15 · Optomechanics for Gravitational Wave Detection David&Blair& Australian&Internaonal& Gravitaonal&Research&Centre& University&Of&Western&Australia

LIGO USA  

Page 35: Optomechanics for Gravitational Wave Detection · 2016-11-15 · Optomechanics for Gravitational Wave Detection David&Blair& Australian&Internaonal& Gravitaonal&Research&Centre& University&Of&Western&Australia

Range  for  neutron  stars    

Ini1al  LIGO  50  million  light  years  

Advanced  LIGO  600  million  light  years  

One  event  every  20  years  

One  event  per  week  

Page 36: Optomechanics for Gravitational Wave Detection · 2016-11-15 · Optomechanics for Gravitational Wave Detection David&Blair& Australian&Internaonal& Gravitaonal&Research&Centre& University&Of&Western&Australia

Development  of  Parametric  Transducers  

Page 37: Optomechanics for Gravitational Wave Detection · 2016-11-15 · Optomechanics for Gravitational Wave Detection David&Blair& Australian&Internaonal& Gravitaonal&Research&Centre& University&Of&Western&Australia

1975  •  Braginsky  suggests  microwave  re-­‐entrant  cavity.  

•  First  experiments  at  UWA  1976-­‐80  –   6kg  magne1cally  levitated  Nb  bar  with  10GHz  levitated  re-­‐entrant  cavity  transducer.    

C  ~  1pF  L  ~  1nH  f  ~  10GHz  Q  ~  105  -­‐  106  

Page 38: Optomechanics for Gravitational Wave Detection · 2016-11-15 · Optomechanics for Gravitational Wave Detection David&Blair& Australian&Internaonal& Gravitaonal&Research&Centre& University&Of&Western&Australia

Levitated  Antenna  with  Superconduc1ng  Transducer  

Page 39: Optomechanics for Gravitational Wave Detection · 2016-11-15 · Optomechanics for Gravitational Wave Detection David&Blair& Australian&Internaonal& Gravitaonal&Research&Centre& University&Of&Western&Australia

Levitated  Re-­‐Entrant  Cavi1es  

Page 40: Optomechanics for Gravitational Wave Detection · 2016-11-15 · Optomechanics for Gravitational Wave Detection David&Blair& Australian&Internaonal& Gravitaonal&Research&Centre& University&Of&Western&Australia

Problems  with  Levitated  Re-­‐entrant  Cavity  

•  Control  noise  –  Current  noise  in  the  non-­‐contac1ng  voice  coil    control  system  that  

maintained  cavity  spacing  10µm  from  the  bar  •  Phase  noise  

–  Klystron  oscillator  phase  noise  indis1nguishable  from  displacement  noise  

•  Thermal  noise  –  Low  Q-­‐factor  levita1on  assembly  introduced  mechanical  thermal  

noise.  •  Tunability  Conflict:  easy  frequency  tunability    of  free  floa1ng  re-­‐

entrant  cavity    –  incompa1ble  with  crea1ng  a  strong  mechanically  coupled  oscillator.  

(needs  s1ff  spring  not  achievable  magne1cally.)  •  Noise  enters  down  microwave  cables.  

Page 41: Optomechanics for Gravitational Wave Detection · 2016-11-15 · Optomechanics for Gravitational Wave Detection David&Blair& Australian&Internaonal& Gravitaonal&Research&Centre& University&Of&Western&Australia

effa M

m⋅=Δ ωω

Two  Mode  Resonant  transformer    

Two  normal  modes  split  by    

Narrow  Band  impedance  matching  

Mechanical  model:  transducer  with  impedance  matching  using  an  intermediate  mass  resonant  transformer  

Infinitely  rigid  reference  surface  

Page 42: Optomechanics for Gravitational Wave Detection · 2016-11-15 · Optomechanics for Gravitational Wave Detection David&Blair& Australian&Internaonal& Gravitaonal&Research&Centre& University&Of&Western&Australia

Impedance  matching  and  Bandwidth  

Page 43: Optomechanics for Gravitational Wave Detection · 2016-11-15 · Optomechanics for Gravitational Wave Detection David&Blair& Australian&Internaonal& Gravitaonal&Research&Centre& University&Of&Western&Australia

Four resonant bars

Resonant  

Mass  

 Detectors  

Page 44: Optomechanics for Gravitational Wave Detection · 2016-11-15 · Optomechanics for Gravitational Wave Detection David&Blair& Australian&Internaonal& Gravitaonal&Research&Centre& University&Of&Western&Australia
Page 45: Optomechanics for Gravitational Wave Detection · 2016-11-15 · Optomechanics for Gravitational Wave Detection David&Blair& Australian&Internaonal& Gravitaonal&Research&Centre& University&Of&Western&Australia

Niobe  1.5  tonnes  3m  x  30cm  

•  T=4K  •  Liquid  helium:  0.5l/hr  •  Cryogenic  vibra1on  isola1on  •  Q=  2.3  x  108  

Page 46: Optomechanics for Gravitational Wave Detection · 2016-11-15 · Optomechanics for Gravitational Wave Detection David&Blair& Australian&Internaonal& Gravitaonal&Research&Centre& University&Of&Western&Australia

High  Q  for  Thermal  Noise    Reduc1on  

Q=  2.3  x  108  

•  Perfect  harmonic  oscillator  is  noiseless:  amplitude  and  phase  perfectly  predictable  

•  Q-­‐1  measures  coupling  of  oscillator  to  thermal  reservoir:    •  Highest  observed  Q-­‐factor  for  any  metal  resonator  •  Time  constant  ~  1  day    =  1me  constant  for  energy  exchange  

between  normal  mode  and  the  thermal  reservoir  =  1me  to  reach  thermal  equilibrium.  

Page 47: Optomechanics for Gravitational Wave Detection · 2016-11-15 · Optomechanics for Gravitational Wave Detection David&Blair& Australian&Internaonal& Gravitaonal&Research&Centre& University&Of&Western&Australia

Mul1mode  Mode  Impedance  Matching  

As  the  number  of  resonators  increases  bandwidth  increases,  coupling  becomes  easier  Mechanical  amplifica1on!    

Resonant  bar:  m1=  mbar/2  

Page 48: Optomechanics for Gravitational Wave Detection · 2016-11-15 · Optomechanics for Gravitational Wave Detection David&Blair& Australian&Internaonal& Gravitaonal&Research&Centre& University&Of&Western&Australia

Whip  Mechanical  transformers  

D  G  Blair  et  al  1987  J.  Phys.  D:  Appl.  Phys.  20  162.  doi:10.1088/0022-­‐3727/20/2/002  

•  Tapered  bars  amplify  transverse  displacements  

•  Taper  size  needs  to  be  large  comared  to  wavelength  

•  Also  works  for  lonitudinal  displacements  at  cost  of  very  large  length.    

Page 49: Optomechanics for Gravitational Wave Detection · 2016-11-15 · Optomechanics for Gravitational Wave Detection David&Blair& Australian&Internaonal& Gravitaonal&Research&Centre& University&Of&Western&Australia

Experimen1ng  with  designs  

Page 50: Optomechanics for Gravitational Wave Detection · 2016-11-15 · Optomechanics for Gravitational Wave Detection David&Blair& Australian&Internaonal& Gravitaonal&Research&Centre& University&Of&Western&Australia

Bending  Flap  Secondary  Resonator  •  Annealed  Nb  bending  flap  creates  secondary  resonator.  

•  Non-­‐contac1ng  microwave  coupling.  

•  Mo1on  between  two  resonators  measured    by        re-­‐entrant  cavity.  

•  Chokes  used  to  reduce  radia1on  loss  

•  Assembled  using  very  thin  epoxy  resin  

Page 51: Optomechanics for Gravitational Wave Detection · 2016-11-15 · Optomechanics for Gravitational Wave Detection David&Blair& Australian&Internaonal& Gravitaonal&Research&Centre& University&Of&Western&Australia

Niobium  bar  

1500kg  

Secondary  resonator  0.6kg  

Microwave  cavity  transducer  

Transducer  9.5GHz,  300MHz/µm  

Impedance  Matching  on  Niobe  

Page 52: Optomechanics for Gravitational Wave Detection · 2016-11-15 · Optomechanics for Gravitational Wave Detection David&Blair& Australian&Internaonal& Gravitaonal&Research&Centre& University&Of&Western&Australia

Lecture  2  

Solving  the  Phase  Noise  Problem  Observa1on  of  Op1cal  Spring  effect  Observa1on  of  Radia1on  Pressure  Self-­‐calibra1on  of  parametric  transducers  Sapphire  transducers  

Page 53: Optomechanics for Gravitational Wave Detection · 2016-11-15 · Optomechanics for Gravitational Wave Detection David&Blair& Australian&Internaonal& Gravitaonal&Research&Centre& University&Of&Western&Australia

Fundamental  Limits  of  Macroscopic  Oscillators  Δf

f=ΔL

L

ΔLmin =!

mωm2τ

"

#$

%

&'

12

ω 2 =k

mωm

2 ~EL3

mL2

Δfmin

f=ΔLmin

L=!

EL3τ

"

#$

%

&'

12

Frequency  is  determined  by  dimension  fluctua1on  

Standard  quantum  limit  for  length  measurement  

Frequency  is  linked  to  Youngs  Modulus  E,  dimension  and  mass  

ΔLmin =!mL2

mEL3τ

"

#$

%

&'

12

Hence  

For  sapphire  Δfmin

f=10−20τ

−12

Lowest  mechanical  mode  

Page 54: Optomechanics for Gravitational Wave Detection · 2016-11-15 · Optomechanics for Gravitational Wave Detection David&Blair& Australian&Internaonal& Gravitaonal&Research&Centre& University&Of&Western&Australia

Op1misa1on:  SQL  

N1/2  

     N-­‐1/2  

Op1mum  energy  density      E  opt  =  Modulus  of  Elas1city/  Q-­‐factor  

Page 55: Optomechanics for Gravitational Wave Detection · 2016-11-15 · Optomechanics for Gravitational Wave Detection David&Blair& Australian&Internaonal& Gravitaonal&Research&Centre& University&Of&Western&Australia

Whispering  gallery  modes  in  sapphire  

Page 56: Optomechanics for Gravitational Wave Detection · 2016-11-15 · Optomechanics for Gravitational Wave Detection David&Blair& Australian&Internaonal& Gravitaonal&Research&Centre& University&Of&Western&Australia

Amplifier  excita1on:  loop  oscillator  

•  Simple  •  Q>  109  at  4K,  3  x  107  at  77K  •  Filtered  output  •  Amplifier  driven  into  satura1on  causes  excess  noise  

•  Flat  turning  point  at  6K  due  to  paramagne1c  impuri1es  balancing  temperature  dependence  of  superconduc1ng  penetra1on  depth.    

Page 57: Optomechanics for Gravitational Wave Detection · 2016-11-15 · Optomechanics for Gravitational Wave Detection David&Blair& Australian&Internaonal& Gravitaonal&Research&Centre& University&Of&Western&Australia

Sapphire  clocks  and  oscillators  

Stabilised  Loop  Oscillators  

1.4MHz  oscillator  

Early  Q-­‐results.  Later    ~1010  

Page 58: Optomechanics for Gravitational Wave Detection · 2016-11-15 · Optomechanics for Gravitational Wave Detection David&Blair& Australian&Internaonal& Gravitaonal&Research&Centre& University&Of&Western&Australia

Radia1on  Pressure  Inflates  the  resonator  

Page 59: Optomechanics for Gravitational Wave Detection · 2016-11-15 · Optomechanics for Gravitational Wave Detection David&Blair& Australian&Internaonal& Gravitaonal&Research&Centre& University&Of&Western&Australia

φ

BPF  

LOOP  OSCILLATOR  

Microwave  Interferometer  

LO  RF  

LNA  

Circulator  

Phase  error  detector  

mixer  

Loop  filter  

Sapphire  loaded  cavity  resonator  Qe~3×107  

ϕ

varactor  

DC  Bias  

µW-­‐amplifier  

µW-­‐amplifier  

Filtered  output  

+  

+  

Non-­‐filtered  output  

Pump  Oscillators  for  Parametric  Transducer  A  low  noise  oscillator  is  an  essen1al  component  of  a  parametric  transducer  

A  stabilised  NdYAG  laser  provides  a  similar  low  noise  op1cal  oscillator  for  op4cal  parametric  transducers  and  for  laser  interferometers  which  are  similar  parametric  devices.  

Page 60: Optomechanics for Gravitational Wave Detection · 2016-11-15 · Optomechanics for Gravitational Wave Detection David&Blair& Australian&Internaonal& Gravitaonal&Research&Centre& University&Of&Western&Australia

 phase  noise  

Page 61: Optomechanics for Gravitational Wave Detection · 2016-11-15 · Optomechanics for Gravitational Wave Detection David&Blair& Australian&Internaonal& Gravitaonal&Research&Centre& University&Of&Western&Australia
Page 62: Optomechanics for Gravitational Wave Detection · 2016-11-15 · Optomechanics for Gravitational Wave Detection David&Blair& Australian&Internaonal& Gravitaonal&Research&Centre& University&Of&Western&Australia

Next  steps:  tunable  low  noise  oscillator  +  carrier  suppression  interferometer    

Note  Coupling  antenna  carries  acous1c  noise  and  low  frequency  swinging  mo1on  ~  10-­‐100µm.      Design  needs  a)  worlds  worst  

transducer  for  radia1ve  coupling    

b)  worlds  best  transducer  for  signal  readout.  

Page 63: Optomechanics for Gravitational Wave Detection · 2016-11-15 · Optomechanics for Gravitational Wave Detection David&Blair& Australian&Internaonal& Gravitaonal&Research&Centre& University&Of&Western&Australia

                 

ϕ

ϕ

ϕ

α

Data  Acquisi1on  

Mixers  

Phase  shisers  

Filter  

Electronically  adjustable  phase  shiser  &  adenuator  Σ Δ

SO   Filter  

Phase  servo  

Frequency  servo  

 µW-­‐amplifier  Primary  

µW-­‐amplifier  Spare  µW-­‐amplifier  

Microstrip  antennae  

Microwave  interferometer  

Cryogenic  components  

Bar  

Bending  flap  

Transducer  

RF  

9.049GHz   451MHz  

9.501GHz  

Composite  Oscillator  

Microwave  Readout  System  of  NIOBÉ  Non-­‐contact  readout  and  microwave  interferometer  

LO  

Page 64: Optomechanics for Gravitational Wave Detection · 2016-11-15 · Optomechanics for Gravitational Wave Detection David&Blair& Australian&Internaonal& Gravitaonal&Research&Centre& University&Of&Western&Australia

Detec1on  Condi1ons  •   Detectable  signal  Es   ≥ Noise  energy  Un  

• Transducer:  2-­‐port  device:     !!"

#$$%

&=!!

"

#$$%

&

Current

velocity

Z

Z

Z

Z

Voltage

Force

22

12

21

11

M, TA

Ta ωa

F

v

Z11 Z12

Z21 Z22

Se

SiG

V

Iτi

Bar Transducer Amplifier Recorder

• Amplifier  ,  gain  G,  has  effec1ve  current  noise  spectral  density  Si  and    voltage  noise  spectral  density  Se    

Mechanical  input  impedance  Z11  

Forward  transductance  Z21  (volts  m-­‐1s-­‐1)  

Reverse  transductance  Z12      (kg-­‐amp-­‐1)  

 

Electrical  output  impedance  Z22  

computer  

τa  

Page 65: Optomechanics for Gravitational Wave Detection · 2016-11-15 · Optomechanics for Gravitational Wave Detection David&Blair& Australian&Internaonal& Gravitaonal&Research&Centre& University&Of&Western&Australia

General  Results  on  Linear  Transducers  

• All  linear  transducers  can  be  modelled  as  2-­‐port  devices.  

• GW  transducers  are  amplifiers  with  mechanical  input  and  electrical  output.(also  interferometers)  

• Reverse  transductance  can  never  be  zero:  no  such  thing  as  a  perfect  one  way  valve.    • Classical  back  ac1on  leads  to  minimum  detectable  signal  (uncertainty  principle)  and  a  minimum  1me  resolu1on.    

• Current  noise,  radia1on  pressure  fluctua1ons  and  microwave  amplitude  noise  are  the  sources  of  back  ac1on  noise.  

• Mechanical  input  impedance  of  transducer  should  match  the  mechanical  output  impedance  of  the  resonant  mass  system.  

 

Page 66: Optomechanics for Gravitational Wave Detection · 2016-11-15 · Optomechanics for Gravitational Wave Detection David&Blair& Australian&Internaonal& Gravitaonal&Research&Centre& University&Of&Western&Australia

Impedance  Matching  •  The  above  picture  emphasises  that  the  bar-­‐transducer  

system  is  simply  a  transmission  line.  •  Like  all  transmission  lines  impedance  matching  is  of  cri1cal  

importance.  It  is  essen1al  to  consider  energy  flow.  •  All  gravity  wave  detec1on  is  extremely  inefficient  because  

of  the  impossibility  of  impedance  matching  between  the  very  high  mechanical  impedance  of  space  1me  and  the  low  impedance  of  atomic  mader  and  electromagne1c  fields.  

•  Mechanical  impedance  of  free  space  ~  c3/G  ~  1033    ohms.  Impedance  of  resonant  bar  ~  ωM    ~  107  ohms.  For  a  s1ffer  denser  material  resonant  mass  impedance  is  higher….up  to  1010  is  possible.(100  tonne  sapphire  sphere!)  

         Impedance  of  free  electromagne1c  waves:  377  ohms.  •  Electromechanical  impedance  matching  can  be  achieved  in  

many  ways…requiring  maximal  experimental  ingenuity.    •  Impedance  matching  to  heavy  masses  is  much  more  

difficult.  (see  later)  

Page 67: Optomechanics for Gravitational Wave Detection · 2016-11-15 · Optomechanics for Gravitational Wave Detection David&Blair& Australian&Internaonal& Gravitaonal&Research&Centre& University&Of&Western&Australia

The  impedance  mismatch  ra1o  between  bar  and  transducer  is  iden1cal  to  the    

electromechanical  Coupling  Coefficient  of  Transducer  to  Antenna  β

signal  energy  in  transducer  

 signal  energy  in  bar  β=  

• In  direct  transducer  β  =  (1/2CV2)/Mω2x2  

• In  parametric  transducer            β=(ωp/ωa)(1/2CV2)/Mω2x2  

• Total  sideband  energy  is  sum  of  AM  and  PM  sideband  energy,  depends  on  pump  frequency  offset  

• Advantage  of  high  modula1on  frequency  

x  =capacitance  gap  

Similar  for  induc1ve  readout  or  op1cal  cavity  transducer  

Page 68: Optomechanics for Gravitational Wave Detection · 2016-11-15 · Optomechanics for Gravitational Wave Detection David&Blair& Australian&Internaonal& Gravitaonal&Research&Centre& University&Of&Western&Australia

X2

X1

P1P2

X1=Asinφ  Resonant  mass  

transducer  

Vsinωat          ~  

X  G  β  

X2=Acosφ  

Reference  oscillator  

mul1ply  

0o                        90o  

Bar,  Transducer  and  Phase  Space  Coordinates  

β  determines  1me  for  transducer  to  reach  equilibrium.  (impedance  matching  condi1on)  

• X1  and  X2  are  symmetrical  phase  space  coordinates  

• Antenna  undergoes  random  walk  in  phase  space  

• Change  of  state  measured  by  length  of  vector  (P1,P2)  

• High  Q  resonator  varies  its  state  slowly.  GW  energy  is  stored  over  many  cycles.  

Asin(ωat+φ)  

Page 69: Optomechanics for Gravitational Wave Detection · 2016-11-15 · Optomechanics for Gravitational Wave Detection David&Blair& Australian&Internaonal& Gravitaonal&Research&Centre& University&Of&Western&Australia
Page 70: Optomechanics for Gravitational Wave Detection · 2016-11-15 · Optomechanics for Gravitational Wave Detection David&Blair& Australian&Internaonal& Gravitaonal&Research&Centre& University&Of&Western&Australia

Mechanical  Impedance  Matching  in  Prac1ce  • High  bandwidth  requires  good  impedance  matching  between  acous1c  output  impedance  of  mechanical  system  and  transducer  input  impedance:  βω ~  bandwidth  

• Massive  resonators  offer  high  impedance  

• All  electromagne1c  fields  offer  low  impedance  (limited  by  energy  density  in  electromagne1c  fields)  

• Hence  mechanical  impedance  trasforma1on  is  essen1al  

• Generally  one  can  match  to  masses  less  than  1kg  at  ~1kHz  

Note:Interferometers  are  another  example  of  impedance  matching:  high  light  intensity  gives  highest  mechanical  impedance  match  to  the  GW  signal.  

Page 71: Optomechanics for Gravitational Wave Detection · 2016-11-15 · Optomechanics for Gravitational Wave Detection David&Blair& Australian&Internaonal& Gravitaonal&Research&Centre& University&Of&Western&Australia

effa M

m⋅=Δ ωω

Resonant  transformer  creates  two  mode  system  

Two  normal  modes  split  by  

 

This  is  narrow  band  impedance  matching.  

Mechanical  model  of  transducer  with  impedance  matching  using  an  intermediate  mass  resonant  transformer  

Infinitely  rigid  reference  surface  

Page 72: Optomechanics for Gravitational Wave Detection · 2016-11-15 · Optomechanics for Gravitational Wave Detection David&Blair& Australian&Internaonal& Gravitaonal&Research&Centre& University&Of&Western&Australia

Triumph  

•  Superconduc1vity  +  Low  acous1c  loss  systems  +  Microwave  optomechanics.  

•  Lowest  noise  temperature  GW  detector…later  improved  to  <  1mK  

•  Harnessing  op1cal  spring  proper1es,  controlling  parametric  instability,  outstanding  immunity  to  environmental  noise,  even  earthquakes!  

 

Page 73: Optomechanics for Gravitational Wave Detection · 2016-11-15 · Optomechanics for Gravitational Wave Detection David&Blair& Australian&Internaonal& Gravitaonal&Research&Centre& University&Of&Western&Australia

Coupling  and  Parametric  Transducer  Scadering  Picture  

ωa  

ωp

ω+=ωp+ωa  

ω-­‐=ωp-­‐ωa    

Direc1on  depends  on  rela1ve  couplings  

transducer  

Pump  photons  

Signal  phonons  

Output  sidebands  

Phonon-­‐Photon  Scadering  

Because  transducer  has  negligible  loss    use  energy  conserva1on  to  understand  signal  power  flow-­‐  Manley-­‐Rowe  rela1ons.  

Note  that  power  flow  may  be  altered  by  varying  β .  

0=−+−

+

+ωωωPPP

a

a

0=++−

+

+ωωωPPP

p

p

Formal  solu1on  but  results  are  intui1vely  obvious  

Upper  sideband  can  only  exist  if  signal  phonons  enter  transducer.  

 Lower  sideband  can  only  exist  if  phonons  are  injected  into  mechanical  resonator.  

ω-­‐   ω+  

Page 74: Optomechanics for Gravitational Wave Detection · 2016-11-15 · Optomechanics for Gravitational Wave Detection David&Blair& Australian&Internaonal& Gravitaonal&Research&Centre& University&Of&Western&Australia

Upper  mode   Lower  mode  

Self  damping  an  important  tool  to  allowing  rapid  recovery  from  transients  

Op1cal  spring  tuning  of  1.5  tonnes  of  Nb  with  a  few  mW  of  microwave  power.  

Observa1on  of  Op1cal  Spring  Effect  and  Self  Damping  1994  

Page 75: Optomechanics for Gravitational Wave Detection · 2016-11-15 · Optomechanics for Gravitational Wave Detection David&Blair& Australian&Internaonal& Gravitaonal&Research&Centre& University&Of&Western&Australia

Self-­‐Calibra1on  Feature  of  Parametric  Transducers  using  AM  Noise  Injec1on  

•  AM  signal  induces  back  ac1on  on  the  resonator.  

•  Resonator  mo1on  detected  as  phase  modula1on  

Page 76: Optomechanics for Gravitational Wave Detection · 2016-11-15 · Optomechanics for Gravitational Wave Detection David&Blair& Australian&Internaonal& Gravitaonal&Research&Centre& University&Of&Western&Australia

Transducer  

Sapphire  whispering  gallery  loop  oscillator  

Sapphire  Transducer  

Locking  feedback  

SDR   SDRT  

Page 77: Optomechanics for Gravitational Wave Detection · 2016-11-15 · Optomechanics for Gravitational Wave Detection David&Blair& Australian&Internaonal& Gravitaonal&Research&Centre& University&Of&Western&Australia

Tests  on  VIRGO  Superadenuator  

High  sensi1vity  accelerometer  

Sapphire  Transducer  Ac

celera1o

n  g/rtHz

 

Frequency  Hz  

Undetectable  normal  modes  become  visible  with  sapphire  transducer  

10-­‐4  

10-­‐6  

10-­‐8  

10-­‐10  

Page 78: Optomechanics for Gravitational Wave Detection · 2016-11-15 · Optomechanics for Gravitational Wave Detection David&Blair& Australian&Internaonal& Gravitaonal&Research&Centre& University&Of&Western&Australia

Optomechanics for Gravitational Wave Detection

David  Blair  Australian  Interna1onal  

Gravita1onal  Research  Centre  University  Of  Western  Australia  

   

Les  Houches  August  2015  

Lecture  3  

Page 79: Optomechanics for Gravitational Wave Detection · 2016-11-15 · Optomechanics for Gravitational Wave Detection David&Blair& Australian&Internaonal& Gravitaonal&Research&Centre& University&Of&Western&Australia

Lecture  3  

•  Do  Gravity  wave  Detectors  Absorb  Energy  from  GW?  

•  Three  mode  interac1ons  and  Parametric  Instability  

•  Harnessing  three  mode  interac1ons:  •  Tilt  interferometer  •   the  opto-­‐acous1c  parametric  amplifier  

Page 80: Optomechanics for Gravitational Wave Detection · 2016-11-15 · Optomechanics for Gravitational Wave Detection David&Blair& Australian&Internaonal& Gravitaonal&Research&Centre& University&Of&Western&Australia

Two  approaches  to  improved  sensi1vity  

•  Reduce effect of quantum fluctuations which enter the detector at the dark port and set the standard quantum limit.

•  Increase the size of the gravitational wave signal by changing the detector dynamics.

•  Build a 40km long detector

Page 81: Optomechanics for Gravitational Wave Detection · 2016-11-15 · Optomechanics for Gravitational Wave Detection David&Blair& Australian&Internaonal& Gravitaonal&Research&Centre& University&Of&Western&Australia

Classical  Force:  Quantum  Effects  

M

K

Detector is a Mechanical Oscillator in Quantum Regime

Gravitational wave is a classical wave with enormous occupation number

Page 82: Optomechanics for Gravitational Wave Detection · 2016-11-15 · Optomechanics for Gravitational Wave Detection David&Blair& Australian&Internaonal& Gravitaonal&Research&Centre& University&Of&Western&Australia

Free  Mass  Detectors  •  Laser  interferometers:  free  mass  detectors?  •  Does  this  not  violate  the  need  for  GWs  to  do  work?  

•  Is  a  GWD  not  a  receiver  of  GW  energy?  •  Is  a  laser  interferometer  not  a  transducer  for  GW  energy?  

•  Why  can  we  measure  GW  without  absorbing  energy?  – Can  all  the  side  band  energy  come  from  the  laser?  

Page 83: Optomechanics for Gravitational Wave Detection · 2016-11-15 · Optomechanics for Gravitational Wave Detection David&Blair& Australian&Internaonal& Gravitaonal&Research&Centre& University&Of&Western&Australia

Example:  Ocean  Wave  Monitor                                Floa1ng                  Hovering  

Dynamo energy output

Control system

Energy source

Page 84: Optomechanics for Gravitational Wave Detection · 2016-11-15 · Optomechanics for Gravitational Wave Detection David&Blair& Australian&Internaonal& Gravitaonal&Research&Centre& University&Of&Western&Australia

Electronic  Amplifier  Analog  

+

-

Feedback around an amplifier: change the input impedance, change the gain.

φ=0

φ=π

Page 85: Optomechanics for Gravitational Wave Detection · 2016-11-15 · Optomechanics for Gravitational Wave Detection David&Blair& Australian&Internaonal& Gravitaonal&Research&Centre& University&Of&Western&Australia

Mapping Signal Recycling Interferometer to three mirror cavity.

Laser frequency ω0, gravity wave frequency ωm creates signal sidebands at ω0 + ωm and ω0 - ωm

signal  recycling  mirror.  

Page 86: Optomechanics for Gravitational Wave Detection · 2016-11-15 · Optomechanics for Gravitational Wave Detection David&Blair& Australian&Internaonal& Gravitaonal&Research&Centre& University&Of&Western&Australia

Parametric  Transducer  feedback  system  

GW  signal  

Op1cal  Cavi1es  

Upper  sideband  

Test  masses  

Main  beam  

ACRadia1on  pressure  φ=π

ACRadia1on  pressure φ=0  

Lower  sideband  

Sideband beating

actuation

φ=0 φ=π

Page 87: Optomechanics for Gravitational Wave Detection · 2016-11-15 · Optomechanics for Gravitational Wave Detection David&Blair& Australian&Internaonal& Gravitaonal&Research&Centre& University&Of&Western&Australia

Sideband  Roles  

•  Upper  sideband  represents  energy  absorp1on  from  GW  

 •  Lower  sideband  is  a  feedback  circuit  that  nulls  the  

dynamical  response,  causing  the  detector  to  have  low  input  impedance  and  negligible  energy  absorp1on  from  the  GW.  

•  A  detector  with  single  (upper)  sideband  readout  maximises  the  energy  absorp1on  

Page 88: Optomechanics for Gravitational Wave Detection · 2016-11-15 · Optomechanics for Gravitational Wave Detection David&Blair& Australian&Internaonal& Gravitaonal&Research&Centre& University&Of&Western&Australia

Quantum  Picture  

Creates an optical spring

Nulls the optical spring

Page 89: Optomechanics for Gravitational Wave Detection · 2016-11-15 · Optomechanics for Gravitational Wave Detection David&Blair& Australian&Internaonal& Gravitaonal&Research&Centre& University&Of&Western&Australia

Op1cal  “Bar”  

•  Improved  sensi1vity  due  to  opto-­‐mechanical  response  of  detector  

See references in Yanbei Chen J Phys B 2013

Page 90: Optomechanics for Gravitational Wave Detection · 2016-11-15 · Optomechanics for Gravitational Wave Detection David&Blair& Australian&Internaonal& Gravitaonal&Research&Centre& University&Of&Western&Australia

Detuning  creates  unbalanced  sidebands  

Rela1ve  sideband  coupling  is  altered  according  to  detuning:  cavity  amplifies  sideband  closest  to  resonance.  

Page 91: Optomechanics for Gravitational Wave Detection · 2016-11-15 · Optomechanics for Gravitational Wave Detection David&Blair& Australian&Internaonal& Gravitaonal&Research&Centre& University&Of&Western&Australia

   Unbalanced sidebands create optical spring, modify the detector dynamics and allow detection below the free mass SQL by increasing the energy coupling from the GW

Unbalanced Sidebands – double optical spring interferometer

Page 92: Optomechanics for Gravitational Wave Detection · 2016-11-15 · Optomechanics for Gravitational Wave Detection David&Blair& Australian&Internaonal& Gravitaonal&Research&Centre& University&Of&Western&Australia

Ques1ons  

•  Does  increasing  the  energy  absorbed  always  enable  improvements  in  SNR  

•  Can  we  find  broadband  solu1ons?  •  Yes,  see  white  light  cavity  tomorrow  

Page 93: Optomechanics for Gravitational Wave Detection · 2016-11-15 · Optomechanics for Gravitational Wave Detection David&Blair& Australian&Internaonal& Gravitaonal&Research&Centre& University&Of&Western&Australia

Three  Mode  Interac1ons  and  Parametric  Instability  

Page 94: Optomechanics for Gravitational Wave Detection · 2016-11-15 · Optomechanics for Gravitational Wave Detection David&Blair& Australian&Internaonal& Gravitaonal&Research&Centre& University&Of&Western&Australia

Our  Predic1on  2005  •  2005  Phys  Rev  Led:  Advanced  LIGO  will  experience  three-­‐mode  parametric  instability  at  5%-­‐10%  of  full  input  power  

•  Par1al  method  of  control  proposed  •  May  2014  observed  in  80m  high  power  op1cal  cavity  at  our  Gingin  Research  centre  

•  2014  Confirmed  in  LIGO  (PRL  Evans  et  al  2015)  •  We  are  working  with  LIGO  to  find  solu1ons  since  full  sensi1vity  cannot  be  achieved  without  a  solu1on  

Page 95: Optomechanics for Gravitational Wave Detection · 2016-11-15 · Optomechanics for Gravitational Wave Detection David&Blair& Australian&Internaonal& Gravitaonal&Research&Centre& University&Of&Western&Australia

3-­‐mode  Interac1on  in  an  Op1cal  Cavity  

mωωω =− 10

Cavity fundamental mode ωo

(Stored energy)

Stimulated scattering into high order mode ω1

Acoustic modes ωm

Radiation pressure force from beating of ω0 and ω1.

Input frequency ωo

•  3-mode interaction requires frequency matching and spatial overlap of acoustic and optical modes

•  Multiple modes interaction

Thermal vibration of the mirror

Page 96: Optomechanics for Gravitational Wave Detection · 2016-11-15 · Optomechanics for Gravitational Wave Detection David&Blair& Australian&Internaonal& Gravitaonal&Research&Centre& University&Of&Western&Australia

(R = 2076m

Δfax

f [kHz] 0 37.47 74.95

0 1

2 3

4 5

ΔfTEM = 0 kHz 4.6 kHz

g = 0.926)

Mode Structure 4km Arm Cavity

HOM not symmetric: Upconversion or down conversion occur separately.

Down conversion always potentially unstable.

ΔfFSR=37.47kHz

Typical transitions shownTEM00 – TEM04 : 53kHzTEM00 – TEM01: 32.9kHz

Page 97: Optomechanics for Gravitational Wave Detection · 2016-11-15 · Optomechanics for Gravitational Wave Detection David&Blair& Australian&Internaonal& Gravitaonal&Research&Centre& University&Of&Western&Australia

Instability Condition

1)/1/1

(2

21

21

112

121

112

>Δ+

Λ−

Δ+

Λ≈

aa

aa

m

m QQ

McL

PQR

δωδωω

Parametric gain[1]

[1] V. B. Braginsky, S.E. Strigin, S.P. Vyatchanin, Phys. Lett. A, 305, 111, (2002)

Stokes mode contribution

Anti-Stokes mode contribution Cavity Power

Mechanical Q

Λ—overlap factor

)(1

)(1)(1 2 a

aa Q

ωδ =maa ωωωω −−=Δ )(1(0)(1

Fundamental mode

frequency

Acoustic mode

frequency

High order transverse mode

frequency

Page 98: Optomechanics for Gravitational Wave Detection · 2016-11-15 · Optomechanics for Gravitational Wave Detection David&Blair& Australian&Internaonal& Gravitaonal&Research&Centre& University&Of&Western&Australia

44.66 kHz

HGM12

Examples of Mode Overlaps

47.27 kHz

HGM30

0.203 0.800

89.45kHz

0.607

LGM20

acoustic mode

optical mode

Λ overlapping parameter

Λ

Page 99: Optomechanics for Gravitational Wave Detection · 2016-11-15 · Optomechanics for Gravitational Wave Detection David&Blair& Australian&Internaonal& Gravitaonal&Research&Centre& University&Of&Western&Australia

Mechanical mode shape (fm=28.34kHz)

Summing over diagrams: multiple Stokes modes can drive a single acoustic mode.

Λ=0.007 R=1.17

Λ=0.019 R=3.63

Λ=0.064 R=11.81

Λ=0.076 R=13.35

Optical modes

Example

Page 100: Optomechanics for Gravitational Wave Detection · 2016-11-15 · Optomechanics for Gravitational Wave Detection David&Blair& Australian&Internaonal& Gravitaonal&Research&Centre& University&Of&Western&Australia

Thermal  tuning  

•  Temperature  gradients  change  mirror  radius  of  curvature  

•  Radius  of  curvature  changes  the  cavity  mode  spacing.  

•  Hence  3MI  tuned  by  thermal  lensing  •  Op1cal  modes  are  tuned  and  distorted  by  

thermal  abera1ons  •  Hence  3MI  tuned  by  thermal  abera1on  

Page 101: Optomechanics for Gravitational Wave Detection · 2016-11-15 · Optomechanics for Gravitational Wave Detection David&Blair& Australian&Internaonal& Gravitaonal&Research&Centre& University&Of&Western&Australia

Input Test Mass ROC = 410m Absorbed Power = ~2W

End Test Mass ROC = 721m

Thermal Gradient: Jerome Degallaix

Thermal lens changes test mass radius of curvature

Power recycling cavity simulation

Page 102: Optomechanics for Gravitational Wave Detection · 2016-11-15 · Optomechanics for Gravitational Wave Detection David&Blair& Australian&Internaonal& Gravitaonal&Research&Centre& University&Of&Western&Australia

Demonstra1on  of  Thermal  Tuning  

Thermal Tuning (Heating Power: 15W)

60

70

80

90

100

110

120

130

140

15:00:00 15:07:12 15:14:24 15:21:36 15:28:48 15:36:00 15:43:12 15:50:24

time

Mod

e S

paci

ng (

kHz)

Thermal tuning of optical mode spacing between LG00 and LG01

Page 103: Optomechanics for Gravitational Wave Detection · 2016-11-15 · Optomechanics for Gravitational Wave Detection David&Blair& Australian&Internaonal& Gravitaonal&Research&Centre& University&Of&Western&Australia

Early  predic1ons:  thermal  tuning  

PRL 2005 Zhao et al

Sapphire:  sparse  acous1c  modes  

Fused  silica:  dense  acous1c  mode  spectrum  

Only  low  order  op1cal  modes  considered  

Bad  news:  no  windows  free  of  instability    Note:  most  predic1ons  give  unstable  modes  per  test  mass  

Page 104: Optomechanics for Gravitational Wave Detection · 2016-11-15 · Optomechanics for Gravitational Wave Detection David&Blair& Australian&Internaonal& Gravitaonal&Research&Centre& University&Of&Western&Australia

With  mode  summing    

100

101

102

103

104

2050 2060 2070 2080 2090 2100

Parametrica Gain R

Radius of curvature (m)

Page 105: Optomechanics for Gravitational Wave Detection · 2016-11-15 · Optomechanics for Gravitational Wave Detection David&Blair& Australian&Internaonal& Gravitaonal&Research&Centre& University&Of&Western&Australia

S Gras 2007

Rmax=2207, Freq=33.39kHz (17)

Power Recycling Mirror resonance amplification

Early Predictions for Adv LIGO 2007 led to some design changes

Page 106: Optomechanics for Gravitational Wave Detection · 2016-11-15 · Optomechanics for Gravitational Wave Detection David&Blair& Australian&Internaonal& Gravitaonal&Research&Centre& University&Of&Western&Australia
Page 107: Optomechanics for Gravitational Wave Detection · 2016-11-15 · Optomechanics for Gravitational Wave Detection David&Blair& Australian&Internaonal& Gravitaonal&Research&Centre& University&Of&Western&Australia

Example  of  R  change  with  RoC  

Page 108: Optomechanics for Gravitational Wave Detection · 2016-11-15 · Optomechanics for Gravitational Wave Detection David&Blair& Australian&Internaonal& Gravitaonal&Research&Centre& University&Of&Western&Australia

Observa1ons  •  May  2014  we  observed  PI  at  Gingin  

•  Nov  2014  LIGO  Louisiana    observe  PI  as  predicted  at  7%  of  full  laser  power  

•  They  use  thermal  tuning  to  improve  and  enable    ~12%  power  opera1on  

•  Similar  results  at  LIGO  Hanford  May  2015  

•  Last  Friday  an  electrosta1c  feedback  system  implemented  at  LIGO  

•  Expect  40  unstable  modes  per  test  mass  at  full  power:  may  need  many  techniques  such  as  op1cal  feedback,  mechanical  feedback  or  frequency  selec1ve  dampers  

Page 109: Optomechanics for Gravitational Wave Detection · 2016-11-15 · Optomechanics for Gravitational Wave Detection David&Blair& Australian&Internaonal& Gravitaonal&Research&Centre& University&Of&Western&Australia

First  suspended  cavity  able  to  achieve  instability  condi1ons  2014  Gingin  Western  Australia  

Finesse:  15,000  Parametric  Gain  =  6    Not  the  ring  up  we  expected    1nm  figure  errors    Gain=  1.4  

Page 110: Optomechanics for Gravitational Wave Detection · 2016-11-15 · Optomechanics for Gravitational Wave Detection David&Blair& Australian&Internaonal& Gravitaonal&Research&Centre& University&Of&Western&Australia

New  Instability  Discovered  at  Gingin  

•  Nega1ve  op1cal  spring  drives  suspension  normal  modes.  

•  Two  manifesta1ons:    –  torsional  mode  driving  for  non-­‐centred  beam  spots  

– Longitudinal  pendulum  mode  driven  when  spot  is  centred.  

•  Results  if  extrapolated  to  LIGO  would  expect  observa1on  at  30%  full  power.  

Page 111: Optomechanics for Gravitational Wave Detection · 2016-11-15 · Optomechanics for Gravitational Wave Detection David&Blair& Australian&Internaonal& Gravitaonal&Research&Centre& University&Of&Western&Australia

Threshold  power  for  0.9Hz  instability  

Page 112: Optomechanics for Gravitational Wave Detection · 2016-11-15 · Optomechanics for Gravitational Wave Detection David&Blair& Australian&Internaonal& Gravitaonal&Research&Centre& University&Of&Western&Australia

Signatures  

Local  control  monitor  shows  growth  of  instability  followed  by  decay  aser  cavity  loses  lock.      Ring  up  of  0.9Hz  pendulum  oscilla1on  

Page 113: Optomechanics for Gravitational Wave Detection · 2016-11-15 · Optomechanics for Gravitational Wave Detection David&Blair& Australian&Internaonal& Gravitaonal&Research&Centre& University&Of&Western&Australia

Harnessing  three  mode  interac1ons  

UWA  –  LKB  Collabora1on  

Page 114: Optomechanics for Gravitational Wave Detection · 2016-11-15 · Optomechanics for Gravitational Wave Detection David&Blair& Australian&Internaonal& Gravitaonal&Research&Centre& University&Of&Western&Australia
Page 115: Optomechanics for Gravitational Wave Detection · 2016-11-15 · Optomechanics for Gravitational Wave Detection David&Blair& Australian&Internaonal& Gravitaonal&Research&Centre& University&Of&Western&Australia

Parametric  Gain  of  designed  three  mode  interac1ng  system    

R = ±2ΛI0Q0Q1Qm

mω0ωm2 L2

For  low  loss  op1cal  cavi1es  with  low  mass  resonator  gain  can  be  very  high  because  of  the  Q-­‐product  Assume  perfect  tuning.  

Page 116: Optomechanics for Gravitational Wave Detection · 2016-11-15 · Optomechanics for Gravitational Wave Detection David&Blair& Australian&Internaonal& Gravitaonal&Research&Centre& University&Of&Western&Australia

How  do  we  observe  PI?  

( ) ( )( )1 12 2 2 202

41 1m

S S AS ASm

cQ QR

m L

P

cω κ ω κ

ω

− −= +Δ − +Δ

Λ

Too  heavy,  too  difficult  

?ny  and  easy    to  excite  

10/07/2013   Amaldi10      LIGO-­‐G1300681         116  

Page 117: Optomechanics for Gravitational Wave Detection · 2016-11-15 · Optomechanics for Gravitational Wave Detection David&Blair& Australian&Internaonal& Gravitaonal&Research&Centre& University&Of&Western&Australia

F-­‐P  cavity  with  a  membrane  

•  length:  10  cm  •  finesse:    4000  •  Pin  threshold:  5.7  µW  •  effec1ve  mass:  40  ng  •  Resonant    f :  400kHz      ̴  few  MHz  •  mechanical  Q:  105  

•  overlap:  0.1  •  Maximum  Pin  >  5  mW    

SiNx  membrane  50nm  thick    1x1  mm2  

10/07/2013   Amaldi10      LIGO-­‐G1300681         117  

Page 118: Optomechanics for Gravitational Wave Detection · 2016-11-15 · Optomechanics for Gravitational Wave Detection David&Blair& Australian&Internaonal& Gravitaonal&Research&Centre& University&Of&Western&Australia

TEM00  

frequency  p   p+1  

Tuning  membrane  posi1on  x0  to  achieve    ω0- ωS  

 

TEM01  

TEM02  

X0  

10/07/2013   Amaldi10      LIGO-­‐G1300681         118  

Page 119: Optomechanics for Gravitational Wave Detection · 2016-11-15 · Optomechanics for Gravitational Wave Detection David&Blair& Australian&Internaonal& Gravitaonal&Research&Centre& University&Of&Western&Australia

1718  kHz  

Tuning  membrane  posi1on  x0  to  achieve    ω0- ωS  

 

00  mode  1st  order  mode  2nd  order  mode  

membrane  posi1on(x0/λ)  

00 20 mω ω ω− ≈

X0  

10/07/2013   Amaldi10      LIGO-­‐G1300681         119  

Page 120: Optomechanics for Gravitational Wave Detection · 2016-11-15 · Optomechanics for Gravitational Wave Detection David&Blair& Australian&Internaonal& Gravitaonal&Research&Centre& University&Of&Western&Australia

Spa1al  overlap  in  reality  

Op1cal  mode  TEM02  mode       Mechanical  mode    26  mode  1.8  MHz  

Op1cal  mode  TEM02  mode      

10/07/2013   Amaldi10      LIGO-­‐G1300681         120  

Page 121: Optomechanics for Gravitational Wave Detection · 2016-11-15 · Optomechanics for Gravitational Wave Detection David&Blair& Australian&Internaonal& Gravitaonal&Research&Centre& University&Of&Western&Australia

Spa1al  overlap  in  reality  

overlap  factor:      0  

laser  spot  is  at  the  membrane  centre  

overlap  factor:    0.2  

op1mised  laser  spot  posi1on  is  not  at  the  membrane  centre  

10/07/2013   Amaldi10      LIGO-­‐G1300681         121  

Page 122: Optomechanics for Gravitational Wave Detection · 2016-11-15 · Optomechanics for Gravitational Wave Detection David&Blair& Australian&Internaonal& Gravitaonal&Research&Centre& University&Of&Western&Australia

Phonon-­‐laser  oscilla1on  observed  2013  Xu  Chen  et  al  Arxiv  2014,  PRA  2015    

Page 123: Optomechanics for Gravitational Wave Detection · 2016-11-15 · Optomechanics for Gravitational Wave Detection David&Blair& Australian&Internaonal& Gravitaonal&Research&Centre& University&Of&Western&Australia

Membrane  ring-­‐up  1me  

10/07/2013   Amaldi10      LIGO-­‐G1300681         123  

Page 124: Optomechanics for Gravitational Wave Detection · 2016-11-15 · Optomechanics for Gravitational Wave Detection David&Blair& Australian&Internaonal& Gravitaonal&Research&Centre& University&Of&Western&Australia

Experimental  measured  ring-­‐up  1me  constant  vs  theore1cal  predic1on  

Page 125: Optomechanics for Gravitational Wave Detection · 2016-11-15 · Optomechanics for Gravitational Wave Detection David&Blair& Australian&Internaonal& Gravitaonal&Research&Centre& University&Of&Western&Australia

Experimental  measured  steady  state  bea1ng  fided  with  theore1cal  predic1on    

Page 126: Optomechanics for Gravitational Wave Detection · 2016-11-15 · Optomechanics for Gravitational Wave Detection David&Blair& Australian&Internaonal& Gravitaonal&Research&Centre& University&Of&Western&Australia

3  Mode  readout  at  Gingin  1. ETM  1lts  :  observed  high  sensi1vity  to    test  mass  mode  equivalent  to  a  1lt  vibra1on      

Page 127: Optomechanics for Gravitational Wave Detection · 2016-11-15 · Optomechanics for Gravitational Wave Detection David&Blair& Australian&Internaonal& Gravitaonal&Research&Centre& University&Of&Western&Australia

Thermally  excited  acous1c  mode  readout  

Simple system very sensitive to acoustic modes in the 100kHz range. 100kHz gravitational wave detector!

10-­‐16m  

10-­‐17m  

Page 128: Optomechanics for Gravitational Wave Detection · 2016-11-15 · Optomechanics for Gravitational Wave Detection David&Blair& Australian&Internaonal& Gravitaonal&Research&Centre& University&Of&Western&Australia

Radius  of  curvature  cavity  tuning  

High SNR when transverse mode is correctly tuned by CO2 laser tuning

Page 129: Optomechanics for Gravitational Wave Detection · 2016-11-15 · Optomechanics for Gravitational Wave Detection David&Blair& Australian&Internaonal& Gravitaonal&Research&Centre& University&Of&Western&Australia

Spa1al  Overlap  

G0 =Λω0ω1

mωmL2

Page 130: Optomechanics for Gravitational Wave Detection · 2016-11-15 · Optomechanics for Gravitational Wave Detection David&Blair& Australian&Internaonal& Gravitaonal&Research&Centre& University&Of&Western&Australia

Tilt  Interferometer  

Page 131: Optomechanics for Gravitational Wave Detection · 2016-11-15 · Optomechanics for Gravitational Wave Detection David&Blair& Australian&Internaonal& Gravitaonal&Research&Centre& University&Of&Western&Australia

Engineered  Three  Mode  Interac1on  Devices  

•  Strong  opto-­‐acous1c  coupling  can  be  engineered.  

•  Special  op1cal  cavity  design  for  compact  devices  

•  Silicon  microresonators  – Low  acous1c  loss,  low  op1cal  loss  – Qopt  ~  1010,  Qmech  ~  106  

– Linewidth  ~  1  Hz  – Strong  self-­‐cooling  

Page 132: Optomechanics for Gravitational Wave Detection · 2016-11-15 · Optomechanics for Gravitational Wave Detection David&Blair& Australian&Internaonal& Gravitaonal&Research&Centre& University&Of&Western&Australia

Opto-­‐Acousic  Parametric  Amplifier  OAPA  Silicon  torsion  mirror  oscillates  at  ~MHz    Sensi1ve  to  weak  electromagne1c  RF  fields    Can  in  principle  be  cooled  to  quantum  ground  state  using  thermodynamic  cooling  +  self  cooling.    Could  detect  single  RF  quanta  through  3-­‐mode  interac1on:  acous1c  detec1on  for  transi1on  from  TEM00  to  TEM01  mode.  

Page 133: Optomechanics for Gravitational Wave Detection · 2016-11-15 · Optomechanics for Gravitational Wave Detection David&Blair& Australian&Internaonal& Gravitaonal&Research&Centre& University&Of&Western&Australia

Opto-­‐acous1c  parametric  amplifier  •  Compact tunable table top device for three mode interactions. •  Three mirror near self-imaging cavity •  Low acoustic loss silicon micro-resonator.

Page 134: Optomechanics for Gravitational Wave Detection · 2016-11-15 · Optomechanics for Gravitational Wave Detection David&Blair& Australian&Internaonal& Gravitaonal&Research&Centre& University&Of&Western&Australia

Observed  Q=106  :Gain   Breakdown  power  limit  ~20mW  

Available  self  cooling  factor      >  20,000  

Phonon  laser  self  oscilla1on  threshold  few  µW  

Page 135: Optomechanics for Gravitational Wave Detection · 2016-11-15 · Optomechanics for Gravitational Wave Detection David&Blair& Australian&Internaonal& Gravitaonal&Research&Centre& University&Of&Western&Australia

Main  Problem  

Avoided  crossing    Osen  very  difficult  to  make  mode  gap  small  enough  to  match  1MHz  in  a  tabletop  system.  

Page 136: Optomechanics for Gravitational Wave Detection · 2016-11-15 · Optomechanics for Gravitational Wave Detection David&Blair& Australian&Internaonal& Gravitaonal&Research&Centre& University&Of&Western&Australia

Optomechanics for Gravitational Wave Detection

David  Blair  Australian  Interna1onal  

Gravita1onal  Research  Centre  University  Of  Western  Australia  

   

Les  Houches  August  2015  

Lecture  4  

Page 137: Optomechanics for Gravitational Wave Detection · 2016-11-15 · Optomechanics for Gravitational Wave Detection David&Blair& Australian&Internaonal& Gravitaonal&Research&Centre& University&Of&Western&Australia

Lecture  4  

Optomechanical  devices  for  improved  GW  detectors.  a)  Review  of  predicted  mprovements  b)  Narrow  band  cavi1es  for  frequency  

dependent  squeezing  c)  White  light  cavi1es  d)  Approach  to  thermal  noise  free  

optomechanical  devices  

Page 138: Optomechanics for Gravitational Wave Detection · 2016-11-15 · Optomechanics for Gravitational Wave Detection David&Blair& Australian&Internaonal& Gravitaonal&Research&Centre& University&Of&Western&Australia

Bea1ng  Quantum  Noise  

Conven1onal  detector  

Frequency-­‐dependent    squeezed  vacuum  injec1on  

Phase-­‐squeezed    vacuum  injec1on  

White-­‐light  cavity  

138  

[2]H.  J.  Kimble  et  al.  2001,  Conversion  of  conven1onal  gravita1onal-­‐wave  interferometers  into  quantum  nondemoli1on  interferometers  by  modifying  their  input  and/or  output  op1cs  Phys.  Rev.  D  65,  022002  (2001).  

Page 139: Optomechanics for Gravitational Wave Detection · 2016-11-15 · Optomechanics for Gravitational Wave Detection David&Blair& Australian&Internaonal& Gravitaonal&Research&Centre& University&Of&Western&Australia

Squeezing  

Phase  or  Amplitude  squeezing  (Any  direc1on)    

Page 140: Optomechanics for Gravitational Wave Detection · 2016-11-15 · Optomechanics for Gravitational Wave Detection David&Blair& Australian&Internaonal& Gravitaonal&Research&Centre& University&Of&Western&Australia

Phase  squeezed  vacuum  fluctua1ons  input  reduces  noise  at  output    

Page 141: Optomechanics for Gravitational Wave Detection · 2016-11-15 · Optomechanics for Gravitational Wave Detection David&Blair& Australian&Internaonal& Gravitaonal&Research&Centre& University&Of&Western&Australia

•  Based  on  an  OPO  pumped  with  green  light  

Vacuum  Squeezer  

Page 142: Optomechanics for Gravitational Wave Detection · 2016-11-15 · Optomechanics for Gravitational Wave Detection David&Blair& Australian&Internaonal& Gravitaonal&Research&Centre& University&Of&Western&Australia

Sensi1vity  Improvement  from  Squeezing  at  GEO  

Losses  and  Phase  noise  cause  squeezing  reduc1on  from  10dB  to  3.7dB  

Page 143: Optomechanics for Gravitational Wave Detection · 2016-11-15 · Optomechanics for Gravitational Wave Detection David&Blair& Australian&Internaonal& Gravitaonal&Research&Centre& University&Of&Western&Australia

Enhanced  sensi1vity  of  LIGO  with  squeezed  vacuum  

Nature Photonics 21 July 2013

Quantum shot noise suppressed by squeezing the vacuum quantum fluctuations

Page 144: Optomechanics for Gravitational Wave Detection · 2016-11-15 · Optomechanics for Gravitational Wave Detection David&Blair& Australian&Internaonal& Gravitaonal&Research&Centre& University&Of&Western&Australia

Signal  Recycling  Tuning  the  signal  recycling  cavity  length  tunes  the  op1mum  frequency        Tuning  the  signal  recycling  mirror  reflec1vity  determines  the  gain  and  bandwidth.      Note  the  usual  nexus:  more  gain  =  less  bandwidth  

Figures  courtesy  Emil  Schreiber,  GEO  

Page 145: Optomechanics for Gravitational Wave Detection · 2016-11-15 · Optomechanics for Gravitational Wave Detection David&Blair& Australian&Internaonal& Gravitaonal&Research&Centre& University&Of&Western&Australia

Optomechanical  systems  enable  new  device  concepts  

•  When  photons  and  phonons  interact  strongly  with  low  losses,  they  lose  their  iden1ty.  

•  Such  systems  allow    –  Very  narrow  acous1c    lines  to  be  imposed  on  an  op1cal  spectrum….ie  ultra-­‐narrow  filter  cavi1es  

– Nega1ve  dispersion  to  create  broadband  resonant  amplifica1on  

To  be  effec4ve  all  of  the  above  need  thermal-­‐noise  free  optomechanical  devices  at  room  temperature  

Page 146: Optomechanics for Gravitational Wave Detection · 2016-11-15 · Optomechanics for Gravitational Wave Detection David&Blair& Australian&Internaonal& Gravitaonal&Research&Centre& University&Of&Western&Australia

Bea1ng  Quantum  Noise  

Conven1onal  detector  

Frequency-­‐dependent    squeezed  vacuum  injec1on  

Phase-­‐squeezed    vacuum  injec1on  

White-­‐light  cavity  

146  

[2]H.  J.  Kimble  et  al.  2001,  Conversion  of  conven1onal  gravita1onal-­‐wave  interferometers  into  quantum  nondemoli1on  interferometers  by  modifying  their  input  and/or  output  op1cs  Phys.  Rev.  D  65,  022002  (2001).  

Page 147: Optomechanics for Gravitational Wave Detection · 2016-11-15 · Optomechanics for Gravitational Wave Detection David&Blair& Australian&Internaonal& Gravitaonal&Research&Centre& University&Of&Western&Australia

Opto-­‐mechanical  devices  

•  Minimum  external  coupling:  Low  op1cal  loss,  mm-­‐scale  for  low  diffrac1on  losses  

•   Ultra-­‐low  thermal  noise:  thermal  noise  dilu1on  to  less  than  1  phonon  

Our  approach:  Three  parallel  developments  •  Develop  balanced  op1cal  springs  for  thermal  

noise  dilu1on    •  Demonstrate  optomechanics  in  classical  regime  •  Develop  suitable  resonators  

•  Narrowband  Filter  cavity  to  change  the  phase  of  the  squeezed  light  without  adding  noise  or  losses.  

•  Nega1ve  dispersion  cavity:  Change  signal  resonance  for  broadband  signal  enhancement:  white  light  cavity.  

Page 148: Optomechanics for Gravitational Wave Detection · 2016-11-15 · Optomechanics for Gravitational Wave Detection David&Blair& Australian&Internaonal& Gravitaonal&Research&Centre& University&Of&Western&Australia

First  Demonstra1on  of  Classical  Frequency  Dependent  Squeezing  

Requirement:    Ultra-­‐narrow  band  low  loss  op?cal  filter  cavi?es  Two  possible  approaches  a) Kilometer  scale  Fabry-­‐Perot  cavi1es  b) Opto-­‐mechanically  induced  transparency  OMIT  

OMIT  allows  the  bandwidth  of  an  acous4c  resonator  to  be  transferred  to  the  op4cal  frequency    Advantages  of  OMIT:  • Narrow  bandwidth  <<  100  Hz  with  small  scale  cavi1es.  • Tunable  bandwidth  for  op1mizing  sensi1vity  for  different  GW  sources.  

[3]S.  Weis  et  al.2010,  Optomechanical  Induced  Transparency,Science  330,  1520(2010)  

Page 149: Optomechanics for Gravitational Wave Detection · 2016-11-15 · Optomechanics for Gravitational Wave Detection David&Blair& Australian&Internaonal& Gravitaonal&Research&Centre& University&Of&Western&Australia

Narrow-­‐band  optomechanical  filters  

⎪  149  

Red  detuned  pump  beam  creates  optomechanical  interac1on  such  that  the  mechanical  resonator  response  curve  is  embedded  into  the  op1cal  cavity  spectrum.  

Page 150: Optomechanics for Gravitational Wave Detection · 2016-11-15 · Optomechanics for Gravitational Wave Detection David&Blair& Australian&Internaonal& Gravitaonal&Research&Centre& University&Of&Western&Australia

Demonstra1ng  optomechanical  filter  cavity  

J.  Qin,  et  al.,  PRA  89,  041802(R)  (2014)  

⎪  150  

Page 151: Optomechanics for Gravitational Wave Detection · 2016-11-15 · Optomechanics for Gravitational Wave Detection David&Blair& Australian&Internaonal& Gravitaonal&Research&Centre& University&Of&Western&Australia

Opto-­‐mechanically  induced  transparency  creates  ultra-­‐narrow  band  cavity  

•  Q-­‐factor          ~  2  x  1014   Smallest  

bandwidth  achieved  2.6Hz    

Page 152: Optomechanics for Gravitational Wave Detection · 2016-11-15 · Optomechanics for Gravitational Wave Detection David&Blair& Australian&Internaonal& Gravitaonal&Research&Centre& University&Of&Western&Australia

Observed  Squeeze  Angle  Rota1on  in  Classical  Domain  (squashed  light)  

OMIT  cavity  has  phase  response  of  conven1onal  cavity:  phase  shis  across  resonance.  

First  demonstra1on  of  frequency  dependent  squeezing  of  light.    

Page 153: Optomechanics for Gravitational Wave Detection · 2016-11-15 · Optomechanics for Gravitational Wave Detection David&Blair& Australian&Internaonal& Gravitaonal&Research&Centre& University&Of&Western&Australia

White-­‐light  cavity  

⎪  153  

ω  

Nega1ve  dispersion    

Nega4ve  dispersion  makes  the  cavity  “longer”  for  longer  wavelengths  so  all  frequencies  are  simultaneously  resonant  

WLC  breaks  the  nexus  between  bandwidth  and  amplitude  build  up.    

Page 154: Optomechanics for Gravitational Wave Detection · 2016-11-15 · Optomechanics for Gravitational Wave Detection David&Blair& Australian&Internaonal& Gravitaonal&Research&Centre& University&Of&Western&Australia

Nega1ve  dispersion  cancels  the  normal  cavity  round  trip  phase  lag  

Normal  cavity  round-­‐trip  phase  lag:  Phase  cancela1on  requirement:  

⎪  154  

Page 155: Optomechanics for Gravitational Wave Detection · 2016-11-15 · Optomechanics for Gravitational Wave Detection David&Blair& Australian&Internaonal& Gravitaonal&Research&Centre& University&Of&Western&Australia

Double  blue  detuned  opto-­‐mechanical  cavity  creates  nega1ve  dispersion  

In  principle  this  system  can  have  low  noise  and  low  losses  

Page 156: Optomechanics for Gravitational Wave Detection · 2016-11-15 · Optomechanics for Gravitational Wave Detection David&Blair& Australian&Internaonal& Gravitaonal&Research&Centre& University&Of&Western&Australia

Nega1ve  dispersion  experiment  

⎪  156  

Page 157: Optomechanics for Gravitational Wave Detection · 2016-11-15 · Optomechanics for Gravitational Wave Detection David&Blair& Australian&Internaonal& Gravitaonal&Research&Centre& University&Of&Western&Australia

Opto-­‐mechanical  nega1ve  dispersion  -­‐  theory  and  experiment  

376 376.5 377 377.5 378 378.5 379 379.5 380 380.5 381 381.50

1

2

3

4

5

Frequency (kHz)

Ampli

tude

2δ0=3.7 kHz

2δ0=2.7 kHz

2δ0=1.7 kHz

2δ0=0.7 kHz

376 376.5 377 377.5 378 378.5 379 379.5 380 380.5 381 381.5

−50

0

50

Frequency (kHz)

Phas

e (De

g.)

Theore1cal  responses                Experimental  demonstra1on  by  our  student  Jiayi  Qin      

376 376.5 377 377.5 378 378.5 379 379.5 380 380.5 381 381.5

−50

0

50

Phas

e =D

eg.)

Frequency =kHz)

376 376.5 377 377.5 378 378.5 379 379.5 380 380.5 381 381.5

1

2

3

4Tr

anm

issivi

ty a

mpl

itude

=a.u

)

Frequency =kHz)

2δ0=3.7 kHz

2δ0=2.7 kHz

2δ0=1.7 kHz

2δ0=0.7 kHz

Jiayi  Qin  et  al  

Page 158: Optomechanics for Gravitational Wave Detection · 2016-11-15 · Optomechanics for Gravitational Wave Detection David&Blair& Australian&Internaonal& Gravitaonal&Research&Centre& University&Of&Western&Australia

Nega1ve  Dispersion  Performance  

⎪  158  

Page 159: Optomechanics for Gravitational Wave Detection · 2016-11-15 · Optomechanics for Gravitational Wave Detection David&Blair& Australian&Internaonal& Gravitaonal&Research&Centre& University&Of&Western&Australia

White-­‐light  cavity  enhanced  GW  detector  

⎪  159  

•     Signal  extrac1on  mirror  resonates  the  signal  sidebands  •     Optomechanical  cavity  provide  nega1ve  dispersion  • Broad  range  of  frequencies  enhanced  • Hence  broadband  sensi1vity  enhancement    

Page 160: Optomechanics for Gravitational Wave Detection · 2016-11-15 · Optomechanics for Gravitational Wave Detection David&Blair& Australian&Internaonal& Gravitaonal&Research&Centre& University&Of&Western&Australia

Op1cal  Dilu1on  for  Thermal  Noise  Free  Optomechanics  

•  Thermal  noise  makes  both  of  the  above  devices  vastly  too  noisy  for  use  in  a  real  detector.  

•  Can  Q-­‐factors  be  achieved  to  drop  thermal  noise  to  zero  at  300K?    

Page 161: Optomechanics for Gravitational Wave Detection · 2016-11-15 · Optomechanics for Gravitational Wave Detection David&Blair& Australian&Internaonal& Gravitaonal&Research&Centre& University&Of&Western&Australia

Mul1-­‐frequency  pumping  of  opto-­‐mechanical  cavity  

•  T.  Corbid  et  al.,  “Op1cal  Dilu1on  and  Feedback  Cooling  of  a  Gram-­‐Scale  Oscillator  to  6.9  mK”,  Phys.  Rev.  Led.  99,  160801  (2007)  

-  D.  E.  Chang,  K.-­‐K.  Ni,  O.  Painter  and  H.  J.  Kimble,  “Ultrahigh-­‐Q  mechanical  oscillators  through  op1cal  trapping”,  New  J.  Phys.  14,  045002  (2012).  

Filter  cavity  pumping  scheme  

Op1cal  Spring  

Mechanical  Resonator  

Page 162: Optomechanics for Gravitational Wave Detection · 2016-11-15 · Optomechanics for Gravitational Wave Detection David&Blair& Australian&Internaonal& Gravitaonal&Research&Centre& University&Of&Western&Australia

Resonator  with  minimal  restoring  force  

•  Radia1on  presure  provides  noise  free  restoring  forces.  

•  Minimise  mechanical  restoring  force    Collabora4on  with  Shiuh  Chao,  Na4onal  TsingHua  University  •  Silicon  cat-­‐flap  pendulum  with  very  thin  

Si-­‐N  hinge  •  Expect  good  Q-­‐factor  because  of  nm  

membrane  thickness  and  proven  Q-­‐factor  •  Design  configuara1ons  to  prevent  added  quantum  noise  

 

Page 163: Optomechanics for Gravitational Wave Detection · 2016-11-15 · Optomechanics for Gravitational Wave Detection David&Blair& Australian&Internaonal& Gravitaonal&Research&Centre& University&Of&Western&Australia

Op1cal  dilu1on  

Quantum  destruc1ve  interference  cancels  quantum  noise  and  cancels  op1cal  damping  

163  

Page 164: Optomechanics for Gravitational Wave Detection · 2016-11-15 · Optomechanics for Gravitational Wave Detection David&Blair& Australian&Internaonal& Gravitaonal&Research&Centre& University&Of&Western&Australia

Cat-­‐flap  resonators  

Cat-­‐flap  resonator  Op1cal  dilu1on  with  

instability  cancella1on  

•  Intrinsic  (gravity-­‐free)  frequencies:  -  silicon  nitride  ~20Hz  :  graphene  :  0.2  Hz.  

•  Op1cal  spring  frequency:  200kHz.  -  Dilu1on  factors:    ~108  (SiN);  ~1012  (graphene).  

164  

Page 165: Optomechanics for Gravitational Wave Detection · 2016-11-15 · Optomechanics for Gravitational Wave Detection David&Blair& Australian&Internaonal& Gravitaonal&Research&Centre& University&Of&Western&Australia

Cat-­‐flap  resonator  cut  from  Silicon  Wafer  

165  

Page 166: Optomechanics for Gravitational Wave Detection · 2016-11-15 · Optomechanics for Gravitational Wave Detection David&Blair& Australian&Internaonal& Gravitaonal&Research&Centre& University&Of&Western&Australia

Prac1cal  op1cal  design  

Page 167: Optomechanics for Gravitational Wave Detection · 2016-11-15 · Optomechanics for Gravitational Wave Detection David&Blair& Australian&Internaonal& Gravitaonal&Research&Centre& University&Of&Western&Australia

Sources  of  Loss  

•  Accelera1on  losses:  Q  =Qint.  (ωint/ωos)2  

•  Reduce  using  distributed  mirror  with  equal  light  reflec1on  per  stage:  r1<r2<r3  etc  

 •  Suspension  modes:  minimise  excita1on    by  centre  of  

perrcussion  tuning  

•  Suspension  modes  frequency:  high  tension  from  graphene,  Si-­‐N  or  nanotube  suspension  

r1  r1  

r2  

rn  

Page 168: Optomechanics for Gravitational Wave Detection · 2016-11-15 · Optomechanics for Gravitational Wave Detection David&Blair& Australian&Internaonal& Gravitaonal&Research&Centre& University&Of&Western&Australia

Basic  Concept  •  The  arm  cavity   is  equivalent   to  a  single  cavity  with  

1lted  mirrors;  •  For  small  1lt  angles  (𝜃  ∼  ℎ×  ≪  1)   it   is  equivalent  to  

laser  beam  jider  with  GW  frequency;  •  GW  beam   jider  eqivalent   to  pumping  of   the  cavity  

with  two  carriers,  𝜔0  and  𝜔1  =  𝜔0  +  ΩGW  •  Radia1on  pressure   force  of   the  beat  note  between  

two  modes  induces  the  torsional  op1cal  spring  •  When  op1cal   spring   frequency   is   equal   to   the  GW  

frequency,   the   GW   induced  mirror   1lt  mo1on  will  be  amplified  and  hence  increase  the  sensi1vity.  

Page 169: Optomechanics for Gravitational Wave Detection · 2016-11-15 · Optomechanics for Gravitational Wave Detection David&Blair& Australian&Internaonal& Gravitaonal&Research&Centre& University&Of&Western&Australia

History  of  Optomechanics  

Page 170: Optomechanics for Gravitational Wave Detection · 2016-11-15 · Optomechanics for Gravitational Wave Detection David&Blair& Australian&Internaonal& Gravitaonal&Research&Centre& University&Of&Western&Australia
Page 171: Optomechanics for Gravitational Wave Detection · 2016-11-15 · Optomechanics for Gravitational Wave Detection David&Blair& Australian&Internaonal& Gravitaonal&Research&Centre& University&Of&Western&Australia
Page 172: Optomechanics for Gravitational Wave Detection · 2016-11-15 · Optomechanics for Gravitational Wave Detection David&Blair& Australian&Internaonal& Gravitaonal&Research&Centre& University&Of&Western&Australia
Page 173: Optomechanics for Gravitational Wave Detection · 2016-11-15 · Optomechanics for Gravitational Wave Detection David&Blair& Australian&Internaonal& Gravitaonal&Research&Centre& University&Of&Western&Australia
Page 174: Optomechanics for Gravitational Wave Detection · 2016-11-15 · Optomechanics for Gravitational Wave Detection David&Blair& Australian&Internaonal& Gravitaonal&Research&Centre& University&Of&Western&Australia
Page 175: Optomechanics for Gravitational Wave Detection · 2016-11-15 · Optomechanics for Gravitational Wave Detection David&Blair& Australian&Internaonal& Gravitaonal&Research&Centre& University&Of&Western&Australia
Page 176: Optomechanics for Gravitational Wave Detection · 2016-11-15 · Optomechanics for Gravitational Wave Detection David&Blair& Australian&Internaonal& Gravitaonal&Research&Centre& University&Of&Western&Australia
Page 177: Optomechanics for Gravitational Wave Detection · 2016-11-15 · Optomechanics for Gravitational Wave Detection David&Blair& Australian&Internaonal& Gravitaonal&Research&Centre& University&Of&Western&Australia

Sapphire  Oscillators  

Page 178: Optomechanics for Gravitational Wave Detection · 2016-11-15 · Optomechanics for Gravitational Wave Detection David&Blair& Australian&Internaonal& Gravitaonal&Research&Centre& University&Of&Western&Australia
Page 179: Optomechanics for Gravitational Wave Detection · 2016-11-15 · Optomechanics for Gravitational Wave Detection David&Blair& Australian&Internaonal& Gravitaonal&Research&Centre& University&Of&Western&Australia
Page 180: Optomechanics for Gravitational Wave Detection · 2016-11-15 · Optomechanics for Gravitational Wave Detection David&Blair& Australian&Internaonal& Gravitaonal&Research&Centre& University&Of&Western&Australia