orange county sanitation district biosolids master …

67
ORANGE COUNTY SANITATION DISTRICT BIOSOLIDS MASTER PLAN TECHNICAL MEMORANDUM 9: AQUA CRITOX REVIEW OCSD PROJECT NO. PS1501 Orange County Sanitation District 9 MAY 2017 ©Black & Veatch Holding Company 2015. All rights reserved. In association with

Upload: others

Post on 01-Feb-2022

27 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: ORANGE COUNTY SANITATION DISTRICT BIOSOLIDS MASTER …

 ORANGE COUNTY SANITATION DISTRICT BIOSOLIDS MASTER PLAN  TECHNICAL MEMORANDUM 9: AQUA CRITOX REVIEW OCSD PROJECT NO. PS15‐01 

   

 

Orange County Sanitation District       9 MAY 2017 

 

 

©Black & Veatch Holding Company 2015. A

ll rights reserved. 

 In association with 

Page 2: ORANGE COUNTY SANITATION DISTRICT BIOSOLIDS MASTER …
Page 3: ORANGE COUNTY SANITATION DISTRICT BIOSOLIDS MASTER …

TM‐9: Aqua Critox Review | Orange County Sanitation District 

Final – May 9, 2017  ii  Biosolids Master Plan 

Table of Contents AcronymandAbbreviationsList....................................................................................................................iv

ExecutiveSummary........................................................................................................................................ES‐1

1.0 Introduction............................................................................................................................................1‐1

2.0 Aims...........................................................................................................................................................2‐1

3.0 MethodologyandApproach..............................................................................................................3‐1

4.0 LiteratureReview.................................................................................................................................4‐1

4.1 GeneralBackgroundonSCWO.......................................................................................................................4‐1

4.2 LiteratureReview................................................................................................................................................4‐4

4.2.1 Lab‐ScaleandPilot‐ScaleExperiments.......................................................................................4‐44.2.2 SCWOSystemandComponentDesign,OperabilityConsiderations,and

Challenges...............................................................................................................................................4‐64.2.3 EnvironmentalAssessmentofSCWO..........................................................................................4‐94.2.4 EconomicConsiderations...............................................................................................................4‐10

4.3 StatusoftheSCWOTechnology...................................................................................................................4‐11

5.0 SCFIProposal..........................................................................................................................................5‐1

5.1 ReviewofSCFIProposals.................................................................................................................................5‐2

5.1.1 General.....................................................................................................................................................5‐25.1.2 Feedstock................................................................................................................................................5‐25.1.3 GritRemoval..........................................................................................................................................5‐35.1.4 ScreeningRequirements...................................................................................................................5‐35.1.5 SCWOTechnicalComments.............................................................................................................5‐35.1.6 OperationsandStaffing.....................................................................................................................5‐45.1.7 Safety.........................................................................................................................................................5‐45.1.8 CriticalParts...........................................................................................................................................5‐45.1.9 Procurement..........................................................................................................................................5‐55.1.10 Mass&EnergyBalance......................................................................................................................5‐5

5.2 ReviewofCapitalandoperatingCosts.......................................................................................................5‐6

6.0 SCFIPilotPlantinValencia,Spain...................................................................................................6‐1

7.0 SCFIProposals–CapitalandOperatingCostEvaluation........................................................7‐1

7.1 SCFIBusinessCaseEvaluation.......................................................................................................................7‐1

7.1.1 ConstructionCostConsiderations.................................................................................................7‐17.1.2 Operating,MaintenanceandBenefitCostConsiderations.................................................7‐37.1.3 Repair&Replacement(R&R)CostConsiderations...............................................................7‐37.1.4 NetPresentValueAnalysisResults..............................................................................................7‐3

7.2 BV/BCBusinessCaseEvaluation..................................................................................................................7‐4

7.2.1 ConstructionCostConsiderations.................................................................................................7‐47.2.2 Operating,MaintenanceandBenefitCostConsiderations.................................................7‐67.2.3 Repair&ReplacementCostsandBenefitsConsiderations................................................7‐6

Page 4: ORANGE COUNTY SANITATION DISTRICT BIOSOLIDS MASTER …

Orange County Sanitation District | TM‐9: Aqua Critox Review 

Final – May 9, 2017  iii  Biosolids Master Plan 

7.2.4 NetPresentValueAnalysisResults..............................................................................................7‐67.3 ComparisonofSCFIandBV/BCCosts.........................................................................................................7‐7

8.0 Conclusions&Recommendations...................................................................................................8‐1

9.0 References...............................................................................................................................................9‐1

SeeEnclosedFlashDriveforAppendices

AppendixA–TabularSummaryofLiteratureonSuperCriticalWaterOxidation....................A‐1

AppendixB–QCReviewAffidavits.............................................................................................................B‐1

 

LIST OF FIGURES Figure4‐1.PhaseDiagramforWaterShowingCriticalPoint(Source:SCFI).............................................4‐1

Figure4‐2.GeneralizedSuperCriticalWaterOxidationFlowDiagram.......................................................4‐3

LIST OF TABLES Table4‐1.AdvantagesandDisadvantagesofSCWOTechnology....................................................................4‐4

Table4‐2.WastewaterIdealRequirementstobeTreatedbySCWOinTubularReactor(reproducedfromVadilloetal,2015)................................................................................................4‐8

Table5‐1.SummaryofEnergyInputsforAquaCritoxA30................................................................................5‐5

Table7‐1.InitialBusinessCaseEvaluationConstructionCosts1...................................................................7‐2

Table7‐2.InitialNetPresentValueAnalysisforBothAlternatives...............................................................7‐4

Table7‐3.RevisedBusinessCaseEvaluationConstructionCosts..................................................................7‐5

Table7‐4.RevisedNetPresentValueComparativeAssessment(w/osteambenefit)..........................7‐7

Table7‐5.RevisedNetPresentValueComparativeAssessment(w/steambenefit)............................7‐7

Table7‐6.ComparisonofSCFIandBV/BCCostEstimates................................................................................7‐8

Page 5: ORANGE COUNTY SANITATION DISTRICT BIOSOLIDS MASTER …

TM‐9: Aqua Critox Review | Orange County Sanitation District 

Final – May 9, 2017  iv  Biosolids Master Plan 

Acronym and Abbreviations List Thefollowingacronymsandabbreviationsareusedinthisdocument.

% percentAP acidificationpotentialASCE AmericanSocietyofCivilEngineersBtu/lb BritishthermalunitperpoundC CelsiusCaCl2 CalciumchlorideCIP CapitalImprovementProgramCO2 carbondioxideCOD ChemicalOxygenDemandDE destructionefficiencyDGSWR DynamicGasSealWallReactorDMT Drymetrictonsdtpa Drytonsperpoundactiveea eachEP eutrophicationpotentialEPS EnvironmentalprioritystrategyET EnvironmentalthemeEWT EcoWasteTechnologiesFL Floridag/l Gallonsperlitergal/hr Gallonperhourgph GallonsperhourGWP globalwarmingpotentialH2O waterHHV HighheatvalveHPHT highpressureandhightemperatureHPSCW hydrolysisofpolymersinsupercriticalwaterHTO hydrothermaloxidationsystemIC intercrystallinecorrosionkg/hr KilogramperhourKW KilowattskWh Kilowattsperhourlb poundlb/hr PoundsperhourLCAs life‐cycleassessmentsLOX Liquidoxygenm3/h CubicmetersperhourMG Milliongallonsmils/h TensofmicrometersperhourMIT MassachusettsInstituteofTechnologyMPa MillionPascalsMW megawatt

Page 6: ORANGE COUNTY SANITATION DISTRICT BIOSOLIDS MASTER …

Orange County Sanitation District | TM‐9: Aqua Critox Review 

Final – May 9, 2017  v  Biosolids Master Plan 

N2 nitrogengasN2O nitrousoxideNa2SO4 sodiumsulfateNaCl sodiumchlorideNCH Near‐CriticalHydrolysisNH3‐N AmmoniaasNitrogenNOx oxidesofnitrogenNPV NetPresentValueO&M Operation&MaintenanceOCSD OrangeCountySanitationDistrictPFD ProcessflowdiagrampH PotentialofhydrogenPOCP photo‐oxidantcreationpotentialppm PoundsperminutePSI Poundspersquareinchpsig PoundspersquareinchgaugeR&R Repair&ReplacementSCAQMD SouthCoastAirQualityManagementDistrictSCBG supercriticalwaterbiomassgasificationSCC stresscorrosioncrackingSCFI SuperCriticalFluidsInternationalGroupSCW SupercriticalWaterSCWG supercriticalwatergasificationSCWO SupercriticalWaterOxidationSOx oxidesofsulfurSWPO supercriticalpartialoxidationTDI treatingtoluenediisocyanateTM‐3 TechnicalMemorandum 3TOC TotalOrganicCarbonTPAD TemperaturePhasedAnaerobicDigestionTS TotalsolidsTWR TranspiringWallReactorTX Texasµm/h MicrometersperhourVS VolatilesolidsWAS wasteactivatedsludgeWERF WaterEnvironmentalResearchFoundationWWTP WastewaterTreatmentPlantyr year

 

Page 7: ORANGE COUNTY SANITATION DISTRICT BIOSOLIDS MASTER …

Orange County Sanitation District | TM‐9: Aqua Critox Review 

Final – May 9, 2017  ES‐1  Biosolids Master Plan 

Executive Summary OrangeCountySanitationDistrict(OCSD)isconsideringimplementationofademonstrationscalesupercriticalwateroxidation(SCWO)plantfortreatmentofwastewaterbiosolidsatoneoftheirwastewatertreatmentfacilities.AreviewhasbeenconductedofavailableliteratureontheSCWOprocessandadetailedreviewofproposalsfromtheSCWOvendor,SCFIfortheirproposedAquaCritoxsystemwasundertaken.

TheliteraturereviewconfirmedthatSCWOisanembryonictechnologyinrelationtoitsapplicationfortreatmentofwastewaterbiosolids.Whilepilotscaleworkonwastewaterbiosolidshasbeencarriedout,therearecurrentlynosuccessfulcontinuousoperatingSCWOfacilitiestreatingwastewaterbiosolids.TheliteraturereviewalsoconfirmedthatscalingandcorrosionaresignificantchallengesassociatedwithSCWOoperation.

AreviewofSCFIproposalsfortheOCSDfacilityidentifiedanumberofpotentialchallengesassociatedwithsuccessfulimplementationofthedemonstrationproject,aswellasseveralareaswhereitwasfeltthattheconstructionandoperatingcostestimateforthefacilityneededmodification.ArevisedcostanalysiswasundertakenwhichidentifiedthecostoftreatmentusingtheproposedAquaCritoxsystem.CostswerecomparedonaunitsolidsbasistotreatmentusingTemperaturePhasedAnaerobicDigestion(TPAD)whichOCSDisproposingtoutilizeforreplacementofdigestersatPlant2.TheunitcostforSCWOwasfoundtobeapproximatelydoublethatoftreatmentusingTPAD.Thisresultwasnotthoughttobesurprisinggiventhatitcomparesasmallerscaledemonstrationfacilityusingembryonictechnologywithafullscaletreatmentsolutionusingestablishedtechnology.

AsitevisitwasplannedtoanSCFIAquaCritoxpilottreatmentsystemlocatedinValencia,Spainaspartofthisevaluation.However,thisfacilityisnotincontinuousoperationtreatingwastewatersludgeinautothermalconditions.Therefore,thesitevisitwasindefinitelypostponed.

Longtermoperatingdatafromapilotfacilitytreatingwastewatersludgeisrecommendedinordertoevaluatethetechnicalconcerns,cost,andnoneconomicissuesidentifiedinthisTM.SincethepilotfacilityinValencia,Spainhasnotachievedthedesiredoperationaltrackrecordtodate,itisrecommendedthatOCSDpostponeanydecisionregardingademonstrationfacilityasproposedbySCFI.

 

Page 8: ORANGE COUNTY SANITATION DISTRICT BIOSOLIDS MASTER …

Orange County Sanitation District | TM‐9: Aqua Critox Review 

Final – May 9, 2017  1‐1  Master Plan Biosolids  

1.0 Introduction OrangeCountySanitationDistrict(OCSD)currentlyoperatestwoWaterResourceRecoveryFacilitiestermedPlant1andPlant2.Bothplantscurrentlystabilizebiosolidsusingconventionalmesophilicanaerobicdigestion.OCSDisplanningupgradestothesefacilitiesaspartoftheBiosolidsMasterPlan,projectPS15‐01.Aswellasconsideringestablishedtechnologiesforreliabletreatmentofbiosolidsoverthecomingyears,OCSDisinterestedinemergingtechnologieswhichhavethepotentialtoreducebiosolidstreatmentcostsinthefutureandprovideadditionalenergyrecovery.

OnesuchtechnologyisSuperCriticalWaterOxidation(SCWO)whichinvolvesheatingbiosolidsatveryhightemperaturesandpressures,leadingtochangesinthebehaviorofwaterandadramaticincreaseinsolubilityoftheconstituentsofbiosolids,allowingforalmostcompleteoxidationoforganiccomponents.OCSDhasbeenworkingwithSuperCriticalFluidsInternationalGroup(SCFI)whooffertheirAquaCritox®processforsupercriticalwateroxidationofmunicipalsludges.Becausethetechnologyhasonlybeenusedpreviouslyatverysmallscale,OCSDisconsideringademonstrationscalefacilitytofurtherevaluatethepotentialoftheprocessforfullscaleinstallationattheirfacilities.

SCFIhasbeenworkingwithOCSDtoplantheproposeddemonstrationfacilityandtogenerateanestimateofbothassociatedcapitalandoperatingcosts.OCSDhascommissionedBlack&VeatchwithsubconsultantsBrownandCaldwellandTimHaugtoconductareviewoftheSCFIproposals.

Page 9: ORANGE COUNTY SANITATION DISTRICT BIOSOLIDS MASTER …

Orange County Sanitation District | TM‐9: Aqua Critox Review 

Final – May 9, 2017  2‐1  Master Plan Biosolids  

2.0 Aims  Theaimsofthisreviewareasfollows:

ToprovideanobjectivetechnicalandcommercialreviewofSCFI’sproposalsforademonstrationplantatOCSD.

ToprovideOCSDwithguidanceregardingthelikelytechnicalchallengesandrequirementsassociatedwithoperationofthefacility.

ToprovideOCSDwithanobjectiveevaluationofthelikelycapitalandoperatingcostsassociatedwiththefacilitysothattheycanreachadecisionastowhetheritistheirbestintereststoproceedwithconstructionofademonstrationplant.

Page 10: ORANGE COUNTY SANITATION DISTRICT BIOSOLIDS MASTER …

Orange County Sanitation District | TM‐9: Aqua Critox Review 

Final – May 9, 2017  3‐1  Master Plan Biosolids  

3.0 Methodology and Approach Thegeneralapproachtakenwiththisstudyisoutlinedasfollows:

1. AreviewoftheavailableliteratureonSCWOwasconductedtoensurethatOCSDisprovidedwithafullpictureregardingthestatusofthetechnologyandhistoryassociatedwithitsimplementation.

2. AtechnicalreviewoftheSCFIproposalswascarriedoutinordertoprovideOSCDwithrecommendationsregardingtheapproachtothedemonstrationplant,likelychallengesassociatedwithitsimplementationandmitigationmeasures.

3. AcommercialreviewoftheSCFIproposalswasconducted.ThebaseproposalfromSCFIwasreviewedandareaswereidentifiedwhereitwasthoughthatcapitalandoperatingcostsmaydifferfromthoseproposed.Acostcomparisonwasthenpreparedtocomparethefollowingscenariosonaunitdrysolidsthroughputbasis:

a. BaseproposalfromSCFIassumingallcostsstatedintheproposalareaccurate.

b. BaseproposalfromSCFIbutwithcostsadjustedinareaswhereitwasfeltthatcapitaloroperatingcostsmaydifferfromthoseputforwardbySCFI.

c. Acapitalandoperatingcostbaseline.Thiswasbasedontheexpectedcapitalandoperatingcostsforthenewtemperaturephasedanaerobicdigestion(TPAD)systemproposedforPlant2.

4. Baseontheabovework,recommendationsweremadetoadviseOCSDregardingtheirapproachtothedemonstrationproject.

Page 11: ORANGE COUNTY SANITATION DISTRICT BIOSOLIDS MASTER …

Orange County Sanitation District | TM‐9: Aqua Critox Review 

Final – May 9, 2017  4‐1  Master Plan Biosolids  

4.0 Literature Review Theliteraturereviewispresentedinthreesections.ThefirstsectionprovidesageneralbackgroundonSCWOforreaderswhomaynotbefamiliarwiththetechnology.ThesecondsectionprovidesasummaryoftheavailableliteratureonSCWOandthemainconclusionsreachedbyvariousresearchers.Thethirdsectionprovidesanoverviewofthecurrentstatusofthetechnologybasedontheliterature.ThesecondandthirdsectionsaresupportedbyadetailedtabularsummaryoftheliteraturewhichispresentedinAppendixA.

4.1 GENERAL BACKGROUND ON SCWO ThissectionprovidesageneralbackgroundonSCWOforreaderswhomaynotbefamiliarwiththetechnology.

Undernormalconditions,waterexistsinoneofthreestates;gas(steam),liquid(water),orsolid(ice).Anotherstateofwateremergesunderhightemperatureandpressureknownassupercriticalwater(SCW).Supercriticalwaterisatatemperatureandpressurewhichisabovethecriticalpointatwhichwatercanexistinallthreestates.AsimplifiedphasediagramofwaterisshowninFigureFigure4‐1.

Figure 4‐1. Phase Diagram for Water Showing Critical Point (Source: SCFI) 

Undersupercriticalcondition,thebehaviourofwaterchangesanddependingonitsdensity,SCWbehavesasbothagasandaliquid.Diffusionratesarehigh(astheywouldbeinagas),collisionratesbetweenmoleculesarehigh(astheywouldbeinaliquid)andwatermoleculesbecomemuchlesspolar.Thisleadstoorganicmoleculesinthefluidbecomingfarmoresolubleandleadstoveryrapiddiffusionrates,thusallowingthepotentialforrapidandcompletechemicalreactions.

Page 12: ORANGE COUNTY SANITATION DISTRICT BIOSOLIDS MASTER …

TM‐9: Aqua Critox Review | Orange County Sanitation District 

Final – May 9, 2017  4‐2  Biosolids Master Plan 

Supercriticalwateroxidation(SCWO)makesuseofthesepropertiestooxidizeorganicsthroughtheinjectionofoxygenunderthesupercriticalconditionofwater.TheuniquepropertiesofSCWprovideareactormediuminwhichdiffusionisfast,organicmaterialsreactquicklywithoxygen,andthesaltsprecipitate.SCWOreadilyachieveshighdestructionefficiencyoforganics(morethan99.99percent)inshortreactiontime(lessthan1minute)buttemperaturesaresufficientlylowtoprecludeorminimisetheformationofSOxandNOxgases.

IntheSCWOprocess,organicsarecompletelyoxidized,carbonisconvertedtocarbondioxide,hydrogentowater,andnitrogentonitrogengasornitrousoxide.SaltmayremaindissolvedintheSCWmediumorcondensedasaconcentratedbrinesolutionorasasolidparticulate.Heavymetalscanformoxidesorcarbonates,whichmayormaynotprecipitate,dependingontheirvolatility.Inertsolidswilllargelybeunaffectedbytheprocessandwillremainassolids.

Thesolidsfromtheeffluentsettleveryeasilyandhaveverylowsolubility.Recoveryofusefulnutrients(suchasrecoveryofphosphorusbychemicalprecipitation)andby‐products(CO2andN2)canbeaccomplished.

AtypicalflowsheetforSCWOisprovidedinFigure4‐2.

Page 13: ORANGE COUNTY SANITATION DISTRICT BIOSOLIDS MASTER …

Orange County Sanitation District | TM‐9: Aqua Critox Review 

Final – May 9, 2017  4‐3  Master Plan Biosolids  

Figure 4‐2. Generalized Super Critical Water Oxidation Flow Diagram 

Thewaste,aseitheranaqueoussolutionorslurry,ispressurisedanddeliveredtothereactorinlet.Oxygenissuppliedintheformofeithercompressedairorpureoxygen.Normally,theuseofoxygenisconsiderablylessexpensivethanairforlargescaleapplications.

TheorganicsareoxidizedintheSCWOreactor.Theeffluentfromthereactorisfedtoacyclonethatseparatessolids(saltsfromtheoriginalfeedaswellasthoseformedintheSCWOreaction)fromliquideffluent.Theliquideffluentofthesolidseparatorisamixtureofwater(H2O),nitrogengas(N2)andcarbondioxide(CO2).

Aportionoftheeffluentisrecycledtoprovidesupercriticalconditionsattheoxidiserinlet.Theremainderoftheeffluent,whichisahightemperaturehigh‐pressurefluid,iscooledtoasubcriticaltemperatureinaheatexchanger.Heatrecoveredfromtheheatexchangerisusedtogenerateloworhigh‐pressuresteamorhotwater,dependingontheneed.Theoutletstreamfromtheheatexchangerisfedtoaliquid–vapourseparator,wheretheN2andmostoftheCO2isremovedascleangaseffluent.Alternately,thegasstreamcanbeexpandedthroughaturbinetogeneratepower.Theefficiencyofthereaction(forthecompletedecompositionofthetargetchemical)isafunctionofreactiontemperatureandresidencetime.

ThepropertiesthatmakeSCWOagoodreactionmediumcanalsobeadisadvantagetotheprocess.ThematerialsandothercompoundspresentinthefeedstreamareheatedintheSCWOreactorandcanbecomeveryreactiveandthereforecausecorrosiontothereactor.Designofsystemstominimisecorrosionhasbeenamajorchallengeintheapplicationofthistechnology.Anotherchallengeisheatexchangerfoulingandscalebuild‐upfromtheinertsandsalts.TheadvantagesanddisadvantagesofSCWOprocessaresummarizedinTable4‐1.

Page 14: ORANGE COUNTY SANITATION DISTRICT BIOSOLIDS MASTER …

TM‐9: Aqua Critox Review | Orange County Sanitation District 

Final – May 9, 2017  4‐4  Biosolids Master Plan 

Table 4‐1. Advantages and Disadvantages of SCWO Technology 

ADVANTAGES  DISADVANTAGES 

Complete oxidation of organics, COD removal > 99.9 

percent 

Severe corrosion in post‐reactor heat exchanger

High quality effluent  Scaling formation caused by salt deposition 

Low air emissions  Problems with let‐down valves from high pressures 

Provides significant reduction in greenhouse gas if CO2

is recovered  

Feed waste must be homogenous and free from grit  

(< 100 µm) 

Immobilization of heavy metals in form of hydroxides, 

carbonates and insoluble phosphates  

Scale up of SCWO is challenging, due to the increased 

size and number of heat exchangers and pumps and 

increased complexity of maintenance and operations 

4.2 LITERATURE REVIEW OverthepastalmostfourdecadesanumberofSCWOlab‐scaleanddemonstrationfacilitieshavebeenbuiltbyvariouscompanies,nationallaboratories,andfederalagencies.Althoughextensiveresearchhasbeenconducted,thecommercializationofSCWOprocesseshasbeenhinderedbyconcernsaboutcorrosion,scalebuildup/foulingandplantscalability.

Theconsultantteamreviewed25scientificpublicationssupplementedbyadditionalinternet‐basedinformationgathering.Thissectionprovidesahigh‐levelsummaryofthekeyfindings,groupedintothefollowingfivemaincategories:

1. Lab‐scaleandpilot‐scaleexperimentsandfindingsundersubcriticalandsupercriticalconditions.

2. SCWOsystemandcomponentdesign,operabilityconsiderations,andchallengesundersubcriticalandsupercriticalconditions.

3. EnvironmentalassessmentofSCWO.

4. Economicconsiderations.

5. HistoricdevelopmentandstatusofSCWOtechnology.

4.2.1 Lab‐Scale and Pilot‐Scale Experiments 

Subcriticalwateroxidation(SubCWO)conditions:

ThedestructionofCODrepresentingtheorganiccompoundsinthefeedisdominatedbythegenerationofacidssuchasaceticacidwhichismostresistanttohydrothermaloxidationandretardsthereactiontime(ShanablehandShimizu,2000;ImteazandShanableh,2004).

SCWOconditions:

Thereactiontemperature,pressureandresidencetimearethemaininterdependentfactorswhichcanbeadjusted,withthefollowingorderofsignificance:pressure>reactiontemperature>reactionretentiontime(Gaoetal,2014).

Page 15: ORANGE COUNTY SANITATION DISTRICT BIOSOLIDS MASTER …

Orange County Sanitation District | TM‐9: Aqua Critox Review 

Final – May 9, 2017  4‐5  Master Plan Biosolids  

Whenthepressureisabovethecriticalpressureofwater(22.1MPa),conversionisnotimprovedbyelevatingthepressure.Atlowerpressures,theconversionsdecrease,butifthereactiontemperatureishighenoughthedetrimentaleffectofpressurecanbecompensated.(BermejoandCocero,2006).

AmmoniaandaceticacidarefoundtoberefractoryintermediatesinSCWOoforganicwastesandarereactionratelimiting.Ammoniadestructionwasfoundtobeslowerthanforaceticacid.(Gotoetal,1999).

CODdestruction:

o Whenmorethanthestoichiometricdemandofoxidantisused,organiccarbonintheliquidphaseisalmostcompletelydestroyed(Gotoetal,1997).

o Thedestructionrateisfasteratahighertemperature,andthetotalorganiccarbon(TOC)reducedtoalmostzeroin60sat773K[500°C](Gotoetal1999).

o RemovalrateofCODwasobviouslyincreasedastemperature,residencetimeandoxidationcoefficientareincreased.ThereisanoptimalvaluefortimetoinfluenceremovalofCOD.ThereisanoptimalvalueforoxidationcoefficientandtheinfluenceonCODremovalbecomesverysmall.(Zhangetal,2016).

o TheoxidantdosehadasmalleffectonremovalofCODinmunicipalwastewatersludgewhenappliedabovestoichiometricrequirements.Temperature,pressureandresidencetimeinthetreatmentofsludgeweremoreimportant.OrganicmaterialinmunicipalsewagesludgecouldbeefficientlyremovedusingSCWO(Lietal,2013).

DestructionofN‐components:

o Concentrationofammonia‐nitrogenincreasedwithoxidationcoefficient.Concentrationofammonia‐nitrogenincreasedwithreactiontimebeforedecreasing.TotalnitrogenistransformedtoNH3‐Nbeforedegradingovertime.(Zhangetal,2016).

o Completedestructionofammoniaproducedinthereactionrequiredhighertemperaturesthanfordestructionofaceticacid(Gotoetal,1998).

o Thedecompositionofnitrogencomponentsinthesludgetoammoniawasfoundtobemuchfasterthanthecompletedecompositionofammoniatomolecularnitrogen,carbondioxideandwater(Gotoetal,1999).

o Previousworkreportedcatalyticoxidationofammoniaassociatedwiththealloyused(Inconel635)inthereactorwallmaterial(Gotoetal,1999).

HeavymetalscontainedinthesludgewhentreatedviaSCWOareincorporatedinthenon‐leachableash.Anincreaseinheavymetalsintheashcanbedetectedifstainlesssteel316isusedasreactormaterialduetocorrosion(ShanablehandShimizu2000).

TheSCWOprocesscanproduceamultitudeofintermediatesandpotentialby‐products.Experimentshaveshownthatthedegradationorformationofthesecompoundscanbeenhancedbyacatalyst;e.g.transitionmetaloxideshaveshowndesirablecatalyticeffects(GloynaandLi,1995).

Page 16: ORANGE COUNTY SANITATION DISTRICT BIOSOLIDS MASTER …

TM‐9: Aqua Critox Review | Orange County Sanitation District 

Final – May 9, 2017  4‐6  Biosolids Master Plan 

Reactor,heatexchangerandrecoveryunitsaresusceptibletoscalingofsaltsandcorrosion.Thelowdensityofthefluidlimitstheabilitytodissolvetheinorganicswhichcausesthemtodropoutofsolutionandresultsinscaling.(ShanablehandShimizu,2000).

4.2.2 SCWO System and Component Design, Operability Considerations, and Challenges 

Pilot‐andfull‐scalecommercialSCWOinstallationshavebeenencounteringsubstantialoperationalchallengesduetocorrosion,solidsprecipitation,andpluggingoccurringmainlyinthehighpressureandhightemperaturesectionsoftheprocessincludingthepreheater,reactor,coolerandheatexchanger(Zhong,etal,2015).

AssaltsinthefeedhavelowsolubilityinSCW,whentheyprecipitatetheyoftenformagglomeratesandcoatinternalsurfaces,therebyinhibitingheattransferfrom/toexteriorsurfaces.Whenscalebuild‐upisleftuncontrolled,pluggingoftransportlinesand/orthereactorcanoccur.TherequiredcleaningcanresultinsubstantialandcostlydowntimeintheSCWOprocess(Hodesaetal,2004).

Morroneexplainsthatcorrosionismostsevereinthehot,subcriticalregionsbefore(preheater)andafter(cooldownheatexchanger)thereactor,butcanalsooccurinthemicroenvironmentformedundersaltlayersinthereactor(Marrone,2013).Dependingontheparticularfeedsandmaterialsofconstructioninvolved,corrosionratesinSCWprocessessuchasSCWOarereportedtobeashighasseveralmils/h[tensofµm/h](Marroneaetal,2009).

ManyofthecompaniesthathaveattemptedtocommercializetheSCWOtechnologyoverthepasttwodecadeshavedevelopedinnovativeapproachestodealingwiththecorrosionandsaltprecipitation/solidsbuildupproblems.Theseareoftenthedistinguishingfeaturesofeachcompany'sSCWOprocess.Furthermore,researcheffortsonalaboratoryandpilot‐scalehasbeenongoingfocusingontheoverallsystemandprocessdesign(suchasimprovementsinthereactordesignandnewmaterialofconstruction)tominimizetheseadverseeffects.

Thefollowingprovidesahigh‐leveloverviewofthevarioussystemdesignconsiderationsandmeasuresimplementedandunderinvestigationtoavoidcorrosionandpluggingtosupportsuccessfulcontinuousfeedprocessingforanacceptableperiodoftime:

Constructionmaterials‐mostwidelyusedmaterialsintheSCWOprocess(BermejoandCocero,(2006;Marroneaetal,2009):

ThemostcommonmaterialsofconstructionforSCWOsystemstoobtainhighresistancetocorrosionathightemperaturesarenickel‐basedalloys(Nialloys625andC‐276)andausteniticstainlesssteels.Stainlesssteelalloysareacceptableonlyforrelativelybenignfeeds(i.e.,containingnoheteroatoms1)orincoolersectionsoftheprocess.Forhighertemperaturesectionsoftheprocess,nickel‐basedalloysaremostoftenusedduetotheircombinationofreasonablygoodcorrosionresistanceandhightemperaturestrengthunderthewidestrangeofconditions.

However,Zhongnotesthatno‘supermaterial’hasbeenreportedthatcanwithstandallcorrosionconditionsinSCWO(Zhong,C.etal,2015).

                                                                        1 Atoms other than carbon or hydrogen which are bonded to carbon in organic compounds.

Page 17: ORANGE COUNTY SANITATION DISTRICT BIOSOLIDS MASTER …

Orange County Sanitation District | TM‐9: Aqua Critox Review 

Final – May 9, 2017  4‐7  Master Plan Biosolids  

Fourreactorconceptshavebeendevelopedandstudiedtosolvecorrosionandsaltdeposition/accumulationproblems(Loppinet‐Serani2010):

a) abasictubularreactorwithspecifichydrodynamicsandconstructionmaterial;

b) atankreactorwiththereactionzoneintheupperpartandacoolzoneinthelowerparttodissolvethesalts;

c) a‘transpiringwall’reactorwithaninnerporouspipe,whichisrinsedwithwatertopreventsaltdepositsandcorrosiononthewall;and

d) a‘film‐cooled’reactorwithcoolingofthewallbycoaxialintroductionoflargeamountsofwater.

Tubularreactorsoperatedathighvelocitiesarebeingusedbyseveralcompaniesfortreatingsewagesludges,whichhavearelativelyhighproportionofnon‐saltsolids.Vadillonotedthatforsafeoperatingconditionsandoptimalenergyrecovery,aSCWOplantwithtubularreactorrequiresstringentthermalcontrole.g.viacoolingwaterinjectionsandmulti‐oxidantinjectionsindifferentpointsalongthereactor.ThisdesignapproachhasbeenrealizedintheSCFIAqua‐Critox®Reactorwhereexcesstemperaturealongthereactoriscontrolledthroughtheuseofamulti‐injectionofcoolwaterstreamsindifferentpartsofthereactor.However,multi‐coolwaterinjectionsproducethermalfatigueofthereactormaterial(Vadilloetal,2015).

Modellingtoolshaveincreasinglybeenappliedtodevelopnewreactorconcepts.Anovelreactorconceptnamedas‘DynamicGasSealWallReactor’wasrecentlydeveloped,whichwasoptimizedfrom‘TranspiringWallReactor’designandwasdesignedtohandlethereactorcorrosionandpluggingproblems(Zhongetal2015).

Saltseparation:solid–fluidseparation(e.g.hydrocyclonsorfiltrationsystems)aremethodsofrecoveringsolidsattheoutletofthereactorareeffectiveonlywhenthesolidsdonottendtosticktothewallofthereactor.Thiscanhappenifthesolidisnotstickyorifasystemforremovingthesolidsfromthewallsisimplementedinthereactor(suchastranspiringwallreactor).

StrategiestocontrolscalebuildupduringSCWOwillcontinuetorelyheavilyonexperiments.Researchonphasebehavior,heattransfer,andmasstransferwillcontinuetobeinvaluablefordevelopingmethodstocontroloreliminatescalebuildupduringSCWO.

Alsosomemodelshavebeendevelopedtocalculatethesolubilityofinorganicsaltsinthehightemperature,highpressureenvironmentofsupercriticalwater.Differentsolutionshavebeenproposedtosolvethepluggingproblem.Asaconclusion,onestudyindicatedthatthebestsolutiontoavoidsaltprecipitationinsidethereactoristoreducethequantityofsaltpresentinthefeed(Bermejo,andCocero,2006).

SpecifictechniquestocontrolsaltprecipitationandscalingareprovidedbyMarronea(Marronea,2004).Suggestedcontrolmeasuresincludehighvelocityflow,mechanicalbrushing,rotatingscraper,reactorflushing,additives,lowturbulence,homogeneousprecipitation,crossflowfiltration,densityseparation,extremepressureoperation.

VadillonotedthatinordertoadvanceinthecommercialdevelopmentofSCWOitiscrucialtonotonlychoosethemostsuitablereactorconceptbutalsotocharacterizeandselectanappropriate

Page 18: ORANGE COUNTY SANITATION DISTRICT BIOSOLIDS MASTER …

TM‐9: Aqua Critox Review | Orange County Sanitation District 

Final – May 9, 2017  4‐8  Biosolids Master Plan 

wastewatersludgefeedintubularSCWOreactorsystems(Vadilloetal,2015;seeTable4‐2fordetails).

Table 4‐2. Wastewater Ideal Requirements to be Treated by SCWO in Tubular Reactor (reproduced from Vadillo et al, 2015) 

PARAMETER  VALUE  COMMENTS 

Type of wastewater  Toxic

Non biodegradable 

Incineration not recommended 

Not suitable for biological treatment 

Flow rate  >100 kg/h

 <4000 kg/h 

To be considered as a semi‐industrial scale 

Due to equipment availability 

Wastewater COD concentration  >50 g/l

 <150 g/l 

To release the heat necessary for autothermal operation 

To keep reactor temperature under safe values 

Salt content  NaCl <200 ppmNa2SO4 <1 ppm CaCl2 <3 ppm Mg(OH)2 <0.003 ppm 

To avoid salt plugging in the reactor 

pH  2 < pH <11 To avoid corrosion

Chlorides  <1.77ppm To avoid corrosion

Notethatwithrespecttosaltcontentandchlorideconcentration,thelimitspresentedbyVadillointheabovetablearebelowlevelstypicallyexperiencedwithwastewaterbiosolidsandtheselimitsdonottieinwithreportedoperatingexperienceofSCFI.

Vadillopointedoutthatsuspendedsolidparticlesinthefeedcanproduceproblemsduringtheeffluentdepressurizationresultinginerosionofinternalpartsofthe“backpressureregulator”valves.Providedsolutionstomitigatesystemcorrosionincludeavoidanceofcorrosivefeedsorthepretreatmentofthefeedtoremovecorrosivespecies.ThechlorideconcentrationlimitstatedbyVadilloinTable4‐2iswellbelowtypicalconcentrationsfoundindomesticwastewatersludgeandalsobelowchloridelimitstypicallystatedbySCWOproviders.

ShanablehandShimizunotedthatSCWOisbestsuitedforwastestreamswithadequateorganiccontenttogenerateenoughheattosustainthereactiontemperature.BesteconomicalsystemoperationcanbeachievedwithafeedstockTSrangingbetween5and10percent.However,atoohighVScontentposestheriskofoverheating(ShanablehandShimizu2000).

InregardtoachievepermittingandregulatorycomplianceGriffithandRaymondprovidethefollowingcommentsbasedontheirexperienceduringtheimplementationthefirstcommercial‐scaleSCWOplantforsewagesludgeinHarlingen,Texas(GriffithandRaymond(2002):

Page 19: ORANGE COUNTY SANITATION DISTRICT BIOSOLIDS MASTER …

Orange County Sanitation District | TM‐9: Aqua Critox Review 

Final – May 9, 2017  4‐9  Master Plan Biosolids  

Regulatoryagencieswereinitiallyuncertainoftheapplicableregulationsforthisprocessbecausetheprocessdoesnotclearlyfitinacategory.TheHarlingenplantwillprovidetheopportunityforregulatorstoviewafull‐scaleoperatingunitprocessingsludge.

Boththefederalandvariousstateregulationsmayneedtoberewrittentospecificallyrecognizethedisposalofresidualsolidsfromahydrothermaloxidationprocess.

4.2.3 Environmental Assessment of SCWO 

Svanström(Svanström,2004and2005)publishedtwopapersonlife‐cycleassessments(LCAs)processingsludgewithSCWO:

a) LCAonthefirstcommercial‐scaleSCWOplantforsewagesludgeintheworld,treatingsludge(7%TS)fromthemunicipalwastewatertreatmentfacilityinHarlingen,TX.TheplantisbasedonTheHydroProcessing’s‘HydroSolids’processwithaprocessingcapacityofupto9.8drytonsperdayofsludge.

b) LCAapplyingtheAquaCritoxprocessfordigestedsludge(15%TS)andcomparingitwithLCAsoffourother(somerelativelynewanduntried)sludgemanagementoptionsspecificallyrelatedtoCityofGöteborg’sWWTP(Sweden)anditlocalcharacteristics.Optionsevaluatedincludedagriculturaluse,co‐incinerationwithmunicipalsolidwaste,incinerationwithsubsequentphosphorusextraction(Bio‐Con)andsludgefractionationwithphosphorusrecovery.InventorydatafortheAquaCritoxprocessfromChematurEngineering’sKarlskoga(Sweden)pilotplantwasusedandscaledup.

Findings–A)‘HydroSolids’processforsludgefromHarlingen,TXfacility:

Gas‐firedpreheatingofthesludgeisthemajorcontributortoenvironmentalimpacts;emissionsfromgeneratingelectricityforpumpingandforoxygenproductionarealsoimportant.

Energy‐conservingmeasuresandrecoveryofexcessoxygenfromtheSCWOprocessshouldbeconsideredforimprovingthesustainabilitypotential.

ResultsfromanLCAstudyofSCWOprocessingofsewagesludgearetoalargeextentdeterminedbythesystemsurroundingtheactualSCWOunit.Thisresultunderscoresthenecessitytolooknotonlyatdirectemissionsfromaspecificprocess,buttoinvestigatethewholelifecycle.

Findings–B)Aqua‐CritoxprocessforsludgefromCityofGöteborg’sWWTP:

Allsystemsevaluated,exceptagriculturaluse,resultinsavingsoftheresourcesfossilfuels,mainlyduetothereplacementofdistrictheatproductionbythesludgeoxidationheat.

Allmethodsperformwellintheglobalwarmingpotentialcharacterization,showingnetsavingsingreenhousegasemissions.

Theenergyrecoverymethodsperformbetterthanagriculturaluse.Energysavingsbyavoidedproductionofchemicalsgiveadvantagestoagriculturaluse.

N2OEmissions:IntermsofglobalwarmingtheemissionofN2OformedintheSCWOprocessprovedtobeimportant:ThetotalN2OemissionsfromtheSCWOprocessthatwasusedinthisstudy,measuredbyChematurEngineeringAB,ishigherthangenerallyexpectedforSCWO

Page 20: ORANGE COUNTY SANITATION DISTRICT BIOSOLIDS MASTER …

TM‐9: Aqua Critox Review | Orange County Sanitation District 

Final – May 9, 2017  4‐10  Biosolids Master Plan 

processingofsewagesludge.AdecreaseinN2OemissionswouldprovideconsiderableimprovementstotheAquaCritoxsystem.

Phosphorous:FortheLCAoftheAquaCritoxsystemextractionofphosphorousfromtheproducedsolidswasnotconsidered.Aphosphorusextractionstepcouldbeadded.LessmaterialwouldthenneedtobelandfilledandacreditwouldbegivenforreplacedphosphorusandotherproductsthusimprovingtheLCAresults.

4.2.4 Economic Considerations 

GriffithandRaymond(GriffithandRaymond2002),Svanström(Svanström,2004)andVadillo(Vadilloetal,2015)providedsomeinformationoneconomicdataforprocessingsludgewithSCWO:

SCWOduringstart‐uprequiresahighamountofenergy.Theonlywaytoachieveeconomicfeasibilityattheindustrialscaleisrunningtheprocessforlongperiodsoftime.Specifically,itisnecessarytoachieve95%ofavailability.Forinstance,inthecaseofplantsof250t/dayofcapacitythethermalenergynecessaryisaround5MW.

SCWOprocessinvolveshighinvestmentcostsassociatedwithsuitableequipmenttoworkathighpressureandtemperature,useofhighcorrosionresistancealloystobuildreactorsandheat.Duetohighpressureoperationalconditionsmaterialcostsareveryhighinadditiontomaintenanceandrepaircostsofequipment.

Reactorcostisoneofthemaincostsinthedesign.Theobjectiveistodesignitwithasmallvolume.Inthiswayoneestimatestatesthatthetubularreactorcostsrepresent10%oftheoverallequipmentcostsinaSCWOplantabletotreat100kg/hofwastewater.

Atpresent,economicalstudiesonSCWOattheindustrialscalearescarceintheliterature.Datapointsfromseveralstudiesareasfollows:

o ‘GidnerandStenmark’estimatedoperationalcostsofasewagesludgeSCWOplantbasedonaflowrateof7m3/hofsewagesludgebeing137€/tofdriedsludge.

o ‘Svanstroetal.’estimatedtotalcostfora1t/dayplantbeing243$/tdriedsludge.

o ‘O’Reganetal.’claimedthattreatmentcostofsewagesludgeSCWOisintherange36.6−73.15€/t.

o ‘Abelnetal.’first,estimatedtreatmentcostofanidealwastewatermadeofamixtureofethanol10%weightandwaterusingairasoxidantinaplantof100kg/hwithtwodifferentreactors:tubularandtranspiringwallreactor,beingthetreatmentcosts406€/tand660€/t,respectively.Later,theyestimatedthetreatmentcostfora1t/hplantbeing330−430€/tforthetranspiringwallreactorplantand203−264€/tforthetubularreactorplant.

o ‘Vadilloetal.’estimatedthetreatmentcostforarealwastewaterSCWOina1t/hplantthatamountsto230€/t.EconomicresultsshowedthatalthoughSCWOtechnologywasinitiallyshownasatechnologysuitableforallkindsofwastes,researchconductedoverthelastthreedecadesshowedthatthistechnologycanonlybeappliedattheindustrialscaleusingatubularreactorandtotreatwastewatersthatmeetcertainfeedcharacteristics.

Page 21: ORANGE COUNTY SANITATION DISTRICT BIOSOLIDS MASTER …

Orange County Sanitation District | TM‐9: Aqua Critox Review 

Final – May 9, 2017  4‐11  Master Plan Biosolids  

o A2001analysisfoundthatthetotalcostforSCWOprocessingofsewagesludgeisaboutUS$120–200perDMTat10%solids.

Operationalcost:thechoiceoftheoxidantisakeypointintheoperationalbudget:

o ‘BermejoandCocero’claimedthatitismoreeconomicaltousepureoxygeninsteadofairbecauseatindustrialscalethecompressioncostisveryhigh.

o ‘Savageetal.’suggestedthatacatalyticSCWOprocessisamorecompetitivealternativebecausewiththeuseofacatalystthetemperaturenecessarytoreachremovalefficiencieshigherthan99%isreducedsignificantlydecreasingtheenergydemand.

FortheHydroSolidsprocessinstalledatHarlingen,Texasthefollowingcostestimatewasprovided:thenetoperationandmaintenancecostwillbeabout$100/dryton.Thecapitalcomponentofthecompletesolidstreatmentsystemrepresentsacostofabout$80/drytontreated.Thetotalcostforsolidsprocessingforthesystemisexpectedtobeabout$180/drytonofsolidsprocessed.

4.3 STATUS OF THE SCWO TECHNOLOGY CommercializationofSCWOtechnologyhasbeeninprogressforoverthreedecadessinceitspotentialfordestructionofaqueousorganicwasteswasfirstrealized.AnumberofSCWOdemonstrationfacilitiesexistinvariouscompanies,nationallaboratories,andfederalagencies.TheearlyapplicationsofSCWOweremainlyformilitaryhazardouswastedestruction.

ThefirstcommercialSCWOcompany,MODAR,wasestablishedin1980(whichwasboughtbyGeneralAtomicsin1996)[Marronea,2004].ThefirstSCWOcommercialfacility(1100Liter/hour)focusedonhazardousorganicwastetreatmentandwasdevelopedbyEcoWasteTechnologies(EWT)atHuntsman’sChemicalCompanyinAustin,TX.TheplantwascommissionedinAugust1994[ShanablehandShimizu,2000].

Forprocessingindustrialwastewatersmostoftheinstallationswere/areatthelaboratoryscaleorpilotplantwithindustrialscaleinstallationsbeingscarce.Incontrasttothesituationwithsubcriticaloxidation,wheretechnologyhasreachedmaturity,therearefarfewerfacilitiesassociatedwithSCWO.Thisislikelytobeduetothechallengesassociatedwiththeimplementationofthetechnology.

InAprilof2001,thefirstSCWOplantforthedestructionofsludgesbeganitsoperationofthefirstoftwounitsintheU.S.attheHarlingenWastewatertreatmentplant,Texas,withaprocessingcapacityof9.8drytonsperdayofWASwith7%TS.ThisplantisbasedontheHydrosolidsProcesswithatubularreactordesign,developedbyHydroprocessingLLC.[GriffithandRaymond,2002;BermejoandCocero,2006].Thefacilitystoppeditoperationin2002duetocorrosionissuesintheheatexchanger[Vadillo,etal,2015].

InEurope,ChematurEngineeringABacquiredalicensingagreementfortheEWTprocessin1995followedbyobtainingitsexclusiveworld‐widerightsin1999andhascommercializeditsSCWOprocessunderthebrandnameAquaCritox®[BermejoandCocero,2006].Chematurbuilta550lb/h(250kg/h)pilot‐scaleSCWOsystemin1998inKarlskoga,Swedenthathassincebeentestedwithseveralmostlynitrogen‐containingwastes(amineproductionwastes,n‐halogenatedspentcuttingfluid,de‐inkingsludge,andsewagesludge)[Marronea,2004].

Page 22: ORANGE COUNTY SANITATION DISTRICT BIOSOLIDS MASTER …

TM‐9: Aqua Critox Review | Orange County Sanitation District 

Final – May 9, 2017  4‐12  Biosolids Master Plan 

Chematurhasalsodevelopedtwootherprocesses[BermejoandCocero,2006]:

TheAquaReci®processisajointdevelopmentofChematurandFeralcoAB.Theprocesscanbeappliedtomunicipalanddrinkingwatersludges.TheAquaCritox®processiscombinedwithrecoveryofcoagulantsand/orphosphorousfromthepure,solidinorganicresidueresultingfromthesupercriticaloxidationstep.

TheAquaCat®technologywasjointlydevelopedbyChematurandJohnsonMattheyfortherecoveryofpreciousmetalsfromspentcatalysts.Inthiswaytransportationofhazardouswastecanbeeliminated.Thefirstcommercial‐sizeunitwasbuiltatJohnsonMatthey’sBrimsdownsite,andstartedupin2004.TheunitisthefirstcommercialunitinEuropebasedonsupercriticalwateroxidation,andthelargestSCWOunitintheworld.

ChematurlicensedtheEWTSCWOprocesstotheShinkoPantecCo.ofJapan.Underthislicenseagreement,ShinkoPantec(EcoWaste),Japanconstructeda1100kg/h(2425lb/h)SCWOplantfortreatingmunicipalsludge,whichwascommissionedin2000[Marronea,2004].Theplantstoppedoperationin2004duetoproblemswithequipmentmaterialdurability[Marrone,2013].

In2007,ChematursoldtheirsupercriticalfluidsdivisionandequipmenttoCork,Ireland‐basedfirmSuperCriticalFluidsInternational(SCFI).SCFIhascontinuedtoimproveontheChematurSCWOtubularreactordesign,thoughtheyhaveconsolidatedChematur’smanyversionsofSCWOunderthesingleAquacritox®brandnameforeaseofmarketing.SCFIutilizesatubularreactordesignandhaschosentofocusprimarilyonsewagesludgeanddigestatefeedapplications.SCFIbuiltisfirstdemonstrationplantinRingaskiddy,Co.Cork,Irelandin2008.In2013/2014SCFIreceivedagrantofjustunder€1millionfromtheEuropeanUnion’sLIFEEco‐innovationInitiative.Theso‐calledLO2Xproject2involvestheconstructionandoperationofademonstrationscaleprototypeforthetreatmentofasignificantfractionofmunicipalrawsludgeattheCityofPaterna’surbanwastewatertreatmentplantclosetoValencia,Spain.

SuperWaterSolutionsLLCisanotherfirmthathasbeenworkingonthecommercializationofSCWOforwastewatersludge.Itwasco‐foundedbyDr.MichaelModell,whoseexperimentsatMITinthe1970sformedthebasisofSCWOtechnologyandwhosubsequentlyfoundedMODAR.Super‐WaterSolutionswasstartedin2006andisbasedinWellington,FL.TheSuperWaterSolutionsSCWOdesignissimilartothatofModell’spreviouscompany,MODECandfeaturesatubularreactorsystem.Since2007,SuperWaterSolutionshasworkedcloselywiththecityofOrlando,FL,withthecityfundingdevelopmentoftheirsystem.Inreturnforthisinvestment,Orlandohasauniquearrangementinwhichitwillreceivearoyaltyof$2.50foreverytonofsludgetreatedatanyfutureSCWOfacilitybuiltbySuperWaterSolutionsforothercustomers.From2009to2011,theyinstalledandsuccessfullytesteda4536kg/day(5tons/day)SCWOsystemattheCityofOrlando’sIronBridgewastewatertreatment.Sincethattime,thecityhascontinuedtoleasespacetoSuperWaterSolutionsforfurtherdevelopmentworkoftheirsystemdesign.Afull‐scale9072kg/day(10tons/day)SCWOsystemwasplannedtobebuiltforthecityin2013[Marrone,2013].OnMarch2014theOrlandoSentinelnewspaper[Sentinel,2014]reportedthatinJuly2013anexpansiontankofthepilotplanthadsufferedablowoutcausingsignificantdamagetotheplantanditsbuildingenclosure.AccordingtothenewspaperarticletheCityofOrlandohadinvested$8.5

                                                                        2 http://www.lo2x.com/eng/descripcion.html

Page 23: ORANGE COUNTY SANITATION DISTRICT BIOSOLIDS MASTER …

Orange County Sanitation District | TM‐9: Aqua Critox Review 

Final – May 9, 2017  4‐13  Master Plan Biosolids  

millionandyearsofitsworkers'labor;thereactorhassatidleeversince,asthecity'sprivate‐sectorpartnertriestoraisethecapitaltobuildanewone.

Vadillo[Vadillo,V.etal,2015]reportedanotherSCWOpilotplantforwastewatersludgelocatedattheSchoolofEnergyandPowerEngineeringinChina.Hereatranspiringwallreactorcombinedwithreverseflowtankisusedwithpurgeoxygenastheoxidanttoprocess125kg/h(2011data).

AccordingtoMarrone[Marrone,2013]asofJanuary2012,thereweresixcompaniesthatarestillactive3incommercializingSCWOtechnology:GeneralAtomics(theoldestamongactivecompanies),SRIInternational,HanwhaChemical,SuperWaterSolutions,SCFI,andInnoveox.

EachSCWOcompanyhasoneormoreuniquefeaturestotheirsystemdesign(foroperationandcontrolofcorrosionandsaltbuildup)and/orbusinessplan,andeachonehastargetedaspecificfeedniche.

SeveralcommercialSCWOplantswerebuiltinthelastthreedecades;however,nowadaysonlytwoofthemareinoperation.Thefollowingprovidesabriefsummaryoftheseactivefull‐scaleplantsincludingoneundernear‐criticalconditions:

SRI/MitsubishiinTokyo,Japan:oldestplant,inoperationsince2005:Theplanthasacapacityof2000kg/dayofPCBsand100,000kg/dayofwater.

Innoveox,Arthez‐de‐Béarn,France:inoperationsince2011;processeshazardousindustrialwasteatarelativelylowcapacityof100kg/hr.Feedcompositionislimitedto<1g/Lchlorideand<10g/Lsalt.

HanwhaChemicalCorp.forKorea,inoperationsince2008:Near‐CriticalHydrolysis(NCH)facilityfortreatingtoluenediisocyanate(TDI)residuetoproducetoluenediamineintermediateforrecyclingbackintotheTDImanufactureprocess.Theplanthasacapacityof20,000kg/day.

Asbestascanbedetermined,alloftheplantsthatshutdownduetoequipmentcorrosiondidnothaveamechanismforhandlingcorrosionotherthanlimitingoperationtonon‐corrosivefeedssuchashydrocarbonsandsewagesludge.

TheuseofthistechnologyforbiosolidsmanagementisstillinitsearlydevelopmentalstagesandiscategorizedasemergingtechnologybytheWaterEnvironmentalResearchFoundation(WERF,2012).

 

                                                                        3 ActiveisreferredtoasthefirmiscurrentlymarketingSCWOtechnologyandhasatleastonefull‐scale

SCWOfacilityinoperation,inconstruction,orindesign.

Page 24: ORANGE COUNTY SANITATION DISTRICT BIOSOLIDS MASTER …

Orange County Sanitation District | TM‐9: Aqua Critox Review 

Final – May 9, 2017  5‐1  Master Plan Biosolids  

5.0 SCFI Proposal  Since2015,SCFIhasbeenworkingwithOCSDtodevelopproposalsfortheSCWOdemonstrationfacility.SCFIhassubmittedthreetechnicalmemorandaandoneevaluationreportwhichhavebeenreviewedaspartofthisstudy.Abriefsummaryofthecontentofthesereportsisprovidedbelow.

TechnicalMemorandumNo.1–ProjectDefinition(Undated)

ThisTechnicalMemodetailsworkcarriedoutunderTask1–ProjectDefinition.ThedocumentprimarilyprovidesdiscussionoffouroptionswhichwereconsideredforlocationofaSCWOplantateitherPlant1orPlant2.ItincludesdetailsofdatarequisitionbySCFIinordertoidentifyapreferredlocationandasummaryofmeetingsheldwithOCSD.

ThereportdetailstheoutcomeofanInterimProjectdefinitionworkshopheldon4thNovember2015.

Rough,“orderofmagnitude”costsarepresentedtoAACEClass5(‐50to+100%)forseveraltreatmentoptionsincluding:

AnA‐30unitsizedfor800gal/hrwithandwithoutposttreatmentprocessing.

AnA‐100unitsizedfor2,600gal/hrwithandwithoutposttreatmentprocessing.

AnA‐30unitsizedfor800gal/hrwithpreandpostprocessingsizedtoaccommodatefutureinstallationofanA‐100unit,withandwithoutposttreatmentprocessing.

Thefollowingrecommendationsaremadeinthestudy:

InstallationofthedemonstrationAquaCritoxfacilityatthesiteofredundantdigestersatPlant2.

TheinstallationofanAquaCritoxA‐30systemwithappropriateupstreamequipmentandtankagesizedtomatchtherequirementofanAquaCritoxA‐100.Transferoftreatedeffluenttotheexistingonsitedewateringequipment.

TechnicalMemorandumNo.2–ProjectDevelopment(Undated)

ThisdocumentcoversworkcarriedoutunderTask2–ProjectDevelopmentandcoversthefollowingscopefocusedonestablishingthescopeoftheproposedproject.

EstablishessludgecharacteristicsandperformancecharacteristicsoftheAquaCritoxsystem.

Coversproposedsitecivilarrangementofthenewsystem.

Detailsrequirementsforupstream/ancillarysystemsincludingsludgesupply,sludgedegritting,feedsludgestorage,oxygensupplyandnaturalgassupply.

ProvidesanoverviewoftheAquaCritoxequipment.

ProvidesmechanicallayoutsoftheA‐30andA‐100AquaCritoxsystems.

Discussesfoundationdesignandanchorage.

Coversrequirementsfordownstreamequipmentincludingoffgashandling,residualshandlingandconveyanceandsteamfacilities.

Page 25: ORANGE COUNTY SANITATION DISTRICT BIOSOLIDS MASTER …

TM‐9: Aqua Critox Review | Orange County Sanitation District 

Final – May 9, 2017  5‐2  Biosolids Master Plan 

Identifiesrelatedancillaryfacilitiesincludingprocessdrainage,odorcontrol,flocculantsupplyandstorageandelectrical,instrumentationandcontrolsystems.

TechnicalMemorandumNo.3–ImplementationPlan(May2016)

ThisTechnicalMemocoversworkcarriedoutunderTask3whichdevelopsanimplementationplanfortheproposedproject.

Thememocovers:

Operationandstaffing

Operationalcosts

ConstructioncostestimatesquotedtoAACEClass4(‐30to+50%)fortheproposedA‐30solutionProjectdelivery

Schedule

Regulatoryandcoderequirements

FinalEvaluationStudyReport

ThefinalevaluationstudyreportprovidesasummaryoftheworkcarriedoutunderTasks1,2and3includingsiteselection,sludgefeed,AquaCritoxoptionsconsidered,majorequipmentassociatedwiththeAquaCritoxpackage,procurementandprojectdeliveryapproachandasummaryofcapitalandoperatingcostsassociatedwiththedifferenttreatmentoptionsavailable.

5.1 REVIEW OF SCFI PROPOSALS AreviewwasconductedoftheSCFIproposalsoutlinedabove.Technicalandothercommentsareprovidedinthefollowingsections.

5.1.1 General 

ItisnotrecommendedthatthesizeofthedigestionfacilityatPlant2shouldbereducedbasedontheinstallationofthedemonstrationSCWOplant.Aswithanydemonstrationplant,itisexpectedthattheremaybesignificantdowntimeinitsoperation.

5.1.2 Feedstock 

ThecurrentproposalfromSCFIinvolvestreatmentofbothprimaryandwasteactivatedsludge(WAS).Itisrecommendedthatthefacilityshouldinitiallyfocusontreatmentofwasteactivatedsludgeforthefollowingreasons.

WAStendstobemoredifficulttoanaerobicallydigestthanprimarysludge.TreatmentofalargerproportionofWASintheSCWOplantwouldremovealargerportionofthisdifficulttodigestfeedstockfromthedigester.

PrimarysludgetendstohaveasignificantlyhighergritcontentthanWAS.GiventhatgritisaconcernforSCWOplantoperation,itseemssensibletominimizethegritcontentofthefeedasfaraspossiblebyutilizingfeedstockswithlowgritcontent.

Page 26: ORANGE COUNTY SANITATION DISTRICT BIOSOLIDS MASTER …

Orange County Sanitation District | TM‐9: Aqua Critox Review 

Final – May 9, 2017  5‐3  Master Plan Biosolids  

IftreatmentofWASonlyissuccessful,thenthiscouldbefollowedupbytreatmentofablendofprimaryandWASatalaterdate.

5.1.3 Grit Removal 

SCFIproposalsincludearequirementfor95%removalofgritparticlesgreaterthan75µminsize.Inourexperienceandbasedondiscussionswiththesupplychain,itisnotpossibletoguaranteethiscriterioncanbemetwithcurrenttechnologyavailable.Also,the75%removalrequirementdoesnotprovidealimitongritcontenttotheSCWOsystembecausethegritcontentofthefeedcouldbevariable.Amassbasedgritcontentbasedonsizewouldbemoreappropriate.

Whilesystemscanbedesignedtoachieveremovalofparticlesofagivensizeanddensity,inpracticesomegritparticlestendtocombinewithsludgeflocwhichreducestheirdensityandtheresultingremovalefficiency.

Giventhecriticalityofgritcontentforthisprocess,itisrecommendedthatOCSDshouldconsiderpilotingtheproposedgritremovaltechnologypriortoinstallationofthefulldemonstrationfacility.ThiswouldenableOCSDtoconfirmwhetherornotSCFI’srequirementsforupstreamgritremovalcanbemetwithoutcommittingtowiderprojectexpenditure.

5.1.4 Screening Requirements 

WhiletheProcessFlowDiagrams(1&2)intheEvaluationStudyReportshowasludgescreen,andcostsforsludgescreeningareincludedinAppendixAofTM‐3,nodetailsareprovidedregardingthemethodofsludgescreening,proposedequipmentorassociatedtechnicalspecifications.

WiththesmallaperturesinvolvedintheSCWOprocessitisexpectedthatveryfinescreeningwillberequired.ItisrecommendedthatspecificationsforthesludgescreeningandproposedmanufacturersshouldbeconfirmedwithSCFIinordertoensurethatafeasiblesolutionisavailablewhichmeetsSCFIrequirementswithoutundueimpactonprojectcosts.

5.1.5 SCWO Technical Comments 

ThefollowingtechnicalcommentswereraisedduringreviewoftheSCFIproposals.Itisreadilyacknowledgethatsomeofthesearequerieswhichmayberesolvedthroughfurtherinvestigationand/orasitevisittothepilotunitatValencia,Spain.

Bakingofsludgeontheeconomizingheatexchangerisapotentialriskat16%feedsolids.ThismaybemitigatedbytheCIPregime.WhentheValenciaplantbeginsoperationat16%feedsolidsitisrecommendedthatcloseattentionbepaidtothedifferentialpressureandrecoveryduringCIPtoconfirmifortowhatextentthisisaconcern.

Itisrecommendedthat25%contingencybeaddedtothescrewpressvendor’ssizingforthescrewpresstoensurethatthiscanfullysupporttheSCWOplantoperation.

Oxygenmustbesuppliedtothereactorvesselatapressureofabout3,500psig.ThereportsdonotprovidemuchdiscussionabouthowthiswillbeachievedotherthanthatthesupplyandcompressionofoxygenwillbetheresponsibilityofAirProducts.Itshouldbenotedthatsupplyingoxygenatthesepressuresisamajorconsideration.Determiningthesafetyandpracticalityofthisoperationwouldneedtobeoneofthegoalsofthedemonstrationproject.Itshouldalsobenotedthatnoorganicmaterialcanbeexposedtotheoxygenduetotheriskoffire.

Page 27: ORANGE COUNTY SANITATION DISTRICT BIOSOLIDS MASTER …

TM‐9: Aqua Critox Review | Orange County Sanitation District 

Final – May 9, 2017  5‐4  Biosolids Master Plan 

Thisincludeslubricatingoilsofanykind.Eventhemetalsusedtoconstructthepumpscanbesubjecttorapidoxidationifthereisanignitionsource.Thepossibilityofthistypeofflashoxidationshouldbeconsideredinthesafetyreviewrecommendedbelow.Inordertoverifythepracticalityofprovidingoxygenatthesehighpressures,AirProductswascontactedbytheconsultantteamforcommentsontheirproposals.AirProductsconfirmedthatindeedthisisaspecialapplicationbutthattheoxygensupplycouldbemetwithoneoftheir‘advanced’systemswhichusehighpressurepumpstoelevatetheliquidoxygentotherequiredpressurefordelivery.AirProductsalsoconfirmedthatinbroadterms,theliquidoxygenequipmentrentalcostsandliquidoxygenpurchasecostsincludedinSCFI’sproposalsarerealistic.

Pressuredropattheendofthereactorfrom3500PSIisamajorundertaking.ItisencouragingthatSCFIhastakenanalternativeapproachtothisusingsmalldiameterpressurereductioncoilswithchokingwater.However,giventhatthetreatedmaterialwillcontainashandanygritwhichisnotremovedpriortotreatment,potentialforerosionandpluggingofthesmalldiametertubingexistsandshouldbeinvestigated.

5.1.6 Operations and Staffing 

TheproposedoperationofthefacilityisbyOCSDbutwithoperationalsupportprovidedbySCFIwithasinglepersonavailablefrom8amto5pm.Thereislittlementionofplantmaintenance.GiventhatthistechnologyisstillindevelopmentandSCFIdoesnotcurrentlyhaveaplantofthesizebeingproposedinoperation,theoperatingandmaintenanceeffortrequiredtokeeptheplantinoperationwillbesignificantandshouldnotbeunderestimated.

ItisrecommendedthatOCSDshouldconsiderafulloperatingandmaintenanceagreementwithSCFI.

5.1.7 Safety 

Onreviewingtheproposalandcosts,itappearsthatthereisnobuildingfortheSCFIsystemincludedintheplansorcosts.AttheIronBridgefacilityinFlorida,10foothighblastswallssurroundedtheinstallationandnopersonnelwereadmittedduringoperation,duetothehighpressuresinvolved.Plantwasoperatedremotely.AlthoughitisfullyacceptedthattherearesignificantdifferencesbetweentheSCFIsystembeingproposedandtheSuperWaterSolutionssysteminstalledatIronBridge,theexperienceatIronBridge(withthesystemexperiencingasignificantfailurewithdamagetotheenclosure)doesseemtojustifyacautiousapproachindesignofthesafetysystemsassociatedwiththesesystems.ItisstronglyrecommendedthatasimilarapproachistakeniftheinstallationproceedsatOCSD.Theplantshouldberemotelyoperatedandshouldbesurroundedbyprotectiveinfrastructuretoensurethatnopersonnelareexposedtopotentialrisksduringoperationofthesystem.

Theproposalsdidnotdiscussseismictesting,bracingorrestraints.Giventhelocation,carefulattentionshouldbegiventotheseismicdesign.

5.1.8 Critical Parts 

Thereisnodiscussionintheproposalofcriticalpartsandspares.Giventhatthisisaspecialistsystem,itislikelythatitemsofequipmentmaybesubjecttolongleadtimes,particularlyiftheyarebeingsuppliedfromoverseas.Theproposaldoesnotprovidedetailsofmanufacturersformajor

Page 28: ORANGE COUNTY SANITATION DISTRICT BIOSOLIDS MASTER …

Orange County Sanitation District | TM‐9: Aqua Critox Review 

Final – May 9, 2017  5‐5  Master Plan Biosolids  

equipmentitems.Althoughthisisademonstrationfacility,giventhesignificantinvestmentbeingconsideredbyOCSDitisrecommendedthatthedesignshouldbebasedaroundcontinuousornearcontinuousoperationandsuitablesparesshouldbeheldtoavoidlonginterruptionsintheoperationofthefacility.

ItisrecommendedthatOCSDconfirmwithSCFIthemanufacturersforallkeyequipmentitems,identifywhichofthesesystemsareconsideredcriticaltooperationanddevelopalistandcostsforshelfspares.

5.1.9 Procurement 

TheproposedprocurementapproachisforatraditionaldesignbidbuildwithSCFIasthedesigner.Itshouldbenotedthatthisprocurementapproachplacesmostoftheperformance/operationsriskforanundemonstratedprocesswithOCSD.OtheroptionscouldbeconsideredwhichwouldreduceOCSD’srisksuchasdesignbuildoperate,designbuildownoperateetc.ItishoweverrecognizedthatSCFIisasmallentityandmaynothavethefinancialbackingtosupportsuchanapproach.NotealsothatthedesignerwillrequireastatePElicense.

5.1.10 Mass & Energy Balance 

Areviewoftheenergyinputsandoutputsindicatedthatthesearebalanced,butactualperformanceandenergybalancewouldrequiremoredetailedevaluationbasedonpilotplantresults.Thefollowingpointshowevershouldbenoted.

Energybalanceinformationinthereportisinconsistentwiththatintheenergybalanceintheappendix.

Itisanticipatedthatsteamturbineefficiencywillbelessthantheassumed25%.

ItisexpectedthatemissionswillrequireSCAQMDpermitting.Atleast6‐12monthsshouldbeplannedforthepermittingprocesses.

Basedontypicalindustryvaluesforprimaryandsecondarysludgeheatingvalues,theenergybalancefortheA30presentedintheevaluationreportlistedreasonableassumptionsforenergyinput.

Table 5‐1. Summary of Energy Inputs for AquaCritox A30 

SLUDGEHHV 

(BTU/LB VS)% VS

VS LOADING (LB/HR)

SLUDGE CHEMICAL ENERGY  (KW)

AQUACRITOX SLUDGE 

CHEMICAL ENERGY (KW)

Primary 10,800 73.7 781 2,472 2,169

Secondary 9,700 81.1 862 2,450 1,542

ElectricalenergyinputsfortheA30werealsoreasonableconsideringpumpingof800gphto3,600psig.Theevaluationreportisassumingenergyrecoveryat75‐80%;itisrecommendedthatthesevaluesbeconfirmedbasedonpilotresults.

Page 29: ORANGE COUNTY SANITATION DISTRICT BIOSOLIDS MASTER …

TM‐9: Aqua Critox Review | Orange County Sanitation District 

Final – May 9, 2017  5‐6  Biosolids Master Plan 

5.2 REVIEW OF CAPITAL AND OPERATING COSTS OnreviewofthecapitalcostsassociatedwiththeSCFIproposal,thefollowingcommentsaremade:

Inlinewithcommentsabove,itisrecommendedthatblastwallsandremoteoperationshouldbeincludedintheproposal.Costsarenotcurrentlyincluded.

Itisnormalatthislevelofcostestimatingtomarkupequipmentcosttogiveaconstructioncost.Themarkupcurrentlyincludedappearstobeontheorderof150%(withsomevariationdependingonthetreatmentoption).Inourexperiencethisistoolowanditisrecommendedthatequipmentcostmarkupshouldmatchtheapproachtakenwiththewiderbiosolidsstudy.

OCSDshouldnotethecostsarepresentedasASCEClass4andassuch,thetruecost(followingadjustmentsasnotedelsewhereinthissection)couldbeupto50%higherthanthebaseestimate.Thismaybeimportantforbudgetaryplanning.

Anumberofitemswereidentifiedforwhichitwasuncertainastowhethercostshavebeenincluded.Whileitislikelythatformanyoftheseitems,costsarealreadyincorporatedunderotherlineitems,thisshouldbeconfirmedwithSCFI.Theseitemsinclude:

o CIPsystem

o Instrumentaircompressors

o Sludgetankmixingsystems

o Odorcontrolsystems/piping

o AllpumpsshownonPFD

o Polymermakeupsystem

o Steamline&condensatereturntoturbine

o Criticalshelfspares

OnreviewoftheoperatingandmaintenancecostsassociatedwiththeSCFIproposal,thefollowingcommentsaremade:

TakingtheexampleoftheA‐30primarysystem,upstreampolymercostsarestatedas$105,954/yr.Evenusingalowendpolymerdoserateof12lb/dryton,thepolymercostwouldbecalculatedat3,968dtpa*12lb/dt*$2.65/lbpolywhichgivesacostof$126,182peryear.(Actualpolymerconsumptioninthevolutescrewpressreportwasaround12lb/dtforprimarysludgeandaround16‐18lb/dtforWAS.)Thereisasimilarerroronthecostsfortheothersystems.

MaintenancecostsforupstreamanddownstreamequipmentareexcludedonthebasisthattheseareoffsetbysavingsinmaintenanceonOCSD’sothersolidsprocessingfacilities.Thesecostsshouldnotbeexcluded.Inourexperience,maintenanceismoredependentontheamountofequipmentinstalledthanonthroughput.

Ingeneral,themaintenanceallowanceisverylow.Atypicalmaintenanceallowanceforconventionalmechanicalplantequipmentwouldbe2%ofequipmentcostperyearwithhighervaluesuptoapproximately4%peryearformoremaintenanceintensiveitemsusingestablishedtechnology.GiventhatSCWOisanemergingtechnologyandtheoperatingconditionsarevery

Page 30: ORANGE COUNTY SANITATION DISTRICT BIOSOLIDS MASTER …

Orange County Sanitation District | TM‐9: Aqua Critox Review 

Final – May 9, 2017  5‐7  Master Plan Biosolids  

onerous,itispossiblethatsignificantlyhighermaintenancecostscouldbeexperiencedonademonstrationfacility.

TakingtheA‐30primarysystemasanexample,sludgedisposalcostoffsetisstatedas$1,240,100peryear.Withtypicalvolatilesolidsdestructionindigestionof50%andbasedon$62.50perwetton,thedisposalcostoffsetiscalculatedatapproximately$744,000peryear.ItappearsthatVSreductionthroughdigestionwasnottakenintoaccountinSCFI’scalculationasitshouldbe.

Asnotedabove,25%efficiencyforthesteamturbineisunrealisticallyhigh.Anefficiencyofjustunder20%wouldbemoretypical.

Theoxygendemandassumptionwasinconsistentbetweenthedesigncriteriaandtheannualoperationcostprojections.

Page 31: ORANGE COUNTY SANITATION DISTRICT BIOSOLIDS MASTER …

Orange County Sanitation District | TM‐9: Aqua Critox Review 

Final – May 9, 2017  6‐1  Master Plan Biosolids  

6.0 SCFI Pilot Plant in Valencia, Spain AsitevisitwasplannedtoanSCFIAquaCritoxpilottreatmentsystemlocatedinValencia,Spainaspartofthisevaluation.However,thisfacilityisnotincontinuousoperationtreatingwastewatersludgeinautothermalconditions.Therefore,thesitevisitwasindefinitelypostponed.

Page 32: ORANGE COUNTY SANITATION DISTRICT BIOSOLIDS MASTER …

Orange County Sanitation District | TM‐9: Aqua Critox Review 

Final – May 9, 2017  7‐1  Master Plan Biosolids  

7.0 SCFI Proposals – Capital and Operating Cost Evaluation TwoanalysesweredevelopedtoassesstheeconomicfeasibilityofanAquaCritoxdemonstrationfacility.AninitialreviewoftheSCFIproposals(OCSDAquaCritoxDemonstrationprojectEvaluationStudyTM)fortheA‐30unitwasperformedinordertodevelopa20‐yearNetPresentValue(NPV)comparisonbetweentheAquaCritoxA‐30ModelandTPADClassAandBalternatives(developedfromPlant2BiosolidsMasterPlan,ProjectPS15‐01,Task4).ThisinitialevaluationusedcostsidentifiedintheSCFIproposalwithoutanymodification.TheseinitialresultswerediscussedinaprojectmeetingonNovember9,2017,andrefinementstotheconstructionandoperatingcostswereidentifiedtoimprovetheaccuracyoftheoverallanalysis.Followingthismeeting,arevisedanalysiswasdevelopedtoassesstheeconomicfeasibilityoftheAquaCritoxA30unitusingupdatedinformationonthepilotsystemcapitalandoperatingcosts.

Resultsoftheinitialbusinesscaseevaluation(whichisbasedonSCFIproposedcostswithnomodification)arepresentedinSection7.1.ResultsoftherevisedanalysiswhichisbasedoncostassumptionsagreedwithOCSDarepresentedinSection7.2.

7.1 SCFI BUSINESS CASE EVALUATION  AninitialreviewoftheSCFIproposalsfortheA‐30unitwasperformedtoreplicatethecostsforCapital,Operating&MaintenanceandanybenefitsderivedfromsteamorpowergenerationdevelopedintheOCSDAquaCritoxDemonstrationProjectEvaluationStudyTM.A20‐yearNetPresentValue(NPV)analysiswasperformedbetweentheAquaCritoxA‐30ModelandTPADClassB,developedfromPS15‐01Task4.

7.1.1 Construction Cost Considerations 

ThefollowingaretheconstructioncostconsiderationsthatwereincludedfortheNPVanalysis.

DirectcostsforconstructionwerecopiedfromtheOCSDAquaCritoxDemonstrationProjectEvaluationStudyTM.Theconstructioncostsincludedallcostsrelatedtoconstructionofabasicpilotfacility.Thefollowingwereassumedaspartoftheconstructioncost:

o Itwasassumedthattheconstructioncostsalsoincludedtwocoolingtowersforprocesscooling,inadditiontoassociatedwatertreatmentandconditioningsystemsforthecoolingtowermakeupwater.Plantwatermaybeusedforcooling;however,duetopoorwaterqualityatPlantNo.2forcoolingapplications,thisapproachwouldlikelyrequireasecondarycoolingloopandwatersoftening.

o Allmodificationstotheexistinginfrastructureandprocesseswereincludedintheconstructioncost.

ConstructioncostsforTPADClassBweredevelopedinprojectPS15‐01,Task4.

AllconstructioncostsarebasedonDecember2016estimates.

Thefollowingconstructionmarkupswereapplied:

o Contingency–25%

o GeneralConditions–10%

o GeneralContractorOverhead,Profit,andRisk–15%

o EscalationtoConstructionStart–0%

Page 33: ORANGE COUNTY SANITATION DISTRICT BIOSOLIDS MASTER …

TM‐9: Aqua Critox Review | Orange County Sanitation District 

Final – May 9, 2017  7‐2  Biosolids Master Plan 

o SalesTax(Basedon50%ofdirectcostsandcontingency)–8%

o BidMarketAllowance–0%

Table7‐1summarizesthecapitalcostsrelatedtotheinitialbusinesscaseevaluation.

Table 7‐1. Initial Business Case Evaluation Construction Costs 1 

DESCRIPTION  TOTAL DIRECT COST2 

Pre‐processing Facilities, Site Work, and Power Distribution $ 8,100,000

Sitework, Yard Piping, and Structural/Foundation $ 2,500,000

Sludge Screen  $ 200,000

Influent Sludge Storage  $ 400,000

Degrit System  $ 500,000

Degritted Sludge Storage  $ 300,000

Volute Press  $ 1,200,000

Dewatered Sludge Storage  $ 600,000

Electrical Bldg & Power Distribution $ 2,500,000

Aquacritox Facilities  $ 7,700,000

Aquacritox Package  $ 7,200,000

LOX Facilities  $ 600,000

Post‐Processing Facilities  $ 1,800,000

Effluent Storage  $ 200,000

Effluent Flocc_CLF  $ 500,100

Thickened Ash Storage  $ 500,000

Thickened Ash Dewatering  $ 600,000

TOTAL DIRECT COST $ 17,700,000

 

Contingency  $ 2,600,000

Subtotal $ 20,300,000

General Conditions  $ 2,000,000

Subtotal $ 22,300,000

General Contractor Overhead, Profit & Risk $ 3,4050,000

Subtotal $ 25,700,000

Escalation to Construction Start  $ 0

Subtotal $ 25,700,000

Sales Tax (Based on 50% of Direct Costs + Contingency) $ 800,000

Subtotal $ 26,500,000

Bid Market Allowance  $ 0

TOTAL ESTIMATED CONSTRUCTION COST $ 26,500,000

Notes: 1. Cost information copied from OCSD AquaCritox Demonstration Project Evaluation Study TM, Appendix A 

– Preliminary Construction Cost Estimate. 2. Costs for each facility were obtained from the SCFI Proposal and rounded to the nearest $100,000 for 

presentation purposes. 

Page 34: ORANGE COUNTY SANITATION DISTRICT BIOSOLIDS MASTER …

Orange County Sanitation District | TM‐9: Aqua Critox Review 

Final – May 9, 2017  7‐3  Master Plan Biosolids  

7.1.2 Operating, Maintenance and Benefit Cost Considerations 

ThefollowingaretheO&MandBenefitCostconsiderationsthatwereassumedfortheNPVanalysis.ThesecostconsiderationsweredevelopedfromtheOCSDAquaCritoxDemonstrationProjectEvaluationStudyTM.

Thefacilitywasassumedtooperatecontinuously,24hoursperdayand7daysperweek.

TheelectricaldemandwasderivedfromtheAquaCritoxTM‐2SingleLineDiagramandSCFIproposalreportingrunningkW.Assuming$0.087/kWh,annualpowercostswereassumedtobe$297,314.

Theoxygensystemmaintenancewasassumedtoinclude$129,962/yearofmaintenancecostsand$9,000/yearforoxygensystemrentalcosts.

Theoxygensystemconsumptionassumed$65/tonofoxygenand5,098tons/yearofoxygenconsumption,withatotalannualcostof$331,334.

Polymerwasassumedadosingrateof12lb/drytonand$2.65/drylbforatotalannualcostof$126,182.

TPADClassBoperatingcostsweredevelopedinprojectPS15‐01,Task4.

7.1.3 Repair & Replacement (R&R) Cost Considerations 

ThefollowingaretheR&RweredevelopedfortheNPVanalysis.

R&RcostswerenotassumedfortheAquaCritoxsystem,matchingtheapproachappliedintheOCSDAquaCritoxDemonstrationProjectEvaluationStudyTM.

R&RcostsforTPADClassBweredevelopedinProjectPS15‐01,Task4.

7.1.4 Net Present Value Analysis Results 

Alifecyclecostanalysiswasperformedusinganescalationrateof3.5%anddiscountrateof4%.TheresultsforAquaCritoxA‐30andTPADClassBarepresentedbelow.ThecapitalcostandpresentworthoftheO&MandR&Rcostsareincluded.

ThepreliminaryfindingsshowninTable7‐2suggestasimilarcostin$/drytonforbothalternativeswhencostitemsintheSCFIproposalaretakenatfacevalue.However,therewereseveralareaswhereitwasfeltthatcostsintheAquaCritoxproposalrequiredmodificationtoprovideatruepictureofactualcostforthedemonstrationfacility.ThemodifiedresultsarepresentedinSection7.2below.

Page 35: ORANGE COUNTY SANITATION DISTRICT BIOSOLIDS MASTER …

TM‐9: Aqua Critox Review | Orange County Sanitation District 

Final – May 9, 2017  7‐4  Biosolids Master Plan 

Table 7‐2. Initial Net Present Value Analysis for Both Alternatives 

ALTERNATIVE  CONSTRUCTION COST3 

O&M  (20‐YR PRESENT 

WORTH)

R&R  (20‐YR PRESENT 

WORTH)

NPV  $/DRY TON 

1  AquaCritox Model A‐30 

$26,500,000  $19,700,000 ‐$ $46,200,000  $5821

2  TPAD Class B  $464,900,000  $246,200,000 $61,700,000 $772,800,000  $5332

Notes: 1. Capacity of the A30 with continuous operation is 10.9 dry tons/day.  2. The TPAD Class B process was sized to meet an average annual loading rate of 198.5 dry tons/day. Given the dramatic difference is the sizes of the two systems, the net present values are dramatically different; therefore, the present worth is also presented in $/dry ton of process capacity over a 20 year operating period to consider these alternatives in a more comparable manner.  Based on this approach, the Aqua Critox A30 pilot demonstrates a comparable cost per dry ton relative to the TPAD Class B alternative. 

3. Construction costs are based on December 2016 estimates.

7.2 BV/BC BUSINESS CASE EVALUATION Decisionsfromtheinitialworkshopidentifiedtheneedforfurtherrefinementoftheconstructionandoperatingcosts.Thiswouldinvolveupdatingunitcostsforoperatinglabor,water,polymerandelectricity,usingvaluesdevelopedfromTask4ofprojectPS‐15.Itwouldalsoincluderepairandreplacementcostsofmechanicalequipmentoverthesuggestedservicelifeandadditionalprovisionsforsafetysuchasbuildings/structures(whereverdeemednecessary),remoteoperationandcontrolsandseismicassessments.

7.2.1 Construction Cost Considerations 

ThefollowingaretheconstructioncostconsiderationsthatwereincludedfortheNPVanalysis.

Inadditiontothedirectcostsforconstructionidentifiedintheinitialanalysis,thecostforgroundimprovementsandabuildingwereaddedtotheconstructioncosts.PreviousworkatPlantNo2hasidentifiedtheriskofliquefactionatthesite,andgroundimprovementsarerequiredtomitigatetheserisks.Also,itwasassumedthatabuildingwouldberequiredovertheprocessequipment,whichwouldassistwithodorcontainment.TheAquaCritoxreactororotherhighpressureandtemperaturevendorsystemswouldnotbeincludedwithinthisbuilding.Toaddresspotentialsafetyconcerns,awallwouldbebuiltaroundthesesystemstoprotectworkersduringnormalsystemoperation.

ConstructioncostsforTPADClassAandBoptionsweredevelopedinprojectPS15‐01,Task4.

AllconstructioncostsarebasedonDecember2016estimates.

Thefollowingconstructionmarkupswereapplied:

o Contingency–25%

o GeneralConditions–10%

o GeneralContractorOverhead,Profit,andRisk–15%

o EscalationtoConstructionStart–0%

o SalesTax(Basedon50%ofdirectcostsandcontingency)–8%

Page 36: ORANGE COUNTY SANITATION DISTRICT BIOSOLIDS MASTER …

Orange County Sanitation District | TM‐9: Aqua Critox Review 

Final – May 9, 2017  7‐5  Master Plan Biosolids  

o BidMarketAllowance–0%

Table7‐3summarizestheconstructioncostsrelatedtotheinitialbusinesscaseevaluation.

Table 7‐3. Revised Business Case Evaluation Construction Costs 

DESCRIPTION  TOTAL DIRECT COST 

Pre‐Processing Facilities, Site Work, and Power Distribution $ 8,100,000

Sitework, Yard Piping, and Structural/Foundation $ 2,500,000

Sludge Screen  $ 200,000

Influent Sludge Storage  $ 400,000

Degrit System  $ 500,000

Degritted Sludge Storage  $ 300,000

Volute Press  $ 1,200,000

Dewatered Sludge Storage  $ 600,000

Electrical Bldg & Power Distribution $ 2,500,000

Aqua Critox Facilities  $ 7,700,000

Aqua Critox Package  $ 7,200,000

LOX Facilities  $ 400,000

Post‐Processing Facilities  $ 1,800,000

Effluent Storage  $ 200,000

Effluent Flocc_CLF  $ 500,000

Thickened Ash Storage  $ 500,000

Thickened Ash Dewatering  $ 600,000

Building Cost  $ 800,000

Ground Improvements  $ 3,000,000

TOTAL DIRECT COST $ 21,500,0007‐ 

 

General Conditions (15%)  $ 24,700,000

Subtotal

Startup, Training, and O&M (4%)  $ 25,700,000

Subtotal

Project level allowance (30%)  $ 33,400,000

Subtotal

Builders risk, Liability, Auto Insurance (2%) $ 34,000,000

Subtotal

Contractor Bonds and Insurance (1.5%)  $ 34,500,000

TOTAL ESTIMATED CONSTRUCTION COST $ 34,500,000

Note: 1. Information from OCSD Aqua Critox Demonstration Project Evaluation Study TM, Appendix A – 

Preliminary Construction Cost Estimate. 

Page 37: ORANGE COUNTY SANITATION DISTRICT BIOSOLIDS MASTER …

TM‐9: Aqua Critox Review | Orange County Sanitation District 

Final – May 9, 2017  7‐6  Biosolids Master Plan 

7.2.2 Operating, Maintenance and Benefit Cost Considerations 

ThefollowingaretheO&MandBenefitCostconsiderationsthatwereevaluatedfortheNPVanalysis.

Thefacilitywasassumedtooperatecontinuously,24hoursperdayand7daysperweek.

UnitcostswereidentifiedinPS15‐01,Task4.

TheelectricaldemandwasderivedfromtheAquaCritoxTM‐2SingleLineDiagramandSCFIproposalreportingrunningkW.Assuming$0.099/kWh,annualpowercostswereassumedtobe$336,798.

Theoxygensystemmaintenancewasassumedtoinclude$129,962/yearofmaintenancecostsand$9,000/yearforoxygensystemrentalcosts.

Theoxygensystemconsumptionassumed$65/tonofoxygenand5,098tons/yearofoxygenconsumption,withatotalannualcostof$331,334.

Polymerwasassumedadosingrateof12lb/drytonand$2.65/drylbforatotalannualcostof$126,182.

Plantwaterdemandwasestimatedat37.8Mgal/yearandincludedwaterdemandforthesludgedegrittingsystem,dewateringpolymerfeedsystem,andpumpsealwater.Assumingaplantwatercostof$61.22/MG,annualplantwatercostsare$2,317.

Labortoprovideadedicatedoperatorforthepilotsystem24/7,wasestimatedbySCFIat$1,314,000/year.

TPADClassAandBalternativeoperatingcostsweredevelopedinprojectPS15‐01,Task4.

7.2.3 Repair & Replacement Costs and Benefits Considerations 

ThefollowingaretheR&RandbenefitscostconsiderationsthatwereevaluatedfortheNPVanalysis.

ThebenefitsderivedfromsteamwerequantifiedusingestimatesfromtheOCSDAquaCritoxDemonstrationProjectEvaluationStudyTM.Atanapproximatelysteamgenerationrateof3,491lb/hrandassumingavalueforsteamat$11.50/1,000lb,annualbenefitsfromsteamproductionwereestimatedat$301,050.

TheAquaCritoxsystemincludespreandpostprocessingequipmentandequipmentassociatedprovidedfortheSCWOprocess.Repairandreplacementcostsforthepilotsystemequipmentibasedona15‐yearservicelifewereincluded.TotalR&Rcostswereestimatedat$12.7M.

NoR&Rcostsrelatedtoreactor,heatexchangersoreconomizers(commonlycitedinliteratureasneeded)wereincluded.

R&RcostsforTPADClassAandBalternativesweredevelopedinProjectPS15‐01,Task4.

7.2.4 Net Present Value Analysis Results 

Alifecyclecostanalysiswasperformedusinganescalationrateof3.5%anddiscountrateof4%andtheresultsforAquaCritoxA‐30,TPADClassAandTPADClassBarepresentedbelow.TheconstructioncostandpresentworthoftheO&MandR&Rcostsareincluded.Table7‐4presentsthecomparativeanalysisassumingsteamisnotrecoveredfromtheA30unit,andTable7‐5presentstheanalysisassumingsteamrecovery.

Page 38: ORANGE COUNTY SANITATION DISTRICT BIOSOLIDS MASTER …

Orange County Sanitation District | TM‐9: Aqua Critox Review 

Final – May 9, 2017  7‐7  Master Plan Biosolids  

Table 7‐4. Revised Net Present Value Comparative Assessment (w/o steam benefit) 

ALTERNATIVE CONSTRUCTION 

COST 

O&M          (20‐YR PRESENT 

WORTH) 

R&R             (20‐YR PRESENT 

WORTH) NPV  $/DRY TON 

1  Aqua Critox 

Model A‐30 

$34,500,000  $46,600,000 $11,700,000 $92,800,000  $1,1691

2  TPAD Class A  $486,300,000  $232,700,000 $62,700,000 $781,700,000  $5402

3  TPAD Class B  $464,900,000  $246,200,000 $61,700,000 $772,800,000  $5332

Notes: 

1. Capacity of the A30 with continuous operation is 10.9 dry tons/day.  

2. The TPAD Class B process was sized to meet an average annual loading rate of 198.5 dry tons/day. 

InevaluatingtheA30systemwithoutsteamrecovery,the20‐yearpresentworthcostofprocessingsolidsisapproximatelytwicethecostoftheTPADClassAandBalternatives.Withsteamrecovery,thecosttoprocesssolidsintheA30pilotisslightlyreduced.

Table 7‐5. Revised Net Present Value Comparative Assessment (w/ steam benefit) 

ALTERNATIVE CONSTRUCTION 

COST 

O&M         (20‐YR 

PRESENT 

WORTH) 

R&R           (20‐YR PRESENT 

WORTH) 

TOTAL 

BENEFIT (20‐YR 

PRESENT 

WORTH) 

NPV $/DRY 

TON 

1  Aqua Critox 

Model A‐30 

$34,500,000  $46,600,000 $11,700,000 $6,000,000  $86,900,000 $1,0861

2  TPAD Class A  $486,300,000  $232,700,000 $62,700,000 $0 $781,700,000 $5402

3  TPAD Class B  $464,900,000  $246,200,000 $61,700,000 $0 $772,800,000 $5332

Notes: 

1. Capacity of the A30 with continuous operation is 10.9 dry tons/day.  

2. The TPAD Class B process was sized to meet an average annual loading rate of 198.5 dry tons/day. 

Theaboveanalysisassumedcontinuousoperation.Ifthethroughputofthesystemortimeofoperationisreduced,thecosttoprocesssolids($/drylb)willincreaserelativetothenumberspresentedinthisanalysis.

7.3 COMPARISON OF SCFI AND BV/BC COSTS BasedonthecostevaluationspresentedinSection7.1andSection7.2,Table7‐6summarizesacostcomparisonbetweenSCFIcostsandBV/BCcosts.

TheresultsoftherevisedcostevaluationsuggestthatthecostfortreatingbiosolidsusingtheAquaCritoxdemonstrationfacilityarelikelytobeapproximatelydoublethatoftreatmentusingTPADonaperunitsolidsthroughputbasis.Thisresultisnotsurprisinggiventheeconomiesofscalebetweenademonstrationplantandafullscalefacility.

Page 39: ORANGE COUNTY SANITATION DISTRICT BIOSOLIDS MASTER …

TM‐9: Aqua Critox Review | Orange County Sanitation District 

Final – May 9, 2017  7‐8  Biosolids Master Plan 

Table 7‐6. Comparison of SCFI and BV/BC Cost Estimates 

SCFI BV/BC Notes

Ground Improvements $0 $3,000,000 Ground improvements for AquaCritox structures

Building Costs $0 $780,000

Enclosures additions for process equipment and control room.  Wall 

around AquaCritox facility

Total Direct Cost $17,700,000 $17,700,000

Cost includes Pre‐Processing Facilities, site work and power 

AquaCritox Facilities and Post‐Processing Facilities

Construction Cost Subtotal $17,700,000 $21,500,000

Total Direct Construction Cost $26,600,000 $34,500,000

Mark up used by SCFI = 1.5

Mark up used by BV/BC = 1.6 (From Task 6, Plant 2 CIP Cost Estimate)

Electrical $0.087/kWh $0.099/kWh BV/BC assumed the electrical power rate used in TM4 

Electrical390 kWh 390 kWh

BV/BC assumed an electrical energy demand based on one‐line  

demand provided in the report

Polymer $2.65/lb $2.65/lb BV/BC assumed the polymer unit costs used in TM4

Polymer 12 lbs/dry ton 12 lbs/dry ton BV/BC and SCFI used the same polymer dose 

Water  $0/MG $62.22/MG BV/BC assumed the plant water cost used in TM4

Water 0 Mgal/y 37.8 Mgal/y

BV/BC assumed a water demand for process equipment and seal 

water.

Labor$0/y $1,314,000/y

BV/BC assumed an annual labor cost by SFCI staff (provided by 

AquaCritox)

Oxygen $65/ton $65/ton BV/BC and SCFI used the same cost for oxygen

Oxygen 5,098 tons/y 5,098 tons/y BV/BC and SCFI used the same demand for oxygen

Oxygen$129,962/y $129,962/y

BV/BC and SCFI used the same cost for oxygen equipment 

maintenance

Oxygen $108,000/y $108,000/y BV/BC and SCFI used the same cost for oxygen equipment rental

O&M Present Worth $19,700,000 $46,600,000

REPAIR & REPLACEMENT R&R Present Worth $0 $11,700,000

BV/BC: Assumed R&R cost equivalent to mechanical equipment base 

cost after 15 years of operation.

Steam 3,491lbs steam/h 3,491lbs steam/h BV/BC and SCFI used the same amount of stream produced each hour

Steam $11.50/1000lb $11.50/1000lb BV/BC and SCFI used the same value for steam

Benefits Present Worth ‐$6,000,000 ‐$6,000,000

Total Dry Tons 79,570 79,570 for 20 year life cycle

Unit NPV Cost $507 $1,091 /dry ton

Reference Cost for TPAD Class A $540 /dry ton

Net Present Value $40,300,000 $86,800,000

CAPITAL

OPERATION & MAINTENANCE

BENEFITS

SUMMARY

Page 40: ORANGE COUNTY SANITATION DISTRICT BIOSOLIDS MASTER …

Orange County Sanitation District | TM‐9: Aqua Critox Review 

Final – May 9, 2017  8‐1  Master Plan Biosolids  

8.0 Conclusions & Recommendations Thefollowingconclusionsandrecommendationswerereachedinthecourseofthisevaluation.

TheSCWOprocesshaslimitedsuccessfuloperationalexperienceintheindustry,particularlyforwastewatersludgeapplications.

BasedonarevisedanalysisoftheAquaCritoxA30pilotsystem,thecosttoprocesssolidshasbeenestimatedasapproximatelytwicethatofthefutureTPADalternative.Furtherinvestigationintotheoperationofapilotsystem,wouldhelpidentifyifthetruecostofoperationisgreaterorlessthanthenumbersestimatedinthisTM.

LongtermoperatingdatawithapilotfacilitytreatingwastewatersludgeisnecessaryinordertofurtherevaluatetheconcernsidentifiedinthisTMabouttheSCWOprocess,includingcorrosionandscalingissues,reliabilityoftheequipment,demonstrationofperformanceandplantsafety.

ProceedingwithademonstrationscaleprojectisthereforenotrecommendeduntilOCSDareabletowitnessreal,longtermoperatingdataofapilotfacilityonwastewatersludge.

Page 41: ORANGE COUNTY SANITATION DISTRICT BIOSOLIDS MASTER …

Orange County Sanitation District | TM‐9: Aqua Critox Review 

Final – May 9, 2017  9‐1  Master Plan Biosolids  

9.0 References Bermejo,M.D.,Cocero,M.J.(2006);Supercriticalwateroxidation:Atechnicalreview;AIChEJournal,v52,n11,p3933‐3951,Nov2006

Gao,M.etal(2014);Parameteroptimizationofmunicipalsludgetreatedbysupercriticalwateroxidationprocess;AdvancedMaterialsResearch,v1010‐1012,p693‐698,2014

Gloyna,E.F.,Li,L.(1995);Supercriticalwateroxidationresearchanddevelopmentupdate;EnvironmentalProgress,v14,n3,p182‐192,Aug1995

Goto,M.etal(1997);Decompositionofmunicipalsludgebysupercriticalwateroxidation;JournalofChemicalEngineeringofJapan,v30,n5,p813‐818,Oct1997

Goto,M.etal(1998);Supercriticalwateroxidationforthedestructionofmunicipalexcesssludgeandalcoholdistillerywastewaterofmolasses;JournalofSupercriticalFluids,v13,n1‐3,p277‐282,June15,1998

Goto,M.etal(1999);Kineticanalysisforammoniadecompositioninsupercriticalwateroxidationofsewagesludge;IndustrialandEngineeringChemistryResearch,v38,n11,p4500‐4503,Nov1999

Goto,M.etal(1999);Kineticanalysisfordestructionofmunicipalsewagesludgeandalcoholdistillerywastewaterbysupercriticalwateroxidation;IndustrialandEngineeringChemistryResearch,v38,n5,p1863‐1865,1999

Griffith,J.W.,Raymond,D.H.(2002);Thefirstcommercialsupercriticalwateroxidationsludge;WasteManagement22(2002)p453–459;Elsevier

Hodesa,M.etal(2004);Saltprecipitationandscalecontrolinsupercriticalwateroxidation—PartA:fundamentalsandresearch;TheJournalofSupercriticalFluids;Volume29,Issue3,May2004,p265–288

Imteaz,M.A;Shanableh,A.(2004);Kineticmodelforthewateroxidationmethodfortreatingwastewatersludges;DevelopmentsinChemicalEngineeringandMineralProcessing,v12,n5‐6,p515‐530,2004

Li,D.etal(2013);Removalefficiencyoforganicsubstanceinmunicipalsludgebysupercriticalwateroxidation;AdvancedMaterialsResearch,v726‐731,p1732‐1738,2013

Loppinet‐Serani,A.etal(2010);Supercriticalwaterforenvironmentaltechnologies;JOURNALOFCHEMICALTECHNOLOGYANDBIOTECHNOLOGYVolume85,Issue5,p583–589,May2010

Marrone,P.A.(2013);Supercriticalwateroxidation‐Currentstatusoffull‐scalecommercialactivityforwastedestruction;JournalofSupercriticalFluids,v79,p283‐288,2013

Marroneaetal(2009);Corrosioncontrolmethodsinsupercriticalwateroxidationandgasificationprocesses;TheJournalofSupercriticalFluids

PhilipAMarronea,P.A.(2004);Saltprecipitationandscalecontrolinsupercriticalwateroxidation—partB:commercial/full‐scaleapplications;TheJournalofSupercriticalFluids,Volume29,Issue3,p289–312,May2004

Page 42: ORANGE COUNTY SANITATION DISTRICT BIOSOLIDS MASTER …

TM‐9: Aqua Critox Review | Orange County Sanitation District 

Final – May 9, 2017  9‐2  Biosolids Master Plan 

Qian,L.(2015);Treatmentofsewagesludgeinsupercriticalwaterandevaluationofthecombinedprocessofsupercriticalwatergasificationandoxidation;BioresourceTechnology,v176,p218‐224,Jan01,2015

Shanableh,A.,Gloyna,E.F.(1991);Supercriticalwateroxidation.Wastewatersandsludges;WaterScienceandTechnology,v23,n1‐3,p389‐398,1991

Shanableh,A.,Shimizu,Y.(2000);Treatmentofsewagesludgeusinghydrothermaloxidation‐Technologyapplicationchallenges;WaterScienceandTechnology,v41,n8,p85‐92,2000

Svanström,M.etal(2004);Environmentalassessmentofsupercriticalwateroxidationofsewagesludge;Resources,ConservationandRecycling,v41,n4,p321‐338,July2004

Svanström,M.etal(2005);Environmentalassessmentofsupercriticalwateroxidationandothersewagesludgehandlingoptions;WasteManagementandResearch,v23,n4,p356‐366,Aug2005

Vadillo,V.etal(2015);ProblemsinSupercriticalWaterOxidationProcessandProposedSolutions;INDUSTRIAL&ENGINEERINGCHEMISTRYRESEARCHInd.Eng.Chem.Res.,2013,52(23),p7617–7629

Xu,D.etal(2013);Influenceofoxidationcoefficientonproductpropertiesinsewagesludgetreatmentbysupercriticalwater;InternationalJournalofHydrogenEnergy,v38,n4,p1850‐1858,Feb12,2013

Yang.Setal.(2013);Newdesignofsupercriticalwateroxidationreactorforsewagesludgetreatment;AdvancedMaterialsResearch,v774‐776,p212‐215,2013

Zhang,T.etal(2016);Treatmentofsludgeandwastewatermixturebysupercriticalwateroxidation;Resources,EnvironmentandEngineering‐2ndTechnicalCongressonResources,EnvironmentandEngineering,CREE2015,p499‐504,2016

Zhong,C.etal(2015);Anewsystemdesignforsupercriticalwateroxidation;ChemicalEngineeringJournal,Volume269,p343–351,1June2015

Page 43: ORANGE COUNTY SANITATION DISTRICT BIOSOLIDS MASTER …

TM‐9: Aqua Critox Review | Orange County Sanitation District 

Final – May 9, 2017  A‐1  Master Plan Biosolids  

Appendix A – Tabular Summary of Literature on Super Critical Water Oxidation 

Page 44: ORANGE COUNTY SANITATION DISTRICT BIOSOLIDS MASTER …

Final – May 9, 2017  A‐2  Biosolids Master Plan 

RESEARCH GROUP OR BODY 

SOURCE  PAPER TITLE  MAIN FINDINGS 

Bermejo,M.D.,Cocero,M.J.(2006)

AIChEJournal,v52,n11,p3933‐3951,November2006

Supercriticalwateroxidation:Atechnicalreview

Anoverviewofthetechnicalaspectsofthesupercriticalwateroxidationprocessisprovided;reactorsdesign,constructionmaterials,corrosion,saltsprecipitationproblems,andindustrialapplicationsarediscussed.

Generalfindings:

SCWpropertiesmakeforafavorablehomogeneousreactionmediabutthelowsolubilityofpolarcompoundscausessolidsprecipitationandplugging.Thesewell‐knownproblemsoftheSCWOprocessdefinetheneedsofresearch:newreactorsthatavoidcorrosionandplugging.

CorrosionandpluggingproblemscontinuetocausesomeexistingSCWOindustrialplantstostopafterafewmonthsofoperation.Theextremeoperationalconditionsalongwiththecorrosiveenvironmentmakeitnecessarytoextensivelystudythematerialsbehavioronduty.AchallengeinSCWOistheapplicationofnewconstructionmaterialsabletostandtheharshoperationalconditionsinthemainequipment,valves,andfittings.

Modelling:o Itisanecessarytooltodevelopnewreactors.Reactormodelingisabletoprovideinsightintocharacteristicsofthereactorthataredifficulttoobtain

experimentally,andalsotofurnishabetterunderstandingofthemixingprocess.o Itwasfoundthatafirst‐orderrepresentationofapparentkineticsisadequatewheninductiontimesarenegligibleanduptoacertainconversion.Thisis

averyfrequentsituationinSCWOsofirst‐ordermodelsareconvenientformodelling.Althoughthereareagreatnumberofstudiesaboutoxidationkineticsinsupercriticalwater,theinfluenceonpressureintheoxidationrateisstillnotclear.

o Muchworkremainstoobtainaccuratevaluesofthethermodynamicandtransportpropertiesoftheaqueousmixtures:evenwhentransportpropertiesofwatercanbepredicted,thermodynamicpropertiesandphaseequilibriumoftheaqueoussystemarestillahandicap,especiallywheninorganicsaltsarepresentinthemixture.

Fromtheperspectiveofenergetics,SCWOcanbeperformedinanenergeticallyprofitableway.Corrosionresistantdevicesforseparationofsaltsmustbedeveloped,toproduceelectricitybydirectexpansionofthereactionproducts.Currently,researchconductingthedevelopmentofturbinesabletoworkattemperatures>700°Cisprogressing,whichwillfacilitateaprofitableenergyrecoveryfromtheSCWOeffluent.

SomespecificSCWOprocessrelatedaspects(extracts):

TheSCWOprocessconsistsoffourmainsteps:(1)pressurizationofthereagents,(2)reaction,(3)saltseparation,and(4)depressurizationandheatrecovery.

Pressurization:Oxygencompressioncostsareconsiderablylowerthanthosefromair(onequivalentoxygenbasis),buttheyrepresentanadditionalrawmaterialcost.Usinghydrogenperoxidemaybeadvantageousinbench‐scalefacilities,butthecommercialapplicabilityofthisoxidantislimitedbecauseofitshighcost.

ReactionTemperature:Whenthereactiontemperatureisincreased,theefficiencyoftheprocessishigherandtheresidencetimenecessaryforthetotaloxidationofthereagentsislower.Atreactiontemperaturesaround650°C,residencetimesnecessaryforcompleteconversionare<50s,withindependenceofthepollutantstreatedOperationPressure:Whenthepressureisabovethecriticalpressureofwater(22.1MPa),conversionisnotimprovedbyelevatingthepressure.Atlowerpressures,theconversionsdecrease,butifthereactiontemperatureishighenoughthedetrimentaleffectofpressurecanbecompensated.

Saltseparation:solid–fluidseparation(e.g.hydrocyclonsorfiltrationsystems)aremethodsofrecoveringsolidsattheoutletofthereactorareeffectiveonlywhenthesolidsdonottendtosticktothewallofthereactor.Thiscanhappenifthesolidisnotstickyorifasystemforremovingthesolidsfromthewallsisimplementedinthereactor(suchastranspiringwallreactor).

Corrosionforms:ThemainformsofwhatcorrosionmayappearintheSCWOprocessarethefollowing:pittingcorrosion,generalcorrosion,intergranularcorrosion[intercrystallinecorrosion(IC)],andstresscorrosioncracking(SCC).Attemperatures>600–700°C,anothercorrosionmechanism,calledhightemperaturecorrosion(creeping)canoccur.Atthesetemperatures,mostcommonlyusedmetals,suchasiron,nickel,andchromiumbegintoformvolatilecorrosionproducts,whichareeasilyretiredfromthesurfaceofthemetal,orinsomecasesmeltthematerial,leadingtofastgeneralcorrosion.CorrosionintheSCWOenvironmentiscontrolledbythedissolutionoftheprotectingoxidelayertotheprimarycorrosionproducts.Thatis,thehigherthesaltsolubility(whichdependsonthedensityofthesolution),thefasterthecorrosionrate.Thisdissolutionofthesaltscanbecarriedoutbyelectrochemicalprocess,whichisafunctionoftheelectrochemicalpotential,orbyachemicalprocessthatdependsmainlyonthepHofthesolution.

Page 45: ORANGE COUNTY SANITATION DISTRICT BIOSOLIDS MASTER …

TM‐9: Aqua Critox Review | Orange County Sanitation District 

Final – May 9, 2017  A‐3  Master Plan Biosolids  

RESEARCH GROUP OR BODY 

SOURCE  PAPER TITLE  MAIN FINDINGS 

Constructionmaterials‐mostwidelyusedmaterialsintheSCWOprocess:o Stainlesssteel(AISI316)isadequateforworkingattemperaturesbetween300and500°C,lowconcentrationsofCl‐,andvaluesofpHbetween2and11.o Titaniumalloys(Ti‐Gr2,Ti‐Gr9,andTi‐Gr12)presenthighresistancetostronglyoxidativeenvironments.Nevertheless,athightemperaturestheir

mechanicalresistanceislow(creeping).Itcouldbeagoodsolutiontouseitascoatingofanothermaterial.o Al‐orSi‐basedceramics,suchasalumina,siliciumcarbide,ornitride,aregoodoptionsforworkingbelowpH=12.AthigherpHvaluesthesematerials

aredissolved.o ThemostpromisingandcommonlyusedsolutionstoobtainhighresistancetocorrosionathightemperaturesareNialloys625andC‐276.o Newalloys,withbetterproperties,arecurrentlybeingdeveloped,buttheyhavenotbeentestedinSCW.Atthemoment,itisacceptedthatthereisnota

uniquematerialabletowithstandallthepossibleconditions.TheSCWOprocessisaveryversatiletechnologyanditsdevelopmentshouldnotbedependentontheavailableconstructionmaterials.

Saltprecipitation:AvoidingsaltprecipitationproblemsinSCWOprocessthesolubilityofinorganicsaltsinwaterdecreasesdrasticallynearthecriticalpointofwater(1–100ppm).ThepluggingofreactorsproducedbythesaltprecipitationisthemainreasonfordelayofthecommercializationoftheSCWOprocessforsomeapplications.Alsosomemodelshavebeendevelopedtocalculatethesolubility’sofinorganicsaltsinhigh‐temperature–high‐pressuresteamofsupercriticalwater.Differentsolutionshavebeenproposedtosolvethepluggingproblem.Asaconclusion,onestudyindicatedthatthebestsolutiontoavoidsaltprecipitationinsidethereactoristoreducethequantityofsaltpresentinthefeed.Thiscanbeachievedusingsolid–fluidseparationdevices.Thesedevicescanbeusedbeforeorafterthereactionstep.

TypesofreactorsfortheSCWOprocess:ThetwomaindisadvantagesposedbytheuseofSCWOarecorrosionandsaltdepositionintheequipment.Toovercomethesetwoproblems,anumberofreactordesignshavebeendeveloped.Thefourmostcommonreactorconceptsareasfollows:o Tubularreactor(becauseofitssimplicity,thetubularreactoristhemostwidelyusedSCWOreactor).

Toavoidsaltdepositionintubularreactors,theyaredesignedwithsmalldiameters,toobtainhighfluidcirculationvelocity.However,evenwhenthisdesignavoidsthedepositionofsolidsalreadypresentinthefeed,precipitatedsaltsformedinsidethereactorhaveatendencytoadherethemselvestoreactorwalls.Thusthisreactorismoreappropriateforfeedswithlowsolidscontent.Whentheorganicmatterconcentrationinthefeedisveryhigh,multi‐injectiontubularreactorsareusedtoavoidhotspotsinthereactor.AschemeofthistypeofreactorisshowninFigure5.Nowadays,tubularreactorsareusedinindustrialapplicationssuchastheAquaCatRandAquaCritoxRprocessesofChematur.Thepluggingproblemissolvedbytheusedoftwoalternatingheatexchangers,sowhenoneofthemisintheoperationsteptheothercanbeinacleaningstep

o Tankreactor,withthereactionzoneintheupperpartandacoolzoneinthelowerpartofthetanktodissolvethesalts.o Transpiringwallreactor,withaninnerporouspipe,whichisrinsedwithwatertopreventsaltdepositsatthewall.Thetranspiringwallreactorpresents

apossiblesolutionforcorrosionandpluggingproblems.Thetranspiringwallreactorpresentsthedisadvantageofthedilutionofthehotreactionproductsbymixingthemwiththetranspiringwater.Thus,thereactoreffluenttemperatureisreduced,makingtheheatrecoverylessefficient.Moreresearchisneededtoimprovematerialsconstructionandtheheatrecoveryofthisreactordesign,andindevelopingotherreactordesignsabletoachievegoodprotectionofthematerialsofthereactor,avoidingcorrosionandsaltdepositionandatthesametimemaximizingtheenergyrecovery.Thesameproblemsaffectotherequipmentasheatexchanges.Somedesignsavoidusingexternalheatexchangesbythemixtureoffeed,oxygen,andfuel.Thisalternativeislessfavorablefortheenergeticbalanceoftheprocess

o Film‐cooledreactorwhichcoolsthewallbycoaxialintroductionoflargeamountsofwater. IndustrialapplicationsoftheSCWO(extract):

InAprilof2001,thefirstSCWOplantforthedestructionofsludgesbeganitsoperationinHarlingen,TX,withaprocessingcapacityof9.8tons/dayofdrysludge.ThisplantisworkingaccordingtotheHydrosolidsProcess,developedbyHydroprocessingLLC.Atthemomenttheplantisinactivebecauseofcorrosionissues.InEurope,ChematurhascommercializeditsSCWOprocessunderthebrandnameAqua‐Critox.Chematurhasalsodevelopedtwoprocesses.o TheAquaReciRprocessisajointdevelopmentofChematurandFeralcoAB.Theprocesscanbeappliedtomunicipalanddrinkingwatersludges.The

AquaCritoxRprocessiscombinedwithrecoveryofcoagulantsand/orphosphorousfromthepure,solidinorganicresidueresultingfromthesupercriticaloxidationstep.

o TheAquaCatRtechnologywasjointlydevelopedbyChematurandJohnsonMattheyfortherecoveryofpreciousmetalsfromspentcatalysts.Inthiswaytransportationofhazardouswastecanbeeliminated.Thefirstcommercial‐sizeunitwasbuiltatJohnsonMatthey’sBrimsdownsite,andstartedupin2004.TheunitisthefirstcommercialunitinEuropebasedonsupercriticalwateroxidation,andthelargestSCWOunitintheworld.

Page 46: ORANGE COUNTY SANITATION DISTRICT BIOSOLIDS MASTER …

Final – May 9, 2017  A‐4  Biosolids Master Plan 

RESEARCH GROUP OR BODY 

SOURCE  PAPER TITLE  MAIN FINDINGS 

Gao,M.etal(2014)

AdvancedMaterialsResearch,v1010‐1012,p693‐698,2014

Parameteroptimizationofmunicipalsludgetreatedbysupercriticalwateroxidationprocess

Lab‐scalebatchtestformunicipalsludge(17.35%TS,55.18%VS)withH2O2todetermineoptimalprocessparametersfortotalnitrogendegradationviaSCWO.

Responsesurfaceanalysismethodologyusedtooptimizetheparameters.Results:

Thereactiontemperature,pressureandresidencetimearethemaininterdependentfactorswiththefollowingorderofsignificance:pressure>reactiontemperature>reactionretentiontime;

Theoptimumreactionconditionsare:reactiontemperatureat539°C,pressureat27MPa,residencetimeof434s,andoxidationcoefficientof2.16,undertheseconditions=>totalnitrogendestructionefficiencycanreach74.12%.

Gloyna,E.F.,Li,L.(1995)

EnvironmentalProgress,v14,n3,p182‐192,Aug1995

Supercriticalwateroxidationresearchanddevelopmentupdate

DuringtheearlySCWOresearchanddevelopment(R&D)period(early1980s),ithasbeendemonstratedthatSCWOcanbeaneffectivealternativetothedestructionofhazardousorganicwastewatersandsludges.ThefirstSCWOcommercialfacility(1100Liter/hour)developedbyEcoWasteTechnologieswascommissionedinAugust1994.AnumberofSCWOdemonstrationfacilitiesexistinvariouscompanies,nationallaboratories,andfederalagencies.

TheSCWOprocessishighlyadaptableanddesignrequirementscanbeadjustedtoaccommodateparametervariations.OperationalrequirementsandrelativecostsofspecificSCWOfacilitiesmaybeenhancedbyconductingtreatabilitystudies.

Threespecificdesignconsiderationsareprovided:

ThepresenceofinorganicsubstancesinfluencesSCWOdesigns.Forexample,materialsofconstructionandsolidshandlingmustbeaddressed.Withappropriatewastecharacterizationandtreatabilitydataproblemslikecorrosion,erosion,encrustation,andpluggingcanbeminimized.Newdataonsolubilityandsolidsseparationhaveevolved.Additionaldataonthefateofheavymetalshasbeenmadeavailable.

SeveralunitsofoperationforaSCWOsystemarerequired.Sincemostwastescontainmultiplecomponentsthereactordesignistobebasedondetailedkineticstudies.Kineticlumpingcanbeusedtoevaluatemulticomponentmixtures.

TheSCWOprocesscanproduceamultitudeofintermediatesandpotentialby‐products.Experimentshaveshownthatthedegradationorformationofthesecompoundscanbeenhancedbyacatalyst.E.g.transitionmetaloxideshaveshowndesirablecatalyticeffects.

Goto,M.etal(1997)

JournalofChemicalEngineeringofJapan,v30,n5,p813‐818,Oct1997

Decompositionofmunicipalsludgebysupercriticalwateroxidation

BatchSCWOtestonmunicipalexcesssludge(3.49%TS)withhydrogenperoxideasanoxidantinthetemperaturerangeof473K–873K(200– 600°C).Thereactionproductswereanalyzedintermsoftotalorganiccarbon(TOC),organicacidsandammoniumion.

Results:

Colorofresidualsolidphaseisdependentontemperatureandconcentrationofoxidant:palebrownatsupercriticaltemperatureand>100%stoichiometricoxidantdemand.

Colorofresidualliquidphaseatsupercriticaltemperaturewastransparentandcolorlesswith40%ofstoichiometricoxidantdemand. Acompleteodorlessproductwasobtainedat>100%stoichiometricoxidantdemand.Theproductcouldnotbedeodorizedbelowsupercriticaltemperature

evenatsufficientoxidantlevels. TOCdecreaseswithtemperatureandoxidantamount. Aceticacidandammoniaaredetectedasmajorrefractoryintermediatesintheproduct. Whenmorethanthestoichiometricdemandofoxidantisused,organiccarboninliquidphaseisalmostcompletelydestroyed. Completedestructionofammoniaproducedduringthereactionrequireshighertemperaturesthanthatofaceticacid.

Goto,M.etal(1998)

JournalofSupercriticalFluids,v13,n1‐3,p277‐282,June15,1998

Supercriticalwateroxidationforthedestructionofmunicipalexcesssludgeandalcoholdistillerywastewaterofmolasses

Batchandflow‐throughstainlesssteeltubeSCWOtestswithhydrogenperoxideasanoxidantonmunicipalexcesssludgeandalcoholdistillerywastewaterofmolasses.

Batchtestresultsonexcesssludge:o TOCdestructionfasterathighertemperatures.o TOCintheliquidphaseproductdramaticallydecreasedwithincreasingamountofoxidant.o Atsub‐stoichiometricoxidantlevelsorganicacidswerefoundintheliquidproduct;Organicacidscouldnotbedetectedwhentheamountofhydrogen

peroxidewasmorethan100%.

Page 47: ORANGE COUNTY SANITATION DISTRICT BIOSOLIDS MASTER …

TM‐9: Aqua Critox Review | Orange County Sanitation District 

Final – May 9, 2017  A‐5  Master Plan Biosolids  

RESEARCH GROUP OR BODY 

SOURCE  PAPER TITLE  MAIN FINDINGS 

o Atthehighesttemperature(873K=600°C),theammoniumionconcentrationintheliquidphasedramaticallydecreasedastheamountofoxidantincreased.Completedestructionwasobservedat150%ofstoichiometricoxidantamount.Atatemperatureof773K(=500°C)ammoniaioncouldnotbedestroyed.

o Atlowertemperaturesammoniumionintheliquidphasedidnotdecreasemonotonouslywithanincreasingamountofoxidant.Providedexplanation:ammoniumionisanintermediateproductintheoxidationofnitrogenproductstonitrogen;reactionfromammoniumiontonitrogenisarate‐controllingstep.

o Completedestructionofammoniaproducedinthereactionrequiredhighertemperaturesthanforaceticacid. Batchtestresultsonalcoholdistillerywastewaterofmolasses:

o SimilarobservationforTOCandorganicaciddestruction.o Theeffectofoxidantamountonresidualammoniumionwasdifferentfromthatforsludge.Evenatlowertemperature(673K=400°C),ammoniumion

wasalmostcompletelydestroyedwithoxidantamountof150%. Flow‐throughreactorresultsonmunicipalexcesssludge:

o Sludgewassufficientlydestroyed;analysisonproductsstillunderinvestigation.Goto,M.etal(1999)

IndustrialandEngineeringChemistryResearch,v38,n11,p4500‐4503,Nov1999

Kineticanalysisforammoniadecompositioninsupercriticalwateroxidationofsewagesludge

SCWOexperimentsonmunicipalsludgeinbatchstainlesssteelreactorusinghydrogenperoxideasanoxidant(200%ofstoichiometricdemand)atatemperaturerangeof723to823K(450–550°C)todetermineammonia(asammonium)destructionrate.

AmmoniaandaceticacidarefoundtoberefractoryintermediatesinSCWOoforganicwastesandarereaction(=destruction)ratecontrolling.Ammoniadestructionwasfoundtobeslowerthanforaceticacid.

PreviousworkreportedcatalyticoxidationofammoniathroughInconel635reactorwallmaterial. ThedecompositionofN‐componentsinthesludgetoammoniawasfoundtobemuchfasterthanthecompletedecompositionofammoniatomolecular

nitrogen,carbondioxideandwater. Ammoniaconcentrationproducedduringthereactionwasmeasuredasafunctionofreactiontime.Datawereanalyzedbyafirst‐orderkinetics.Thereaction

rateconstantforammoniadestructioncoincideswiththosereportedintheliterature(evaluatedactivationenergywas139kJ/molvs.157kJ/molreportedatinliteratureforaflowreactorandathighertemperatures[803to973K]).

Goto,M.etal(1999)

IndustrialandEngineeringChemistryResearch,v38,n5,p1863‐1865,1999

Kineticanalysisfordestructionofmunicipalsewagesludgeandalcoholdistillerywastewaterbysupercriticalwateroxidation

BatchSCWOtestswithhydrogenperoxideasanoxidantonmunicipalexcesssludgeandalcoholdistillerywastewaterofmolasses atatemperaturerangeof673to773K(400–500°C).Totalorganiccarbonwasmeasuredasafunctionofreactiontime.Thedynamicdatawereanalyzedbyafirst‐orderreactionmodel.

DecompositionofMunicipalExcessSewageSludge:o Thedestructionrateisfasteratahighertemperature,andtheTOCreducedtoalmostzeroin60sat773K(=500°C).

DecompositionoftheDistilleryWastewaterofMolasses:o TheTOCdecompositionbehaviorissimilartothesewagesludge.o Theinitialconcentrationofdistillerywastewaterwasmuchlargerthansewagesludge,andthetimerequiredtocompletedecompositionwasabouttwice

thatofsewagesludge. Thereactionrateconstantsdeterminedforbothtestscoincidewiththosereportedintheliterature.Theactivationenergieswere76.3and64.7kJ/molfor

sewagesludgeanddistillerywastewater,respectively.Griffith,J.W.,Raymond,D.H.(2002)

WasteManagement22(2002)453–459;Elsevier.

Thefirstcommercialsupercriticalwateroxidationsludgeprocessingplant

Ahydrothermaloxidationsystem(HTO)usingHydroProcessing,L.L.C.’sHydroSolidsprocesshasbeeninstalledatHarlingen,Texastoprocessupto9.8drytonsperdayofsludge(WAS).Basedonaliteraturereview,thissystemisthelargesthydrothermaloxidationsystemintheworld,andtheonlyonebuiltspecificallytoprocesssludge.Start‐upofUnit1oftwounitsoftheHTOsystembeganinApril2001.

HTOunitintegrationintheWaterworkstreatmentprocess

HarlingenWaterworksdevelopedaconstructionpackagethatincludedthefollowingcomponents:

Modificationstoexistinganaerobicdigesters. ConstructionofasolidshandlingbuildingtohousebothagravitybeltthickenerandtheHydroSolidsunits. Installationofagravitybeltthickenerandappurtenances. InstallationoftwoHydroSolidstrains,eachcapableofprocessing12.5gpmofsludgefeed. Ancillaryequipmentincludingoxygentankanddeliverysystem,greasetrapwastetank,andelectricalandcontrolsystems.

Page 48: ORANGE COUNTY SANITATION DISTRICT BIOSOLIDS MASTER …

Final – May 9, 2017  A‐6  Biosolids Master Plan 

RESEARCH GROUP OR BODY 

SOURCE  PAPER TITLE  MAIN FINDINGS 

ExistingsludgedigestertankshavebeenconvertedtoprovideforsludgemixingandstoragetoreceivethesludgefromWastewaterPlant1andSectionsAandBofWastewaterPlantNo.2,aswellasseptagefromthecommunityandsludgefromotherentities’wastewaterplants.A3.3mgravitybeltthickenerreceivessludgedecantedinthesecondoftwostoragetanks,andthickensitto6–9wt%solids.ThethickenedsludgeistransferredtoasludgedayholdingtankandisfedfromthereintotheHydroSolidsunit.

ThefollowingresultsfromearlyoperationswithUnit1(runswithsludgewithruntimesrangingfrom4to10h)andconclusionswereachievedfromthisproject:

TheHydroSolidssystemwassuccessfullyscaledupfroma0.4gpmpilotplanttotwo12.5gpmcommercialunits. MostofthefindingsbasedonearlydevelopmentofthesystemusingsludgefromanotherwastewaterfacilityappearedtobeapplicabletoHarlingen’ssludge. RepresentativesamplesfromHarlingenincludingsludgeafterdecantfromthedigestersandalsosludgedewateredonthebeltfilterpressdidprovideafeed

forrunsthatprovidedanabilitytoreasonablyprojectresultsonafull‐scalesystem. Duringoperations,thenitrogenisquicklyhydrolyzedtoammonia,andsubsequentlymostoftheammoniaisconvertedtomolecularnitrogen.Thefeed

ammoniavaluesareestimatedbasedonatypicalmolecularformulaforsludge.Thedestructionefficiency(DE)forCODinthesludgerangedfrom99.93to99.96%whilethatforammoniawasfrom49.6to84.1%intheoverflow.TheDEvalueswere99.92–99.93%and46.0–86.4%,respectively,fortheCODandammoniaintheunderflow.Approximately75.4%ofthesolidsinthefeedwerevolatile.

Presentlythegravitybeltfilterthickeningsystemisonlyabletoprovideabout4.5wt%solids.ThustheTSandCODofthefeedintheearlyrunshasbeenlowerthandesired.Ideally,thefeedwillbe6–9wt%inTSandwillhaveaCODof100,000to125,000mg/l.

HarlingenWaterworksSystemestimatesthattheHydroSolidssystemwillcostlessthanotheralternativessuchasauto‐thermalthermophilicaerobicdigestionandmoretraditionalformsofdigestionthatstillrequiredewateringandfinaldisposal.o Thenetoperationandmaintenancecostwillbeabout$100/dryton.Thecapitalcomponentofthecompletesolidstreatmentsystemrepresentsacostof

about$80/drytontreated.Thetotalcostforsolidsprocessingforthesystemisexpectedtobeabout$180/drytonofsolidsprocessed. TheWaterworksintendstogenerateincomefromthesaleofenergyintheformofhotwaterandtheuseofcarbondioxidefromtheHydro‐Solidsprocessfor

neutralizationofhighpHindustrialeffluent.o Excellentenergymanagementprovidesforrecoveryofaportionoftheexcessheatthatisusedtoproducehotwaterforanadjacentindustry.

Page 49: ORANGE COUNTY SANITATION DISTRICT BIOSOLIDS MASTER …

TM‐9: Aqua Critox Review | Orange County Sanitation District 

Final – May 9, 2017  A‐7  Master Plan Biosolids  

RESEARCH GROUP OR BODY 

SOURCE  PAPER TITLE  MAIN FINDINGS 

o Carbondioxide,anotherbyproduct,isusedforneutralizationoftheindustrialplant’swastewaterdischarge. TheWaterworksalsoexpectstogenerateincomefromthetreatmentofseptageandgreasetrapwastes. Hydrothermaloxidationprovidesastableoperatingsystemcapableofprovidingcompleteconversionoforganicmatterandmeetingallpathogenandvector

requirementsof40CFR503regulations. Regulatoryagencieswereinitiallyuncertainoftheapplicableregulationsforthisprocessbecausetheprocessdoesnotclearlyfitinacategory.Theprocess

goesfarbeyondthetreatmentpossiblebiologically,anditisnotincineration.TheHarlingenplantwillprovidetheopportunityforregulatorstoviewafull‐scaleoperatingunitprocessingsludge.

HydroProcessing,L.L.C.believesthatboththefederalandvariousstateregulationsmayneedtoberewrittentospecificallyrecognizethedisposalofresidualsolidsfromahydrothermaloxidationprocess.

BasedontheabilityoftheHydroSolidsunittoprocessthesludgeatHarlingen,itappearsthatthisprocesscantreatmosttypesoforganicwastestreamsincludingthosewithlargeconcentrationsofsolids.

Hodesa,M.etal(2004)

TheJournalofSupercriticalFluids;Volume29,Issue3,May2004,Pages265–288

Saltprecipitationandscalecontrolinsupercriticalwateroxidation—PartA:fundamentalsandresearch

CommercializationofSCWOprocesseshasbeenhinderedbyconcernsaboutcorrosionandscalebuildup/foulingwhich,whenpresent,mustbeaccommodatedbysystemdesignand/oroperationalprocedures.SaltsareformedduringSCWOwhenacidicsolutionsareneutralizedtoreducecorrosionandmayalsobepresentinthewastestreamitself.BecausesaltshavelowsolubilityinSCW,theyprecipitate.Precipitatedsaltsoftenformagglomeratesandcoatinternalsurfaces,therebyinhibitingheattransferfrom/toexteriorsurfaces.Whenscalebuild‐upisleftuncontrolled,pluggingoftransportlinesand/orthereactorcanoccur.TherequiredcleaningcanresultinsubstantialandcostlydowntimeintheSCWOprocess.

Subjectsdiscussed:

ReviewoffundamentalprinciplesandresearchpertinenttotheprecipitationofsaltsandscalecontrolattheelevatedtemperaturesandpressuresfoundinanSCWOreactor.

SCWOisintroducedandthephysicsleadingtoscalebuildupduringSCWOisdiscussed. Thephasediagramsofmodelsalt–watersystemsatrelevantconditionsarepresented.Phasebehavior,heattransferandmasstransferprinciples,and

researchrelevanttosalt–H2OsystemsattemperaturesandpressuresfoundinSCWOreactorsarediscussed. ThemanyphenomenawhichcomplicatemodelingofheattransferinSCW(buoyancy,rapidlyvaryingthermophysicalproperties,etc.)arereviewedandaset

ofcorrelationstocalculateheattransfercoefficientsisprovided. AlimitednumberofcontrolledexperimentalstudiesonscalebuildupduringSCWOarereviewed.

Findings:

ModelingofsaltdepositionkineticsinaSCWOreactorispossibleforverysimplefeeds[discussedinSection4].However,foranarbitraryfeedandtypeofreactor,itisextremelydifficultbecausefluidmechanics,heattransfer,masstransfer,kinetics,andphasebehaviorarestronglycoupledandbecauseofthemanyothercomplicatingeffects.Moreover,manyofthethermophysicalpropertiesandphaseboundariesneededformodelingarepresentlyunavailable.

StrategiestocontrolscalebuildupduringSCWOwillcontinuetorelyheavilyonexperiments.However,thepresentcompilationofavailablephasebehavior,heattransfer,andmasstransferresearchattemperaturesandpressurestypicalofSCWOreactorsmayserveasafoundationforfuturework.

Researchonphasebehavior,heattransfer,andmasstransferwillcontinuetobeinvaluablefordevelopingmethodstocontroloreliminatescalebuildupduringSCWO.Forexample,knowledgeofsalt–waterphasebehaviorisbeingexploitedtocontrolscaleduringSCWObyintentionallyaddingsaltstoincreasethetemperatureatwhichprecipitationoccursand/ortocausetheprecipitatetobeaflowablemoltensaltmixtureasdiscussedinthecompanionpaperbyMarroneetal.[paperno.24;PartB].

Imteaz,M.A;Shanableh,A.(2004)

DevelopmentsinChemicalEngineeringandMineralProcessing,v12,n5‐6,p515‐530,2004

KineticmodelforthewateroxidationmethodfortreatingWastewatersludges

Developmentofafirst‐orderkineticmodelbasedon48experimentalresultswithatubularreactorforthehydrothermaloxidationofwastewatersludge:

ModelbasedonoxidationmechanismofsludgewithCODrepresentingtheorganiccomponentofsludge. Experimentsconductedbelowandabovesupercriticalconditions(<and>374°C). AtT>263°Cactivationenergywas:

o independentoftemperature;ando dominatedbyaceticacidwhichismostresistanttohydrothermaloxidationandretardsthereactiontime.

AgreementbetweenactualandpredictedeffluentCODnotverygoodbutacceptable.

Page 50: ORANGE COUNTY SANITATION DISTRICT BIOSOLIDS MASTER …

Final – May 9, 2017  A‐8  Biosolids Master Plan 

RESEARCH GROUP OR BODY 

SOURCE  PAPER TITLE  MAIN FINDINGS 

Li,D.etal(2013) AdvancedMaterialsResearch,v726‐731,p1732‐1738,2013

Removalefficiencyoforganicsubstanceinmunicipalsludgebysupercriticalwateroxidation

BatchSCWOtestin303SSreactorwithmunicipalwastewatersludgetostudydestructionrateoforganicmatter(asCODcr)dependingonmainreactionparameters:temperature(380~500°C),pressure(23‐30MPa),residencetime(1‐10min),andoxidant(hydrogenperoxide)dose(100%‐200%).

EffectoftemperatureontheeliminationofCODcr:o CODcrremovalrateincreaseswiththeincreaseoftemperature.After3minutes’reactioninsupercriticalwater,percentagesofCODcrremovalateach

levelallreach80%.Whenthereactiontemperatureishigherandthereactiontimegoeslonger,thepercentageofCODcreliminationishigher.CODcrremovalrateattainsto96.43%whenthereactiontemperaturereached500°C.Thepercentagedidnottotalto100%becausesomeoftheorganiccompoundsformedmayhavepresentedinliquidproducts(suchasaceticacid).

EffectofpressureontheeliminationofCODcr(at440°C):o Whenthereactiontimeandtemperatureremainconstant,CODcrremovalrateincreaseswithincreaseofpressure.E.g.att=3minandT=440°Cremoval

efficiencyincreasedfrom86%at23MPato94%at30MPa. EffectofreactiontimeontheeliminationofCODcr(at440°C):

o CODcrremovalrateincreasedrapidlyduringthefirst3minofreactionandsloweddownafterwards.after1min’sreaction,CODcrremovalraterisesto80%inapressureconditionof23MPa.Whenthepressuregoesupto30Mpa,removalrateisabout97.89%after10minreactiontime,whichisalmostahighestconversionrate.

EffectofH2O2excessontheeliminationofCODcr(t=1min,T=440°C,p=25MPa):o CODcrremovalrateis86.79%astheH2O2excessis200%,whileCODcrremovalrateis81.22%astheH2O2excessis100%.Resultindicatesthatthere

isonly7%moreCODcrconversionrateariseastheamountofoxidantdoubled.Thisimpliesthattheglobalreactionorderforoxidantissmall. Temperature,pressure,andresidenttimearemainfactorstoaffectthereaction.TheCODcrremovalefficiencyofmunicipalwastewatersludgeishigherwhen

thetemperatureandpressureishigher,theresidenttimeislongerandtheoxidantdoseincreases. TheoxidantdosehasasmalleffectonremovalofCODcrinmunicipalwastewatersludge,forremovalefficiencyisnotasremarkableastemperature,pressure

andreactiontimeinthetreatmentofsludgesamplebySCWO.Loppinet‐Serani,A.etal(2010)

JOURNALOFCHEMICALTECHNOLOGYANDBIOTECHNOLOGYVolume85,Issue5May2010Pages583–589

Supercriticalwaterforenvironmentaltechnologies

Threemainapplicationsforsupercriticalwatertechnologyareunderdevelopment:(i)supercriticalwateroxidation(SCWO);(ii)supercriticalwaterbiomassgasification(SCBG);and(iii)hydrolysisofpolymersinsupercriticalwater(HPSCW)forcomposites/plasticsrecycling.Inthispapersomefundamentalsofsupercriticalwaterarefirstpresentedtointroducetheabovethreemajordevelopments.Thenthesetechnologiesarereviewedintermsoftheirpresentandfutureindustrialdevelopmentandtheirimpactontheenvironmentandonenergyproduction.

SCW–specificpropertiesandchemicalreactivity:

Atthecriticalpoint,thetwodensities–waterandgas‐areequalandthemediumbecomeshomogeneous.AfterthispointthedensityofSCWcanbechangedcontinuouslyfromhigh(liquid‐like)tolow(gas‐like)valueswithoutaphasetransitionbyvaryingpressureandtemperature.

Pressureand/oratemperaturechangecanleadtotheadjustmentofdensity.Thefluiddensitycanbetunedbyoneorderofmagnitudeforapressurevariationof20MPa,andbecomesfourtimesasweakforanincreaseintemperatureof200◦C.Thereforethechemistryinhotcompressedwatercanbenefitionicorfreeradicalreactionmechanismsbyadjustingpressureandtemperature.

InsummarythereasonsforusingSCWforenvironmentaltechnologiesare:o Tunablepropertiesbetweenliquidandgas.o Homogeneousmediumwithorganicsandgases.o Fastkinetics.o Sustainablereactionmedium.o Hydrolysisreactionsoforganiccompounds.o Precipitationofinorganiccompounds.

SCWO:

Ittypicallyimpliespressuresandtemperaturesvaryingbetween22.1and35MPa,and400and650◦C,respectively. Organicsareoxidizedtolowermolecularweightcompounds,and,ultimately,tocarbondioxideandwater. Heteroatoms,suchaschlorine,sulfur,andphosphorous,areconvertedintotheircorrespondingacids(e.g.HCl,H2SO4,etc.). Thepresenceofcationsinthewastestreamresultsintheformationofinorganiccompounds(e.g.salts,oxides,etc.).

Page 51: ORANGE COUNTY SANITATION DISTRICT BIOSOLIDS MASTER …

TM‐9: Aqua Critox Review | Orange County Sanitation District 

Final – May 9, 2017  A‐9  Master Plan Biosolids  

RESEARCH GROUP OR BODY 

SOURCE  PAPER TITLE  MAIN FINDINGS 

Essentiallyfourreactorconceptshavebeendevelopedandstudiedtosolvecorrosionandsaltdeposition/accumulationproblems:o (i)abasictubularreactorwithspecifichydrodynamicsandconstructionmaterial;o (ii)atankreactorwiththereactionzoneintheupperpartandacoolzoneinthelowerparttodissolvethesalts;o (iii)a‘transpiringwall’reactorwithaninnerporouspipe,whichisrinsedwithwatertopreventsaltdepositsandcorrosiononthewall;ando (iv)a‘film‐cooled’reactorwithcoolingofthewallbycoaxialintroductionoflargeamountsofwater

ThefirstcommercialSCWOplantforsludgeprocessingisrepresentativeoftechnicaltroublesthatcanbemet.Hydroprocessing’sHydroSolidsprocesshasbeeninstalledatHarlingeninUSA(Texas)toprocessupto9.8drytonsperdayofsludge.ThesystembeganoperationinApril2001.Theplanthasbeenshutdownbecauseofpumpingproblemsduetogritandtrashinthesludge.

SCBGandHPSCWnotsummarizedhereaslessrelevantforSCWOreview. SCWOisthemostmatureofthethreemaintechnologies.

Marrone,P.A.(2013)

JournalofSupercriticalFluids,v79,p283‐288,2013

Supercriticalwateroxidation‐Currentstatusoffull‐scalecommercialactivityforwastedestruction

CommercializationofSCWOtechnologyhasbeeninprogressforoverthreedecadessinceitspotentialfordestructionofaqueousorganicwasteswasfirstrealized.ThefirstcommercialSCWOcompany,MODAR,wasestablishedin1980(boughtbyGeneralAtomicsin1996).

AsofJanuary2012,therearesixcompaniesthatarestillactiveincommercializingSCWOtechnology:GeneralAtomics(theoldestamongactivecompanies),SRIInternational,HanwhaChemical,SuperWaterSolutions,SuperCriticalFluidsInternational(SCFI),andInnoveox.(Byactive,itismeantthatacompanyiscurrentlymarketingSCWOtechnologyandhasatleastonefull‐scaleSCWOfacilityinoperation,inconstruction,orindesign.)

Threeofthesixcompaniesthatarestillactivetoday(Super‐WaterSolutions,SCFI,andInnoveox)wereestablishedwithinthepastfiveyears.Thus,whilenoneoftheinitialcompaniesstartedinthe1980sarestillinbusinessandmanysubsequentcompanieshavecomeandgone,newSCWOcompaniesarestillbeingestablishedeventoday.

TherearenineSCWOplantscurrentlyintheplanningstageswithsevenoftheseslatedtostartoperationwithinthenext1–2years. EachSCWOcompanyhasoneormoreuniquefeaturestotheirsystemdesign(foroperationandcontrolofcorrosionandsaltbuildup)and/orbusinessplan,

andeachonehastargetedaspecificfeedniche.Whilenotwithoutitschallenges,SCWOtechnologycommercializationremainsanareaofgreatinterestandactivity.

ThetargetednicheformostcommercialSCWOapplicationsareaqueousorganicwastesintherangeof1–20wt%organics.Heteroatom‐containingwastesaremoredifficulttoprocess,sincetheassociatedacidsand/orsaltsthatformleadtothetwobiggestchallengesforSCWOprocesses:corrosionandsaltprecipitation/accumulation.

CorrosioninSCWOsystemsismostsevereinthehot,subcriticalregionsbefore(preheater)andafterthereactor(cooldownheatexchanger),butcanalsooccurinthemicroenvironmentformedundersaltlayersinthereactor.Dependingontheparticularfeedcompositionandmaterialsofconstructioninvolved,corrosionratesinSCWOcanbeashighasseveralmils/hr(tensofmicrometer/hr).Ifnotcontrolled,corrosionandsaltprecipitationcanleadtorapidshutdownand/orfailureofexpensiveprocessequipment.Thephilosophybehindthesemethodsforcorrosionandsaltprecipitationcontrolrangefromactivelypreventingtheiroccurrence,tomanagingtheiroccurrence,tolimitingoperationtofeedswherethesephenomenacannotoccur.

Ingeneral,theparticularmethodorcombinationofmethodsutilizedbyacommercialSCWOcompanyisoftenwhatdistinguishesonecompany’sSCWOprocessdesignandoperationfromanother’s.

Page 52: ORANGE COUNTY SANITATION DISTRICT BIOSOLIDS MASTER …

Final – May 9, 2017  A‐10  Biosolids Master Plan 

RESEARCH GROUP OR BODY 

SOURCE  PAPER TITLE  MAIN FINDINGS 

Activefull‐scaleplants:o SRI/MitsubishiinTokyo,Japan:oldestplant,inoperationsince2005:Theplanthasacapacityof2000kg/dayofPCBsand100,000kg/dayofwater.o Innoveox,Arthez‐de‐Béarn,France:inoperationsince2011;processeshazardousindustrialwasteatarelativelylowcapacityof100kg/hr.Feed

compositionislimitedto<1g/Lchlorideand<10g/Lsalt.o HanwhaChemicalCorp.forKorea,inoperationsince2008:Near‐CriticalHydrolysis(NCH)facilityfortreatingtoluenediisocyanate(TDI)residueto

producetoluenediamineintermediateforrecyclingbackintotheTDImanufactureprocess.Theplanthasacapacityof20,000kg/day. Inactivefull‐scaleSCWOplantsdesignedtotreatwastewatersludge:

o HydroProcessing,Harlingen,TX,2001–2002;heatexchangercorrosiono ShinkoPantec(EcoWaste);Japan;2000–2004;lackofequipmentmaterialdurability.

Asbestascanbedetermined,alloftheplantsthatshutdownduetoequipmentcorrosiondidnothaveamechanismforhandlingcorrosionotherthanlimitingoperationtonon‐corrosivefeedssuchashydrocarbonsandsewagesludge.Whilethisisavalidandcostreducingwaytooperate,itrequiresanaccurateknowledgeoffeedcompositionandcontinuousmonitoringofthefeedtodetectanysuddenvariationsincorrosiveorsalt‐formingspecies.Theresultofnotunderstandingfeedcompositionanditsvariationsornotincorporatingcorrosionandsaltcontrolmethodsinthedesigncanleadtoplantshutdownand/orextensivelitigation,ashasunfortunatelyoccurredonmorethanoneoccasion.

HistoryandcurrentdevelopmentoftwoSCWOfirmsforwastewatersludgetreatment.o SCFI:BasedinCork,Ireland,SCFIisarelativelynewcompanywithalonghistory.TheirSCWOtechnologybeganwithEcoWasteTechnologies(EWT)of

Austin,TX,oneoftheoriginalSCWOcommercialcompanies.TheSwedishfirmChematurABfirstboughtalicensefortheEWTSCWOprocessinEuropein1995andthenboughttheworldwiderightstoEWTSCWOin1999.Withfurtherdevelopmentwork,ChematurmarketedtheirversionofSCWOunderthenameAquacritox®.TheyalsodevelopedandnameddifferentcustomizedversionsoftheAquacritox®processincollaborationwithvariousclients.In2007,ChematursoldtheirsupercriticalfluidsdivisionandequipmenttoSCFI.SCFIhascontinuedtoimproveontheChematurSCWOdesign,thoughtheyhaveconsolidatedChematur’smanyversionsofSCWOunderthesingleAquacritox®brandnameforeaseofmarketing.SCFIutilizesatubularreactordesignandhaschosentofocusprimarilyonsewagesludgeanddigestatefeedapplications.Whiletheyhaveasacrificialmixingpipeconfigurationthatcanbeusedattheentranceandexittothereactorfordealingwithcorrosivefeeds,SCFIpreferstolimitapplicationstofeedsthatarerelativelylowincorrosionandsaltformationpotential.Assuch,theytypicallyrestrictsaltlevelsinthefeedtoafewpercentanddonotprocessfeedswithchlorinatedmaterials.SCFIhaspartneredwithParsonstoprovideinternalengineeringsupportandmarketinginNorthAmerica,andwithRockwellAutomationtoprovidecontrolsystemsandconstructionsupport.SCFIhasdesignedfourdifferentmodelsoftheAquacritox®processbasedonnominalfeedrate:600,2500,10,000,and20,000kg/hr.Theyarecurrentlybuildingtheirfirstcommercialsystem(2500kg/hr)forthewastetreatmentandrecyclingfirmErasEcoinYoughal,Ireland.Thissystemwillincludetheoptionofpowergenerationfromtheprocesseffluentheatviaawasteheatboilerandturbine.

o SuperWaterSolutionsLLC:Thisisthelatestcompanythatwasco‐foundedbyDr.MichaelModell,whoseexperimentsatMITinthe1970sformedthebasisofSCWOtechnologyandwhosubsequentlyfoundedMODAR.Super‐WaterSolutionswasstartedin2006andisbasedinWellington,FL.Itsmainfocushasbeenonprocessingnon‐corrosivewastewatersludge.TheSuperWaterSolutionsSCWOdesignissimilartothatofModell’spreviouscompany,MODEC.Itfeaturesatubularreactorsystem,andutilizesahighvelocityflowandmechanicalbrushesforcontrol/removalofsalts/solidsaccumulation.Since2007,SuperWaterSolutionshasworkedcloselywiththecityofOrlando,FL,withthecityfundingdevelopmentoftheirsystem.Inreturnforthisinvestment,Orlandohasauniquedealinwhichitwillreceivearoyaltyof$2.50foreverytonofsludgetreatedatanyfutureSCWOfacilitybuiltbySuperWaterSolutionsforothercustomers.From2009to2011,theyinstalledandsuccessfullytesteda4536kg/day(5tons/day)SCWOsystematoneofthecity’swastewatertreatmentfacilities.Sincethattime,thecityhascontinuedtoleasespacetoSuperWaterSolutionsforfurtherdevelopmentworkoftheirsystemdesign.Afull‐scale9072kg/day(10tons/day)SCWOsystemwasplannedtobebuiltforthecityin2013.

Pilotplants:SCWOresearchsystemsof20kg/hrcapacityorhigherarecurrentlyinoperationattheUniversityofValladolidandUniversityofCádizinSpain,theUniversityofBritishColumbiainCanada(usedprimarilyforheattransferandfoulingresearch),andtheBoreskovInstituteofCatalysisinRussia.

Marroneaetal(2009)

TheJournalofSupercriticalFluids

Volume51,Issue2,December2009,Pages83–103

Corrosioncontrolmethodsinsupercriticalwateroxidationandgasificationprocesses

TheSCWprocessforagivenapplicationmaybeoxidizing,reducing,acidic,basic,nonionic,orhighlyionic.Itisdifficulttofindanyonematerialordesignthatcanwithstandtheeffectsofallfeedtypesunderallconditions.Nevertheless,severalapproacheshavebeendevelopedtoallowsuccessfulcontinuousprocessingwithsufficientcorrosionresistanceforanacceptableperiodoftime.ThepresentpaperreviewstheexperiencetodateformethodsofcorrosioncontrolinthetwomostprevalentSCWprocessingapplications:supercriticalwateroxidation(SCWO)andsupercriticalwatergasification(SCWG).[Note:nosummaryisprovidedforSCWGhere].

Page 53: ORANGE COUNTY SANITATION DISTRICT BIOSOLIDS MASTER …

TM‐9: Aqua Critox Review | Orange County Sanitation District 

Final – May 9, 2017  A‐11  Master Plan Biosolids  

RESEARCH GROUP OR BODY 

SOURCE  PAPER TITLE  MAIN FINDINGS 

Dependingontheparticularfeedsandmaterials ofconstructioninvolved,corrosionratesinSCWprocessessuchasSCWOcanbeashighasseveralmils/h(tensofµm/h).Thereisoftenamaximumpointofcorrosionexhibitedintheregionjustbelowthecriticalpoint—wheretemperatureishighenoughtopromotefastkineticsandconcentrationsofcorrosion‐causingspecies.Fromapracticalperspective,thismeansthatcomponentsand/orpipingusedtopreheatorcooldownfluidsinaSCWsystemaremoresusceptibletocorrosionthanthereactor.Itisimportanttonotethatwhilepotentialforcorrosionisgreatlyreducedundersupercriticalconditions,therecanstillbesignificantcorrosionthatoccursinSCWdependingontheparticularchemicalenvironment.Regardlessofthespecifictemperatureandpressure,densityvaluesthatareclosertothatofliquidwater(i.e.>0.2g/ml)aremorelikelytopromoteanenvironmentwherechargedspeciescanexistandthuscorrosioncanoccur.Conversely,densityvaluesthatarelowandclosertothatofsteam(i.e.,<0.2g/ml)aremuchlessconducivetocorrosion.

Insummary,whiletherearealwaysexceptions,theworstcorrosioninaSCWsystemcanbeexpectedtooccurinhighdensity,hightemperature,andhighaggressiveionconcentration(e.g.,acidic)environments.Althoughtherehasbeenmuchresearchovertheyearsinsearchofamaterialthatcanwithstandallthreeconditions,thecollectiveresultsindicatethatsuchamaterialisnotlikelytobefound.Itisthereforenecessaryforonetounderstandthephysicaloperatingconditionsandchemicalenvironment(includingfeedstreamcomposition)towhichmaterialswillbeexposedinanapplicationinordertochoosethemostappropriatematerialforeachsetofconditions.Thisoftenmeansusingdifferentmaterialsindifferentsectionsofthesystem(e.g.,preheatingsection,reactor,andheatexchanger)dependingonthespecificcombinationofconditionsandcompositioninanyonezone.

Acompletecorrosioncontrolstrategymayneedtoincludechoosingagoodmaterialofconstruction,activecontroloradjustmentofoperatingconditionstofavorlowcorrosion,minimizationofexposurethroughinnovativeengineeringdesign,periodiccomponentreplacement,orcombinationsofsomeorallofthese.ThemostvulnerablesectionsoftheSCWOsystemarethehotbutsubcriticalregions,suchasfoundintheheat‐upandcool‐downsections.ManySCWOdesignsavoidpreheatingofthefeedinfavorofcoldfeedtoeliminatethisconcern.Typicallycorrosionwouldthenoccurneartheendofafeednozzleorfeedentranceportstothetopofthereactor,dependingonthespecificdesign.Crevicesorrestrictedspacesformedfromoverlapofcomponentsnearthetoporbottomofthereactorcanalsobesubjecttoexcessivecorrosionheatexchangerisanothercomponent(andunlikethepreheater,unavoidable)highlysusceptibletocorrosionasthehoteffluentisbroughtdowntoambienttemperature.Severecorrosioncanoftenoccurwithinthefirstfewfeetofheatexchangertubing,althoughtherealcorrelatingfactoriswherevertheeffluenttemperatureismostoftenwithinthe150–350°Crange.Componentsthattypicallyarekeptatambienttemperatureandpressurearenotusuallyofconcernwithrespecttocorrosionandnospecialmaterialsofconstructionarerequired.

Commonmaterialsofconstruction:

ThemostcommonmaterialsofconstructionforSCWOsystemsarenickel‐basedalloysandausteniticstainlesssteels.Stainlesssteelalloysareacceptableonlyforrelativelybenignfeeds(i.e.,containingnoheteroatoms)orincoolersectionsoftheprocess.Forhighertemperaturesectionsoftheprocess,nickel‐basedalloysaremostoftenusedduetotheircombinationofreasonablygoodcorrosionresistanceandhightemperaturestrengthunderthewidestrangeofconditions.Metalssuchasnickel‐basedalloysthathavegoodcorrosionresistanceunderSCWOconditionsaresuchusuallybecausetheyformastrongimpermeableoxidesurfacecoatingwhentheycorrode(i.e.,passivate),protectingtheunderlyingmaterialfromanyfurtherdegradation.However,thehighoxygenconcentrationtypicalforSCWOsystemscreatesaveryhighelectrochemical(oxidative)potential,favoringcorrosionviametaloxidation.

Commontypescorrosion:

Generalcorrosion–uniform,predictablerateofsurfacematerialdegradation. De‐alloying–selectiveoxidationanddissolvingofalloycomponent. Pitting–localizedandaggressivefromorcorrosionobservedinanumberofstainlesssteelandnickel‐basedalloysinthepresenceofchlorideandsulfate. Stresscorrosioncracking(SCC)–combinedpresenceofmechanicalstressandaggressivechemicalspecies.Nickel‐basedalloysaremoreresistanttoSCCthan

stainlesssteel.SCCisofparticularconcernasithasthepotentialtocausecatastrophicfailureinarelativelyshorttimeperiod. Intergranularcorrosion–occursalongmetalgrainboundariesinthepresenceofchloride,sulfate,and/ornitrate. Hydriding–combinationofcorrosionandhydrogenembrittlementassociatedmainlywithtitaniumdioxidesurfacelayerinthepresenceofphosphatesalts. Crevicecorrosion–smallcrevicescanexperienceconcentrationdifferencesfromthebulksolutionresultingincorrosion;hasbeenreportedto316SS,AlloyC‐

276andMonel400. Under‐depositcorrosion–similartocrevicecorrosion.Thepresenceofprecipitatedsaltsonametalsurfacecancreateamicroenvironmentbetweenthesalt

andmetalwhereconditionsaredistinctfromthatofthebulkfluidphaseandmoreconducivetocorrosion.Undersomeconditions,depositsmayprotectagainstratherthancausecorrosion.

Page 54: ORANGE COUNTY SANITATION DISTRICT BIOSOLIDS MASTER …

Final – May 9, 2017  A‐12  Biosolids Master Plan 

RESEARCH GROUP OR BODY 

SOURCE  PAPER TITLE  MAIN FINDINGS 

Galvaniccorrosion–occurswhendissimilarmetalsareelectricallycoupledwhileexposedtoanelectricallyconductivemedium. Non‐coupledcorrosion‐undissociatedspeciesmayreactdirectlywithmetalsubstratesinlowdensitySCWOenvironments,i.e.,withoutanelectrochemical

couplingofdifferentsurfacesites.

Corrosioncontrolapproaches

Approachescanbearbitrarilydividedintofourcategoriesaccordingtotheirprimaryobjective[Table1andsubsequentsectionsofthepaperprovideamoredetailedoverviewoftheseapproaches].

Preventcorrosivespeciesfromreachingasolidsurface:o Transpiringwall/film‐cooledwallreactoro Adsorption/reactiononfluidizedsolidphase(assistedo hydrothermaloxidation)o Vortex/circulatingflowreactor(conceptual)

Formacorrosion‐resistantbarrier(allowscorrosivespeciestoreachsurfacebutnocorrosion):o Useofhighcorrosionresistancematerials(long‐termapplications)

o Liners(corrosion‐resistantmaterial)o Coatings

Manage/minimizecorrosion(allowscorrosivespeciestoreachsurfaceandcorrosiontooccur,butinacontrolled,acceptablemanner):o Liners(sacrificialmaterial)o Useofadequatecorrosionresistancematerials(short‐termapplications)

Adjustprocessconditionstoavoidorminimizecorrosion:o Pre‐neutralizationo Cold(ambienttemperature)feedinjectiono Feeddilutionwithnon‐corrosivewasteso Effluentdilution/cooling(quenchwateraddition)

Itshouldbenotedthatbasedonexperience,thereisno“right”approachthatworksbetterthanalltheothersorworksinallcases.Theparticularapproachthatisbestforagivenapplicationdependsmainlyuponthenatureofthefeedtype.ItisalsopossibletousemorethanoneoftheseapproachesinagivenSCWOprocess.Sincesaltprecipitationandcorrosionissuesareoftenpresenttogether,acompleteapproachtoSCWOoperationcanincludeoneormoreoftheapproachesforcorrosioncontrolusedinconjunctionwithmethodsforsalthandling.

Page 55: ORANGE COUNTY SANITATION DISTRICT BIOSOLIDS MASTER …

TM‐9: Aqua Critox Review | Orange County Sanitation District 

Final – May 9, 2017  A‐13  Master Plan Biosolids  

RESEARCH GROUP OR BODY 

SOURCE  PAPER TITLE  MAIN FINDINGS 

PhilipAMarronea,P.A.(2004)

TheJournalofSupercriticalFluids,Volume29,Issue3,May2004,Pages289–312

Saltprecipitationandscalecontrolinsupercriticalwateroxidation—partB:commercial/full‐scaleapplications

ManyofthecompaniesthathaveattemptedtocommercializetheSCWOtechnologyoverthepasttwodecadeshavedevelopedinnovativeapproachestodealingwiththecorrosionandsaltprecipitation/solidsbuildupproblems.Theseareoftenthedistinguishingfeaturesofeachcompany'sSCWOprocess.Thispaperobjectivelyreviewsseveralcommercialapproachesthathavebeendevelopedand/orusedtocontrolsaltprecipitationandsolidsbuildupinSCWOsystems.Theapproachesreviewedconsistofspecificreactordesignsandoperatingtechniques,andincludethefollowing:reverseflowtankreactorwithbrinepool,transpiringwallreactor,adsorption/reactiononafluidizedsolidphase,reverseflowtubularreactor,centrifugereactor,highvelocityflow,mechanicalbrushing,rotatingscraper,reactorflushing,additives,lowturbulence/homogeneousprecipitation,crossflowfiltration,densityseparation,andextremepressureoperation.RecentcommercialSCWOapplicationsutilizingtheseapproachesarealsodiscussed.

CommerciallydevelopedapproachestoSCWOsaltprecipitationandsolidsdepositioncontrol:

Reactordesigns:Reverseflow,tankreactorwithbrinepool,Transpiringwallreactor,Adsorption/reactiononfluidizedsolidphase,Reversibleflow,tubularreactor,Centrifugereactor

Specifictechniques:Highvelocityflow,Mechanicalbrushing,Rotatingscraper,Reactorflushing,Additives,Lowturbulence,homogeneousprecipitation,Crossflowfiltration,Densityseparation,Extremepressureoperation

Recentcommercial/full‐scaleapplications[Chematuronly]:

ChematurEngineeringABacquiredalicensingagreementfortheEWTSCWOprocessinEuropein1995,andacquiredtheexclusiveworld‐widerightsforEWTSCWOin1999(Gidneretal.[82]).SCWOismarketedbyChematurunderthetradenameAquaCritox®.Chematurbuilta550lb/h(250kg/h)pilot‐scaleSCWOsystemin1998thathassincebeentestedwithseveralmostlynitrogen‐containingwastes(amineproductionwastes,nn‐halogenatedspentcuttingfluid,de‐inkingsludge,andsewagesludge).

Thesewasteswouldnotbeexpectedtogeneratehighsaltquantities.Inpasttesting,however,Chematurhasutilizedbothperiodicreactorflushingwithnitricacidand/orhighvelocitiesforremoval/avoidanceofscale.

Recently,Chematurannouncedplanstoconstructitsfirstfull‐scaleSCWOfacilityforJohnsonMattheyintheUK.Theplant,whichwillhaveacapacityof3m3/h(13.2gpm),willbeusedtorecoverplatinumgroupmetalsfromspentcatalysts.CarbonaceousandorganiccontaminantsonthecatalystwillbedestroyedintheSCWOprocess,whilethemetalwillberecoveredinitsoxideform.Nodetailshavebeenprovidedastohowtheoxidesolidswillbecollected.ThisapplicationappearstobeoneofthefirstinwhichtheprecipitationandrecoveryofasolidinaSCWOprocessisthemainfocusoftheprocessinsteadofbeinganundesirablesideeffect.Atthetimeofannouncement,Chematurexpectedtocommissionthenewplantinmid‐2002.

ChematuralsohasplanstobuildalargerSCWOplantforprocessingelectronicscrap,andispursuingopportunitiesforconstructionofadditionalcommercialSCWOplantsinEurope.ChematurhaslicensedtheEWTSCWOprocesstotheShinkoPantecCo.ofJapan.Underthislicenseagreement,ShinkoPantechasconstructedan1100kg/h(2425lb/h)SCWOplantfortreatingmunicipalsludge,whichwascommissionedin2000.

Summary:

Presently,noonedesignormethodhasprovenitselftobeclearlysuperiortotheothers,althoughsomearebettersuitedforcertaintypesofwastesthanothers.Forexample,thereactorflushingandquenchingtechniqueworksbetteronfeedswithhighconcentrationsofsaltsthathaveahighsolubilityinsubcriticalwater.Tubularreactorsoperatedathighvelocitiesarebeingusedbyseveralcompaniesfortreatingsewagesludges,whichhavearelativelyhighproportionofnon‐saltsolids.Also,someapproaches(e.g.,additives,extremepressureoperation)requiremoredetailedinformationregardingthecompositionofthefeedand/orsaltsthatwillformthanotherapproachesinordertobeeffective.Continuedfundamentalresearchonsaltprecipitationanddepositiondynamicsandonphasebehaviorofmulti‐componentsystemsisimportantforfurtheradvancementofeffectiveapproachesforsaltmanagementinsomepotentialapplications.Selectionofchemicaladditivesanddeterminationofoptimalconcentrationstomaintainadequatesalttransportinareactor,forexample,requirefurtherresearchtoestablishcomprehensivephasediagramsformanydifferentsaltspeciesandmixturescommonlyencountered.Resultsofrecenton‐goingpilot‐scaletestingwithaggressivefeeds,andthecurrentoranticipatedoperationofseveralnewfull‐scaleSCWOfacilitiesbyanumberofcompanies,willalsoprovidenecessarydataforfurtherdevelopmentandrefinementofsaltprecipitationcontrolmethods.

Page 56: ORANGE COUNTY SANITATION DISTRICT BIOSOLIDS MASTER …

Final – May 9, 2017  A‐14  Biosolids Master Plan 

RESEARCH GROUP OR BODY 

SOURCE  PAPER TITLE  MAIN FINDINGS 

Qian,L.(2015) BioresourceTechnology,v176,p218‐224,January01,2015

Treatmentofsewagesludgeinsupercriticalwaterandevaluationofthecombinedprocessofsupercriticalwatergasificationandoxidation

Influencesoftemperatureandoxidationcoefficient“n”onsewagesludgetreatmentinsupercriticalwateranditscorrespondingreactionmechanismwerestudied.Moreover,thecombinedprocessofSCWGandSCWOwasalsoinvestigated.

Results:

Ammonianitrogen,phenolsandpyridinesaremainrefractoryintermediates.Theweightofsolidproductsat873K(=600°C) andn=4isonly3.5wt.%oftheinitialweight,whichislowerthanthataftercombustion.Volatileorganicsinthesolidphasehavealmostbeenreleasedthroughdissolutionandhydrolysisat723K(500°C)andn=0,butnon‐volatileorganicsstillremain,becauseobviousweightlossescanbeobservedinitsthermogravimetricprofile.

Highestyieldofcombustiblegaseswasobtainedatn=0,andH2yieldcanreach11.81mol/kgat873K(600°C).Furthermore,thecombinationofSCWGat723K(500°C)andSCWOat873K(600°C)withatotaln=1isfeasibleforitsgoodeffluentqualityandlowoperationcosts.

Sentinel(2014) SentinelNewsPaper,FL

Article OnMarch2014theOrlandoSentinelnewspaperreportedthatinJuly2013anexpansiontankoftheSuperWaterSolutionspilotplantattheCityofOrlandohadsufferedablowoutcausingsignificantdamagetotheplantanditsbuildingenclosure.

Shanableh,A.,Gloyna,E.F.(1991)

WaterScienceandTechnology,v23,n1‐3,p389‐398,1991

Supercriticalwateroxidation.Wastewatersandsludges

DevelopmentofacomprehensiveSCWOresearchlaboratoryincl.benchandpilot‐scalefacilities.HightemperatureandpressuresystemsslightlylessthanandgreaterthanSCWconditionscanbeusedfortheefficientdestructionofwastebiologicaltreatmentplantsludges,aceticacid,2‐nitrophenol,2,4‐dimethylphenol,phenol,and2,4‐dinitrotoluene.

UnderSWOconditionsdensity,dielectricconstant,viscosity,diffusivity,electricconductance,andsolvationabilityarealldifferentcomparedtothepropertiesofcommonlyencounteredwastewater.o Inthetemperaturerangeof375to450°CthedensityofSCWdecidesrapidlywithsmallchangesintemperatureatconstantpressure.o Atambientconditionswaterhasahighdielectricconstantof80mainlyduetoH‐bonding.Atthecriticaldensityof0.3g/mlthereislittle,ifany,residual

H‐bonding.o Alowdensitywaterexhibitsathighdiffusivityandarapidmasstransfer.Thedecreaseofwaterdensityanddielectricconstantresultinchangingthe

solvationcharacteristicsofwater.o WhileSCWisastrongsolventoforganiccompoundsitisapoorsolventofinorganicsalts.o Undersupercriticalconditionsmanygasesarecompletelymisciblewhilesparinglysolubleinnormalliquidwater.o Atsupercriticalconditionsthereactionsoccurinonehomogeneousphase,canproceedautogenouslyinthepresenceofoxygen,andbecomesself‐

sustainingwhenthebiologicalsludges’totalsolidconcentrationisabout5%. Above400°C,nearcompletedestructionofsludgeandtransformationcompoundssuchasaceticacidcanbeachievedwithrelativelyshortresidencetimes. AmmoniaandaceticacidaretransformationproductsintheSCWOofbiologicaltreatmentplantsludges. Aceticacidproducedfromtheoxidationofsludgeisoxidizedrapidlyatsupercriticaltemperatures,400°Cto450°C:thedestructionefficiencieswere

enhancedbydecreasingtheflowrate(akaincreasingtheresidencetime),increasingthereactiontemperature,andincreasingtheH2O2/aceticacidratio.Aceticaciddestructionefficiencyincreasedfrom40%to>90%withinareactiontimeof4minandatemperaturerangeof400to510°C.

SCWOofWASandammonia:at300to343°Cammoniaconcentrationsincreasedinitiallythendecreasedastheresidencetimeincreased.Whentheresidencetimewas<10minammoniaproductionincreasedwithincreasedreactiontemperature(300to425°C).At425°Ctheinitialincreasewasfollowedbyasignificantreductionastheresidencetimeincreased>10min.Otherresearchshowedthatammoniadidnotoxidizebelow525°Cbutsuggestthatammoniaoxidationincreasedinthepresenceofotherorganiccompounds.

Contaminantdestructionlevelswere>99%forindustrialwastewatersludges,phenol,2‐nitrophenol,2,4‐dimethylphenol,2,4‐dinitrotolueneandaceticacid.Shanableh,A.,Shimizu,Y.(2000)

WaterScienceandTechnology,v41,n8,p85‐92,2000

Treatmentofsewagesludgeusinghydrothermaloxidation‐Technologyapplicationchallenges

Overviewofhydrothermaloxidationofsludge,majorissues,andprocessanddesignconsiderations:

Supercriticalwater(SCW)hasuniquecharacteristics:rapidoxidation,notlimitedbyoxygenavailabilityormasstransfer;expansionofwaterdecreasesthefluid’sdensity,fluidvelocityresultinginadecreaseinresidencetime.

SCWO:initialfocusonhazardousorganicwastetreatmentwithfirstinstallationintheUSatHuntsman’sChemicalCompanyinAustin,TXin1994;systemdesignedbyEcoWasteTechnologies(EWT).

SCWOorganicsshownremovalefficiencies>99.99%;thisalsoincludesorganiccontaminatessuchasPCBs. Sub‐criticalwateroxidation(SubCWO)wherewaterremainsintheliquidstagegeneratesthermallyresistantproductssuchasaceticacid(30‐80%ofsoluble

COD):destructionefficienciesbetween90and95%.

Page 57: ORANGE COUNTY SANITATION DISTRICT BIOSOLIDS MASTER …

TM‐9: Aqua Critox Review | Orange County Sanitation District 

Final – May 9, 2017  A‐15  Master Plan Biosolids  

RESEARCH GROUP OR BODY 

SOURCE  PAPER TITLE  MAIN FINDINGS 

ProducedSubCWOliquorwithhighVFA(andhighoxygendemand)mayberecycledasbeneficialcarbonsourcetosupportdenitrificationandenhanceBioPremoval;alsoproduceslessdesiredammoniawhichincreasesoxygendemand.

HeavymetalscontainedinthesludgewhentreatedviaSCWOareincorporatedinthenon‐leachableash;anincreaseinheavymetalsintheashcanbedetectedife.g.316SSisusedasreactormaterialduetocorrosion.

Rapidmetallurgicaldegradationduetoaggressiveoxidizingenvironmentandpresenceofhalogens. Reactor,heatexchangerandrecoveryunitssusceptibletoscalingofsaltsandcorrosion(thelowdensityofthefluidlimitstheabilitytodissolvetheinorganic

=>dropoutofsolutionandresultsinscaling). Systemdesignconsiderations:

o mostsuitablematerialsaretypicallyexpensiveandlackstructuralintegrity=>usedasreactorinnerliner.o sludgepre‐treatment;energy,materials,solidsseparation;treatmentconditions;effluenthandling;ashdisposal.o bestsuitedforwastestreamswithadequateorganiccontenttogenerateenoughheattosustainthereactiontemperature;ifVStoohighriskof

overheating.o besteconomicalifTSoffeedstockisbetween5and10%.

SCWOvs.incineration: Treatmentofrelativelydilutewastestreams. Lowemissionprofile=>noextensiveairpollutioncontrolrequired. Suggestedloweroperationalcost(confirmedattheHuntsmaninstallation).

Svanström,M.etal(2004)

Resources,ConservationandRecycling,v41,n4,p321‐338,July2004

Environmentalassessmentofsupercriticalwateroxidationofsewagesludge

Alifecycleassessmentmethodologywasappliedtostudytheenvironmentalaspectsofthefirstcommercial‐scaleSCWOplantforsewagesludgeintheworld,treatingsludgewith7%TSfromthemunicipalwastewatertreatmentfacilityinHarlingen,TX.TheplantisbasedonTheHydroProcessing’s‘HydroSolids’processwithaprocessingcapacityofupto9.8drytonsperdayofsludge.Theenvironmentalimpactswereevaluatedusingthreespecificenvironmentalattributes:globalwarmingpotential(GWP),photo‐oxidantcreationpotential(POCP)andresourcedepletion;aswellastwodifferentweightingmethods(singlepointindicators):EPS2000andEcoIndicator99.

LCAresults:

Gas‐firedpreheatingofthesludgeisthemajorcontributortoenvironmentalimpacts. Emissionsfromgeneratingelectricityforpumpingandforoxygenproductionarealsoimportant.

o SCWOprocessingofundigestedsewagesludgeisanenvironmentallyattractivetechnology,particularlywhenheatisrecoveredfromtheprocessforreducingGWPandresourcedepletion.Bothsinglepointindicatorsalsoshowedlargeenvironmentalgainsfromrecoveryofheat.

o Excessoxygenisatpresentnotrecoveredfromthereactoreffluent.RecirculationofoxygenintothefeedcouldreducethenetamountneededintheSCWOprocessandconsequentlydecreasetheenvironmentalloadfromproductionandtransportationofoxygen.

Energy‐conservingmeasuresandrecoveryofexcessoxygenfromtheSCWOprocessshouldbeconsideredforimprovingthesustainabilitypotential. ResultsfromanLCAstudyofSCWOprocessingofsewagesludgearetoalargeextentdeterminedbythesystemsurroundingtheactualSCWOunit.Thisresult

underscoresthenecessitytolooknotonlyatdirectemissionsfromaspecificprocess,buttoinvestigatethewholelifecycle. A2001analysisfoundthatthetotalcostforSCWOprocessingofsewagesludgeisaboutUS$120–200perDMTat10%solids.

Svanström,M.etal(2005)

WasteManagementandResearch,v23,n4,p356‐366,August2005

Environmentalassessmentofsupercriticalwateroxidationandothersewagesludgehandlingoptions

Life‐cycleassessment(LCA)ofSCWOapplyingtheAqua‐CritoxprocessandcomparingitwithLCAsoffourothersludgemanagementoptionsspecificallyrelatedtoCityofGöteborg’sWWTP(digestedsludgewith15%TS)anditlocalcharacteristics:

A)agriculturaluse,B)co‐incinerationwithmunicipalsolidwaste,C)incinerationwithsubsequentphosphorusextraction(Bio‐Con),andD)sludgefractionationwithphosphorusrecovery(Cambi‐KREPRO).

Severaloftheprocessesevaluatedinthisstudyarerelativelynewanduntried. Environmentalimpactsfromconstructionofbuildings,machineryandvehicles,aswellasmaintenance,reconstructionanddecommissioning,werenot

includedintheLCA. InventorydatafortheAqua‐Critoxprocess,scaledupfromChematurEngineering’sKarlskoga(Sweden)pilotplantdata,wasused. Characterizationsaccordingtoglobalwarmingpotential(GWP),acidificationpotential(AP),eutrophicationpotential(EP),andfiniteresourcedepletionwere

performed.

Page 58: ORANGE COUNTY SANITATION DISTRICT BIOSOLIDS MASTER …

Final – May 9, 2017  A‐16  Biosolids Master Plan 

RESEARCH GROUP OR BODY 

SOURCE  PAPER TITLE  MAIN FINDINGS 

Twoweightingmethodswereused:o Environmentalprioritystrategyinproductdevelopment(EPS):humanhealth,biologicaldiversity,ecosystemproduction,resources,andaesthetic

values,anduseseconomicvalues.o Environmentaltheme(ET):globalwarming,ozonedepletion,acidification,eutrophication,smogformation,spreadingoftoxicsubstances,waste,

hazardouswaste,andresourcedepletion. TheenergysystemisofgreatimportanceforLCAs.ForSCWO,beneficialutilizationoftheheatofreactionisofcrucialimportancefortheLCAoutcome.The

electricityconsumedbypumpingandthenitrousoxide(N2O)producedareotherimportantparameters.

Findings:

Allsystems,exceptagriculturaluse,resultinsavingsoftheresourcesfossilfuels,mainlyduetothereplacementofdistrictheatproductionbythesludgeoxidationheat.

AllmethodsperformwellintheGWPcharacterization,showingnetsavingsingreenhousegasemissions. Theenergyrecoverymethodsperformbetterthanagriculturaluse.Energysavingsbyavoidedproductionofchemicalsgiveadvantagestoagriculturaluse,

Bio‐conandCambi‐KREPRO. N2OEmissions:Whenglobalwarmingisconsidered,theemissionofN2OformedintheSCWOprocessprovedtobeimportant:ThetotalN2Oemissionsfrom

theSCWOprocessthatwasusedinthisstudy,measuredbyChematurEngineeringAB,ishigherthangenerallyexpectedforSCWOprocessingofsewagesludge.=>AdecreaseinN2OemissionswouldprovideconsiderableimprovementstotheAqua‐Critoxsystem.(intheothermethods,somenitrousoxideemissionswouldbeexpected,butfordifferentreasons,theseemissionswerenotincludedintheinventoryforthesesystems.IfN2OiseliminatedordisregardedalsofromtheAqua‐Critoxsystem,Aqua‐Critoxcompareswellwiththeotherenergyrecoverymethods.=>Nitrousoxideemissionsandabatementshouldbestudiedinmoredetailforallthemethods).

Phosphorous:Recyclingofphosphorusbacktoproductivesoilisaccomplishedinagriculturaluse,theBio‐ConmethodandtheCambi‐KREPROmethod.FortheLCAoftheAqua‐Critoxsystemextractionofphosphorousfromtheproducedsolidswasnotconsidered.Aphosphorusextractionstepcouldbeadded.LessmaterialwouldthenhavetobelandfilledandacreditwouldbegivenforreplacedphosphorusandotherproductsthusimprovingtheLCAresults.

Vadillo,V.etal(2015)

INDUSTRIAL&ENGINEERINGCHEMISTRYRESEARCHInd.Eng.Chem.Res.,2013,52(23),pp7617–7629.

ProblemsinSupercriticalWaterOxidationProcessandProposedSolutions

Thisworkreviewsthemaintechnicalsolutionsstudiedbynumerousauthorstoavoidthedrawbacksandchallenges(saltdeposits,corrosion,systemscaling‐up).Sincetheeconomicfeasibilityoftheprocesswilldependontheenergyrecoveryofthereactoreffluent,thisaspectisalsopresentedinthisreview.

Thereareseveralwaystomanagecorrosionincludingacoolingstrategytoavoidtheconditionsofhightemperatureanddensity,whicharetheconditionsofhighcorrosionrates,andnewreactorconceptssuchasTranspiringWallorFilm‐CooledReactors.

ToadvanceinthecommercialdevelopmentofSCWOitiscrucialtoselectanappropriatewastewaterandtochoosethemostsuitablereactorconcept.

Corrosionandproposedmitigationapproaches:

Useofhighcorrosionresistancematerials(Inconel625andHastelloy600),useofliners,useofcoating,designSCWOsystemsincludingtranspiringwall/film‐cooledwallreactors,assistedhydrothermaloxidation,useofabasetopre‐neutralizethefeedstream,cold(ambienttemperature)feedinjection,additionofquenchwater,optimizationofprocessoperatingconditions(suchastemperature,pH,electrochemicalpotential,etc.)asisthecaseshownby‘KritzerandDinjus’,whousedacooldownstrategytominimizecorrosion.

AnothereasysolutionistoavoidcorrosivefeedsorthepretreatmentofthefeedtoremovecorrosivespeciesasinthecaseofHongetal.

SaltPrecipitationandscalecontrolmitigationapproaches:

‘Marroneetal.’summarizedthecommerciallydesignedapproachesdevelopedinthelasttwodecades.Thosemethodsarespecificreactordesigns(suchasreverseflow,tankreactorwithbrinepool,transpiringwallreactor,adsorption/reactiononfluidizedsolidphase,reversibleflowintubularreactor,andcentrifugereactor)andspecifictechniques(suchashighvelocityflow,mechanicalbrushing,rotatingscraper,reactorflushing,additives,lowturbulence,homogeneousprecipitation,crossflowfiltration,densityseparation,andextremepressureoperation).

Page 59: ORANGE COUNTY SANITATION DISTRICT BIOSOLIDS MASTER …

TM‐9: Aqua Critox Review | Orange County Sanitation District 

Final – May 9, 2017  A‐17  Master Plan Biosolids  

RESEARCH GROUP OR BODY 

SOURCE  PAPER TITLE  MAIN FINDINGS 

Wastewatersludgerequirements:

DesignAspects(extract):

Thestart‐upoftheprocessrequiresahighamountofenergy,whichattheindustrialscaleisanimportantlimitation.Theonlywaytoachieveeconomicfeasibilityattheindustrialscaleisrunningtheprocessforlongperiodsoftime;specifically,itisnecessarytoachieve95%ofavailability.Itisnecessarytodesignaheatersystemtoprovidetothehighpressurestreamenoughenergytoachievesupercriticaltemperature.Forinstance,inthecaseofplantsof250t/dayofcapacitythethermalenergynecessaryisaround5MW.o SCWOreactionisexothermic=highamountofenergyisreleased.Start‐upoftheSCWOprocessrequiresinitiallyanexternalpowersupplyincreasingthe

temperatureofthewastewaterstreamupto400°Cinthereactorinlettoinitiatetheoxidationreactions.Thispreheatingusedtobecarriedoutbyelectricalheaterswoundonthepipesorusinganauxiliaryfluidheatedinaboiler.Asaconsequenceoftheexothermalcharacteroftheoxidationreactionsandbecausethereactoristhermallyisolated,anincreaseinthetemperaturealongthereactorisproduced.Oncetheprocessisstartedup,thereactoreffluentisusedtopreheatthefeedbymeansofheatexchangers,and,ifthewastewaterissufficientlyconcentrated,theheatreleasedbythereactionisenoughtopreheatthefeed.Thismakestheprocessauto‐sufficientfromanenergeticpointofview,andtheexternalpowersupplycanbeswitchedoff.Besides,ifthereisanexcessofenergyanenergyrecoverycanbeconducted.Intermsofconcentration,anorganiccompoundconcentrationbetween2and20%weightisadequateforSCWOtreatment.

o ‘Jimenez‐Espadaforetal’proposedthatitispossibletodecreaseSCWOtreatmentcostsbyrecoveringenergyatlowtemperatureandhighfluidpressure,suchaswaterheatingandsteamgeneration.Forexample,forasupercriticalflowof1000kgh−1(waterandair),therecoveredenergyrangesfrom118kW(1700m3h−1ofhotwaterat65°C)to75kW(100kgh−1ofsteamflowat1.1barand170°C).

o Inthecaseofwastewaterswithalowreactionheat,theuseofauxiliaryfuels,toincreasethetemperatureprofilealongthereactorandtoachievetheauto‐thermaloperation,isjustified.Inthisway,itispossibletogeneratehydrothermalflamesinSCWOreactorsincludingdevicesspeciallydesignedforit.

Page 60: ORANGE COUNTY SANITATION DISTRICT BIOSOLIDS MASTER …

Final – May 9, 2017  A‐18  Biosolids Master Plan 

RESEARCH GROUP OR BODY 

SOURCE  PAPER TITLE  MAIN FINDINGS 

Pros:(i)Reactiontakesplaceinreactiontimesoforderofmilliseconds,whichimpliesthedesignofreactorswithasmallvolume.(ii)Reactantscanbedirectlyinjectedintheflamesopluggingandcorrosionproblemsrelatedtothepreheatingstepareavoided.(iii)Sincehightemperaturesareachievedenergyrecoveryoftheeffluentisimproved.Cons:(i)Inthecaseofusingairasoxidantorifthewastewaterhasnitrogen,NOxcanbeproduced.(ii)Reactorsneedaspecificdesigntoworkwithhydrothermalflames.(iii)Asaconsequenceofhightemperaturesachievedinthepresenceofhydrothermalflamestheuseofresistantmaterialsareneeded.Suchmaterialsusedtobealloyswithahighcostsotheprocesscostisincreased.(iv)Besides,generationofhydrothermalflamesimpliesanadditionalcostrelatedtotheco‐fuelcost.Experimentally,flameisproducedpreheatingthefuelandtheoxidantuntilahightemperatureisreached.Ifthetemperatureishighenoughforthewasteconcentrationtheauto‐ignitionofthemixtureisproduced.Thetemperatureatwhichtheignitionoccursiscalledthehydrothermalflameignitiontemperature.Similarly,thetemperatureoftheflameextinctionisdescribedasalowtemperaturefuelinjectionintothereactorinwhichthecombustionoftheflameismaintained.Nowadays,severalstudiesfoundintheliteraturestudydeeperhydrothermalflamesformation.

Forsafeoperatingconditionsandoptimalenergyrecovery,aSCWOplantwithtubularreactormusthavestringentthermalcontrole.g.viacoolingwaterinjectionsandmulti‐oxidantinjectionsindifferentpointsalongthereactor.o Theuseoftwooxidantinjectionsisrecommendedinthecaseofhighorganicloadandhighreactionheatwastewatersbecauseundertheseconditionsit

isnecessarytocontrolthetemperaturealongthereactormaintainingitunderthesafetymateriallimitsandtoavoidtheformationofhotspotsasaconsequenceofthereactionofahighamountofoxidantinapointofthereactor.

o Theuseofamulti‐injectionofcoolwaterstreamsindifferentpartsofthereactorisanotherwaytocontroltheexcessoftemperaturealongthereactor.o “Chematur”TypeReactor(Aqua‐Critox):Thiskindofreactorallowsconductionofathermalcontrolofthereactorassociatedtotheexothermalcharacter

oftheoxidationreactions.AscanbeseeninFigure2,multi‐oxidantandcoolwaterinjectionscanbecarriedouttodistributetheoxidantproperlyandtoavoidhotspotsalongthereactor.Theoperatingprocedureofthiskindofreactorconsistsofinjectingaquantityofoxidantbelowthestoichiometricratioatatemperaturearound400°Cinthereactorinlet.Onceoxidantiscompletelyrunoutandthetemperaturehasincreasedtoaround600°C,acoolwaterstreamisinjectedtodecreasethereactionmediumtemperaturedowntoapproximately400°C.Then,anewoxidantinjectionisconducted,increasingthetemperatureupto600°C.Thus,anewcoolwaterinjectioniscarriedouttodecreasethereactionmediumtemperatureto400°C.Thistemperatureregulationisrepeateduntilthecompletedestructionoftheorganicmatterthatiscontainedinthewastewater.Thisreactorconceptwasdevelopedandcommercializedby“ChematurEngineering”,asocietythathasdevelopedindustrialprocessessuchasAquacatandAquaCritox.ThecompanySCFIGroupLtd.(SuperCriticalFluidInternational),locatedinCork(Ireland),purchasedAquaCritoxtechnology.Advantagesofthisreactorconceptareagoodthermalcontroloftheprocessandpreventionofhotspotformationduetothecombinationofoxidantandcoolwaterinjectionsalongthereactor.However,multi‐coolwaterinjectionsproducethermalfatigueofthereactormaterial.Besides,consumptionofcoolingwaterandthepowerrequiredtopumpitareimportant,inadditiontoproducingadilutionoftheeffluent.

Page 61: ORANGE COUNTY SANITATION DISTRICT BIOSOLIDS MASTER …

TM‐9: Aqua Critox Review | Orange County Sanitation District 

Final – May 9, 2017  A‐19  Master Plan Biosolids  

RESEARCH GROUP OR BODY 

SOURCE  PAPER TITLE  MAIN FINDINGS 

Suspendedsolidparticlesinthefeedcanproduceproblemsduringtheeffluentdepressurizationresultinginerosionofinternalpartsofthe“backpressureregulator”valves.Thedepressurizationstepcanproduceproblemsattheindustrialscale,becauseathighflowratetheuseofonevalveisnotrecommendedtogettheoverallpressuredrop(250bar)inasinglestep.o ThedesignofSCWOplantstheselectionofthebestpressurecontrolsystemisveryimportant.‘Soria’suggestedthatdepressurizationinSCWOplants

shouldbeconductedinseveralstepstodiminisherosioninvalves.o Adequatedimensionsofacapillarysystemwerestudiedtodepressurizetheprocesseffluentfrom250bartoatmosphericpressureusingthepressure

dropthatafluidsufferswhenitcirculatesthroughasmalldiameterandhighlengthpipe.Resultsobtainedinthisstudyshowedthatadepressurizationsystemforaflowrateof20kg/hshouldconsistof1/16inchand21.5mlongpipe.Later,‘O’Reganetal.’proposedacapillarysystemwherepressuredropisachieveddistributingthetotalflowinseveralcapillarydeviceswithahighlength.Theyclaimedthattheuseofonlyonevalveproducedextremevelocitiesandsevereerosionproblems.Therefore,inthecaseofindustrialplants,theuseofcapillarydevicesandacombinationofvalvesisdesirable.Thisdepressurizationsystem,patentedbyOrganoCorporation,wasinstalledintheSCWOsemi‐industrialAqua‐Critoxplanttotreatsewagesludge,locatedinKarlskoga(Sweden).

Somefeedcansufferpyrolysisandhydrolysisduetothepreheatingstep(intheabsenceofoxygen)thatisnecessarytoreach400°Catthetubularreactorentrance.Asaconsequenceoftheseundesirablereactions,plugginginthepreheatingsystemcanoccurinadditiontothepresenceofgascompoundssuchasCH4andCOintheeffluent.

Economicconsiderations(extract):

SCWOprocessimplieshighinvestmentcosts:suitableequipmentabtoworkathighpressureandtemperatures;useofhighcorrosionresistancealloystobuildreactorsandheatexchangers(preferablyalloyswithhighnickelcontent).Duetohighpressureoperationalconditionsmaterialcostsareveryhighinadditiontomaintenanceandrepaircostsofequipmentthatworksunderextremeconditions.

TheonlywaytomaketheSCWOprocessfeasibleisreachingtheauto‐thermalregimeinthereactor.Reactorcostisoneofthemaincostsinthedesignobjectiveistodesignitwithasmallvolume.Inthisway,‘Abelnetal.’estimatedthatthetubularreactorcostsrepresent10%oftheoverallequipmentcostsinaSCWOplantabletotreat100kg/hofwastewater.

Page 62: ORANGE COUNTY SANITATION DISTRICT BIOSOLIDS MASTER …

Final – May 9, 2017  A‐20  Biosolids Master Plan 

RESEARCH GROUP OR BODY 

SOURCE  PAPER TITLE  MAIN FINDINGS 

Operationalcost:thechoiceoftheoxidantisakeypoint,‘BermejoandCocero’claimedthatitismoreeconomicaltousepureoxygeninsteadofairbecauseatindustrialscalethecompressioncostisveryhigh.Ontheotherhand,‘Savageetal.’suggestedthatacatalyticSCWOprocessisamorecompetitivealternativebecausewiththeuseofacatalystthetemperaturenecessarytoreachremovalefficiencieshigherthan99%isreducedsignificantlydecreasingtheenergydemand.

Atpresent,economicalstudiesonSCWOattheindustrialscalearescarceinliterature.‘GidnerandStenmark’estimatedoperationalcostsofasewagesludgeSCWOplantbasedonaflowrateof7m3/hofsewagesludgebeing137€/tofdriedsludge.‘Svanstrometal.’estimatedtotalcostfora1t/dayplantbeing243$/tdriedsludge.‘O’Reganetal.’claimedthattreatmentcostofsewagesludgeSCWOisintherange36.6−73.15€/t.‘Abelnetal.’first,estimatedtreatmentcostofanidealwastewatermadeofamixtureofethanol10%weightandwaterusingairasoxidantinaplantof100kg/hwithtwodifferentreactors:tubularandtranspiringwallreactor,beingthetreatmentcosts406€/tand660€/t,respectively.Later,theyestimatedthetreatmentcostfora1t/hplantbeing330−430€/tforthetranspiringwallreactorplantand203−264€/tforthetubularreactorplant.Finally,’Vadilloetal.’estimatedthetreatmentcostforarealwastewaterSCWOina1t/hplantthatamountsto230€/t.EconomicresultsshowedthatalthoughSCWOtechnologywasinitiallyshownasatechnologysuitableforallkindsofwastes,researchconductedoverthelastthreedecadesshowedthatthistechnologycanonlybeappliedattheindustrialscaleusingatubularreactorandtotreatwastewatersthatsatisfytherequirementshowninTable1.

SCWOplantinstallations:

TheSCWOprocesswassatisfactorilyappliedtoahighamountoforganicwastewatersatthelaboratoryandpilotplantscaleachievingremovalefficienciesupto99.9%withresidencetimesoftheorderofseconds.Forprocessingindustrialwastewatersmostoftheinstallationswere/areatthelaboratoryscalesopilotplant,industrialscaleinstallationsarescarce.Contrarytothefacilitiesofsubcriticaloxidation,wheretechnologyhasreachedmaturity,therearefarfewerfacilitiesinsupercriticalwateroxidation.

SCWOPilotPlants,(P≈25MPa,T≈550°C):Table4(extract,wastewateronly):o Aqua‐Critox(SuperCriticalFluidsInternational);tubularreactortype;oxygenasoxidant;treatmentofindustrialwastewaters;status:250kg/h1999,

Karlskoga(Sweden),2008,Cork(Ireland)o SchoolofEnergyandPowerEngineering,China;reactor:transpiringwallcombinedwithreverseflowtank;oxidant:oxygen;feed:sewagesludge;status:

125kg/h2011,(China).o SuperWaterSolutions,CityofOrlando;tubularreactortype;oxygenasoxidant;treatmentofindustrialwastewaters;status:5driedmattert/day.

CommerciallyDesignedFullScaleSCWOPlantsTable5(extract;sludgeonly):o Hydroprocessing;HarlingenWastewatertreatmentplant,Texas;feed:sewagesludge,tubular;150t/day;status:builtin2001,stoppedin2002dueto

corrosioninheatexchanger.o Severalcommercialplantswerebuiltinthelastthreedecades;however,nowadaysonlytwoofthemareinoperation.Inrelationtothefutureofthe

technology,itisnecessarytocontinueresearchingintechnicalsolutionstodecreasecapitalandoperatingcoststoachievethefullcommercialdevelopmentofthistechnology.

Xu,D.etal(2013) InternationalJournalofHydrogenEnergy,v38,n4,p1850‐1858,February12,2013

Influenceofoxidationcoefficientonproductpropertiesinsewagesludgetreatmentbysupercriticalwater

Thisworksystematicallystudiestheinfluencesofoxidationcoefficient(n=0‐2.5)onthegaseous,liquidandsolidproductsaswellasthecorrosionpropertiesofstainlesssteel316insewagesludgesupercriticalwatergasification(SCWG),supercriticalpartialoxidation(SWPO)andsupercriticalwateroxidation(SCWO).

[n=practicallyaddedoxidantamount/theoreticallyrequiredoxidantamount].

ThemajorobjectivesweretoimprovetheH2productionyield,increasetheremovalratiooforganicmattersandminimizeoxidantconsumptionsothatthetreatmentcostofsewagesludgecanbereducedasmuchaspossible.

Asequencedapproachtoprocesssludgewasappliedaswell,i.e.,sewagesludgesupercriticalpartialoxidation(SWPO)wasfirstperformedandthentheobtainedliquideffluentwasfurthertreatedbySCWO.

Results:

Asmallamountofoxidant,i.e.,alown(0<n≤0.6),helpsgenerateH2,CH4,COandC2lightgasfromhydrocarbonconversion,butexcessiveoxidant(n>0.6)enablestheabovegaseousproductsaswellasorganicmattersinliquideffluenttobeconvertedintoH2OandCO2.[Xstandsforconversionefficiency].AsdepictedinTable2theliquideffluentofsewagesludgeSCWGhascomparablyhighXCOD,XTOCandXNH3eN,soitisunnecessarytoprovideamuchhigher“n”tomaketheliquidmeetthecorrespondingdischargestandards.XCOD,XTOC,XNH3eNandXSolidriseandreachupto99.0%,96.9%,80.5%and82.6%respectivelywhennchangesfrom0to1.5at450°Cand25MPa.Whentheyfurtherincreaseupto99.95%,99.8%,99.7%and82.8%at540°C,25MPaandn=

Page 63: ORANGE COUNTY SANITATION DISTRICT BIOSOLIDS MASTER …

TM‐9: Aqua Critox Review | Orange County Sanitation District 

Final – May 9, 2017  A‐21  Master Plan Biosolids  

RESEARCH GROUP OR BODY 

SOURCE  PAPER TITLE  MAIN FINDINGS 

2.0,liquideffluentmeetsreferenceddischargelimits.Whenreactiontemperatureand“n”rise,corrosionproductsincreasebutsolidorganicmattersdecrease,whichprobablyresultsintheunremarkablechangeinXSolidfromNo.7toNo.8inTable2.ThemaximumvalueforH2formationisobtainedatn¼0.6,whichis

IfSWPOandSCWOarecoupled,acertainamountofH2andCH4canbeobtainedandmeanwhileliquideffluentcanmeettheabovestandardsevenat450°Candalowertotaln(0.74).

Furthermore,stainlesssteel316undergoeschangesfrompittingcorrosiontogeneralcorrosionwith“n”increase.Pittingcorrosioniscomparablysevereinthepresenceofhydrogenproductatalow“n”.Mainlygeneralcorrosiontakesplaceonstainlesssteel316whenoxygenissuppliedexcessively(n≥1.0),whichhelpsprolongthemateriallife.However,itisstillnecessarytomakeadeepevaluationaswellasalong‐termtestinacontinuoustypereactorplantinsubsequentwork.

Yang.Setal.(2013)

AdvancedMaterialsResearch,v774‐776,p212‐215,2013

Newdesignofsupercriticalwateroxidationreactorforsewagesludgetreatment

Doublewallreactordesign(microporousaluminumceramicinnertube,outertubefilledwithhigh‐pressureair);bench‐scaletestw/dilutedsewagesludge.Compressedairpenetratesthroughtubeandformsair/gasfilmattubesurface:

Nocorrosionandsaltprecipitationwerefoundininnertubeafteronemonthoftesting. HighCODdestructionefficiency>99%.

Zhang,T.etal(2016)

Resources,EnvironmentandEngineering‐2ndTechnicalCongressonResources,EnvironmentandEngineering,CREE2015,p499‐504,2016

Treatmentofsludgeandwastewatermixturebysupercriticalwateroxidation

MixtureofsludgeandwastewatertreatedbySCWOtechniquewasstudiedinintermittentequipmentat440‐460°C,25MPa,andreactionresidencetimebetween1and20mins.H2O2wasusedastheoxidant.

Results:

ExperimentalresultsshowedthatSCWOisahighefficiencyorganicwastetreatmentanddisposaltechnique.Removalrate‘X’ofCODwasobviouslyincreasedastemperature,residencelimeandoxidationcoefficient‘n’extend.o AtT=440°CXCODwas97.2%;atT=600°CXCODwas99.6%(10minresidencetime,p=25MPa,and‘n’=1.1).

Concentrationofammonia‐nitrogenincreasedwithtemperaturebeforedecreasing(10minresidencetime,p=25MPa,and‘n’=1.1) Increasein‘n’(n=1–3)atT=600°C,t=10minandp=25MPa:

o CODremovalratereached99.56%at‘n’=1;onlyaverymodestincreaseinXCODwasnotedwhen‘n’increased(at‘n’=3XCODwasat99.58%=>thereisanoptimalvaluefor‘n’andinfluenceof‘n’onXCODbecomesverysmall

o Concentrationofammonia‐nitrogenincreasedwith‘n’. Increaseint=1to20minatT=600°C,‘n’=1.1andp=25MPa:

o CODremovalratereached99.87%att=20min;onlyaverymodestincreaseinXCODwasnotedwhen‘t’increased>10min=>thereisanoptimalvaluefor‘t’toinfluenceXCOD.

Page 64: ORANGE COUNTY SANITATION DISTRICT BIOSOLIDS MASTER …

Final – May 9, 2017  A‐22  Biosolids Master Plan 

RESEARCH GROUP OR BODY 

SOURCE  PAPER TITLE  MAIN FINDINGS 

o Concentrationofammonia‐nitrogenincreasedwith‘t’beforedecreasing=>totalnitrogenistransformedtoNH3‐Nbeforedegradingovertime. Influenceofpressureontheoxidationrateisstillnotclear.

Zhong,C.etal(2015)

ChemicalEngineeringJournal,Volume269,1June2015,Pages343–351

Anewsystemdesignforsupercriticalwateroxidation

TheSCWO,atechnologywithgreatpotential,islaggingbehindtheexpectationincommercialdevelopment.Mostofthefull‐scalecommercialplantshavebeenshutdownandonlytwoofthemareinoperationasofJanuary2012.Corrosionandpluggingarethemainobstaclesoccurringmainlyinthehighpressureandhightemperature(HPHT)sections:Preheater,Reactor,Coolerandheatexchanger.

Sofar,asupermaterialthatcanwithstandallcorrosionconditionsinSCWOhasnotyetbeenreported.ThereforeanappropriatesystemdesignforSCWOisnecessary.

AnovelreactorconceptsnamedasDynamicGasSealWallReactor(DGSWR)wasadopted,whichwasoptimizedfromTranspiringWallReactor(TWR)designandwasdesignedtohandlethereactorcorrosionandpluggingproblems.(PurewaterwasusedasthetranspiringfluidinTWRandwasreplacedbyairinDGSWR,whichistheessentialdifferencebetweenthesetwotypesofreactors).Atechnologyofmulti‐feedinjectionwasdesignedtohandlethewastepreheatingproblems.Alab‐scaleSCWOdevicebasedonthisnoveldesignwasmanufacturedandtestedunder28–29MPaaround400°C.

SewagesludgefromXiaojiaRiverwastewatertreatmentplantwithaninitialsolidcontentof19.73%DSwasdilutedto2.62–11.78%DStoincreasethefluidity.

Alab‐scaleSCWOsystembasedondynamicgassealwallreactor(DGSWR)isdescribed,testedanddiscussedindetail.

Preliminaryexperimentalresults:

ThepreheatingproblemsofwastewithhighsolidcontenthasbeensolvedandthegassealofDGSWRhasbeensuccessfullyverifiedunder28–29MPaandaround400°C.

Throughthemulti‐feedinjectiontechnologiessewagesludgewith2.62–11.78%drysolidhasbeensafelypumpedandpreheated,andmixedwithhightemperaturewatertoformsupercriticalmedium.

TheCODremovalefficiencycanreachupto99.15%. ShortcomingsofthenewSCWOsystem:

o Solidprecipitationduetothecounter‐currentofupwardreactionmediumanddownwardsolidparticles.ThestructureoftheSCWOsystemshouldbeadjustedtoinsurethatthereactionmediumandsolidparticleswillformasaco‐currentflowratherthanacounter‐currentflow.

o Insufficientstabilityandflowrateofairstream,whichleadstoloseefficacyofgassealandlowoxygenexcess,respectively.Theairmassflowrateshouldbeincreasedandairstreamshouldbepumpedsmoothlyandisotropic‐dispersed.

o Enhancingheatpreservationisalsonecessary.o Alltheaforementionedimprovementswillbeinvestigatedinfuture.

Page 65: ORANGE COUNTY SANITATION DISTRICT BIOSOLIDS MASTER …

TM‐9: Aqua Critox Review | Orange County Sanitation District 

Final – May 9, 2017  B‐1  Master Plan Biosolids  

Appendix B – QC Review Affidavits ThefollowingisacopyoftheQCaffidavits,whicharesignedbythefollowingpeoplewhoreviewedTM‐9:

TimHaug(TimHaugConsulting)

TomChapman(B&C)

Page 66: ORANGE COUNTY SANITATION DISTRICT BIOSOLIDS MASTER …

Orange County Sanitation District I TM-9: Aqua Critox Review

QUALITY CONTROL AFFIDAVITBiosolids Master Plan, Proiect No. PSl5-01TM-9 : Aqua Critox Review

This submittal has been reviewed for technical and editorial content

Reviewer Signature

Reviewer Name

Reviewer Firm

Final - May 9,20!7 Biosolids Master Plan

Page 67: ORANGE COUNTY SANITATION DISTRICT BIOSOLIDS MASTER …