orbital mechanics - model & simulation software (om...

402
www.myreaders.info ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM-MSS) Earth, Sun, Moon & Satellites Motion in Orbit - Model & Simulation Software. RC Chakraborty (Retd), Former Director, DRDO, Delhi & Visiting Professor, JUET, Guna www.myreaders.info, [email protected], http://www.myreaders.info/html/orbital_mechanics.html, Revised Dec. 16, 2015, pp 1 - 402 INTRODUCTION : Orbital Mechanics - Model & Simulation Software (Om-Mss) . A Monograph of Earth, Sun, Moon & Satellites Motion in Orbit with Examples, Problems and Software Driven Solutions. We look into space from Earth, which is 3rd planet from Sun. Earth takes around 365.25 days to moves around Sun in an Elliptical orbit. The average distance from the Earth to the Sun is called one Astronomical Unit (AU); 1 AU = 149,597,870.7 km. Mars, is 4th planet from Sun, that takes 686.971 Earth days to orbit around Sun. The orbital path of Mars is highly eccentric. Mars & Earth move along their orbits, and come near to one another approximately every two years. This approach of coming near facilitate launching of spacecraft every two years, even that takes about eight months to reach Mars. Example : On Apr. 08, 2014, the near or close distance between Mars and Earth was 92.4 million km. Moon moves around Earth in the same kind of orbit. The Moon is the Earth's only natural Satellite. The average distance of the Moon from the Earth is 384,403 km. A Satellite is an artificial object, intentionally placed into orbit. Thousands of Satellites are launched into orbit around Earth. A few Satellites called Space Probes have been placed into orbit around Moon, Mercury, Venus, Mars, Jupiter, Saturn, etc. Understanding the motion of Earth around Sun, and the motion of Moon and Satellites around Earth is of interest to many. Presented here a Monograph of 'ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM-MSS)', to Simulate Motion of Sun, Earth, Moon & Satellites. The OM-MSS Software is written in 'C' Language, the Compiler used is Dev C++ and the Platform is a Windows 7, 64 bit Laptop. The Source Code, around 30,000 Lines, is Compiled. The 'OM-MSS.EXE' File generated is of Size 1.5 KB. The Executable File, < OM-MSS.EXE >, is RUN Step-by-Step for a Set of Inputs. The Results seen on Computer Screen are put in a File, that in effect becomes 'A Monograph of Orbital Mechanics with Examples, Problems and Software Driven Solutions'. The execution of 'Orbital Mechanics - Model & Simulation Software (OM-MSS)', illustrates its Scope, Capability, Accuracy, and Usage. www.myreaders.info Return to Website

Upload: vudieu

Post on 13-May-2018

258 views

Category:

Documents


4 download

TRANSCRIPT

Page 1: ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM …myreaders.info/00_Orbital__Mechanics__-__Model_____Simulation... · ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM-MSS)

www.m

yrea

ders

.inf

o

ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM-MSS) Earth, Sun, Moon & Satellites Motion in Orbit - Model & Simulation Software. RC Chakraborty (Retd), Former Director, DRDO, Delhi & Visiting Professor, JUET, Guna

www.myreaders.info, [email protected], http://www.myreaders.info/html/orbital_mechanics.html, Revised Dec. 16, 2015, pp 1 - 402

INTRODUCTION : Orbital Mechanics - Model & Simulation Software (Om-Mss) . A Monograph of Earth, Sun, Moon & Satellites Motion in Orbit with Examples, Problems and Software Driven Solutions. We look into space from Earth, which is 3rd planet from Sun. Earth takes around 365.25 days to moves around Sun in an Elliptical orbit. The average distance from the Earth to the Sun is called one Astronomical Unit (AU); 1 AU = 149,597,870.7 km. Mars, is 4th planet from Sun, that takes 686.971 Earth days to orbit around Sun. The orbital path of Mars is highly eccentric. Mars & Earth move along their orbits, and come near to one another approximately every two years. This approach of coming near facilitate launching of spacecraft every two years, even that takes about eight months to reach Mars. Example : On Apr. 08, 2014, the near or close distance between Mars and Earth was 92.4 million km. Moon moves around Earth in the same kind of orbit. The Moon is the Earth's only natural Satellite. The average distance of the Moon from the Earth is 384,403 km. A Satellite is an artificial object, intentionally placed into orbit. Thousands of Satellites are launched into orbit around Earth. A few Satellites called Space Probes have been placed into orbit around Moon, Mercury, Venus, Mars, Jupiter, Saturn, etc. Understanding the motion of Earth around Sun, and the motion of Moon and Satellites around Earth is of interest to many. Presented here a Monograph of 'ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM-MSS)', to Simulate Motion of Sun, Earth, Moon & Satellites.

The OM-MSS Software is written in 'C' Language, the Compiler used is Dev C++ and the Platform is a Windows 7, 64 bit Laptop. The Source Code, around 30,000 Lines, is Compiled. The 'OM-MSS.EXE' File generated is of Size 1.5 KB. The Executable File, < OM-MSS.EXE >, is RUN Step-by-Step for a Set of Inputs. The Results seen on Computer Screen are put in a File, that in effect becomes 'A Monograph of Orbital Mechanics with Examples, Problems and Software Driven Solutions'. The execution of 'Orbital Mechanics - Model & Simulation Software (OM-MSS)', illustrates its Scope, Capability, Accuracy, and Usage.

www.myreaders.info

Return to Website

Page 2: ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM …myreaders.info/00_Orbital__Mechanics__-__Model_____Simulation... · ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM-MSS)

www.m

yrea

ders

.inf

o

The OM-MSS Software is quite exhaustive for beginners, experts, researchers & professional in Spherical Astronomy. The source code of OM-MSS Software in full or in parts has a cost if there is buyer. The cost has not been evaluated / decided. The OM-MSS Software includes the following : (a) Astronomical Time Standards and Time Conversions Utilities : GMT - Greenwich Mean Time, LMT - Local Mean Time, LST - Local Sidereal Time, UT - Universal Time, ET - Ephemeris Time, JD - Julian Day, Standard Epoch J2000, Gregorian Calendar date and more. (b) Positional Astronomy of Earth, Sun, Moon, and Satellites Motion in Orbit, includes computations of : * Position of Sun and Position of Earth on Celestial Sphere at Epoch ; * Keplerian elements : Inclination, RA of asc. Node, Eccentricity, Arg. of Perigee, Mean Anomaly, Mean Motion; * Motion Irregularities : Mean, Eccentric and True anomaly in deg; * Precise Time at Earth Orbit Points : Perihelion, Aphelion, Equinoxes, Solstices, Semi-Major & Minor-axis; * Astronomical years : Anomalistic, Tropical, and Sidereal Years; * Four Seasons : Spring, Summer, Autumn and Winter start time and duration; * Position of Satellites around Earth : Keplerian elements and State Vectors at epoch, and computing, Sub-Sat point lat/log, EL & AZ angles, Distances, Velocity, and more; * Satellite Pass, Ground Trace for Earth Stn using NASA/NORAD 2-line bulletins; (c) Customized Utilities and products : On special request either developed or configured and generated. These are Presented in Section - 1 to 8. The Section - 9 Containes References, and Section - 10 Containes few related Diagrams. Next : Content Index Table.

Page 3: ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM …myreaders.info/00_Orbital__Mechanics__-__Model_____Simulation... · ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM-MSS)

www.m

yrea

ders

.inf

o

Index Table : OM-MSS Sections / Sub Sections, Pages & Titles. (the page number is same as seen in the pdf document status bar) SECTIONS PAGES CONTENTS : Sections / Sub Sections Titles 1 6 ASTRONOMICAL TIME STANDARDS AND TIME CONVERSION UTILITIES. 1.1 12 Conversion of Universal Time (year, month, day, hour decimal) To Julian Day. 1.2 13 Conversion of Julian Day To Universal Time (year, month, day, hour decimal). 1.3 14 Conversion of Fundamental Epoch To Julian day and Julian century. 1.4 15 Add or Subtract time (days, hour, minute seconds) to or from input time. 1.5 16 Julian day for start of any Year. 1.6 17 Solar Time : Local Mean Solar Time (LMT) over observer's Longitude, and Greenwich Mean Time (GMT). 1.7 21 Sidereal Time : Greenwich universal time at hour 0.0 (ST0) and Greenwich Mean Sidereal Time (GMST) at input UT. 1.8 24 Sidereal Time : Greenwich Sidereal Time (GST), Greenwich Hour Angle (GHA), and Mean Sidereal Time (MST) at input UT. 1.9 26 Sidereal Time : LMST is Local Mean Sidereal time over observer's Longitude and GMST is Greenwich Mean Sidereal Time. 1.10 28 Time Conversions : LMT to LST, LST to LMT, LMT to LMST, LMST to LMT. 1.11 32 Concluding Time Standards and Time Conversion Utilities (Sections 1.0 to 1.10). 2 33 POSITIONAL ASTRONOMY : EARTH ORBIT AROUND SUN, ANOMALIES & ASTRONOMICAL EVENTS - EQUINOXES, SOLSTICES, YEARS & SEASONS. 2.1 41 Earth Orbit : Constants used in OM-MSS Software. 2.2 43 Earth Mean anomaly and True anomaly at Input UT, Since Standard Epoch J2000, using standard analytical expressions. 2.3 44 Earth Orbit Input Year : Precise Universal Time (UT) at orbit points - Perihelion and Aphelion. 2.4 46 Earth Orbit Input Year : Precise Universal Time (UT) at orbit points - Vernal Equinox and Autumnal Equinox. 2.5 47 Earth Orbit Input Year : Precise Universal Time (UT) at orbit points - Summer Solstice and Winter Solstice. 2.6 48 Earth Orbit Input Year : Precise Universal Time (UT) at orbit points - Semi-Major Axis and Semi-Minor Axis. 2.7 49 Earth Orbit Input Year : Astronomical Years - Anomalistic, Tropical, and Sidereal Years. 2.8 50 Earth Orbit Oblateness : Semi-Major Axis and Semi-Minor Axis. 2.9 52 Earth Orbit Input Year : Mean anomaly, Eccentric anomaly, True anomaly at UT, based on algorithms of iterative method. 2.10 54 Earth Orbit Input Year : Four Seasons - Spring, Summer, Autumn, and Winter. 2.11 56 Concluding Astronomical Events Anomalies, Equinoxes, Solstices, Years & Seasons (Sections 2.0 to 2.10).

Page 4: ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM …myreaders.info/00_Orbital__Mechanics__-__Model_____Simulation... · ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM-MSS)

www.m

yrea

ders

.inf

o

3 57 POSITION OF SUN ON CELESTIAL SPHERE AT INPUT UNIVERSAL TIME (UT). 3.1 59 Sun Positional Parameters on Celestial Sphere : Input Time (UT) Standard Epoch JD2000. 3.2 60 Sun Positional Parameters on Celestial Sphere : Input Year Time when Earth is at Perihelion. 3.3 61 Sun Positional Parameters on Celestial Sphere : Input Year Time when Earth is at Vernal equinox. 3.4 62 Sun Positional Parameters on Celestial Sphere : Input Year Time when Earth is at Summer solstice. 3.5 63 Sun Positional Parameters on Celestial Sphere : Input Year Time when Earth is at Aphelion. 3.6 64 Sun Positional Parameters on Celestial Sphere : Input Year Time when Earth is at Autumnal equinox. 3.7 65 SUN Positional Parameters on Celestial Sphere : Input Year Time when Earth is at Winter solstice. 3.8 66 Concluding Sun Position on Celestial Sphere (Sections 3.0 to 3.7). 4 68 POSITION OF EARTH ON CELESTIAL SPHERE AT INPUT UNIVERSAL TIME (UT). 4.1 71 Earth Positional Parameters on Celestial Sphere : Input Time (UT) Standard Epoch JD2000. 4.2 84 Earth Positional Parameters on Celestial Sphere : Input Year Time when Earth is at Perihelion. 4.3 97 Earth Positional Parameters on Celestial Sphere : Input Year Time when Earth is at Vernal equinox. 4.4 110 Earth Positional Parameters on Celestial Sphere : Input Year Time when Earth is at Summer solstice. 4.5 123 Earth Positional Parameters on Celestial Sphere : Input Year Time when Earth is at Aphelion. 4.6 136 Earth Positional Parameters on Celestial Sphere : Input Year Time when Earth is at Autumnal equinox. 4.7 149 Earth Positional Parameters on Celestial Sphere : Input Year Time when Earth is at Winter solstice. 4.8 162 Concluding Earth Position on Celestial Sphere (Sections 4.0 to 4.7). 5 164 SATELLITES ORBIT ELEMENTS : EPHEMERIS, Keplerian ELEMENTS, STATE VECTORS 5.1 170 NASA/NORAD 'Two-Line Elements'(TLE) Ephemeris data set. 5.2 174 Conversion of Keplerian Element Set to State Vector Set and vice versa. 5.3 186 Satellite Orbit Keplerian element set at Perigee prior to Epoch. 5.4 192 Concluding Satellites Ephemeris Data Set (Sections 5.0 to 5.3).

Page 5: ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM …myreaders.info/00_Orbital__Mechanics__-__Model_____Simulation... · ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM-MSS)

www.m

yrea

ders

.inf

o

6. 193 SATELLITES MOTION AROUND EARTH : ORBITAL & POSITIONAL PARAMETERS AT EPOCH. 6.1 195 LANDSAT 8 : Orbital & Positional parameters corresponding to input 'Two-Line Elements'(TLE) Bulletins. 6.2 207 SPOT 6 : Orbital & Positional parameters corresponding to input 'Two-Line Elements'(TLE) Bulletins. 6.3 219 CARTOSAT 2B : Orbital & Positional parameters corresponding to input 'Two-Line Elements'(TLE) Bulletins. 6.4 231 ISS (ZARYA) : Orbital & Positional parameters corresponding to input 'Two-Line Elements'(TLE) Bulletins. 6.5 243 GSAT-14 : Orbital & Positional parameters corresponding to input 'Two-Line Elements'(TLE) Bulletins. 6.6 255 MOON : Orbital & Positional parameters corresponding to input 'Two-Line Elements'(TLE) Bulletins. 6.7 267 Concluding Satellites Orbital & Positional Parameters At Epoch (Sections 6.0 to 6.6). 7 268 SATELLITE PASS FOR EARTH STN - PREDICTION OF GROUND TRACE COORDINATES, LOOK ANGLES, UNIVERSAL/LOCAL TIME & MORE. 7.1 270 LANDSAT 8 : Sat Pass for Earth Stn - Prediction of Ground Trace, Look Angles & more at Instantaneous Time. 7.2 290 SPOT 6 : Sat Pass for Earth Stn - Prediction of Ground Trace, Look Angles & more at Instantaneous Time. 7.3 310 CARTOSAT 2B : Sat Pass for Earth Stn - Prediction of Ground Trace, Look Angles & more at Instantaneous Time. 7.4 330 ISS (ZARYA) : Sat Pass for Earth Stn - Prediction of Ground Trace, Look Angles & more at Instantaneous Time. 7.5 350 GSAT-14 : Sat Pass for Earth Stn - Prediction of Ground Trace, Look Angles & more at Instantaneous Time. 7.6 370 MOON : Sat Pass for Earth Stn - Prediction of Ground Trace, Look Angles & more at Instantaneous Time. 7.7 390 Concluding Satellites Passes - Prediction of Ground Trace Coordinates, Look Angles & more at Instantaneous Time. 8 391 CONCLUSION : ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM-MSS). 9 392 REFERENCES : TEXT BOOKS & INTERNET WEB LINKS. 10 399 ANNEXURE : A Collection of few related Diagrams / Help. Move on to Section (1 to 9) While the Executable File, < OM-MSS.EXE >, is RUN for a Set of Inputs. Next Section - 1 Time Conversion Utilities

Page 6: ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM …myreaders.info/00_Orbital__Mechanics__-__Model_____Simulation... · ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM-MSS)

www.m

yrea

ders

.inf

o

OM-MSS Page 6 OM-MSS Section - 1 ------------------------------------------------------------------------------------------------------1 ASTRONOMICAL TIME STANDARDS AND TIME CONVERSION UTILITIES First look into few preliminaries and then move to time conversion utilities. Time Abbreviations : GMT - Greenwich Mean Time, LMT - Local Mean Time, LST - Local Sidereal Time, Sidereal Time, Solar Time, LMST - Local Mean Sidereal Time, GMST - Greenwich Mean Sidereal Time, GAST - Greenwich Apparent Sidereal Time, TAI - International Atomic Time, TT - Terrestrial Time, TDT - Terrestrial Dynamical Time, TCB - Barycentric Coordinate Time, TCG - Geocentric Coordinate Time, UT - Universal Time, UTC - Coordinated Universal Time, JD - Julian Day, ET - Ephemeris Time, BCE - Before the Common/Current/Christian Era, CE - Common Era/Current Era/Christian Era, Gregorian calendar. Time Standards and designations : Time is a dimension in which the events can be ordered from the past through the present into the future. Our clocks are set to run (approximately) on solar time (sun time). For astronomical observations, we need to use sidereal time (star time). Earth rotation is considered relative to the stars. One earth rotation is the time between two successive meridian passages of the same star. One rotation of Earth is one sidereal day, which is a little shorter than a solar day; ie, one mean sidereal day is about 0.99726958 mean solar day. Day is a unit of time. A day is measured from local noon to the following local noon. In common usage, a day consists 24 hours, noon is 12.00 hours. Solar Time is based on the rotation of the Earth with respect to the Sun. There are two types of solar time, - Apparent or True Solar Time is, that measured by direct observation of the Sun. It is not uniform throughout the year; - Mean Solar Time is, that would be measured if the Sun traveled at a uniform apparent speed throughout the year. Our clocks use Mean Solar Time. Solar day is the time for Earth to make a complete rotation on its axis relative to the Sun; - Apparent or True Solar Day varies through the year, that can be 20 seconds shorter in September and 30 seconds longer in December. This variaion is because of inclination (23.4392794383 deg) of Earth's axis of rotation and the elliptical orbit of Earth around the Sun. - Mean Solar Day, is average of true solar day during entire year, contains 86,400 mean solar seconds. The mean solar day is measured from midnight to midnight where midnight is hour 00. The mean solar day is divided into 24 solar hours, while each solar hour is divided into 60 solar minutes, and each solar minute divided into 60 solar seconds.

Page 7: ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM …myreaders.info/00_Orbital__Mechanics__-__Model_____Simulation... · ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM-MSS)

www.m

yrea

ders

.inf

o

OM-MSS Page 7 Equation of time describes the discrepancy between the Apparent Solar time and the Mean Solar time. In a year, compared to Mean Solar time the Apparent Solar time can be ahead (fast) or behind (slow) or near zeros (same). The typical values are : ahead (fast) as much as 16 min 33 sec around 3 Nov., or behind (slow) as much as 14 min 6 sec around 12 Feb., or near zeros (same) around 15 April, 13 June, 1 Sept and 25 Dec. Solar year is average of 400 consecutive civil years having 97 leap years, ie ((400 x 365) + 97) = 146097 / 400 = 365.242500 solar days. Our clocks are set to run on solar time. But for astronomical observations, we need to use sidereal time (star time). Sidereal Time is based on the rotation of the Earth with respect to fixed stars. ST is a measure of the hour angle of the Vernal equinox. - Apparent Sidereal Time is measured, if the hour angle is with respect to the true equinox, - Mean Sidereal Time is measured, if the hour angle is with respect to the mean equinox, Sidereal Day is equal to the interval of time between two successive transits of the vernal equinox. At Vernal equinox transit point hour angle is zero; - Apparent or True sidereal Day is affected by the motion of true equinox due to 'Precession' and 'Nutation'; - Mean Sidereal Day is affected by the motion of mean equinox due to Precession only; Precession is a change in orientation of rotational axis, slowly westward relative to the fixed stars completing one revolution in about 26,000 years. It is caused by the gravity of the Moon and Sun acting on the Earth. Nutation is a small cyclical motion superimposed upon the steady 26,000 year Precession of the Earth's axis of rotation. It is caused by the gravitational effect of the 18.6-year rotation period of the Moon's orbit. Mean sidereal day is 23.9344699 hours or 23 hours, 56 minutes, 4.0916 seconds, (ie, one mean sidereal day is about 0.99726958 mean solar day). A clock regulated to Apparent Sidereal time compared with one regulated to Mean Sidereal time, the diff is 2 to 3 sec in 19 years is no inconvenience. Sidereal year is the time taken by Earth to complete one revolution of its orbit, measured against a fixed frame of reference (as the fixed stars). A Sidereal year is approximately 365.256363 days, is slightly longer than the solar year (365.2425 days). The actual durations differ from year to year because the motion of Earth is influenced by the gravity of Moon and other planets. Sidereal year average duration is precisely 365.256363004 mean solar days (or 365day, 6hr, 9min, 9.76sec in units of mean solar time) at epoch J2000.0, ie YY 2000, MM 1, Hr 12. Thus, the earth mean motion rev per day around sun = 1.0 / 365.256363004. Sidereal time (ST) of a location is defined by its geographical longitude, thus called Local Sidereal time (LST) of the location.

Page 8: ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM …myreaders.info/00_Orbital__Mechanics__-__Model_____Simulation... · ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM-MSS)

www.m

yrea

ders

.inf

o

OM-MSS Page 8 For observers over Greenwich, whose longitude is set at 0 degrees, the local sidereal time (LST) = Greenwich Sidereal Time (GST) . For Observers over other longitude location, the LST is calculated using formula LST = GST + observer's log in hr : min : sec . Earth rotates through 360 deg longitude. The angle between two longitudes is measured in degree or in time, with 24 hr = 360 deg, ie 1 hr = 15 deg. This means Sun moves through 15 deg of longitude in 1 hour, or 15 minutes of arc in 1 minute of time. Hour Angle HA of an object is its Geographic Position (GP), measured around the celestial equator, westward from the observer's meridian. Greenwich hour angle GHA is angular distance of Geographic Position (GP) of a celestial body, measured (in 0-360 deg) westward from Greenwich (0 deg). Sidereal hour angle SHA is angular distance of of Geographic Position (GP) of a body (X), measured (in 0-360 deg) westward from the point of Aries. Relation GHA of a body = SHA of the body + GHA of Aries. Local hour angle LHA is angular distance of between the meridian of the celestial body and the meridian of the observer, Relation LHA of a body) = GHA of the body - Longitude of observer. Note : Longitude is an angular distance in degree, East(+ve) or West(-ve) of the prime meridian. This notation is popular for public use. This means, longitude increases east or west of the prime meridian (from 0 at prime meridian to 180 on other side of Earth). However, representing longitude 0 to +360 deg east only from Greenwich is preferred since the satellites go around and that makes sense for the longitude to keep increasing if the satellite moves forward, else calculations need to track switching of east or west of longitude. Therefore remember, all through the longitude is represented as 0 to +360 deg east only from Greenwich. For more about Sidereal Time, read at http://en.wikipedia.org/wiki/Sidereal_time , http://star-www.st-and.ac.uk/~fv/webnotes . GMT - Greenwich Mean Time, was originally referred to Mean Solar Time at Greenwich, later adopted as a global time standard. GMST - Greenwich Mean Sidereal Time, is mean sidereal time at zero longitude; GMST is in degree. LMST - Local Mean Sidereal Time, is mean sidereal time at your longitude; LMST is in degree. LMT - Local Mean Solar Time; LMT at zero meridian is Universal time (UT1) also called Greenwich mean time (GMT)

Page 9: ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM …myreaders.info/00_Orbital__Mechanics__-__Model_____Simulation... · ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM-MSS)

www.m

yrea

ders

.inf

o

OM-MSS Page 9 UT - Universal Time, is International time standard for astronomy & navigation, introduced in 1928 by the International Astronomical Union (IAU). UT is modern continuation of Greenwich Mean Time (GMT), based on sidereal time at Greenwich, with the day starting at midnight. UT is a time that Earth's rotation determines, no one controls it. The length of a UT second is defined by the period of Earth's revolution around Sun. UT has many versions. UT is also known as UT0. UT becomes UT1 when it is corrected for the irregular movements of the terrestrial poles. UT1 - In conformance with IAU, the Greenwich Mean Sidereal Time GMST is linked directly to Universal Time UT1 through the equation : GMST = 24110.54841 + 8640184.812866 * T + 0.093104 * T^2 - 0.0000062 * T^3 ; where 24110.4581 in seconds is 6h 41m 50.54841 , T is in Julian centuries from epoch JD2000 = 2451545.0, T = d / 36525, d = JD - 2451545.0, JD is input UT in Julian days LMST = GMST + (observer's east longitude); LMST is usually referred as LST in observatory. UTC - Coordinated Universal Time, a variant of UT, replaced Greenwich Mean Time (GMT) on 1 January 1972 as international time reference. UTC is based on atomic measurements rather than the earth's rotation. UTC is a human invention of highly precise clocks that keep time. UTC is primary time standard by which the world regulates clocks and time for : 1. Internet & World Wide Web standards, the network time protocol over internet for the clocks of computers & servers, the online services in aviation, the weather forecasts and others rely on UTC which is universally accepted time. 2. UTC divides time into conventional days, hours, minutes and seconds. Days are identifiable using Gregorian calendar and Julian day numbers. A day contains 24 hours, hour contains 60 minutes. A minute usually contains 60 seconds but rarely adjusted to have a leap second. All smaller time units are of constant duration for sub-microsecond precision. Note (UTC, UT, & leap second) : The length of a UTC second is defined by count of radiation cycles of atomic transition of element cesium, and not related to any astronomical phenomena. Contrary to this, the length of a UT second is defined in terms of period of Earth's revolution around Sun. Thus, the two time scale are indepedent but controlled by international agreement that UTC cannot differ from UT or UT1 by more than 0.9 second. When the difference crosses this limit of 0.9 second, then one-second change called a 'leap second' is added into UTC. This occurs about once a year. TAI - International Atomic Time, is an extreme precise means of time-keeping, deviates only 1 second in about 20 million years. It is based on a continuous counting of the SI second, does not take into account the Earth's slowing rotation which determines the length of a day. TAI is compared to UT1 and before the difference reaches 0.9 seconds, a leap second is added to UTC.

Page 10: ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM …myreaders.info/00_Orbital__Mechanics__-__Model_____Simulation... · ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM-MSS)

www.m

yrea

ders

.inf

o

OM-MSS Page 10 ET - Ephemeris Time, refers to time in any astronomical ephemeris, was introduced in 1950. ET is calculated from the positions of the sun and moon relative to the earth, assuming that Newton's laws are perfectly obeyed. ET, is reckoned from the beginning of the calendar year A.D. 1900, when the geometric mean longitude of the sun was 279 deg, 41 min, 48.04 sec, at this instant Ephemeris Time was 1900 January 0d 12h precisely. Gregorian calendar is an internationally accepted civil calendar, also called Western or Christian calendar, (Year, Months and Days). A year is divided into twelve months. A normal year consists of 365 days and in a leap year a leap day is added as 29 February making the year 366 days. A leap year occurs every 4 years, but the Gregorian calendar omits 3 leap days every 400 years. The start of day is Midnight as 00 hr: 00 mm: 00 sec UT/GMT. Julian Day (JD) : Refers to a continuous count of days since the beginning of the Julian Period. Julian day number is a count of days elapsed since Greenwich mean noon on 1 January 4713 B.C. BCE - Before the Common/Current/Christian Era, CE - Common Era/Current Era/Christian Era. BCE 4713 January 1 00:00:00.0 UT is JD -0.500000 BCE 4713 January 1 12:00:00.0 UT is JD 0.000000 CE 1858 November 16 12:00:00.0 UT is JD 2400000.0 CE 1858 November 17 00:00:00.0 UT is JD 2400000.5 MJD is Modified Julian day begins at midnight civil date, defined as MJD = JD - 2400000.5 An Epoch specifies a precise moment in time. Fundamental epoch is J1900 means Y 1899, M 12, D 31, H 12.0 = 2415020.00 JD is based on Newcomb planatory theory, used till 1984. New standard epoch is J2000 means Y 2000, M 01, D 01, H 12.0 = 2451545.0000000000 JD One Julian century (JC) is 36525 days. The start of New standard epoch is one Julian century (JC) after the Newcomb epoch. Julian epoch for beginning of year 2000 is Y 2000, M 1, D 1, H 12.0 = 2451545.000000000 Calculating Julian Day Number to Gregorian Calendar date or Gregorian Calendar date to Julian Day Number, is easy. The Julian Day Number so calculated is at 00 hours UT/GMT, on that date. For more about Time Scales : read at http://stars.astro.illinois.edu/celsph.html, http://www.ucolick.org/~sla/leapsecs/timescales.html

Page 11: ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM …myreaders.info/00_Orbital__Mechanics__-__Model_____Simulation... · ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM-MSS)

www.m

yrea

ders

.inf

o

OM-MSS Page 11 Concluding : A brief preamble of Time standards and designations were presented. However, unless otherwise specified, in OM-MSS Software : 1. Julian dates are widely used as time variables in the software. A julian day starts at midday 4713 B.C. 2. Standard epoch is Julian Day J2000 which means Y 2000, M 01, D 01, H 12.00 = 2451545.0000000000 3. Year, Month and Days are of Gregorian calendar. The BCE 4713 January 01 12:00:00.0 UT Monday, is JD 0.000000 . 4. A day is Mean Solar Day is average of true solar day during entire year. Our Clock follows Mean Solar Day. 5. A Mean solar day = 24h 00m 00s = 86400 sec is the time for a little more than one earth rotation ie 360.9856473356 deg . 6. Hours, Minutes, Seconds are in universal time UT over Greenwich; Midnight as 00 hr: 00 mm: 00 sec GMT . Year, Month, Day, Hours, Minutes, Seconds are unsiged +ve values. The time addition & subtraction are in Julian days, or in UT days, hours, minute, seconds, where day = 24 x 3600 seconds. 7. A Sidereal day is Mean sidereal day = 23h 56m 4.090538155680s = 86164.090538155680s is time for exact one earth rotation ie 360 deg . All you need to do is, convert universal time to your local time that corresponds to the longitude of your place. 8. Longitude is represented in 0 to +360 deg east only from Greenwich, since satellites go around & longitude keep increasing 0 to +360 deg, End of a brief on Time Designations, Time Standards. Move on to Time Conversion Utilities of OM-MSS Software, Next Precise time conversion utilities are presented in Sections (1.1 to 1.10) respectively : (a) Conversion of Universal Time (year, month, day, hour decimal) To Julian Day; (b) Conversion of Julian Day To Universal Time (year, month, day, hour decimal; (c) Conversion of Fundamental Epoch To Julian day and Julian century; (d) Add or Subtract time (days, hour, minute seconds) to or from input time; (e) Julian day for start of any Year; (f) Solar Time : Local Mean Solar Time (LMT) over observer's Longitude, and Greenwich Mean Time (GMT); (g) Sidereal Time : Greenwich universal time at hour 0.0 (ST0) and Greenwich Mean Sidereal Time (GMST) ; (h) Sidereal Time : Greenwich Sidereal Time (GST), Greenwich Hour Angle (GHA), and Mean Sidereal Time (MST) ; (i) Sidereal Time : Local Mean Sidereal Time (LMST) over observer's Longitude ; (j) Time Conversions : LMT to LST, LST to LMT, LMT to LMST, LMST to LMT ; Next Section - 1.1 Conversion of UT To JD

Page 12: ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM …myreaders.info/00_Orbital__Mechanics__-__Model_____Simulation... · ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM-MSS)

www.m

yrea

ders

.inf

o

OM-MSS Page 12 OM-MSS Section - 1.1 ---------------------------------------------------------------------------------------------------2 Conversion of Universal Time (year, month, day, hour decimal) To Julian Day, while Year 100 to 3500 1. Input UT year = 1899, month = 12, day = 31, hr = 12, min = 0, sec = 0.0000000000 Output julian_day = 2415020.0000000000 2. Input UT year = 2000, month = 1, day = 1, hr = 12, min = 0, sec = 0.0000000000 Output julian_day = 2451545.0000000000 3. Input UT year = 2000, month = 12, day = 31, hr = 11, min = 59, sec = 59.0000000000 Output julian_day = 2451909.9999884260 4. Input UT year = 2001, month = 1, day = 1, hr = 0, min = 0, sec = 0.0000000000 Output julian_day = 2451910.5000000000 5. Input UT year = 2050, month = 1, day = 1, hr = 12, min = 0, sec = 0.0000000000 Output julian_day = 2469808.0000000000 Note : The results verified & validated with those reported (Ref : http://aa.usno.navy.mil/data/docs/JulianDate.php). Next Section - 1.2 Conversion of JD To UT

Page 13: ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM …myreaders.info/00_Orbital__Mechanics__-__Model_____Simulation... · ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM-MSS)

www.m

yrea

ders

.inf

o

OM-MSS Page 13 OM-MSS Section - 1.2 ---------------------------------------------------------------------------------------------------3 Conversion of Julian Day To Universal Time (year, month, day, hour decimal), while Year 100 to 3500 1. Input julian_day = 2415020.0000000000 Output UT year = 1899, month = 12, day = 31, hr = 12, min = 0, sec = 0.0000000000 2. Input julian_day = 2451545.0000000000 Output UT year = 2000, month = 1, day = 1, hr = 12, min = 0, sec = 0.0000000000 3. Input julian_day = 2451909.9999884260 Output UT year = 2000, month = 12, day = 31, hr = 11, min = 59, sec = 59.0000054240 4. Input julian_day = 2451910.5000000000 Output UT year = 2001, month = 1, day = 1, hr = 0, min = 0, sec = 0.0000000000 5. Input Julian day = 2469808.0000000000 Output UT year = 2050, month = 1, day = 1, hr = 12, min = 0, sec = 0.0000000000 6. Input julian_day = 2451909.9999884260 Output UT Year = 2000, Year days decimal = 365.49999, Month = 12, Day = 31 Hours decimal = 11.99972, Hour = 11, Min = 59, Sec = 59.000 Note : The results verified & validated with those reported (Ref : http://aa.usno.navy.mil/data/docs/JulianDate.php). Next Section - 1.3 Conversion of Epoch To JD

Page 14: ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM …myreaders.info/00_Orbital__Mechanics__-__Model_____Simulation... · ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM-MSS)

www.m

yrea

ders

.inf

o

OM-MSS Page 14 OM-MSS Section - 1.3 ---------------------------------------------------------------------------------------------------4 Conversion of Fundamental Epoch To Julian day and Julian century. The Fundamental Newcomb Epoch J1900, was used till 1984, is replaced by New Standard Epoch J2000. The Newcomb Epoch J1900, is beginning of Y 1899, M 12, D 31, H 12.0. The New standard epoch J2000, is beginning of Y 2000, M 1, D 1, H 12.0. A Julian century = 36525 days. The New Epoch J2000, is one Julian century after Epoch J1900. 1. Input Fundamental Epoch J1900, corresponds to year = 1900, month = 1, day of month = 1, hours = 12.0. Output Julian day = 2415020.00000 2. Input New Standard Epoch J2000, corresponds to year = 2000, month = 1, day of month = 1, hours = 12.0. Output Julian day = 2451545.00000 3. A Julian century, 100 years = 36525 days from New Standard Epoch J2000. Prior to year 2000 will have negative Julian century value. Input Julian day = 2415021.0000000000, corresponds to year = 1900, month = 1, day_no_of_month = 1, hour decimal = 12.0000000000 Output Julian day, from Standard Epoch J2000, Converted to Julian century value is = -0.9999726215 Input Julian day = 2451545.0000000000, corresponds to year = 2000, month = 1, day_no_of_month = 1, hour decimal = 12.0000000000 Output Julian day, from Standard Epoch J2000, Converted to Julian century value is = 0.0000000000 Input Julian day = 2488070.0000000000, corresponds to year = 2100, month = 1, day_no_of_month = 1, hour decimal = 12.0000000000 Output Julian day, from Standard Epoch J2000, Converted to Julian century value is = 1.0000000000 Next Section - 1.4 Add or Subtract time To i/p time

Page 15: ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM …myreaders.info/00_Orbital__Mechanics__-__Model_____Simulation... · ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM-MSS)

www.m

yrea

ders

.inf

o

OM-MSS Page 15 OM-MSS Section - 1.4 ------------------------------------------------------------------------------------------------------5 Add or Subtract time (days, hour, minute seconds) to or from input time. 1. Add Days, hour, minute, seconds To any Input UT Year, month, day, hour, minute, seconds Input UT year = 2000, month = 1, day = 1, hr = 0, min = 0, sec = 0.0000000000 Add UT days = 365, hour = 6, minute = 0, seconds = 0.0000000000 Corresponds to days in decimal = 365.2500000000 Output UT year = 2000, month = 12, day = 31, hr = 6, min = 0, sec = 0.0000000000 2. Subtract Days, hour, minute, seconds To any Input UT Year, month, day, hour, minute, seconds Input UT year = 2000, month = 1, day = 1, hr = 6, min = 0, sec = 0.0000000000 Subtract UT days = 1, hour = 6, minute = 0, seconds = 0.0000000000 Corresponds to days in decimal = 1.2500000000 Output UT year = 1999, month = 12, day = 31, hr = 0, min = 0, sec = 0.0000000000 Next Section - 1.5 JD for start of year

Page 16: ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM …myreaders.info/00_Orbital__Mechanics__-__Model_____Simulation... · ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM-MSS)

www.m

yrea

ders

.inf

o

OM-MSS Page 16 OM-MSS Section - 1.5 ------------------------------------------------------------------------------------------------------6 Julian day for start of any Year. 1. Find Julian day for start of Epoch J2000, means the year 2000, M 1, D 1, H 12.0 Input Start of year = 2000, Output the correspnding Julian day is = 2451545.0000000000 2. Find Julian day for start of any other Year, M 1, D 1, H 12.0 Input Start of year = 2001, Output the correspnding Julian day is = 2451911.0000000000 Next Section - 1.6 LMT over Longitude and GMT

Page 17: ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM …myreaders.info/00_Orbital__Mechanics__-__Model_____Simulation... · ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM-MSS)

www.m

yrea

ders

.inf

o

OM-MSS Page 17 OM-MSS Section - 1.6 ------------------------------------------------------------------------------------------------------7 Solar Time : Local Mean Solar Time (LMT) over Observer's Longitude, and Greenwich Mean Time (GMT) over 0 deg Longitude. Our Clocks are set on Solar time (Sun time), based on the rotation of the Earth with respect to the Sun. Solar day is the time for Earth to make a complete rotation on its axis relative to Sun; it varies through +30 to -20 seconds in a year. A Mean Solar Day (midnight as 0 hour), is average of true solar day during entire year, contains 86,400 mean solar seconds; A Day is measured midnight to midnight, is divided into 24 solar hours, each hour is 60 solar minutes, and each minute is 60 solar seconds. Longitude is angular distance in degree, East(+ve) or West(-ve) of the prime meridian. This notation is popular for public use. But for reasons explained before, the longitude is represented as 0 to +360 deg, east only from Greenwich. example, log 48 deg west is (360 - 48) = 320 deg east only from Greenwich; and Log 22.5 deg east is 22.5 deg east only from Greenwich Local Mean solar time (LMT) at 0 deg longitude, is Universal time (UT1), is Greenwich mean time (GMT). Presented below Conversion between UT(GMT) and LMT over Observer's Geographic Longitude. During conversion, a day change may occur. Chosen instances of Time/Longitudes that involve log 0 & 180 deg cross over : 82 deg W, 22.5 deg E, 15 deg W, 15 deg E, 195 deg W, 165 deg E. 1. Observer's Longitude West of Greenwich : 48 deg W meaning 312 deg East of Greenwich. A. Conversion GMT to LMT : Greenwch mean time (UT/GMT) over Greenwich To Local mean time (LMT) over observer's longitude. Input Longitude in deg = 312.00, convert to arc_deg = 312, arc_min = 0, arc_sec = 0.00, corresponds to angle hr = 20, min = 48, sec = 0.00 GMT year = 2011, month = 7, day = 14, hr = 23, min = 31, sec = 25.00000, over 0 deg longitude Output LMT year = 2011, month = 7, day = 14, hr = 20, min = 19, sec = 25.00001, over observer longitude B. Conversion LMT to GMT : Local mean time (LMT) over observer longitude To Greenwch mean time (UT/GMT) over Greenwich. Input Longitude in deg = 312.00, convert to arc_deg = 312, arc_min = 0, arc_sec = 0.00, corresponds to angle hr = 20, min = 48, sec = 0.00 LMT year = 2011, month = 7, day = 14, hr = 20, min = 19, sec = 25.00001, over observer longitude Output GMT year = 2011, month = 7, day = 14, hr = 23, min = 31, sec = 25.00001, over 0 deg longitude

Page 18: ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM …myreaders.info/00_Orbital__Mechanics__-__Model_____Simulation... · ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM-MSS)

www.m

yrea

ders

.inf

o

OM-MSS Page 18 2. Observer's Longitude East of Greenwich : 22.5 deg E meaning 22.5 deg East of Greenwich. A. Conversion GMT to LMT : Greenwch mean time (UT/GMT) over Greenwich To Local mean time (LMT) over observer's longitude. Input Longitude in deg = 22.50, convert to arc_deg = 22, arc_min = 30, arc_sec = 0.00, corresponds to angle hr = 1, min = 30, sec = 0.00 GMT year = 2011, month = 7, day = 14, hr = 23, min = 31, sec = 25.00000, over 0 deg longitude Output LMT year = 2011, month = 7, day = 15, hr = 1, min = 1, sec = 25.00001, over observer longitude B. Conversion LMT to GMT : Local mean time (LMT) over observer longitude To Greenwch mean time (UT/GMT) over Greenwich. Input Longitude in deg = 22.50, convert to arc_deg = 22, arc_min = 30, arc_sec = 0.00, corresponds to angle hr = 1, min = 30, sec = 0.00 LMT year = 2011, month = 7, day = 15, hr = 1, min = 1, sec = 25.00001, over observer longitude Output GMT year = 2011, month = 7, day = 14, hr = 23, min = 31, sec = 25.00001, over 0 deg longitude 3. Observer's Longitude West of Greenwich : 15 deg W meaning 345 deg East of Greenwich. A. Conversion GMT to LMT : Greenwch mean time (UT/GMT) over Greenwich To Local mean time (LMT) over observer's longitude. Input Longitude in deg = 345.00, convert to arc_deg = 345, arc_min = 0, arc_sec = 0.00, corresponds to angle hr = 23, min = 0, sec = 0.00 GMT year = 2011, month = 7, day = 14, hr = 0, min = 0, sec = 1.00000, over 0 deg longitude Output LMT year = 2011, month = 7, day = 13, hr = 23, min = 0, sec = 1.00001, over observer longitude B. Conversion LMT to GMT : Local mean time (LMT) over observer longitude To Greenwch mean time (UT/GMT) over Greenwich. Input Longitude in deg = 345.00, convert to arc_deg = 345, arc_min = 0, arc_sec = 0.00, corresponds to angle hr = 23, min = 0, sec = 0.00 LMT year = 2011, month = 7, day = 13, hr = 23, min = 0, sec = 1.00001, over observer longitude Output GMT year = 2011, month = 7, day = 14, hr = 0, min = 0, sec = 0.99999, over 0 deg longitude

Page 19: ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM …myreaders.info/00_Orbital__Mechanics__-__Model_____Simulation... · ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM-MSS)

www.m

yrea

ders

.inf

o

OM-MSS Page 19 4. Observer's Longitude East of Greenwich : 15 deg E meaning 15 deg East of Greenwich. A. Conversion GMT to LMT : Greenwch mean time (UT/GMT) over Greenwich To Local mean time (LMT) over observer's longitude. Input Longitude in deg = 15.00, convert to arc_deg = 15, arc_min = 0, arc_sec = 0.00, corresponds to angle hr = 1, min = 0, sec = 0.00 GMT year = 2011, month = 7, day = 14, hr = 0, min = 0, sec = 0.99999, over 0 deg longitude Output LMT year = 2011, month = 7, day = 14, hr = 1, min = 0, sec = 0.99998, over observer longitude B. Conversion LMT to GMT : Local mean time (LMT) over observer longitude To Greenwch mean time (UT/GMT) over Greenwich. Input Longitude in deg = 15.00, convert to arc_deg = 15, arc_min = 0, arc_sec = 0.00, corresponds to angle hr = 1, min = 0, sec = 0.00 LMT year = 2011, month = 7, day = 14, hr = 1, min = 0, sec = 0.99998, over observer longitude Output GMT year = 2011, month = 7, day = 14, hr = 0, min = 0, sec = 0.99999, over 0 deg longitude 5. Observer's Longitude West of Greenwich : 165 deg W meaning 195 deg East of Greenwich. A. Conversion GMT to LMT : Greenwch mean time (UT/GMT) over Greenwich To Local mean time (LMT) over observer's longitude. Input Longitude in deg = 195.00, convert to arc_deg = 195, arc_min = 0, arc_sec = 0.00, corresponds to angle hr = 13, min = 0, sec = 0.00 GMT year = 2011, month = 7, day = 14, hr = 3, min = 0, sec = 0.00000, over 0 deg longitude Output LMT year = 2011, month = 7, day = 13, hr = 15, min = 59, sec = 59.99999, over observer longitude B. Conversion LMT to GMT : Local mean time (LMT) over observer longitude To Greenwch mean time (UT/GMT) over Greenwich. Input Longitude in deg = 195.00, convert to arc_deg = 195, arc_min = 0, arc_sec = 0.00, corresponds to angle hr = 13, min = 0, sec = 0.00 LMT year = 2011, month = 7, day = 13, hr = 15, min = 59, sec = 59.99999, over observer longitude Output GMT year = 2011, month = 7, day = 14, hr = 3, min = 0, sec = 0.00000, over 0 deg longitude

Page 20: ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM …myreaders.info/00_Orbital__Mechanics__-__Model_____Simulation... · ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM-MSS)

www.m

yrea

ders

.inf

o

OM-MSS Page 20 6. Observer's Longitude East of Greenwich : 165 deg E meaning 165 deg East of Greenwich. A. Conversion GMT to LMT : Greenwch mean time (UT/GMT) over Greenwich To Local mean time (LMT) over observer's longitude. Input Longitude in deg = 165.00, convert to arc_deg = 165, arc_min = 0, arc_sec = 0.00, corresponds to angle hr = 11, min = 0, sec = 0.00 GMT year = 2011, month = 7, day = 14, hr = 3, min = 0, sec = 0.00000, over 0 deg longitude Output LMT year = 2011, month = 7, day = 14, hr = 14, min = 0, sec = 0.00001, over observer longitude B. Conversion LMT to GMT : Local mean time (LMT) over input longitude To Greenwch mean time (UT/GMT) over Greenwich. Input Longitude in deg = 165.00, convert to arc_deg = 165, arc_min = 0, arc_sec = 0.00, corresponds to angle hr = 11, min = 0, sec = 0.00 LMT year = 2011, month = 7, day = 14, hr = 14, min = 0, sec = 0.00001, over observer longitude Output GMT year = 2011, month = 7, day = 14, hr = 3, min = 0, sec = 0.00000, over 0 deg longitude Note : The results verified & validated with those reported (Ref : http://www.navy.gov.au/reserves/e-docs/DATA/NAVYPUBS/NAVYMAN/BRD45(2)/02.pdf ). Next Section - 1.7 Sidereal Time ST0 and GMST

Page 21: ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM …myreaders.info/00_Orbital__Mechanics__-__Model_____Simulation... · ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM-MSS)

www.m

yrea

ders

.inf

o

OM-MSS Page 21 OM-MSS Section - 1.7 ------------------------------------------------------------------------------------------------------8 Sidereal Time : Greenwich universal time at hour 0.0 (ST0) and Greenwich Mean Sidereal Time (GMST) at input Universal Time (UT). Astronomical observations need Sidereal time (Star time), but Our Clocks are set on Solar time (Sun time). Sidereal Time keeping system is based on Earth's rotation measured relative to fixed stars. To be specific, ST is hour angle of vernal equinox. Mean sidereal day is about 23 hours, 56 minutes, 4.0916 seconds (ie, 23.9344699 hours or 0.99726958 mean solar days). For finding Sidereal Time, there are many analytical equations comprising different constants and reference Julian day. ST0 is sidereal time of Greenwich at universal time (UT) hour 0.0, on 1st January of each year (e.g. ST0 = 100.807 deg for 2013, Jan.1, hr 0.0 ). GMST is Greenwich Mean Sidereal Time defined by Greenwich meridian and vernal equinox. GMST is hour angle of average position of vernal equinox - neglecting short-term effects of nutation. Presented below computed, ST0 and GMST of Greenwich at universal time (UT) hour 0.0, on 1st January of years 1900, 1999, 2000, 2013. ST0 of Greenwich at universal time (UT) hour 0.0, on 1st January of each year 1900, 1999, 2000, 2013 respectively. 1. Find ST0 Sidereal time in deg, of Greenwich Meridian. Input UT/GMT year = 1900, (means start of year on January 1, hr 0.0) Output ST0 in deg = 100.1838236674, converted into time unit hr = 6, min = 40, sec = 44.11768, at Greenwich Meridian 2. Find ST0 Sidereal time in deg, of Greenwich Meridian. Input UT/GMT year = 1999, (means start of year on January 1, hr 0.0) Output ST0 in deg = 100.2061912009, converted into time unit hr = 6, min = 40, sec = 49.48589, at Greenwich Meridian 3. Find ST0 Sidereal time in deg, of Greenwich Meridian. Input UT/GMT year = 2000, (means start of year on January 1, hr 0.0) Output ST0 in deg = 99.9674763217, converted into time unit hr = 6, min = 39, sec = 52.19432, at Greenwich Meridian 4. Find ST0 Sidereal time in deg, of Greenwich Meridian. Input UT/GMT year = 2013, (means start of year on January 1, hr 0.0) Output ST0 in deg = 100.8067795999, converted into time unit hr = 6, min = 43, sec = 13.62710, at Greenwich Meridian

Page 22: ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM …myreaders.info/00_Orbital__Mechanics__-__Model_____Simulation... · ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM-MSS)

www.m

yrea

ders

.inf

o

OM-MSS Page 22 GMST of Greenwich at universal time (UT) hour 0.0, on 1st January of each year 1900, 1999, 2000, 2013 respectively. A day change may occur, therefore GMST with date adjusted to calendar YY MM DD and UT hr mm sec is presented. 1. Find GMST Greenwich mean sidereal time in deg, of Greenwich Meridian, at any input Julian day, since Epoch J2000 Input UT/GMT year = 1900, month = 1, day = 1, hr = 0, min = 0, sec = 0.000, Corresponds to julian_day = 2415020.50000 Output GMST in deg = 100.1837763190, converted into time unit hr = 6, min = 40, sec = 44.10632, of day = 1, month = 1, year = 1900, 2. Find GMST Greenwich mean sidereal time in deg, of Greenwich Meridian, at any input Julian day, since Epoch J2000 Input UT/GMT year = 1999, month = 1, day = 1, hr = 0, min = 0, sec = 0.00000, Corresponds to julian_day = 2451179.50000 Output GMST in deg = 100.2065060288, converted into time unit hr = 6, min = 40, sec = 49.56145, of day = 1, month = 1, year = 1999, 3. Find GMST Greenwich mean sidereal time in deg, of Greenwich Meridian, at any input Julian day, since Epoch J2000 Input UT/GMT year = 2000, month = 1, day = 1, hr = 0, min = 0, sec = 0.00000, Corresponds to julian_day = 2451544.50000 Output GMST in deg = 99.9677946232, converted into time unit hr = 6, min = 39, sec = 52.27071, of day = 1, month = 1, year = 2000, 4. Find GMST Greenwich mean sidereal time in deg, of Greenwich Meridian, at any input Julian day, since Epoch J2000 Input UT/GMT year = 2013, month = 1, day = 1, hr = 0, min = 0, sec = 0.00000, Corresponds to julian_day = 2456293.50000 Output GMST in deg = 100.8071438223, converted into time unit hr = 6, min = 43, sec = 13.71452, of day = 1, month = 1, year = 2013,

Page 23: ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM …myreaders.info/00_Orbital__Mechanics__-__Model_____Simulation... · ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM-MSS)

www.m

yrea

ders

.inf

o

OM-MSS Page 23 GMST of Greenwich at universal time (UT) at hour 1.0, 6.0, 12.0, 18.0, 23.0 respectively of year 2013. A day change may occur, therefore GMST with date adjusted to calendar YY MM DD and UT hr mm sec is presented. 5. Find GMST Greenwich mean sidereal time in deg, of Greenwich Meridian, at any input Julian day, since Epoch J2000 Input UT/GMT year = 2013, month = 1, day = 1, hr = 1, min = 0, sec = 0.00000, Corresponds to julian_day = 2456293.54167 Output GMST in deg = 115.8482124098, converted into time unit hr = 7, min = 43, sec = 23.57098, of day = 1, month = 1, year = 2013, 6. Find GMST Greenwich mean sidereal time in deg, of Greenwich Meridian, at any input Julian day, since Epoch J2000 Input UT/GMT year = 2013, month = 1, day = 1, hr = 6, min = 0, sec = 0.00000, Corresponds to julian_day = 2456293.75000 Output GMST in deg = 191.0535555147, converted into time unit hr = 12, min = 44, sec = 12.85332, of day = 1, month = 1, year = 2013, 7. Find GMST Greenwich mean sidereal time in deg, of Greenwich Meridian, at any input Julian day, since Epoch J2000 Input UT/GMT year = 2013, month = 1, day = 1, hr = 12, min = 0, sec = 0.00000, Corresponds to julian_day = 2456294.00000 Output GMST in deg = 281.2999673747, converted into time unit hr = 18, min = 45, sec = 11.99217, of day = 1, month = 1, year = 2013, 8. Find GMST Greenwich mean sidereal time in deg, of Greenwich Meridian, at any input Julian day, since Epoch J2000 Input UT/GMT year = 2013, month = 1, day = 1, hr = 18, min = 0, sec = 0.00000, Corresponds to julian_day = 2456294.25000 Output GMST in deg = 11.5463792346, converted into time unit hr = 0, min = 46, sec = 11.13102, of day = 2, month = 1, year = 2013, 9. Find GMST Greenwich mean sidereal time in deg, of Greenwich Meridian, at any input Julian day, since Epoch J2000 Input UT/GMT year = 2013, month = 1, day = 1, hr = 23, min = 0, sec = 0.00000, Corresponds to julian_day = 2456294.45833 Output GMST in deg = 86.7517225072, converted into time unit hr = 5, min = 47, sec = 0.41340, of day = 2, month = 1, year = 2013, 10. Find GMST Greenwich mean sidereal time in deg, of Greenwich Meridian, at any input Julian day, since Epoch J2000 Input UT/GMT year = 2013, month = 1, day = 3, hr = 9, min = 11, sec = 56.61639, Corresponds to julian_day = 2456295.88329 Output GMST in deg = 241.1421329901, converted into time unit hr = 16, min = 4, sec = 34.11192, of day = 3, month = 1, year = 2013, Note : The results verified & validated with those reported (Ref : http://www.csgnetwork.com/siderealjuliantimecalc.html ). Next Section - 1.8 Sidereal Time GST, GHA and MST

Page 24: ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM …myreaders.info/00_Orbital__Mechanics__-__Model_____Simulation... · ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM-MSS)

www.m

yrea

ders

.inf

o

OM-MSS Page 24 OM-MSS Section - 1.8 ------------------------------------------------------------------------------------------------------9 Sidereal Time : Greenwich Sidereal Time (GST), Greenwich Hour Angle (GHA), and Mean Sidereal Time (MST) at input Universal Time (UT). Greenwich Sidereal Time (GST) is the Local Sidereal Time (LST) over Greenwich Meridian ie 0 deg longitude. The Local Sidereal Time (LST) over any longitude location = The Greenwich Sidereal Time (GST) + longitude of the location. The Greenwich Hour Angle (GHA) hour is the angle is between Greenwich Meridian and the Meridian of a celestial body, here it is first point of Aries . The Mean Sidereal Time (MST) of a locality is defined by its longitude; the MST over 0 deg longitude is often called Greenwich Mean sidereal Time (GMST). Finding Sidereal Time (ST) over Greenwich Meridian, corresponding to input Local time LMT over Greenwich ie UT/GMT . Note : Here GHA is GHA(Aries), and MST at 0 deg longitude is GMST; the Greenwich apparent sidereal time GAST = GMST + equation of the equinoxes; The angles are measured in deg or time, with 24 hr = 360 deg or 1 hr = 15 deg; thus GST(hour) = GHA(deg)/15. For finding GST and GHA, there are many analytical equations comprising different constants and reference Julian day. Here used two different equations for GST and GHA; the ref. Julian day for GST is JD1900 and for GHA is JD2000. Input UT/LMT year = 1986, month = 10, day = 23, hr = 15, min = 0, sec = 0.0000000000, over Greenwich Output Greenwich sidereal time (GST), Greenwich hour angle (GHA), Mean sidereal time (MST) 1. GST sidereal time in 0 to 360 deg over Greenwich at UT time = 256.7345487561 ie hour = 17, minute = 6, seconds = 56.29170 2. GHA hour angle in 0 to 360 deg over Greenwich at UT time = 256.7435082620 ie deg = 256, arc min = 44, arc sec = 36.62974 3. MST mean sidereal time in deg, over Greenwich at UT time = 256.7348202780 ie hour = 17, minute = 6, seconds = 56.35687 Input UT/LMT year = 2000, month = 1, day = 1, hr = 0, min = 0, sec = 0.0000000000, over Greenwich Output Greenwich sidereal time (GST), Greenwich hour angle (GHA), Mean sidereal time (MST) 1. GST sidereal time in 0 to 360 deg over Greenwich at UT time = 99.9674763217 ie hour = 6, minute = 39, seconds = 52.19432 2. GHA hour angle in 0 to 360 deg over Greenwich at UT time = 99.9674109260 ie deg = 99, arc min = 58, arc sec = 2.67933 3. MST mean sidereal time in deg, over Greenwich at UT time = 99.9677946919 ie hour = 6, minute = 39, seconds = 52.27073

Page 25: ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM …myreaders.info/00_Orbital__Mechanics__-__Model_____Simulation... · ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM-MSS)

www.m

yrea

ders

.inf

o

OM-MSS Page 25 Input UT/LMT year = 2000, month = 1, day = 1, hr = 12, min = 0, sec = 0.0000000000, over Greenwich Output Greenwich sidereal time (GST), Greenwich hour angle (GHA), Mean sidereal time (MST) 1. GST sidereal time in 0 to 360 deg over Greenwich at UT time = 280.4603000000 ie hour = 18, minute = 41, seconds = 50.47200 2. GHA hour angle in 0 to 360 deg over Greenwich at UT time = 280.4674269260 ie deg = 280, arc min = 28, arc sec = 2.73693 3. MST mean sidereal time in deg, over Greenwich at UT time = 280.4606183750 ie hour = 18, minute = 41, seconds = 50.54841 Input UT/LMT year = 2013, month = 1, day = 1, hr = 0, min = 0, sec = 0.0000000000, over Greenwich Output Greenwich sidereal time (GST), Greenwich hour angle (GHA), Mean sidereal time (MST) 1. GST sidereal time in 0 to 360 deg over Greenwich at UT time = 100.8067795999 ie hour = 6, minute = 43, seconds = 13.62710 2. GHA hour angle in 0 to 360 deg over Greenwich at UT time = 100.8066665780 ie deg = 100, arc min = 48, arc sec = 23.99968 3. MST mean sidereal time in deg, over Greenwich at UT time = 100.8071437424 ie hour = 6, minute = 43, seconds = 13.71450 Input UT/LMT year = 2013, month = 1, day = 3, hr = 9, min = 11, sec = 56.6163906455, over Greenwich Output Greenwich sidereal time (GST), Greenwich hour angle (GHA), Mean sidereal time (MST) 1. GST sidereal time in 0 to 360 deg over Greenwich at UT time = 241.1417688342 ie hour = 16, minute = 4, seconds = 34.02452 2. GHA hour angle in 0 to 360 deg over Greenwich at UT time = 241.1471693383 ie deg = 241, arc min = 8, arc sec = 49.80962 3. MST mean sidereal time in deg, over Greenwich at UT time = 241.1421329996 ie hour = 16, minute = 4, seconds = 34.11192 Note : The results verified & validated with those reported (Ref : http://www2.arnes.si/~gljsentvid10/longterm.htm ). Next Section - 1.9 Sidereal Time LMST and GMST

Page 26: ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM …myreaders.info/00_Orbital__Mechanics__-__Model_____Simulation... · ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM-MSS)

www.m

yrea

ders

.inf

o

OM-MSS Page 26 OM-MSS Section - 1.9 -----------------------------------------------------------------------------------------------------10 Sidereal Time : Local Mean Sidereal Time (LMST) and Greenwich Mean Sidereal Time (GMST) at input Universal Time (UT). LMST is Local Mean Sidereal time over observer's Longitude and GMST is Greenwich Mean Sidereal Time, while input is UT/GMT time. Longitude is expressed in 0 to 360 deg only East of Greenwich; not as positive/negative or east/west of Greenwich (0 to 180). Representing longitude 0 to +360 deg east only from Greenwich, is preferred since satellites go around and angle keep increasing 0 to +360. example : log 82.5 deg (corresponds 5hr 30min) is 82.5 deg East, and log 285.0 deg (corresponds 19hr 0min) is 75 deg West of Greenwich. LMST over observer's Log = GMST + Longitude of observer; or simply written as ST over observer's log = GMST + observer's log. Presented below results of LMST Utilities, for observer Longiudes 0 - 90, 90 - 180, 180 - 270, 270 - 360 deg, East of Greenwich Meridian. A day change may occur, therefore LMST with date adjusted to calendar YY MM DD and UT hr mm sec is presented. 1. Finding LMST Local Mean Sidereal Time, over observer Longitude (Greenwich Medirian) at time UT/GMT YY MM DD hr min sec Input Observer Log arc deg = 0, arc min = 0, arc sec = 0.00, in decimal deg = 0.00000, in time unit hr = 0, min = 0, sec = 0.00 UT/GMT year = 2000, month = 1, day = 1, hr = 0, min = 0, sec = 0.00000, in julian_day = 2451544.50000 over Greenwich Output LMST in deg = 99.9677946232, converted into time unit hr = 6, min = 39, sec = 52.27071, of day = 1, month = 1, year = 2000, 2. Finding LMST Local Mean Sidereal Time, over observer Longitude (0-90 deg East of Greenwich Meridian) at time UT/GMT YY MM DD hr min sec Input Observer Log arc deg = 30, arc min = 0, arc sec = 0.00, in decimal deg = 30.00000, in time unit hr = 2, min = 0, sec = 0.00 UT/GMT year = 2000, month = 1, day = 1, hr = 0, min = 0, sec = 0.00000, in julian_day = 2451544.50000 over Greenwich Output LMST in deg = 129.9677946791, converted into time unit hr = 8, min = 39, sec = 52.27072, of day = 1, month = 1, year = 2000, 3. Finding LMST Local Mean Sidereal Time, over observer Longitude (90-180 deg East of Greenwich Meridian) at time UT/GMT YY MM DD hr min sec Input Observer Log arc deg = 150, arc min = 0, arc sec = 0.00, in decimal deg = 150.00000, in time unit hr = 10, min = 0, sec = 0.00 UT/GMT year = 2000, month = 1, day = 1, hr = 0, min = 0, sec = 0.00000, in julian_day = 2451544.50000 over Greenwich Output LMST in deg = 249.9677945673, converted into time unit hr = 16, min = 39, sec = 52.27070, of day = 1, month = 1, year = 2000,

Page 27: ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM …myreaders.info/00_Orbital__Mechanics__-__Model_____Simulation... · ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM-MSS)

www.m

yrea

ders

.inf

o

OM-MSS Page 27 4. Finding LMST Local Mean Sidereal Time, over observer Longitude (180-270 deg East of Greenwich Meridian) at time UT/GMT YY MM DD hr min sec Input Observer Log arc deg = 210, arc min = 0, arc sec = 0.00, in decimal deg = 210.00000, in time unit hr = 14, min = 0, sec = 0.00 UT/GMT year = 2000, month = 1, day = 1, hr = 0, min = 0, sec = 0.00000, in julian_day = 2451544.50000 over Greenwich Output LMST in deg = 309.9677946791, converted into time unit hr = 20, min = 39, sec = 52.27072, of day = 31, month = 12, year = 1999, 5. Finding LMST Local Mean Sidereal Time, over observer Longitude (270-360 deg East of Greenwich Meridian) at time UT/GMT YY MM DD hr min sec Input Observer Log arc deg = 330, arc min = 0, arc sec = 0.00, in decimal deg = 330.00000, in time unit hr = 22, min = 0, sec = 0.00 UT/GMT year = 2000, month = 1, day = 1, hr = 0, min = 0, sec = 0.00000, in julian_day = 2451544.50000 over Greenwich Output LMST in deg = 69.9677945673, converted into time unit hr = 4, min = 39, sec = 52.27070, of day = 1, month = 1, year = 2000, 6. Finding LMST Local Mean Sidereal Time, over observer Longitude (Greenwich Medirian) at time UT/GMT YY MM DD hr min sec Input Observer Log arc deg = 0, arc min = 0, arc sec = 0.00, in decimal deg = 0.00000, in time unit hr = 0, min = 0, sec = 0.00 UT/GMT year = 2013, month = 1, day = 3, hr = 9, min = 11, sec = 56.61639, in julian_day = 2456295.88329 over Greenwich Output LMST in deg = 241.1421329901, converted into time unit hr = 16, min = 4, sec = 34.11192, of day = 3, month = 1, year = 2013, 7. Finding LMST Local Mean Sidereal Time, over observer Longitude (Delhi, India) at time UT/GMT YY MM DD hr min sec Input Observer Log arc deg = 77, arc min = 13, arc sec = 30.11, in decimal deg = 77.22503, in time unit hr = 5, min = 8, sec = 54.01 UT/GMT year = 2013, month = 1, day = 3, hr = 9, min = 11, sec = 56.61639, in julian_day = 2456295.88329 over Greenwich Output LMST in deg = 318.3671630546, converted into time unit hr = 21, min = 13, sec = 28.11913, of day = 3, month = 1, year = 2013, Note : The results verified & validated with those reported (Ref. http://www.csgnetwork.com/siderealjuliantimecalc.html). Next Section - 1.10 Time Conversions More on LMT, LST, LMST

Page 28: ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM …myreaders.info/00_Orbital__Mechanics__-__Model_____Simulation... · ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM-MSS)

www.m

yrea

ders

.inf

o

OM-MSS Page 28 OM-MSS Section - 1.10 ----------------------------------------------------------------------------------------------------11 Time Conversions : 1. LMT to LST, 2. LST to LMT, 3. LMT to LMST, 4. LMST to LMT Conversions, from Local Solar time to Local Sidereal time and back from Local Sidereal time to Local Solar time. Recall that Our Clocks are set on Solar time (sun time) but astronomical observations need Sidereal time (Star time). Local Mean solar time (LMT) at zero meridian is Universal time (UT1) also called Greenwich mean time (GMT). Greenwich Mean Sidereal Time (GMST) is defined by Greenwich meridian and vernal equinox. Greenwich apparent sidereal time (GAST) is obtained by adding a correction to Greenwich mean sidereal time (GMST); the correction term is called the 'Equation of the equinoxes' at mean time interval at UT time; example : YY 2000, MM 1, DD 1 HH 0 , the Equation of the equinoxes in seconds = -0.8758425604 Longitude is expressed in 0 to 360 deg only East of Greenwich; not as positive/negative or east/west of Greenwich (0 to 180). Representing longitude 0 to +360 deg east only from Greenwich, is preferred since satellites go around and angle keep increasing 0 to +360. example : log 82.5 deg (corresponds 5hr 30min) is 82.5 deg East, and log 285.0 deg (corresponds 19hr 0min) is 75 deg West of Greenwich. Presented below Time Conversion Utilities, for observer Longiudes 0 - 90, 90 - 180, 180 - 270, 270 - 360 deg, East of Greenwich Meridian. A day change may occur, therefore the input/output are with date adjusted to calendar YY MM DD and UT hr mm sec are presented. Examples 1 to 10, Time Conversions : LMT to LST, LST to LMT, LMT to LMST, LMST to LMT for observer Longiudes mentioned above. Conversion Forward LMT to LST ie local mean time to local sidereal time; Backward LST to LMT ie local sidereal time to local mean time; Conversion Forward LMT to LMST ie local mean time to local mean sidereal time; Backward LMST to LMT ie local mean sidereal time to local mean time. 1. Conversion of Local mean time (LMT) to Local sidereal time (LST) , Observer Longiude 0-90 deg East of Greenwich Meridian. Input Observer log arc deg = 77, arc min = 13, arc sec = 0.00, in decimal deg = 77.21667, corresponds to angle hr = 5, min = 8, sec = 52.00 LMT year = 2000, month = 1, day = 1, hr = 15, min = 54, sec = 42.00000, over Observer longitude Output GMT year = 2000, month = 1, day = 1, hr = 10, min = 45, sec = 50.00000, over Greenwich GMST year = 2000, month = 1, day = 1, hr = 17, min = 27, sec = 28.36472, over Greenwich LST year = 2000, month = 1, day = 1, hr = 22, min = 36, sec = 20.36470, over Observer longitude

Page 29: ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM …myreaders.info/00_Orbital__Mechanics__-__Model_____Simulation... · ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM-MSS)

www.m

yrea

ders

.inf

o

OM-MSS Page 29 2. Conversion of Local sidereal time (LST) to Local mean time (LMT) , Observer Longiude 0-90 deg East of Greenwich Meridian. Input Observer log arc deg = 77, arc min = 13, arc sec = 0.00, in decimal deg = 77.21667, corresponds to angle hr = 5, min = 8, sec = 52.00 LST year = 2000, month = 1, day = 1, hr = 22, min = 36, sec = 20.36470, over Observer longitude Output GMST year = 2000, month = 1, day = 1, hr = 17, min = 27, sec = 28.36472, over Greenwich GMT year = 2000, month = 1, day = 1, hr = 10, min = 45, sec = 50.00221, over Greenwich LMT year = 2000, month = 1, day = 1, hr = 15, min = 54, sec = 42.00219, over Observer longitude 3. Conversion of Local mean time (LMT) to Local mean sidereal time (LMST) , Observer Longiude 90-180 deg East of Greenwich Meridian. Note - The procedure is same as LMT to LST neglecting the Equation of Equinoxes Input Observer log arc deg = 150, arc min = 0, arc sec = 0.00, in decimal deg = 150.00000, corresponds to angle hr = 10, min = 0, sec = 0.00 LMT year = 2013, month = 1, day = 1, hr = 2, min = 0, sec = 0.00000, over Observer longitude Output GMT year = 2012, month = 12, day = 31, hr = 16, min = 0, sec = 0.00003, over Greenwich GMST year = 2012, month = 12, day = 31, hr = 22, min = 41, sec = 54.86275, over Greenwich LST year = 2013, month = 1, day = 1, hr = 8, min = 41, sec = 54.86274, over Observer longitude 4. Conversion of Local mean sidereal time (LMST) to Local mean time (LMT) , Observer Longiude 90-180 deg East of Greenwich Meridian. Note - The procedure is same as LST to LMT neglecting the Equation of Equinoxes Input Observer log arc deg = 150, arc min = 0, arc sec = 0.00, in decimal deg = 150.00000, corresponds to angle hr = 10, min = 0, sec = 0.00 LMST year = 2013, month = 1, day = 1, hr = 8, min = 41, sec = 54.86274, over Observer longitude Output GMST year = 2012, month = 12, day = 31, hr = 22, min = 41, sec = 54.86275, over Greenwich GMT year = 2012, month = 12, day = 31, hr = 16, min = 0, sec = 0.00123, over Greenwich LMT year = 2013, month = 1, day = 1, hr = 2, min = 0, sec = 0.00122, over Observer longitude Continue Section - 1.10

Page 30: ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM …myreaders.info/00_Orbital__Mechanics__-__Model_____Simulation... · ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM-MSS)

www.m

yrea

ders

.inf

o

OM-MSS Page 30 5. Conversion of Local mean time (LMT) to Local sidereal time (LST) , Observer Longiude 180-270 deg East of Greenwich Meridian. Input Observer log arc deg = 210, arc min = 0, arc sec = 0.00, in decimal deg = 210.00000, corresponds to angle hr = 14, min = 0, sec = 0.00 LMT year = 2013, month = 1, day = 1, hr = 2, min = 0, sec = 0.00000, over Observer longitude Output GMT year = 2013, month = 1, day = 1, hr = 12, min = 0, sec = 0.00000, over Greenwich GMST year = 2013, month = 1, day = 1, hr = 18, min = 45, sec = 11.99217, over Greenwich LST year = 2013, month = 1, day = 1, hr = 8, min = 45, sec = 11.99218, over Observer longitude 6. Conversion of Local sidereal time (LST) to Local mean time (LMT) , Observer Longiude 180-270 deg East of Greenwich Meridian. Input Observer log arc deg = 210, arc min = 0, arc sec = 0.00, in decimal deg = 210.00000, corresponds to angle hr = 14, min = 0, sec = 0.00 LST year = 2013, month = 1, day = 1, hr = 8, min = 45, sec = 11.99218, over Observer longitude Output GMST year = 2013, month = 1, day = 1, hr = 18, min = 45, sec = 11.99217, over Greenwich GMT year = 2013, month = 1, day = 1, hr = 12, min = 0, sec = 0.00052, over Greenwich LMT year = 2013, month = 1, day = 1, hr = 2, min = 0, sec = 0.00054, over Observer longitude 7. Conversion of Local mean time (LMT) to Local mean sidereal time (LMST) , Observer Longiude 270-360 deg East of Greenwich Meridian. Note - The procedure is same as LMT to LST neglecting the Equation of Equinoxes Input Observer log arc deg = 330, arc min = 0, arc sec = 0.00, in decimal deg = 330.00000, corresponds to angle hr = 22, min = 0, sec = 0.00 LMT year = 2013, month = 1, day = 1, hr = 2, min = 0, sec = 0.00000, over Observer longitude Output GMT year = 2013, month = 1, day = 1, hr = 4, min = 0, sec = 0.00003, over Greenwich GMST year = 2013, month = 1, day = 1, hr = 10, min = 43, sec = 53.14040, over Greenwich LST year = 2013, month = 1, day = 1, hr = 8, min = 43, sec = 53.14039, over Observer longitude Continue Section - 1.10

Page 31: ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM …myreaders.info/00_Orbital__Mechanics__-__Model_____Simulation... · ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM-MSS)

www.m

yrea

ders

.inf

o

OM-MSS Page 31 8. Conversion of Local mean sidereal time (LMST) to Local mean time (LMT) , Observer Longiude 270-360 deg East of Greenwich Meridian. Note - The procedure is same as LST to LMT neglecting the Equation of Equinoxes Input Observer log arc deg = 330, arc min = 0, arc sec = 0.00, in decimal deg = 330.00000, corresponds to angle hr = 22, min = 0, sec = 0.00 LMST year = 2013, month = 1, day = 1, hr = 8, min = 43, sec = 53.14039, over Observer longitude Output GMST year = 2013, month = 1, day = 1, hr = 10, min = 43, sec = 53.14040, over Greenwich GMT year = 2013, month = 1, day = 1, hr = 4, min = 0, sec = 0.00023, over Greenwich LMT year = 2013, month = 1, day = 1, hr = 2, min = 0, sec = 0.00021, over Observer longitude 9. Conversion of Local mean time (LMT) to Local mean sidereal time (LMST) , Observer Longiude 270-360 deg East of Greenwich Meridian. Note - The procedure is same as LMT to LST neglecting the Equation of Equinoxes Input Observer log arc deg = 0, arc min = 0, arc sec = 0.00, in decimal deg = 0.00000, corresponds to angle hr = 0, min = 0, sec = 0.00 LMT year = 2013, month = 1, day = 3, hr = 9, min = 11, sec = 56.61639, over Observer longitude Output GMT year = 2013, month = 1, day = 3, hr = 9, min = 11, sec = 56.61639, over Greenwich GMST year = 2013, month = 1, day = 3, hr = 16, min = 4, sec = 34.11192, over Greenwich LST year = 2013, month = 1, day = 3, hr = 16, min = 4, sec = 34.11192, over Observer longitude 10. Conversion of Local mean sidereal time (LMST) to Local mean time (LMT) , Observer Longiude 270-360 deg East of Greenwich Meridian. Note - The procedure is same as LST to LMT neglecting the Equation of Equinoxes Input Observer log arc deg = 0, arc min = 0, arc sec = 0.00, in decimal deg = 0.00000, corresponds to angle hr = 0, min = 0, sec = 0.00 LMST year = 2013, month = 1, day = 3, hr = 16, min = 4, sec = 34.11192, over Observer longitude Output GMST year = 2013, month = 1, day = 3, hr = 16, min = 4, sec = 34.11192, over Greenwich GMT year = 2013, month = 1, day = 3, hr = 9, min = 11, sec = 56.61663, over Greenwich LMT year = 2013, month = 1, day = 3, hr = 9, min = 11, sec = 56.61663, over Observer longitude Note : The results verified & validated with those reported. (Ref. http://koti.mbnet.fi/jukaukor/astronavigation_time.html). Next Section - 1.11 Concluding Time Standards and Conversion Utilities

Page 32: ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM …myreaders.info/00_Orbital__Mechanics__-__Model_____Simulation... · ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM-MSS)

www.m

yrea

ders

.inf

o

OM-MSS Page 32 OM-MSS Section - 1.11 ----------------------------------------------------------------------------------------------------12 Concluding Time Standards and Time Conversion Utilities presented in Sections (1.0 to 1.10). The Time Designations, Time Standards and Time Conversion Utilities were illustrated & accomplished. Our Clocks are set on Solar time (sun time), called local mean time (LMT) at a given location, corrected for its longitude. Mean solar time (LMT) at zero meridian is Universal time (UT1) also called Greenwich mean time (GMT). One Sidereal day is One Rotation of Earth on its axis is the time between two successive Meridian pass over a fixed Star. Longitude is expressed in 0 to 360 deg only East of Greenwich and not as positive/negative or east/west of Greenwich (0 to 180). Representing longitude 0 to +360 deg east only from Greenwich, is preferred since satellites go around and angle keep increasing 0 to +360. In Sections (1.1 to 1.10), all that presented were results of following Time Conversions & Computing Utilities : 1. Conversion of Universal Time, Year, Month, Day, Hour decimal to Julian Day, while Year 100 to 3500, 2. Conversion of Julian Day to Universal Time, Year, Month, Day, Hour decimal, while Year 100 to 3500, 3. Conversion of Fundamental Epoch to Julian day and Julian century. 4. Add or Subtract Time in days, hour, minute seconds. 5. Julian days at the Start of Epoch J2000 or any other year. 6. Find Local Mean Solar Time (LMT) over Observer's Longitude, and Greenwich Mean Time (GMT) over Greenwich Meridian, 0 deg), 7. Find Sidereal time STO & GMST of Greenwich Meridian, 8. Find Greenwich Sidereal Time (GST), Greenwich Hour_Angle (GHA), and Mean Sidereal Time (MST) at any input Universal Time (UT) , 9. Find Local Mean Sidereal Time (LMST) over Observer's Longitude at input UT time over Greenwich Meridian. 10. Conversion of LMT to LST, LST to LMT, LMT to LMST, LMST to LMT. The Results themselves validate, show accuracy and applicability of the OM-MSS software utilities. However, readers may compare the results with those reported elsewhere or at respective references mentioned. End of Time Designations, Time Standards and Time Conversion & Computing Utilities Move on to Positional Astronomy, Motion of Earth Orbit Around Sun, Astronomical Events and more. Next Section - 2 Positional Astronomy and Astronomical Events

Page 33: ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM …myreaders.info/00_Orbital__Mechanics__-__Model_____Simulation... · ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM-MSS)

www.m

yrea

ders

.inf

o

OM-MSS Page 33 OM-MSS Section - 2 -------------------------------------------------------------------------------------------------------13 POSITIONAL ASTRONOMY : EARTH ORBIT AROUND SUN, ASTRONOMICAL EVENTS ANOMALIES, EQUINOXES, SOLSTICES, YEARS & SEASONS. Look at the Preliminaries about 'Positional Astronomy', before moving to the predictions of astronomical events. Definition : Positional Astronomy is measurement of Position and Motion of objects on celestial sphere seen at a particular time and location on Earth. Positional Astronomy, also called Spherical Astronomy, is a System of Coordinates. The Earth is our base from which we look into space. Earth orbits around Sun, counterclockwise, in an elliptical orbit once in every 365.26 days. Earth also spins in a counterclockwise direction on its axis once every day. This accounts for Sun, rise in East and set in West. Term 'Earth Rotation' refers to the spinning of planet earth on its axis. Term 'Earth Revolution' refers to orbital motion of the Earth around the Sun. Earth axis is tilted about 23.45 deg, with respect to the plane of its orbit, gives four seasons as Spring, Summer, Autumn and Winter. Moon and artificial Satellites also orbits around Earth, counterclockwise, in the same way as earth orbits around sun. Earth's Coordinate System : One way to describe a location on earth is Latitude & Longitude, which is fixed on the earth's surface. The Latitudes and Longitudes are presented in several ways. Example, location of Delhi, India, Using degree decimal latitude 28.61 North of Equator, longitude 77.23 East of Greenwich Using degree minutes second latitude 28:36:36 North of Equator, longitude 77:13:48 East of Greenwich Using time zone hour minutes second latitude 28:36:36 North of Equator, longitude 05 hours, 8 min, 55.2 sec East of Greenwich (east of Greenwich, means in Delhi sun will set at 05 hours, 8 min, 55.2 sec before it sets in Greenwich, ie at Delhi UTM is +05 hours, 8 min, 55.2 sec) Continue Section - 2

Page 34: ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM …myreaders.info/00_Orbital__Mechanics__-__Model_____Simulation... · ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM-MSS)

www.m

yrea

ders

.inf

o

OM-MSS Page 34 Laws of Planetary Motion : In the early 1600s, Johannes Kepler proposed three laws of planetary motion. 1st The Law of Ellipses : The orbits of the planets are ellipses, with the Sun at one focus of the ellipse. 2nd The Law of Equal Areas : The line joining the planet to the Sun sweeps out equal areas in equal times as the planet travels around the ellipse. 3rd The Law of Harmonies : The ratio of squares of revolutionary periods for two planets is equal to ratio of the cubes of their semi-major axes. Kepler's first law says all planets orbit the sun in a path that resembles an ellipse. Kepler's second law describes the speed at which any given planet will move while orbiting the sun; this speed is constantly changing. A planet moves fastest when it is closest to the sun, and a planet moves slowest when it is furthest from the sun. Kepler's third law compares motion characteristics of different planets; for every planet, the ratio of squares of their periods to the cubes of their average distances from the sun is the same. It implies that the period for a planet to orbit the Sun increases rapidly with the radius of its orbit. Thus, Mercury the innermost planet, takes only 88 days to orbit the Sun but the outermost planet (Pluto) requires 248 years to do the same. Continue Section - 2

Page 35: ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM …myreaders.info/00_Orbital__Mechanics__-__Model_____Simulation... · ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM-MSS)

www.m

yrea

ders

.inf

o

OM-MSS Page 35 Glossary of terms : definitions, meaning and descriptions 1. Celestial Sphere, is an imaginary rotating sphere of infinite radius, concentric with Earth. The poles and equator of the celestial sphere are the projections of earth's poles and equator out into space, called Celestial North Pole, Celestial South Pole and Celestial Equator. 2. Celestial coordinate, is a system for specifying positions of celestial objects, the satellites, planets, stars, galaxies, and more. The common celestial coordinate systems are : Horizontal, Equatorial, and Ecliptic; two others, Galactic and Supergalactic not included here. Each coordinate system is named for its choice of fundamental plane as reference plane. - Horizontal coordinate system uses the observer's horizon as the fundamental reference plane. The coordinates of a point on celestial sphere are Altitude or Elevation and Azimuth. Altitude (Alt) also referred as Elevation (EL) is the angle between the object and the observer's local horizon, expressed as 0 to 90 deg, +ve/-ve. Azimuth (Az) is the angle of the object around the horizon, usually measured from the north increasing towards the east. - Equatorial coordinate system uses the celestial equator as primary reference circle. The coordinates of a point on celestial sphere are Declination and Right ascension, analogous to Latitude-Longitude coordinate system used on Earth. Declination (delta) of an object is angle measured from celestial equator (0 deg declination) along a meridian line through the object. Right ascension (RA) lines on celestial sphere are identical to longitude lines (0-360 deg) on Earth, but the differences are that (i) the RA lines on the celestial sphere divide one rotation into 24 hours (one hour = 15 deg) expressed in terms of hours : minutes : seconds. (ii) for RA the start point for zero hour is vernal equinox or first point of Aries where Sun crosses celestial equator and not 0 deg log. - Ecliptic coordinate system uses the ecliptic, as the fundamental reference plane. The ecliptic is apparent path of Sun on celestial sphere, crosses celestial equator twice in a year, at Autumnal and Vernal equinoxes. Coordinates of a point on celestial sphere are Ecliptic latitude and Ecliptic longitude; distance is also necessary for complete spherical position. Ecliptic latitude (Lat) is the angle between a position and ecliptic, takes values between -90 and +90 deg. Ecliptic longitude (Log) starts from the vernal equinox or first point of Aries as 0 deg and runs to 360 de These three celestial coordinate systems are summarized below.

Page 36: ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM …myreaders.info/00_Orbital__Mechanics__-__Model_____Simulation... · ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM-MSS)

www.m

yrea

ders

.inf

o

OM-MSS Page 36 The Summary of Celestial Coordinate Systems : Systems Coordinates Center point Ref. Plane Poles Ref. Direction (Vertical Horizontal) (Origin) (0 deg Vertical) (0 deg horizontal) (a) Horizontal Altitude or Azimuth Observer on earth Horizon Zenith/nadir North or south elevation, point of horizon (b) Equatorial Declination Right ascension or Earth center(geocentric)/ Celestial equator Celestial poles Vernal equinox hour angle Sun center(heliocentric) (C) Ecliptic Ecliptic latitude Ecliptic longitude Earth center(geocentric)/ Ecliptic Ecliptic poles Vernal equinox Sun center(heliocentric) 3. Celestial Orbit in astronomy, is a gravitationally curved path of celestial body around a point in space. The orbits of planets around the sun or the orbits of satellites around planets are typically elliptical, governed by Kepler's laws of motion. The orbit of each planet is influenced by the other planets as well as by the sun, to a small degree, called perturbations. These perturbations are taken into account in calculating planetary orbits. - Heliocentric orbit is an orbit around the Sun. The planets, comets, and asteroids in our Solar System are in such orbits. - Geocentric orbit is an orbit around the Earth. The Moon and all artificial satellites are in such orbits. - Periapsis & Apoapsis, Perihelion & Aphelion, Perigee & Apogee, represent two points on orbit, named differently to identify the body being orbited. The point closest to the orbited body is called the periapsis and the point furthest to the orbited body is called the Apoapsis. Perihelion and Aphelion, refer to orbits around the Sun; here the orbit point closest to Sun is perihelion and point furthest to Sun is aphelion. Perigee and Apogee, refer to orbits around the Earth; here the orbit point closest to Earth is perigee and point furthest to earth is apogee.

Page 37: ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM …myreaders.info/00_Orbital__Mechanics__-__Model_____Simulation... · ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM-MSS)

www.m

yrea

ders

.inf

o

OM-MSS Page 37 4. Orbit Elements or Parameters, uniquely identify a specific orbit. There are different ways to describe mathematically the same orbit. The orbital parameters are usually expressed either by Keplerian elements or by State vectors, each consisting a set of six parameters. The State vectors, also called Cartesian coordinates, are time-independent, represent the 3-D Position and Velocity components of the orbital trajectory. Keplerian elements are valid only for a specific time, describe the size, shape, and orientation of an orbital ellipse. The State Vectors are often not a convenient way to represent an orbit, hence Keplerian elements are commonly used instead. However, State Vectors and Keplerian Elements can be computed from one another. (a) State vectors are, three Positions (x, y, z) and three Velocities (x dot, y dot, z dot) at Epoch time t. - Position vector describe position of the orbiting body in inertial frame of reference, x-axis pointing to vernal equinox and z-axis pointing upwards. - Velocity vector is velocity of the orbiting body derived from orbital position vector by differentiation with respect to time. (b) Kepler elements are, Inclination, Longitude of ascending node, Argument of periapsis, Eccentricity, Semimajor axis, Mean Anomaly at Epoch time t. - Inclination 'i' of the orbit of a planet, is angle between the plane of planet's orbit and the plane containing Earth's orbital path (ecliptic) or with respect to another plane such as the Sun's equator. For Earth-bound observers the ecliptic is more practical; e.g. inclination of earth orbit to elliptic is 0 deg and to Sun's equator is 7.155 deg. - Longitude of the Ascending node, specify orbit of an object in space. For a geocentric orbit, this longitude is called Right Ascension (RA). It is the angle from a reference direction, called the origin of longitude, to the direction of the ascending node, measured in a reference plane. The reference plane for a Geocentric orbit is Earth's equatorial plane, and the First Point of Aries is the origin of longitude. The reference plane for a Heliocentric orbit is Ecliptic plane, and the First Point of Aries is the origin of longitude. The angle is measured counterclockwise from the origin to the object. - Argument of periapsis, specify angle between orbit's periapsis and orbit's ascending node, measured in orbital plane and direction of motion. Angle 0 deg, means orbiting body is at its closest to central body, at that moment it crosses the plane of reference from south to north. Angle 90 deg, means the orbiting body will reach periapsis at its northmost distance from the plane of reference. Adding the argument of periapsis to the longitude of the ascending node gives the longitude of the periapsis. The word periapsis is replaced by perihelion (for Sun-centered orbits), or by perigee (for Earth-centered orbits).

Page 38: ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM …myreaders.info/00_Orbital__Mechanics__-__Model_____Simulation... · ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM-MSS)

www.m

yrea

ders

.inf

o

OM-MSS Page 38 - Eccentricity 'e' of an orbit shows how much the shape of an object's orbit is different from a circle; eccentricity 'e' vary between 0 and 1. For Circular orbit : e = 0, elliptical orbit : 0 < e < 1, parabolic trajectory : e = 1, hyperbolic trajectory : e > 1 . The Earth's orbital eccentricity varies, from a min value = 0.005 (near circular) to maxi value e = 0.057 (quite elliptical), over a period of 92,000 years, due to gravitational force exerted by Jupiter. The eccentricity of the Earth's orbit is currently about 0.016710219. - Semimajor axis is one half of the major axis, is the radius of an orbit at the orbit's two most distant points. The semi-major axis length 'a' of an ellipse is related to the semi-minor axis length 'b' through the eccentricity 'e'. - Mean Anomaly 'M' relates the position and time for a body moving in a Kepler orbit. The mean anomaly of an orbiting body is the angle through which the body would have traveled about the center of the orbit's auxiliary circle. 'M' grows linearly with time. 'M' is a product of orbiting body's mean motion and time past perihelion, where mean motion 'n' = (2. pi / duration of full orbit). - Epoch is a moment in time, a reference point, for time-varying astronomical quantity, like celestial coordinates or elliptical orbital elements. 5. Heliocentric Orbit : An orbit around the Sun; all planets, comets, asteroids in our solar system are in such orbits. Consider the Orbit of Earth around Sun. The one orbit revolution (360 deg), is one sidereal year, occurs every 365.256363 mean solar days, where one solar day = 24h 00m 00s = 24 x 60 x 60 = 86400.00 seconds. The Earth's Orbit Characteristics and Events are : (a) Orbit Characteristics : Epoch at J2000.0, Ref. http://cdn.preterhuman.net/texts/thought_and_writing/reference/wikipedia_2006_CD/wp/e/Earth.htm - Aphelion 152,097,701 km - Perihelion 147,098,074 km - Semi-major axis 149,597,887.5 km - Semi-minor axis 149,576,999.826 km - Axial tilt 23.4392794383 deg - Eccentricity 0.016710219 - Inclination 7.25 deg to Sun's equator - Longitude of ascending node 348.73936 deg - Argument of periapsis 114.20783 deg - Sidereal orbit period 365.256363 days - Orbital circumference 924,375,700 km - average speed 29.78 km/sec Note : Inclination angle, Longitude of ascending node and Argument of perigee describe the orientation of an orbit in space.

Page 39: ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM …myreaders.info/00_Orbital__Mechanics__-__Model_____Simulation... · ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM-MSS)

www.m

yrea

ders

.inf

o

OM-MSS Page 39 (b) Orbit Events : Equinox, Solstice, and Seasons - Equinoxes occur twice a year; Vernal equinox is around 20-21 March and Autumnal equinox is around 22-23 September; When equinox occurs, the plane of Earth's equator passes the centre of Sun, i.e. when subsolar point is on Equator; At equinox time, the tilt of the Earth's axis is inclined neither away from nor towards the Sun, resulting day and night of same length. At equinoxs the Sun is at one of two opposite points on the celestial sphere where the celestial equator (decl 0 deg) and ecliptic intersect; One intersection is called vernal point (RA = 00h 00m 00s and log = 0 deg) and other called autumnal point (RA = 12h 00m 00s and log = 180 deg). - Solstices occur twice a year; Summer solstice is around 21-22 June and Winter solstic is around 21-22 December; On solstices day, Sun appears to have reached its highest or lowest annual altitude in the sky above the horizon at local solar noon; The solstices day is either longest of the year in summer or the shortest of the year in winter for any place outside of the tropics. - Seasons occur because the Earth's axis of rotation is not perpendicular to its orbital plane but makes an angle of about 23.439 deg; The four Seasons, Spring, Summer, Autumn, Winter, are subdivision of a year, connected with the solstices, and equinoxes; The solstices and equinoxs are the four changing points, in the Solar Cycle, that mark the mid-point of the seasons change. 6. Mean anomaly (M), Eccentric anomaly (E), True anomaly (V) In astronomy, the term anomaly means irregularity in the motion of a planet by which it deviates from its predicted position. Therefore, astronomers use term anomaly (instead of angle) when calculating the position of objects in their orbits. Kepler distinguished three kinds of anomaly - mean, eccentric, and true anomaly. (a) True anomaly is observed angle, as seen from the Sun, between the Earth and the perihelion of the Earth orbit. When the True anomaly is equal to 0 degrees, then the Earth is closest to the Sun (ie at Perihelion). When the True anomaly is equal to 180 degrees, then the Earth is furthest from the Sun (ie at Aphelion).

Page 40: ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM …myreaders.info/00_Orbital__Mechanics__-__Model_____Simulation... · ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM-MSS)

www.m

yrea

ders

.inf

o

OM-MSS Page 40 (b) Mean anomaly is calculated angle, what the true anomaly would be if the Earth moved with constant speed along a perfect circular orbit around the Sun in the same time. Like true anomaly, the mean anomaly is equal to 0 in the perihelion and to 180 degrees in the aphelion, but at other points along the Earth's orbit the true and mean anomalies are not equal to one another. The mean anomaly is often used for one of the orbital elements. (c) Eccentric anomaly is an auxiliary angle, used to solve Kepler's Equation to find True anomaly from Mean anomaly. The is related to both the Mean and the True anomaly. Observe equations & relations among Mean anomaly(M), Eccentric anomaly(E), True anomaly(V), Eccentricity(e), Radial disance(r), Semi-major axis(a) - equation M = E-e.sin(E); a relation between Eccentric and Mean anomaly, is Kepler's equation, solved by numerical methods, e.g. Newton-Raphson method; - equation cos(v) = {cos(E)-e}/{1-e.cos(E)} ; a relation between Eccentric anomaly and True anomaly ; - equation r = a {(1-(e sqr)}/{1+e.cos(V)} ; a relation between True anomaly and Radius distance from focus of attraction to the orbiting body. Thus explained few preliminaries about positional astronomy. Move on to Motion Of Earth Around Sun - Prediction of Astronomical Events, Anomalies, Equinoxes, Solstices, Years & Seasons. The precise time of occurrence of following astronomical events are presented in Sections (2.1 to 2.11) respectively : (a) Earth orbit Mean anomaly, Eccentric anomaly, True anomaly; (b) Earth reaching orbit points, Perihelion, Aphelion, Vernal Equinox, Autumnal Equinox, Summer Solstice, Winter Solstice; (c) Earth reaching orbit points, Semi-Major Axis, Semi-Minor Axis; (d) Astronomical years, Anomalistic, Tropical, Sidereal Years; (e) Earth orbit oblateness, Semi-Major Axis, Semi-Minor Axis; (f) Four Seasons, start time of Spring, Summer, Autumn, Winter. Next Section - 2.1 Earth Orbit Constants used in computation

Page 41: ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM …myreaders.info/00_Orbital__Mechanics__-__Model_____Simulation... · ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM-MSS)

www.m

yrea

ders

.inf

o

OM-MSS Page 41 OM-MSS Section - 2.1 -----------------------------------------------------------------------------------------------------14 Earth Orbit : Constants used in OM-MSS Software. Astronomical and other Constants used in OM-MSS Software . Recall the Preliminaries about 'Positional Astronomy', depictions and interpretations, mentioned in section 2 . (a) The International System of Units (SI), the world's most widely used modern metric system, is followed in OM-MSS Software. Greenwich meam time (GMT), is identified as Universal time (UT) based on sidereal time at Greenwich, with day starting at midnight. Standard Epoch J2000, is Julian Day 2451545.00 UT, ie Year 2000, MM 1, hr 12, min 0, sec 0.0 expressed in UT, is Reference point for Time. One solar day is 24h 00m 00s, ie 24x60x60 = 86400 SI is time for slightly more than one earth rotation, ie 360.9856473356 deg. One sidereal day is 23h 56m 4.090538155680s = 86164.090538155680s is time for one earth rotation, by exact 360 deg. One solar year is time period of earth around sun, that vary slightly year to year. Solar year is called astronomical or tropical or civil year. Consecutive 400 civil years have 97 leap years, so one civil year is (400 x 365 + 97 )/400 = 365.2425 mean solar days where Mean solar day is division of time equal to 24 hours representing average length of the period during which earth makes one rotation on its axis. One sidereal year (365.256363004 days) is slightly longer than a mean solar year (365.2425 days). One sidereal year corresponds to 365 day, 6 hr, 9 min, 9.7635456 sec of mean solar time. One Julian year is exactly 365.25 SI days where SI day is 86400 SI seconds, thus Julian year = 31557600 SI seconds. Gregorian year is the mean duration of a year of our calendar is 365.2425 SI days, is 31556952 SI seconds. Earth mean motion rev per day around sun = 1.0 / One sidereal year in days = 1.0 / 365.256363004.

Page 42: ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM …myreaders.info/00_Orbital__Mechanics__-__Model_____Simulation... · ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM-MSS)

www.m

yrea

ders

.inf

o

OM-MSS Page 42 (b) The Other Constants used in OM-MSS software : the values assigned, correspond to Standard Epoch Julian day JD2000, unless otherwise specified. RADIAN 57.29577951308232300 Pi 3.141592653589793100 GM_SUN (Gravitational parameter) 132712440018 km3/sec2 GM_EARTH (Gravitational parameter) 398600.4418 km3/sec2 EARTH_EQ_RAD_KM (Earth equator radious) 6378.144 km EARTH_AVR_RAD_KM (Earth average radious) 6371.0 km SUN_GEOCENTRIC_DIST_km_from_earth_center 149676781.6 km MOON_GEOCENTRIC_DIST_km_from_earth_center 381191.7836 km EARTH_INCLINATION_deg 23.4392794383 deg EARTH_ORBIT_ECCENTRICITY 0.016710219 EARTH_solar_year 365.2425 days EARTH_SIDEREAL_YEAR 365.256363004 days EARTH mean solar day 86400 sec is 24h 00m 00s EARTH mean sidereal day 86164.0905381557 sec is 23h 56m 4.0905381557 EARTH_MEAN_MOTION_rev_per_day 0.0027378030 rev per day EARTH_ROTATIONAL_RATE_rad_per_sec 7.2921151467e-5 rad/sec Move on to Earth Orbit around Sun, : Compute Anomalies, Precise time at Astronomical Events, Years & Seasons. Next Section - 2.2 Earth orbit - mean and true anomaly

Page 43: ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM …myreaders.info/00_Orbital__Mechanics__-__Model_____Simulation... · ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM-MSS)

www.m

yrea

ders

.inf

o

OM-MSS Page 43 OM-MSS Section - 2.2 -----------------------------------------------------------------------------------------------------15 Earth Mean anomaly and True anomaly at Input UT, Since Standard Epoch J2000, using standard analytical expressions. Finding Mean anomaly and True anomaly in deg, since Standard Epoch J2000 = 2451545.0 Julian day. Mean anomaly gives the planet's angular position for a circular orbit with radius equal to its Semi Major Axis. Since Earth orbit is elliptic, the speed of the Earth varies and the mean anomaly is inaccurate with about +/- 2 deg. The mean anomaly M = 357.5291 + (0.98560028 * (ip_julian_day - 2451545.0)), is measured from 0 to 360 deg. During one revolution the mean anomaly values are : at perigee mean anomaly = 0 deg , and at apogee mean anomaly = 180 deg . True anomaly is true positon of the earth relative to its perihelion, is measured from 0 to 360 deg. Note that what is true anomaly, would be Mean anomaly if the Earth moved with constant speed along a perfectly circular orbit around Sun. Equation of Center, is the difference between the true anomaly and the mean anomaly. Standard Epoch J2000, is beginning of Year = 2000, Month = 1, Day of month = 1, Hour decimal = 12.0 . Finding Mean anomaly and True anomaly in deg : 1. Mean anomaly in deg of the earth around sun, for input Julian day, year, month, day, hours, since Standard Epoch J2000 Input UT year = 2000 month = 1 day = 1 hr = 12 min = 0 sec = 0.00000 Corresponds to julian_day = 2451545.0000000000 Output Mean anomaly in deg of the earth around Sun = 357.5291000000, at input Julian day, minimizing into 0-360 deg = 357.5291000000 2. True anomaly in deg of the earth around sun, for input Julian day, year, month, day, hours, since Standard Epoch J2000 Input UT year = 2000 month = 1 day = 1 hr = 12 min = 0 sec = 0.00000 Corresponds to julian_day = 2451545.0000000000 Output True anomaly in deg of the earth around Sun = 357.4447876113, at input Julian day, minimizing into 0-360 deg = 357.4447876113 Note : Reported values are same, Mean anomaly of Earth around Sun g = 357.53, at Epoch J2000; (Ref. Indian Astronomical Ephemeris, Year 2000, IMD, Page 528.) Next Section - 2.3 Earth orbit points - UT at perihelion and aphelion

Page 44: ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM …myreaders.info/00_Orbital__Mechanics__-__Model_____Simulation... · ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM-MSS)

www.m

yrea

ders

.inf

o

OM-MSS Page 44 OM-MSS Section - 2.3 ----------------------------------------------------------------------------------------------------16 Earth Orbit Input Year : Precise Universal Time (UT) at orbit points - Perihelion and Aphelion. Finding Universal Time (UT) at Perihelion and Aphelion point, Sensing parameter is Mean anomaly (ME) in deg. Perihelion and Aphelion describes two specifc points on Earth orbit around Sun. - perihelion is Point on orbit nearest to Sun, is about 147,098,074 km, and sensing parameter ME deg cross over 360 ie 0 deg around January 03. - aphelion is Point on orbit farthest from Sun, is about 152,097,701 km, and sensing parameter ME_deg cross over 180 deg around July 04. This difference in distance to sun, while earth is at perihelion or aphelion. However the difference not enough to affect the earth's climate. Finding Precise time to reach Perihelion and Aphelion (using sensing parameter ME deg), for any Input year . 1. Find Precise time for Earth to reach Perihelion : Input Year = 2013 Output Time at Perihelion : julian_day = 2456295.8832941712, ie year = 2013, month = 1, day = 3, hr = 9, min = 11, sec = 56.61639 2. Find Precise time for Earth to reach Aphelion : Input Year = 2013 Output Time at Aphelion : julian_day = 2456478.5131087117, ie year = 2013, month = 7, day = 5, hr = 0, min = 18, sec = 52.59269 To verify computed Perihelion and Aphelion Time, apply them as input & compute back Mean anomaly, respectively expected values as 0 deg and 180 deg. 3. Find Mean anomaly and True anomaly in deg : Input Julian day = 2456295.8832941712 is precise time for Earth at Perihelion Output Mean anomaly in deg at Perihelion = 5040.0010049824 minimizing into 0-360 deg = 0.0010049824, note error in deg = 0.00100 True anomaly in deg at Perihelion = 5040.0010392859 minimizing into 0-360 deg = 0.0010392859, note error in deg = 0.00104 4. Find Mean anomaly and True anomaly in deg : Input Julian day = 2456478.5131087117 is precise time for Earth at Aphelion Output Mean anomaly in deg at Aphelion = 5220.0010013299 minimizing into 0-360 deg = 180.0010013299, note error in deg = 0.00100 True anomaly in deg at Aphelion = 5220.0009685492 minimizing into 0-360 deg = 180.0009685492, note error in deg = 0.00097 Note 1 : Perihelion & Aphelion time, reported, (Ref. http://www.usno.navy.mil/USNO/astronomical-applications/data-services/earth-seasons). Perihelion, Year 2013, Month 1, Day 02, Hrs 05, UTC ; Aphelion, Year 2013, Month 7, Day 05, Hrs 15, UTC.

Page 45: ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM …myreaders.info/00_Orbital__Mechanics__-__Model_____Simulation... · ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM-MSS)

www.m

yrea

ders

.inf

o

OM-MSS Page 45 Note 2 : For verifying, the anomaly values are calculated using analytical equations which are approximate, giving error at 3rd place of decimal; The algorithmic solutions are offered in later sections that goes through many iterations minimizing the errors. Next Section - 2.4 Earth orbit points - UT at vernal and autumnal equinox

Page 46: ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM …myreaders.info/00_Orbital__Mechanics__-__Model_____Simulation... · ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM-MSS)

www.m

yrea

ders

.inf

o

OM-MSS Page 46 OM-MSS Section - 2.4 -----------------------------------------------------------------------------------------------------17 Earth Orbit Input Year : Precise Universal Time (UT) at orbit points - Vernal Equinox and Autumnal Equinox. Finding Universal Time (UT) at Vernal equinox and Autumnal equinox point, Sensing parameter is Declination (delta). Equinox occurs twice a year, when Earth rotation axis is exactly parallel to the direction of motion of Earth around Sun. Vernal equinox around March 20/21, and Autumnal equinox around September 22/23; at equinox day and night are of same length. Right Ascension (RA or alpha) and Declination (delta) are astronomical terms for coordinates of a point on celestial sphere. Right Ascension (RA), is similar to longitude on Earth is measured in hours (h), minutes (m) and seconds (s). RA around the celestial equator is 24 hours, where 1 h = 15 deg. Unlike longitude (zero deg) on Earth as Prime Meridian, the reference Right Ascension (zero hour) is First Point of Aries in sky where Sun crosses celestial equator called Vernal equinox. Declination (delta), is similar to latitude on Earth is measured in degrees, arc-minutes and arc-seconds. Declination measures how far overhead an object will rise in the sky, measured 0 deg at the equator, +90 deg at North Pole and -90 deg at South Pole. Vernal point : RA = 00h 00m 00s and longitude = 0 deg , the sense parameter Delta_deg sign change -ve to 0 to +ve Autumnal point : RA = 12h 00m 00s and longitude = 180 deg, the sense parameter Delta_deg sign change +ve to 0 to -ve Finding Precise time to reach Vernal_equinox and Autumnal_equinox (using sense parameter Delta_deg), for any Input year are as follows. 1. Find Precise time for Earth to reach Vernal equinox : Input Year = 2013 Output Time at Vernal equinox : Julian day = 2456371.9598282082, ie year = 2013, month = 3, day = 20, hr = 11, min = 2, sec = 9.15719 2. Find Precise time for Earth to reach Autumnal equinox : Input Year = 2013 Output Time at Autumnal equinox : Julian day = 2456558.3650290174, ie year = 2013, month = 9, day = 22, hr = 20, min = 45, sec = 38.50711 Note : Values reported are same, (Ref. http://www.usno.navy.mil/USNO/astronomical-applications/data-services/earth-seasons). Vernal Equinox, Year 2013, Month 3, Day 20, Hrs 11, Min 02 UTC ; Autumnal Equinox, Year 2013, Month 9, Day 22, Hrs 20, Min 44 UTC. Next Section - 2.5 Earth orbit points - UT at summer and winter solstice

Page 47: ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM …myreaders.info/00_Orbital__Mechanics__-__Model_____Simulation... · ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM-MSS)

www.m

yrea

ders

.inf

o

OM-MSS Page 47 OM-MSS Section - 2.5 -----------------------------------------------------------------------------------------------------18 Earth Orbit Input Year : Precise Universal Time (UT) at orbit points - Summer Solstice and Winter Solstice . Finding Universal Time (UT) at Summer and Winter Solstice point, Sensing parameter is Declination (delta). Solstice occurs twice a year, as Sun appears to have reached its highest or lowest annual altitude in the sky at local solar noon. Summer Solstice is around June 21/22, and Winter Solastice is around December 21/22. Solstices, together with the Equinoxes, are connected with the seasons. Summer Solstice : the sense parameter Delta_deg max about +23.44 deg Winter Solstice : the sense parameter Delta_deg min about -23.44 deg Finding Precise time to reach Summer and Winter Solstice (using sense parameter Delta_deg), for any Input year are as follows. 1. Find Precise time for Earth to reach Summer Solstice : Input Year = 2013 Output Time at Summer Solstice : julian_day = 2456464.7092499998, ie year = 2013, month = 6, day = 21, hr = 5, min = 1, sec = 19.19999 2. Find Precise time for Earth to reach Winter Solstice : Input Year = 2013 Output Time at Winter Solstice : julian_day = 2456648.2153210002, ie year = 2013, month = 12, day = 21, hr = 17, min = 10, sec = 3.73442 Note : Values reported is slightly less then 3 min and 1 min, (Ref. http://www.usno.navy.mil/USNO/astronomical-applications/data-services/earth-seasons). Summer Solstice, Year 2013, Month 6, Day 21, Hrs 05, Min 04 UTC ; Winter Solstice, Year 2013, Month 12, Day 21, Hrs 17, Min 11 UTC. Next Section - 2.6 Earth orbit points - UT at semi-major and semi-minor axis

Page 48: ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM …myreaders.info/00_Orbital__Mechanics__-__Model_____Simulation... · ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM-MSS)

www.m

yrea

ders

.inf

o

OM-MSS Page 48 OM-MSS Section - 2.6 -----------------------------------------------------------------------------------------------------19 Earth Orbit Input Year : Precise Universal Time (UT) at orbit points - Semi-Major Axis and Semi-Minor Axis . Finding Universal Time (UT) at Semi-Minor Axis point and Semi-Major Axis point, Sensing parameter is Mean anomaly (ME) in deg . Semi-Minor Axis Point around Apri 01, sensing parameter ME_deg cross over 90 deg, Semi-Major Axis Point around July 05, sensing parameter ME_deg cross over 180 deg. Finding Precise time to reach Semi-Minor Axis and Semi-Major Axis Point (using sensing parameter ME deg), for any Input year are as follows. 1. Find Precise time for Earth to reach Semi-Minor Axis : Input Year = 2013 Output Time at Semi-Minor Axis Point : Julian day = 2456387.1982014412, ie year = 2013, month = 4, day = 4, hr = 16, min = 45, sec = 24.60452 2. Find Precise time for Earth to reach Semi-Major Axis : Input Year = 2013 Output Time at Semi-Major Axis Point : Julian day = 2456478.5131087117, ie year = 2013, month = 7, day = 5, hr = 0, min = 18, sec = 52.59269 Next Section - 2.7 Earth orbit - astronomical years

Page 49: ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM …myreaders.info/00_Orbital__Mechanics__-__Model_____Simulation... · ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM-MSS)

www.m

yrea

ders

.inf

o

OM-MSS Page 49 OM-MSS Section - 2.7 -----------------------------------------------------------------------------------------------------20 Earth Orbit Input Year : Astronomical Years - Anomalistic, Tropical, and Sidereal Years . The Anomalistic, Tropical, and Sidereal Years are Astronomical years. Look at the differeces. Finding Anomalistic, Tropical, and Sidereal Years for the Input Year. 1. For Anomalistic year : find Precise time for Earth to reach Perihelion to Perihelion : Input Year = 2000 Output Perihelion to Perihelion Time in julian_day = 365.2596290808 ie Days 365, hour 6, min 13, sec 51.95258 is Anomalistic year 2. For Anomalistic year : find Precise time for Earth to reach Aphelion to Aphelion : Input Year = 2000 Output Aphelion to Aphelion Time in julian_day = 365.2596290810 ie Days 365, hour 6, min 13, sec 51.95260 is Anomalistic year 3. For Tropical year : find Precise time for Earth to reach Vernal to Vernal equinox : Input Year = 2000 Output Vernal to Vernal equinox Time in julian_day = 365.2423121394 ie Days 365, hour 5, min 48, sec 55.76884 is Tropical year 4. For Tropical year : find Precise time for Earth to reach Autumnal to Autumnal equinox : Input Year = 2000 Output Autumnal to Autumnal equinox Time in julian_day = 365.2423121394 ie Days 365, hour 5, min 48, sec 55.76884 is Tropical year Note : Values reported are almost same, (Ref. http://en.wikipedia.org/wiki/Year , http://www.yourdictionary.com/sidereal-year). Anomalistic year : Days 365, Hrs 06, Min 13, Sec 52.6 UTC ; Tropical year : Days 365, Hrs 05, Min 48, Sec 46 UTC . Earth's one revolution around Sun called Sidereal year = 365.256363004 (Days 365, Hr 06, Min 09, Sec 09.76) in units of mean solar days, at epoch J2000 The difference in days among Anomalistic, Tropical and Sidereal Year are (Anomalistic - Tropical) year = Days 0, hour 0, minute 24, seconds 56.1837373674 (Sidereal - Anomalistic) year = Days 0, hour 0, minute -4, seconds -42.1890329762 (Sidereal - Tropical) year = Days 0, hour 0, minute 20, seconds 13.9947043912 Next Section - 2.8 Earth orbit oblateness - semi-major and semi-minor axis

Page 50: ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM …myreaders.info/00_Orbital__Mechanics__-__Model_____Simulation... · ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM-MSS)

www.m

yrea

ders

.inf

o

OM-MSS Page 50 OM-MSS Section - 2.8 -----------------------------------------------------------------------------------------------------21 Earth Orbit Oblateness : Semi-Major Axis and Semi-Minor Axis. Finding Semi-Major Axis and Semi-Minor Axis in km. The Earth's orbit is an ellipse. The Earth's shape is very close to an oblate spheroid, with a bulge around the equator. GM_SUN is Gravitational parameter of Sun is product of gravitational constant G and mass M of Sun GM_SUN = = 132,712,440,018 km3/sec2 = 132712.440018e6 = 132712.440018 x 10 to pow 6. The Semi-Major Axis value is computed considering using earth mean motion rev per day obtain as (a) EARTH mean motion rev per day = 0.0027377786, as 1.0 / 365.259629080 days is time Perihelion to Perihelion same as Aphelion to Aphelion, year 2000. (b) EARTH mean motion rev per day = 0.0027378030, as 1.0 / 365.256363004 days is sidereal year for Earth making one full revolution around Sun. The Semi-Minor Axis value is calculated considering earth orbit Eccentricity = 0.016710219 1. Earth Semi-Major Axis (SMA) in km, using EARTH mean motion rev per day as 0.0027377786 using diff. of Julian days Perihelion to Perihelion, year 2000 (a) Ignoring Earth oblateness Input Earth mean motion rev per day = 0.0027377786, GM SUN = 132712440018.00000 Output Semi Major Axis in km = 149598616.3114941400, and Semi Minor Axis in km = 149577728.5363029200 (b) Considering Earth oblateness , Inclination , Eccentricity Input Earth mean motion rev per day = 0.0027377786, GM SUN = 132712440018.00, Incl = 23.43928, Ecc = 0.01671, constant_k2 = 65915.34460 Output Semi-Major Axis in km = 149598616.3117182900, and Semi-Miror Axis in km = 149577728.5365270400

Page 51: ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM …myreaders.info/00_Orbital__Mechanics__-__Model_____Simulation... · ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM-MSS)

www.m

yrea

ders

.inf

o

OM-MSS Page 51 2. Earth Semi-Major Axis (SMA) in km, using EARTH mean motion rev per day as 0.0027378030 obtained using sidereal year for Earth one revolution around Sun. (a) Ignoring Earth oblateness Input Earth mean motion rev per day = 0.0027378031, GM SUN = 132712440018.00 Output Semi-Major Axis in km = 149597724.5233797700, and Semi-Minor Axis in km = 149576836.8727048900 (b) Considering Earth oblateness , Inclination , Eccentricity Input Earth mean motion rev per day = 0.0027378031, GM SUN = 132712440018.00, Incl = 23.43928, Ecc = 0.01671, constant_k2 = 65915.34460 Output Semi-Major Axis in km = 149597724.5236039200, and Semi-Miror Axis in km = 149576836.8729290100 Note : Compare with Two different values of Semi-Major Axis reported as Semi-major axis = 149,597,887.5 KM , (Ref. http://simple.wikipedia.org/wiki/Earth) Semi-major axis = 149,598,261 KM , (Ref. http://en.wikipedia.org/wiki/Earth 27s_orbit) Next Section - 2.9 Earth orbit - mean, eccentric and true anomaly at UT

Page 52: ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM …myreaders.info/00_Orbital__Mechanics__-__Model_____Simulation... · ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM-MSS)

www.m

yrea

ders

.inf

o

OM-MSS Page 52 OM-MSS Section - 2.9 -----------------------------------------------------------------------------------------------------22 Earth Orbit Input Year : Mean anomaly, Eccentric anomaly, True anomaly at UT, based on algorithms of iterative method. Finding Mean anomaly, Eccentric anomaly, True anomaly at any UT, year, month, day, hour, minute, seconds. The Mean anomaly and True anomaly values presented before, were calculated using standard analytical expressions in section 2.2. Here the anomalies are computed based on algorithms of iterative method, while Earth moves through the respective orbit points : perihelion, vernal equinox, semi_minoraxis, summer solstice, aphelion, autumnal equinox, winter solstice. The Computed values of Mean, Eccentric, and True anomaly mentioned below show accuracy of the algorithms. The Input Time at each orbit point is same as what were computed before in sections (2.3 to 2.6). Mean anomaly, Eccentric anomaly, True anomaly at Perihelion, Aphelion, Equinoxes, Solstices & Semi-minor axis points : 1. Input time at Perihelion : year = 2013, month = 1, day = 3, hour = 9, minute = 11, seconds = 56.6163906455 Output the Anomalies in deg : Mean anomaly = 0.00000, Eccentric anomaly = 0.00000, True anomaly = 0.00000 2. Input time at Vernal equinox : year = 2013, month = 3, day = 20, hour = 11, minute = 2, seconds = 9.1571885347 Output the Anomalies in deg : Mean anomaly = 74.98105, Eccentric anomaly = 75.90967, True anomaly = 76.84023 3. Input time at Summer solstice : year = 2013, month = 6, day = 21, hour = 5, minute = 1, seconds = 19.1999861598 Output the Anomalies in deg : Mean anomaly = 166.39491, Eccentric anomaly = 166.61653, True anomaly = 166.83637 4. Input time at Aphelion : year = 2013, month = 7, day = 5, hour = 0, minute = 18, seconds = 52.5926899910 Output the Anomalies in deg : Mean anomaly = 180.00000, Eccentric anomaly = 180.00000, True anomaly = 180.00000 5. Input time at Autumnal equinox : year = 2013, month = 9, day = 22, hour = 20, minute = 45, seconds = 38.5071069002 Output the Anomalies in deg : Mean anomaly = 258.70208, Eccentric anomaly = 257.76639, True anomaly = 256.83232 6. Input time at Winter solstice : year = 2013, month = 12, day = 21, hour = 17, minute = 10, seconds = 3.7344172597 Output the Anomalies in deg : Mean anomaly = 347.25855, Eccentric anomaly = 347.04389, True anomaly = 346.82746

Page 53: ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM …myreaders.info/00_Orbital__Mechanics__-__Model_____Simulation... · ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM-MSS)

www.m

yrea

ders

.inf

o

OM-MSS Page 53 7. Input time at Semi-minor axis : year = 2013, month = 4, day = 4, hour = 16, minute = 45, seconds = 24.6045202017 Output the Anomalies in deg : Mean anomaly = 90.00000, Eccentric anomaly = 90.95729, True anomaly = 91.91449 8. The Semi-Major Axis Point is same as Aphelion presented above, repeated here for completeess. Input time at Semi-major axis : year = 2013, month = 7, day = 5, hour = 0, minute = 18, seconds = 52.5926899910 Output the Anomalies in deg : Mean anomaly = 180.00000, Eccentric anomaly = 180.00000, True anomaly = 180.00000 Note : The values computed above are based on iterative algorithm, therefore more accurate and validated against the expected respective values of anomaly as 0 deg, 180 deg, and 90 deg at Perihelion, Aphelion & Semi-minor axis points. The values at Equinoxes and Solstices are also close to those reported mentioned before. Next Section - 2.10 Earth orbit - four seasons

Page 54: ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM …myreaders.info/00_Orbital__Mechanics__-__Model_____Simulation... · ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM-MSS)

www.m

yrea

ders

.inf

o

OM-MSS Page 54 OM-MSS Section - 2.10 ----------------------------------------------------------------------------------------------------23 Earth Orbit Input Year : Four Seasons - Spring, Summer, Autumn, and Winter. Finding Four Seasons : Start Time of Spring, Summer, Autumn, Winter. Seasons are a subdivision of a year. The Earth's rotation axis is tilted by 23.4392794383 degrees with respect to the ecliptic. Because of this tilt in Earth's rotation axis, the Sun appears at different elevations or angle above the horizon, at different times of a year. The variation in the elevation of the Sun over the year is the cause of the seasons. The 0 to 360 deg Sun's longitudes are equally divided among four seasons as : Sun longitudes : 0 - 90 deg (Spring), 90 - 180 deg (Summer), 180 - 270 deg (Autumn), 270 - 360 deg (Winter). The Sun true longitude (Lsun) is derived from Sun mean longitude(Lmean) and Earth mean anomaly(ME). For start time of any season, the sensing parameter is Sun true longitude value which is reached through many iterations. Finding the Start Time of the Seasons - Spring, Summer, Autumn, Winter, and the corresponding Sun true Longitude (Lsun) for the input year 1. Year = 2013, Start Time of Spring : UT year = 2013, month = 3, day = 20, hr = 11, min = 2, sec = 9.15719, & Sun true Log deg = 360.00000 2. Year = 2013, Start Time of Summer : UT year = 2013, month = 6, day = 21, hr = 5, min = 1, sec = 23.88007, & Sun true Log deg = 90.00000 3. Year = 2013, Start Time of Autumn : UT year = 2013, month = 9, day = 22, hr = 20, min = 45, sec = 38.50711, & Sun true Log deg = 180.00000 4. Year = 2013, Start Time of Winter : UT year = 2013, month = 12, day = 21, hr = 17, min = 10, sec = 7.88032, & Sun true Log deg = 270.00000 Finding the Duration of the Seasons - Spring, Summer, Autumn, Winter for the Year = 2013 1. Season Spring Duration Days 92, hour 17, minute 59, seconds 14.72288 2. Season Summer Duration Days 93, hour 15, minute 44, seconds 14.62704 3. Season Autumn Duration Days 89, hour 20, minute 24, seconds 29.37321 4. Season Winter Duration Days 88, hour 23, minute 40, seconds 57.24261

Page 55: ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM …myreaders.info/00_Orbital__Mechanics__-__Model_____Simulation... · ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM-MSS)

www.m

yrea

ders

.inf

o

OM-MSS Page 55 Summary of four seasons, Year 2013 , first day of Spring, Summer, Autumn, and Winter season. - 1st day of Spring season, Mar. 20, Vernal equinox, Sun crosses Equator moving northward, is beginning of a long period of sunlight at Pole. - 1st day of Summer season, Jun. 21, Summer solstice, Sun is farthest north and time between Sunrise and Sunset is longest of the year, - 1st day of Autumn season, Sept. 22, Autumnal equinox, Sun crosses Equator moving southward, is beginning of a long period of darkness at Pole. - 1st day of Winter season, Dec. 21, Winter solstice, Sun is farthest south and time between Sunrise and Sunset is shortest of the year. Note : Values reported are same, (Ref. http://en.wikipedia.org/wiki/Season). Spring season (Vernal equinox) Year 2013, Mar. 20, Hrs 11, Min 02 UTC ; Summer season (Summer solstice) Year 2013, Jun. 21, Hrs 05, Min 04 UTC. Autumn season (Autumnal equinox) Year 2013, Sept. 22, Hrs 20, Min 44 UTC ; Winter season (Winter solstice) Year 2013, Dec. 21, Hrs 17, Min 11 UTC. Next Section - 2.11 Concluding astronomical events

Page 56: ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM …myreaders.info/00_Orbital__Mechanics__-__Model_____Simulation... · ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM-MSS)

www.m

yrea

ders

.inf

o

OM-MSS Page 56 OM-MSS Section - 2.11 ----------------------------------------------------------------------------------------------------24 Concluding Astronomical Events Anomalies, Equinoxes, Solstices, Years & Seasons presented in Sections (2.0 to 2.10). In Sections (2.1 to 2.10), all that presented were prediction / computation of following Astronomical Time Events of Earth Orbit around Sun : 1. Precise value for Mean, Eccentric & True anomalies; 2. Precise time for Earth to reach Perihelion & Aphelion points; 3. Precise time for Earth to reach Vernal & Autumnal equinox points; 4. Precise time for Earth to reach Summer & Winter solstice points; 5. Precise time for Earth to reach Semi-major & Semi-major axis points; 6. Duration of Anomalistic, Tropical & Sidereal years; 7. Start time & durations of seasons - Spring, Summer, Autumn, & Winter. End of Computing Astronomical Events Anomalies, Equinoxes, Solstices, Years & Seasons. Move on to Compute the Position of Sun on Celestial Sphere at input Universal Time (UT). Next Section - 3 Position of Sun on Celestial Sphere at UT

Page 57: ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM …myreaders.info/00_Orbital__Mechanics__-__Model_____Simulation... · ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM-MSS)

www.m

yrea

ders

.inf

o

OM-MSS Page 57 OM-MSS Section - 3 -------------------------------------------------------------------------------------------------------25 POSITION OF SUN ON CELESTIAL SPHERE AT INPUT UNIVERSAL TIME (UT) . Sun is a star at the center of our Solar System. Although stars are fixed relative to each other, but Sun moves relative to stars. Sun follows a circular path on the celestial sphere, once a year. This path is known as the 'Ecliptic', representing the plane of the Earth's orbit. Inclination of the Earth's equator to the Ecliptic (or earth's rotation axis to a perpendicular on ecliptic) is called Obliquity of the ecliptic. The Obliquity of the ecliptic is currently 23.4392794383 deg with respect to the celestial equator, at standard epoch J2000 . The position of any point on the Celestial Sphere is given with reference to the equator or the ecliptic. - reference to Equator, the position is specified by Right ascension and Declination. - reference to Ecliptic, the position is specified by celestial Longitude and Latitude. The Earth moves in an elliptical orbit around the Sun. Therefore the distance from Earth to Sun is not same at all points on the orbit. - distance Earth to Sun (d_sun) calculated as r = a(1-e*e)/(1+e cos(theta)) where a = semi-major axis, e = eccentricity and theta = mean anomaly of sun. - radial distance from Earth to Sun (Rs) calculated as R = 1.00014 - (0.01671 * cos g) - (0.00014 * cos 2g) where g = mean anomaly of sun - mean distance from Earth to Sun = 149,597,870.700 km, called 1 Astronomical Unit, (Ref. http://en.wikipedia.org/wiki/Astronomical_unit) - minimum distance from Earth to Sun = 147,098,074 km or 0.98 AU, and this point is called Perihelion; - maximum distance from Earth to Sun = 152,097,701 km or 1.02 AU, and this point is called Aphelion; - average distance from Earth to Sun (As) = 149,597,887.5 km is the distance (max + min)/2. (Ref http://wiki.answers.com/Q/What_is_the_distance_between_Earth_and_the_Sun). At any input Universal Time, to compute the position of Sun and its related traits, the algorithm goes through following steps : (a) Find Julian day of interest corresponding to the input Universal Time; (b) Find Corresponding Ecliptic coordinates - Mean anomaly of the Sun (actually, Earth orbits around Sun, but here pretends Sun orbits Earth) - Mean longitude of the Sun; - Ecliptic longitude of the Sun; - Ecliptic latitude of the Sun is always nearly zero (the value never exceeds 0.00033 deg)

Page 58: ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM …myreaders.info/00_Orbital__Mechanics__-__Model_____Simulation... · ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM-MSS)

www.m

yrea

ders

.inf

o

OM-MSS Page 58 - Distance of the Sun from the Earth, in astronomical units - Obliquity of the ecliptic (c) Find Corresponding Equatorial coordinates - Right ascension - Declination In addition to these Ecliptic and Equatorial coordinates, computed many other parameters related to Sun's Position on Celestial Sphere. The Position of Sun on Celestial Sphere is represented by computing following parameters : Semi-major axis (SMA), Mean movement per day (n sun), Mean distance (As), Mean anomaly (m sun), True anomaly (T sun), Eccentric anomaly (E sun), Right ascension (Alpha), Declination (Delta), Mean longitude (Lmean), Ecliptic longitude (Lsun), Nodal elongation (U sun), Argument of perigee (W sun), Obliquity of ecliptic (Epcylone), Mean dist (d_sun), Radial distance (Rs). Total 22 parameters computed at Standard Epoch JD2000 (ie YY 2000, MM 1, DD 1, hr 12.00) and at six orbit time event points for YY 2013. The six orbit events points are when Earth reaches Perihelion & Aphelion, Vernal & Autumnal Equinox, Summer & Winter Solstice. For any desired year, first computed the Universal time (UT) for earth to reach the respective orbit events point, then apply the same UT as input time for finding the corresponding orbit parameters at that time instnt. (Note : The orbit events being specific, the values computed can be verified easily with those reported from other sources.) Move on to Find Position of Sun on Celestial Sphere, the Utilities of OM-MSS Software (Sections - 3.1 to 3.8). Computing Sun Position on Celestial Sphere at Seven different Time events, respectively : (a) Time Event - Standard Epoch JD2000 ; (b) Time Event - when Earth at Perihelion ; (c) Time Event - when Earth at Vernal equinox ; (d) Time Event - when Earth at Summer solstice ; (e) Time Event - when Earth at Aphelion ; (f) Time Event - when Earth at Autumnal equinox ; (g) Time Event - when Earth at Winter solstices ; Next Section - 3.1 Position of sun at standard epoch time JD2000

Page 59: ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM …myreaders.info/00_Orbital__Mechanics__-__Model_____Simulation... · ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM-MSS)

www.m

yrea

ders

.inf

o

OM-MSS Page 59 OM-MSS Section - 3.1 -----------------------------------------------------------------------------------------------------26 SUN Positional Parameters on Celestial Sphere : Input Time (UT) Standard Epoch JD2000 1. Finding Position of Sun on Celestial Sphere at Input UT Standard Epoch time JD2000 . Input Universal Time Corresponds to Julian Day JD2000 : year = 2000, month = 1, day = 1, hour = 12, minute = 0, seconds = 0.00000 Output : Sun Position on Celestial Sphere Corresponding to input time, JD2000 01. Earth around Sun Mean motion rev per day (mm) = 0.0027377786 02. Semi-major axis in km considering oblateness (SMA) = 149598616.31172 03. Earth mean motion deg per day using SMA (mm) = 0.9856003000 04. Sun mean movement deg per day (n sun) = 0.9856003000 05. Eccentricity of earth orbit (e sun) = 0.0167102190 06. Perihelion to input time diff in Julian days = -2.5081161195 07. Mean anomaly in deg per day from n_sun (m sun) = -2.4719999999 08. Sun Mean longitude in deg (Lmean) = 280.4600000000 09. Earth Mean anomaly in deg (ME) = 357.5280000000 10. Sun Ecliptic longitude in deg (Lsun) = 280.3756801972 11. Obliquity of ecliptic in deg (Epcylone) = 23.4392794444 12. Sun Right ascension in deg (Alpha) = 281.2858630915 13. Sun Declination in deg (Delta) = -23.0337026521 14. Sun Mean distance in km (As) = 149598616.31172 15. Sun Radial distance from earth in km (Rs) = 147101227.61694 16. Sun Nodal elongation in deg (U sun) = -79.6243198028 17. Sun Mean anomaly in deg (M sun) = 357.5280000002 18. Sun Eccentric anomaly in deg (E sun) = 357.4860040557 19. Sun True anomaly in deg (T sun) = 357.4436516380 20. Sun Argument of perigee in deg (W sun) = 282.9320285593 21. Sun True anomaly in deg from U & W (V sun) = 357.4436516380 22. Sun Distance in km (d sun) = 147101040.52850 Sun Ecliptic latitude is always nearly zero (the value never exceeds 0.00033 deg) Next Section - 3.2 Position of sun at time when earth is at perihelion

Page 60: ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM …myreaders.info/00_Orbital__Mechanics__-__Model_____Simulation... · ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM-MSS)

www.m

yrea

ders

.inf

o

OM-MSS Page 60 OM-MSS Section - 3.2 ------------------------------------------------------------------------------------------------------27 SUN Positional Parameters on Celestial Sphere : Input Year Time when Earth is at Perihelion. 2. Finding Position of Sun on Celestial Sphere at Input Universal Time, when Earth is at Perihelion . Input Universal Time Corresponds to Earth at Perihelion : year = 2013, month = 1, day = 3, hour = 9, minute = 11, seconds = 56.61639 Output : Sun Position on Celestial Sphere Corresponding to input time, Earth reaching Perihelion 01. Earth around Sun Mean motion rev per day (mm) = 0.0027377786 02. Semi-major axis in km considering oblateness (SMA) = 149598616.31172 03. Earth mean motion deg per day using SMA (mm) = 0.9856003000 04. Sun mean movement deg per day (n sun) = 0.9856003000 05. Eccentricity of earth orbit (e sun) = 0.0167102190 06. Perihelion to input time diff in Julian days = 0.0000000000 07. Mean anomaly in deg per day from n_sun (m sun) = 0.0000000000 08. Sun Mean longitude in deg (Lmean) = 283.1557666033 09. Earth Mean anomaly in deg (ME) = 0.0000000001 10. Sun Ecliptic longitude in deg (Lsun) = 283.1557666033 11. Obliquity of ecliptic in deg (Epcylone) = 23.4375874462 12. Sun Right ascension in deg (Alpha) = 284.2922173002 13. Sun Declination in deg (Delta) = -22.7872783368 14. Sun Mean distance in km (As) = 149598616.31172 15. Sun Radial distance from earth in km (Rs) = 147098823.43315 16. Sun Nodal elongation in deg (U sun) = -76.8442333967 17. Sun Mean anomaly in deg (M sun) = 0.0000000000 18. Sun Eccentric anomaly in deg (E sun) = 0.0000000000 19. Sun True anomaly in deg (T sun) = 0.0000000000 20. Sun Argument of perigee in deg (W sun) = 283.1557666033 21. Sun True anomaly in deg from U & W (V sun) = 0.0000000000 22. Sun Distance in km (d sun) = 147098790.67105 Sun Ecliptic latitude is always nearly zero (the value never exceeds 0.00033 deg) Next Section - 3.3 Position of sun at time when earth is at vernal equinox

Page 61: ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM …myreaders.info/00_Orbital__Mechanics__-__Model_____Simulation... · ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM-MSS)

www.m

yrea

ders

.inf

o

OM-MSS Page 61 OM-MSS Section - 3.3 ------------------------------------------------------------------------------------------------------28 SUN Positional Parameters on Celestial Sphere : Input Year Time when Earth is at Vernal equinox . 3. Finding Position of Sun on Celestial Sphere at Input Universal Time, when Earth is at Vernal equinox . Input Universal Time Corresponds to Earth at Vernal equinox : year = 2013, month = 3, day = 20, hour = 11, minute = 2, seconds = 9.15719 Output : Sun Position on Celestial Sphere Corresponding to input time, Earth reaching Vernal equinox 01. Earth around Sun Mean motion rev per day (mm) = 0.0027377786 02. Semi-major axis in km considering oblateness (SMA) = 149598616.31172 03. Earth mean motion deg per day using SMA (mm) = 0.9856003000 04. Sun mean movement deg per day (n sun) = 0.9856003000 05. Eccentricity of earth orbit (e sun) = 0.0167102190 06. Perihelion to input time diff in Julian days = 76.0765340370 07. Mean anomaly in deg per day from n_sun (m sun) = 74.9810547699 08. Sun Mean longitude in deg (Lmean) = 358.1404045779 09. Earth Mean anomaly in deg (ME) = 74.9810547700 10. Sun Ecliptic longitude in deg (Lsun) = 0.0000000000 11. Obliquity of ecliptic in deg (Epcylone) = 23.4375603478 12. Sun Right ascension in deg (Alpha) = 0.0000000000 13. Sun Declination in deg (Delta) = 0.0000000000 14. Sun Mean distance in km (As) = 149598616.31172 15. Sun Radial distance from earth in km (Rs) = 148989898.67840 16. Sun Nodal elongation in deg (U sun) = 0.0000000000 17. Sun Mean anomaly in deg (M sun) = 74.9810547697 18. Sun Eccentric anomaly in deg (E sun) = 75.9096738744 19. Sun True anomaly in deg (T sun) = 76.8402303407 20. Sun Argument of perigee in deg (W sun) = 283.1597696594 21. Sun True anomaly in deg from U & W (V sun) = 76.8402303407 22. Sun Distance in km (d sun) = 148912015.96700 Sun Ecliptic latitude is always nearly zero (the value never exceeds 0.00033 deg) Next Section - 3.4 Position of sun at time when earth is at summer solsticex

Page 62: ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM …myreaders.info/00_Orbital__Mechanics__-__Model_____Simulation... · ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM-MSS)

www.m

yrea

ders

.inf

o

OM-MSS Page 62 OM-MSS Section - 3.4 ------------------------------------------------------------------------------------------------------29 SUN Positional Parameters on Celestial Sphere : Input Year Time when Earth is at Summer solstice . 4. Finding Position of Sun on Celestial Sphere at Input Universal Time, when Earth is at Summer solstice . Input Universal Time Corresponds to Earth at Summer solstice : year = 2013, month = 6, day = 21, hour = 5, minute = 1, seconds = 19.19999 Output : Sun Position on Celestial Sphere Corresponding to input time, Earth reaching Summer solstice 01. Earth around Sun Mean motion rev per day (mm) = 0.0027377786 02. Semi-major axis in km considering oblateness (SMA) = 149598616.31172 03. Earth mean motion deg per day using SMA (mm) = 0.9856003000 04. Sun mean movement deg per day (n sun) = 0.9856003000 05. Eccentricity of earth orbit (e sun) = 0.0167102190 06. Perihelion to input time diff in Julian days = 168.8259558287 07. Mean anomaly in deg per day from n_sun (m sun) = 166.3949127126 08. Sun Mean longitude in deg (Lmean) = 89.5586310183 09. Earth Mean anomaly in deg (ME) = 166.3949127126 10. Sun Ecliptic longitude in deg (Lsun) = 89.9999483110 11. Obliquity of ecliptic in deg (Epcylone) = 23.4375273104 12. Sun Right ascension in deg (Alpha) = 89.9999436629 13. Sun Declination in deg (Delta) = 23.4375273104 14. Sun Mean distance in km (As) = 149598616.31172 15. Sun Radial distance from earth in km (Rs) = 152030583.04072 16. Sun Nodal elongation in deg (U sun) = 90.0000000000 17. Sun Mean anomaly in deg (M sun) = 166.3949127122 18. Sun Eccentric anomaly in deg (E sun) = 166.6165253213 19. Sun True anomaly in deg (T sun) = 166.8363660940 20. Sun Argument of perigee in deg (W sun) = 283.1636339060 21. Sun True anomaly in deg from U & W (V sun) = 166.8363660940 22. Sun Distance in km (d sun) = 152025947.60113 Sun Ecliptic latitude is always nearly zero (the value never exceeds 0.00033 deg) Next Section - 3.5 Position of sun at time when earth is at aphelion

Page 63: ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM …myreaders.info/00_Orbital__Mechanics__-__Model_____Simulation... · ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM-MSS)

www.m

yrea

ders

.inf

o

OM-MSS Page 63 OM-MSS Section - 3.5 ------------------------------------------------------------------------------------------------------30 SUN Positional Parameters on Celestial Sphere : Input Year Time when Earth is at Aphelion . 5. Finding Position of Sun on Celestial Sphere at Input Universal Time, when Earth is at Aphelion . Input Universal Time Corresponds to Earth at Aphelion : year = 2013, month = 7, day = 5, hour = 0, minute = 18, seconds = 52.59269 Output : Sun Position on Celestial Sphere Corresponding to input time, Earth reaching Aphelion 01. Earth around Sun Mean motion rev per day (mm) = 0.0027377786 02. Semi-major axis in km considering oblateness (SMA) = 149598616.31172 03. Earth mean motion deg per day using SMA (mm) = 0.9856003000 04. Sun mean movement deg per day (n sun) = 0.9856003000 05. Eccentricity of earth orbit (e sun) = 0.0167102190 06. Perihelion to input time diff in Julian days = 182.6298145405 07. Mean anomaly in deg per day from n_sun (m sun) = 180.0000000001 08. Sun Mean longitude in deg (Lmean) = 103.1643684676 09. Earth Mean anomaly in deg (ME) = 180.0000000002 10. Sun Ecliptic longitude in deg (Lsun) = 103.1643684676 11. Obliquity of ecliptic in deg (Epcylone) = 23.4375223935 12. Sun Right ascension in deg (Alpha) = 104.3014954901 13. Sun Declination in deg (Delta) = 22.7863704018 14. Sun Mean distance in km (As) = 149598616.31172 15. Sun Radial distance from earth in km (Rs) = 152098409.19029 16. Sun Nodal elongation in deg (U sun) = 76.8356315324 17. Sun Mean anomaly in deg (M sun) = 179.9999999997 18. Sun Eccentric anomaly in deg (E sun) = 179.9999999997 19. Sun True anomaly in deg (T sun) = 179.9999999997 20. Sun Argument of perigee in deg (W sun) = 256.8356315327 21. Sun True anomaly in deg from U & W (V sun) = 179.9999999997 22. Sun Distance in km (d sun) = 152098441.95238 Sun Ecliptic latitude is always nearly zero (the value never exceeds 0.00033 deg) Next Section - 3.6 Position of sun at time when earth is at autumnal equinox

Page 64: ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM …myreaders.info/00_Orbital__Mechanics__-__Model_____Simulation... · ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM-MSS)

www.m

yrea

ders

.inf

o

OM-MSS Page 64 OM-MSS Section - 3.6 ------------------------------------------------------------------------------------------------------31 SUN Positional Parameters on Celestial Sphere : Input Year Time when Earth is at Autumnal equinox . 6. Finding Position of Sun on Celestial Sphere at Input Universal Time, when Earth is at Autumnal equinox . Input Universal Time Corresponds to Earth at Autumnal equinox : year = 2013, month = 9, day = 22, hour = 20, minute = 45, seconds = 38.50711 Output : Sun Position on Celestial Sphere Corresponding to input time, Earth reaching Autumnal equinox 01. Earth around Sun Mean motion rev per day (mm) = 0.0027377786 02. Semi-major axis in km considering oblateness (SMA) = 149598616.31172 03. Earth mean motion deg per day using SMA (mm) = 0.9856003000 04. Sun mean movement deg per day (n sun) = 0.9856003000 05. Eccentricity of earth orbit (e sun) = 0.0167102190 06. Perihelion to input time diff in Julian days = 262.4817348463 07. Mean anomaly in deg per day from n_sun (m sun) = 258.7020766091 08. Sun Mean longitude in deg (Lmean) = 181.8702061020 09. Earth Mean anomaly in deg (ME) = 258.7020766091 10. Sun Ecliptic longitude in deg (Lsun) = 180.0000000001 11. Obliquity of ecliptic in deg (Epcylone) = 23.4374939503 12. Sun Right ascension in deg (Alpha) = 180.0000000001 13. Sun Declination in deg (Delta) = -0.0000000001 14. Sun Mean distance in km (As) = 149598616.31172 15. Sun Radial distance from earth in km (Rs) = 150128632.16764 16. Sun Nodal elongation in deg (U sun) = -0.0000000001 17. Sun Mean anomaly in deg (M sun) = 258.7020766085 18. Sun Eccentric anomaly in deg (E sun) = 257.7663930098 19. Sun True anomaly in deg (T sun) = 256.8323186392 20. Sun Argument of perigee in deg (W sun) = 103.1676813607 21. Sun True anomaly in deg from U & W (V sun) = 256.8323186392 22. Sun Distance in km (d sun) = 150048057.36583 Sun Ecliptic latitude is always nearly zero (the value never exceeds 0.00033 deg) Next Section - 3.7 Position of sun at time when earth is at winter solstice

Page 65: ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM …myreaders.info/00_Orbital__Mechanics__-__Model_____Simulation... · ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM-MSS)

www.m

yrea

ders

.inf

o

OM-MSS Page 65 OM-MSS Section - 3.7 ------------------------------------------------------------------------------------------------------32 SUN Positional Parameters on Celestial Sphere : Input Year Time when Earth is at Winter solstice . 7. Finding Position of Sun on Celestial Sphere at Input Universal Time, when Earth is at Winter solstice. Input Universal Time Corresponds to Earth at Winter solstice : year = 2013, month = 12, day = 21, hour = 17, minute = 10, seconds = 3.73442 Output : Sun Position on Celestial Sphere Corresponding to input time, Earth reaching Winter solstice 01. Earth around Sun Mean motion rev per day (mm) = 0.0027377786 02. Semi-major axis in km considering oblateness (SMA) = 149598616.31172 03. Earth mean motion deg per day using SMA (mm) = 0.9856003000 04. Sun mean movement deg per day (n sun) = 0.9856003000 05. Eccentricity of earth orbit (e sun) = 0.0167102190 06. Perihelion to input time diff in Julian days = 352.3320268290 07. Mean anomaly in deg per day from n_sun (m sun) = 347.2585513424 08. Sun Mean longitude in deg (Lmean) = 270.4309127840 09. Earth Mean anomaly in deg (ME) = 347.2585513424 10. Sun Ecliptic longitude in deg (Lsun) = 269.9999511320 11. Obliquity of ecliptic in deg (Epcylone) = 23.4374619456 12. Sun Right ascension in deg (Alpha) = 269.9999467376 13. Sun Declination in deg (Delta) = -23.4374619456 14. Sun Mean distance in km (As) = 149598616.31172 15. Sun Radial distance from earth in km (Rs) = 147162417.75585 16. Sun Nodal elongation in deg (U sun) = -90.0000000000 17. Sun Mean anomaly in deg (M sun) = 347.2585513416 18. Sun Eccentric anomaly in deg (E sun) = 347.0438922873 19. Sun True anomaly in deg (T sun) = 346.8274560675 20. Sun Argument of perigee in deg (W sun) = 283.1725439325 21. Sun True anomaly in deg from U & W (V sun) = 346.8274560675 22. Sun Distance in km (d sun) = 147158348.89183 Sun Ecliptic latitude is always nearly zero (the value never exceeds 0.00033 deg) Thus Computed values for Position of Sun on Celestial Sphere corresponding to Standard Epoch time JD2000, and six astronomical events while earth reaches Perihelion, Vernal equinox, Summer solstice, Aphelion, Autumnal equinox, Winter solstices. Move on to Summary of these Computed values are presented next. Next Section - 3.8 Concluding Position of Sun at six astronomical events.

Page 66: ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM …myreaders.info/00_Orbital__Mechanics__-__Model_____Simulation... · ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM-MSS)

www.m

yrea

ders

.inf

o

OM-MSS Page 66 OM-MSS Section - 3.8 ------------------------------------------------------------------------------------------------------33 Concluding Position of Sun on Celestial Sphere (Sections 3.0 to 3.7) Concluding Sun Position on Celestial Sphere with respect to Earth orbit, in the Year = 2013, at six astronomical events. In previous Sections (3.1 to 3.7), the position of Sun on Celestial Sphere were represented by computing following parameters : Orbit Semi-major axis (SMA), Mean movement per day (n sun), Mean distance (As), Mean anomaly (m sun), True anomaly (T sun), Eccentric anomaly (E sun), Right ascension (Alpha), Declination (Delta), Mean longitude (Lmean), Ecliptic longitude (Lsun), Nodal elongation (U sun), Argument of perigee (W sun), Obliquity of ecliptic (Epcylone), Mean dist (d_sun), Radial distance (Rs). All these parameters were computed while Earth moves around Sun and reaches six astronomical event points : Perihelion, Vernal equinox, Summer solstice, Aphelion, Autumnal equinox, Winter solstice . Summary of Sun Position on Celestial Sphere with respect to Earth while moved around Sun, passed through at six astronomical events. Universal time Mean anom True anom Ecce.anom Right asc. Declina Mean log. Ecli.log. Nodal elon. Arg of peri Obliquity Mean dist. Radial dist. while earth at M_sun T_sun E_sun Alpha Delta L_mean L_sun U_sun w_sun Epcylone d_sun Rs Perihelion 0.00 0.00 0.00 284.29 -22.79 283.16 283.16 -76.84 283.16 23.44 147098790.67 147098823.43 Vernal equinox 74.98 76.84 75.91 0.00 0.00 358.14 0.00 0.00 283.16 23.44 148912015.97 148989898.68 Summer solstice 166.39 166.84 166.62 90.00 23.44 89.56 90.00 90.00 283.16 23.44 152025947.60 152030583.04 Aphelion 180.00 180.00 180.00 104.30 22.79 103.16 103.16 76.84 256.84 23.44 152098441.95 152098409.19 Autumnal equinox 258.70 256.83 257.77 180.00 -0.00 181.87 180.00 -0.00 103.17 23.44 150048057.37 150128632.17 Winter solstice 347.26 346.83 347.04 270.00 -23.44 270.43 270.00 -90.00 283.17 23.44 147158348.89 147162417.76 Orbit Semi-major axis in km (SMA) = 149598616.31172, Eccentricity (e sun) = 0.0167102190 Mean movement deg per day (n sun) = 0.9856003000, Mean distance from earth in km (As) = 149598616.31172 Continue Section - 2.8

Page 67: ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM …myreaders.info/00_Orbital__Mechanics__-__Model_____Simulation... · ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM-MSS)

www.m

yrea

ders

.inf

o

OM-MSS Page 67 In the table above , all angles are in deg and distances in km. The values show consistency. About accuracy, for an input Universal Time, Compared below the computed values against that reported (Ref. http://www.stargazing.net/kepler/sun.html). For Input Universal Time year = 1997, month = 8, day = 7, hour = 11, minute = 0, seconds = 0.0000000000 (under reference) The Output Computed values : Sun Position on Celestial Sphere at Input UT time 07. Sun Mean anomaly in deg per day from n_sun (m sun) = 213.1154702210 08. Sun Mean longitude in deg (Lmean) = 136.0061615585 10. Sun Ecliptic longitude in deg (Lsun) = 134.9782467378 11. Obliquity of the ecliptic plane in deg (Epcylone) = 23.4395921140 12. Sun Right ascension in deg (Alpha) = 137.44256792552 13. Sun Declination in deg (Delta) = 16.3426505298 The Output Reported values : Sun Position on Celestial Sphere at same UT time, (Ref. http://www.stargazing.net/kepler/sun.html). 07. Sun Mean anomaly in deg per day from n_sun (m sun) = 213.11547 08. Sun Mean longitude in deg (Lmean) = 136.00716 10. Sun Ecliptic longitude in deg (Lsun) = 134.97925 11. Obliquity of the ecliptic plane in deg (Epcylone) = 23.439351 12. Sun Right ascension in deg (Alpha) = 137.44352 13. Sun Declination in deg (Delta) = 16.342193 End of Computing Position of Sun on Celestial Sphere at Standard Epoch JD2000 and at Six Astronomical Events. Move on to Compute the Position of Earth on Celestial Sphere at Input Universal Time (UT). Next Section - 4 Position of Earth on Celestial Sphere at UT

Page 68: ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM …myreaders.info/00_Orbital__Mechanics__-__Model_____Simulation... · ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM-MSS)

www.m

yrea

ders

.inf

o

OM-MSS Page 68 OM-MSS Section - 4 --------------------------------------------------------------------------------------------------------34 POSITION OF EARTH ON CELESTIAL SPHERE AT INPUT UNIVERSAL TIME (UT). Earth is a sphere, the third planet from the Sun and the fifth largest of the eight planets in the Solar System. Planets order from the Sun : Mercury, Venus, Earth, Mars, Jupiter, Saturn, Uranus, Neptune. (Ref http://nineplanets.org/ ) Earth Rotates on its axis passing through the North and South Poles. The rotation is counterclockwise looking down at North Pole. The time for Earth to make a complete rotation is approximately 24 hours (exactly 23.9344699 hours or 23 hours, 56 minutes, 4.0916 seconds). This rotation results daytime in area facing Sun and nighttime in area facing away from Sun. Since we are on Earth, we do not sense its rotation, but experience by observing the relative motion of the Sun (like from a moving vehicle we see the surroundings move). Earth Revolves around Sun in a counterclockwise direction. The complete orbit (360 deg) is one sidereal year, occurs every 365.256363 mean solar days. The earth's orbit around the sun is not a circle, it is slightly elliptical. Therefore, distance between earth and sun varies throughout the year. The Earth Orbit Characteristics, at Epoch J2000, means Y 2000, M 01, D 01, H 12.00, JD = 2451545.00, (Ref http://en.wikipedia.org/wiki/Planet_of_Water) Eccentricity 0.01671123 Inclination 7.155 deg to Sun's equator Longitude of ascending node 348.73936 deg Mean anomaly 357.51716 Orbital period 365.256363004 days Argument of perihelion 114.20783 deg Aphelion 152,098,232 km Perihelion 147,098,290 km Average orbital speed 107,200 km/h Semimajor axis 149,598,261 km Average distance(AS)149,597,870.700 km from sun Note : Ambiguity exist in values reported for Earth to Sun distances, that are mean, average, maximum, minimum, semi-major axis, aphelion, perihelion. Move on to Compute the Position of Earth on Celestial Sphere at input Universal Time (UT). At any instant, first need to Compute Position of Sun on celestial sphere and then at same instant Compute Position of Earth on celestial sphere. For the Position of Sun on celestial sphere, much has been computed / illustrated in previous section. The Position of Earth on celestial sphere is characterized by computing around 120 orbital parameters. The number is large, because some parameters are computed using more than one model equation, that require different inputs. This helps in validation of results and understanding the different input considerations.

Page 69: ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM …myreaders.info/00_Orbital__Mechanics__-__Model_____Simulation... · ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM-MSS)

www.m

yrea

ders

.inf

o

OM-MSS Page 69 The Orbital Parameters that Characterize the Position of Earth on Celestial Sphere, are put into following groups : 01. GST Greenwich sidereal time and GHA Greenwich hour angle in 0 to 360 deg, at input UT time YY MM DD HH. 02. Earth, Log in 0 to 360 deg and Lat in +ve or -ve in 0 to 90 deg, pointing to Sun Ecliptic Log (Lsun) at time input UT. 03. LST Local sidereal time using GST over three longitudes, Greenwich log, Sun mean log (Lmean), & Sun epliptic log (Lsun) . 04. ST0 sidereal time over Greenwich longitude = 0.0, at time input Year JAN day 1 hr 00. 05. ST sidereal time, at time input UT, over three log, Greenwich log, Sun mean log (Lmean), and Sun epliptic log (Lsun). 06. H hour angle in 0 to 360 deg using ST over five longitudes, Greenwich, Lmean, Lsun, Earth Sub Sun point SS, Earth Observation point EP, at time input UT. 07. Delta E is Equation of Time in seconds, using p_julian_day, n_sun, w_sun at time input UT. 08. GST Greenwich sidereal time, and GHA Greenwich hour angle 0 to 360 deg at time when earth is at perihelion. 09. ST sidereal time & MST mean sidereal time at different instances, using Earth mean motion rev per day and julian century days from YY 2000_JAN_1_hr_1200. 10. Earth orbit radius, sub sun point on Earth surface & related parameters, using SMA, e_sun, T_sun, w_sun etc. 11. Earth center(EC) to Sun center(SC) Range Vector[rp, rq, r] in PQW frame (perifocal coordinate system). 12. Transform_1 Earth position EC to SC Range Vector[rp, rq] in PQW frame To Range Vector[rI, rJ, rK] in IJK frame (inertial system cord). 13. Transform_2 Earth point EP(lat, log, hgt) To EC to SC Range Vector[RI, RJ, RK, R] in IJK frame. 14. Transform_3 Earth position EC to SC Range Vectors [rI rJ rK] & [RI RJ RK] To EP to SC Range Vector[rvI, rvJ, rvK] in IJK frame. 15. Transform_4 Earth point EP to SC Range Vector[rvI, rvJ, rvK] in IJK frame To EP to SC Range Vector[rvS, rvE, rvZ] in SEZ frame. 16. Elevation(EL) and Azimuth(AZ) angle of Sun at Earth Observation point EP 17. Distance in km from Earth observation point(EP) to Sub Sun point(SS) and Earth Velocity meter per sec in orbit at time input UT. 18. Earth State Position Vector [X, Y, Z] in km at time input UT. 19. Earth State Velocity Vector [Vx, Vy, Vz] in meter per sec at time input UT. 20. Earth Orbit Normal Vector [Wx, Wy, Wz] in km and angles Delta, i, RA at time input UT; Normal is line perpendicular to orbit plane. 21. Transform Earth State Vectors To Earth position Keplerian elements. 22. Transform Earth position Keplerian elements To Earth State Vectors . The values of all these parameters are Computed are at Standard Epoch JD2000 and when Earth is at Perihelion, Aphelion, Equinoxes, and Solstices. The time at perihelion, aphelion, equinoxes, and solstices, were computed earlier for the input year .

Page 70: ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM …myreaders.info/00_Orbital__Mechanics__-__Model_____Simulation... · ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM-MSS)

www.m

yrea

ders

.inf

o

OM-MSS Page 70 Move on to Find Position of Earth on Celestial Sphere, at Seven different Time events, the Utilities of OM-MSS Software (Sections - 4.1 to 4.8). (a) Time Event - Standard Epoch JD2000 ; (b) Time Event - when Earth is at Perihelion ; (c) Time Event - when Earth is at Vernal equinox ; (d) Time Event - when Earth is at Summer solstice ; (e) Time Event - when Earth is at Aphelion ; (f) Time Event - when Earth is at Autumnal equinox ; (g) Time Event - when Earth is at Winter solstices ; Move on to Compute Position of Earth on Celestial Sphere at all seven astronomical Time events in orbit, Earth around Sun. Next Section - 4.1 Position of earth at standard epoch time JD2000

Page 71: ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM …myreaders.info/00_Orbital__Mechanics__-__Model_____Simulation... · ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM-MSS)

www.m

yrea

ders

.inf

o

OM-MSS Page 71 OM-MSS Section - 4.1 ---------------------------------------------------------------------------------------------------35 Earth Positional Parameters on Celestial Sphere : Input Time (UT) Standard Epoch JD2000 1. Find Position of Earth on Celestial Sphere at Input UT Standard Epoch time JD2000 . Input UT Time, Standard Epoch time JD2000 : year = 2000, month = 1, day = 1, hour = 12, minute = 0, seconds = 0.00000 Julian Day = 2451545.00000, year_day_decimal = 0.50000, day_hour_decimal = 12.00000 Observation Point on Earth (Bhopal, India) : Lat +ve or -ve 0 to 90 deg = 23.25993 ie deg = 23, min = 15, sec = 35.76 Log 0 to 360 deg = 77.41261 ie deg = 77, min = 24, sec = 45.41 Alt from earth surface in km = 0.49470 First Compute the Sun Position on Celestial Sphere, then Compute the Earth Position on Celestial Sphere. (A) Computed Values for SUN POSITION on Celestial Sphere at Input Ut Time : (Sr. No 1 - 22) 01. Earth around Sun Mean motion rev per day (mm) = 0.0027377786 02. Semi-major axis in km considering oblateness (SMA) = 149598616.31172 03. Earth mean motion deg per day using SMA (mm) = 0.9856003000 04. Sun mean movement deg per day (n sun) = 0.9856003000 05. Eccentricity of earth orbit (e sun) = 0.0167102190 06. Perihelion to input time diff in Julian days = -2.5081161195 07. Mean anomaly in deg per day from n_sun (m sun) = -2.4719999999 08. Sun Mean longitude in deg (Lmean) = 280.4600000000 09. Earth Mean anomaly in deg (ME) = 357.5280000000 10. Sun Ecliptic longitude in deg (Lsun) = 280.3756801972 11. Obliquity of ecliptic in deg (Epcylone) = 23.4392794444 12. Sun Right ascension in deg (Alpha) = 281.2858630915 13. Sun Declination in deg (Delta) = -23.0337026521 14. Sun Mean distance in km (As) = 149598616.31172 15. Sun Radial distance from earth in km (Rs) = 147101227.61694 16. Sun Nodal elongation in deg (U sun) = -79.6243198028 17. Sun Mean anomaly in deg (M sun) = 357.5280000002 18. Sun Eccentric anomaly in deg (E sun) = 357.4860040557 19. Sun True anomaly in deg (T sun) = 357.4436516380 20. Sun Argument of perigee in deg (W sun) = 282.9320285593 21. Sun True anomaly in deg from U & W (V sun) = 357.4436516380 22. Sun Distance in km (d sun) = 147101040.52850 Sun Ecliptic latitude is always nearly zero (the value never exceeds 0.00033 deg) These Values are applied as input for Computing Earth Position on Celestial Sphere around Sun at same input UT Time.

Page 72: ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM …myreaders.info/00_Orbital__Mechanics__-__Model_____Simulation... · ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM-MSS)

www.m

yrea

ders

.inf

o

OM-MSS Page 72 (B) Computed Values for EARTH POSITION on Celestial Sphere around Sun at same Input Ut Time : (Sr. No 1 - 22) Input Time year = 2000, month = 1, day = 1, hour = 12, minute = 0, seconds = 0.00000, corresponding Julian Day = 2451545.0000000000 Observation Point on Earth : Lat +ve or -ve 0 to 90 deg = 23.25993, Log 0 to 360 deg = 77.41261, Alt from earth surface in km = 0.49470 Sun position on Celestial sphere at input time, computed above total 22 parameters. Output Earth Position on Celestial sphere around Sun : Computed below around 120 parameters, presented in 1-22 groups. Number is large, because some parameters are computed using more than one model equation, that require different inputs. This helps in validation of results and understanding the different input considerations. 01. Finding GST Greenwich sidereal time and GHA Greenwich hour angle in 0 to 360 deg, at input UT time YY MM DD HH. Note - for GST, the year 1900 JAN day_1 hr 1200 is ref for time difference in terms of julian_century, for GHA, the year 2000_JAN_day_1 hr_1200 is ref for time difference in terms of julian days. Inputs : Time UT year = 2000, month = 1, day = 1, hour = 12, minute = 0, seconds = 0.00000 Outputs : GST & GHA in 0-360 deg over Greenwich. E01A 011. GST Greenwich sidereal time in 0-360 deg, over Greenwich = 280.46030, hr = 18, min = 41, sec = 50.47200 E01B 011. GHA Greenwich hour angle in 0 to 360 deg, over Greenwich = 280.46743, deg = 280, min = 28, sec = 2.73693 02. Finding Earth latitude & longitude pointing to Sun Ecliptic longitude(Lsun). Inputs : earth inclination, sun true anomaly T_Sun, sun argument of perigee W_Sun, sun right ascension Alpha, earth equator radious, GST at input UT, log SS & EP, earth orbit radious EC to SC Outputs : Earth lat & log pointing to Lsun. E02A 011. Earth latitude +ve or -ve in 0 to 90 deg at UT time = -23.03 ie deg = -23, min = 2, sec = 1.33 E02B 011. Earth longitude 0 to 360 deg = 0.83 ie deg = 0, min = 49, sec = 32.03 03. Finding LST over three longitudes, Greenwich log, Sun mean log (Lmean), and Sun epliptic log (Lsun) . Note - for LST, used sidereal time at Greenwich GST and desired geogrphic longitude Inputs : At Time input UT - GST, Log of Greenwich, sun mean log Lmean, Sun ecliptic log Lsun. Outputs : LST over Greenwich, Lmean, Lsun . E03A 011. LST Local sidereal time in 0-360 deg, over Greenwich longitude = 280.46030, hr = 18, min = 41, sec = 50.47200

Page 73: ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM …myreaders.info/00_Orbital__Mechanics__-__Model_____Simulation... · ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM-MSS)

www.m

yrea

ders

.inf

o

OM-MSS Page 73 E03B 011. LST Local sidereal time in 0-360 deg, over Sun mean longitude (Lmean) = 200.92030, hr = 13, min = 23, sec = 40.87200 E03C 011. LST Local sidereal time in 0-360 deg, over Sun epliptic longitude (Lsun) = 200.83598, hr = 13, min = 23, sec = 20.63525 04. Finding ST0 sidereal time over Greenwich longitude = 0.0, at time input Year JAN day 1 hr 00. Note - this is sidereal time ST at UT year, month = 1, day = 1, hours decimal = 0.0 and geogrphic longitude = 0.0 Inputs : Time input UT Year, JAN day 1 hr 00, Log 0.0 Outputs : ST0 over Greenwich E04 011. ST0 Sidereal time in 0-360 deg, over Greenwich at input UT year, MM 1, DD 1, HH 00 = 99.96748, hr = 6, min = 39, sec = 52.19432 05. Finding ST sidereal time over three longitudes of, Greenwich log, Sun mean log (Lmean), and Sun epliptic log (Lsun) . Note - this is local sidereal time LST; (LST = GST at UT time + geogrphic longitude). Inputs : At Time input UT - Log 0.0, Log Lmean, Log Lsun Outputs : ST over Greenwich, Lmean, Lsun. E05A 011. ST Sidereal time in 0-360 deg, over Greenwich at input UT time = 280.46030, hr = 18, min = 41, sec = 50.47200 E05B 011. ST Sidereal time in 0-360 deg, over Sun mean longitude (Lmean) at input UT time = 200.92030, hr = 13, min = 23, sec = 40.87200 005C 011. ST Sidereal time in 0-360 deg, over Sun longitude (Lsun) at input UT time = 200.83598, hr = 13, min = 23, sec = 20.63525 06. Finding H hour angle in 0 to 360 deg over longitudes of, Greenwich, Lmean, Lsun, Earth Sub Sun point SS, Earth Obseration point EP. Note - used Sun Right ascension Alpha at input time; (hour angle HA = LST - Alpha). Inputs : At Time input UT - Sun Right ascension Alpha and ST Sidereal time over longitudes 0.0, Lmean, Lsun, SS, EP Outputs : Hour Angles over Greenwich, Lmean, Lsun, SS, EP E06A 011. H hour angle 0-360 deg, over Greenwich, = 359.17444, deg = 359, min = 10, sec = 27.97287 E06B 011. H hour angle 0-360 deg, over Lmean, = 279.63444, deg = 279, min = 38, sec = 3.97287 E06C 011. H hour angle 0-360 deg, over Lsun, = 279.55012, deg = 279, min = 33, sec = 0.42158 E06D 011. H hour angle 0-360 deg, over SS, = 0.00000, deg = 0, min = 0, sec = 0.00000 E06E 011. H hour angle 0-360 deg, over EP, = 76.58705, deg = 76, min = 35, sec = 13.38687

Page 74: ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM …myreaders.info/00_Orbital__Mechanics__-__Model_____Simulation... · ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM-MSS)

www.m

yrea

ders

.inf

o

OM-MSS Page 74 07. Finding Delta E is Equation of Time in seconds, at time input UT. Note - this value in seconds accounts for relative movement of sun in elliptical orbit w.r.t earth and effect of obliquity of the ecliptic; its maximum value is 16 minutes (960 sec.); Delta E is computed using time in days from the perihelion, n_sun_deg and w_sun at input UT. Inputs : Time input UT in JD, time perihelion in JD, Sun mean movement n_sun, Eccentricity of earth orbit E_Sun Outputs : Delta E time_equation in seconds. E07 011. Delta E Time Equation in seconds = 191.54215, hr = 0, min = 3, sec = 11.54215 08. Finding GST Greenwich sidereal time, and GHA Greenwich hour angle 0 to 360 deg at time when earth is at perihelion. Inputs : Time in JD when earth at perihelion YY = 2000, MM = 1, DD = 4, hr = 0, min = 11, sec = 41.23 Outputs : GST & GHA in 0-360 deg over Greenwich when earth is at perihelion E08A 011. GST sidereal time in 0-360 deg over Greenwich at time when earth is at perihelion = 105.85422, hr = 7, min = 3, sec = 25.01305 E08B 011. GHA hour angle in 0-360 deg over Greenwich at time when earth is at perihelion = 105.85427, hr = 7, min = 3, sec = 25.02537 09. Finding ST sidereal time and MST mean sidereal time, over Greenwich, using Earth mean motion rev per day . Inputs : GST when earth at perihelion, earth rotation rate, ref. JD2000, time input UT in JD, time perihelion in JD. Outputs : STP, angle perihelion to input JD, ST over Greenwich, MSTO & MST over Greenwich, solar time E09A 011. STP sidereal time in 0-360 deg over Greenwich when earth at perihelion = 105.85422, hr = 7, min = 3, sec = 25.01305 E09B 011. Angle in 0-360 deg from earth at perihelion to input JD using earth rotational rate = 174.60617, 009C 011. ST in 0-360 deg over Greenwich using STP and angle from perihelion at input JD = 280.46039, hr = 18, min = 41, sec = 50.49311 E09D 011. ST in 0-360 deg over Greenwich using STP and earth rotation at UT time = 280.46039, hr = 18, min = 41, sec = 50.49311 E09E 011. MST0 in deg, over Greenwich using JD century days, ref J2000 to I/P YY, M1, D1 hr 00 = 99.96779, hr = 6, min = 39, sec = 52.27073 E09F 011. MST in deg, over Greenwich using JD century in days from ref J2000 to UT time Y M D H = 280.46062, hr = 18, min = 41, sec = 50.54841 E09G 011. Solar time over Greenwich in JD (GMT or input UT - 12 hr) = YY 2000, MM 1, DD 1, hr 0, min 0, sec 0.000, ie JD 2451544.50000 10. Finding Earth orbit radious using true anomaly, Sub Sun point (SS) on earth surface and related paramters . (a) Finding Earth orbit radious using true anomaly. Inputs : semi-major axis SMA, eccentricity of earth orbit e_sun, sun true anomaly T_Sun Outputs : earth orbital radious EC to SC (earth center to sun center)

Page 75: ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM …myreaders.info/00_Orbital__Mechanics__-__Model_____Simulation... · ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM-MSS)

www.m

yrea

ders

.inf

o

OM-MSS Page 75 E10A 011. earth orbital radious EC to SC km using_true anomaly at UT time = 147101196.6616485400 (b) Finding Sub Sun point (SS) over earth surface (Latitude, Longitude, & Latitude radius) pointing to Sun Ecliptic Log (Lsun), Sun height from earth surface over SS, and LST over SS log at time input UT. Note - for SS Latitude, used earth inclination, sun true anomaly T_sun and sun argument of perigee w_sun. for SS Longitude, used Sun right ascension Alpha and sidereal time at Greenwich GST. Inputs : earth inclination, sun true anomaly T_Sun, sun argument of perigee W_Sun, sun right ascension Alpha, earth equator radious, GST at input UT, log SS & EP, earth orbit radious EC to SC Outputs : SS point Latitude, Longitude, Latitude radious, LST & LMT over SS . E10B 011. SS point Latitude +ve or -ve in 0 to 90 deg at UT time = -23.03 ie deg = -23, min = 2, sec = 1.33 E10C 011. SS point Longitude 0 to 360 deg = 0.83 ie deg = 0, min = 49, sec = 32.03 E10D 011. SS point Latitude radious km at UT time = 6374.8796719602 E10E 011. Sun height km from earth surface over SS at UT time = 147094821.7819765800 E10F 011. LST local sidereal time in 0-360 deg over SS log at UT time, (LST = GST + log east) = 281.286 ie hr = 18, min = 45, sec = 8.68356 LST local sidereal time and LMT local mean time with date adjusted to calendar YY MM DD and UT hr mm sec. E10G 011. LST local sidereal time at Sub Sun point (SS) YY = 2000, MM = 1, DD = 1, hr = 18, min = 45, sec = 8.68 E10H 011. LMT local Mean time at Sub Sun point (SS) YY = 2000, MM = 1, DD = 1, hr = 12, min = 3, sec = 18.14 (c) Finding LST and LMT over Earth point(EP) where Observer is, at time input UT. Inputs : EP point Latitude, Longitude , Outputs : LST & LMT over EP . E10I 011. LST local sidereal time in 0-360 deg at EP log at UT time, (LST = GST + log east) = 357.873 ie hr = 23, min = 51, sec = 29.57601 LST and LMT with date adjusted to calendar YY MM DD and UT hr mm sec. E10J 011. LST local sidereal time at Earth point (EP) YY = 2000, MM = 1, DD = 1, hr = 23, min = 51, sec = 29.58 E10K 011. LMT local Mean time at Earth point (EP) YY = 2000, MM = 1, DD = 1, hr = 17, min = 9, sec = 39.03

Page 76: ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM …myreaders.info/00_Orbital__Mechanics__-__Model_____Simulation... · ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM-MSS)

www.m

yrea

ders

.inf

o

OM-MSS Page 76 Finding Earth to Sun Position Vectors coordinate in PQW, IJK, SEZ frames and the Vector Coordinate Transforms. First defined coordinate systems, PQW, IJK, SEZ, then computed Position & Velocity vectors in these three coordinate systems. (a) Perifocal Coordinate System (PQW), is Earth Centered Inertial coordinate frame defined in terms of Kepler Orbital Elements. The system is fixed with time (inertial), pointing towards orbit periapsis; the system's origin is Earth center (EC), and its fundamental plane is the orbit plane; the P-vector axis directed from EC toward the periapsis of the elliptical orbit plane, the Q-vector axis swepts 90 deg from P axis in the direction of the orbit, the W-vector axis directed from EC in a direction normal to orbit plane, forms a right-handed coordinate system. (b) Geocentric Coordinate System (IJK), is also an Earth Centered Inertial (ECI) frame, a Conventional Inertial System (CIS). The system is fixed with time (inertial), pointing towards vernal equinox; the system's origin is Earth center (EC), and its fundamental plane is the equator; the I-vector is +X-axis directed towards the vernal equinox direction on J2000, Jan 1, hr 12.00 noon, the J-vector is +Y-axis swepts 90 deg to the east in the equatorial plane, the K-vector is +Z-axis directed towards the North Pole. (c) Topocentric Horizon Coordinate System (SEZ), is Non-Inertial coordinate frame, known as Earth-Centered Earth-Fixed Coordinates (ECEF). The system moves with earth, is not fixed with time (non-inertial), is for use by observers on the surface of earth; the observer's surface forms the fundamental plane, is tangent to earth's surface the S-vector is +ve horizontal-axis directed towards South, the E-vector is +ve horizontal-axis directed towards East, the Z-vector is +ve normal directed upwards on earth surface. Note that axis Z not necessarily pass through earth center, so not used to define as radious vector. 11. Finding Earth center(EC) to Sun center(SC) Range Vector[rp, rq, r] from in PQW frame, perifocal coordinate system. Inputs : Semi-major axis (SMA), Eccentricity of earth orbit (e_sun), Sun eccentric anomaly (E_sun) Outputs : Vector(r, rp rq) in PQW frame E11A 011. r earth pos vector magnitude EC to SC km in PQW frame perifocal cord at UT time = 147101196.66165

Page 77: ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM …myreaders.info/00_Orbital__Mechanics__-__Model_____Simulation... · ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM-MSS)

www.m

yrea

ders

.inf

o

OM-MSS Page 77 E11B 011. rp earth pos vector component EC to SC km in PQW frame perifocal cord at UT time = 146954807.4835177700 E11C 011. rq earth pos vector component EC to SC km in PQW frame perifocal cord at UT time = -6560992.0569400741 Note - r earth pos vector magnitude EC to SC km in PQW frame is same as earth orbital radious computed before using true anomaly. 12. Transform_1 Earth position EC to SC Range Vector[rp, rq] in PQW frame To Range Vector[rI, rJ, rK] in IJK frame, inertial system cord. Inputs : Vector(rp, rq) EC_to_SC km in frame PQW , Alpha rd, w_sun rd, earth_inclination rd , Outputs : Vector(rI, rJ, rK, r) EC_to_SC km in frame IJK E12A 011. rI earth pos vector component EC to SC km frame IJK at UT time = -125003885.4456264400 E12B 011. rJ earth pos vector component EC to SC km frame IJK at UT time = -51961735.9769164550 E12C 011. rK earth pos vector component EC to SC km frame IJK at UT time = -57556656.2358423690 E12D 011. r earth pos vector magnitude EC to SC km frame IJK at UT time = 147101196.6616485400 Note - r earth pos vector magnitude EC to SC km in PQW frame is same as that compued above in PQW frame. 13. Transform_2 Earth point EP(lat, log, hgt) To EC to SC Range Vector[RI, RJ, RK, R] in IJK frame. Inputs : earth equator radious_km, earth point EP(lat deg, log deg, hgt meter), LST_local_sidereal_time_in_0_to_360_deg_at_EP_log_at_UT_time, Outputs : Vector(RI, RJ, RK, R) Range EC to EP in IJK frame E13A 011. RI pos vector component EC to EP km frame IJK at UT time = 5853.1109516962 E13B 011. RJ pos vector component EC to EP km frame IJK at UT time = -217.3619305363 E13C 011. RK pos vector component EC to EP km frame IJK at UT time = 2517.6312937817 E13D 011. R pos vector magnitude EC to EP km frame IJK at UT time = 6375.3134317570 14. Transform_3 Earth position EC to SC Range Vectors [rI rJ rK] & [RI RJ RK] To EP to SC Range Vector[rvI, rvJ, rvK] in IJK frame. Inputs : Vector(rI rJ rK) position EC_to_SC km in frame IJK , Vector(RI RJ RK) range EC to SC km in IJK frame, Outputs : Vector(rvI, rvJ, rvK, rv) range EP to SC in IJK frame E14A 011. rvI range vector component EP to SC km frame IJK at UT time = -125009738.5565781300 E14B 011. rvJ range vector component EP to SC km frame IJK at UT time = -51961518.6149859200 E14C 011. rvK range vector component EP to SC km frame IJK at UT time = -57559173.8671361510 E14D 011. rv range vector magnitude EP to SC km frame IJK at UT time = 147107078.8474394100

Page 78: ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM …myreaders.info/00_Orbital__Mechanics__-__Model_____Simulation... · ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM-MSS)

www.m

yrea

ders

.inf

o

OM-MSS Page 78 15. Transform_4 Earth point EP to SC Range Vector[rvI, rvJ, rvK] in IJK frame To EP to SC Range Vector[rvS, rvE, rvZ] in SEZ frame. Inputs : lat_pos_neg_0_to_90_deg_at_EP_at_time_UT , LST_local_sidereal_time_in_0_to_360_deg_at_EP_log_at_UT_time Vector(rvI, rvJ, rvK, rv) range EP to SC km in IJK frame, Outputs : Vector(rvS, rvE, rvZ, rv) range EP to SC km in SEZ frame E15A 011. rvS range vector component EP to SC km frame SEZ at UT time = 4309690.2262858748 E15B 011. rvE range vector component EP to SC km frame SEZ at UT time = -56564906.7140329630 E15C 011. rvZ range vector component EP to SC km frame SEZ at UT time = -135728886.1871818300 E15D 011. rv range vector magnitude EP to SC km frame SEZ at UT time = 147107078.8474394100 16. Finding Elevation(EL) and Azimuth(AZ) angle of Sun at Earth Observation point EP . Note : Results computed using 4 different formulations, each require different inputs to give EL & AZ angles. For all situations of Object and Observer positions, a combination of latitude N/S & longitude E/W : Method 1 : for both EL & AZ angles, this does not provide correct results ; Method 2 : for only EL angle, this provides consistent, unambiguous correct results. but for AZ angles the results are ambiguous, need corrections by adding or subtracting values as 180 or 360 or sign change. Method 3 : same as method 2, for EL angle, the results are correct, but for AZ angles the results are ambiguous, need corrections. Method 4 : for finding Azimuth and Distance but not for finding Elevation angle; for AZ angles, this provides correct unambiguous results that need no futher corrections. Therefore for Elevation (EL) angle Method 3 results are accepted and for Azimuth (AZ) angle Method 4 results are accepted . Results verified from other sources; Ref URLs http://www.ga.gov.au/geodesy/astro/smpos.jsp#intzone . NOAA Research http://www.esrl.noaa.gov/gmd/grad/solcalc/ , and http://aa.usno.navy.mil/data/docs/AltAz.php Xavier Jubier, Member IAU http://xjubier.free.fr/en/site_pages/astronomy/ephemerides.html Rem: SS point lat deg = -23.03, log deg = 0.83 YY = 2000, MM = 1, DD = 1, hr = 12, min = 3, sec = 18.14 EP point lat deg = 23.26, log deg = 77.41 YY = 2000, MM = 1, DD = 1, hr = 17, min = 9, sec = 39.03 Elevation(EL) & Azimuth(AZ) angle of Sun at Earth Observation point EP, (method 1 - computed values may be Ambiguous or Incorrect). Inputs : Vector[rvS, rvE, rvZ] range EP to SC km in SEZ frame Outputs : Elevation(EL) & Azimuth(AZ) of Sun at EP

Page 79: ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM …myreaders.info/00_Orbital__Mechanics__-__Model_____Simulation... · ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM-MSS)

www.m

yrea

ders

.inf

o

OM-MSS Page 79 E16A 011. Elevation angle deg of Sun at EP using rv SEZ at UT time = -67.3171664896 E16B 011. Azimuth angle deg of sun at EP using rv SEZ at UT time = 265.6430420660 Elevation(EL) & Azimuth(AZ) angle of Sun at Earth Observation point EP, (method 2 - computed AZ values may be ambiguous & incorrect). Inputs : Time input UT YY MM DD HH, Equator radious, EP lat & log, SS lat & log, Sun declination Delta Outputs : Elevation(EL) & Azimuth(AZ) of Sun at EP E16C 011. Elevation angle deg of Sun at EP using Sun declination diff log range EP to SC = 2.38469 E16D 011. Azimuth angle deg of sun at EP using sun declination diff log range EP to SC = -153.63057 Elevation(EL) & Azimuth(AZ) angle of Sun at Earth Observation point EP, (method 3 - computed AZ values may be ambiguous & incorrect). Inputs : Time input UT YY MM DD HH, Equator radious, EP lat & log, SS lat & log, Sun hgt from EC, Sun range from EP (Sun hgt from EC = earth orbit radious EC to SC km ; Sun range from EP = rv range vector EP to SC km frame SEZ) Outputs : Elevation(EL) & Azimuth(AZ) of Sun at EP E16E 011. Elevation angle deg of Sun at EP using Sun hgt diff log range EP to SC = 2.38221 ie deg = 2, min = 22, sec = 55.96 E16F 011. Azimuth angle deg of sun at EP using sun hgt diff log range EP to SC = 243.63057 ie deg = 243, min = 37, sec = 50.05 Azimuth(AZ) angle of Sun at Earth Observation point EP, (method 4 - computed AZ values is unambiguous & correct). Inputs : Time input UT YY MM DD HH, EP lat & log, SS lat & log Outputs : Azimuth(AZ) of Sun at EP E16G 011. Azimuth angle deg of sun at EP using sun hgt diff log range EP to SC = 243.63057 ie deg = 243, min = 37, sec = 50.05 Due to such incorrect results, finally for Elevation (EL) Method 3 results and for Azimuth (AZ) Method 4 results are accepted. Finally accepted Elevation angle deg of Sun from EP to SC = 2.3822113375 ie deg = 2, min = 22, sec = 55.96 Finally accepted Azimuth angle_deg of Sun from EP to SC = 243.6305706573 ie deg = 243, min = 37, sec = 50.05

Page 80: ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM …myreaders.info/00_Orbital__Mechanics__-__Model_____Simulation... · ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM-MSS)

www.m

yrea

ders

.inf

o

OM-MSS Page 80 Distance in km from Earth observation point(EP) to Sub Sun point(SS) and Earth Velocity meter per sec in orbit at time input UT. 17. Finding Distance in km from Earth observation point(EP) to Sub Sun point(SS) over Earth surface . Inputs : EP lat & log, SS lat & log, Outputs : Distance in km from EP to SS over Earth surface E17A 011. Distance in km Earth observation point(EP) to Sub Sun point(SS) = 9753.27897 Finding Earth Velocity meter per sec in orbit in frame PQW Inputs : semi-major axis SMA, GM_Sun, earth pos r EC to SC frame IJK, eccentricity of earth orbit e_Sun, sun eccentric anomaly E_Sun Outputs : Earth Velocity magnitude and component Xw Yw in frame PQW in meter per sec E17B 011. Velocity magnitude meter per sec using GM, SMA, r earth EC to SC frame IJK at UT time = 30286.0666340612 E17C 011. Velocity component meter per sec in orbit Xw using GM, e_Sun, SMA, E_Sun at UT time = 1328.6358841510 E17D 011. Velocity component meter per sec in orbit Yw using GM, e_Sun, SMA, E_Sun at UT time = 30256.9092745796 Finding Earth Velocity Vector [vX, vY, vZ] in meter per sec in orbit; a Transform of [Xw, Yw] in frame PQW To [vX, vY, vZ] in frame XYZ Inputs : velocity component (Xw, Yw), sun right ascension Alpha, Sun Argument of perigee W_Sun, inclination Epcylone Outputs : earth velocity vector(vX, vY, vZ, vR) meter per sec in frame XYZ E17E 011. vX earth Velocity vector meter per sec using Xw Yw frame PQW RA w i at UT time = 10756.7530226526 E17F 011. vY earth Velocity vector meter per sec using Xw Yw frame PQW RA w i at UT time = -28227.5170485498 E17G 011. vZ earth Velocity vector meter per sec using Xw Yw frame PQW RA w i at UT time = 2178.3888188937 E17H 011. vR earth Velocity magnitude meter per sec using Xw Yw frame PQW RA w i at UT time = 30286.0666340612

Page 81: ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM …myreaders.info/00_Orbital__Mechanics__-__Model_____Simulation... · ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM-MSS)

www.m

yrea

ders

.inf

o

OM-MSS Page 81 Earth State Vectors : Position [X, Y, Z] in km and Velocity [Vx, Vy, Vz] in meter per sec, at time input UT. 18. Finding Earth State Position Vector [X, Y, Z] in km at time input UT. Inputs : position vector(rI, rJ, rK, r) in frame IJK values assiged to state position vector Outputs : State Position Vector(X, Y, Z, R) in km, frame XYZ E18A 011. State vector position X km at UT time = -125003885.4456264400 E18B 011. State vector position Y km at UT time = -51961735.9769164550 E18C 011. State vector position Z km at UT time = -57556656.2358423690 E18D 011. State vector position R km at UT time = 147101196.6616485400 19. Finding Earth State Velocity Vector [Vx, Vy, Vz] in meter per sec at time input UT. Inputs : velocity vector(vX, vY, vZ, vR) meter per sec in frame XYZ values assiged to state velocity vector Outputs : state velocity vector(Vx, Vy, Vz, V) meter per sec, frame XYZ E19A 011. State vector velocity Vx meter per sec at UT time = 10756.7530226526 E19B 011. State vector velocity Vy meter per sec at UT time = -28227.5170485498 E19C 011. State vector velocity Vz meter per sec at UT time = 2178.3888188937 019D 011. State vector velocity V meter per sec at UT time = 30286.0666340612 20. Earth Orbit Normal Vector [Wx, Wy, Wz] in km and angles Delta, i, RA at time input UT; Normal is line perpendicular to orbit plane. Inputs : earth pos r EC to SC frame IJK, inclination Epcylone, sun right ascension Alpha Outputs : earth orbit normal vector (Wx, Wy, Wz, W) in km E20A 011. Earth orbit normal W km using r earth pos frame IJK inclination Alpha = 147101196.6616485400 E20B 011. Earth orbit normal Wx km using r earth pos frame IJK inclination Alpha = -57381991.7843673230 E20C 011. Earth orbit normal Wy km using r earth pos frame IJK inclination Alpha = -11451330.6380786910 E20D 011. Earth orbit normal Wz km using r earth pos frame IJK inclination Alpha = 134962721.1668659400 020E 011. Earth orbit normal Delta W deg using r earth pos frame IJK inclination Alpha = 66.5607205617 E20F 011. Earth orbit normal Inclination i deg using normal_Delta_W = 23.4392794383 E20G 011. Earth orbit normal Alpha W deg using r earth pos frame IJK, inclination, Alpha = 11.2858630915 E20H 011. Earth orbit normal Right ascension of ascending node using normal Alpha, W = 101.2858630915

Page 82: ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM …myreaders.info/00_Orbital__Mechanics__-__Model_____Simulation... · ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM-MSS)

www.m

yrea

ders

.inf

o

OM-MSS Page 82 Transform Earth State Vectors to Earth position Keplerian elements. 21. Finding Earth position Keplerian elements computed using State Vector, at time input UT. Inputs : State vector year, days decimal of year, revolution, node, State Position Vector [ X, Y, Z ], State Velocity Vector [ Vx, Vy, Vz ] Outputs : Keplerian elements : year, days decimal of year, revolution, node, inclination, right ascension, eccentricity, argument of perigee, mean anomaly, mean motion rev per day, mean angular velocity rev per day, mean motion rev per_day from SMA considering oblateness E21A 011. Keplerian elements year = 2000, days_decimal_of_year = 0.50000, revolution no = 1, node = 2 ie decending E21B 011. inclination_deg = 23.4392794383 E21C 011. right ascension ascending node deg = 281.2858630915 E21D 011. eccentricity = 0.0167102190 E21E 011. argument of perigee_deg = 282.9320285591 E21F 011. mean anomaly deg = 357.5280000003 E21G 011. mean_motion rev per day = 0.0027377786 E21H 011. mean angular velocity rev_per_day = 0.0027377786 E21I 011. mean motion rev per day using SMA considering oblateness = 0.0027377786 Transform Earth position Keplerian elements to Earth State Vectors . 22. Finding Earth position State Vectors, computed using Keplerian elements at time input UT (computed again to validate model equations, Keplerian elements to State Vectors & back) Inputs : Keplerian elements : year, days decimal of year, revolution, node, inclination, right ascension, eccentricity, argument of perigee, mean anomaly, mean motion rev per day, mean angular velocity rev per day, mean motion rev per_day from SMA considering oblateness Outputs : State vector year, days decimal of year, revolution, node, State Position Vector [ X, Y, Z ], State Velocity Vector [ Vx, Vy, Vz ] E22A 011. State vectors year = 2000, days_decimal_of_year = 0.50000, revolution no = 1, node = 2 ie decending E22B 011. state vector position X km = -125003885.4456292700, state vector velocity Vx meter per sec = 10756.7530226511 E22C 011. state vector position Y km = -51961735.9769086610, state vector velocity Vy meter per sec = -28227.5170485504 E22D 011. state vector position Z km = -57556656.2358429060, state vector velocity Vz meter per sec = 2178.3888188931 E22E 011. state vector position R km = 147101196.6616483900, state vector velocity V meter per sec = 30286.0666340612

Page 83: ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM …myreaders.info/00_Orbital__Mechanics__-__Model_____Simulation... · ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM-MSS)

www.m

yrea

ders

.inf

o

OM-MSS Page 83 Note : Computation of all above parameters, grouped in 1 to 22, corresponds to time (a) Universal time over Greenwich (UT/GMT) : Year = 2000, Month = 1, Day = 1, Hour = 12, Min = 0, Sec = 0.000 (b) Mean Solar time (MST) over Earth Observation point (EP ) : Year = 2000, Month = 1, Day = 1, Hour = 17, Min = 9, Sec = 39.028 Move on to next Astronomical event in orbit Earth around Sun. Next Section - 4.2 Position of earth at time when earth is at perihelion

Page 84: ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM …myreaders.info/00_Orbital__Mechanics__-__Model_____Simulation... · ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM-MSS)

www.m

yrea

ders

.inf

o

OM-MSS Page 84 OM-MSS Section - 4.2 ---------------------------------------------------------------------------------------------------36 Earth Positional Parameters on Celestial Sphere : Input Year Time when Earth is at Perihelion. 2. Finding Position of Earth on Celestial Sphere at Input Universal Time, when Earth is at Perihelion . Input UT Time, when Earth is at Perihelion : year = 2013, month = 1, day = 3, hour = 9, minute = 11, seconds = 56.61639 Julian Day = 2456295.88329, year_day_decimal = 2.38329, day_hour_decimal = 9.19906 Observation Point on Earth (Bhopal, India) : Lat +ve or -ve 0 to 90 deg = 23.25993 ie deg = 23, min = 15, sec = 35.76 Log 0 to 360 deg = 77.41261 ie deg = 77, min = 24, sec = 45.41 Alt from earth surface in km = 0.49470 First Compute the Sun Position on Celestial Sphere, then Compute the Earth Position on Celestial Sphere. (A) Computed Values for SUN POSITION on Celestial Sphere at Input Ut Time : (Sr. No 1 - 22) 01. Earth around Sun Mean motion rev per day (mm) = 0.0027377786 02. Semi-major axis in km considering oblateness (SMA) = 149598616.31172 03. Earth mean motion deg per day using SMA (mm) = 0.9856003000 04. Sun mean movement deg per day (n sun) = 0.9856003000 05. Eccentricity of earth orbit (e sun) = 0.0167102190 06. Perihelion to input time diff in Julian days = 0.0000000000 07. Mean anomaly in deg per day from n_sun (m sun) = 0.0000000000 08. Sun Mean longitude in deg (Lmean) = 283.1557666033 09. Earth Mean anomaly in deg (ME) = 0.0000000001 10. Sun Ecliptic longitude in deg (Lsun) = 283.1557666033 11. Obliquity of ecliptic in deg (Epcylone) = 23.4375874462 12. Sun Right ascension in deg (Alpha) = 284.2922173002 13. Sun Declination in deg (Delta) = -22.7872783368 14. Sun Mean distance in km (As) = 149598616.31172 15. Sun Radial distance from earth in km (Rs) = 147098823.43315 16. Sun Nodal elongation in deg (U sun) = -76.8442333967 17. Sun Mean anomaly in deg (M sun) = 0.0000000000 18. Sun Eccentric anomaly in deg (E sun) = 0.0000000000 19. Sun True anomaly in deg (T sun) = 0.0000000000 20. Sun Argument of perigee in deg (W sun) = 283.1557666033 21. Sun True anomaly in deg from U & W (V sun) = 0.0000000000 22. Sun Distance in km (d sun) = 147098790.67105 Sun Ecliptic latitude is always nearly zero (the value never exceeds 0.00033 deg) These Values are applied as input for Computing Earth Position on Celestial Sphere around Sun at same input UT Time.

Page 85: ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM …myreaders.info/00_Orbital__Mechanics__-__Model_____Simulation... · ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM-MSS)

www.m

yrea

ders

.inf

o

OM-MSS Page 85 (B) Computed Values for EARTH POSITION on Celestial Sphere around Sun at same Input Ut Time : (Sr. No 1 - 22) Input Time year = 2013, month = 1, day = 3, hour = 9, minute = 11, seconds = 56.61639, corresponding Julian Day = 2456295.8832941712 Observation Point on Earth : Lat +ve or -ve 0 to 90 deg = 23.25993, Log 0 to 360 deg = 77.41261, Alt from earth surface in km = 0.49470 Sun position on Celestial sphere at input time, computed above total 22 parameters. Output Earth Position on Celestial sphere around Sun : Computed below around 120 parameters, presented in 1-22 groups. Number is large, because some parameters are computed using more than one model equation, that require different inputs. This helps in validation of results and understanding the different input considerations. 01. Finding GST Greenwich sidereal time and GHA Greenwich hour angle in 0 to 360 deg, at input UT time YY MM DD HH. Note - for GST, the year 1900 JAN day_1 hr 1200 is ref for time difference in terms of julian_century, for GHA, the year 2000_JAN_day_1 hr_1200 is ref for time difference in terms of julian days. Inputs : Time UT year = 2013, month = 1, day = 3, hour = 9, minute = 11, seconds = 56.61639 Outputs : GST & GHA in 0-360 deg over Greenwich. E01A 011. GST Greenwich sidereal time in 0-360 deg, over Greenwich = 241.14177, hr = 16, min = 4, sec = 34.02452 E01B 011. GHA Greenwich hour angle in 0 to 360 deg, over Greenwich = 241.14717, deg = 241, min = 8, sec = 49.80962 02. Finding Earth latitude & longitude pointing to Sun Ecliptic longitude(Lsun). Inputs : earth inclination, sun true anomaly T_Sun, sun argument of perigee W_Sun, sun right ascension Alpha, earth equator radious, GST at input UT, log SS & EP, earth orbit radious EC to SC Outputs : Earth lat & log pointing to Lsun. E02A 011. Earth latitude +ve or -ve in 0 to 90 deg at UT time = -22.79 ie deg = -22, min = 47, sec = 20.10 E02B 011. Earth longitude 0 to 360 deg = 43.15 ie deg = 43, min = 9, sec = 1.61 03. Finding LST over three longitudes, Greenwich log, Sun mean log (Lmean), and Sun epliptic log (Lsun) . Note - for LST, used sidereal time at Greenwich GST and desired geogrphic longitude Inputs : At Time input UT - GST, Log of Greenwich, sun mean log Lmean, Sun ecliptic log Lsun. Outputs : LST over Greenwich, Lmean, Lsun . E03A 011. LST Local sidereal time in 0-360 deg, over Greenwich longitude = 241.14177, hr = 16, min = 4, sec = 34.02452

Page 86: ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM …myreaders.info/00_Orbital__Mechanics__-__Model_____Simulation... · ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM-MSS)

www.m

yrea

ders

.inf

o

OM-MSS Page 86 E03B 011. LST Local sidereal time in 0-360 deg, over Sun mean longitude (Lmean) = 164.29754, hr = 10, min = 57, sec = 11.40850 E03C 011. LST Local sidereal time in 0-360 deg, over Sun epliptic longitude (Lsun) = 164.29754, hr = 10, min = 57, sec = 11.40850 04. Finding ST0 sidereal time over Greenwich longitude = 0.0, at time input Year JAN day 1 hr 00. Note - this is sidereal time ST at UT year, month = 1, day = 1, hours decimal = 0.0 and geogrphic longitude = 0.0 Inputs : Time input UT Year, JAN day 1 hr 00, Log 0.0 Outputs : ST0 over Greenwich E04 011. ST0 Sidereal time in 0-360 deg, over Greenwich at input UT year, MM 1, DD 1, HH 00 = 100.80678, hr = 6, min = 43, sec = 13.62710 05. Finding ST sidereal time over three longitudes of, Greenwich log, Sun mean log (Lmean), and Sun epliptic log (Lsun) . Note - this is local sidereal time LST; (LST = GST at UT time + geogrphic longitude). Inputs : At Time input UT - Log 0.0, Log Lmean, Log Lsun Outputs : ST over Greenwich, Lmean, Lsun. E05A 011. ST Sidereal time in 0-360 deg, over Greenwich at input UT time = 241.14177, hr = 16, min = 4, sec = 34.02452 E05B 011. ST Sidereal time in 0-360 deg, over Sun mean longitude (Lmean) at input UT time = 164.29754, hr = 10, min = 57, sec = 11.40850 005C 011. ST Sidereal time in 0-360 deg, over Sun longitude (Lsun) at input UT time = 164.29754, hr = 10, min = 57, sec = 11.40850 06. Finding H hour angle in 0 to 360 deg over longitudes of, Greenwich, Lmean, Lsun, Earth Sub Sun point SS, Earth Obseration point EP. Note - used Sun Right ascension Alpha at input time; (hour angle HA = LST - Alpha). Inputs : At Time input UT - Sun Right ascension Alpha and ST Sidereal time over longitudes 0.0, Lmean, Lsun, SS, EP Outputs : Hour Angles over Greenwich, Lmean, Lsun, SS, EP E06A 011. H hour angle 0-360 deg, over Greenwich, = 316.84955, deg = 316, min = 50, sec = 58.38552 E06B 011. H hour angle 0-360 deg, over Lmean, = 240.00532, deg = 240, min = 0, sec = 19.14529 E06C 011. H hour angle 0-360 deg, over Lsun, = 240.00532, deg = 240, min = 0, sec = 19.14529 E06D 011. H hour angle 0-360 deg, over SS, = 0.00000, deg = 0, min = 0, sec = 0.00000 E06E 011. H hour angle 0-360 deg, over EP, = 34.26217, deg = 34, min = 15, sec = 43.79952

Page 87: ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM …myreaders.info/00_Orbital__Mechanics__-__Model_____Simulation... · ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM-MSS)

www.m

yrea

ders

.inf

o

OM-MSS Page 87 07. Finding Delta E is Equation of Time in seconds, at time input UT. Note - this value in seconds accounts for relative movement of sun in elliptical orbit w.r.t earth and effect of obliquity of the ecliptic; its maximum value is 16 minutes (960 sec.); Delta E is computed using time in days from the perihelion, n_sun_deg and w_sun at input UT. Inputs : Time input UT in JD, time perihelion in JD, Sun mean movement n_sun, Eccentricity of earth orbit E_Sun Outputs : Delta E time_equation in seconds. E07 011. Delta E Time Equation in seconds = 262.40497, hr = 0, min = 4, sec = 22.40497 08. Finding GST Greenwich sidereal time, and GHA Greenwich hour angle 0 to 360 deg at time when earth is at perihelion. Inputs : Time in JD when earth at perihelion YY = 2013, MM = 1, DD = 3, hr = 9, min = 11, sec = 56.62 Outputs : GST & GHA in 0-360 deg over Greenwich when earth is at perihelion E08A 011. GST sidereal time in 0-360 deg over Greenwich at time when earth is at perihelion = 241.14177, hr = 16, min = 4, sec = 34.02452 E08B 011. GHA hour angle in 0-360 deg over Greenwich at time when earth is at perihelion = 241.14717, hr = 16, min = 4, sec = 35.32064 09. Finding ST sidereal time and MST mean sidereal time, over Greenwich, using Earth mean motion rev per day . Inputs : GST when earth at perihelion, earth rotation rate, ref. JD2000, time input UT in JD, time perihelion in JD. Outputs : STP, angle perihelion to input JD, ST over Greenwich, MSTO & MST over Greenwich, solar time E09A 011. STP sidereal time in 0-360 deg over Greenwich when earth at perihelion = 241.14177, hr = 16, min = 4, sec = 34.02452 E09B 011. Angle in 0-360 deg from earth at perihelion to input JD using earth rotational rate = 0.00000, 009C 011. ST in 0-360 deg over Greenwich using STP and angle from perihelion at input JD = 241.14177, hr = 16, min = 4, sec = 34.02452 E09D 011. ST in 0-360 deg over Greenwich using STP and earth rotation at UT time = 241.14177, hr = 16, min = 4, sec = 34.02452 E09E 011. MST0 in deg, over Greenwich using JD century days, ref J2000 to I/P YY, M1, D1 hr 00 = 100.80714, hr = 6, min = 43, sec = 13.71450 E09F 011. MST in deg, over Greenwich using JD century in days from ref J2000 to UT time Y M D H = 241.14213, hr = 16, min = 4, sec = 34.11192 E09G 011. Solar time over Greenwich in JD (GMT or input UT - 12 hr) = YY 2013, MM 1, DD 2, hr 21, min 11, sec 56.616, ie JD 2456295.38329 10. Finding Earth orbit radious using true anomaly, Sub Sun point (SS) on earth surface and related paramters . (a) Finding Earth orbit radious using true anomaly. Inputs : semi-major axis SMA, eccentricity of earth orbit e_sun, sun true anomaly T_Sun Outputs : earth orbital radious EC to SC (earth center to sun center)

Page 88: ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM …myreaders.info/00_Orbital__Mechanics__-__Model_____Simulation... · ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM-MSS)

www.m

yrea

ders

.inf

o

OM-MSS Page 88 E10A 011. earth orbital radious EC to SC km using_true anomaly at UT time = 147098790.6710525200 (b) Finding Sub Sun point (SS) over earth surface (Latitude, Longitude, & Latitude radius) pointing to Sun Ecliptic Log (Lsun), Sun height from earth surface over SS, and LST over SS log at time input UT. Note - for SS Latitude, used earth inclination, sun true anomaly T_sun and sun argument of perigee w_sun. for SS Longitude, used Sun right ascension Alpha and sidereal time at Greenwich GST. Inputs : earth inclination, sun true anomaly T_Sun, sun argument of perigee W_Sun, sun right ascension Alpha, earth equator radious, GST at input UT, log SS & EP, earth orbit radious EC to SC Outputs : SS point Latitude, Longitude, Latitude radious, LST & LMT over SS . E10B 011. SS point Latitude +ve or -ve in 0 to 90 deg at UT time = -22.79 ie deg = -22, min = 47, sec = 20.10 E10C 011. SS point Longitude 0 to 360 deg = 43.15 ie deg = 43, min = 9, sec = 1.61 E10D 011. SS point Latitude radious km at UT time = 6374.9450864748 E10E 011. Sun height km from earth surface over SS at UT time = 147092415.7259660400 E10F 011. LST local sidereal time in 0-360 deg over SS log at UT time, (LST = GST + log east) = 284.293 ie hr = 18, min = 57, sec = 10.21954 LST local sidereal time and LMT local mean time with date adjusted to calendar YY MM DD and UT hr mm sec. E10G 011. LST local sidereal time at Sub Sun point (SS) YY = 2013, MM = 1, DD = 3, hr = 18, min = 57, sec = 10.22 E10H 011. LMT local Mean time at Sub Sun point (SS) YY = 2013, MM = 1, DD = 3, hr = 12, min = 4, sec = 32.72 (c) Finding LST and LMT over Earth point(EP) where Observer is, at time input UT. Inputs : EP point Latitude, Longitude Outputs : LST & LMT over EP . E10I 011. LST local sidereal time in 0-360 deg at EP log at UT time, (LST = GST + log east) = 318.555 ie hr = 21, min = 14, sec = 13.13953 LST and LMT with date adjusted to calendar YY MM DD and UT hr mm sec. E10J 011. LST local sidereal time at Earth point (EP) YY = 2013, MM = 1, DD = 3, hr = 21, min = 14, sec = 13.14 E10K 011. LMT local Mean time at Earth point (EP) YY = 2013, MM = 1, DD = 3, hr = 14, min = 21, sec = 35.64

Page 89: ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM …myreaders.info/00_Orbital__Mechanics__-__Model_____Simulation... · ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM-MSS)

www.m

yrea

ders

.inf

o

OM-MSS Page 89 Finding Earth to Sun Position Vectors coordinate in PQW, IJK, SEZ frames and the Vector Coordinate Transforms. First defined coordinate systems, PQW, IJK, SEZ, then computed Position & Velocity vectors in these three coordinate systems. (a) Perifocal Coordinate System (PQW), is Earth Centered Inertial coordinate frame defined in terms of Kepler Orbital Elements. The system is fixed with time (inertial), pointing towards orbit periapsis; the system's origin is Earth center (EC), and its fundamental plane is the orbit plane; the P-vector axis directed from EC toward the periapsis of the elliptical orbit plane, the Q-vector axis swepts 90 deg from P axis in the direction of the orbit, the W-vector axis directed from EC in a direction normal to orbit plane, forms a right-handed coordinate system. (b) Geocentric Coordinate System (IJK), is also an Earth Centered Inertial (ECI) frame, a Conventional Inertial System (CIS). The system is fixed with time (inertial), pointing towards vernal equinox; the system's origin is Earth center (EC), and its fundamental plane is the equator; the I-vector is +X-axis directed towards the vernal equinox direction on J2000, Jan 1, hr 12.00 noon, the J-vector is +Y-axis swepts 90 deg to the east in the equatorial plane, the K-vector is +Z-axis directed towards the North Pole. (c) Topocentric Horizon Coordinate System (SEZ), is Non-Inertial coordinate frame, known as Earth-Centered Earth-Fixed Coordinates (ECEF). The system moves with earth, is not fixed with time (non-inertial), is for use by observers on the surface of earth; the observer's surface forms the fundamental plane, is tangent to earth's surface the S-vector is +ve horizontal-axis directed towards South, the E-vector is +ve horizontal-axis directed towards East, the Z-vector is +ve normal directed upwards on earth surface. Note that axis Z not necessarily pass through earth center, so not used to define as radious vector. 11. Finding Earth center(EC) to Sun center(SC) Range Vector[rp, rq, r] from in PQW frame, perifocal coordinate system. Inputs : Semi-major axis (SMA), Eccentricity of earth orbit (e_sun), Sun eccentric anomaly (E_sun) Outputs : Vector(r, rp rq) in PQW frame E11A 011. r earth pos vector magnitude EC to SC km in PQW frame perifocal cord at UT time = 147098790.67105

Page 90: ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM …myreaders.info/00_Orbital__Mechanics__-__Model_____Simulation... · ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM-MSS)

www.m

yrea

ders

.inf

o

OM-MSS Page 90 E11B 011. rp earth pos vector component EC to SC km in PQW frame perifocal cord at UT time = 147098790.6710524900 E11C 011. rq earth pos vector component EC to SC km in PQW frame perifocal cord at UT time = 0.0000000294 Note - r earth pos vector magnitude EC to SC km in PQW frame is same as earth orbital radious computed before using true anomaly. 12. Transform_1 Earth position EC to SC Range Vector[rp, rq] in PQW frame To Range Vector[rI, rJ, rK] in IJK frame, inertial system cord. Inputs : Vector(rp, rq) EC_to_SC km in frame PQW , Alpha rd, w_sun rd, earth_inclination rd , Outputs : Vector(rI, rJ, rK, r) EC_to_SC km in frame IJK E12A 011. rI earth pos vector component EC to SC km frame IJK at UT time = -119085952.6308768100 E12B 011. rJ earth pos vector component EC to SC km frame IJK at UT time = -64886279.6011658240 E12C 011. rK earth pos vector component EC to SC km frame IJK at UT time = -56976844.6160544460 E12D 011. r earth pos vector magnitude EC to SC km frame IJK at UT time = 147098790.6710524900 Note - r earth pos vector magnitude EC to SC km in PQW frame is same as that compued above in PQW frame. 13. Transform_2 Earth point EP(lat, log, hgt) To EC to SC Range Vector[RI, RJ, RK, R] in IJK frame. Inputs : earth equator radious_km, earth point EP(lat deg, log deg, hgt meter), LST_local_sidereal_time_in_0_to_360_deg_at_EP_log_at_UT_time, Outputs : Vector(RI, RJ, RK, R) Range EC to EP in IJK frame E13A 011. RI pos vector component EC to EP km frame IJK at UT time = 4390.4491505062 E13B 011. RJ pos vector component EC to EP km frame IJK at UT time = -3876.8686176516 E13C 011. RK pos vector component EC to EP km frame IJK at UT time = 2517.6312937817 E13D 011. R pos vector magnitude EC to EP km frame IJK at UT time = 6375.3134317570 14. Transform_3 Earth position EC to SC Range Vectors [rI rJ rK] & [RI RJ RK] To EP to SC Range Vector[rvI, rvJ, rvK] in IJK frame. Inputs : Vector(rI rJ rK) position EC_to_SC km in frame IJK , Vector(RI RJ RK) range EC to SC km in IJK frame, Outputs : Vector(rvI, rvJ, rvK, rv) range EP to SC in IJK frame E14A 011. rvI range vector component EP to SC km frame IJK at UT time = -119090343.0800273100 E14B 011. rvJ range vector component EP to SC km frame IJK at UT time = -64882402.7325481700 E14C 011. rvK range vector component EP to SC km frame IJK at UT time = -56979362.2473482270 E14D 011. rv range vector magnitude EP to SC km frame IJK at UT time = 147101610.1930285400

Page 91: ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM …myreaders.info/00_Orbital__Mechanics__-__Model_____Simulation... · ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM-MSS)

www.m

yrea

ders

.inf

o

OM-MSS Page 91 15. Transform_4 Earth point EP to SC Range Vector[rvI, rvJ, rvK] in IJK frame To EP to SC Range Vector[rvS, rvE, rvZ] in SEZ frame. Inputs : lat_pos_neg_0_to_90_deg_at_EP_at_time_UT , LST_local_sidereal_time_in_0_to_360_deg_at_EP_log_at_UT_time Vector(rvI, rvJ, rvK, rv) range EP to SC km in IJK frame, Outputs : Vector(rvS, rvE, rvZ, rv) range EP to SC km in SEZ frame E15A 011. rvS range vector component EP to SC km frame SEZ at UT time = 34055206.8052048240 E15B 011. rvE range vector component EP to SC km frame SEZ at UT time = -127461490.7613908900 E15C 011. rvZ range vector component EP to SC km frame SEZ at UT time = -65059165.2553297430 E15D 011. rv range vector magnitude EP to SC km frame SEZ at UT time = 147101610.1930285100 16. Finding Elevation(EL) and Azimuth(AZ) angle of Sun at Earth Observation point EP . Note : Results computed using 4 different formulations, each require different inputs to give EL & AZ angles. For all situations of Object and Observer positions, a combination of latitude N/S & longitude E/W : Method 1 : for both EL & AZ angles, this does not provide correct results ; Method 2 : for only EL angle, this provides consistent, unambiguous correct results. but for AZ angles the results are ambiguous, need corrections by adding or subtracting values as 180 or 360 or sign change. Method 3 : same as method 2, for EL angle, the results are correct, but for AZ angles the results are ambiguous, need corrections. Method 4 : for finding Azimuth and Distance but not for finding Elevation angle; for AZ angles, this provides correct unambiguous results that need no futher corrections. Therefore for Elevation (EL) angle Method 3 results are accepted and for Azimuth (AZ) angle Method 4 results are accepted . Results verified from other sources; Ref URLs http://www.ga.gov.au/geodesy/astro/smpos.jsp#intzone . NOAA Research http://www.esrl.noaa.gov/gmd/grad/solcalc/ , and http://aa.usno.navy.mil/data/docs/AltAz.php Xavier Jubier, Member IAU http://xjubier.free.fr/en/site_pages/astronomy/ephemerides.html Rem: SS point lat deg = -22.79, log deg = 43.15 YY = 2013, MM = 1, DD = 3, hr = 12, min = 4, sec = 32.72 EP point lat deg = 23.26, log deg = 77.41 YY = 2013, MM = 1, DD = 3, hr = 14, min = 21, sec = 35.64 Elevation(EL) & Azimuth(AZ) angle of Sun at Earth Observation point EP, (method 1 - computed values may be Ambiguous or Incorrect). Inputs : Vector[rvS, rvE, rvZ] range EP to SC km in SEZ frame Outputs : Elevation(EL) & Azimuth(AZ) of Sun at EP

Page 92: ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM …myreaders.info/00_Orbital__Mechanics__-__Model_____Simulation... · ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM-MSS)

www.m

yrea

ders

.inf

o

OM-MSS Page 92 E16A 011. Elevation angle deg of Sun at EP using rv SEZ at UT time = -26.2490388254 E16B 011. Azimuth angle deg of sun at EP using rv SEZ at UT time = 255.0411079766 Elevation(EL) & Azimuth(AZ) angle of Sun at Earth Observation point EP, (method 2 - computed AZ values may be ambiguous & incorrect). Inputs : Time input UT YY MM DD HH, Equator radious, EP lat & log, SS lat & log, Sun declination Delta Outputs : Elevation(EL) & Azimuth(AZ) of Sun at EP E16C 011. Elevation angle deg of Sun at EP using Sun declination diff log range EP to SC = 33.16712 E16D 011. Azimuth angle deg of sun at EP using sun declination diff log range EP to SC = -128.32056 Elevation(EL) & Azimuth(AZ) angle of Sun at Earth Observation point EP, (method 3 - computed AZ values may be ambiguous & incorrect). Inputs : Time input UT YY MM DD HH, Equator radious, EP lat & log, SS lat & log, Sun hgt from EC, Sun range from EP (Sun hgt from EC = earth orbit radious EC to SC km ; Sun range from EP = rv range vector EP to SC km frame SEZ) Outputs : Elevation(EL) & Azimuth(AZ) of Sun at EP E16E 011. Elevation angle deg of Sun at EP using Sun hgt diff log range EP to SC = 33.16375 ie deg = 33, min = 9, sec = 49.51 E16F 011. Azimuth angle deg of sun at EP using sun hgt diff log range EP to SC = 218.31935 ie deg = 218, min = 19, sec = 9.66 Azimuth(AZ) angle of Sun at Earth Observation point EP, (method 4 - computed AZ values is unambiguous & correct). Inputs : Time input UT YY MM DD HH, EP lat & log, SS lat & log Outputs : Azimuth(AZ) of Sun at EP E16G 011. Azimuth angle deg of sun at EP using sun hgt diff log range EP to SC = 218.31935 ie deg = 218, min = 19, sec = 9.66 Due to such incorrect results, finally for Elevation (EL) Method 3 results and for Azimuth (AZ) Method 4 results are accepted. Finally accepted Elevation angle deg of Sun from EP to SC = 33.1637517343 ie deg = 33, min = 9, sec = 49.51 Finally accepted Azimuth angle_deg of Sun from EP to SC = 218.3193510511 ie deg = 218, min = 19, sec = 9.66

Page 93: ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM …myreaders.info/00_Orbital__Mechanics__-__Model_____Simulation... · ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM-MSS)

www.m

yrea

ders

.inf

o

OM-MSS Page 93 Distance in km from Earth observation point(EP) to Sub Sun point(SS) and Earth Velocity meter per sec in orbit at time input UT. 17. Finding Distance in km from Earth observation point(EP) to Sub Sun point(SS) over Earth surface . Inputs : EP lat & log, SS lat & log, Outputs : Distance in km from EP to SS over Earth surface E17A 011. Distance in km Earth observation point(EP) to Sub Sun point(SS) = 6326.74270 Finding Earth Velocity meter per sec in orbit in frame PQW Inputs : semi-major axis SMA, GM_Sun, earth pos r EC to SC frame IJK, eccentricity of earth orbit e_Sun, sun eccentric anomaly E_Sun Outputs : Earth Velocity magnitude and component Xw Yw in frame PQW in meter per sec E17B 011. Velocity magnitude meter per sec using GM, SMA, r earth EC to SC frame IJK at UT time = 30286.5538639082 E17C 011. Velocity component meter per sec in orbit Xw using GM, e_Sun, SMA, E_Sun at UT time = -0.0000000000 E17D 011. Velocity component meter per sec in orbit Yw using GM, e_Sun, SMA, E_Sun at UT time = 30286.5538639082 Finding Earth Velocity Vector [vX, vY, vZ] in meter per sec in orbit; a Transform of [Xw, Yw] in frame PQW To [vX, vY, vZ] in frame XYZ Inputs : velocity component (Xw, Yw), sun right ascension Alpha, Sun Argument of perigee W_Sun, inclination Epcylone Outputs : earth velocity vector(vX, vY, vZ, vR) meter per sec in frame XYZ E17E 011. vX earth Velocity vector meter per sec using Xw Yw frame PQW RA w i at UT time = 13409.1729584945 E17F 011. vY earth Velocity vector meter per sec using Xw Yw frame PQW RA w i at UT time = -27017.6074608137 E17G 011. vZ earth Velocity vector meter per sec using Xw Yw frame PQW RA w i at UT time = 2741.9541597144 E17H 011. vR earth Velocity magnitude meter per sec using Xw Yw frame PQW RA w i at UT time = 30286.5538639082

Page 94: ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM …myreaders.info/00_Orbital__Mechanics__-__Model_____Simulation... · ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM-MSS)

www.m

yrea

ders

.inf

o

OM-MSS Page 94 Earth State Vectors : Position [X, Y, Z] in km and Velocity [Vx, Vy, Vz] in meter per sec, at time input UT. 18. Finding Earth State Position Vector [X, Y, Z] in km at time input UT. Inputs : position vector(rI, rJ, rK, r) in frame IJK values assiged to state position vector Outputs : State Position Vector(X, Y, Z, R) in km, frame XYZ E18A 011. State vector position X km at UT time = -119085952.6308768100 E18B 011. State vector position Y km at UT time = -64886279.6011658240 E18C 011. State vector position Z km at UT time = -56976844.6160544460 E18D 011. State vector position R km at UT time = 147098790.6710524900 19. Finding Earth State Velocity Vector [Vx, Vy, Vz] in meter per sec at time input UT. Inputs : velocity vector(vX, vY, vZ, vR) meter per sec in frame XYZ values assiged to state velocity vector Outputs : state velocity vector(Vx, Vy, Vz, V) meter per sec, frame XYZ E19A 011. State vector velocity Vx meter per sec at UT time = 13409.1729584945 E19B 011. State vector velocity Vy meter per sec at UT time = -27017.6074608137 E19C 011. State vector velocity Vz meter per sec at UT time = 2741.9541597144 019D 011. State vector velocity V meter per sec at UT time = 30286.5538639082 20. Earth Orbit Normal Vector [Wx, Wy, Wz] in km and angles Delta, i, RA at time input UT; Normal is line perpendicular to orbit plane. Inputs : earth pos r EC to SC frame IJK, inclination Epcylone, sun right ascension Alpha Outputs : earth orbit normal vector (Wx, Wy, Wz, W) in km E20A 011. Earth orbit normal W km using r earth pos frame IJK inclination Alpha = 147098790.6710524900 E20B 011. Earth orbit normal Wx km using r earth pos frame IJK inclination Alpha = -56701506.3572354090 E20C 011. Earth orbit normal Wy km using r earth pos frame IJK inclination Alpha = -14444830.6291954550 E20D 011. Earth orbit normal Wz km using r earth pos frame IJK inclination Alpha = 134960513.7134575500 020E 011. Earth orbit normal Delta W deg using r earth pos frame IJK inclination Alpha = 66.5607205617 E20F 011. Earth orbit normal Inclination i deg using normal_Delta_W = 23.4392794383 E20G 011. Earth orbit normal Alpha W deg using r earth pos frame IJK, inclination, Alpha = 14.2922173002 E20H 011. Earth orbit normal Right ascension of ascending node using normal Alpha, W = 104.2922173002

Page 95: ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM …myreaders.info/00_Orbital__Mechanics__-__Model_____Simulation... · ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM-MSS)

www.m

yrea

ders

.inf

o

OM-MSS Page 95 Transform Earth State Vectors to Earth position Keplerian elements. 21. Finding Earth position Keplerian elements computed using State Vector, at time input UT. Inputs : State vector year, days decimal of year, revolution, node, State Position Vector [ X, Y, Z ], State Velocity Vector [ Vx, Vy, Vz ] Outputs : Keplerian elements : year, days decimal of year, revolution, node, inclination, right ascension, eccentricity, argument of perigee, mean anomaly, mean motion rev per day, mean angular velocity rev per day, mean motion rev per_day from SMA considering oblateness E21A 011. Keplerian elements year = 2013, days_decimal_of_year = 2.38329, revolution no = 1, node = 2 ie decending E21B 011. inclination_deg = 23.4392794383 E21C 011. right ascension ascending node deg = 284.2922173002 E21D 011. eccentricity = 0.0167102190 E21E 011. argument of perigee_deg = 283.1557666033 E21F 011. mean anomaly deg = 0.0000000000 E21G 011. mean_motion rev per day = 0.0027377786 E21H 011. mean angular velocity rev_per_day = 0.0027377786 E21I 011. mean motion rev per day using SMA considering oblateness = 0.0027377786 Transform Earth position Keplerian elements to Earth State Vectors . 22. Finding Earth position State Vectors, computed using Keplerian elements at time input UT (computed again to validate model equations, Keplerian elements to State Vectors & back) Inputs : Keplerian elements : year, days decimal of year, revolution, node, inclination, right ascension, eccentricity, argument of perigee, mean anomaly, mean motion rev per day, mean angular velocity rev per day, mean motion rev per_day from SMA considering oblateness Outputs : State vector year, days decimal of year, revolution, node, State Position Vector [ X, Y, Z ], State Velocity Vector [ Vx, Vy, Vz ] E22A 011. State vectors year = 2013, days_decimal_of_year = 2.38329, revolution no = 1, node = 2 ie decending E22B 011. state vector position X km = -119085952.6308767500, state vector velocity Vx meter per sec = 13409.1729584945 E22C 011. state vector position Y km = -64886279.6011657040, state vector velocity Vy meter per sec = -27017.6074608137 E22D 011. state vector position Z km = -56976844.6160543860, state vector velocity Vz meter per sec = 2741.9541597144 E22E 011. state vector position R km = 147098790.6710523700, state vector velocity V meter per sec = 30286.5538639082

Page 96: ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM …myreaders.info/00_Orbital__Mechanics__-__Model_____Simulation... · ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM-MSS)

www.m

yrea

ders

.inf

o

OM-MSS Page 96 Note : Computation of all above parameters, grouped in 1 to 22, corresponds to time (a) Universal time over Greenwich (UT/GMT) : Year = 2013, Month = 1, Day = 3, Hour = 9, Min = 11, Sec = 56.616 (b) Mean Solar time (MST) over Earth Observation point (EP ) : Year = 2013, Month = 1, Day = 3, Hour = 14, Min = 21, Sec = 35.644 Move on to next Astronomical event in orbit Earth around Sun. Next Section - 4.3 Position of earth at time when earth is at vernal equinox

Page 97: ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM …myreaders.info/00_Orbital__Mechanics__-__Model_____Simulation... · ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM-MSS)

www.m

yrea

ders

.inf

o

OM-MSS Page 97 OM-MSS Section - 4.3 ---------------------------------------------------------------------------------------------------37 Earth Positional Parameters on Celestial Sphere : Input Year Time when Earth is at Vernal equinox. 3. Find Position of Earth on Celestial Sphere at Input Universal Time, when Earth is at Vernal equinox . Input UT Time, when Earth is at Vernal equinox : year = 2013, month = 3, day = 20, hour = 11, minute = 2, seconds = 9.15719 Julian Day = 2456371.95983, year_day_decimal = 78.45983, day_hour_decimal = 11.03588 Observation Point on Earth (Bhopal, India) : Lat +ve or -ve 0 to 90 deg = 23.25993 ie deg = 23, min = 15, sec = 35.76 Log 0 to 360 deg = 77.41261 ie deg = 77, min = 24, sec = 45.41 Alt from earth surface in km = 0.49470 First Compute the Sun Position on Celestial Sphere, then Compute the Earth Position on Celestial Sphere. (A) Computed Values for SUN POSITION on Celestial Sphere at Input Ut Time : (Sr. No 1 - 22) 01. Earth around Sun Mean motion rev per day (mm) = 0.0027377786 02. Semi-major axis in km considering oblateness (SMA) = 149598616.31172 03. Earth mean motion deg per day using SMA (mm) = 0.9856003000 04. Sun mean movement deg per day (n sun) = 0.9856003000 05. Eccentricity of earth orbit (e sun) = 0.0167102190 06. Perihelion to input time diff in Julian days = 76.0765340370 07. Mean anomaly in deg per day from n_sun (m sun) = 74.9810547699 08. Sun Mean longitude in deg (Lmean) = 358.1404045779 09. Earth Mean anomaly in deg (ME) = 74.9810547700 10. Sun Ecliptic longitude in deg (Lsun) = 0.0000000000 11. Obliquity of ecliptic in deg (Epcylone) = 23.4375603478 12. Sun Right ascension in deg (Alpha) = 0.0000000000 13. Sun Declination in deg (Delta) = 0.0000000000 14. Sun Mean distance in km (As) = 149598616.31172 15. Sun Radial distance from earth in km (Rs) = 148989898.67840 16. Sun Nodal elongation in deg (U sun) = 0.0000000000 17. Sun Mean anomaly in deg (M sun) = 74.9810547697 18. Sun Eccentric anomaly in deg (E sun) = 75.9096738744 19. Sun True anomaly in deg (T sun) = 76.8402303407 20. Sun Argument of perigee in deg (W sun) = 283.1597696594 21. Sun True anomaly in deg from U & W (V sun) = 76.8402303407 22. Sun Distance in km (d sun) = 148912015.96700 Sun Ecliptic latitude is always nearly zero (the value never exceeds 0.00033 deg) These Values are applied as input for Computing Earth Position on Celestial Sphere around Sun at same input UT Time.

Page 98: ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM …myreaders.info/00_Orbital__Mechanics__-__Model_____Simulation... · ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM-MSS)

www.m

yrea

ders

.inf

o

OM-MSS Page 98 (B) Computed Values for EARTH POSITION on Celestial Sphere around Sun at same Input Ut Time : (Sr. No 1 - 22) Input Time year = 2013, month = 3, day = 20, hour = 11, minute = 2, seconds = 9.15719, corresponding Julian Day = 2456371.9598282082 Observation Point on Earth : Lat +ve or -ve 0 to 90 deg = 23.25993, Log 0 to 360 deg = 77.41261, Alt from earth surface in km = 0.49470 Sun position on Celestial sphere at input time, computed above total 22 parameters. Output Earth Position on Celestial sphere around Sun : Computed below around 120 parameters, presented in 1-22 groups. Number is large, because some parameters are computed using more than one model equation, that require different inputs. This helps in validation of results and understanding the different input considerations. 01. Finding GST Greenwich sidereal time and GHA Greenwich hour angle in 0 to 360 deg, at input UT time YY MM DD HH. Note - for GST, the year 1900 JAN day_1 hr 1200 is ref for time difference in terms of julian_century, for GHA, the year 2000_JAN_day_1 hr_1200 is ref for time difference in terms of julian days. Inputs : Time UT year = 2013, month = 3, day = 20, hour = 11, minute = 2, seconds = 9.15719 Outputs : GST & GHA in 0-360 deg over Greenwich. E01A 011. GST Greenwich sidereal time in 0-360 deg, over Greenwich = 343.67866, hr = 22, min = 54, sec = 42.87769 E01B 011. GHA Greenwich hour angle in 0 to 360 deg, over Greenwich = 343.68516, deg = 343, min = 41, sec = 6.56735 02. Finding Earth latitude & longitude pointing to Sun Ecliptic longitude(Lsun). Inputs : earth inclination, sun true anomaly T_Sun, sun argument of perigee W_Sun, sun right ascension Alpha, earth equator radious, GST at input UT, log SS & EP, earth orbit radious EC to SC Outputs : Earth lat & log pointing to Lsun. E02A 011. Earth latitude +ve or -ve in 0 to 90 deg at UT time = 0.00 ie deg = 0, min = 0, sec = 0.00 E02B 011. Earth longitude 0 to 360 deg = 16.32 ie deg = 16, min = 19, sec = 16.83 03. Finding LST over three longitudes, Greenwich log, Sun mean log (Lmean), and Sun epliptic log (Lsun) . Note - for LST, used sidereal time at Greenwich GST and desired geogrphic longitude Inputs : At Time input UT - GST, Log of Greenwich, sun mean log Lmean, Sun ecliptic log Lsun. Outputs : LST over Greenwich, Lmean, Lsun . E03A 011. LST Local sidereal time in 0-360 deg, over Greenwich longitude = 343.67866, hr = 22, min = 54, sec = 42.87769

Page 99: ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM …myreaders.info/00_Orbital__Mechanics__-__Model_____Simulation... · ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM-MSS)

www.m

yrea

ders

.inf

o

OM-MSS Page 99 E03B 011. LST Local sidereal time in 0-360 deg, over Sun mean longitude (Lmean) = 341.81906, hr = 22, min = 47, sec = 16.57479 E03C 011. LST Local sidereal time in 0-360 deg, over Sun epliptic longitude (Lsun) = 343.67866, hr = 22, min = 54, sec = 42.87769 04. Finding ST0 sidereal time over Greenwich longitude = 0.0, at time input Year JAN day 1 hr 00. Note - this is sidereal time ST at UT year, month = 1, day = 1, hours decimal = 0.0 and geogrphic longitude = 0.0 Inputs : Time input UT Year, JAN day 1 hr 00, Log 0.0 Outputs : ST0 over Greenwich E04 011. ST0 Sidereal time in 0-360 deg, over Greenwich at input UT year, MM 1, DD 1, HH 00 = 100.80678, hr = 6, min = 43, sec = 13.62710 05. Finding ST sidereal time over three longitudes of, Greenwich log, Sun mean log (Lmean), and Sun epliptic log (Lsun) . Note - this is local sidereal time LST; (LST = GST at UT time + geogrphic longitude). Inputs : At Time input UT - Log 0.0, Log Lmean, Log Lsun Outputs : ST over Greenwich, Lmean, Lsun. E05A 011. ST Sidereal time in 0-360 deg, over Greenwich at input UT time = 343.67866, hr = 22, min = 54, sec = 42.87769 E05B 011. ST Sidereal time in 0-360 deg, over Sun mean longitude (Lmean) at input UT time = 341.81906, hr = 22, min = 47, sec = 16.57479 005C 011. ST Sidereal time in 0-360 deg, over Sun longitude (Lsun) at input UT time = 343.67866, hr = 22, min = 54, sec = 42.87769 06. Finding H hour angle in 0 to 360 deg over longitudes of, Greenwich, Lmean, Lsun, Earth Sub Sun point SS, Earth Obseration point EP. Note - used Sun Right ascension Alpha at input time; (hour angle HA = LST - Alpha). Inputs : At Time input UT - Sun Right ascension Alpha and ST Sidereal time over longitudes 0.0, Lmean, Lsun, SS, EP Outputs : Hour Angles over Greenwich, Lmean, Lsun, SS, EP E06A 011. H hour angle 0-360 deg, over Greenwich, = 343.67866, deg = 343, min = 40, sec = 43.16538 E06B 011. H hour angle 0-360 deg, over Lmean, = 341.81906, deg = 341, min = 49, sec = 8.62186 E06C 011. H hour angle 0-360 deg, over Lsun, = 343.67866, deg = 343, min = 40, sec = 43.16538 E06D 011. H hour angle 0-360 deg, over SS, = 0.00000, deg = 0, min = 0, sec = 0.00000 E06E 011. H hour angle 0-360 deg, over EP, = 61.09127, deg = 61, min = 5, sec = 28.57938

Page 100: ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM …myreaders.info/00_Orbital__Mechanics__-__Model_____Simulation... · ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM-MSS)

www.m

yrea

ders

.inf

o

OM-MSS Page 100 07. Finding Delta E is Equation of Time in seconds, at time input UT. Note - this value in seconds accounts for relative movement of sun in elliptical orbit w.r.t earth and effect of obliquity of the ecliptic; its maximum value is 16 minutes (960 sec.); Delta E is computed using time in days from the perihelion, n_sun_deg and w_sun at input UT. Inputs : Time input UT in JD, time perihelion in JD, Sun mean movement n_sun, Eccentricity of earth orbit E_Sun Outputs : Delta E time_equation in seconds. E07 011. Delta E Time Equation in seconds = 482.67883, hr = 0, min = 8, sec = 2.67883 08. Finding GST Greenwich sidereal time, and GHA Greenwich hour angle 0 to 360 deg at time when earth is at perihelion. Inputs : Time in JD when earth at perihelion YY = 2013, MM = 1, DD = 3, hr = 9, min = 11, sec = 56.62 Outputs : GST & GHA in 0-360 deg over Greenwich when earth is at perihelion E08A 011. GST sidereal time in 0-360 deg over Greenwich at time when earth is at perihelion = 241.14177, hr = 16, min = 4, sec = 34.02452 E08B 011. GHA hour angle in 0-360 deg over Greenwich at time when earth is at perihelion = 241.14717, hr = 16, min = 4, sec = 35.32064 09. Finding ST sidereal time and MST mean sidereal time, over Greenwich, using Earth mean motion rev per day . Inputs : GST when earth at perihelion, earth rotation rate, ref. JD2000, time input UT in JD, time perihelion in JD. Outputs : STP, angle perihelion to input JD, ST over Greenwich, MSTO & MST over Greenwich, solar time E09A 011. STP sidereal time in 0-360 deg over Greenwich when earth at perihelion = 241.14177, hr = 16, min = 4, sec = 34.02452 E09B 011. Angle in 0-360 deg from earth at perihelion to input JD using earth rotational rate = 102.53422, 009C 011. ST in 0-360 deg over Greenwich using STP and angle from perihelion at input JD = 343.67599, hr = 22, min = 54, sec = 42.23734 E09D 011. ST in 0-360 deg over Greenwich using STP and earth rotation at UT time = 343.67599, hr = 22, min = 54, sec = 42.23734 E09E 011. MST0 in deg, over Greenwich using JD century days, ref J2000 to I/P YY, M1, D1 hr 00 = 100.80714, hr = 6, min = 43, sec = 13.71450 E09F 011. MST in deg, over Greenwich using JD century in days from ref J2000 to UT time Y M D H = 343.67902, hr = 22, min = 54, sec = 42.96527 E09G 011. Solar time over Greenwich in JD (GMT or input UT - 12 hr) = YY 2013, MM 3, DD 19, hr 23, min 2, sec 9.157, ie JD 2456371.45983 10. Finding Earth orbit radious using true anomaly, Sub Sun point (SS) on earth surface and related paramters . (a) Finding Earth orbit radious using true anomaly. Inputs : semi-major axis SMA, eccentricity of earth orbit e_sun, sun true anomaly T_Sun Outputs : earth orbital radious EC to SC (earth center to sun center)

Page 101: ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM …myreaders.info/00_Orbital__Mechanics__-__Model_____Simulation... · ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM-MSS)

www.m

yrea

ders

.inf

o

OM-MSS Page 101 E10A 011. earth orbital radious EC to SC km using_true anomaly at UT time = 148990030.6242361400 (b) Finding Sub Sun point (SS) over earth surface (Latitude, Longitude, & Latitude radius) pointing to Sun Ecliptic Log (Lsun), Sun height from earth surface over SS, and LST over SS log at time input UT. Note - for SS Latitude, used earth inclination, sun true anomaly T_sun and sun argument of perigee w_sun. for SS Longitude, used Sun right ascension Alpha and sidereal time at Greenwich GST. Inputs : earth inclination, sun true anomaly T_Sun, sun argument of perigee W_Sun, sun right ascension Alpha, earth equator radious, GST at input UT, log SS & EP, earth orbit radious EC to SC Outputs : SS point Latitude, Longitude, Latitude radious, LST & LMT over SS . E10B 011. SS point Latitude +ve or -ve in 0 to 90 deg at UT time = 0.00 ie deg = 0, min = 0, sec = 0.00 E10C 011. SS point Longitude 0 to 360 deg = 16.32 ie deg = 16, min = 19, sec = 16.83 E10D 011. SS point Latitude radious km at UT time = 6378.1440000000 E10E 011. Sun height km from earth surface over SS at UT time = 148983652.4802361400 E10F 011. LST local sidereal time in 0-360 deg over SS log at UT time, (LST = GST + log east) = 0.000 ie hr = 0, min = 0, sec = 0.08759 LST local sidereal time and LMT local mean time with date adjusted to calendar YY MM DD and UT hr mm sec. E10G 011. LST local sidereal time at Sub Sun point (SS) YY = 2013, MM = 3, DD = 21, hr = 0, min = 0, sec = 0.09 E10H 011. LMT local Mean time at Sub Sun point (SS) YY = 2013, MM = 3, DD = 20, hr = 12, min = 7, sec = 26.28 (c) Finding LST and LMT over Earth point(EP) where Observer is, at time input UT. Inputs : EP point Latitude, Longitude Outputs : LST & LMT over EP . E10I 011. LST local sidereal time in 0-360 deg at EP log at UT time, (LST = GST + log east) = 61.092 ie hr = 4, min = 4, sec = 21.99289 LST and LMT with date adjusted to calendar YY MM DD and UT hr mm sec. E10J 011. LST local sidereal time at Earth point (EP) YY = 2013, MM = 3, DD = 21, hr = 4, min = 4, sec = 21.99 E10K 011. LMT local Mean time at Earth point (EP) YY = 2013, MM = 3, DD = 20, hr = 16, min = 11, sec = 48.18

Page 102: ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM …myreaders.info/00_Orbital__Mechanics__-__Model_____Simulation... · ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM-MSS)

www.m

yrea

ders

.inf

o

OM-MSS Page 102 Finding Earth to Sun Position Vectors coordinate in PQW, IJK, SEZ frames and the Vector Coordinate Transforms. First defined coordinate systems, PQW, IJK, SEZ, then computed Position & Velocity vectors in these three coordinate systems. (a) Perifocal Coordinate System (PQW), is Earth Centered Inertial coordinate frame defined in terms of Kepler Orbital Elements. The system is fixed with time (inertial), pointing towards orbit periapsis; the system's origin is Earth center (EC), and its fundamental plane is the orbit plane; the P-vector axis directed from EC toward the periapsis of the elliptical orbit plane, the Q-vector axis swepts 90 deg from P axis in the direction of the orbit, the W-vector axis directed from EC in a direction normal to orbit plane, forms a right-handed coordinate system. (b) Geocentric Coordinate System (IJK), is also an Earth Centered Inertial (ECI) frame, a Conventional Inertial System (CIS). The system is fixed with time (inertial), pointing towards vernal equinox; the system's origin is Earth center (EC), and its fundamental plane is the equator; the I-vector is +X-axis directed towards the vernal equinox direction on J2000, Jan 1, hr 12.00 noon, the J-vector is +Y-axis swepts 90 deg to the east in the equatorial plane, the K-vector is +Z-axis directed towards the North Pole. (c) Topocentric Horizon Coordinate System (SEZ), is Non-Inertial coordinate frame, known as Earth-Centered Earth-Fixed Coordinates (ECEF). The system moves with earth, is not fixed with time (non-inertial), is for use by observers on the surface of earth; the observer's surface forms the fundamental plane, is tangent to earth's surface the S-vector is +ve horizontal-axis directed towards South, the E-vector is +ve horizontal-axis directed towards East, the Z-vector is +ve normal directed upwards on earth surface. Note that axis Z not necessarily pass through earth center, so not used to define as radious vector. 11. Finding Earth center(EC) to Sun center(SC) Range Vector[rp, rq, r] from in PQW frame, perifocal coordinate system. Inputs : Semi-major axis (SMA), Eccentricity of earth orbit (e_sun), Sun eccentric anomaly (E_sun) Outputs : Vector(r, rp rq) in PQW frame E11A 011. r earth pos vector magnitude EC to SC km in PQW frame perifocal cord at UT time = 148990030.62424

Page 103: ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM …myreaders.info/00_Orbital__Mechanics__-__Model_____Simulation... · ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM-MSS)

www.m

yrea

ders

.inf

o

OM-MSS Page 103 E11B 011. rp earth pos vector component EC to SC km in PQW frame perifocal cord at UT time = 33920145.1258548950 E11C 011. rq earth pos vector component EC to SC km in PQW frame perifocal cord at UT time = 145077403.4095308500 Note - r earth pos vector magnitude EC to SC km in PQW frame is same as earth orbital radious computed before using true anomaly. 12. Transform_1 Earth position EC to SC Range Vector[rp, rq] in PQW frame To Range Vector[rI, rJ, rK] in IJK frame, inertial system cord. Inputs : Vector(rp, rq) EC_to_SC km in frame PQW , Alpha rd, w_sun rd, earth_inclination rd , Outputs : Vector(rI, rJ, rK, r) EC_to_SC km in frame IJK E12A 011. rI earth pos vector component EC to SC km frame IJK at UT time = 148990030.6242361100 E12B 011. rJ earth pos vector component EC to SC km frame IJK at UT time = 0.0001317672 E12C 011. rK earth pos vector component EC to SC km frame IJK at UT time = 0.0000285525 E12D 011. r earth pos vector magnitude EC to SC km frame IJK at UT time = 148990030.6242361100 Note - r earth pos vector magnitude EC to SC km in PQW frame is same as that compued above in PQW frame. 13. Transform_2 Earth point EP(lat, log, hgt) To EC to SC Range Vector[RI, RJ, RK, R] in IJK frame. Inputs : earth equator radious_km, earth point EP(lat deg, log deg, hgt meter), LST_local_sidereal_time_in_0_to_360_deg_at_EP_log_at_UT_time, Outputs : Vector(RI, RJ, RK, R) Range EC to EP in IJK frame E13A 011. RI pos vector component EC to EP km frame IJK at UT time = 2831.4036789008 E13B 011. RJ pos vector component EC to EP km frame IJK at UT time = 5127.3099407798 E13C 011. RK pos vector component EC to EP km frame IJK at UT time = 2517.6312937817 E13D 011. R pos vector magnitude EC to EP km frame IJK at UT time = 6375.3134317570 14. Transform_3 Earth position EC to SC Range Vectors [rI rJ rK] & [RI RJ RK] To EP to SC Range Vector[rvI, rvJ, rvK] in IJK frame. Inputs : Vector(rI rJ rK) position EC_to_SC km in frame IJK , Vector(RI RJ RK) range EC to SC km in IJK frame, Outputs : Vector(rvI, rvJ, rvK, rv) range EP to SC in IJK frame E14A 011. rvI range vector component EP to SC km frame IJK at UT time = 148987199.2205572100 E14B 011. rvJ range vector component EP to SC km frame IJK at UT time = -5127.3098090126 E14C 011. rvK range vector component EP to SC km frame IJK at UT time = -2517.6312652292 E14D 011. rv range vector magnitude EP to SC km frame IJK at UT time = 148987199.3300558000

Page 104: ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM …myreaders.info/00_Orbital__Mechanics__-__Model_____Simulation... · ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM-MSS)

www.m

yrea

ders

.inf

o

OM-MSS Page 104 15. Transform_4 Earth point EP to SC Range Vector[rvI, rvJ, rvK] in IJK frame To EP to SC Range Vector[rvS, rvE, rvZ] in SEZ frame. Inputs : lat_pos_neg_0_to_90_deg_at_EP_at_time_UT , LST_local_sidereal_time_in_0_to_360_deg_at_EP_log_at_UT_time Vector(rvI, rvJ, rvK, rv) range EP to SC km in IJK frame, Outputs : Vector(rvS, rvE, rvZ, rv) range EP to SC km in SEZ frame E15A 011. rvS range vector component EP to SC km frame SEZ at UT time = 28442225.2836758790 E15B 011. rvE range vector component EP to SC km frame SEZ at UT time = -130424975.4876815500 E15C 011. rvZ range vector component EP to SC km frame SEZ at UT time = 66163064.8788587080 E15D 011. rv range vector magnitude EP to SC km frame SEZ at UT time = 148987199.3300557700 16. Finding Elevation(EL) and Azimuth(AZ) angle of Sun at Earth Observation point EP . Note : Results computed using 4 different formulations, each require different inputs to give EL & AZ angles. For all situations of Object and Observer positions, a combination of latitude N/S & longitude E/W : Method 1 : for both EL & AZ angles, this does not provide correct results ; Method 2 : for only EL angle, this provides consistent, unambiguous correct results. but for AZ angles the results are ambiguous, need corrections by adding or subtracting values as 180 or 360 or sign change. Method 3 : same as method 2, for EL angle, the results are correct, but for AZ angles the results are ambiguous, need corrections. Method 4 : for finding Azimuth and Distance but not for finding Elevation angle; for AZ angles, this provides correct unambiguous results that need no futher corrections. Therefore for Elevation (EL) angle Method 3 results are accepted and for Azimuth (AZ) angle Method 4 results are accepted . Results verified from other sources; Ref URLs http://www.ga.gov.au/geodesy/astro/smpos.jsp#intzone . NOAA Research http://www.esrl.noaa.gov/gmd/grad/solcalc/ , and http://aa.usno.navy.mil/data/docs/AltAz.php Xavier Jubier, Member IAU http://xjubier.free.fr/en/site_pages/astronomy/ephemerides.html Rem: SS point lat deg = 0.00, log deg = 16.32 YY = 2013, MM = 3, DD = 20, hr = 12, min = 7, sec = 26.28 EP point lat deg = 23.26, log deg = 77.41 YY = 2013, MM = 3, DD = 20, hr = 16, min = 11, sec = 48.18 Elevation(EL) & Azimuth(AZ) angle of Sun at Earth Observation point EP, (method 1 - computed values may be Ambiguous or Incorrect). Inputs : Vector[rvS, rvE, rvZ] range EP to SC km in SEZ frame Outputs : Elevation(EL) & Azimuth(AZ) of Sun at EP

Page 105: ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM …myreaders.info/00_Orbital__Mechanics__-__Model_____Simulation... · ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM-MSS)

www.m

yrea

ders

.inf

o

OM-MSS Page 105 E16A 011. Elevation angle deg of Sun at EP using rv SEZ at UT time = 26.3648484347 E16B 011. Azimuth angle deg of sun at EP using rv SEZ at UT time = 257.6979108329 Elevation(EL) & Azimuth(AZ) angle of Sun at Earth Observation point EP, (method 2 - computed AZ values may be ambiguous & incorrect). Inputs : Time input UT YY MM DD HH, Equator radious, EP lat & log, SS lat & log, Sun declination Delta Outputs : Elevation(EL) & Azimuth(AZ) of Sun at EP E16C 011. Elevation angle deg of Sun at EP using Sun declination diff log range EP to SC = 26.36737 E16D 011. Azimuth angle deg of sun at EP using sun declination diff log range EP to SC = -167.69773 Elevation(EL) & Azimuth(AZ) angle of Sun at Earth Observation point EP, (method 3 - computed AZ values may be ambiguous & incorrect). Inputs : Time input UT YY MM DD HH, Equator radious, EP lat & log, SS lat & log, Sun hgt from EC, Sun range from EP (Sun hgt from EC = earth orbit radious EC to SC km ; Sun range from EP = rv range vector EP to SC km frame SEZ) Outputs : Elevation(EL) & Azimuth(AZ) of Sun at EP E16E 011. Elevation angle deg of Sun at EP using Sun hgt diff log range EP to SC = 26.36517 ie deg = 26, min = 21, sec = 54.63 E16F 011. Azimuth angle deg of sun at EP using sun hgt diff log range EP to SC = 257.69773 ie deg = 257, min = 41, sec = 51.83 Azimuth(AZ) angle of Sun at Earth Observation point EP, (method 4 - computed AZ values is unambiguous & correct). Inputs : Time input UT YY MM DD HH, EP lat & log, SS lat & log Outputs : Azimuth(AZ) of Sun at EP E16G 011. Azimuth angle deg of sun at EP using sun hgt diff log range EP to SC = 257.69773 ie deg = 257, min = 41, sec = 51.83 Due to such incorrect results, finally for Elevation (EL) Method 3 results and for Azimuth (AZ) Method 4 results are accepted. Finally accepted Elevation angle deg of Sun from EP to SC = 26.3651749316 ie deg = 26, min = 21, sec = 54.63 Finally accepted Azimuth angle_deg of Sun from EP to SC = 257.6977312752 ie deg = 257, min = 41, sec = 51.83

Page 106: ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM …myreaders.info/00_Orbital__Mechanics__-__Model_____Simulation... · ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM-MSS)

www.m

yrea

ders

.inf

o

OM-MSS Page 106 Distance in km from Earth observation point(EP) to Sub Sun point(SS) and Earth Velocity meter per sec in orbit at time input UT. 17. Finding Distance in km from Earth observation point(EP) to Sub Sun point(SS) over Earth surface . Inputs : EP lat & log, SS lat & log, Outputs : Distance in km from EP to SS over Earth surface E17A 011. Distance in km Earth observation point(EP) to Sub Sun point(SS) = 7083.54272 Finding Earth Velocity meter per sec in orbit in frame PQW Inputs : semi-major axis SMA, GM_Sun, earth pos r EC to SC frame IJK, eccentricity of earth orbit e_Sun, sun eccentric anomaly E_Sun Outputs : Earth Velocity magnitude and component Xw Yw in frame PQW in meter per sec E17B 011. Velocity magnitude meter per sec using GM, SMA, r earth EC to SC frame IJK at UT time = 29906.0325858305 E17C 011. Velocity component meter per sec in orbit Xw using GM, e_Sun, SMA, E_Sun at UT time = -29006.4938048237 E17D 011. Velocity component meter per sec in orbit Yw using GM, e_Sun, SMA, E_Sun at UT time = 7279.7048137597 Finding Earth Velocity Vector [vX, vY, vZ] in meter per sec in orbit; a Transform of [Xw, Yw] in frame PQW To [vX, vY, vZ] in frame XYZ Inputs : velocity component (Xw, Yw), sun right ascension Alpha, Sun Argument of perigee W_Sun, inclination Epcylone Outputs : earth velocity vector(vX, vY, vZ, vR) meter per sec in frame XYZ E17E 011. vX earth Velocity vector meter per sec using Xw Yw frame PQW RA w i at UT time = 484.7048638742 E17F 011. vY earth Velocity vector meter per sec using Xw Yw frame PQW RA w i at UT time = 27434.6468079624 E17G 011. vZ earth Velocity vector meter per sec using Xw Yw frame PQW RA w i at UT time = 11894.3684465402 E17H 011. vR earth Velocity magnitude meter per sec using Xw Yw frame PQW RA w i at UT time = 29906.0325858305

Page 107: ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM …myreaders.info/00_Orbital__Mechanics__-__Model_____Simulation... · ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM-MSS)

www.m

yrea

ders

.inf

o

OM-MSS Page 107 Earth State Vectors : Position [X, Y, Z] in km and Velocity [Vx, Vy, Vz] in meter per sec, at time input UT. 18. Finding Earth State Position Vector [X, Y, Z] in km at time input UT. Inputs : position vector(rI, rJ, rK, r) in frame IJK values assiged to state position vector Outputs : State Position Vector(X, Y, Z, R) in km, frame XYZ E18A 011. State vector position X km at UT time = 148990030.6242361100 E18B 011. State vector position Y km at UT time = 0.0001317672 E18C 011. State vector position Z km at UT time = 0.0000285525 E18D 011. State vector position R km at UT time = 148990030.6242361100 19. Finding Earth State Velocity Vector [Vx, Vy, Vz] in meter per sec at time input UT. Inputs : velocity vector(vX, vY, vZ, vR) meter per sec in frame XYZ values assiged to state velocity vector Outputs : state velocity vector(Vx, Vy, Vz, V) meter per sec, frame XYZ E19A 011. State vector velocity Vx meter per sec at UT time = 484.7048638742 E19B 011. State vector velocity Vy meter per sec at UT time = 27434.6468079624 E19C 011. State vector velocity Vz meter per sec at UT time = 11894.3684465402 019D 011. State vector velocity V meter per sec at UT time = 29906.0325858305 20. Earth Orbit Normal Vector [Wx, Wy, Wz] in km and angles Delta, i, RA at time input UT; Normal is line perpendicular to orbit plane. Inputs : earth pos r EC to SC frame IJK, inclination Epcylone, sun right ascension Alpha Outputs : earth orbit normal vector (Wx, Wy, Wz, W) in km E20A 011. Earth orbit normal W km using r earth pos frame IJK inclination Alpha = 148990030.6242361100 E20B 011. Earth orbit normal Wx km using r earth pos frame IJK inclination Alpha = 0.0000262177 E20C 011. Earth orbit normal Wy km using r earth pos frame IJK inclination Alpha = -59264802.7950436320 E20D 011. Earth orbit normal Wz km using r earth pos frame IJK inclination Alpha = 136695692.5988357700 020E 011. Earth orbit normal Delta W deg using r earth pos frame IJK inclination Alpha = 66.5607205617 E20F 011. Earth orbit normal Inclination i deg using normal_Delta_W = 23.4392794383 E20G 011. Earth orbit normal Alpha W deg using r earth pos frame IJK, inclination, Alpha = -90.0000000000 E20H 011. Earth orbit normal Right ascension of ascending node using normal Alpha, W = 0.0000000000

Page 108: ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM …myreaders.info/00_Orbital__Mechanics__-__Model_____Simulation... · ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM-MSS)

www.m

yrea

ders

.inf

o

OM-MSS Page 108 Transform Earth State Vectors to Earth position Keplerian elements. 21. Finding Earth position Keplerian elements computed using State Vector, at time input UT. Inputs : State vector year, days decimal of year, revolution, node, State Position Vector [ X, Y, Z ], State Velocity Vector [ Vx, Vy, Vz ] Outputs : Keplerian elements : year, days decimal of year, revolution, node, inclination, right ascension, eccentricity, argument of perigee, mean anomaly, mean motion rev per day, mean angular velocity rev per day, mean motion rev per_day from SMA considering oblateness E21A 011. Keplerian elements year = 2013, days_decimal_of_year = 78.45983, revolution no = 1, node = 1 ie ascending E21B 011. inclination_deg = 23.4392794383 E21C 011. right ascension ascending node deg = 0.0000000000 E21D 011. eccentricity = 0.0167102190 E21E 011. argument of perigee_deg = 283.1597696594 E21F 011. mean anomaly deg = 74.9810547697 E21G 011. mean_motion rev per day = 0.0027377786 E21H 011. mean angular velocity rev_per_day = 0.0027377786 E21I 011. mean motion rev per day using SMA considering oblateness = 0.0027377786 Transform Earth position Keplerian elements to Earth State Vectors . 22. Finding Earth position State Vectors, computed using Keplerian elements at time input UT (computed again to validate model equations, Keplerian elements to State Vectors & back) Inputs : Keplerian elements : year, days decimal of year, revolution, node, inclination, right ascension, eccentricity, argument of perigee, mean anomaly, mean motion rev per day, mean angular velocity rev per day, mean motion rev per_day from SMA considering oblateness Outputs : State vector year, days decimal of year, revolution, node, State Position Vector [ X, Y, Z ], State Velocity Vector [ Vx, Vy, Vz ] E22A 011. State vectors year = 2013, days_decimal_of_year = 78.45983, revolution no = 1, node = 1 ie decending E22B 011. state vector position X km = 148990030.6242359900, state vector velocity Vx meter per sec = 484.7048638741 E22C 011. state vector position Y km = 0.0001320988, state vector velocity Vy meter per sec = 27434.6468079624 E22D 011. state vector position Z km = 0.0000286959, state vector velocity Vz meter per sec = 11894.3684465402 E22E 011. state vector position R km = 148990030.6242359900, state vector velocity V meter per sec = 29906.0325858305

Page 109: ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM …myreaders.info/00_Orbital__Mechanics__-__Model_____Simulation... · ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM-MSS)

www.m

yrea

ders

.inf

o

OM-MSS Page 109 Note : Computation of all above parameters, grouped in 1 to 22, corresponds to time (a) Universal time over Greenwich (UT/GMT) : Year = 2013, Month = 3, Day = 20, Hour = 11, Min = 2, Sec = 9.157 (b) Mean Solar time (MST) over Earth Observation point (EP ) : Year = 2013, Month = 3, Day = 20, Hour = 16, Min = 11, Sec = 48.185 Move on to next Astronomical event in orbit Earth around Sun. Next Section - 4.4 Position of earth at time when earth is at summer solstice

Page 110: ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM …myreaders.info/00_Orbital__Mechanics__-__Model_____Simulation... · ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM-MSS)

www.m

yrea

ders

.inf

o

OM-MSS Page 110 OM-MSS Section - 4.4 ---------------------------------------------------------------------------------------------------38 Earth Positional Parameters on Celestial Sphere : Input Year Time when Earth is at Summer solstice. 4. Find Position of Earth on Celestial Sphere at Input Universal Time, when Earth is at Summer Solstice . Input UT Time, when Earth is at Summer solstice : year = 2013, month = 6, day = 21, hour = 5, minute = 1, seconds = 19.19999 Julian Day = 2456464.70925, year_day_decimal = 171.20925, day_hour_decimal = 5.02200 Observation Point on Earth (Bhopal, India) : Lat +ve or -ve 0 to 90 deg = 23.25993 ie deg = 23, min = 15, sec = 35.76 Log 0 to 360 deg = 77.41261 ie deg = 77, min = 24, sec = 45.41 Alt from earth surface in km = 0.49470 First Compute the Sun Position on Celestial Sphere, then Compute the Earth Position on Celestial Sphere. (A) Computed Values for SUN POSITION on Celestial Sphere at Input Ut Time : (Sr. No 1 - 22) 01. Earth around Sun Mean motion rev per day (mm) = 0.0027377786 02. Semi-major axis in km considering oblateness (SMA) = 149598616.31172 03. Earth mean motion deg per day using SMA (mm) = 0.9856003000 04. Sun mean movement deg per day (n sun) = 0.9856003000 05. Eccentricity of earth orbit (e sun) = 0.0167102190 06. Perihelion to input time diff in Julian days = 168.8259558287 07. Mean anomaly in deg per day from n_sun (m sun) = 166.3949127126 08. Sun Mean longitude in deg (Lmean) = 89.5586310183 09. Earth Mean anomaly in deg (ME) = 166.3949127126 10. Sun Ecliptic longitude in deg (Lsun) = 89.9999483110 11. Obliquity of ecliptic in deg (Epcylone) = 23.4375273104 12. Sun Right ascension in deg (Alpha) = 89.9999436629 13. Sun Declination in deg (Delta) = 23.4375273104 14. Sun Mean distance in km (As) = 149598616.31172 15. Sun Radial distance from earth in km (Rs) = 152030583.04072 16. Sun Nodal elongation in deg (U sun) = 90.0000000000 17. Sun Mean anomaly in deg (M sun) = 166.3949127122 18. Sun Eccentric anomaly in deg (E sun) = 166.6165253213 19. Sun True anomaly in deg (T sun) = 166.8363660940 20. Sun Argument of perigee in deg (W sun) = 283.1636339060 21. Sun True anomaly in deg from U & W (V sun) = 166.8363660940 22. Sun Distance in km (d sun) = 152025947.60113 Sun Ecliptic latitude is always nearly zero (the value never exceeds 0.00033 deg) These Values are applied as input for Computing Earth Position on Celestial Sphere around Sun at same input UT Time.

Page 111: ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM …myreaders.info/00_Orbital__Mechanics__-__Model_____Simulation... · ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM-MSS)

www.m

yrea

ders

.inf

o

OM-MSS Page 111 (B) Computed Values for EARTH POSITION on Celestial Sphere around Sun at same Input Ut Time : (Sr. No 1 - 22) Input Time year = 2013, month = 6, day = 21, hour = 5, minute = 1, seconds = 19.19999, corresponding Julian Day = 2456464.7092499998 Observation Point on Earth : Lat +ve or -ve 0 to 90 deg = 23.25993, Log 0 to 360 deg = 77.41261, Alt from earth surface in km = 0.49470 Sun position on Celestial sphere at input time, computed above total 22 parameters. Output Earth Position on Celestial sphere around Sun : Computed below around 120 parameters, presented in 1-22 groups. Number is large, because some parameters are computed using more than one model equation, that require different inputs. This helps in validation of results and understanding the different input considerations. 01. Finding GST Greenwich sidereal time and GHA Greenwich hour angle in 0 to 360 deg, at input UT time YY MM DD HH. Note - for GST, the year 1900 JAN day_1 hr 1200 is ref for time difference in terms of julian_century, for GHA, the year 2000_JAN_day_1 hr_1200 is ref for time difference in terms of julian days. Inputs : Time UT year = 2013, month = 6, day = 21, hour = 5, minute = 1, seconds = 19.19999 Outputs : GST & GHA in 0-360 deg over Greenwich. E01A 011. GST Greenwich sidereal time in 0-360 deg, over Greenwich = 344.88872, hr = 22, min = 59, sec = 33.29393 E01B 011. GHA Greenwich hour angle in 0 to 360 deg, over Greenwich = 344.89162, deg = 344, min = 53, sec = 29.83101 02. Finding Earth latitude & longitude pointing to Sun Ecliptic longitude(Lsun). Inputs : earth inclination, sun true anomaly T_Sun, sun argument of perigee W_Sun, sun right ascension Alpha, earth equator radious, GST at input UT, log SS & EP, earth orbit radious EC to SC Outputs : Earth lat & log pointing to Lsun. E02A 011. Earth latitude +ve or -ve in 0 to 90 deg at UT time = 23.44 ie deg = 23, min = 26, sec = 21.41 E02B 011. Earth longitude 0 to 360 deg = 105.11 ie deg = 105, min = 6, sec = 40.39 03. Finding LST over three longitudes, Greenwich log, Sun mean log (Lmean), and Sun epliptic log (Lsun) . Note - for LST, used sidereal time at Greenwich GST and desired geogrphic longitude Inputs : At Time input UT - GST, Log of Greenwich, sun mean log Lmean, Sun ecliptic log Lsun. Outputs : LST over Greenwich, Lmean, Lsun . E03A 011. LST Local sidereal time in 0-360 deg, over Greenwich longitude = 344.88872, hr = 22, min = 59, sec = 33.29393

Page 112: ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM …myreaders.info/00_Orbital__Mechanics__-__Model_____Simulation... · ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM-MSS)

www.m

yrea

ders

.inf

o

OM-MSS Page 112 E03B 011. LST Local sidereal time in 0-360 deg, over Sun mean longitude (Lmean) = 74.44736, hr = 4, min = 57, sec = 47.36538 E03C 011. LST Local sidereal time in 0-360 deg, over Sun epliptic longitude (Lsun) = 74.88867, hr = 4, min = 59, sec = 33.28153 04. Finding ST0 sidereal time over Greenwich longitude = 0.0, at time input Year JAN day 1 hr 00. Note - this is sidereal time ST at UT year, month = 1, day = 1, hours decimal = 0.0 and geogrphic longitude = 0.0 Inputs : Time input UT Year, JAN day 1 hr 00, Log 0.0 Outputs : ST0 over Greenwich E04 011. ST0 Sidereal time in 0-360 deg, over Greenwich at input UT year, MM 1, DD 1, HH 00 = 100.80678, hr = 6, min = 43, sec = 13.62710 05. Finding ST sidereal time over three longitudes of, Greenwich log, Sun mean log (Lmean), and Sun epliptic log (Lsun) . Note - this is local sidereal time LST; (LST = GST at UT time + geogrphic longitude). Inputs : At Time input UT - Log 0.0, Log Lmean, Log Lsun Outputs : ST over Greenwich, Lmean, Lsun. E05A 011. ST Sidereal time in 0-360 deg, over Greenwich at input UT time = 344.88872, hr = 22, min = 59, sec = 33.29393 E05B 011. ST Sidereal time in 0-360 deg, over Sun mean longitude (Lmean) at input UT time = 74.44736, hr = 4, min = 57, sec = 47.36538 005C 011. ST Sidereal time in 0-360 deg, over Sun longitude (Lsun) at input UT time = 74.88867, hr = 4, min = 59, sec = 33.28153 06. Finding H hour angle in 0 to 360 deg over longitudes of, Greenwich, Lmean, Lsun, Earth Sub Sun point SS, Earth Obseration point EP. Note - used Sun Right ascension Alpha at input time; (hour angle HA = LST - Alpha). Inputs : At Time input UT - Sun Right ascension Alpha and ST Sidereal time over longitudes 0.0, Lmean, Lsun, SS, EP Outputs : Hour Angles over Greenwich, Lmean, Lsun, SS, EP E06A 011. H hour angle 0-360 deg, over Greenwich, = 254.88878, deg = 254, min = 53, sec = 19.61183 E06B 011. H hour angle 0-360 deg, over Lmean, = 344.44741, deg = 344, min = 26, sec = 50.68350 E06C 011. H hour angle 0-360 deg, over Lsun, = 344.88873, deg = 344, min = 53, sec = 19.42575 E06D 011. H hour angle 0-360 deg, over SS, = 360.00000, deg = 360, min = 0, sec = 0.00000 E06E 011. H hour angle 0-360 deg, over EP, = 332.30140, deg = 332, min = 18, sec = 5.02583

Page 113: ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM …myreaders.info/00_Orbital__Mechanics__-__Model_____Simulation... · ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM-MSS)

www.m

yrea

ders

.inf

o

OM-MSS Page 113 07. Finding Delta E is Equation of Time in seconds, at time input UT. Note - this value in seconds accounts for relative movement of sun in elliptical orbit w.r.t earth and effect of obliquity of the ecliptic; its maximum value is 16 minutes (960 sec.); Delta E is computed using time in days from the perihelion, n_sun_deg and w_sun at input UT. Inputs : Time input UT in JD, time perihelion in JD, Sun mean movement n_sun, Eccentricity of earth orbit E_Sun Outputs : Delta E time_equation in seconds. E07 011. Delta E Time Equation in seconds = 99.08293, hr = 0, min = 1, sec = 39.08293 08. Finding GST Greenwich sidereal time, and GHA Greenwich hour angle 0 to 360 deg at time when earth is at perihelion. Inputs : Time in JD when earth at perihelion YY = 2013, MM = 1, DD = 3, hr = 9, min = 11, sec = 56.62 Outputs : GST & GHA in 0-360 deg over Greenwich when earth is at perihelion E08A 011. GST sidereal time in 0-360 deg over Greenwich at time when earth is at perihelion = 241.14177, hr = 16, min = 4, sec = 34.02452 E08B 011. GHA hour angle in 0-360 deg over Greenwich at time when earth is at perihelion = 241.14717, hr = 16, min = 4, sec = 35.32064 09. Finding ST sidereal time and MST mean sidereal time, over Greenwich, using Earth mean motion rev per day . Inputs : GST when earth at perihelion, earth rotation rate, ref. JD2000, time input UT in JD, time perihelion in JD. Outputs : STP, angle perihelion to input JD, ST over Greenwich, MSTO & MST over Greenwich, solar time E09A 011. STP sidereal time in 0-360 deg over Greenwich when earth at perihelion = 241.14177, hr = 16, min = 4, sec = 34.02452 E09B 011. Angle in 0-360 deg from earth at perihelion to input JD using earth rotational rate = 103.74103, 009C 011. ST in 0-360 deg over Greenwich using STP and angle from perihelion at input JD = 344.88280, hr = 22, min = 59, sec = 31.87289 E09D 011. ST in 0-360 deg over Greenwich using STP and earth rotation at UT time = 344.88280, hr = 22, min = 59, sec = 31.87289 E09E 011. MST0 in deg, over Greenwich using JD century days, ref J2000 to I/P YY, M1, D1 hr 00 = 100.80714, hr = 6, min = 43, sec = 13.71450 E09F 011. MST in deg, over Greenwich using JD century in days from ref J2000 to UT time Y M D H = 344.88909, hr = 22, min = 59, sec = 33.38172 E09G 011. Solar time over Greenwich in JD (GMT or input UT - 12 hr) = YY 2013, MM 6, DD 20, hr 17, min 1, sec 19.200, ie JD 2456464.20925 10. Finding Earth orbit radious using true anomaly, Sub Sun point (SS) on earth surface and related paramters . (a) Finding Earth orbit radious using true anomaly. Inputs : semi-major axis SMA, eccentricity of earth orbit e_sun, sun true anomaly T_Sun Outputs : earth orbital radious EC to SC (earth center to sun center)

Page 114: ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM …myreaders.info/00_Orbital__Mechanics__-__Model_____Simulation... · ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM-MSS)

www.m

yrea

ders

.inf

o

OM-MSS Page 114 E10A 011. earth orbital radious EC to SC km using_true anomaly at UT time = 152030553.3844403900 (b) Finding Sub Sun point (SS) over earth surface (Latitude, Longitude, & Latitude radius) pointing to Sun Ecliptic Log (Lsun), Sun height from earth surface over SS, and LST over SS log at time input UT. Note - for SS Latitude, used earth inclination, sun true anomaly T_sun and sun argument of perigee w_sun. for SS Longitude, used Sun right ascension Alpha and sidereal time at Greenwich GST. Inputs : earth inclination, sun true anomaly T_Sun, sun argument of perigee W_Sun, sun right ascension Alpha, earth equator radious, GST at input UT, log SS & EP, earth orbit radious EC to SC Outputs : SS point Latitude, Longitude, Latitude radious, LST & LMT over SS . E10B 011. SS point Latitude +ve or -ve in 0 to 90 deg at UT time = 23.44 ie deg = 23, min = 26, sec = 21.41 E10C 011. SS point Longitude 0 to 360 deg = 105.11 ie deg = 105, min = 6, sec = 40.39 E10D 011. SS point Latitude radious km at UT time = 6374.7700931266 E10E 011. Sun height km from earth surface over SS at UT time = 152024178.6143472800 E10F 011. LST local sidereal time in 0-360 deg over SS log at UT time, (LST = GST + log east) = 90.000 ie hr = 6, min = 0, sec = 0.07427 LST local sidereal time and LMT local mean time with date adjusted to calendar YY MM DD and UT hr mm sec. E10G 011. LST local sidereal time at Sub Sun point (SS) YY = 2013, MM = 6, DD = 22, hr = 6, min = 0, sec = 0.07 E10H 011. LMT local Mean time at Sub Sun point (SS) YY = 2013, MM = 6, DD = 21, hr = 12, min = 1, sec = 45.89 (c) Finding LST and LMT over Earth point(EP) where Observer is, at time input UT. Inputs : EP point Latitude, Longitude Outputs : LST & LMT over EP . E10I 011. LST local sidereal time in 0-360 deg at EP log at UT time, (LST = GST + log east) = 62.302 ie hr = 4, min = 9, sec = 12.40934 LST and LMT with date adjusted to calendar YY MM DD and UT hr mm sec. E10J 011. LST local sidereal time at Earth point (EP) YY = 2013, MM = 6, DD = 22, hr = 4, min = 9, sec = 12.41 E10K 011. LMT local Mean time at Earth point (EP) YY = 2013, MM = 6, DD = 21, hr = 10, min = 10, sec = 58.23

Page 115: ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM …myreaders.info/00_Orbital__Mechanics__-__Model_____Simulation... · ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM-MSS)

www.m

yrea

ders

.inf

o

OM-MSS Page 115 Finding Earth to Sun Position Vectors coordinate in PQW, IJK, SEZ frames and the Vector Coordinate Transforms. First defined coordinate systems, PQW, IJK, SEZ, then computed Position & Velocity vectors in these three coordinate systems. (a) Perifocal Coordinate System (PQW), is Earth Centered Inertial coordinate frame defined in terms of Kepler Orbital Elements. The system is fixed with time (inertial), pointing towards orbit periapsis; the system's origin is Earth center (EC), and its fundamental plane is the orbit plane; the P-vector axis directed from EC toward the periapsis of the elliptical orbit plane, the Q-vector axis swepts 90 deg from P axis in the direction of the orbit, the W-vector axis directed from EC in a direction normal to orbit plane, forms a right-handed coordinate system. (b) Geocentric Coordinate System (IJK), is also an Earth Centered Inertial (ECI) frame, a Conventional Inertial System (CIS). The system is fixed with time (inertial), pointing towards vernal equinox; the system's origin is Earth center (EC), and its fundamental plane is the equator; the I-vector is +X-axis directed towards the vernal equinox direction on J2000, Jan 1, hr 12.00 noon, the J-vector is +Y-axis swepts 90 deg to the east in the equatorial plane, the K-vector is +Z-axis directed towards the North Pole. (c) Topocentric Horizon Coordinate System (SEZ), is Non-Inertial coordinate frame, known as Earth-Centered Earth-Fixed Coordinates (ECEF). The system moves with earth, is not fixed with time (non-inertial), is for use by observers on the surface of earth; the observer's surface forms the fundamental plane, is tangent to earth's surface the S-vector is +ve horizontal-axis directed towards South, the E-vector is +ve horizontal-axis directed towards East, the Z-vector is +ve normal directed upwards on earth surface. Note that axis Z not necessarily pass through earth center, so not used to define as radious vector. 11. Finding Earth center(EC) to Sun center(SC) Range Vector[rp, rq, r] from in PQW frame, perifocal coordinate system. Inputs : Semi-major axis (SMA), Eccentricity of earth orbit (e_sun), Sun eccentric anomaly (E_sun) Outputs : Vector(r, rp rq) in PQW frame E11A 011. r earth pos vector magnitude EC to SC km in PQW frame perifocal cord at UT time = 152030553.38444

Page 116: ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM …myreaders.info/00_Orbital__Mechanics__-__Model_____Simulation... · ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM-MSS)

www.m

yrea

ders

.inf

o

OM-MSS Page 116 E11B 011. rp earth pos vector component EC to SC km in PQW frame perifocal cord at UT time = -148035744.2735802800 E11C 011. rq earth pos vector component EC to SC km in PQW frame perifocal cord at UT time = 34622356.6463585200 Note - r earth pos vector magnitude EC to SC km in PQW frame is same as earth orbital radious computed before using true anomaly. 12. Transform_1 Earth position EC to SC Range Vector[rp, rq] in PQW frame To Range Vector[rI, rJ, rK] in IJK frame, inertial system cord. Inputs : Vector(rp, rq) EC_to_SC km in frame PQW , Alpha rd, w_sun rd, earth_inclination rd , Outputs : Vector(rI, rJ, rK, r) EC_to_SC km in frame IJK E12A 011. rI earth pos vector component EC to SC km frame IJK at UT time = -139485317.9369729200 E12B 011. rJ earth pos vector component EC to SC km frame IJK at UT time = 137.1515086517 E12C 011. rK earth pos vector component EC to SC km frame IJK at UT time = 60474252.7228181590 E12D 011. r earth pos vector magnitude EC to SC km frame IJK at UT time = 152030553.3844447700 Note - r earth pos vector magnitude EC to SC km in PQW frame is same as that compued above in PQW frame. 13. Transform_2 Earth point EP(lat, log, hgt) To EC to SC Range Vector[RI, RJ, RK, R] in IJK frame. Inputs : earth equator radious_km, earth point EP(lat deg, log deg, hgt meter), LST_local_sidereal_time_in_0_to_360_deg_at_EP_log_at_UT_time, Outputs : Vector(RI, RJ, RK, R) Range EC to EP in IJK frame E13A 011. RI pos vector component EC to EP km frame IJK at UT time = 2722.4931452498 E13B 011. RJ pos vector component EC to EP km frame IJK at UT time = 5185.9603831673 E13C 011. RK pos vector component EC to EP km frame IJK at UT time = 2517.6312937817 E13D 011. R pos vector magnitude EC to EP km frame IJK at UT time = 6375.3134317570 14. Transform_3 Earth position EC to SC Range Vectors [rI rJ rK] & [RI RJ RK] To EP to SC Range Vector[rvI, rvJ, rvK] in IJK frame. Inputs : Vector(rI rJ rK) position EC_to_SC km in frame IJK , Vector(RI RJ RK) range EC to SC km in IJK frame, Outputs : Vector(rvI, rvJ, rvK, rv) range EP to SC in IJK frame E14A 011. rvI range vector component EP to SC km frame IJK at UT time = -139488040.4301181700 E14B 011. rvJ range vector component EP to SC km frame IJK at UT time = -5048.8088745156 E14C 011. rvK range vector component EP to SC km frame IJK at UT time = 60471735.0915243770 E14D 011. rv range vector magnitude EP to SC km frame IJK at UT time = 152032049.8891739000

Page 117: ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM …myreaders.info/00_Orbital__Mechanics__-__Model_____Simulation... · ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM-MSS)

www.m

yrea

ders

.inf

o

OM-MSS Page 117 15. Transform_4 Earth point EP to SC Range Vector[rvI, rvJ, rvK] in IJK frame To EP to SC Range Vector[rvS, rvE, rvZ] in SEZ frame. Inputs : lat_pos_neg_0_to_90_deg_at_EP_at_time_UT , LST_local_sidereal_time_in_0_to_360_deg_at_EP_log_at_UT_time Vector(rvI, rvJ, rvK, rv) range EP to SC km in IJK frame, Outputs : Vector(rvS, rvE, rvZ, rv) range EP to SC km in SEZ frame E15A 011. rvS range vector component EP to SC km frame SEZ at UT time = -81162555.3582670990 E15B 011. rvE range vector component EP to SC km frame SEZ at UT time = 123501405.2118426000 E15C 011. rvZ range vector component EP to SC km frame SEZ at UT time = -35690148.6676749360 E15D 011. rv range vector magnitude EP to SC km frame SEZ at UT time = 152032049.8891738700 16. Finding Elevation(EL) and Azimuth(AZ) angle of Sun at Earth Observation point EP . Note : Results computed using 4 different formulations, each require different inputs to give EL & AZ angles. For all situations of Object and Observer positions, a combination of latitude N/S & longitude E/W : Method 1 : for both EL & AZ angles, this does not provide correct results ; Method 2 : for only EL angle, this provides consistent, unambiguous correct results. but for AZ angles the results are ambiguous, need corrections by adding or subtracting values as 180 or 360 or sign change. Method 3 : same as method 2, for EL angle, the results are correct, but for AZ angles the results are ambiguous, need corrections. Method 4 : for finding Azimuth and Distance but not for finding Elevation angle; for AZ angles, this provides correct unambiguous results that need no futher corrections. Therefore for Elevation (EL) angle Method 3 results are accepted and for Azimuth (AZ) angle Method 4 results are accepted . Results verified from other sources; Ref URLs http://www.ga.gov.au/geodesy/astro/smpos.jsp#intzone . NOAA Research http://www.esrl.noaa.gov/gmd/grad/solcalc/ , and http://aa.usno.navy.mil/data/docs/AltAz.php Xavier Jubier, Member IAU http://xjubier.free.fr/en/site_pages/astronomy/ephemerides.html Rem: SS point lat deg = 23.44, log deg = 105.11 YY = 2013, MM = 6, DD = 21, hr = 12, min = 1, sec = 45.89 EP point lat deg = 23.26, log deg = 77.41 YY = 2013, MM = 6, DD = 21, hr = 10, min = 10, sec = 58.23 Elevation(EL) & Azimuth(AZ) angle of Sun at Earth Observation point EP, (method 1 - computed values may be Ambiguous or Incorrect). Inputs : Vector[rvS, rvE, rvZ] range EP to SC km in SEZ frame Outputs : Elevation(EL) & Azimuth(AZ) of Sun at EP

Page 118: ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM …myreaders.info/00_Orbital__Mechanics__-__Model_____Simulation... · ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM-MSS)

www.m

yrea

ders

.inf

o

OM-MSS Page 118 E16A 011. Elevation angle deg of Sun at EP using rv SEZ at UT time = -13.5771288889 E16B 011. Azimuth angle deg of sun at EP using rv SEZ at UT time = 56.6879146981 Elevation(EL) & Azimuth(AZ) angle of Sun at Earth Observation point EP, (method 2 - computed AZ values may be ambiguous & incorrect). Inputs : Time input UT YY MM DD HH, Equator radious, EP lat & log, SS lat & log, Sun declination Delta Outputs : Elevation(EL) & Azimuth(AZ) of Sun at EP E16C 011. Elevation angle deg of Sun at EP using Sun declination diff log range EP to SC = 64.60870 E16D 011. Azimuth angle deg of sun at EP using sun declination diff log range EP to SC = 5.97289 Elevation(EL) & Azimuth(AZ) angle of Sun at Earth Observation point EP, (method 3 - computed AZ values may be ambiguous & incorrect). Inputs : Time input UT YY MM DD HH, Equator radious, EP lat & log, SS lat & log, Sun hgt from EC, Sun range from EP (Sun hgt from EC = earth orbit radious EC to SC km ; Sun range from EP = rv range vector EP to SC km frame SEZ) Outputs : Elevation(EL) & Azimuth(AZ) of Sun at EP E16E 011. Elevation angle deg of Sun at EP using Sun hgt diff log range EP to SC = 64.60783 ie deg = 64, min = 36, sec = 28.18 E16F 011. Azimuth angle deg of sun at EP using sun hgt diff log range EP to SC = 275.97696 ie deg = 275, min = 58, sec = 37.06 Azimuth(AZ) angle of Sun at Earth Observation point EP, (method 4 - computed AZ values is unambiguous & correct). Inputs : Time input UT YY MM DD HH, EP lat & log, SS lat & log Outputs : Azimuth(AZ) of Sun at EP E16G 011. Azimuth angle deg of sun at EP using sun hgt diff log range EP to SC = 84.02304 ie deg = 84, min = 1, sec = 22.94 Due to such incorrect results, finally for Elevation (EL) Method 3 results and for Azimuth (AZ) Method 4 results are accepted. Finally accepted Elevation angle deg of Sun from EP to SC = 64.6078265075 ie deg = 64, min = 36, sec = 28.18 Finally accepted Azimuth angle_deg of Sun from EP to SC = 84.0230377796 ie deg = 84, min = 1, sec = 22.94

Page 119: ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM …myreaders.info/00_Orbital__Mechanics__-__Model_____Simulation... · ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM-MSS)

www.m

yrea

ders

.inf

o

OM-MSS Page 119 Distance in km from Earth observation point(EP) to Sub Sun point(SS) and Earth Velocity meter per sec in orbit at time input UT. 17. Finding Distance in km from Earth observation point(EP) to Sub Sun point(SS) over Earth surface . Inputs : EP lat & log, SS lat & log, Outputs : Distance in km from EP to SS over Earth surface E17A 011. Distance in km Earth observation point(EP) to Sub Sun point(SS) = 2826.52550 Finding Earth Velocity meter per sec in orbit in frame PQW Inputs : semi-major axis SMA, GM_Sun, earth pos r EC to SC frame IJK, eccentricity of earth orbit e_Sun, sun eccentric anomaly E_Sun Outputs : Earth Velocity magnitude and component Xw Yw in frame PQW in meter per sec E17B 011. Velocity magnitude meter per sec using GM, SMA, r earth EC to SC frame IJK at UT time = 29304.2989199811 E17C 011. Velocity component meter per sec in orbit Xw using GM, e_Sun, SMA, E_Sun at UT time = -6783.8841216771 E17D 011. Velocity component meter per sec in orbit Yw using GM, e_Sun, SMA, E_Sun at UT time = -28508.2593543566 Finding Earth Velocity Vector [vX, vY, vZ] in meter per sec in orbit; a Transform of [Xw, Yw] in frame PQW To [vX, vY, vZ] in frame XYZ Inputs : velocity component (Xw, Yw), sun right ascension Alpha, Sun Argument of perigee W_Sun, inclination Epcylone Outputs : earth velocity vector(vX, vY, vZ, vR) meter per sec in frame XYZ E17E 011. vX earth Velocity vector meter per sec using Xw Yw frame PQW RA w i at UT time = -104.0347630397 E17F 011. vY earth Velocity vector meter per sec using Xw Yw frame PQW RA w i at UT time = -29304.0795566878 E17G 011. vZ earth Velocity vector meter per sec using Xw Yw frame PQW RA w i at UT time = 45.0920724379 E17H 011. vR earth Velocity magnitude meter per sec using Xw Yw frame PQW RA w i at UT time = 29304.2989199811

Page 120: ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM …myreaders.info/00_Orbital__Mechanics__-__Model_____Simulation... · ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM-MSS)

www.m

yrea

ders

.inf

o

OM-MSS Page 120 Earth State Vectors : Position [X, Y, Z] in km and Velocity [Vx, Vy, Vz] in meter per sec, at time input UT. 18. Finding Earth State Position Vector [X, Y, Z] in km at time input UT. Inputs : position vector(rI, rJ, rK, r) in frame IJK values assiged to state position vector Outputs : State Position Vector(X, Y, Z, R) in km, frame XYZ E18A 011. State vector position X km at UT time = -139485317.9369729200 E18B 011. State vector position Y km at UT time = 137.1515086517 E18C 011. State vector position Z km at UT time = 60474252.7228181590 E18D 011. State vector position R km at UT time = 152030553.3844447700 19. Finding Earth State Velocity Vector [Vx, Vy, Vz] in meter per sec at time input UT. Inputs : velocity vector(vX, vY, vZ, vR) meter per sec in frame XYZ values assiged to state velocity vector Outputs : state velocity vector(Vx, Vy, Vz, V) meter per sec, frame XYZ E19A 011. State vector velocity Vx meter per sec at UT time = -104.0347630397 E19B 011. State vector velocity Vy meter per sec at UT time = -29304.0795566878 E19C 011. State vector velocity Vz meter per sec at UT time = 45.0920724379 019D 011. State vector velocity V meter per sec at UT time = 29304.2989199811 20. Earth Orbit Normal Vector [Wx, Wy, Wz] in km and angles Delta, i, RA at time input UT; Normal is line perpendicular to orbit plane. Inputs : earth pos r EC to SC frame IJK, inclination Epcylone, sun right ascension Alpha Outputs : earth orbit normal vector (Wx, Wy, Wz, W) in km E20A 011. Earth orbit normal W km using r earth pos frame IJK inclination Alpha = 152030553.3844447700 E20B 011. Earth orbit normal Wx km using r earth pos frame IJK inclination Alpha = 60474252.7227889370 E20C 011. Earth orbit normal Wy km using r earth pos frame IJK inclination Alpha = -59.4624231720 E20D 011. Earth orbit normal Wz km using r earth pos frame IJK inclination Alpha = 139485317.9370403600 020E 011. Earth orbit normal Delta W deg using r earth pos frame IJK inclination Alpha = 66.5607205617 E20F 011. Earth orbit normal Inclination i deg using normal_Delta_W = 23.4392794383 E20G 011. Earth orbit normal Alpha W deg using r earth pos frame IJK, inclination, Alpha = -0.0000563371 E20H 011. Earth orbit normal Right ascension of ascending node using normal Alpha, W = 89.9999436629

Page 121: ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM …myreaders.info/00_Orbital__Mechanics__-__Model_____Simulation... · ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM-MSS)

www.m

yrea

ders

.inf

o

OM-MSS Page 121 Transform Earth State Vectors to Earth position Keplerian elements. 21. Finding Earth position Keplerian elements computed using State Vector, at time input UT. Inputs : State vector year, days decimal of year, revolution, node, State Position Vector [ X, Y, Z ], State Velocity Vector [ Vx, Vy, Vz ] Outputs : Keplerian elements : year, days decimal of year, revolution, node, inclination, right ascension, eccentricity, argument of perigee, mean anomaly, mean motion rev per day, mean angular velocity rev per day, mean motion rev per_day from SMA considering oblateness E21A 011. Keplerian elements year = 2013, days_decimal_of_year = 171.20925, revolution no = 1, node = 1 ie ascending E21B 011. inclination_deg = 23.4392794383 E21C 011. right ascension ascending node deg = 89.9999436629 E21D 011. eccentricity = 0.0167102190 E21E 011. argument of perigee_deg = 283.1636338813 E21F 011. mean anomaly deg = 166.3949127377 E21G 011. mean_motion rev per day = 0.0027377786 E21H 011. mean angular velocity rev_per_day = 0.0027377786 E21I 011. mean motion rev per day using SMA considering oblateness = 0.0027377786 Transform Earth position Keplerian elements to Earth State Vectors . 22. Finding Earth position State Vectors, computed using Keplerian elements at time input UT (computed again to validate model equations, Keplerian elements to State Vectors & back) Inputs : Keplerian elements : year, days decimal of year, revolution, node, inclination, right ascension, eccentricity, argument of perigee, mean anomaly, mean motion rev per day, mean angular velocity rev per day, mean motion rev per_day from SMA considering oblateness Outputs : State vector year, days decimal of year, revolution, node, State Position Vector [ X, Y, Z ], State Velocity Vector [ Vx, Vy, Vz ] E22A 011. State vectors year = 2013, days_decimal_of_year = 171.20925, revolution no = 1, node = 1 ie decending E22B 011. state vector position X km = -139485317.9369768200, state vector velocity Vx meter per sec = -104.0347628376 E22C 011. state vector position Y km = 137.1503847837, state vector velocity Vy meter per sec = -29304.0795566878 E22D 011. state vector position Z km = 60474252.7228198500, state vector velocity Vz meter per sec = 45.0920723503 E22E 011. state vector position R km = 152030553.3844490300, state vector velocity V meter per sec = 29304.2989199802

Page 122: ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM …myreaders.info/00_Orbital__Mechanics__-__Model_____Simulation... · ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM-MSS)

www.m

yrea

ders

.inf

o

OM-MSS Page 122 Note : Computation of all above parameters, grouped in 1 to 22, corresponds to time (a) Universal time over Greenwich (UT/GMT) : Year = 2013, Month = 6, Day = 21, Hour = 5, Min = 1, Sec = 19.200 (b) Mean Solar time (MST) over Earth Observation point (EP ) : Year = 2013, Month = 6, Day = 21, Hour = 10, Min = 10, Sec = 58.228 Move on to next Astronomical event in orbit Earth around Sun. Next Section - 4.5 Position of earth at time when earth is at aphelion

Page 123: ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM …myreaders.info/00_Orbital__Mechanics__-__Model_____Simulation... · ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM-MSS)

www.m

yrea

ders

.inf

o

OM-MSS Page 123 OM-MSS Section - 4.5 ---------------------------------------------------------------------------------------------------39 Earth Positional Parameters on Celestial Sphere : Input Year Time when Earth is at Aphelion. 5. Finding Position of Earth on Celestial Sphere at Input Universal Time, when Earth is at Aphelion . Input UT Time, when Earth is at Aphelion : year = 2013, month = 7, day = 5, hour = 0, minute = 18, seconds = 52.59269 Julian Day = 2456478.51311, year_day_decimal = 185.01311, day_hour_decimal = 0.31461 Observation Point on Earth (Bhopal, India) : Lat +ve or -ve 0 to 90 deg = 23.25993 ie deg = 23, min = 15, sec = 35.76 Log 0 to 360 deg = 77.41261 ie deg = 77, min = 24, sec = 45.41 Alt from earth surface in km = 0.49470 First Compute the Sun Position on Celestial Sphere, then Compute the Earth Position on Celestial Sphere. (A) Computed Values for SUN POSITION on Celestial Sphere at Input Ut Time : (Sr. No 1 - 22) 01. Earth around Sun Mean motion rev per day (mm) = 0.0027377786 02. Semi-major axis in km considering oblateness (SMA) = 149598616.31172 03. Earth mean motion deg per day using SMA (mm) = 0.9856003000 04. Sun mean movement deg per day (n sun) = 0.9856003000 05. Eccentricity of earth orbit (e sun) = 0.0167102190 06. Perihelion to input time diff in Julian days = 182.6298145405 07. Mean anomaly in deg per day from n_sun (m sun) = 180.0000000001 08. Sun Mean longitude in deg (Lmean) = 103.1643684676 09. Earth Mean anomaly in deg (ME) = 180.0000000002 10. Sun Ecliptic longitude in deg (Lsun) = 103.1643684676 11. Obliquity of ecliptic in deg (Epcylone) = 23.4375223935 12. Sun Right ascension in deg (Alpha) = 104.3014954901 13. Sun Declination in deg (Delta) = 22.7863704018 14. Sun Mean distance in km (As) = 149598616.31172 15. Sun Radial distance from earth in km (Rs) = 152098409.19029 16. Sun Nodal elongation in deg (U sun) = 76.8356315324 17. Sun Mean anomaly in deg (M sun) = 179.9999999997 18. Sun Eccentric anomaly in deg (E sun) = 179.9999999997 19. Sun True anomaly in deg (T sun) = 179.9999999997 20. Sun Argument of perigee in deg (W sun) = 256.8356315327 21. Sun True anomaly in deg from U & W (V sun) = 179.9999999997 22. Sun Distance in km (d sun) = 152098441.95238 Sun Ecliptic latitude is always nearly zero (the value never exceeds 0.00033 deg) These Values are applied as input for Computing Earth Position on Celestial Sphere around Sun at same input UT Time.

Page 124: ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM …myreaders.info/00_Orbital__Mechanics__-__Model_____Simulation... · ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM-MSS)

www.m

yrea

ders

.inf

o

OM-MSS Page 124 (B) Computed Values for EARTH POSITION on Celestial Sphere around Sun at same Input Ut Time : (Sr. No 1 - 22) Input Time year = 2013, month = 7, day = 5, hour = 0, minute = 18, seconds = 52.59269, corresponding Julian Day = 2456478.5131087117 Observation Point on Earth : Lat +ve or -ve 0 to 90 deg = 23.25993, Log 0 to 360 deg = 77.41261, Alt from earth surface in km = 0.49470 Sun position on Celestial sphere at input time, computed above total 22 parameters. Output Earth Position on Celestial sphere around Sun : Computed below around 120 parameters, presented in 1-22 groups. Number is large, because some parameters are computed using more than one model equation, that require different inputs. This helps in validation of results and understanding the different input considerations. 01. Finding GST Greenwich sidereal time and GHA Greenwich hour angle in 0 to 360 deg, at input UT time YY MM DD HH. Note - for GST, the year 1900 JAN day_1 hr 1200 is ref for time difference in terms of julian_century, for GHA, the year 2000_JAN_day_1 hr_1200 is ref for time difference in terms of julian days. Inputs : Time UT year = 2013, month = 7, day = 5, hour = 0, minute = 18, seconds = 52.59269 Outputs : GST & GHA in 0-360 deg over Greenwich. E01A 011. GST Greenwich sidereal time in 0-360 deg, over Greenwich = 287.88360, hr = 19, min = 11, sec = 32.06349 E01B 011. GHA Greenwich hour angle in 0 to 360 deg, over Greenwich = 287.88367, deg = 287, min = 53, sec = 1.21667 02. Finding Earth latitude & longitude pointing to Sun Ecliptic longitude(Lsun). Inputs : earth inclination, sun true anomaly T_Sun, sun argument of perigee W_Sun, sun right ascension Alpha, earth equator radious, GST at input UT, log SS & EP, earth orbit radious EC to SC Outputs : Earth lat & log pointing to Lsun. E02A 011. Earth latitude +ve or -ve in 0 to 90 deg at UT time = 22.79 ie deg = 22, min = 47, sec = 17.06 E02B 011. Earth longitude 0 to 360 deg = 176.42 ie deg = 176, min = 25, sec = 4.43 03. Finding LST over three longitudes, Greenwich log, Sun mean log (Lmean), and Sun epliptic log (Lsun) . Note - for LST, used sidereal time at Greenwich GST and desired geogrphic longitude Inputs : At Time input UT - GST, Log of Greenwich, sun mean log Lmean, Sun ecliptic log Lsun. Outputs : LST over Greenwich, Lmean, Lsun . E03A 011. LST Local sidereal time in 0-360 deg, over Greenwich longitude = 287.88360, hr = 19, min = 11, sec = 32.06349

Page 125: ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM …myreaders.info/00_Orbital__Mechanics__-__Model_____Simulation... · ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM-MSS)

www.m

yrea

ders

.inf

o

OM-MSS Page 125 E03B 011. LST Local sidereal time in 0-360 deg, over Sun mean longitude (Lmean) = 31.04797, hr = 2, min = 4, sec = 11.51192 E03C 011. LST Local sidereal time in 0-360 deg, over Sun epliptic longitude (Lsun) = 31.04797, hr = 2, min = 4, sec = 11.51192 04. Finding ST0 sidereal time over Greenwich longitude = 0.0, at time input Year JAN day 1 hr 00. Note - this is sidereal time ST at UT year, month = 1, day = 1, hours decimal = 0.0 and geogrphic longitude = 0.0 Inputs : Time input UT Year, JAN day 1 hr 00, Log 0.0 Outputs : ST0 over Greenwich E04 011. ST0 Sidereal time in 0-360 deg, over Greenwich at input UT year, MM 1, DD 1, HH 00 = 100.80678, hr = 6, min = 43, sec = 13.62710 05. Finding ST sidereal time over three longitudes of, Greenwich log, Sun mean log (Lmean), and Sun epliptic log (Lsun) . Note - this is local sidereal time LST; (LST = GST at UT time + geogrphic longitude). Inputs : At Time input UT - Log 0.0, Log Lmean, Log Lsun Outputs : ST over Greenwich, Lmean, Lsun. E05A 011. ST Sidereal time in 0-360 deg, over Greenwich at input UT time = 287.88360, hr = 19, min = 11, sec = 32.06349 E05B 011. ST Sidereal time in 0-360 deg, over Sun mean longitude (Lmean) at input UT time = 31.04797, hr = 2, min = 4, sec = 11.51192 005C 011. ST Sidereal time in 0-360 deg, over Sun longitude (Lsun) at input UT time = 31.04797, hr = 2, min = 4, sec = 11.51192 06. Finding H hour angle in 0 to 360 deg over longitudes of, Greenwich, Lmean, Lsun, Earth Sub Sun point SS, Earth Obseration point EP. Note - used Sun Right ascension Alpha at input time; (hour angle HA = LST - Alpha). Inputs : At Time input UT - Sun Right ascension Alpha and ST Sidereal time over longitudes 0.0, Lmean, Lsun, SS, EP Outputs : Hour Angles over Greenwich, Lmean, Lsun, SS, EP E06A 011. H hour angle 0-360 deg, over Greenwich, = 183.58210, deg = 183, min = 34, sec = 55.56862 E06B 011. H hour angle 0-360 deg, over Lmean, = 286.74647, deg = 286, min = 44, sec = 47.29510 E06C 011. H hour angle 0-360 deg, over Lsun, = 286.74647, deg = 286, min = 44, sec = 47.29510 E06D 011. H hour angle 0-360 deg, over SS, = 0.00000, deg = 0, min = 0, sec = 0.00000 E06E 011. H hour angle 0-360 deg, over EP, = 260.99472, deg = 260, min = 59, sec = 40.98262

Page 126: ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM …myreaders.info/00_Orbital__Mechanics__-__Model_____Simulation... · ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM-MSS)

www.m

yrea

ders

.inf

o

OM-MSS Page 126 07. Finding Delta E is Equation of Time in seconds, at time input UT. Note - this value in seconds accounts for relative movement of sun in elliptical orbit w.r.t earth and effect of obliquity of the ecliptic; its maximum value is 16 minutes (960 sec.); Delta E is computed using time in days from the perihelion, n_sun_deg and w_sun at input UT. Inputs : Time input UT in JD, time perihelion in JD, Sun mean movement n_sun, Eccentricity of earth orbit E_Sun Outputs : Delta E time_equation in seconds. E07 011. Delta E Time Equation in seconds = -262.56430, hr = 0, min = 4, sec = 22.56430 08. Finding GST Greenwich sidereal time, and GHA Greenwich hour angle 0 to 360 deg at time when earth is at perihelion. Inputs : Time in JD when earth at perihelion YY = 2013, MM = 1, DD = 3, hr = 9, min = 11, sec = 56.62 Outputs : GST & GHA in 0-360 deg over Greenwich when earth is at perihelion E08A 011. GST sidereal time in 0-360 deg over Greenwich at time when earth is at perihelion = 241.14177, hr = 16, min = 4, sec = 34.02452 E08B 011. GHA hour angle in 0-360 deg over Greenwich at time when earth is at perihelion = 241.14717, hr = 16, min = 4, sec = 35.32064 09. Finding ST sidereal time and MST mean sidereal time, over Greenwich, using Earth mean motion rev per day . Inputs : GST when earth at perihelion, earth rotation rate, ref. JD2000, time input UT in JD, time perihelion in JD. Outputs : STP, angle perihelion to input JD, ST over Greenwich, MSTO & MST over Greenwich, solar time E09A 011. STP sidereal time in 0-360 deg over Greenwich when earth at perihelion = 241.14177, hr = 16, min = 4, sec = 34.02452 E09B 011. Angle in 0-360 deg from earth at perihelion to input JD using earth rotational rate = 46.73542, 009C 011. ST in 0-360 deg over Greenwich using STP and angle from perihelion at input JD = 287.87719, hr = 19, min = 11, sec = 30.52626 E09D 011. ST in 0-360 deg over Greenwich using STP and earth rotation at UT time = 287.87719, hr = 19, min = 11, sec = 30.52626 E09E 011. MST0 in deg, over Greenwich using JD century days, ref J2000 to I/P YY, M1, D1 hr 00 = 100.80714, hr = 6, min = 43, sec = 13.71450 E09F 011. MST in deg, over Greenwich using JD century in days from ref J2000 to UT time Y M D H = 287.88396, hr = 19, min = 11, sec = 32.15131 E09G 011. Solar time over Greenwich in JD (GMT or input UT - 12 hr) = YY 2013, MM 7, DD 4, hr 12, min 18, sec 52.593, ie JD 2456478.01311 10. Finding Earth orbit radious using true anomaly, Sub Sun point (SS) on earth surface and related paramters . (a) Finding Earth orbit radious using true anomaly. Inputs : semi-major axis SMA, eccentricity of earth orbit e_sun, sun true anomaly T_Sun Outputs : earth orbital radious EC to SC (earth center to sun center)

Page 127: ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM …myreaders.info/00_Orbital__Mechanics__-__Model_____Simulation... · ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM-MSS)

www.m

yrea

ders

.inf

o

OM-MSS Page 127 E10A 011. earth orbital radious EC to SC km using_true anomaly at UT time = 152098441.9523840800 (b) Finding Sub Sun point (SS) over earth surface (Latitude, Longitude, & Latitude radius) pointing to Sun Ecliptic Log (Lsun), Sun height from earth surface over SS, and LST over SS log at time input UT. Note - for SS Latitude, used earth inclination, sun true anomaly T_sun and sun argument of perigee w_sun. for SS Longitude, used Sun right ascension Alpha and sidereal time at Greenwich GST. Inputs : earth inclination, sun true anomaly T_Sun, sun argument of perigee W_Sun, sun right ascension Alpha, earth equator radious, GST at input UT, log SS & EP, earth orbit radious EC to SC Outputs : SS point Latitude, Longitude, Latitude radious, LST & LMT over SS . E10B 011. SS point Latitude +ve or -ve in 0 to 90 deg at UT time = 22.79 ie deg = 22, min = 47, sec = 17.06 E10C 011. SS point Longitude 0 to 360 deg = 176.42 ie deg = 176, min = 25, sec = 4.43 E10D 011. SS point Latitude radious km at UT time = 6374.9453113297 E10E 011. Sun height km from earth surface over SS at UT time = 152092067.0070727500 E10F 011. LST local sidereal time in 0-360 deg over SS log at UT time, (LST = GST + log east) = 104.302 ie hr = 6, min = 57, sec = 12.44676 LST local sidereal time and LMT local mean time with date adjusted to calendar YY MM DD and UT hr mm sec. E10G 011. LST local sidereal time at Sub Sun point (SS) YY = 2013, MM = 7, DD = 6, hr = 6, min = 57, sec = 12.45 E10H 011. LMT local Mean time at Sub Sun point (SS) YY = 2013, MM = 7, DD = 5, hr = 12, min = 4, sec = 32.89 (c) Finding LST and LMT over Earth point(EP) where Observer is, at time input UT. Inputs : EP point Latitude, Longitude Outputs : LST & LMT over EP . E10I 011. LST local sidereal time in 0-360 deg at EP log at UT time, (LST = GST + log east) = 5.297 ie hr = 0, min = 21, sec = 11.17894 LST and LMT with date adjusted to calendar YY MM DD and UT hr mm sec. E10J 011. LST local sidereal time at Earth point (EP) YY = 2013, MM = 7, DD = 6, hr = 0, min = 21, sec = 11.18 E10K 011. LMT local Mean time at Earth point (EP) YY = 2013, MM = 7, DD = 5, hr = 5, min = 28, sec = 31.62

Page 128: ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM …myreaders.info/00_Orbital__Mechanics__-__Model_____Simulation... · ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM-MSS)

www.m

yrea

ders

.inf

o

OM-MSS Page 128 Finding Earth to Sun Position Vectors coordinate in PQW, IJK, SEZ frames and the Vector Coordinate Transforms. First defined coordinate systems, PQW, IJK, SEZ, then computed Position & Velocity vectors in these three coordinate systems (a) Perifocal Coordinate System (PQW), is Earth Centered Inertial coordinate frame defined in terms of Kepler Orbital Elements. The system is fixed with time (inertial), pointing towards orbit periapsis; the system's origin is Earth center (EC), and its fundamental plane is the orbit plane; the P-vector axis directed from EC toward the periapsis of the elliptical orbit plane, the Q-vector axis swepts 90 deg from P axis in the direction of the orbit, the W-vector axis directed from EC in a direction normal to orbit plane, forms a right-handed coordinate system. (b) Geocentric Coordinate System (IJK), is also an Earth Centered Inertial (ECI) frame, a Conventional Inertial System (CIS). The system is fixed with time (inertial), pointing towards vernal equinox; the system's origin is Earth center (EC), and its fundamental plane is the equator; the I-vector is +X-axis directed towards the vernal equinox direction on J2000, Jan 1, hr 12.00 noon, the J-vector is +Y-axis swepts 90 deg to the east in the equatorial plane, the K-vector is +Z-axis directed towards the North Pole. (c) Topocentric Horizon Coordinate System (SEZ), is Non-Inertial coordinate frame, known as Earth-Centered Earth-Fixed Coordinates (ECEF). The system moves with earth, is not fixed with time (non-inertial), is for use by observers on the surface of earth; the observer's surface forms the fundamental plane, is tangent to earth's surface the S-vector is +ve horizontal-axis directed towards South, the E-vector is +ve horizontal-axis directed towards East, the Z-vector is +ve normal directed upwards on earth surface. Note that axis Z not necessarily pass through earth center, so not used to define as radious vector. 11. Finding Earth center(EC) to Sun center(SC) Range Vector[rp, rq, r] from in PQW frame, perifocal coordinate system. Inputs : Semi-major axis (SMA), Eccentricity of earth orbit (e_sun), Sun eccentric anomaly (E_sun) Outputs : Vector(r, rp rq) in PQW frame E11A 011. r earth pos vector magnitude EC to SC km in PQW frame perifocal cord at UT time = 152098441.95238

Page 129: ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM …myreaders.info/00_Orbital__Mechanics__-__Model_____Simulation... · ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM-MSS)

www.m

yrea

ders

.inf

o

OM-MSS Page 129 E11B 011. rp earth pos vector component EC to SC km in PQW frame perifocal cord at UT time = -152098441.9523840500 E11C 011. rq earth pos vector component EC to SC km in PQW frame perifocal cord at UT time = 0.0007434219 Note - r earth pos vector magnitude EC to SC km in PQW frame is same as earth orbital radious computed before using true anomaly. 12. Transform_1 Earth position EC to SC Range Vector[rp, rq] in PQW frame To Range Vector[rI, rJ, rK] in IJK frame, inertial system cord. Inputs : Vector(rp, rq) EC_to_SC km in frame PQW , Alpha rd, w_sun rd, earth_inclination rd , Outputs : Vector(rI, rJ, rK, r) EC_to_SC km in frame IJK E12A 011. rI earth pos vector component EC to SC km frame IJK at UT time = -140226215.3950415300 E12B 011. rJ earth pos vector component EC to SC km frame IJK at UT time = 446.2552520869 E12C 011. rK earth pos vector component EC to SC km frame IJK at UT time = 58911327.9440127610 E12D 011. r earth pos vector magnitude EC to SC km frame IJK at UT time = 152098441.9523840500 Note - r earth pos vector magnitude EC to SC km in PQW frame is same as that compued above in PQW frame. 13. Transform_2 Earth point EP(lat, log, hgt) To EC to SC Range Vector[RI, RJ, RK, R] in IJK frame. Inputs : earth equator radious_km, earth point EP(lat deg, log deg, hgt meter), LST_local_sidereal_time_in_0_to_360_deg_at_EP_log_at_UT_time, Outputs : Vector(RI, RJ, RK, R) Range EC to EP in IJK frame E13A 011. RI pos vector component EC to EP km frame IJK at UT time = 5832.1367811816 E13B 011. RJ pos vector component EC to EP km frame IJK at UT time = 540.6797455991 E13C 011. RK pos vector component EC to EP km frame IJK at UT time = 2517.6312937817 E13D 011. R pos vector magnitude EC to EP km frame IJK at UT time = 6375.3134317570 14. Transform_3 Earth position EC to SC Range Vectors [rI rJ rK] & [RI RJ RK] To EP to SC Range Vector[rvI, rvJ, rvK] in IJK frame. Inputs : Vector(rI rJ rK) position EC_to_SC km in frame IJK , Vector(RI RJ RK) range EC to SC km in IJK frame, Outputs : Vector(rvI, rvJ, rvK, rv) range EP to SC in IJK frame E14A 011. rvI range vector component EP to SC km frame IJK at UT time = -140232047.5318227100 E14B 011. rvJ range vector component EP to SC km frame IJK at UT time = -94.4244935123 E14C 011. rvK range vector component EP to SC km frame IJK at UT time = 58908810.3127189800 E14D 011. rv range vector magnitude EP to SC km frame IJK at UT time = 152102843.7848425200

Page 130: ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM …myreaders.info/00_Orbital__Mechanics__-__Model_____Simulation... · ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM-MSS)

www.m

yrea

ders

.inf

o

OM-MSS Page 130 15. Transform_4 Earth point EP to SC Range Vector[rvI, rvJ, rvK] in IJK frame To EP to SC Range Vector[rvS, rvE, rvZ] in SEZ frame. Inputs : lat_pos_neg_0_to_90_deg_at_EP_at_time_UT , LST_local_sidereal_time_in_0_to_360_deg_at_EP_log_at_UT_time Vector(rvI, rvJ, rvK, rv) range EP to SC km in IJK frame, Outputs : Vector(rvS, rvE, rvZ, rv) range EP to SC km in SEZ frame E15A 011. rvS range vector component EP to SC km frame SEZ at UT time = -109262491.5112520900 E15B 011. rvE range vector component EP to SC km frame SEZ at UT time = 12944885.2533702720 E15C 011. rvZ range vector component EP to SC km frame SEZ at UT time = -105021012.0974219600 E15D 011. rv range vector magnitude EP to SC km frame SEZ at UT time = 152102843.7848425200 16. Finding Elevation(EL) and Azimuth(AZ) angle of Sun at Earth Observation point EP . Note : Results computed using 4 different formulations, each require different inputs to give EL & AZ angles. For all situations of Object and Observer positions, a combination of latitude N/S & longitude E/W : Method 1 : for both EL & AZ angles, this does not provide correct results ; Method 2 : for only EL angle, this provides consistent, unambiguous correct results. but for AZ angles the results are ambiguous, need corrections by adding or subtracting values as 180 or 360 or sign change. Method 3 : same as method 2, for EL angle, the results are correct, but for AZ angles the results are ambiguous, need corrections. Method 4 : for finding Azimuth and Distance but not for finding Elevation angle; for AZ angles, this provides correct unambiguous results that need no futher corrections. Therefore for Elevation (EL) angle Method 3 results are accepted and for Azimuth (AZ) angle Method 4 results are accepted . Results verified from other sources; Ref URLs http://www.ga.gov.au/geodesy/astro/smpos.jsp#intzone . NOAA Research http://www.esrl.noaa.gov/gmd/grad/solcalc/ , and http://aa.usno.navy.mil/data/docs/AltAz.php Xavier Jubier, Member IAU http://xjubier.free.fr/en/site_pages/astronomy/ephemerides.html Rem: SS point lat deg = 22.79, log deg = 176.42 YY = 2013, MM = 7, DD = 5, hr = 12, min = 4, sec = 32.89 EP point lat deg = 23.26, log deg = 77.41 YY = 2013, MM = 7, DD = 5, hr = 5, min = 28, sec = 31.62 Elevation(EL) & Azimuth(AZ) angle of Sun at Earth Observation point EP, (method 1 - computed values may be Ambiguous or Incorrect). Inputs : Vector[rvS, rvE, rvZ] range EP to SC km in SEZ frame Outputs : Elevation(EL) & Azimuth(AZ) of Sun at EP

Page 131: ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM …myreaders.info/00_Orbital__Mechanics__-__Model_____Simulation... · ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM-MSS)

www.m

yrea

ders

.inf

o

OM-MSS Page 131 E16A 011. Elevation angle deg of Sun at EP using rv SEZ at UT time = -43.6665758927 E16B 011. Azimuth angle deg of sun at EP using rv SEZ at UT time = 6.7566282101 Elevation(EL) & Azimuth(AZ) angle of Sun at Earth Observation point EP, (method 2 - computed AZ values may be ambiguous & incorrect). Inputs : Time input UT YY MM DD HH, Equator radious, EP lat & log, SS lat & log, Sun declination Delta Outputs : Elevation(EL) & Azimuth(AZ) of Sun at EP E16C 011. Elevation angle deg of Sun at EP using Sun declination diff log range EP to SC = 1.16686 E16D 011. Azimuth angle deg of sun at EP using sun declination diff log range EP to SC = 24.38662 Elevation(EL) & Azimuth(AZ) angle of Sun at Earth Observation point EP, (method 3 - computed AZ values may be ambiguous & incorrect). Inputs : Time input UT YY MM DD HH, Equator radious, EP lat & log, SS lat & log, Sun hgt from EC, Sun range from EP (Sun hgt from EC = earth orbit radious EC to SC km ; Sun range from EP = rv range vector EP to SC km frame SEZ) Outputs : Elevation(EL) & Azimuth(AZ) of Sun at EP E16E 011. Elevation angle deg of Sun at EP using Sun hgt diff log range EP to SC = 1.16517 ie deg = 1, min = 9, sec = 54.60 E16F 011. Azimuth angle deg of sun at EP using sun hgt diff log range EP to SC = 245.61183 ie deg = 245, min = 36, sec = 42.59 Azimuth(AZ) angle of Sun at Earth Observation point EP, (method 4 - computed AZ values is unambiguous & correct). Inputs : Time input UT YY MM DD HH, EP lat & log, SS lat & log Outputs : Azimuth(AZ) of Sun at EP E16G 011. Azimuth angle deg of sun at EP using sun hgt diff log range EP to SC = 65.61183 ie deg = 65, min = 36, sec = 42.59 Due to such incorrect results, finally for Elevation (EL) Method 3 results and for Azimuth (AZ) Method 4 results are accepted. Finally accepted Elevation angle deg of Sun from EP to SC = 1.1651677095 ie deg = 1, min = 9, sec = 54.60 Finally accepted Azimuth angle_deg of Sun from EP to SC = 65.6118300528 ie deg = 65, min = 36, sec = 42.59

Page 132: ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM …myreaders.info/00_Orbital__Mechanics__-__Model_____Simulation... · ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM-MSS)

www.m

yrea

ders

.inf

o

OM-MSS Page 132 Distance in km from Earth observation point(EP) to Sub Sun point(SS) and Earth Velocity meter per sec in orbit at time input UT. 17. Finding Distance in km from Earth observation point(EP) to Sub Sun point(SS) over Earth surface . Inputs : EP lat & log, SS lat & log, Outputs : Distance in km from EP to SS over Earth surface E17A 011. Distance in km Earth observation point(EP) to Sub Sun point(SS) = 9888.76838 Finding Earth Velocity meter per sec in orbit in frame PQW Inputs : semi-major axis SMA, GM_Sun, earth pos r EC to SC frame IJK, eccentricity of earth orbit e_Sun, sun eccentric anomaly E_Sun Outputs : Earth Velocity magnitude and component Xw Yw in frame PQW in meter per sec E17B 011. Velocity magnitude meter per sec using GM, SMA, r earth EC to SC frame IJK at UT time = 29290.9998931436 E17C 011. Velocity component meter per sec in orbit Xw using GM, e_Sun, SMA, E_Sun at UT time = -0.0000001456 E17D 011. Velocity component meter per sec in orbit Yw using GM, e_Sun, SMA, E_Sun at UT time = -29290.9998931436 Finding Earth Velocity Vector [vX, vY, vZ] in meter per sec in orbit; a Transform of [Xw, Yw] in frame PQW To [vX, vY, vZ] in frame XYZ Inputs : velocity component (Xw, Yw), sun right ascension Alpha, Sun Argument of perigee W_Sun, inclination Epcylone Outputs : earth velocity vector(vX, vY, vZ, vR) meter per sec in frame XYZ E17E 011. vX earth Velocity vector meter per sec using Xw Yw frame PQW RA w i at UT time = 1114.6970357569 E17F 011. vY earth Velocity vector meter per sec using Xw Yw frame PQW RA w i at UT time = -29149.2525417419 E17G 011. vZ earth Velocity vector meter per sec using Xw Yw frame PQW RA w i at UT time = 2653.5262418839 E17H 011. vR earth Velocity magnitude meter per sec using Xw Yw frame PQW RA w i at UT time = 29290.9998931436

Page 133: ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM …myreaders.info/00_Orbital__Mechanics__-__Model_____Simulation... · ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM-MSS)

www.m

yrea

ders

.inf

o

OM-MSS Page 133 Earth State Vectors : Position [X, Y, Z] in km and Velocity [Vx, Vy, Vz] in meter per sec, at time input UT. 18. Finding Earth State Position Vector [X, Y, Z] in km at time input UT. Inputs : position vector(rI, rJ, rK, r) in frame IJK values assiged to state position vector Outputs : State Position Vector(X, Y, Z, R) in km, frame XYZ E18A 011. State vector position X km at UT time = -140226215.3950415300 E18B 011. State vector position Y km at UT time = 446.2552520869 E18C 011. State vector position Z km at UT time = 58911327.9440127610 E18D 011. State vector position R km at UT time = 152098441.9523840500 19. Finding Earth State Velocity Vector [Vx, Vy, Vz] in meter per sec at time input UT. Inputs : velocity vector(vX, vY, vZ, vR) meter per sec in frame XYZ values assiged to state velocity vector Outputs : state velocity vector(Vx, Vy, Vz, V) meter per sec, frame XYZ E19A 011. State vector velocity Vx meter per sec at UT time = 1114.6970357569 E19B 011. State vector velocity Vy meter per sec at UT time = -29149.2525417419 E19C 011. State vector velocity Vz meter per sec at UT time = 2653.5262418839 019D 011. State vector velocity V meter per sec at UT time = 29290.9998931436 20. Earth Orbit Normal Vector [Wx, Wy, Wz] in km and angles Delta, i, RA at time input UT; Normal is line perpendicular to orbit plane. Inputs : earth pos r EC to SC frame IJK, inclination Epcylone, sun right ascension Alpha Outputs : earth orbit normal vector (Wx, Wy, Wz, W) in km E20A 011. Earth orbit normal W km using r earth pos frame IJK inclination Alpha = 152098441.9523840500 E20B 011. Earth orbit normal Wx km using r earth pos frame IJK inclination Alpha = 58626279.9571206120 E20C 011. Earth orbit normal Wy km using r earth pos frame IJK inclination Alpha = 14945281.0276021960 E20D 011. Earth orbit normal Wz km using r earth pos frame IJK inclination Alpha = 139547604.4858458000 020E 011. Earth orbit normal Delta W deg using r earth pos frame IJK inclination Alpha = 66.5607205617 E20F 011. Earth orbit normal Inclination i deg using normal_Delta_W = 23.4392794383 E20G 011. Earth orbit normal Alpha W deg using r earth pos frame IJK, inclination, Alpha = 14.3014954901 E20H 011. Earth orbit normal Right ascension of ascending node using normal Alpha, W = 104.3014954901

Page 134: ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM …myreaders.info/00_Orbital__Mechanics__-__Model_____Simulation... · ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM-MSS)

www.m

yrea

ders

.inf

o

OM-MSS Page 134 Transform Earth State Vectors to Earth position Keplerian elements. 21. Finding Earth position Keplerian elements computed using State Vector, at time input UT. Inputs : State vector year, days decimal of year, revolution, node, State Position Vector [ X, Y, Z ], State Velocity Vector [ Vx, Vy, Vz ] Outputs : Keplerian elements : year, days decimal of year, revolution, node, inclination, right ascension, eccentricity, argument of perigee, mean anomaly, mean motion rev per day, mean angular velocity rev per day, mean motion rev per_day from SMA considering oblateness E21A 011. Keplerian elements year = 2013, days_decimal_of_year = 185.01311, revolution no = 1, node = 1 ie ascending E21B 011. inclination_deg = 23.4392794383 E21C 011. right ascension ascending node deg = 104.3014954901 E21D 011. eccentricity = 0.0167102190 E21E 011. argument of perigee_deg = 256.8356315327 E21F 011. mean anomaly deg = 179.9999999997 E21G 011. mean_motion rev per day = 0.0027377786 E21H 011. mean angular velocity rev_per_day = 0.0027377786 E21I 011. mean motion rev per day using SMA considering oblateness = 0.0027377786 Transform Earth position Keplerian elements to Earth State Vectors . 22. Finding Earth position State Vectors, computed using Keplerian elements at time input UT (computed again to validate model equations, Keplerian elements to State Vectors & back) Inputs : Keplerian elements : year, days decimal of year, revolution, node, inclination, right ascension, eccentricity, argument of perigee, mean anomaly, mean motion rev per day, mean angular velocity rev per day, mean motion rev per_day from SMA considering oblateness Outputs : State vector year, days decimal of year, revolution, node, State Position Vector [ X, Y, Z ], State Velocity Vector [ Vx, Vy, Vz ] E22A 011. State vectors year = 2013, days_decimal_of_year = 185.01311, revolution no = 1, node = 1 ie decending E22B 011. state vector position X km = -140226215.3950413500, state vector velocity Vx meter per sec = 1114.6970357568 E22C 011. state vector position Y km = 446.2552521827, state vector velocity Vy meter per sec = -29149.2525417419 E22D 011. state vector position Z km = 58911327.9440126870, state vector velocity Vz meter per sec = 2653.5262418839 E22E 011. state vector position R km = 152098441.9523838800, state vector velocity V meter per sec = 29290.9998931436

Page 135: ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM …myreaders.info/00_Orbital__Mechanics__-__Model_____Simulation... · ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM-MSS)

www.m

yrea

ders

.inf

o

OM-MSS Page 135 Note : Computation of all above parameters, grouped in 1 to 22, corresponds to time (a) Universal time over Greenwich (UT/GMT) : Year = 2013, Month = 7, Day = 5, Hour = 0, Min = 18, Sec = 52.593 (b) Mean Solar time (MST) over Earth Observation point (EP ) : Year = 2013, Month = 7, Day = 5, Hour = 5, Min = 28, Sec = 31.620 Move on to next Astronomical event in orbit Earth around Sun. Next Section - 4.6 Position of earth at time when earth is at autumnal equinox

Page 136: ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM …myreaders.info/00_Orbital__Mechanics__-__Model_____Simulation... · ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM-MSS)

www.m

yrea

ders

.inf

o

OM-MSS Page 136 OM-MSS Section - 4.6 ---------------------------------------------------------------------------------------------------40 Earth Positional Parameters on Celestial Sphere : Input Year Time when Earth is at Autumnal equinox . 6. Finding Position of Earth on Celestial Sphere at Input Universal Time, when Earth is at Autumnal equinox . Input UT Time, when Earth is at Autumnal equinox : year = 2013, month = 9, day = 22, hour = 20, minute = 45, seconds = 38.50711 Julian Day = 2456558.36503, year_day_decimal = 264.86503, day_hour_decimal = 20.76070 Observation Point on Earth (Bhopal, India) : Lat +ve or -ve 0 to 90 deg = 23.25993 ie deg = 23, min = 15, sec = 35.76 Log 0 to 360 deg = 77.41261 ie deg = 77, min = 24, sec = 45.41 Alt from earth surface in km = 0.49470 First Compute the Sun Position on Celestial Sphere, then Compute the Earth Position on Celestial Sphere. (A) Computed Values for SUN POSITION on Celestial Sphere at Input Ut Time : (Sr. No 1 - 22) 01. Earth around Sun Mean motion rev per day (mm) = 0.0027377786 02. Semi-major axis in km considering oblateness (SMA) = 149598616.31172 03. Earth mean motion deg per day using SMA (mm) = 0.9856003000 04. Sun mean movement deg per day (n sun) = 0.9856003000 05. Eccentricity of earth orbit (e sun) = 0.0167102190 06. Perihelion to input time diff in Julian days = 262.4817348463 07. Mean anomaly in deg per day from n_sun (m sun) = 258.7020766091 08. Sun Mean longitude in deg (Lmean) = 181.8702061020 09. Earth Mean anomaly in deg (ME) = 258.7020766091 10. Sun Ecliptic longitude in deg (Lsun) = 180.0000000001 11. Obliquity of ecliptic in deg (Epcylone) = 23.4374939503 12. Sun Right ascension in deg (Alpha) = 180.0000000001 13. Sun Declination in deg (Delta) = -0.0000000001 14. Sun Mean distance in km (As) = 149598616.31172 15. Sun Radial distance from earth in km (Rs) = 150128632.16764 16. Sun Nodal elongation in deg (U sun) = -0.0000000001 17. Sun Mean anomaly in deg (M sun) = 258.7020766085 18. Sun Eccentric anomaly in deg (E sun) = 257.7663930098 19. Sun True anomaly in deg (T sun) = 256.8323186392 20. Sun Argument of perigee in deg (W sun) = 103.1676813607 21. Sun True anomaly in deg from U & W (V sun) = 256.8323186392 22. Sun Distance in km (d sun) = 150048057.36583 Sun Ecliptic latitude is always nearly zero (the value never exceeds 0.00033 deg) These Values are applied as input for Computing Earth Position on Celestial Sphere around Sun at same input UT Time.

Page 137: ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM …myreaders.info/00_Orbital__Mechanics__-__Model_____Simulation... · ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM-MSS)

www.m

yrea

ders

.inf

o

OM-MSS Page 137 (B) Computed Values for EARTH POSITION on Celestial Sphere around Sun at same Input Ut Time : (Sr. No 1 - 22) Input Time year = 2013, month = 9, day = 22, hour = 20, minute = 45, seconds = 38.50711, corresponding Julian Day = 2456558.3650290174 Observation Point on Earth : Lat +ve or -ve 0 to 90 deg = 23.25993, Log 0 to 360 deg = 77.41261, Alt from earth surface in km = 0.49470 Sun position on Celestial sphere at input time, computed above total 22 parameters. Output Earth Position on Celestial sphere around Sun : Computed below around 120 parameters, presented in 1-22 groups. Number is large, because some parameters are computed using more than one model equation, that require different inputs. This helps in validation of results and understanding the different input considerations. 01. Finding GST Greenwich sidereal time and GHA Greenwich hour angle in 0 to 360 deg, at input UT time YY MM DD HH. Note - for GST, the year 1900 JAN day_1 hr 1200 is ref for time difference in terms of julian_century, for GHA, the year 2000_JAN_day_1 hr_1200 is ref for time difference in terms of julian days. Inputs : Time UT year = 2013, month = 9, day = 22, hour = 20, minute = 45, seconds = 38.50711 Outputs : GST & GHA in 0-360 deg over Greenwich. E01A 011. GST Greenwich sidereal time in 0-360 deg, over Greenwich = 313.28074, hr = 20, min = 53, sec = 7.37817 E01B 011. GHA Greenwich hour angle in 0 to 360 deg, over Greenwich = 313.29307, deg = 313, min = 17, sec = 35.04994 02. Finding Earth latitude & longitude pointing to Sun Ecliptic longitude(Lsun). Inputs : earth inclination, sun true anomaly T_Sun, sun argument of perigee W_Sun, sun right ascension Alpha, earth equator radious, GST at input UT, log SS & EP, earth orbit radious EC to SC Outputs : Earth lat & log pointing to Lsun. E02A 011. Earth latitude +ve or -ve in 0 to 90 deg at UT time = -0.00 ie deg = 0, min = 0, sec = 0.00 E02B 011. Earth longitude 0 to 360 deg = 226.72 ie deg = 226, min = 43, sec = 9.33 03. Finding LST over three longitudes, Greenwich log, Sun mean log (Lmean), and Sun epliptic log (Lsun) . Note - for LST, used sidereal time at Greenwich GST and desired geogrphic longitude Inputs : At Time input UT - GST, Log of Greenwich, sun mean log Lmean, Sun ecliptic log Lsun. Outputs : LST over Greenwich, Lmean, Lsun . E03A 011. LST Local sidereal time in 0-360 deg, over Greenwich longitude = 313.28074, hr = 20, min = 53, sec = 7.37817

Page 138: ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM …myreaders.info/00_Orbital__Mechanics__-__Model_____Simulation... · ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM-MSS)

www.m

yrea

ders

.inf

o

OM-MSS Page 138 E03B 011. LST Local sidereal time in 0-360 deg, over Sun mean longitude (Lmean) = 135.15095, hr = 9, min = 0, sec = 36.22763 E03C 011. LST Local sidereal time in 0-360 deg, over Sun epliptic longitude (Lsun) = 133.28074, hr = 8, min = 53, sec = 7.37817 04. Finding ST0 sidereal time over Greenwich longitude = 0.0, at time input Year JAN day 1 hr 00. Note - this is sidereal time ST at UT year, month = 1, day = 1, hours decimal = 0.0 and geogrphic longitude = 0.0 Inputs : Time input UT Year, JAN day 1 hr 00, Log 0.0 Outputs : ST0 over Greenwich E04 011. ST0 Sidereal time in 0-360 deg, over Greenwich at input UT year, MM 1, DD 1, HH 00 = 100.80678, hr = 6, min = 43, sec = 13.62710 05. Finding ST sidereal time over three longitudes of, Greenwich log, Sun mean log (Lmean), and Sun epliptic log (Lsun) . Note - this is local sidereal time LST; (LST = GST at UT time + geogrphic longitude). Inputs : At Time input UT - Log 0.0, Log Lmean, Log Lsun Outputs : ST over Greenwich, Lmean, Lsun. E05A 011. ST Sidereal time in 0-360 deg, over Greenwich at input UT time = 313.28074, hr = 20, min = 53, sec = 7.37817 E05B 011. ST Sidereal time in 0-360 deg, over Sun mean longitude (Lmean) at input UT time = 135.15095, hr = 9, min = 0, sec = 36.22763 005C 011. ST Sidereal time in 0-360 deg, over Sun longitude (Lsun) at input UT time = 133.28074, hr = 8, min = 53, sec = 7.37817 06. Finding H hour angle in 0 to 360 deg over longitudes of, Greenwich, Lmean, Lsun, Earth Sub Sun point SS, Earth Obseration point EP. Note - used Sun Right ascension Alpha at input time; (hour angle HA = LST - Alpha). Inputs : At Time input UT - Sun Right ascension Alpha and ST Sidereal time over longitudes 0.0, Lmean, Lsun, SS, EP Outputs : Hour Angles over Greenwich, Lmean, Lsun, SS, EP E06A 011. H hour angle 0-360 deg, over Greenwich, = 133.28074, deg = 133, min = 16, sec = 50.67250 E06B 011. H hour angle 0-360 deg, over Lmean, = 315.15095, deg = 315, min = 9, sec = 3.41447 E06C 011. H hour angle 0-360 deg, over Lsun, = 313.28074, deg = 313, min = 16, sec = 50.67250 E06D 011. H hour angle 0-360 deg, over SS, = 0.00000, deg = 0, min = 0, sec = 0.00000 E06E 011. H hour angle 0-360 deg, over EP, = 210.69336, deg = 210, min = 41, sec = 36.08650

Page 139: ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM …myreaders.info/00_Orbital__Mechanics__-__Model_____Simulation... · ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM-MSS)

www.m

yrea

ders

.inf

o

OM-MSS Page 139 07. Finding Delta E is Equation of Time in seconds, at time input UT. Note - this value in seconds accounts for relative movement of sun in elliptical orbit w.r.t earth and effect of obliquity of the ecliptic; its maximum value is 16 minutes (960 sec.); Delta E is computed using time in days from the perihelion, n_sun_deg and w_sun at input UT. Inputs : Time input UT in JD, time perihelion in JD, Sun mean movement n_sun, Eccentricity of earth orbit E_Sun Outputs : Delta E time_equation in seconds. E07 011. Delta E Time Equation in seconds = -489.69657, hr = 0, min = 8, sec = 9.69657 08. Finding GST Greenwich sidereal time, and GHA Greenwich hour angle 0 to 360 deg at time when earth is at perihelion. Inputs : Time in JD when earth at perihelion YY = 2013, MM = 1, DD = 3, hr = 9, min = 11, sec = 56.62 Outputs : GST & GHA in 0-360 deg over Greenwich when earth is at perihelion E08A 011. GST sidereal time in 0-360 deg over Greenwich at time when earth is at perihelion = 241.14177, hr = 16, min = 4, sec = 34.02452 E08B 011. GHA hour angle in 0-360 deg over Greenwich at time when earth is at perihelion = 241.14717, hr = 16, min = 4, sec = 35.32064 09. Finding ST sidereal time and MST mean sidereal time, over Greenwich, using Earth mean motion rev per day . Inputs : GST when earth at perihelion, earth rotation rate, ref. JD2000, time input UT in JD, time perihelion in JD. Outputs : STP, angle perihelion to input JD, ST over Greenwich, MSTO & MST over Greenwich, solar time E09A 011. STP sidereal time in 0-360 deg over Greenwich when earth at perihelion = 241.14177, hr = 16, min = 4, sec = 34.02452 E09B 011. Angle in 0-360 deg from earth at perihelion to input JD using earth rotational rate = 72.12977, 009C 011. ST in 0-360 deg over Greenwich using STP and angle from perihelion at input JD = 313.27154, hr = 20, min = 53, sec = 5.16880 E09D 011. ST in 0-360 deg over Greenwich using STP and earth rotation at UT time = 313.27154, hr = 20, min = 53, sec = 5.16880 E09E 011. MST0 in deg, over Greenwich using JD century days, ref J2000 to I/P YY, M1, D1 hr 00 = 100.80714, hr = 6, min = 43, sec = 13.71450 E09F 011. MST in deg, over Greenwich using JD century in days from ref J2000 to UT time Y M D H = 313.28111, hr = 20, min = 53, sec = 7.46617 E09G 011. Solar time over Greenwich in JD (GMT or input UT - 12 hr) = YY 2013, MM 9, DD 22, hr 8, min 45, sec 38.507, ie JD 2456557.86503 10. Finding Earth orbit radious using true anomaly, Sub Sun point (SS) on earth surface and related paramters . (a) Finding Earth orbit radious using true anomaly. Inputs : semi-major axis SMA, eccentricity of earth orbit e_sun, sun true anomaly T_Sun Outputs : earth orbital radious EC to SC (earth center to sun center)

Page 140: ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM …myreaders.info/00_Orbital__Mechanics__-__Model_____Simulation... · ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM-MSS)

www.m

yrea

ders

.inf

o

OM-MSS Page 140 E10A 011. earth orbital radious EC to SC km using_true anomaly at UT time = 150128324.5301490100 (b) Finding Sub Sun point (SS) over earth surface (Latitude, Longitude, & Latitude radius) pointing to Sun Ecliptic Log (Lsun), Sun height from earth surface over SS, and LST over SS log at time input UT. Note - for SS Latitude, used earth inclination, sun true anomaly T_sun and sun argument of perigee w_sun. for SS Longitude, used Sun right ascension Alpha and sidereal time at Greenwich GST. Inputs : earth inclination, sun true anomaly T_Sun, sun argument of perigee W_Sun, sun right ascension Alpha, earth equator radious, GST at input UT, log SS & EP, earth orbit radious EC to SC Outputs : SS point Latitude, Longitude, Latitude radious, LST & LMT over SS . E10B 011. SS point Latitude +ve or -ve in 0 to 90 deg at UT time = -0.00 ie deg = 0, min = 0, sec = 0.00 E10C 011. SS point Longitude 0 to 360 deg = 226.72 ie deg = 226, min = 43, sec = 9.33 E10D 011. SS point Latitude radious km at UT time = 6378.1440000000 E10E 011. Sun height km from earth surface over SS at UT time = 150121946.3861490200 E10F 011. LST local sidereal time in 0-360 deg over SS log at UT time, (LST = GST + log east) = 180.000 ie hr = 12, min = 0, sec = 0.08799 LST local sidereal time and LMT local mean time with date adjusted to calendar YY MM DD and UT hr mm sec. E10G 011. LST local sidereal time at Sub Sun point (SS) YY = 2013, MM = 9, DD = 22, hr = 12, min = 0, sec = 0.09 E10H 011. LMT local Mean time at Sub Sun point (SS) YY = 2013, MM = 9, DD = 22, hr = 11, min = 52, sec = 31.13 (c) Finding LST and LMT over Earth point(EP) where Observer is, at time input UT. Inputs : EP point Latitude, Longitude Outputs : LST & LMT over EP . E10I 011. LST local sidereal time in 0-360 deg at EP log at UT time, (LST = GST + log east) = 30.694 ie hr = 2, min = 2, sec = 46.49378 LST and LMT with date adjusted to calendar YY MM DD and UT hr mm sec. E10J 011. LST local sidereal time at Earth point (EP) YY = 2013, MM = 9, DD = 23, hr = 2, min = 2, sec = 46.49 E10K 011. LMT local Mean time at Earth point (EP) YY = 2013, MM = 9, DD = 23, hr = 1, min = 55, sec = 17.53

Page 141: ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM …myreaders.info/00_Orbital__Mechanics__-__Model_____Simulation... · ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM-MSS)

www.m

yrea

ders

.inf

o

OM-MSS Page 141 Finding Earth to Sun Position Vectors coordinate in PQW, IJK, SEZ frames and the Vector Coordinate Transforms. First defined coordinate systems, PQW, IJK, SEZ, then computed Position & Velocity vectors in these three coordinate systems. (a) Perifocal Coordinate System (PQW), is Earth Centered Inertial coordinate frame defined in terms of Kepler Orbital Elements. The system is fixed with time (inertial), pointing towards orbit periapsis; the system's origin is Earth center (EC), and its fundamental plane is the orbit plane; the P-vector axis directed from EC toward the periapsis of the elliptical orbit plane, the Q-vector axis swepts 90 deg from P axis in the direction of the orbit, the W-vector axis directed from EC in a direction normal to orbit plane, forms a right-handed coordinate system. (b) Geocentric Coordinate System (IJK), is also an Earth Centered Inertial (ECI) frame, a Conventional Inertial System (CIS). The system is fixed with time (inertial), pointing towards vernal equinox; the system's origin is Earth center (EC), and its fundamental plane is the equator; the I-vector is +X-axis directed towards the vernal equinox direction on J2000, Jan 1, hr 12.00 noon, the J-vector is +Y-axis swepts 90 deg to the east in the equatorial plane, the K-vector is +Z-axis directed towards the North Pole. (c) Topocentric Horizon Coordinate System (SEZ), is Non-Inertial coordinate frame, known as Earth-Centered Earth-Fixed Coordinates (ECEF). The system moves with earth, is not fixed with time (non-inertial), is for use by observers on the surface of earth; the observer's surface forms the fundamental plane, is tangent to earth's surface the S-vector is +ve horizontal-axis directed towards South, the E-vector is +ve horizontal-axis directed towards East, the Z-vector is +ve normal directed upwards on earth surface. Note that axis Z not necessarily pass through earth center, so not used to define as radious vector. 11. Finding Earth center(EC) to Sun center(SC) Range Vector[rp, rq, r] from in PQW frame, perifocal coordinate system. Inputs : Semi-major axis (SMA), Eccentricity of earth orbit (e_sun), Sun eccentric anomaly (E_sun) Outputs : Vector(r, rp rq) in PQW frame E11A 011. r earth pos vector magnitude EC to SC km in PQW frame perifocal cord at UT time = 150128324.53015

Page 142: ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM …myreaders.info/00_Orbital__Mechanics__-__Model_____Simulation... · ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM-MSS)

www.m

yrea

ders

.inf

o

OM-MSS Page 142 E11B 011. rp earth pos vector component EC to SC km in PQW frame perifocal cord at UT time = -34199483.1036060300 E11C 011. rq earth pos vector component EC to SC km in PQW frame perifocal cord at UT time = -146181083.5288748700 Note - r earth pos vector magnitude EC to SC km in PQW frame is same as earth orbital radious computed before using true anomaly. 12. Transform_1 Earth position EC to SC Range Vector[rp, rq] in PQW frame To Range Vector[rI, rJ, rK] in IJK frame, inertial system cord. Inputs : Vector(rp, rq) EC_to_SC km in frame PQW , Alpha rd, w_sun rd, earth_inclination rd , Outputs : Vector(rI, rJ, rK, r) EC_to_SC km in frame IJK E12A 011. rI earth pos vector component EC to SC km frame IJK at UT time = -150128324.5301489500 E12B 011. rJ earth pos vector component EC to SC km frame IJK at UT time = 0.0000000075 E12C 011. rK earth pos vector component EC to SC km frame IJK at UT time = -0.0001395773 E12D 011. r earth pos vector magnitude EC to SC km frame IJK at UT time = 150128324.5301489500 Note - r earth pos vector magnitude EC to SC km in PQW frame is same as that compued above in PQW frame. 13. Transform_2 Earth point EP(lat, log, hgt) To EC to SC Range Vector[RI, RJ, RK, R] in IJK frame. Inputs : earth equator radious_km, earth point EP(lat deg, log deg, hgt meter), LST_local_sidereal_time_in_0_to_360_deg_at_EP_log_at_UT_time, Outputs : Vector(RI, RJ, RK, R) Range EC to EP in IJK frame E13A 011. RI pos vector component EC to EP km frame IJK at UT time = 5036.6074245797 E13B 011. RJ pos vector component EC to EP km frame IJK at UT time = 2989.7725118111 E13C 011. RK pos vector component EC to EP km frame IJK at UT time = 2517.6312937817 E13D 011. R pos vector magnitude EC to EP km frame IJK at UT time = 6375.3134317570 14. Transform_3 Earth position EC to SC Range Vectors [rI rJ rK] & [RI RJ RK] To EP to SC Range Vector[rvI, rvJ, rvK] in IJK frame. Inputs : Vector(rI rJ rK) position EC_to_SC km in frame IJK , Vector(RI RJ RK) range EC to SC km in IJK frame, Outputs : Vector(rvI, rvJ, rvK, rv) range EP to SC in IJK frame E14A 011. rvI range vector component EP to SC km frame IJK at UT time = -150133361.1375735400 E14B 011. rvJ range vector component EP to SC km frame IJK at UT time = -2989.7725118037 E14C 011. rvK range vector component EP to SC km frame IJK at UT time = -2517.6314333590 E14D 011. rv range vector magnitude EP to SC km frame IJK at UT time = 150133361.1884523300

Page 143: ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM …myreaders.info/00_Orbital__Mechanics__-__Model_____Simulation... · ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM-MSS)

www.m

yrea

ders

.inf

o

OM-MSS Page 143 15. Transform_4 Earth point EP to SC Range Vector[rvI, rvJ, rvK] in IJK frame To EP to SC Range Vector[rvS, rvE, rvZ] in SEZ frame. Inputs : lat_pos_neg_0_to_90_deg_at_EP_at_time_UT , LST_local_sidereal_time_in_0_to_360_deg_at_EP_log_at_UT_time Vector(rvI, rvJ, rvK, rv) range EP to SC km in IJK frame, Outputs : Vector(rvS, rvE, rvZ, rv) range EP to SC km in SEZ frame E15A 011. rvS range vector component EP to SC km frame SEZ at UT time = -50980643.1144296600 E15B 011. rvE range vector component EP to SC km frame SEZ at UT time = 76632812.6748455610 E15C 011. rvZ range vector component EP to SC km frame SEZ at UT time = -118610337.6225001200 E15D 011. rv range vector magnitude EP to SC km frame SEZ at UT time = 150133361.1884523300 16. Finding Elevation(EL) and Azimuth(AZ) angle of Sun at Earth Observation point EP . Note : Results computed using 4 different formulations, each require different inputs to give EL & AZ angles. For all situations of Object and Observer positions, a combination of latitude N/S & longitude E/W : Method 1 : for both EL & AZ angles, this does not provide correct results ; Method 2 : for only EL angle, this provides consistent, unambiguous correct results. but for AZ angles the results are ambiguous, need corrections by adding or subtracting values as 180 or 360 or sign change. Method 3 : same as method 2, for EL angle, the results are correct, but for AZ angles the results are ambiguous, need corrections. Method 4 : for finding Azimuth and Distance but not for finding Elevation angle; for AZ angles, this provides correct unambiguous results that need no futher corrections. Therefore for Elevation (EL) angle Method 3 results are accepted and for Azimuth (AZ) angle Method 4 results are accepted . Results verified from other sources; Ref URLs http://www.ga.gov.au/geodesy/astro/smpos.jsp#intzone . NOAA Research http://www.esrl.noaa.gov/gmd/grad/solcalc/ , and http://aa.usno.navy.mil/data/docs/AltAz.php Xavier Jubier, Member IAU http://xjubier.free.fr/en/site_pages/astronomy/ephemerides.html Rem: SS point lat deg = -0.00, log deg = 226.72 YY = 2013, MM = 9, DD = 22, hr = 11, min = 52, sec = 31.13 EP point lat deg = 23.26, log deg = 77.41 YY = 2013, MM = 9, DD = 23, hr = 1, min = 55, sec = 17.53 Elevation(EL) & Azimuth(AZ) angle of Sun at Earth Observation point EP, (method 1 - computed values may be Ambiguous or Incorrect). Inputs : Vector[rvS, rvE, rvZ] range EP to SC km in SEZ frame Outputs : Elevation(EL) & Azimuth(AZ) of Sun at EP

Page 144: ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM …myreaders.info/00_Orbital__Mechanics__-__Model_____Simulation... · ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM-MSS)

www.m

yrea

ders

.inf

o

OM-MSS Page 144 E16A 011. Elevation angle deg of Sun at EP using rv SEZ at UT time = -52.1886128588 E16B 011. Azimuth angle deg of sun at EP using rv SEZ at UT time = 56.3658187650 Elevation(EL) & Azimuth(AZ) angle of Sun at Earth Observation point EP, (method 2 - computed AZ values may be ambiguous & incorrect). Inputs : Time input UT YY MM DD HH, Equator radious, EP lat & log, SS lat & log, Sun declination Delta Outputs : Elevation(EL) & Azimuth(AZ) of Sun at EP E16C 011. Elevation angle deg of Sun at EP using Sun declination diff log range EP to SC = -52.18740 E16D 011. Azimuth angle deg of sun at EP using sun declination diff log range EP to SC = 33.63457 Elevation(EL) & Azimuth(AZ) angle of Sun at Earth Observation point EP, (method 3 - computed AZ values may be ambiguous & incorrect). Inputs : Time input UT YY MM DD HH, Equator radious, EP lat & log, SS lat & log, Sun hgt from EC, Sun range from EP (Sun hgt from EC = earth orbit radious EC to SC km ; Sun range from EP = rv range vector EP to SC km frame SEZ) Outputs : Elevation(EL) & Azimuth(AZ) of Sun at EP E16E 011. Elevation angle deg of Sun at EP using Sun hgt diff log range EP to SC = -52.18889 ie deg = -52, min = 11, sec = 20.02 E16F 011. Azimuth angle deg of sun at EP using sun hgt diff log range EP to SC = 236.36543 ie deg = 236, min = 21, sec = 55.56 Azimuth(AZ) angle of Sun at Earth Observation point EP, (method 4 - computed AZ values is unambiguous & correct). Inputs : Time input UT YY MM DD HH, EP lat & log, SS lat & log Outputs : Azimuth(AZ) of Sun at EP E16G 011. Azimuth angle deg of sun at EP using sun hgt diff log range EP to SC = 56.36543 ie deg = 56, min = 21, sec = 55.56 Due to such incorrect results, finally for Elevation (EL) Method 3 results and for Azimuth (AZ) Method 4 results are accepted. Finally accepted Elevation angle deg of Sun from EP to SC = -52.1888941383 ie deg = -52, min = 11, sec = 20.02 Finally accepted Azimuth angle_deg of Sun from EP to SC = 56.3654334756 ie deg = 56, min = 21, sec = 55.56

Page 145: ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM …myreaders.info/00_Orbital__Mechanics__-__Model_____Simulation... · ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM-MSS)

www.m

yrea

ders

.inf

o

OM-MSS Page 145 Distance in km from Earth observation point(EP) to Sub Sun point(SS) and Earth Velocity meter per sec in orbit at time input UT. 17. Finding Distance in km from Earth observation point(EP) to Sub Sun point(SS) over Earth surface . Inputs : EP lat & log, SS lat & log, Outputs : Distance in km from EP to SS over Earth surface E17A 011. Distance in km Earth observation point(EP) to Sub Sun point(SS) = 15828.20917 Finding Earth Velocity meter per sec in orbit in frame PQW Inputs : semi-major axis SMA, GM_Sun, earth pos r EC to SC frame IJK, eccentricity of earth orbit e_Sun, sun eccentric anomaly E_Sun Outputs : Earth Velocity magnitude and component Xw Yw in frame PQW in meter per sec E17B 011. Velocity magnitude meter per sec using GM, SMA, r earth EC to SC frame IJK at UT time = 29679.3404099639 E17C 011. Velocity component meter per sec in orbit Xw using GM, e_Sun, SMA, E_Sun at UT time = 29005.5570441560 E17D 011. Velocity component meter per sec in orbit Yw using GM, e_Sun, SMA, E_Sun at UT time = -6288.1561469737 Finding Earth Velocity Vector [vX, vY, vZ] in meter per sec in orbit; a Transform of [Xw, Yw] in frame PQW To [vX, vY, vZ] in frame XYZ Inputs : velocity component (Xw, Yw), sun right ascension Alpha, Sun Argument of perigee W_Sun, inclination Epcylone Outputs : earth velocity vector(vX, vY, vZ, vR) meter per sec in frame XYZ E17E 011. vX earth Velocity vector meter per sec using Xw Yw frame PQW RA w i at UT time = 484.6892104138 E17F 011. vY earth Velocity vector meter per sec using Xw Yw frame PQW RA w i at UT time = -27226.6334875568 E17G 011. vZ earth Velocity vector meter per sec using Xw Yw frame PQW RA w i at UT time = 11804.1836852055 E17H 011. vR earth Velocity magnitude meter per sec using Xw Yw frame PQW RA w i at UT time = 29679.3404099639

Page 146: ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM …myreaders.info/00_Orbital__Mechanics__-__Model_____Simulation... · ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM-MSS)

www.m

yrea

ders

.inf

o

OM-MSS Page 146 Earth State Vectors : Position [X, Y, Z] in km and Velocity [Vx, Vy, Vz] in meter per sec, at time input UT. 18. Finding Earth State Position Vector [X, Y, Z] in km at time input UT. Inputs : position vector(rI, rJ, rK, r) in frame IJK values assiged to state position vector Outputs : State Position Vector(X, Y, Z, R) in km, frame XYZ E18A 011. State vector position X km at UT time = -150128324.5301489500 E18B 011. State vector position Y km at UT time = 0.0000000075 E18C 011. State vector position Z km at UT time = -0.0001395773 E18D 011. State vector position R km at UT time = 150128324.5301489500 19. Finding Earth State Velocity Vector [Vx, Vy, Vz] in meter per sec at time input UT. Inputs : velocity vector(vX, vY, vZ, vR) meter per sec in frame XYZ values assiged to state velocity vector Outputs : state velocity vector(Vx, Vy, Vz, V) meter per sec, frame XYZ E19A 011. State vector velocity Vx meter per sec at UT time = 484.6892104138 E19B 011. State vector velocity Vy meter per sec at UT time = -27226.6334875568 E19C 011. State vector velocity Vz meter per sec at UT time = 11804.1836852055 019D 011. State vector velocity V meter per sec at UT time = 29679.3404099639 20. Earth Orbit Normal Vector [Wx, Wy, Wz] in km and angles Delta, i, RA at time input UT; Normal is line perpendicular to orbit plane. Inputs : earth pos r EC to SC frame IJK, inclination Epcylone, sun right ascension Alpha Outputs : earth orbit normal vector (Wx, Wy, Wz, W) in km E20A 011. Earth orbit normal W km using r earth pos frame IJK inclination Alpha = 150128324.5301489500 E20B 011. Earth orbit normal Wx km using r earth pos frame IJK inclination Alpha = -0.0001280575 E20C 011. Earth orbit normal Wy km using r earth pos frame IJK inclination Alpha = 59717589.8947850020 E20D 011. Earth orbit normal Wz km using r earth pos frame IJK inclination Alpha = 137740056.9311193500 020E 011. Earth orbit normal Delta W deg using r earth pos frame IJK inclination Alpha = 66.5607205617 E20F 011. Earth orbit normal Inclination i deg using normal_Delta_W = 23.4392794383 E20G 011. Earth orbit normal Alpha W deg using r earth pos frame IJK, inclination, Alpha = -89.9999999999 E20H 011. Earth orbit normal Right ascension of ascending node using normal Alpha, W = 0.0000000001

Page 147: ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM …myreaders.info/00_Orbital__Mechanics__-__Model_____Simulation... · ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM-MSS)

www.m

yrea

ders

.inf

o

OM-MSS Page 147 Transform Earth State Vectors to Earth position Keplerian elements. 21. Finding Earth position Keplerian elements computed using State Vector, at time input UT. Inputs : State vector year, days decimal of year, revolution, node, State Position Vector [ X, Y, Z ], State Velocity Vector [ Vx, Vy, Vz ] Outputs : Keplerian elements : year, days decimal of year, revolution, node, inclination, right ascension, eccentricity, argument of perigee, mean anomaly, mean motion rev per day, mean angular velocity rev per day, mean motion rev per_day from SMA considering oblateness E21A 011. Keplerian elements year = 2013, days_decimal_of_year = 264.86503, revolution no = 1, node = 2 ie decending E21B 011. inclination_deg = 23.4392794383 E21C 011. right ascension ascending node deg = 180.0000000001 E21D 011. eccentricity = 0.0167102190 E21E 011. argument of perigee_deg = 103.1676813607 E21F 011. mean anomaly deg = 258.7020766085 E21G 011. mean_motion rev per day = 0.0027377786 E21H 011. mean angular velocity rev_per_day = 0.0027377786 E21I 011. mean motion rev per day using SMA considering oblateness = 0.0027377786 Transform Earth position Keplerian elements to Earth State Vectors . 22. Finding Earth position State Vectors, computed using Keplerian elements at time input UT (computed again to validate model equations, Keplerian elements to State Vectors & back) Inputs : Keplerian elements : year, days decimal of year, revolution, node, inclination, right ascension, eccentricity, argument of perigee, mean anomaly, mean motion rev per day, mean angular velocity rev per day, mean motion rev per_day from SMA considering oblateness Outputs : State vector year, days decimal of year, revolution, node, State Position Vector [ X, Y, Z ], State Velocity Vector [ Vx, Vy, Vz ] E22A 011. State vectors year = 2013, days_decimal_of_year = 264.86503, revolution no = 1, node = 2 ie decending E22B 011. state vector position X km = -150128324.5301487700, state vector velocity Vx meter per sec = 484.6892104141 E22C 011. state vector position Y km = -0.0000012219, state vector velocity Vy meter per sec = -27226.6334875568 E22D 011. state vector position Z km = -0.0001390446, state vector velocity Vz meter per sec = 11804.1836852055 E22E 011. state vector position R km = 150128324.5301487700, state vector velocity V meter per sec = 29679.3404099639

Page 148: ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM …myreaders.info/00_Orbital__Mechanics__-__Model_____Simulation... · ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM-MSS)

www.m

yrea

ders

.inf

o

OM-MSS Page 148 Note : Computation of all above parameters, grouped in 1 to 22, corresponds to time (a) Universal time over Greenwich (UT/GMT) : Year = 2013, Month = 9, Day = 22, Hour = 20, Min = 45, Sec = 38.507 (b) Mean Solar time (MST) over Earth Observation point (EP ) : Year = 2013, Month = 9, Day = 23, Hour = 1, Min = 55, Sec = 17.535 Move on to next Astronomical event in orbit Earth around Sun. Next Section - 4.7 Position of earth at time when earth is at winter solstice

Page 149: ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM …myreaders.info/00_Orbital__Mechanics__-__Model_____Simulation... · ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM-MSS)

www.m

yrea

ders

.inf

o

OM-MSS Page 149 OM-MSS Section - 4.7 ---------------------------------------------------------------------------------------------------41 Earth Positional Parameters on Celestial Sphere : Input Year Time when Earth is at Winter solstice . 7. Finding Position of Earth on Celestial Sphere at Input Universal Time, when Earth is at Winter solstice . Input UT Time, when Earth is at Winter solstice : year = 2013, month = 12, day = 21, hour = 17, minute = 10, seconds = 3.73442 Julian Day = 2456648.21532, year_day_decimal = 354.71532, day_hour_decimal = 17.16770 Observation Point on Earth (Bhopal, India) : Lat +ve or -ve 0 to 90 deg = 23.25993 ie deg = 23, min = 15, sec = 35.76 Log 0 to 360 deg = 77.41261 ie deg = 77, min = 24, sec = 45.41 Alt from earth surface in km = 0.49470 First Compute the Sun Position on Celestial Sphere, then Compute the Earth Position on Celestial Sphere. (A) Computed Values for SUN POSITION on Celestial Sphere at Input Ut Time : (Sr. No 1 - 22) 01. Earth around Sun Mean motion rev per day (mm) = 0.0027377786 02. Semi-major axis in km considering oblateness (SMA) = 149598616.31172 03. Earth mean motion deg per day using SMA (mm) = 0.9856003000 04. Sun mean movement deg per day (n sun) = 0.9856003000 05. Eccentricity of earth orbit (e sun) = 0.0167102190 06. Perihelion to input time diff in Julian days = 352.3320268290 07. Mean anomaly in deg per day from n_sun (m sun) = 347.2585513424 08. Sun Mean longitude in deg (Lmean) = 270.4309127840 09. Earth Mean anomaly in deg (ME) = 347.2585513424 10. Sun Ecliptic longitude in deg (Lsun) = 269.9999511320 11. Obliquity of ecliptic in deg (Epcylone) = 23.4374619456 12. Sun Right ascension in deg (Alpha) = 269.9999467376 13. Sun Declination in deg (Delta) = -23.4374619456 14. Sun Mean distance in km (As) = 149598616.31172 15. Sun Radial distance from earth in km (Rs) = 147162417.75585 16. Sun Nodal elongation in deg (U sun) = -90.0000000000 17. Sun Mean anomaly in deg (M sun) = 347.2585513416 18. Sun Eccentric anomaly in deg (E sun) = 347.0438922873 19. Sun True anomaly in deg (T sun) = 346.8274560675 20. Sun Argument of perigee in deg (W sun) = 283.1725439325 21. Sun True anomaly in deg from U & W (V sun) = 346.8274560675 22. Sun Distance in km (d sun) = 147158348.89183 Sun Ecliptic latitude is always nearly zero (the value never exceeds 0.00033 deg) These Values are applied as input for Computing Earth Position on Celestial Sphere around Sun at same input UT Time.

Page 150: ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM …myreaders.info/00_Orbital__Mechanics__-__Model_____Simulation... · ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM-MSS)

www.m

yrea

ders

.inf

o

OM-MSS Page 150 (B) Computed Values for EARTH POSITION on Celestial Sphere around Sun at same Input Ut Time : (Sr. No 1 - 22) Input Time year = 2013, month = 12, day = 21, hour = 17, minute = 10, seconds = 3.73442, corresponding Julian Day = 2456648.2153210002 Observation Point on Earth : Lat +ve or -ve 0 to 90 deg = 23.25993, Log 0 to 360 deg = 77.41261, Alt from earth surface in km = 0.49470 Sun position on Celestial sphere at input time, computed above total 22 parameters. Output Earth Position on Celestial sphere around Sun : Computed below around 120 parameters, presented in 1-22 groups. Number is large, because some parameters are computed using more than one model equation, that require different inputs. This helps in validation of results and understanding the different input considerations. 01. Finding GST Greenwich sidereal time and GHA Greenwich hour angle in 0 to 360 deg, at input UT time YY MM DD HH. Note - for GST, the year 1900 JAN day_1 hr 1200 is ref for time difference in terms of julian_century, for GHA, the year 2000_JAN_day_1 hr_1200 is ref for time difference in terms of julian days. Inputs : Time UT year = 2013, month = 12, day = 21, hour = 17, minute = 10, seconds = 3.73442 Outputs : GST & GHA in 0-360 deg over Greenwich. E01A 011. GST Greenwich sidereal time in 0-360 deg, over Greenwich = 347.94656, hr = 23, min = 11, sec = 47.17421 E01B 011. GHA Greenwich hour angle in 0 to 360 deg, over Greenwich = 347.95673, deg = 347, min = 57, sec = 24.23424 02. Finding Earth latitude & longitude pointing to Sun Ecliptic longitude(Lsun). Inputs : earth inclination, sun true anomaly T_Sun, sun argument of perigee W_Sun, sun right ascension Alpha, earth equator radious, GST at input UT, log SS & EP, earth orbit radious EC to SC Outputs : Earth lat & log pointing to Lsun. E02A 011. Earth latitude +ve or -ve in 0 to 90 deg at UT time = -23.44 ie deg = -23, min = 26, sec = 21.41 E02B 011. Earth longitude 0 to 360 deg = 282.05 ie deg = 282, min = 3, sec = 12.20 03. Finding LST over three longitudes, Greenwich log, Sun mean log (Lmean), and Sun epliptic log (Lsun) . Note - for LST, used sidereal time at Greenwich GST and desired geogrphic longitude Inputs : At Time input UT - GST, Log of Greenwich, sun mean log Lmean, Sun ecliptic log Lsun. Outputs : LST over Greenwich, Lmean, Lsun . E03A 011. LST Local sidereal time in 0-360 deg, over Greenwich longitude = 347.94656, hr = 23, min = 11, sec = 47.17421

Page 151: ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM …myreaders.info/00_Orbital__Mechanics__-__Model_____Simulation... · ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM-MSS)

www.m

yrea

ders

.inf

o

OM-MSS Page 151 E03B 011. LST Local sidereal time in 0-360 deg, over Sun mean longitude (Lmean) = 258.37747, hr = 17, min = 13, sec = 30.59328 E03C 011. LST Local sidereal time in 0-360 deg, over Sun epliptic longitude (Lsun) = 257.94651, hr = 17, min = 11, sec = 47.16248 04. Finding ST0 sidereal time over Greenwich longitude = 0.0, at time input Year JAN day 1 hr 00. Note - this is sidereal time ST at UT year, month = 1, day = 1, hours decimal = 0.0 and geogrphic longitude = 0.0 Inputs : Time input UT Year, JAN day 1 hr 00, Log 0.0 Outputs : ST0 over Greenwich E04 011. ST0 Sidereal time in 0-360 deg, over Greenwich at input UT year, MM 1, DD 1, HH 00 = 100.80678, hr = 6, min = 43, sec = 13.62710 05. Finding ST sidereal time over three longitudes of, Greenwich log, Sun mean log (Lmean), and Sun epliptic log (Lsun) . Note - this is local sidereal time LST; (LST = GST at UT time + geogrphic longitude). Inputs : At Time input UT - Log 0.0, Log Lmean, Log Lsun Outputs : ST over Greenwich, Lmean, Lsun. E05A 011. ST Sidereal time in 0-360 deg, over Greenwich at input UT time = 347.94656, hr = 23, min = 11, sec = 47.17421 E05B 011. ST Sidereal time in 0-360 deg, over Sun mean longitude (Lmean) at input UT time = 258.37747, hr = 17, min = 13, sec = 30.59328 005C 011. ST Sidereal time in 0-360 deg, over Sun longitude (Lsun) at input UT time = 257.94651, hr = 17, min = 11, sec = 47.16248 06. Finding H hour angle in 0 to 360 deg over longitudes of, Greenwich, Lmean, Lsun, Earth Sub Sun point SS, Earth Obseration point EP. Note - used Sun Right ascension Alpha at input time; (hour angle HA = LST - Alpha). Inputs : At Time input UT - Sun Right ascension Alpha and ST Sidereal time over longitudes 0.0, Lmean, Lsun, SS, EP Outputs : Hour Angles over Greenwich, Lmean, Lsun, SS, EP E06A 011. H hour angle 0-360 deg, over Greenwich, = 77.94661, deg = 77, min = 56, sec = 47.80490 E06B 011. H hour angle 0-360 deg, over Lmean, = 348.37753, deg = 348, min = 22, sec = 39.09093 E06C 011. H hour angle 0-360 deg, over Lsun, = 347.94656, deg = 347, min = 56, sec = 47.62898 E06D 011. H hour angle 0-360 deg, over SS, = 0.00000, deg = 0, min = 0, sec = 0.00000 E06E 011. H hour angle 0-360 deg, over EP, = 155.35923, deg = 155, min = 21, sec = 33.21890

Page 152: ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM …myreaders.info/00_Orbital__Mechanics__-__Model_____Simulation... · ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM-MSS)

www.m

yrea

ders

.inf

o

OM-MSS Page 152 07. Finding Delta E is Equation of Time in seconds, at time input UT. Note - this value in seconds accounts for relative movement of sun in elliptical orbit w.r.t earth and effect of obliquity of the ecliptic; its maximum value is 16 minutes (960 sec.); Delta E is computed using time in days from the perihelion, n_sun_deg and w_sun at input UT. Inputs : Time input UT in JD, time perihelion in JD, Sun mean movement n_sun, Eccentricity of earth orbit E_Sun Outputs : Delta E time_equation in seconds. E07 011. Delta E Time Equation in seconds = -92.54574, hr = 0, min = 1, sec = 32.54574 08. Finding GST Greenwich sidereal time, and GHA Greenwich hour angle 0 to 360 deg at time when earth is at perihelion. Inputs : Time in JD when earth at perihelion YY = 2013, MM = 1, DD = 3, hr = 9, min = 11, sec = 56.62 Outputs : GST & GHA in 0-360 deg over Greenwich when earth is at perihelion E08A 011. GST sidereal time in 0-360 deg over Greenwich at time when earth is at perihelion = 241.14177, hr = 16, min = 4, sec = 34.02452 E08B 011. GHA hour angle in 0-360 deg over Greenwich at time when earth is at perihelion = 241.14717, hr = 16, min = 4, sec = 35.32064 09. Finding ST sidereal time and MST mean sidereal time, over Greenwich, using Earth mean motion rev per day . Inputs : GST when earth at perihelion, earth rotation rate, ref. JD2000, time input UT in JD, time perihelion in JD. Outputs : STP, angle perihelion to input JD, ST over Greenwich, MSTO & MST over Greenwich, solar time E09A 011. STP sidereal time in 0-360 deg over Greenwich when earth at perihelion = 241.14177, hr = 16, min = 4, sec = 34.02452 E09B 011. Angle in 0-360 deg from earth at perihelion to input JD using earth rotational rate = 106.79243, 009C 011. ST in 0-360 deg over Greenwich using STP and angle from perihelion at input JD = 347.93420, hr = 23, min = 11, sec = 44.20855 E09D 011. ST in 0-360 deg over Greenwich using STP and earth rotation at UT time = 347.93420, hr = 23, min = 11, sec = 44.20855 E09E 011. MST0 in deg, over Greenwich using JD century days, ref J2000 to I/P YY, M1, D1 hr 00 = 100.80714, hr = 6, min = 43, sec = 13.71450 E09F 011. MST in deg, over Greenwich using JD century in days from ref J2000 to UT time Y M D H = 347.94693, hr = 23, min = 11, sec = 47.26242 E09G 011. Solar time over Greenwich in JD (GMT or input UT - 12 hr) = YY 2013, MM 12, DD 21, hr 5, min 10, sec 3.734, ie JD 2456647.71532 10. Finding Earth orbit radious using true anomaly, Sub Sun point (SS) on earth surface and related paramters . (a) Finding Earth orbit radious using true anomaly. Inputs : semi-major axis SMA, eccentricity of earth orbit e_sun, sun true anomaly T_Sun Outputs : earth orbital radious EC to SC (earth center to sun center)

Page 153: ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM …myreaders.info/00_Orbital__Mechanics__-__Model_____Simulation... · ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM-MSS)

www.m

yrea

ders

.inf

o

OM-MSS Page 153 E10A 011. earth orbital radious EC to SC km using_true anomaly at UT time = 147162430.9672899200 (b) Finding Sub Sun point (SS) over earth surface (Latitude, Longitude, & Latitude radius) pointing to Sun Ecliptic Log (Lsun), Sun height from earth surface over SS, and LST over SS log at time input UT. Note - for SS Latitude, used earth inclination, sun true anomaly T_sun and sun argument of perigee w_sun. for SS Longitude, used Sun right ascension Alpha and sidereal time at Greenwich GST. Inputs : earth inclination, sun true anomaly T_Sun, sun argument of perigee W_Sun, sun right ascension Alpha, earth equator radious, GST at input UT, log SS & EP, earth orbit radious EC to SC Outputs : SS point Latitude, Longitude, Latitude radious, LST & LMT over SS . E10B 011. SS point Latitude +ve or -ve in 0 to 90 deg at UT time = -23.44 ie deg = -23, min = 26, sec = 21.41 E10C 011. SS point Longitude 0 to 360 deg = 282.05 ie deg = 282, min = 3, sec = 12.20 E10D 011. SS point Latitude radious km at UT time = 6374.7700931266 E10E 011. Sun height km from earth surface over SS at UT time = 147156056.1971968100 E10F 011. LST local sidereal time in 0-360 deg over SS log at UT time, (LST = GST + log east) = 270.000 ie hr = 18, min = 0, sec = 0.07540 LST local sidereal time and LMT local mean time with date adjusted to calendar YY MM DD and UT hr mm sec. E10G 011. LST local sidereal time at Sub Sun point (SS) YY = 2013, MM = 12, DD = 21, hr = 18, min = 0, sec = 0.08 E10H 011. LMT local Mean time at Sub Sun point (SS) YY = 2013, MM = 12, DD = 21, hr = 11, min = 58, sec = 16.55 (c) Finding LST and LMT over Earth point(EP) where Observer is, at time input UT. Inputs : EP point Latitude, Longitude Outputs : LST & LMT over EP . E10I 011. LST local sidereal time in 0-360 deg at EP log at UT time, (LST = GST + log east) = 65.360 ie hr = 4, min = 21, sec = 26.29001 LST and LMT with date adjusted to calendar YY MM DD and UT hr mm sec. E10J 011. LST local sidereal time at Earth point (EP) YY = 2013, MM = 12, DD = 22, hr = 4, min = 21, sec = 26.29 E10K 011. LMT local Mean time at Earth point (EP) YY = 2013, MM = 12, DD = 21, hr = 22, min = 19, sec = 42.76

Page 154: ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM …myreaders.info/00_Orbital__Mechanics__-__Model_____Simulation... · ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM-MSS)

www.m

yrea

ders

.inf

o

OM-MSS Page 154 Finding Earth to Sun Position Vectors coordinate in PQW, IJK, SEZ frames and the Vector Coordinate Transforms. First defined coordinate systems, PQW, IJK, SEZ, then computed Position & Velocity vectors in these three coordinate systems. (a) Perifocal Coordinate System (PQW), is Earth Centered Inertial coordinate frame defined in terms of Kepler Orbital Elements. The system is fixed with time (inertial), pointing towards orbit periapsis; the system's origin is Earth center (EC), and its fundamental plane is the orbit plane; the P-vector axis directed from EC toward the periapsis of the elliptical orbit plane, the Q-vector axis swepts 90 deg from P axis in the direction of the orbit, the W-vector axis directed from EC in a direction normal to orbit plane, forms a right-handed coordinate system. (b) Geocentric Coordinate System (IJK), is also an Earth Centered Inertial (ECI) frame, a Conventional Inertial System (CIS). The system is fixed with time (inertial), pointing towards vernal equinox; the system's origin is Earth center (EC), and its fundamental plane is the equator; the I-vector is +X-axis directed towards the vernal equinox direction on J2000, Jan 1, hr 12.00 noon, the J-vector is +Y-axis swepts 90 deg to the east in the equatorial plane, the K-vector is +Z-axis directed towards the North Pole. (c) Topocentric Horizon Coordinate System (SEZ), is Non-Inertial coordinate frame, known as Earth-Centered Earth-Fixed Coordinates (ECEF). The system moves with earth, is not fixed with time (non-inertial), is for use by observers on the surface of earth; the observer's surface forms the fundamental plane, is tangent to earth's surface the S-vector is +ve horizontal-axis directed towards South, the E-vector is +ve horizontal-axis directed towards East, the Z-vector is +ve normal directed upwards on earth surface. Note that axis Z not necessarily pass through earth center, so not used to define as radious vector. 11. Finding Earth center(EC) to Sun center(SC) Range Vector[rp, rq, r] from in PQW frame, perifocal coordinate system. Inputs : Semi-major axis (SMA), Eccentricity of earth orbit (e_sun), Sun eccentric anomaly (E_sun) Outputs : Vector(r, rp rq) in PQW frame E11A 011. r earth pos vector magnitude EC to SC km in PQW frame perifocal cord at UT time = 147162430.96729

Page 155: ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM …myreaders.info/00_Orbital__Mechanics__-__Model_____Simulation... · ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM-MSS)

www.m

yrea

ders

.inf

o

OM-MSS Page 155 E11B 011. rp earth pos vector component EC to SC km in PQW frame perifocal cord at UT time = 143290324.9509236200 E11C 011. rq earth pos vector component EC to SC km in PQW frame perifocal cord at UT time = -33536008.4634748730 Note - r earth pos vector magnitude EC to SC km in PQW frame is same as earth orbital radious computed before using true anomaly. 12. Transform_1 Earth position EC to SC Range Vector[rp, rq] in PQW frame To Range Vector[rI, rJ, rK] in IJK frame, inertial system cord. Inputs : Vector(rp, rq) EC_to_SC km in frame PQW , Alpha rd, w_sun rd, earth_inclination rd , Outputs : Vector(rI, rJ, rK, r) EC_to_SC km in frame IJK E12A 011. rI earth pos vector component EC to SC km frame IJK at UT time = -135018902.5487828300 E12B 011. rJ earth pos vector component EC to SC km frame IJK at UT time = 125.5141403824 E12C 011. rK earth pos vector component EC to SC km frame IJK at UT time = -58537825.7429337430 E12D 011. r earth pos vector magnitude EC to SC km frame IJK at UT time = 147162430.9672938900 Note - r earth pos vector magnitude EC to SC km in PQW frame is same as that compued above in PQW frame. 13. Transform_2 Earth point EP(lat, log, hgt) To EC to SC Range Vector[RI, RJ, RK, R] in IJK frame. Inputs : earth equator radious_km, earth point EP(lat deg, log deg, hgt meter), LST_local_sidereal_time_in_0_to_360_deg_at_EP_log_at_UT_time, Outputs : Vector(RI, RJ, RK, R) Range EC to EP in IJK frame E13A 011. RI pos vector component EC to EP km frame IJK at UT time = 2441.9770992295 E13B 011. RJ pos vector component EC to EP km frame IJK at UT time = 5323.8052057294 E13C 011. RK pos vector component EC to EP km frame IJK at UT time = 2517.6312937817 E13D 011. R pos vector magnitude EC to EP km frame IJK at UT time = 6375.3134317570 14. Transform_3 Earth position EC to SC Range Vectors [rI rJ rK] & [RI RJ RK] To EP to SC Range Vector[rvI, rvJ, rvK] in IJK frame. Inputs : Vector(rI rJ rK) position EC_to_SC km in frame IJK , Vector(RI RJ RK) range EC to SC km in IJK frame, Outputs : Vector(rvI, rvJ, rvK, rv) range EP to SC in IJK frame E14A 011. rvI range vector component EP to SC km frame IJK at UT time = -135021344.5258820700 E14B 011. rvJ range vector component EP to SC km frame IJK at UT time = -5198.2910653470 E14C 011. rvK range vector component EP to SC km frame IJK at UT time = -58540343.3742275240 E14D 011. rv range vector magnitude EP to SC km frame IJK at UT time = 147165672.9912639600

Page 156: ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM …myreaders.info/00_Orbital__Mechanics__-__Model_____Simulation... · ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM-MSS)

www.m

yrea

ders

.inf

o

OM-MSS Page 156 15. Transform_4 Earth point EP to SC Range Vector[rvI, rvJ, rvK] in IJK frame To EP to SC Range Vector[rvS, rvE, rvZ] in SEZ frame. Inputs : lat_pos_neg_0_to_90_deg_at_EP_at_time_UT , LST_local_sidereal_time_in_0_to_360_deg_at_EP_log_at_UT_time Vector(rvI, rvJ, rvK, rv) range EP to SC km in IJK frame, Outputs : Vector(rvS, rvE, rvZ, rv) range EP to SC km in SEZ frame E15A 011. rvS range vector component EP to SC km frame SEZ at UT time = 31550012.9630649570 E15B 011. rvE range vector component EP to SC km frame SEZ at UT time = 122724394.7305014100 E15C 011. rvZ range vector component EP to SC km frame SEZ at UT time = -74840195.9312917890 E15D 011. rv range vector magnitude EP to SC km frame SEZ at UT time = 147165672.9912639300 16. Finding Elevation(EL) and Azimuth(AZ) angle of Sun at Earth Observation point EP . Note : Results computed using 4 different formulations, each require different inputs to give EL & AZ angles. For all situations of Object and Observer positions, a combination of latitude N/S & longitude E/W : Method 1 : for both EL & AZ angles, this does not provide correct results ; Method 2 : for only EL angle, this provides consistent, unambiguous correct results. but for AZ angles the results are ambiguous, need corrections by adding or subtracting values as 180 or 360 or sign change. Method 3 : same as method 2, for EL angle, the results are correct, but for AZ angles the results are ambiguous, need corrections. Method 4 : for finding Azimuth and Distance but not for finding Elevation angle; for AZ angles, this provides correct unambiguous results that need no futher corrections. Therefore for Elevation (EL) angle Method 3 results are accepted and for Azimuth (AZ) angle Method 4 results are accepted . Results verified from other sources; Ref URLs http://www.ga.gov.au/geodesy/astro/smpos.jsp#intzone . NOAA Research http://www.esrl.noaa.gov/gmd/grad/solcalc/ , and http://aa.usno.navy.mil/data/docs/AltAz.php Xavier Jubier, Member IAU http://xjubier.free.fr/en/site_pages/astronomy/ephemerides.html Rem: SS point lat deg = -23.44, log deg = 282.05 YY = 2013, MM = 12, DD = 21, hr = 11, min = 58, sec = 16.55 EP point lat deg = 23.26, log deg = 77.41 YY = 2013, MM = 12, DD = 21, hr = 22, min = 19, sec = 42.76 Elevation(EL) & Azimuth(AZ) angle of Sun at Earth Observation point EP, (method 1 - computed values may be Ambiguous or Incorrect). Inputs : Vector[rvS, rvE, rvZ] range EP to SC km in SEZ frame Outputs : Elevation(EL) & Azimuth(AZ) of Sun at EP

Page 157: ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM …myreaders.info/00_Orbital__Mechanics__-__Model_____Simulation... · ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM-MSS)

www.m

yrea

ders

.inf

o

OM-MSS Page 157 E16A 011. Elevation angle deg of Sun at EP using rv SEZ at UT time = -30.5668840082 E16B 011. Azimuth angle deg of sun at EP using rv SEZ at UT time = 255.5825938098 Elevation(EL) & Azimuth(AZ) angle of Sun at Earth Observation point EP, (method 2 - computed AZ values may be ambiguous & incorrect). Inputs : Time input UT YY MM DD HH, Equator radious, EP lat & log, SS lat & log, Sun declination Delta Outputs : Elevation(EL) & Azimuth(AZ) of Sun at EP E16C 011. Elevation angle deg of Sun at EP using Sun declination diff log range EP to SC = -67.40419 E16D 011. Azimuth angle deg of sun at EP using sun declination diff log range EP to SC = -174.61010 Elevation(EL) & Azimuth(AZ) angle of Sun at Earth Observation point EP, (method 3 - computed AZ values may be ambiguous & incorrect). Inputs : Time input UT YY MM DD HH, Equator radious, EP lat & log, SS lat & log, Sun hgt from EC, Sun range from EP (Sun hgt from EC = earth orbit radious EC to SC km ; Sun range from EP = rv range vector EP to SC km frame SEZ) Outputs : Elevation(EL) & Azimuth(AZ) of Sun at EP E16E 011. Elevation angle deg of Sun at EP using Sun hgt diff log range EP to SC = -67.40528 ie deg = -67, min = 24, sec = 19.03 E16F 011. Azimuth angle deg of sun at EP using sun hgt diff log range EP to SC = 95.39461 ie deg = 95, min = 23, sec = 40.61 Azimuth(AZ) angle of Sun at Earth Observation point EP, (method 4 - computed AZ values is unambiguous & correct). Inputs : Time input UT YY MM DD HH, EP lat & log, SS lat & log Outputs : Azimuth(AZ) of Sun at EP E16G 011. Azimuth angle deg of sun at EP using sun hgt diff log range EP to SC = 264.60539 ie deg = 264, min = 36, sec = 19.39 Due to such incorrect results, finally for Elevation (EL) Method 3 results and for Azimuth (AZ) Method 4 results are accepted. Finally accepted Elevation angle deg of Sun from EP to SC = -67.4052849205 ie deg = -67, min = 24, sec = 19.03 Finally accepted Azimuth angle_deg of Sun from EP to SC = 264.6053872100 ie deg = 264, min = 36, sec = 19.39

Page 158: ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM …myreaders.info/00_Orbital__Mechanics__-__Model_____Simulation... · ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM-MSS)

www.m

yrea

ders

.inf

o

OM-MSS Page 158 Distance in km from Earth observation point(EP) to Sub Sun point(SS) and Earth Velocity meter per sec in orbit at time input UT. 17. Finding Distance in km from Earth observation point(EP) to Sub Sun point(SS) over Earth surface . Inputs : EP lat & log, SS lat & log, Outputs : Distance in km from EP to SS over Earth surface E17A 011. Distance in km Earth observation point(EP) to Sub Sun point(SS) = 17522.14782 Finding Earth Velocity meter per sec in orbit in frame PQW Inputs : semi-major axis SMA, GM_Sun, earth pos r EC to SC frame IJK, eccentricity of earth orbit e_Sun, sun eccentric anomaly E_Sun Outputs : Earth Velocity magnitude and component Xw Yw in frame PQW in meter per sec E17B 011. Velocity magnitude meter per sec using GM, SMA, r earth EC to SC frame IJK at UT time = 30273.6689861666 E17C 011. Velocity component meter per sec in orbit Xw using GM, e_Sun, SMA, E_Sun at UT time = 6788.3947484369 E17D 011. Velocity component meter per sec in orbit Yw using GM, e_Sun, SMA, E_Sun at UT time = 29502.7580172325 Finding Earth Velocity Vector [vX, vY, vZ] in meter per sec in orbit; a Transform of [Xw, Yw] in frame PQW To [vX, vY, vZ] in frame XYZ Inputs : velocity component (Xw, Yw), sun right ascension Alpha, Sun Argument of perigee W_Sun, inclination Epcylone Outputs : earth velocity vector(vX, vY, vZ, vR) meter per sec in frame XYZ E17E 011. vX earth Velocity vector meter per sec using Xw Yw frame PQW RA w i at UT time = 104.0469608256 E17F 011. vY earth Velocity vector meter per sec using Xw Yw frame PQW RA w i at UT time = -30273.4565603953 E17G 011. vZ earth Velocity vector meter per sec using Xw Yw frame PQW RA w i at UT time = 45.1220543039 E17H 011. vR earth Velocity magnitude meter per sec using Xw Yw frame PQW RA w i at UT time = 30273.6689861666

Page 159: ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM …myreaders.info/00_Orbital__Mechanics__-__Model_____Simulation... · ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM-MSS)

www.m

yrea

ders

.inf

o

OM-MSS Page 159 Earth State Vectors : Position [X, Y, Z] in km and Velocity [Vx, Vy, Vz] in meter per sec, at time input UT. 18. Finding Earth State Position Vector [X, Y, Z] in km at time input UT. Inputs : position vector(rI, rJ, rK, r) in frame IJK values assiged to state position vector Outputs : State Position Vector(X, Y, Z, R) in km, frame XYZ E18A 011. State vector position X km at UT time = -135018902.5487828300 E18B 011. State vector position Y km at UT time = 125.5141403824 E18C 011. State vector position Z km at UT time = -58537825.7429337430 E18D 011. State vector position R km at UT time = 147162430.9672938900 19. Finding Earth State Velocity Vector [Vx, Vy, Vz] in meter per sec at time input UT. Inputs : velocity vector(vX, vY, vZ, vR) meter per sec in frame XYZ values assiged to state velocity vector Outputs : state velocity vector(Vx, Vy, Vz, V) meter per sec, frame XYZ E19A 011. State vector velocity Vx meter per sec at UT time = 104.0469608256 E19B 011. State vector velocity Vy meter per sec at UT time = -30273.4565603953 E19C 011. State vector velocity Vz meter per sec at UT time = 45.1220543039 019D 011. State vector velocity V meter per sec at UT time = 30273.6689861666 20. Earth Orbit Normal Vector [Wx, Wy, Wz] in km and angles Delta, i, RA at time input UT; Normal is line perpendicular to orbit plane. Inputs : earth pos r EC to SC frame IJK, inclination Epcylone, sun right ascension Alpha Outputs : earth orbit normal vector (Wx, Wy, Wz, W) in km E20A 011. Earth orbit normal W km using r earth pos frame IJK inclination Alpha = 147162430.9672938900 E20B 011. Earth orbit normal Wx km using r earth pos frame IJK inclination Alpha = -58537825.7429084480 E20C 011. Earth orbit normal Wy km using r earth pos frame IJK inclination Alpha = 54.4170093468 E20D 011. Earth orbit normal Wz km using r earth pos frame IJK inclination Alpha = 135018902.5488411500 020E 011. Earth orbit normal Delta W deg using r earth pos frame IJK inclination Alpha = 66.5607205617 E20F 011. Earth orbit normal Inclination i deg using normal_Delta_W = 23.4392794383 E20G 011. Earth orbit normal Alpha W deg using r earth pos frame IJK, inclination, Alpha = -0.0000532624 E20H 011. Earth orbit normal Right ascension of ascending node using normal Alpha, W = 89.9999467376

Page 160: ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM …myreaders.info/00_Orbital__Mechanics__-__Model_____Simulation... · ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM-MSS)

www.m

yrea

ders

.inf

o

OM-MSS Page 160 Transform Earth State Vectors to Earth position Keplerian elements. 21. Finding Earth position Keplerian elements computed using State Vector, at time input UT. Inputs : State vector year, days decimal of year, revolution, node, State Position Vector [ X, Y, Z ], State Velocity Vector [ Vx, Vy, Vz ] Outputs : Keplerian elements : year, days decimal of year, revolution, node, inclination, right ascension, eccentricity, argument of perigee, mean anomaly, mean motion rev per day, mean angular velocity rev per day, mean motion rev per_day from SMA considering oblateness E21A 011. Keplerian elements year = 2013, days_decimal_of_year = 354.71532, revolution no = 1, node = 2 ie decending E21B 011. inclination_deg = 23.4392794383 E21C 011. right ascension ascending node deg = 269.9999467376 E21D 011. eccentricity = 0.0167102190 E21E 011. argument of perigee_deg = 283.1725439084 E21F 011. mean anomaly deg = 347.2585513649 E21G 011. mean_motion rev per day = 0.0027377786 E21H 011. mean angular velocity rev_per_day = 0.0027377786 E21I 011. mean motion rev per day using SMA considering oblateness = 0.0027377786 Transform Earth position Keplerian elements to Earth State Vectors . 22. Finding Earth position State Vectors, computed using Keplerian elements at time input UT (computed again to validate model equations, Keplerian elements to State Vectors & back) Inputs : Keplerian elements : year, days decimal of year, revolution, node, inclination, right ascension, eccentricity, argument of perigee, mean anomaly, mean motion rev per day, mean angular velocity rev per day, mean motion rev per_day from SMA considering oblateness Outputs : State vector year, days decimal of year, revolution, node, State Position Vector [ X, Y, Z ], State Velocity Vector [ Vx, Vy, Vz ] E22A 011. State vectors year = 2013, days_decimal_of_year = 354.71532, revolution no = 1, node = 2 ie decending E22B 011. state vector position X km = -135018902.5487863400, state vector velocity Vx meter per sec = 104.0469606286 E22C 011. state vector position Y km = 125.5152014755, state vector velocity Vy meter per sec = -30273.4565603953 E22D 011. state vector position Z km = -58537825.7429352700, state vector velocity Vz meter per sec = 45.1220542184 E22E 011. state vector position R km = 147162430.9672977600, state vector velocity V meter per sec = 30273.6689861658

Page 161: ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM …myreaders.info/00_Orbital__Mechanics__-__Model_____Simulation... · ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM-MSS)

www.m

yrea

ders

.inf

o

OM-MSS Page 161 Note : Computation of all above parameters, grouped in 1 to 22, corresponds to time (a) Universal time over Greenwich (UT/GMT) : Year = 2013, Month = 12, Day = 21, Hour = 17, Min = 10, Sec = 3.734 (b) Mean Solar time (MST) over Earth Observation point (EP ) : Year = 2013, Month = 12, Day = 21, Hour = 22, Min = 19, Sec = 42.762 Thus Computed values for Position of Earth on Celestial Sphere corresponding to Standard Epoch time JD2000, and at six Astronomical Events while Earth reaches Perihelion, Vernal equinox, Summer solstice, Aphelion, Autumnal equinox, Winter solstices. A Summary of these Computed values are presented next. Next Section - 4.8 Concluding position of earth at six astronomical events

Page 162: ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM …myreaders.info/00_Orbital__Mechanics__-__Model_____Simulation... · ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM-MSS)

www.m

yrea

ders

.inf

o

OM-MSS Page 162 OM-MSS Section - 4.8 -----------------------------------------------------------------------------------------------------42 Concluding Position of Earth on Celestial Sphere (Sections 4.0 to 4.7). Summary of Earth Position on Celestial Sphere with respect to Sun, at Std Epoch J2000 and at six astronomical events in the Year = 2013. In previous Sections (4.1 to 4.7), presented Earth Position on Celestial Sphere with respect to Sun, at Std Epoch J2000 and in year 2013 when Earth was at Perihelion, Vernal equinox, Summer solstice, Aphelion, Autumnal equinox, Winter solstices. The Earth Observation point (EP) considered as : latitude deg = 23.25993, longitude deg = 77.41261, height km = 0.49470 . The Summary of Computed values presented below, are put in three parts as : - UT/GMT, LMT at Lat/Log of SS, Sun EL & AZ angles at EP, Surface distance EP to SS, Earth Vel; - Earth position Keplerian elements : Inclination, RA of asc. node, Eccentricity, Arg. of Perigee, Mean Anomaly, Mean Motion ; - Earth State Vectors : Position (X, Y, Z) & Velocity (Vx, Vy, Vz) . (a) UT/GMT, LMT at Lat/Log of SS, Sun EL & AZ angles at EP, Surface distance EP to SS and Earth Vel, values at different orbit points Earth Orbit Universal time SubSun Point (SS) Sun hgt at SS Earth Point (EP) Sun angle at EP Dist.EP to SS Earth Vel. Events (GMT Dt/time) (LMT Dt/time lat/log) (km) (LMT Dt/time) (EL/AZ deg) (km) (m/s) Epoch J2000 2000.01.01/ 2000.01.01/ -23.034 147094821.78 2000.01.01/ 2.382 9753.28 30286.06663 12:00:00 12:03:18 0.826 17:09:39 243.631 Perihelion 2013.01.03/ 2013.01.03/ -22.789 147092415.73 2013.01.03/ 33.164 6326.74 30286.55386 09:11:56 12:04:32 43.150 14:21:35 218.319 Vernal equinox 2013.03.20/ 2013.03.20/ 0.000 148983652.48 2013.03.20/ 26.365 7083.54 29906.03259 11:02:09 12:07:26 16.321 16:11:48 257.698 Summer Solstice 2013.06.21/ 2013.06.21/ 23.439 152024178.61 2013.06.21/ 64.608 2826.53 29304.29892 05:01:19 12:01:45 105.111 10:10:58 275.977 Aphelion 2013.07.05/ 2013.07.05/ 22.788 152092067.01 2013.07.05/ 1.165 9888.77 29290.99989 00:18:52 12:04:32 176.418 05:28:31 245.612 Autumnal equinox 2013.09.22/ 2013.09.22/ -0.000 150121946.39 2013.09.23/ -52.189 15828.21 29679.34041 20:45:38 11:52:31 226.719 01:55:17 236.365 Winter solstice 2013.12.21/ 2013.12.21/ -23.439 147156056.20 2013.12.21/ -67.405 17522.15 30273.66899 17:10:03 11:58:16 282.053 22:19:42 95.395

Page 163: ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM …myreaders.info/00_Orbital__Mechanics__-__Model_____Simulation... · ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM-MSS)

www.m

yrea

ders

.inf

o

OM-MSS Page 163 (b) Earth Position Keplerian Elements , values at different orbit points Earth Orbit Epoch Inclination RA of asc. node Eccentricity Arg. of Perigee Mean Anomaly Mean Motion Events (year, day of year) (deg) (deg) (deg) (deg) (deg) (deg) Epoch J2000 2000 0.50000 23.43928 281.28586 0.0167102190 282.93203 357.52800 0.0027377786 Perihelion 2013 2.38329 23.43928 284.29222 0.0167102190 283.15577 0.00000 0.0027377786 Vernal equinox 2013 78.45983 23.43928 0.00000 0.0167102190 283.15977 74.98105 0.0027377786 Summer Solstice 2013 171.20925 23.43928 89.99994 0.0167102190 283.16363 166.39491 0.0027377786 Aphelion 2013 185.01311 23.43928 104.30150 0.0167102190 256.83563 180.00000 0.0027377786 Autumnal equinox 2013 264.86503 23.43928 180.00000 0.0167102190 103.16768 258.70208 0.0027377786 Winter solstice 2013 354.71532 23.43928 269.99995 0.0167102190 283.17254 347.25855 0.0027377786 (c) Earth State Vectors - position & velocity , values at different orbit points Earth Orbit Position X Position Y Position Z Position R Velocity Vx Velocity Vy Velocity Vz Velocity V Events vector(km) vector(km) vector(km) mag.(km) vector(m/s) vector(m/s) vector(m/s) mag.(m/s) Epoch J2000 -125003885.45 -51961735.98 -57556656.24 147101196.66 10756.75 -28227.52 2178.39 30286.07 Perihelion -119085952.63 -64886279.60 -56976844.62 147098790.67 13409.17 -27017.61 2741.95 30286.55 Vernal equinox 148990030.62 0.00 0.00 148990030.62 484.70 27434.65 11894.37 29906.03 Summer Solstice -139485317.94 137.15 60474252.72 152030553.38 -104.03 -29304.08 45.09 29304.30 Aphelion -140226215.40 446.26 58911327.94 152098441.95 1114.70 -29149.25 2653.53 29291.00 Autumnal equinox -150128324.53 -0.00 -0.00 150128324.53 484.69 -27226.63 11804.18 29679.34 Winter solstice -135018902.55 125.52 -58537825.74 147162430.97 104.05 -30273.46 45.12 30273.67 The computed values presented in table (a) (b) (c) show consistency. The angles are expresed in deg and distances in km. End of computing position of Earth on Celestial Sphere at input UT Standard Epoch time JD2000 and at six astronomical events. Move on to Satellites in Orbit around Earth, Ephemeris Data Sets. Next Section - 5 Satellites 0rbit around Earth : Ephemeris data set.

Page 164: ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM …myreaders.info/00_Orbital__Mechanics__-__Model_____Simulation... · ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM-MSS)

www.m

yrea

ders

.inf

o

OM-MSS Page 164 OM-MSS Section - 5 -------------------------------------------------------------------------------------------------------43 SATELLITES ORBIT ELEMENTS : EPHEMERIS, Keplerian ELEMENTS, STATE VECTORS Satellite Ephemeris is Expressed either by 'Keplerian elements' or by 'State Vectors', that uniquely identify a specific orbit. A satellite is an object that moves around a larger object. Thousands of Satellites launched into orbit around Earth. First, look into the Preliminaries about 'Satellite Orbit', before moving to Satellite Ephemeris data and convesion utilities of the OM-MSS software. (a) Satellite : An artificial object, intentionally placed into orbit. Thousands of Satellites have been launched into orbit around Earth. A few Satellites called Space Probes have been placed into orbit around Moon, Mercury, Venus, Mars, Jupiter, Saturn, etc. The Motion of a Satellite is a direct consequence of the Gravity of a body (earth), around which the satellite travels without any propulsion. The Moon is the Earth's only natural Satellite, moves around Earth in the same kind of orbit. (b) Earth Gravity and Satellite Motion : As satellite move around Earth, it is pulled in by the gravitational force (centripetal) of the Earth. Contrary to this pull, the rotating motion of satellite around Earth has an associated force (centrifugal) which pushes it away from the Earth. The centrifugal force equals the gravitational force and perfectly balance to maintain the satellite in its orbit. For a satellite travelling in a circular orbit at altitude 'h' with velocity 'V', these two forces are expressed as : - the centrifugal as F1 = (m * V^2) / (Re + h) and - the gravitational force as F2 = (G * m * Me) /(Re + h )^2 . Where G * Me = 3.99 x 10^14 m^3 / s^2, m is mass of satellite, G is gravitational constant, Me is mass of earth, Re is earth radius. (c) Velocity equations : The two forces F1 and F2 are equal, therefore (m * V^2) / (Re + h) = (G * m * Me) / (Re + h )^2 . Thus satellite velocity 'V' is related to its altitude 'h'; 'V' is constant at all circular orbit points, but vary at elliptical orbit points. Assuming the orbit is Circular, the Satellite Velocty is expressed as V = ((G * Me)/(Re + h))^0.5 , which is simply written as as V = ((G * Me) / r)^0.5, where 'r' = (Re + h) is the distance from satellite to earth centre. Assuming that orbit is elliptical, the satellite Velocty is expressed as V = ((G * Me) * ((2/(Re + h)) - 1/a))^0.5 , which is simply written as as V = ((G * Me) * (2/r - 1/a))^0.5, where 'r' = (Re + h) is distance from satellite to earth centre, and a = (rp + ra)/2 is semi-major axis, interpreted as orbit mean distance from earth center; variables rp & ra are perigee & apogee distances from earth center.

Page 165: ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM …myreaders.info/00_Orbital__Mechanics__-__Model_____Simulation... · ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM-MSS)

www.m

yrea

ders

.inf

o

OM-MSS Page 165 Note that the velocity of a satellite in circular or elliptical orbit depends on its altitude 'h' at that point; secondly, the mass of satellite does not appear in its velocity equations; thus satellite velocity in its orbit is independent of its mass; further, a satellite in elliptical orbit moves faster when closer to earth (near perigee) and moves slower when farther from earth (near apogee). Examples of orbit altitude (km) Vs. velocity (meters/sec), for circular orbits. The typical values are : (1) altitude 200 (km) corresponding velocity 7790 (meters/sec). (2) altitude 500 (km) corresponding velocity 7610 (meters/sec), (3) altitude 800 (km) corresponding velocity 7450 (meters/sec). (4) altitude 35786 (km) corresponding velocity 3070 (meters/sec). (5) altitude Moon 384000 (km) corresponding velocity 1010 (meters/sec). (d) Attitude control : Satellite attitude is defined in terms of three axis - Roll, Pitch, & Yaw. These three axis form the local orbital reference system defined at each point of the orbit by three unit vectors. These vectors are derived from the satellite position and velocity vectors. is fully controlled relative to three axes, at each point of the orbit while the satellite moves in its orbit. - the yaw axis is colinear with the earth's center and the satellite, called the 'geocentric direction' - the roll axis is in the direction of the movement (velocity) of satellite, is perpendicular to geocentric axis, - the pitch axis is perpendicular to the orbital plane. Note, the roll axis does not coincide exactly with the velocity vector due to the eccentricity of the orbit. All three axis pass through the center of gravity of the satellite. The satellite attitude control is important. It helps the communication satellite antennas point towards the region of interest where ground stations are located. Similarly, by maintaining orientation, the solar panel are steered such that the panel surface is normal to Sun to generate full power. Futher, the remote sensing satellite is able to acquire images free from distortion and blurring effects. (e) Time period : One orbit time is called time period of a satellite, calculated as the distance travelled by the satellite divided by its velocity. For Circular Satellite Orbit : time period Pc = circumference of a circle of radius(Re + h) divided by velocity of satellite. = 2 * pi * (((Re + h)^3) / (G * Me))^0.5 . = 2 * pi * ((r^3) / (G * Me))^0.5 , where 'r' is radius of circular orbit from earth ceter. For Elliptical Satellite Orbit : time period Pe = 2 * pi * ((a^3) / (G * Me))^0.5 , where 'a' is semi-major axis of the elliptical orbit. Note : The equations show that the satellite orbit time period increases with increase in altitude. A satellite orbit altitude about 36000 km has its orbit time period roughly 1440 minutes or one sidereal day, ie (23hr,56 min,4sec) for earth to complete one orbit rotation.

Page 166: ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM …myreaders.info/00_Orbital__Mechanics__-__Model_____Simulation... · ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM-MSS)

www.m

yrea

ders

.inf

o

OM-MSS Page 166 Examples of orbit Time period (minutes) Vs. altitude (km), for circular orbits. The typical values are : (1) altitude LEO 200 (km) corresponding Time period 88 (minutes). (2) altitude LEO 500 (km) corresponding Time period 94 (minutes) , (3) altitude LEO 800 (km) corresponding Time period 100 (minutes). (4) altitude Geo 35786 (km) corresponding Time period 1436 (minutes) . (5) altitude Moon 384000 (km) corresponding Time period 40461 (minutes) ie roughly 28 days. (f) Orbits : Two types of orbits, either Circular or Elliptical orbit, are assumed while formulating satellite velocity and its time period. Any satellite can achieve orbit of any distance from the earth if its velocity is sufficient to keep it in orbit or prevent from falling to earth. Thus, the altitudes at which satellites orbit the earth are split into three categories : Low earth orbit, Medium earth orbit, & High earth orbit. Each category serve different purpose. Some orbits provide a constant view of one face of Earth, while others circle over different places in a day. Some orbits are specifically named as Geosynchronous orbit (GSO), Geostationary (GEO), Equatorial Orbit, Polar Orbit, and Sunsynchronous. The Orbit altitudes (km), Time period (minutes) and the usage/mission are briefly mentioned below. (1) Low earth orbit (LEO) : Altitude 160-2,000 (km), Time period 87-127 (min), Used for most Earth Observation Remote Sensing satellites (EORSS), the International Space Station (ISS), the Space Shuttle, and the Hubble Space Telescope (HST). A satellite at 300 (km) altitude has orbital period about 90 (min). In 90 (min), the earth at equator rotates about 2500 (km) . Thus, the satellite after one time period, passes over equator a point/place 2500 (km) west of the point/place it passed over in its previous orbit. To a person on the earth directly under the orbit, a satellite appears above horizon on one side of sky, crosses the sky, and disappears beyond the opposite horizon in about 10 (min). It reappears after 80 (min), but not over same spot, since the earth has rotated during that time. (2) Medium earth orbit (MEO) : Altitude 2000-35,780 (km), Time period 87-1435 (min), Used for navigation satellites of Global positioning called, GPS (20,200 kilometers), Glonass (19,100 kilometers) and Galileo (23,222 kilometers) constellations. The orbit time periods are about 12 hours. The Communications satellites that cover the North and South Pole are also put in MEO. (3) High earth orbit (HEO) : Altitude > 35,780, Time period > a sidereal day (23hr,56 min,4sec), Used to provide coverage over any point on globe, for astronomical work and for the communication in areas usually not possible from other type of orbits. The orbits are highly inclined and highly elliptical, characterized by low-altitude perigee and extremely high-altitude apogee. Such highly elliptical orbits, provide coverage over polar and near polar areas needed in countries, like USA & Russia. Two satellites in any orbit can provide continuous coverage but disadvantage is, satellite position from a point on Earth does not remain same.

Page 167: ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM …myreaders.info/00_Orbital__Mechanics__-__Model_____Simulation... · ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM-MSS)

www.m

yrea

ders

.inf

o

OM-MSS Page 167 (4) Geosynchronous orbit (GSO) : Altitude about 36000 (km), Time period is same as the earth's rotational period (23hr,56 min,4sec). The word 'synchronous' means, for an observer at a fixed location on earth, the satellite returns to exactly same place and same time each day. GSO can be circular or elliptical and of any inclination. The inclination, 0 deg and 90 deg are the special cases of GEO. (5) Geostationary (GEO) : A special case of a Circular GSO orbit in the equatorial plane (inclination zero deg), called Equatorial Orbit. A satellite in this orbit stays fixed relative to earth surface directly over a point on equator. To an observer on ground, the satellite appears notion less. Only in an equatorial orbit, a satellite remain stationary over a point. (6) Equatorial Orbit : Same as Geostationary (GEO); or a special case of a geosynchronous orbit (GSO) that is circular (or nearly circular) and inclination zero (or nearly zero) deg, ie directly above the equator. An orbit directly above equator will have an inclination of 0 deg or 180 deg . (7) Polar Orbit : A strictly defined polar orbit means inclination is 90 deg. If inclination is within a few degrees of 90, then called a near polar orbit. Usually, Polar Orbit refers to near-polar inclination and an altitude of 700 to 900 km. Satellites in polar orbit pass over the equator and every latitude on the Earth's surface at the same local time each day. This means the satellite passes overhead at any location is essentially at the same time throughout the year. This orbit enables regular data collection at consistent times and is useful for long-term comparisons. The weather, environmental and national security related monitoring satellites are placed in polar orbits. (8) Sun-synchronous orbit : This orbit is a special case of the polar orbit, where the orbit inclination and the altitude combines in such a way that the satellite passes over any given point of on the earth surface at the same local solar time, meaning same sunlight. In other words, the surface illumination angle is nearly the same every time. This consistent lighting is a useful characteristic for satellites that image the Earth's surface in visible or infrared wavelengths and for those remote sensing satellites carrying ocean and atmospheric sensing instruments that require sunlight. The Sun-synchronous orbits are useful for the imaging, spy, and weather satellites. Summary of Orbits - Satellites arround Earth (values indicated are approximate) Orbits type Mission Altitude (km) Period Tilt(deg) Shape LEO . Polar sun-sync Remote sensing, Weather 150 - 900 98 - 104 minuts 98 circular . Inclined non-polar International Space Stn 340 91 minuts 51.8 circular . Polar non-sun-sync Earth observing, Scientific 450 - 800 90 - 101 minuts 80 - 94 circular

Page 168: ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM …myreaders.info/00_Orbital__Mechanics__-__Model_____Simulation... · ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM-MSS)

www.m

yrea

ders

.inf

o

OM-MSS Page 168 MEO . Semi synchronous Navigation, Communication, 20,000 12 hours 55 circular Space environment GEO . Geo-synchronous Communication, Early warning 35,786 24 hrs (23hr,56 min,4sec) 0 circular . Geo-stationary Nuclear detection, weather HEO . Geo-synchronous Communication Varies from 12hrs (11hr,58 min) 63.4 long elipse 400 to 35,587 (g) Satellite Ephemeris data : Expressed either by 'Keplerian elements' or by 'State Vectors', that uniquely identify a specific orbit. The Keplerian elements are descriptive of the size, shape, and orientation of an orbital ellipse. The State Vectors represent the 3-D Position and Velocity components of the orbital trajectory at a certain time. These two have their unique advantages. The State Vectors are excellent tool for pre-launch orbit predictions. Keplerian elements, called NASA/NORAD 'Two-Line Elements'(TLE) Ephemeris data set, acquired on a particular day are applied as input to tracking software for accurate predictions of satellite position in next 5 to 7 days. Thereafter a new set of Keplerian elements are acquired. (h) Satellite Orbit Keplerian Element Set : The traditional orbital elements are the six Keplerian elements, that uniquely identify a specific orbit. The Keplerian elements are distributed as NASA/NORAD 'Two-Line Elements'(TLE) Ephemeris data set. The NASA/NORAD 'Two-Line Elements'(TLE) Ephemeris data set are explaned in next section. (i) Satellite Orbit State Vectors Set : It is another common form of Satellite Orbital Element Set. State Vectors represents, Position (X, Y, Z) and Velocity (Vx, Vy, Vz) of a Satellite orbital trajectory in time. Vectors are excellent tool for a pre-launch or any past or future time, prediction of satellite position in orbit. The conversion of Keplerian elements (NASA/NORAD 'Two-Line Elements') to state vectors are presented in next section . (j) Ground Trace : A ground track or ground trace is the path on the surface of the Earth directly below an satellite. It is the projection of the satellite's orbit onto the surface of the Earth. Thus completed, the few preliminaries about 'Satellite Orbit' around earth.

Page 169: ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM …myreaders.info/00_Orbital__Mechanics__-__Model_____Simulation... · ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM-MSS)

www.m

yrea

ders

.inf

o

OM-MSS Page 169 Move on to Satellites Orbit Elements : NASA/NORAD 'Two-Line Elements, Keplerian Element and State Vectors. (Sections - 5.1 to 5.4). First presented NASA/NORAD 'Two-Line Elements'(TLE) Ephemeris data set. This is followed by Conversion of the Keplerian Element Set to State Vector Set and vice versa. Later, Compute Keplerian Element at Perigee prior to Epoch, that can be used as new Ephemeris if perigee is start point for satellite pass. Next Section - 5.1 NASA/NORAD 'Two-Line Elements'(TLE) Ephemeris data set.

Page 170: ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM …myreaders.info/00_Orbital__Mechanics__-__Model_____Simulation... · ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM-MSS)

www.m

yrea

ders

.inf

o

OM-MSS Page 170 OM-MSS Section - 5.1 -----------------------------------------------------------------------------------------------------44 NASA/NORAD 'Two-Line Elements'(TLE) Ephemeris Data Set The Keplerian elements are encoded as text in different formats. The most common format is NASA/NORAD 'Two-Line Elements'(TLE). TLE format consists 3 lines : First line call 'Line 0' contains satellite name, followed by standard two lines call 'Line 1' & 'Line 2' of Orbital Element. TLE is distributed as NASA/NORAD 'Two-Line Elements'(TLE) Ephemeris data set. Example of a TLE for the International Space Station 'ISS (ZARYA)'. There are three lines; line 0 format AAAAAAAAAAA is title 'satellite name', where a disagreement exists about how wide name may be, 11 or 12, or 24 Columns. ISS (ZARYA) 1 NNNNNU NNNNNAAA NNNNN.NNNNNNNN +.NNNNNNNN +NNNNN-N +NNNNN-N N NNNNN line 1 format Total Columns 67, blanks 2 9 18 33 44 53 62 64 . 1 25544U 98067A 08264.51782528 -.00002182 00000-0 -11606-4 0 2927 line 1 with Orbital Element put/filled in. 2 NNNNN NNN.NNNN NNN.NNNN NNNNNNN NNN.NNNN NNN.NNNN NN.NNNNNNNNNNNNNN line 2 format Total Columns 67, blanks 2 8 17 26 34 43 52 . 2 25544 51.6416 247.4627 0006703 130.5360 325.0288 15.72125391563537 line 2 with Orbital Element put/filled in . The format of line 1 & line 2 are explained below. LINE 1 Field Columns Blank Content Values from the above example 1 01-01 02 Line number 1 2 03-07 Satellite number 25544 3 08-08 09 Classification (U = Unclassified) U 4 10-11 International Designator (Last two digits of launch year) 98 5 12-14 International Designator (Launch number of the year) 067 6 15-17 18 International Designator (Piece of the launch) A 7 19-20 Epoch Year (Last two digits of year) 08 8 21-32 33 Epoch (Day of the year and fractional portion of the day) 264.51782528 9 34-43 44 First Time Derivative of the Mean Motion divided by two -.00002182 10 45-52 53 Second Time Derivative of Mean Motion divided by six 00000-0 11 54-61 62 BSTAR drag term -11606-4

Page 171: ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM …myreaders.info/00_Orbital__Mechanics__-__Model_____Simulation... · ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM-MSS)

www.m

yrea

ders

.inf

o

OM-MSS Page 171 12 63-63 64 number 0 (Originally Ephemeris type) 0 13 65-68 Element set number. incremented when a new TLE is generated 292 14 69-69 Checksum (Modulo 10) 7 LINE 2 Field Columns Blank Content Values from the above example 1 01-01 02 Line number 2 2 03-07 08 Satellite number 25544 3 09-16 17 Inclination deg. 51.6416 4 18-25 26 Right Ascension of the Ascending Node (deg) 247.4627 5 27-33 34 Eccentricity (decimal point assumed) 0006703 6 35-42 43 Argument of Perigee (deg) 130.5360 7 44-51 52 Mean Anomaly (deg) 325.0288 8 53-63 Mean Motion (Revs per day) 15.72125391 9 64-68 Revolution number at epoch (Revs) 56353 10 69-69 Checksum (Modulo 10) 7 Note : 1. Where decimal points are assumed, it is leading decimal points, for example Line 1, Field 11 (-11606-4) translates to -0.11606E-4. 2. The orbit number at the epoch time is counted at ascending equator crossings or at perigee. 3. Checksum is computed as follows : Start with zero. For each digit in the line, add the value of the digit. For each minus sign, add 1. For each plus sign, add 2. For each letter, blank, or period, don't add anything. Take the last decimal digit of the result (ie, take the result modulo 10) as the check digit. 4. The International Designator, Line 1 fields (4, 5, 6) are usually blank in the NASA Prediction Bulletins issued. A credible, regular, updated free service source for NASA/NORAD 'Two-Line Elements'(TLE) Bulletins : The Center for Space Standards & Innovation (CSSI) provide worldwide standard data & educational materials to space community. The Data services are offered from CSSI's freely, which includes Two-Line element sets, precision orbit ephemerides, solar weather data, etc. However, for all satellites, you can download the NASA/NORAD 'two-line elements'(TLE) from CelesTrak Web site, URL http://celestrak.com/NORAD/elements/ . See below, for five satellites, the NASA/NORAD 'two-line elements'(TLE) download on May 28, 2014, from site URL http://celestrak.com/NORAD/elements/

Page 172: ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM …myreaders.info/00_Orbital__Mechanics__-__Model_____Simulation... · ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM-MSS)

www.m

yrea

ders

.inf

o

OM-MSS Page 172 The NASA/NORAD 'two-line elements'(TLE) for five satellites download on May 28, 2014, from site URL http://celestrak.com/NORAD/elements/ (a). American Remote Sensing satellite launched on February 11, 2013, the NASA/NORAD TLE down load on May 28, 2014, 18:13 hrs IST LANDSAT 8 1 39084U 13008A 14148.14086282 .00000288 00000-0 73976-4 0 4961 2 39084 98.2215 218.5692 0001087 96.5686 263.5699 14.57098925 68534 (b). French Remote Sensing satellite launched on September 9, 2012, the NASA/NORAD TLE down load on May 28, 2014, 18:13 hrs IST SPOT 6 1 38755U 12047A 14148.14295346 .00000295 00000-0 73402-4 0 9574 2 38755 98.1987 215.8134 0001368 80.3963 279.7434 14.58528066 91251 (c). Indian Remote Sensing satellite launched on July 12, 2010, the NASA/NORAD TLE down load on May 28, 2014, 18:13 hrs IST CARTOSAT 2B 1 36795U 10035A 14148.12955979 .00000641 00000-0 94319-4 0 3461 2 36795 97.9448 207.1202 0016257 44.4835 315.7690 14.78679483209252 (d). International Space Stn launched on Nov. 20, 1998, the NASA/NORAD TLE down load on May 28, 2014, 18:13 hrs IST ISS (ZARYA) 1 25544U 98067A 14148.25353351 .00006506 00000-0 11951-3 0 3738 2 25544 51.6471 198.4055 0003968 47.6724 33.3515 15.50569135888233 (e). Indian Geo Comm. Sat launched on Jan. 05, 2014, the NASA/NORAD TLE down load on May 28, 2014, 18:13 hrs IST GSAT-14 1 39498U 14001A 14146.03167358 -.00000092 00000-0 00000+0 0 1238 2 39498 0.0049 223.9821 0002051 110.2671 354.6468 1.00272265 1407 (f) Natural satellite Moon moves around Earth in the same kind of orbit as the artificial satellites. For Moon, the NASA/NORAD 'Two-Line Elements'(TLE) Bulletins are not easily available or offered regularly in public domain. Giving Keplerian elements for the Moon is much more difficult. The Moon's orbital plane wobbles around that changes inclination about 18 to 28 degrees. The Moon's orbit is also severely perturbed. The perturbations come from Sun, Earth (not being exact sphere) and from major planets. (Ref. http://www.amsat.org/amsat/archive/amsat-bb/200107/msg00247.html ).

Page 173: ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM …myreaders.info/00_Orbital__Mechanics__-__Model_____Simulation... · ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM-MSS)

www.m

yrea

ders

.inf

o

OM-MSS Page 173 However, for the natural satellite Moon, the Keplerian elements set down load on Jun 14, 2014, 16:14 hrs IST, from site URL http://www.logsat.com/lsp-keplerian-elements.asp & http://www.logsat.com/pub/Jun14.txt is : Satellite: Moon , Catalog number: 000000 , Epoch time: 14143.16621081682 , Element set: 357 , Inclination: 18.7965 deg , RA of node: 352.4777 deg , Eccentricity: 0.0512 Arg of perigee: 316.1136 deg , Mean anomaly: 40.2074 deg , Mean motion: 0.036600996000 rev/day , Decay rate: 0 , Epoch rev: 0 , Checksum: 000 This is rewritten in NASA/NORAD 'Two-Line Elements'(TLE) Bulletins form : MOON (natural satellite of earth) 1 00000U 00000A 14143.16621081 .00000000 00000-0 00000-0 0 3574 2 00000 18.7965 352.4777 0512000 316.1136 40.2074 00.036600996 0006 Thus, explained with examples, the format of NASA/NORAD 'Two-Line Elements'(TLE) as the satellite orbital parameters called Keplerian elements and the source for obtaining them for the satellites launched by any country. Move on to Conversion of Keplerian Element Set to State Vector Set and vice versa, applied to six satellites. These six satellites are - LANDSAT 8, SPOT 6, CARTOSAT-2B, ISS (ZARYA), GSAT-14, and Moon . Next Section - 5.2 Conversion of Keplerian Element Set to State Vector Set and vice versa.

Page 174: ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM …myreaders.info/00_Orbital__Mechanics__-__Model_____Simulation... · ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM-MSS)

www.m

yrea

ders

.inf

o

OM-MSS Page 174 OM-MSS Section - 5.2 -----------------------------------------------------------------------------------------------------45 Conversion of Keplerian Element Set to State Vector Set and Vice versa. This utility is applied to six satellites, LANDSAT 8, SPOT 6, CARTOSAT-2B, ISS (ZARYA), GSAT-14, and Moon . The input is respective Satellite's NASA/NORAD 'Two-Line Elements'(TLE). The output is corrsponding State Vector Set for the respective Satellites. Satellite LANDSAT 8 : Conversion of Keplerian Element Set to State Vector Set and vice versa. (a) LANDSAT 8 'Two-Line Elements'(TLE) downloaded on May 28, 2014, 18:13 hrs IST, Satellite launched on February 11, 2013 1 39084U 13008A 14148.14086282 .00000288 00000-0 73976-4 0 4961 2 39084 98.2215 218.5692 0001087 96.5686 263.5699 14.57098925 68534 From this TLE, the data relevant for the purpose are manually interpreted & extracted : Satellite number 39084, LANDSAT 8 , (i) Conversion Utility : Keplerian Elements to State Vectors ( Forward Conversion ) Input : The Keplerian Elements Set at Epoch, extracted from 'Two-Line Elements'(TLE) . EPOCH_year = 2014 EPOCH_days_decimal_of_year = 147.1408628200 EPOCH_inclination_deg = 98.2215000000 EPOCH_right_asc_acnd_node_deg = 218.5692000000 EPOCH_eccentricity = 0.0001087000 EPOCH_argument_of_perigee_deg = 96.5686000000 EPOCH_mean_anomaly_deg = 263.5699000000 EPOCH_mean_motion_rev_per_day = 14.5709892500 EPOCH_revolution = 6853 EPOCH_node_condition = 1 Output : The Computed corresponding State Vectors Set, Position vector(X, Y, Z) and Velocity vector(Vx, Vy, Vz) at Epoch. EPOCH_year = 2014 EPOCH_days_decimal_of_year = 147.1408628200 X = -5535.2447229896 Y = -4411.0085700927 Z = 15.4200278230 R = 7077.8646869006 Vx = -655.5016695670 Vy = 849.8345806371 Vz = 7427.2400585557 V = 7504.3851274216 EPOCH_revolution = 6853 EPOCH_node_condition = 1

Page 175: ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM …myreaders.info/00_Orbital__Mechanics__-__Model_____Simulation... · ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM-MSS)

www.m

yrea

ders

.inf

o

OM-MSS Page 175 (ii) Conversion Utility : State Vectors to Keplerian Elements ( Backward Conversion ) Input : The State Vectors Set at Epoch, computed just above from 'Two-Line Elements'(TLE). EPOCH_year = 2014 EPOCH_days_decimal_of_year = 147.1408628200 X = -5535.2447229896 Y = -4411.0085700927 Z = 15.4200278230 R = 7077.8646869006 Vx = -655.5016695670 Vy = 849.8345806371 Vz = 7427.2400585557 V = 7504.3851274216 EPOCH_revolution = 6853 EPOCH_node_condition = 1 Output : The Computed corresponding Keplerian Elements Set at Epoch. EPOCH_year = 2014 EPOCH_days_decimal_of_year = 147.1408628200 EPOCH_inclination_deg = 98.2215000000 EPOCH_right_asc_acnd_node_deg = 218.5692000000 EPOCH_eccentricity = 0.0001087000 EPOCH_argument_of_perigee_deg = 96.5686000000 EPOCH_mean_anomaly_deg = 263.5698999999 EPOCH_mean_motion_rev_per_day = 14.5709892500 EPOCH_revolution = 6853 EPOCH_node_condition = 1 Continue To next Satellite

Page 176: ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM …myreaders.info/00_Orbital__Mechanics__-__Model_____Simulation... · ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM-MSS)

www.m

yrea

ders

.inf

o

OM-MSS Page 176 Satellite SPOT 6 : Conversion of Keplerian Element Set to State Vector Set and vice versa. (b) SPOT 6 'Two-Line Elements'(TLE) downloaded on May 28, 2014, 18:13 hrs IST, Satellite launched on September 9, 2012 1 38755U 12047A 14148.14295346 .00000295 00000-0 73402-4 0 9574 2 38755 98.1987 215.8134 0001368 80.3963 279.7434 14.58528066 91251 From this TLE, the data relevant for the purpose are manually interpreted & extracted : Satellite number 38755, SPOT 6 , (i) Conversion Utility : Keplerian Elements to State Vectors ( Forward Conversion ) Input : The Keplerian Elements Set at Epoch, extracted from 'Two-Line Elements'(TLE) . EPOCH_year = 2014 EPOCH_days_decimal_of_year = 147.1429534600 EPOCH_inclination_deg = 98.1987000000 EPOCH_right_asc_acnd_node_deg = 215.8134000000 EPOCH_eccentricity = 0.0001368000 EPOCH_argument_of_perigee_deg = 80.3963000000 EPOCH_mean_anomaly_deg = 279.7434000000 EPOCH_mean_motion_rev_per_day = 14.5852806600 EPOCH_revolution = 9125 EPOCH_node_condition = 1 Output : The Computed corresponding State Vectors Set, Position vector(X, Y, Z) and Velocity vector(Vx, Vy, Vz) at Epoch. EPOCH_year = 2014 EPOCH_days_decimal_of_year = 147.1429534600 X = -5736.9414700815 Y = -4136.9553443077 Z = 15.1814434008 R = 7072.9857505978 Vx = -612.4123815408 Vy = 878.2634599352 Vz = 7430.3591738511 V = 7507.1055062891 EPOCH_revolution = 9125 EPOCH_node_condition = 1 (ii) Conversion Utility : State Vectors to Keplerian Elements ( Backward Conversion ) Input : The State Vectors Set at Epoch, computed just above from 'Two-Line Elements'(TLE). EPOCH_year = 2014 EPOCH_days_decimal_of_year = 147.1429534600 X = -5736.9414700815 Y = -4136.9553443077 Z = 15.1814434008 R = 7072.9857505978 Vx = -612.4123815408 Vy = 878.2634599352 Vz = 7430.3591738511 V = 7507.1055062891 EPOCH_revolution = 9125 EPOCH_node_condition = 1 Output : The Computed corresponding Keplerian Elements Set at Epoch.

Page 177: ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM …myreaders.info/00_Orbital__Mechanics__-__Model_____Simulation... · ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM-MSS)

www.m

yrea

ders

.inf

o

OM-MSS Page 177 EPOCH_year = 2014 EPOCH_days_decimal_of_year = 147.1429534600 EPOCH_inclination_deg = 98.1987000000 EPOCH_right_asc_acnd_node_deg = 215.8134000000 EPOCH_eccentricity = 0.0001368000 EPOCH_argument_of_perigee_deg = 80.3963000000 EPOCH_mean_anomaly_deg = 279.7434000000 EPOCH_mean_motion_rev_per_day = 14.5852806600 EPOCH_revolution = 9125 EPOCH_node_condition = 1 Continue To next Satellite

Page 178: ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM …myreaders.info/00_Orbital__Mechanics__-__Model_____Simulation... · ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM-MSS)

www.m

yrea

ders

.inf

o

OM-MSS Page 178 Satellite CARTOSAT 2B : Conversion of Keplerian Element Set to State Vector Set and vice versa. (c) CARTOSAT 2B 'Two-Line Elements'(TLE) downloaded on May 28, 2014, 18:13 hrs IST, Satellite launched on July 12, 2010 1 36795U 10035A 14148.12955979 .00000641 00000-0 94319-4 0 3461 2 36795 97.9448 207.1202 0016257 44.4835 315.7690 14.78679483209252 From this TLE, the data relevant for the purpose are manually interpreted & extracted : Satellite number 36795, CARTOSAT 2B , (i) Conversion Utility : Keplerian Elements to State Vectors ( Forward Conversion ) Input : The Keplerian Elements Set at Epoch, extracted from 'Two-Line Elements'(TLE) . EPOCH_year = 2014 EPOCH_days_decimal_of_year = 147.1295597900 EPOCH_inclination_deg = 97.9448000000 EPOCH_right_asc_acnd_node_deg = 207.1202000000 EPOCH_eccentricity = 0.0016257000 EPOCH_argument_of_perigee_deg = 44.4835000000 EPOCH_mean_anomaly_deg = 315.7690000000 EPOCH_mean_motion_rev_per_day = 14.7867948300 EPOCH_revolution = 20925 EPOCH_node_condition = 1 Output : The Computed corresponding State Vectors Set, Position vector(X, Y, Z) and Velocity vector(Vx, Vy, Vz) at Epoch. EPOCH_year = 2014 EPOCH_days_decimal_of_year = 147.1295597900 X = -6231.7560551250 Y = -3189.4018492384 Z = 14.8069953230 R = 7000.5204759091 Vx = -453.7396013124 Vy = 940.0898291212 Vz = 7477.6527638575 V = 7550.1615459169 EPOCH_revolution = 20925 EPOCH_node_condition = 1 (ii) Conversion Utility : State Vectors to Keplerian Elements ( Backward Conversion ) Input : The State Vectors Set at Epoch, computed just above from 'Two-Line Elements'(TLE). EPOCH_year = 2014 EPOCH_days_decimal_of_year = 147.1295597900 X = -6231.7560551250 Y = -3189.4018492384 Z = 14.8069953230 R = 7000.5204759091 Vx = -453.7396013124 Vy = 940.0898291212 Vz = 7477.6527638575 V = 7550.1615459169 EPOCH_revolution = 20925 EPOCH_node_condition = 1 Output : The Computed corresponding Keplerian Elements Set at Epoch.

Page 179: ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM …myreaders.info/00_Orbital__Mechanics__-__Model_____Simulation... · ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM-MSS)

www.m

yrea

ders

.inf

o

OM-MSS Page 179 EPOCH_year = 2014 EPOCH_days_decimal_of_year = 147.1295597900 EPOCH_inclination_deg = 97.9448000000 EPOCH_right_asc_acnd_node_deg = 207.1202000000 EPOCH_eccentricity = 0.0016257000 EPOCH_argument_of_perigee_deg = 44.4835000000 EPOCH_mean_anomaly_deg = 315.7690000000 EPOCH_mean_motion_rev_per_day = 14.7867948300 EPOCH_revolution = 20925 EPOCH_node_condition = 1 Continue To next Satellite

Page 180: ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM …myreaders.info/00_Orbital__Mechanics__-__Model_____Simulation... · ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM-MSS)

www.m

yrea

ders

.inf

o

OM-MSS Page 180 Satellite ISS (ZARYA) : Conversion of Keplerian Element Set to State Vector Set and vice versa. (d) ISS (ZARYA) 'Two-Line Elements'(TLE) downloaded on May 28, 2014, 18:13 hrs IST, Satellite launched on November 20, 1998 1 25544U 98067A 14148.25353351 .00006506 00000-0 11951-3 0 3738 2 25544 51.6471 198.4055 0003968 47.6724 33.3515 15.50569135888233 From this TLE, the data relevant for the purpose are manually interpreted & extracted : Satellite number 25544, ISS (ZARYA) , (i) Conversion Utility : Keplerian Elements to State Vectors ( Forward Conversion ) Input : The Keplerian Elements Set at Epoch, extracted from 'Two-Line Elements'(TLE) . EPOCH_year = 2014 EPOCH_days_decimal_of_year = 147.2535335100 EPOCH_inclination_deg = 51.6471000000 EPOCH_right_asc_acnd_node_deg = 198.4055000000 EPOCH_eccentricity = 0.0003968000 EPOCH_argument_of_perigee_deg = 47.6724000000 EPOCH_mean_anomaly_deg = 33.3515000000 EPOCH_mean_motion_rev_per_day = 15.5056913500 EPOCH_revolution = 88823 EPOCH_node_condition = 1 Output : The Computed corresponding State Vectors Set, Position vector(X, Y, Z) and Velocity vector(Vx, Vy, Vz) at Epoch. EPOCH_year = 2014 EPOCH_days_decimal_of_year = 147.2535335100 X = 311.7253734371 Y = -4283.4907194611 Z = 5261.0200081909 R = 6791.4502853764 Vx = 7415.4532574405 Vy = 1686.8647169809 Vz = 936.2139516379 V = 7662.3074951298 EPOCH_revolution = 88823 EPOCH_node_condition = 1 (ii) Conversion Utility : State Vectors to Keplerian Elements ( Backward Conversion ) Input : The State Vectors Set at Epoch, computed just above from 'Two-Line Elements'(TLE). EPOCH_year = 2014 EPOCH_days_decimal_of_year = 147.2535335100 X = 311.7253734371 Y = -4283.4907194611 Z = 5261.0200081909 R = 6791.4502853764 Vx = 7415.4532574405 Vy = 1686.8647169809 Vz = 936.2139516379 V = 7662.3074951298 EPOCH_revolution = 88823 EPOCH_node_condition = 1 Output : The Computed corresponding Keplerian Elements Set at Epoch.

Page 181: ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM …myreaders.info/00_Orbital__Mechanics__-__Model_____Simulation... · ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM-MSS)

www.m

yrea

ders

.inf

o

OM-MSS Page 181 EPOCH_year = 2014 EPOCH_days_decimal_of_year = 147.2535335100 EPOCH_inclination_deg = 51.6471000000 EPOCH_right_asc_acnd_node_deg = 198.4055000000 EPOCH_eccentricity = 0.0003968000 EPOCH_argument_of_perigee_deg = 47.6724000000 EPOCH_mean_anomaly_deg = 33.3515000000 EPOCH_mean_motion_rev_per_day = 15.5056913500 EPOCH_revolution = 88823 EPOCH_node_condition = 1 Continue To next Satellite

Page 182: ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM …myreaders.info/00_Orbital__Mechanics__-__Model_____Simulation... · ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM-MSS)

www.m

yrea

ders

.inf

o

OM-MSS Page 182 Satellite GSAT-14) : Conversion of Keplerian Element Set to State Vector Set and vice versa. (e) GSAT-14 'Two-Line Elements'(TLE) downloaded on May 28, 2014, 18:14 hrs IST, Satellite launched on January 05, 2014 1 39498U 14001A 14146.03167358 -.00000092 00000-0 00000+0 0 1238 2 39498 0.0049 223.9821 0002051 110.2671 354.6468 1.00272265 1407 From this TLE, the data relevant for the purpose are manually interpreted & extracted: Satellite number 39498, GSAT-14 , (i) Conversion Utility : Keplerian Elements to State Vectors ( Forward Conversion ) Input : The Keplerian Elements Set at Epoch, extracted from 'Two-Line Elements'(TLE) . EPOCH_year = 2014 EPOCH_days_decimal_of_year = 145.0316735800 EPOCH_inclination_deg = 0.0049000000 EPOCH_right_asc_acnd_node_deg = 223.9821000000 EPOCH_eccentricity = 0.0002051000 EPOCH_argument_of_perigee_deg = 110.2671000000 EPOCH_mean_anomaly_deg = 354.6468000000 EPOCH_mean_motion_rev_per_day = 1.0027226500 EPOCH_revolution = 140 EPOCH_node_condition = 1 Output : The Computed corresponding State Vectors Set, Position vector(X, Y, Z) and Velocity vector(Vx, Vy, Vz) at Epoch. EPOCH_year = 2014 EPOCH_days_decimal_of_year = 145.0316735800 X = 36095.3223130873 Y = -21779.4122304999 Z = 3.4839025250 R = 42157.0290951495 Vx = 1588.6953038064 Vy = 2633.0807004007 Vz = -0.0676820819 V = 3075.2344215913 EPOCH_revolution = 140 EPOCH_node_condition = 1 (ii) Conversion Utility : State Vectors to Keplerian Elements ( Backward Conversion ) Input : The State Vectors Set at Epoch, computed just above from 'Two-Line Elements'(TLE). EPOCH_year = 2014 EPOCH_days_decimal_of_year = 145.0316735800 X = 36095.3223130873 Y = -21779.4122304999 Z = 3.4839025250 R = 42157.0290951495 Vx = 1588.6953038064 Vy = 2633.0807004007 Vz = -0.0676820819 V = 3075.2344215913 EPOCH_revolution = 140 EPOCH_node_condition = 1 Output : The Computed corresponding Keplerian Elements Set at Epoch.

Page 183: ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM …myreaders.info/00_Orbital__Mechanics__-__Model_____Simulation... · ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM-MSS)

www.m

yrea

ders

.inf

o

OM-MSS Page 183 EPOCH_year = 2014 EPOCH_days_decimal_of_year = 145.0316735800 EPOCH_inclination_deg = 0.0049000000 EPOCH_right_asc_acnd_node_deg = 223.9821000000 EPOCH_eccentricity = 0.0002051000 EPOCH_argument_of_perigee_deg = 110.2671000000 EPOCH_mean_anomaly_deg = 354.6468000000 EPOCH_mean_motion_rev_per_day = 1.0027226500 EPOCH_revolution = 140 EPOCH_node_condition = 1 Continue To next Satellite

Page 184: ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM …myreaders.info/00_Orbital__Mechanics__-__Model_____Simulation... · ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM-MSS)

www.m

yrea

ders

.inf

o

OM-MSS Page 184 Satellite MOON : Conversion of Keplerian Element Set to State Vector Set and vice versa. (f) MOON 'Two-Line Elements'(TLE) downloaded on Jun 14, 2014, 16:14 hrs IST, Natural Satellite 1 00000U 00000A 14143.16621081 .00000000 00000-0 00000-0 0 3574 2 00000 18.7965 352.4777 0512000 316.1136 40.2074 00.036600996 0006 From this TLE, the data relevant for the purpose are manually interpreted & extracted : Satellite number 00000, MOON , (i) Conversion Utility : Keplerian Elements to State Vectors ( Forward Conversion ) Input : The Keplerian Elements Set at Epoch, extracted from 'Two-Line Elements'(TLE) . EPOCH_year = 2014 EPOCH_days_decimal_of_year = 142.1662108168 EPOCH_inclination_deg = 18.7965000000 EPOCH_right_asc_acnd_node_deg = 352.4777000000 EPOCH_eccentricity = 0.0512000000 EPOCH_argument_of_perigee_deg = 316.1136000000 EPOCH_mean_anomaly_deg = 40.2074000000 EPOCH_mean_motion_rev_per_day = 0.0366009960 EPOCH_revolution = 0 EPOCH_node_condition = 1 Output : The Computed corresponding State Vectors Set, Position vector(X, Y, Z) and Velocity vector(Vx, Vy, Vz) at Epoch. EPOCH_year = 2014 EPOCH_days_decimal_of_year = 142.1662108168 X = 365705.5648844948 Y = -46450.6213911481 Z = 620.9529484744 R = 368644.2811134813 Vx = 161.8765603889 Vy = 989.7819390712 Vz = 341.1953415596 V = 1059.3802758296 EPOCH_revolution = 0 EPOCH_node_condition = 1 (ii) Conversion Utility : State Vectors to Keplerian Elements ( Backward Conversion ) Input : The State Vectors Set at Epoch, computed just above from 'Two-Line Elements'(TLE). EPOCH_year = 2014 EPOCH_days_decimal_of_year = 142.1662108168 X = 365705.5648844948 Y = -46450.6213911481 Z = 620.9529484744 R = 368644.2811134813 Vx = 161.8765603889 Vy = 989.7819390712 Vz = 341.1953415596 V = 1059.3802758296 EPOCH_revolution = 0 EPOCH_node_condition = 1 Output : The Computed corresponding Keplerian Elements Set at Epoch.

Page 185: ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM …myreaders.info/00_Orbital__Mechanics__-__Model_____Simulation... · ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM-MSS)

www.m

yrea

ders

.inf

o

OM-MSS Page 185 EPOCH_year = 2014 EPOCH_days_decimal_of_year = 142.1662108168 EPOCH_inclination_deg = 18.7965000000 EPOCH_right_asc_acnd_node_deg = 352.4777000000 EPOCH_eccentricity = 0.0512000000 EPOCH_argument_of_perigee_deg = 316.1136000000 EPOCH_mean_anomaly_deg = 40.2074000000 EPOCH_mean_motion_rev_per_day = 0.0366009960 EPOCH_revolution = 0 EPOCH_node_condition = 1 End of the Conversion of the Keplerian Element Set to State Vector Set and vice versa for six Satellites. If any need arise, the above utility can accurately convert the Keplerian Element set into State Vector Set, or the reverse. The source for Keplerian Element set, is NASA/NORAD 'Two-Line Elements'(TLE), mentioned before. Next Section - 5.3 Satellite Orbit Keplerian element at Perigee, prior to Epoch.

Page 186: ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM …myreaders.info/00_Orbital__Mechanics__-__Model_____Simulation... · ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM-MSS)

www.m

yrea

ders

.inf

o

OM-MSS Page 186 OM-MSS Section - 5.3 -----------------------------------------------------------------------------------------------------46 Satellite Orbit Keplerian Element set at Perigee, prior to Epoch. Compute Satellite Orbit Keplerian element set at Perigee prior to Epoch. This utility is applied to six satellites, LANDSAT 8, SPOT 6, CARTOSAT-2B, ISS (ZARYA), GSAT-14, and Moon . The input is of the respective Satellite's NASA/NORAD 'Two-Line Elements'(TLE). The outputs is corrsponding Keplerian element set at Perigee prior to Epoch, for the respective Satellites. (a) LANDSAT 8 'Two-Line Elements'(TLE) downloaded on May 28, 2014, 18:13 hrs IST, Satellite launched on February 11, 2013 1 39084U 13008A 14148.14086282 .00000288 00000-0 73976-4 0 4961 2 39084 98.2215 218.5692 0001087 96.5686 263.5699 14.57098925 68534 From this TLE, the Keplerian Element manually interpreted & extracted : Satellite number 39084, LANDSAT 8 , EPOCH_year = 2014 EPOCH_days_decimal_of_year = 147.1408628200 EPOCH_inclination_deg = 98.2215000000 EPOCH_right_asc_acnd_node_deg = 218.5692000000 EPOCH_eccentricity = 0.0001087000 EPOCH_argument_of_perigee_deg = 96.5686000000 EPOCH_mean_anomaly_deg = 263.5699000000 EPOCH_mean_motion_rev_per_day = 14.5709892500 EPOCH_revolution = 6853 EPOCH_node_condition = 1 Computed Satellite Orbit Keplerian Element Set at PERIGEE prior to Epoch from NORAD TLE as Epoch. PERIGEE_year = 2014 PERIGEE_days_decimal_of_year = 147.0905854502 PERIGEE_inclination_deg = 98.2215000000 PERIGEE_right_asc_acnd_node_deg = 218.5196064188 PERIGEE_eccentricity = 0.0001087000 PERIGEE_argument_of_perigee_deg = 96.7242739798 PERIGEE_mean_anomaly_deg = 359.9999999029 PERIGEE_mean_motion_rev_per_day = 14.5619910304 PERIGEE_revolution = 6853 PERIGEE_node_condition = 1 Move on to next Satellite computing values of 'Keplerian element set at Perigee prior to Epoch' Continue To next Satellite

Page 187: ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM …myreaders.info/00_Orbital__Mechanics__-__Model_____Simulation... · ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM-MSS)

www.m

yrea

ders

.inf

o

OM-MSS Page 187 (b) SPOT 6 'Two-Line Elements'(TLE) downloaded on May 28, 2014, 18:13 hrs IST, Satellite launched on September 9, 2012 1 38755U 12047A 14148.14295346 .00000295 00000-0 73402-4 0 9574 2 38755 98.1987 215.8134 0001368 80.3963 279.7434 14.58528066 91251 From this TLE, the Keplerian Element manually interpreted & extracted : Satellite number 38755, SPOT 6 , EPOCH_year = 2014 EPOCH_days_decimal_of_year = 147.1429534600 EPOCH_inclination_deg = 98.1987000000 EPOCH_right_asc_acnd_node_deg = 215.8134000000 EPOCH_eccentricity = 0.0001368000 EPOCH_argument_of_perigee_deg = 80.3963000000 EPOCH_mean_anomaly_deg = 279.7434000000 EPOCH_mean_motion_rev_per_day = 14.5852806600 EPOCH_revolution = 9125 EPOCH_node_condition = 1 Computed Satellite Orbit Keplerian Element Set at PERIGEE prior to Epoch from NORAD TLE as Epoch. PERIGEE_year = 2014 PERIGEE_days_decimal_of_year = 147.0896431408 PERIGEE_inclination_deg = 98.1987000000 PERIGEE_right_asc_acnd_node_deg = 215.7608394403 PERIGEE_eccentricity = 0.0001368000 PERIGEE_argument_of_perigee_deg = 80.5618466274 PERIGEE_mean_anomaly_deg = 0.0000002622 PERIGEE_mean_motion_rev_per_day = 14.5762585790 PERIGEE_revolution = 9125 PERIGEE_node_condition = 1 Move on to next Satellite computing values of 'Keplerian element set at Perigee prior to Epoch' Continue To next Satellite

Page 188: ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM …myreaders.info/00_Orbital__Mechanics__-__Model_____Simulation... · ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM-MSS)

www.m

yrea

ders

.inf

o

OM-MSS Page 188 (c) CARTOSAT 2B 'Two-Line Elements'(TLE) downloaded on May 28, 2014, 18:13 hrs IST, Satellite launched on July 12, 2010 1 36795U 10035A 14148.12955979 .00000641 00000-0 94319-4 0 3461 2 36795 97.9448 207.1202 0016257 44.4835 315.7690 14.78679483209252 From this TLE, the Keplerian Element manually interpreted & extracted : Satellite number 36795, CARTOSAT 2B , EPOCH_year = 2014 EPOCH_days_decimal_of_year = 147.1295597900 EPOCH_inclination_deg = 97.9448000000 EPOCH_right_asc_acnd_node_deg = 207.1202000000 EPOCH_eccentricity = 0.0016257000 EPOCH_argument_of_perigee_deg = 44.4835000000 EPOCH_mean_anomaly_deg = 315.7690000000 EPOCH_mean_motion_rev_per_day = 14.7867948300 EPOCH_revolution = 20925 EPOCH_node_condition = 1 Computed Satellite Orbit Keplerian Element Set at PERIGEE prior to Epoch from NORAD TLE as Epoch. PERIGEE_year = 2014 PERIGEE_days_decimal_of_year = 147.0702033672 PERIGEE_inclination_deg = 97.9448000000 PERIGEE_right_asc_acnd_node_deg = 207.0616328473 PERIGEE_eccentricity = 0.0016257000 PERIGEE_argument_of_perigee_deg = 44.6751258926 PERIGEE_mean_anomaly_deg = 359.9999995488 PERIGEE_mean_motion_rev_per_day = 14.7774423308 PERIGEE_revolution = 20925 PERIGEE_node_condition = 1 Move on to next Satellite computing values of 'Keplerian element set at Perigee prior to Epoch' Continue To next Satellite

Page 189: ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM …myreaders.info/00_Orbital__Mechanics__-__Model_____Simulation... · ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM-MSS)

www.m

yrea

ders

.inf

o

OM-MSS Page 189 (d) ISS (ZARYA) 'Two-Line Elements'(TLE) downloaded on May 28, 2014, 18:13 hrs IST, Satellite launched on November 20, 1998 1 25544U 98067A 14148.25353351 .00006506 00000-0 11951-3 0 3738 2 25544 51.6471 198.4055 0003968 47.6724 33.3515 15.50569135888233 From this TLE, the Keplerian Element manually interpreted & extracted : Satellite number 25544, ISS (ZARYA) , EPOCH_year = 2014 EPOCH_days_decimal_of_year = 147.2535335100 EPOCH_inclination_deg = 51.6471000000 EPOCH_right_asc_acnd_node_deg = 198.4055000000 EPOCH_eccentricity = 0.0003968000 EPOCH_argument_of_perigee_deg = 47.6724000000 EPOCH_mean_anomaly_deg = 33.3515000000 EPOCH_mean_motion_rev_per_day = 15.5056913500 EPOCH_revolution = 88823 EPOCH_node_condition = 1 Computed Satellite Orbit Keplerian Element Set at PERIGEE prior to Epoch from NORAD TLE as Epoch. PERIGEE_year = 2014 PERIGEE_days_decimal_of_year = 147.2475593942 PERIGEE_inclination_deg = 51.6471000000 PERIGEE_right_asc_acnd_node_deg = 198.4350551515 PERIGEE_eccentricity = 0.0003968000 PERIGEE_argument_of_perigee_deg = 47.6503677902 PERIGEE_mean_anomaly_deg = 0.0000008019 PERIGEE_mean_motion_rev_per_day = 15.5074083546 PERIGEE_revolution = 88823 PERIGEE_node_condition = 1 Move on to next Satellite computing values of 'Keplerian element set at Perigee prior to Epoch' Continue To next Satellite

Page 190: ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM …myreaders.info/00_Orbital__Mechanics__-__Model_____Simulation... · ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM-MSS)

www.m

yrea

ders

.inf

o

OM-MSS Page 190 (e) GSAT-14 'Two-Line Elements'(TLE) downloaded on May 28, 2014, 18:14 hrs IST, Satellite launched on January 05, 2014 1 39498U 14001A 14146.03167358 -.00000092 00000-0 00000+0 0 1238 2 39498 0.0049 223.9821 0002051 110.2671 354.6468 1.00272265 1407 From this TLE, the Keplerian Element manually interpreted & extracted : Satellite number 39498, GSAT-14 , EPOCH_year = 2014 EPOCH_days_decimal_of_year = 145.0316735800 EPOCH_inclination_deg = 0.0049000000 EPOCH_right_asc_acnd_node_deg = 223.9821000000 EPOCH_eccentricity = 0.0002051000 EPOCH_argument_of_perigee_deg = 110.2671000000 EPOCH_mean_anomaly_deg = 354.6468000000 EPOCH_mean_motion_rev_per_day = 1.0027226500 EPOCH_revolution = 140 EPOCH_node_condition = 1 Computed Satellite Orbit Keplerian Element Set at PERIGEE prior to Epoch from NORAD TLE as Epoch. PERIGEE_year = 2014 PERIGEE_days_decimal_of_year = 144.0492548835 PERIGEE_inclination_deg = 0.0049000000 PERIGEE_right_asc_acnd_node_deg = 223.9952481674 PERIGEE_eccentricity = 0.0002051000 PERIGEE_argument_of_perigee_deg = 110.2408036654 PERIGEE_mean_anomaly_deg = 0.0000000029 PERIGEE_mean_motion_rev_per_day = 1.0027598249 PERIGEE_revolution = 140 PERIGEE_node_condition = 1 Move on to next Satellite computing values of 'Keplerian element set at Perigee prior to Epoch' Continue To next Satellite

Page 191: ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM …myreaders.info/00_Orbital__Mechanics__-__Model_____Simulation... · ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM-MSS)

www.m

yrea

ders

.inf

o

OM-MSS Page 191 (f) MOON 'Two-Line Elements'(TLE) downloaded on Jun 14, 2014, 16:14 hrs IST, Natural Satellite 1 00000U 00000A 14143.16621081 .00000000 00000-0 00000-0 0 3574 2 00000 18.7965 352.4777 0512000 316.1136 40.2074 00.036600996 0006 From this TLE, the Keplerian Element manually interpreted & extracted : Satellite number 00000, MOON , EPOCH_year = 2014 EPOCH_days_decimal_of_year = 142.1662108168 EPOCH_inclination_deg = 18.7965000000 EPOCH_right_asc_acnd_node_deg = 352.4777000000 EPOCH_eccentricity = 0.0512000000 EPOCH_argument_of_perigee_deg = 316.1136000000 EPOCH_mean_anomaly_deg = 40.2074000000 EPOCH_mean_motion_rev_per_day = 0.0366009960 EPOCH_revolution = 0 EPOCH_node_condition = 1 Computed Satellite Orbit Keplerian Element Set at PERIGEE prior to Epoch from NORAD TLE as Epoch. PERIGEE_year = 2014 PERIGEE_days_decimal_of_year = 139.1147315693 PERIGEE_inclination_deg = 18.7965000000 PERIGEE_right_asc_acnd_node_deg = 352.4777171774 PERIGEE_eccentricity = 0.0512000000 PERIGEE_argument_of_perigee_deg = 316.1135684193 PERIGEE_mean_anomaly_deg = 359.9999999986 PERIGEE_mean_motion_rev_per_day = 0.0366010099 PERIGEE_revolution = 0 PERIGEE_node_condition = 1 End of the computing values of 'Keplerian element set at Perigee prior to Epoch' for the six Satellites. The Epoch corresponds to NORAD TLE (epoch year & epoch day fraction of the year) of the respective satellites. The Keplerian element at Perigee are often adopted as start point for 'Satellite Pass - Prediction of Ground Trace'. Next Section - 5.4 Concluding NASA/NORAD 'Two-Line Elements, Keplerian Element & State Vectors.

Page 192: ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM …myreaders.info/00_Orbital__Mechanics__-__Model_____Simulation... · ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM-MSS)

www.m

yrea

ders

.inf

o

OM-MSS Page 192 OM-MSS Section - 5.4 -----------------------------------------------------------------------------------------------------47 Concluding Satellite Ephemeris Data, NASA/NORAD 'Two-Line Elements, Keplerian Element & State Vectors. (Sections 5.0 to 5.3) In previous Sections (5.0 to 5.3), the following were presented : 1. Few preliminaries about Satellite Orbit around earth, that included Earth Gravity and Satellite Motion, Velocity equations, Attitude control, Orbit Time period, Orbits types and categories, Ephemeris data and Ground Trace. 2. Explained with examples, the format of NASA/NORAD 'Two-Line Elements'(TLE) as the satellite orbital parameters for six satellites - LANDSAT 8, SPOT 6, CARTOSAT 2B, ISS (ZARYA), GSAT-14 and Moon. 3. Conversion of Keplerian Element Set to State Vector Set and Vice versa, applied to all six satellites mentioned above. 4. Computed Satellite Orbit Keplerian element set at Perigee prior to Epoch for all six satellites, using respective satellite's TLE. End of preliminaries about 'Satellite Orbit' around earth and Satellite Ephemeris data and convesion utilities of the OM-MSS software. Move on to satellites motion around earth, computing Orbital & Positional Parameters at Epoch. Next Section - 6 Satellites Motion in Orbit around Earth.

Page 193: ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM …myreaders.info/00_Orbital__Mechanics__-__Model_____Simulation... · ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM-MSS)

www.m

yrea

ders

.inf

o

OM-MSS Page 193 OM-MSS Section - 6 -------------------------------------------------------------------------------------------------------48 SATELLITES MOTION AROUND EARTH : ORBITAL & POSITIONAL PARAMETERS AT EPOCH The Satellites Orbit around Earth, Counterclockwise, in the same way as Earth orbits around Sun. In the previous section, the Preliminaries about 'Satellite Orbit' followed by NASA/NORAD 'Two-Line Elements'(TLE) were presented. Here Presented Satellites Motion around Earth : Computing Orbital & Positional parameters, the OM-MSS Software Utility. This utility is applied one-by-one to six Satellites, LANDSAT 8, SPOT 6, CARTOSAT-2B, ISS (ZARYA), GSAT-14, and Moon . The Input is NASA/NORAD 'Two-Line Elements'(TLE) Bulletin of the respective Satellite. The Output is the corresponding Satellite's Motion around Earth the Orbital & Positional parameters. Satellite Motion around Earth is represented by computing around 120 orbital parameters, put into 28 groups. The number is large, because some parameters are computed using more than one model equation, that require different inputs. This confirms accuracy & validation of results and understanding the different input considerations. Satellite Orbital & Positional parameters for computation purpose are put into following groups : 01. UT Year and Days decimal of year : Convert into UT YY MM DD hh min sec & Julian day. 02. Satellite orbit Semi major axis in km, Ignoring and also Considering earth oblatenes. 03. Satellite Mean motion in rev per day, Ignoring and also Considering earth oblatenes. 04. Satellite Orbit Time Period in minute at time_t Considering earth oblatenes. 05. Satellite Rate of change of Right Ascension and Argument of Perigee in deg per_day at time_t. 06. Satellite Mean anomaly, Eccentric anomaly, True anomaly in deg at time_t considering earth oblateness. 07. Satellite position vector[rp, rq] from Earth center(EC) to Sat in PQW frame, perifocal coordinate system. 08. Satellite Position Range Vector from Earth Ceter(EC) to Satellite(SAT) - finding Range Vector[rI rJ rK r] Components in km in frame IJK 09. GST Greenwich sidereal time and GHA Greenwich hour angle in 0 to 360 deg, at input at time_t. 10. Satellite(SAT) Orbit point direction : Finding Right Ascension(Alpha) deg and Declination(Delta) deg using angles 11. Satellite Longitude & Latitude in deg at time_t; (ie Sub-Sat point log & lat on earth surface ). 12. Satellite height in km from EC to Sat and from Earth surface to Sat at time_t. 13. Distance of Sub-Sat point To Earth Stn(ES) in km over Earth surface at time_t.

Page 194: ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM …myreaders.info/00_Orbital__Mechanics__-__Model_____Simulation... · ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM-MSS)

www.m

yrea

ders

.inf

o

OM-MSS Page 194 14. Local sidereal time(LST) and Local mean time(LMT) over Sub-Sat point Longitude on earth. 15. Local sidereal time(LST) and Local mean time(LMT) Over Earth stn (ES) or Earth point(EP) Longitude. 16. Earth Stn Position Vector from Earth Center(EC) to Earth Stn(ES) : Finding Range Vector[RI, RJ, RK, R] Components in IJK frame. 17. Satellite Position Range Vector from Earth Stn(ES) to SAT : finding Range Vector[rvI, rvJ, rvK, rv] Components in km in IJK frame 18. Satellite Position Range Vector from Earth Stn(ES) to SAT : finding Range Vector[rvS, rvE, rvZ, rv] Components in km in SEZ frame 19. Elevation(EL) and Azimuth(AZ) angle of Satellite at Earth Observation point ES or EP. 20. Satellite Velocity meter per sec in orbit. 21. Satellite Velocity Vector [vX, vY, vZ] in meter per sec in orbit in frame XYZ. 22. Satellite Pitch and Roll angles. 23. Satellite State Vectors - Position [ X, Y, Z ] in km and velocity [ Vx, Vy, Vz ] in meter per sec at time_t. 24. Satellite Direction ie right ascension alpha deg and declination delta deg from sat position vector. 25. Satellite Angular momentum km sqr per sec : finding Hx Hy Hz H from state vector pos and vel. 26. Satellite Orbit normal Vector : finding Wx Wy Wz W Delta Alpha from r_sat_pos frame IJK, i, RA. 27. Satellite Position Keplerian elements computed using State Vector, at time input UT. 28. Satellite position State Vectors, computed using Keplerian elements at time input UT Computing Orbital & Positional parameters, for following Satellites respectively : (a) LANDSAT 8 : American satellite launched on February 11, 2013, the NASA/NORAD TLE down load on May 28, 2014, 18:13 hrs IST (a) SPOT 6 : French satellite launched on September 9, 2012, the NASA/NORAD TLE down load on May 28, 2014, 18:13 hrs IST (a) CARTOSAT 2B : Indian satellite launched on July 12, 2010, the NASA/NORAD TLE down load on May 28, 2014, 18:13 hrs IST (a) ISS (ZARYA) : International Space Stn launched on Nov. 20, 1998, the NASA/NORAD TLE down load on May 28, 2014, 18:13 hrs IST (a) GSAT-14 : Indian Geo Comm. Sat launched on Jan. 05, 2014, the NASA/NORAD TLE down load on May 28, 2014, 18:13 hrs IST (a) Moon : Natural satellite, moves around Earth , the Keplerian elements set down load on Jun 14, 2014, 16:14 hrs IST Input NASA/NORAD 'TWO-LINE ELEMENTS' of respective Satellite, and Earth stn Latitude & Longitude in deg and Height in meter. Move on to all six respective Satellites, one-by-one for computing Orbital & Positional parameters in Section (6.1 to 6.7). Next Section - 6.1 Computing Orbital & Positional parameters for Satellite LANDSAT 8 .

Page 195: ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM …myreaders.info/00_Orbital__Mechanics__-__Model_____Simulation... · ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM-MSS)

www.m

yrea

ders

.inf

o

OM-MSS Page 195 OM-MSS Section - 6.1 ---------------------------------------------------------------------------------------------------49 Satellite LANDSAT 8 : Computing Orbital & Positional parameters corresponding to input NASA/NORAD 'Two-Line Elements'(TLE) Bulletins. (a) LANDSAT 8 'Two-Line Elements'(TLE) downloaded on May 28, 2014, 18:13 hrs IST, Satellite launched on February 11, 2013 1 39084U 13008A 14148.14086282 .00000288 00000-0 73976-4 0 4961 2 39084 98.2215 218.5692 0001087 96.5686 263.5699 14.57098925 68534 From this TLE, the data relevant for the purpose are manually interpreted & extracted : Satellite number 39084, LANDSAT 8 , EPOCH_year = 2014 EPOCH_days_decimal_of_year = 147.1408628200 EPOCH_inclination_deg = 98.2215000000 EPOCH_right_asc_acnd_node_deg = 218.5692000000 EPOCH_eccentricity = 0.0001087000 EPOCH_argument_of_perigee_deg = 96.5686000000 EPOCH_mean_anomaly_deg = 263.5699000000 EPOCH_mean_motion_rev_per_day = 14.5709892500 EPOCH_revolution = 6853 EPOCH_node_condition = 1 Earth_stn_latitude_deg = 23.25993 Earth stn longitude_deg = 77.41261 Earth surface height_meter = 494.70000 Earth stn tower_height_meter = 15.00000 Earth stn_height_meter = 509.70000 Earth stn min EL look_angle_deg = -5.00000 Note : EPOCH Corresponds to UT year = 2014, month = 5, day = 28, hr = 3, min = 22, sec = 50.54765 which is Greenwich meam time ie GMT Converted to Local Meam Time at Earth Stn Longitude, as regular Calender date : year = 2014, month = 5, day = 28, hr = 8, min = 32, sec = 29.58 At this instant Sun Position as seen from Earth Stn Longitude : Sun angles EL deg = 42.87, AZ deg = 81.74, Sun Surface distance km = 5246.15, Radial km = 151596372.18, Sun Rise D:28, H:05, M:17, S:03 Sun Set D:28, H:18, M:40, S:20 Move to Compute Satellie Orbital parameters corresponding to input NASA/NORAD 'Two-Line Elements'(TLE) Bulletins, and Earth Stn location. 01. Input EPOCH_year and EPOCH_days_decimal_of_year, Converted into UT YY MM DD hh min sec & Julian day. S01 011. Input UT year = 2014, month = 5, day = 28, hr = 3, min = 22, sec = 50.54765, and julian_day = 2456805.6408628202 02. Finding Satellite orbit Semi major axis in km, Ignoring and also Considering earth oblatenes . (a) Semi major axis (SMA) km at time t Ignoring earth oblatenes . Inputs : SAT mean_motion rev per day at time t, GM_EARTH . Page 196

Page 196: ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM …myreaders.info/00_Orbital__Mechanics__-__Model_____Simulation... · ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM-MSS)

www.m

yrea

ders

.inf

o

OM-MSS Page 196 Outputs : SAT Orbit semi major axis km in km and constant_A, constant_k1 . S02A 011. Satellite orbit Semi major axis in km at time t, Ignoring earth oblatenes = 7080.69383, (b) Semi major axis (SMA) in km at time_t Considering earth oblatenes Inputs : SAT mean_motion rev per day at time_t, GM_EARTH , inclination deg at time_t, eccentricity at time_t, constant_k2 Outputs : SAT Orbit semi major axis km in km at time_t and constant_A, constant_k1, constant_k3 . S02B 011. Satellite orbit Semi major axis km at time t, Considering earth oblatenes = 7077.77844, 03. Finding Satellite Mean motion in rev per day, Ignoring and also Considering earth oblatenes . (a) Nominal mean motion rev per day at time_t Ignoring earth oblateness . Inputs : SAT Orbit semi major axis in km ignoring oblateness at time_t, constant_k1 . Outputs : SAT nominal mean motion in rev_per_day at time_t, ignoring earth oblateness S03A 011. Satellite Nominal Mean motion in rev_per_day at time_t using SMA Ignoring earth oblateness = 14.57099, (b) Mean motion rev per day at time_t Considering earth oblatenes Inputs : SAT nominal mean motion rad per day at time_t Ignoring_oblateness, constant_k2, constant_k3, SAT orbit semi major axis in km considering oblateness at time_t. Outputs : SAT mean motion rev per day at time_t, considering earth oblatenes . S03B 011. Satellite Mean motion in rev_per_day at time t using SMA Considering earth oblatenes = 14.56199, Note - This calculted value is slightly less than the mean motion rev_per_day as EPH input from NORAD TLE 04. Finding Satellite Orbit Time Period in minute at time_t Considering earth oblatenes . Inputs : SAT orbit semi major axis in km considering oblateness at time_t, GM_EARTH . Outputs : SAT orbit time period in minute at time_t considering earth oblatenes . S04 011. Satellite orbit Time Period in minute at time_t using SMA Considering earth oblatenes = 98.76548, 05. Finding Satellite Rate of change of Right Ascension and Argument of Perigee in deg per_day at time_t. (a) Rate of change of Right Ascension in deg per day at time_t . Inputs : SAT mean motion rev per day at time_t considering earth oblatenes, constant_k2, SAT orbit eccentricity at time_t, SAT semi major axis km considering oblateness at time_t, SAT orbit inclination deg at time_t .

Page 197: ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM …myreaders.info/00_Orbital__Mechanics__-__Model_____Simulation... · ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM-MSS)

www.m

yrea

ders

.inf

o

OM-MSS Page 197 Outputs : SAT rate of change of right ascension in deg per day at time_t and constant_k_deg_per_day S05A 011. Satellite Rate of change of Right Ascension in deg per day at time_t = 0.98640, (b) Rate of change of Argument of Perigee in deg per_day at time_t . Inputs : SAT orbit constant_k_deg_per_day, SAT orbit inclination deg at time_t SAT orbit semi major axis km considering oblateness at time_t Outputs : SAT rate of change of argument of perigee in deg per day at time_t S05B 011. Satellite Rate of change of Argument of Perigee in deg per day at time_t = -3.09630, 06. Finding Satellite Mean anomaly, Eccentric anomaly, True anomaly in deg at time_t considering earth oblateness. Inputs : SAT mean anomaly rad at time_t, mean_motion_rad_per_day_at_time_t considering_oblateness, SAT orbit eccentricity_at_time_t Outputs : SAT mean anomaly, eccentric anomaly, and true anomaly in deg at time_t onsidering earth oblateness. S06A 011. Satellite Mean anomaly in deg at time_t = 263.56990, same as EPH mean anomaly S06A 011. Satellite Eccentric anomaly in deg at time_t = 263.56371, S06A 011. Satellite True anomaly in deg at time_t = 263.55752, Note - 1. Here after, the Earth Oblateness is always considered for the computation of satellite orbit parameters, and not repeatedly mentioned. Satellite to Earth, the Position Vectors coordinate and the Vector Coordinate Transforms are in PQW, IJK, SEZ frames . - Perifocal Coordinate System (PQW) is Earth Centered Inertial coordinate frame defined in terms of Kepler Orbital Elements. - Geocentric Coordinate System(IJK) is Earth Centered Inertial (ECI) frame, a Conventional Inertial System (CIS). - Topocentric Horizon Coordinate System(SEZ), is Non-Inertial coordinate frame, known as Earth-Centered Earth-Fixed Coordinates (ECEF). Each of these coordinate system were explained in detail before and therefore not repeated any more. 07. Finding Satellite position vector[rp, rq] from Earth center(EC) to Sat in PQW frame, perifocal coordinate system. Inputs : SAT orbit semi-major axis (SMA), SAT orbit eccentricity, SAT eccentric anomaly, SATtrue anomaly at time_t Outputs : Vector(r, rp rq) in PQW frame S07A 011. r Satellite pos vector magnitude EC to Sat km in PQW frame perifocal cord at time_t = 7077.86469 S07B 011. rp Satellite pos vector component EC to Sat km in PQW frame perifocal cord at time_t = -794.1764390079 S07C 011. rq Satellite pos vector component EC to Sat km in PQW frame perifocal cord at time_t = -7033.1680137615

Page 198: ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM …myreaders.info/00_Orbital__Mechanics__-__Model_____Simulation... · ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM-MSS)

www.m

yrea

ders

.inf

o

OM-MSS Page 198 08. Satellite Position Vector Earth Ceter(EC) to Satellite(SAT) - finding Range Vector(rI rJ rK r) Components in km in frame IJK Note - Transform_1 : EC to SAT Vector(rp, rq) in frame PQW To EC to SAT Vector(rI rJ rK r) in frame IJK. Inputs : Vector(rp, rq) EC to Sat in km in frame PQW, SAT right ascension of ascending node at time_t, SAT argument of perigee rad at time_t, SAT orbit inclination rad at time_t . Outputs : Vector(rI, rJ, rK, r) EC to SAT in km in frame IJK S08A 011. rI Satellite pos vector component EC to Sat km frame IJK at at time_t = -5535.2447229896 S08B 011. rJ Satellite pos vector component EC to Sat km frame IJK at at time_t = -4411.0085700927 S08C 011. rK Satellite pos vector component EC to Sat km frame IJK at at time_t = 15.4200278230 S08D 011. r Satellite pos vector magnitude EC to Sat km frame IJK at at time_t = 7077.8646869006 Note - r Satellite pos vector magnitude EC to Sat km in PQW frame is same as that computed above in PQW frame. 09. Finding GST Greenwich sidereal time and GHA Greenwich hour angle in 0 to 360 deg, at input at time_t . Note - for GST, the year 1900 JAN day_1 hr 1200 is ref for time difference in terms of julian_century, for GHA, the year 2000_JAN_day_1 hr_1200 is ref for time difference in terms of julian days. Inputs : Time t UT year = 2014, month = 5, day = 28, hour = 3, minute = 22, seconds = 50.54765 Outputs : GST & GHA in 0-360 deg over Greenwich. S09A 011. GST Greenwich sidereal time in 0-360 deg, over Greenwich = 296.30768, hr = 19, min = 45, sec = 13.84416 S09B 011. GHA Greenwich hour angle in 0 to 360 deg, over Greenwich = 296.30959, deg = 296, min = 18, sec = 34.52861 10. Satellite(SAT) Orbit point direction : Finding Right Ascension(Alpha) deg and Declination(Delta) deg using angles Inputs : SAT orbit inclination deg at_time_t, EPH right ascension ascending node deg, SAT argument of perigee deg at time_t, SAT true anomaly deg calculated at time_t Outputs : SAT Right Ascension(Alpha) and Declination(Delta) in deg at time_t S10A 011. SAT Right Ascension(Alpha) in deg = 218.5872355801 S10B 011. SAT Declination(Delta) in deg = 0.1248262368 11. Finding Satellite Longitude & Latitude in deg at time_t; (ie Sub-Sat point log & lat on earth surface ). Inputs : SAT right ascension ascending node deg at time_t, GST in 0-360 deg over Greenwich at time_t Outputs : Satellite (Sub-Sat point) longitude 0 to 360 deg at time_t.

Page 199: ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM …myreaders.info/00_Orbital__Mechanics__-__Model_____Simulation... · ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM-MSS)

www.m

yrea

ders

.inf

o

OM-MSS Page 199 S11A 011. Satellite longitude 0 to 360 deg at time_t = 218.59 ie deg = 218, min = 35, sec = 14.05 Inputs : argument of_perigee rad at_time_t, inclination rad at time_t, true anomaly rad calculated at time_t. Outputs : Satellite (Sub-Sat point) latitude +ve or -ve in 0 to 90 deg at time_t. S11B 011. Satellite latitude +ve or -ve in 0 to 90 deg at time_t = 0.12 ie deg = 0, min = 7, sec = 29.37 12. Finding Satellite height in km from EC to Sat and from Earth surface to Sat at time_t. (a) Satellite height in km from EC to Sat; (ie Sat orbit radius EC to Sat in km at time_t). Note - This is SAME as r sat pos vector magnitude EC to Sat in frame IJK calculated above in TRANSFORN_1 . Inputs : SAT true anomaly at time_t, semi_major_axis_km, inclination at time_t . Outputs : Sub-Sat point longitude 0 to 360 deg at time_t. S12A 011. Satellite orbital radious EC to SAT in km using SAT true anomaly at time_t = 7077.86 (b) Satellite height in km from earth surface. Inputs : Sub-Sat point latitude +ve or -ve in 0 to 90 deg at time_t, earth_equator_radious_km . Outputs : Sat height in km from earth surface. S12B 011. Satellite height in km from earth surface at time_t = 699.72 13. Finding Distance of Sub-Sat point To Earth Stn(ES) in km over Earth surface at time_t . Inputs : Sub-Sat point lat & log, ES lat & log . Outputs : Distance of Sub-Sat point To Earth Stn(ES) in km over Earth surface S13 011. Distance of Sub-Sat point To Earth Stn(ES) in km over Earth surface = 15098.60365 14. Finding Local sidereal time(LST) and Local mean time(LMT) over Sub-Sat point Longitude on earth . (a) Local sidereal time(LST) in 0 to 360 deg over Sub-Sat point Longitude on earth . Inputs : GST sidereal_time in 0 to 360 deg at Greenwich at time_t, satellite log in 0 to 360 deg at time_t . Outputs : LST local sidereal time in 0 to_360 deg at SAT longitude at time_t. S14A 011. Local sidereal time(LST) over Sub-Sat point Longitude at time_t = 154.89 (b) Local sidereal time(LST) and local Mean time(LMT) adjusted to calendar date(CD) over Sub-Sat point Longitude on earth . Note - The LST and LMT in hr min sec with YY MM DD adjusted to calendar date (CD) of longitude at time_t .

Page 200: ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM …myreaders.info/00_Orbital__Mechanics__-__Model_____Simulation... · ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM-MSS)

www.m

yrea

ders

.inf

o

OM-MSS Page 200 Here LST in deg is re-calculated alterately in terms of Julian Day (JD) that account for calendar date (CD) of longitude. Inputs : GMT_JD, Sat longitude_in_0_to_360_deg . Outputs : LST local sidereal time in 0 to_360 deg at SAT longitude at time_t. S14B 011. Local sidereal time(LST) in 0 to 360_deg over Sub-Sat point Longitude at time_t = 154.90 S14C 011. LST over Sub-Sat Log, with date adj to CD expressed in JD = 2456805.93, ie YY = 2014, MM = 5, DD = 28, hr = 10, min = 19, sec = 34.87 S14D 011. LMT over Sub-Sat Log, with date adj to CD expressed in JD = 2456805.25, ie YY = 2014, MM = 5, DD = 27, hr = 17, min = 57, sec = 11.48 15. Finding Local sidereal time(LST) and Local mean time(LMT) Over Earth stn (ES) or Earth point(EP) Longitude . (a) Local sidereal time(LST) in 0 to 360 deg over Earth stn(ES) Longitude . Inputs : GST sidereal_time in 0 to 360 deg at Greenwich at time_t, Earth stn(ES) longitude_in_0_to_360_deg . Outputs : LST local sidereal time in 0 to_360 deg at Earth stn(ES) longitude at time_t. S15A 011. Local sidereal time(LST) over Earth stn(ES) Longitude at time_t = 13.72 (b) Local sidereal time(LST) and local Mean time(LMT) adjusted to calendar date(CD) over Earth stn(ES) Longitude . Note - The LST and LMT in hr min sec with YY MM DD adjusted to calendar date (CD) of longitude at time_t . Here LST in deg is re-calculated alterately in terms of Julian Day (JD) that account for calendar date (CD) of longitude. Inputs : GMT_JD, Earth stn(ES) longitude_in_0_to_360_deg . Outputs : LST local sidereal time in 0 to_360 deg at Earth stn (ES) longitude at time_t. S15B 011. Local sidereal time(LST) in 0 to 360_deg over Earth stn (ES) Longitude at time_t = 13.72 S14C 011. LST over ES Log, with date adj to CD expressed in JD = 2456806.54, ie YY = 2014, MM = 5, DD = 29, hr = 0, min = 54, sec = 52.96 S15D 011. LMT over ES Log, with date adj to CD expressed in JD = 2456805.86, ie YY = 2014, MM = 5, DD = 28, hr = 8, min = 32, sec = 29.58 16. Earth Stn (ES) Position Vector from Earth Center(EC) to Earth Stn(ES) : Finding Range Vector(RI, RJ, RK, R) Components in IJK frame Note - Transform_2 : ES position cord(lat, log, hgt) To EC to ES position Vector(RI, RJ, RK, R) in frame IJK . Inputs : ES latitude positive_negative 0 to 90 deg, ES longitude in 0 to 360_deg, ES height in meter (is earth surface + tower hgt), LST in 0 to 360 deg at ES log at time_t . Outputs : ES Position Vector(RI, RJ, RK, R) Components EC to ES in km in IJK frame . S16A 011. RI_earth_stn_pos_vector_component_EC_to_ES_km_frame_IJK = 5690.0261762829 S16B 011. RJ_earth_stn_pos_vector_component_EC_to_ES_km_frame_IJK = 1389.2147306682

Page 201: ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM …myreaders.info/00_Orbital__Mechanics__-__Model_____Simulation... · ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM-MSS)

www.m

yrea

ders

.inf

o

OM-MSS Page 201 S16C 011. RK_earth_stn_pos_vector_component_EC_to_ES_km_frame_IJK = 2517.6372173288 S16D 011. R_earth_stn_pos_vector_component_EC_to_ES_km_frame_IJK = 6375.3284317570 17. Satellite(SAT) Position Range Vector from Earth Stn(ES) to SAT : Finding Range Vector(rvI, rvJ, rvK, rv) Components in km in IJK frame Note - Transform_3 SAT Pos Vct(rI rJ rK) and ES Pos Vct(RI RJ RK) To SAT Pos Vct(rvI, rvJ, rvK, rv) Inputs : SAT Position Vector(rI rJ rK) EC to Sat in km in frame IJK , ES Position Vector(RI RJ RK) EC to ES in km in IJK frame. Outputs : SAT Position Range Vector(rvI, rvJ, rvK, rv) Components ES to Sat in km in IJK frame S17A 011. rv_I range vector component ES to SAT km frame IJK = -11225.2708992725 S17B 011. rv_J range vector component ES to SAT km frame IJK = -5800.2233007609 S17C 011. rv_K range vector component ES to SAT km frame IJK = -2502.2171895058 S17D 011. rv range vector component ES to SAT km frame IJK = 12880.6206358313 18. Satellite(SAT) Position Range Vector from Earth Stn(ES) to SAT : Finding Range Vector(rvS, rvE, rvZ, rv) Components in km in SEZ frame Note - Transform_4 SAT Pos Vct(rvI, rvJ, rvK, rv) in IJK frame To SAT Pos Vct(rvS, rvE, rvZ, rv) in SEZ frame Inputs : ES latitude positive_negative 0 to 90_deg, LST in 0 to 360 deg at ES longitude at time_t SAT PositionRange Vector(rvI, rvJ, rvK, rv) ES to Sat in km in IJK frame Outputs : SAT Position Range(rvS, rvE, rvZ, rv) Components ES to Sat in km in SEZ frame S18A 011. rvS range_vector component ES to SAT km_frame SEZ = -2550.8312634026 S18B 011. rvE range_vector component ES to SAT km_frame SEZ = -2972.2788352154 S18C 011. rvZ range_vector component ES to SAT km_frame SEZ = -12270.6644626761 S18D 011. rv range_vector component ES to SAT km_frame SEZ = 12880.6206358313 19. Finding Elevation(EL) and Azimuth(AZ) angles of Satellite and Sun : Steps 1, 2, 3 AT UT TIME t Rem: Sub-SAT point lat deg = 0.12, log deg = 218.59 YY = 2014, MM = 5, DD = 27, hr = 17, min = 57, sec = 11.48 ES or EP point lat deg = 23.26, log deg = 77.41 YY = 2014, MM = 5, DD = 28, hr = 8, min = 32, sec = 29.58 Note : Step 1 is for Satellite EL & AZ angles. Steps 2 & 3 are for Sun EL & AZ angles Results verified from other sources; Ref URLs Geoscience Australia http://www.ga.gov.au/geodesy/astro/smpos.jsp#intzone ,

Page 202: ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM …myreaders.info/00_Orbital__Mechanics__-__Model_____Simulation... · ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM-MSS)

www.m

yrea

ders

.inf

o

OM-MSS Page 202 NOAA Research http://www.esrl.noaa.gov/gmd/grad/solcalc/ , Xavier Jubier, Member IAU http://xjubier.free.fr/en/site_pages/astronomy/ephemerides.html Elevation(EL) & Azimuth(AZ) angle of SAT at Earth Observation point EP : Step 1. Inputs : Range vector component ES to SAT rv_S, rv_E, rv_Z, in frame_SEZ, EP and Sub_sat point latitude & longitude Outputs : Elevation(EL) & Azimuth(AZ) of SAT at EP S19A 011. Elevation angle deg of Satellte at Earth point EP at time_t = -72.29698 ie deg = -72, min = -17, sec = -49.12 S19B 011. Azimuth angle deg of Satellte at Earth point EP at time_t = 310.63643 ie deg = 310, min = 38, sec = 11.16 Elevation(EL) & Azimuth(AZ) angle of SUN at Sub_Satellite point on earth surface : Step 2. Inputs : Range vector component Sub_sat to Sun rv_S, rv_E, rv_Z, in frame_SEZ, Sub_sat point and Sun_Sun point latitude & longitude Outputs : Elevation(EL) & Azimuth(AZ) of Sun at Sub_Sat S19C 011. Elevation angle deg of SUN at Sub_Sat point at time_t = 0.0508847018 S19D 011. Azimuth angle deg of SUN at Sub_Sat point at time_t = 291.4359560384 Elevation(EL) & Azimuth(AZ) angle of SUN at Satellite height : Step 3. Inputs : Range vector component Sub_sat to Sun rv_S, rv_E, rv_Z, in frame_SEZ, Sub_sat point and Sun_Sun point latitude & longitude Outputs : Elevation(EL) & Azimuth(AZ) of SUN at SAT S19E 011. Elevation angle deg of Sun at Satellite height at time_t = 0.05062 S19F 011. Azimuth angle deg of Sun at Satellite height at time_t = 291.43596 20. Finding Satellite Velocity meter per sec in orbit . Note : Results computed using 2 different formulations, each require different inputs. (a) Inputs : SAT orbit semi-major axis SMA, GM_EARTH, sat_orbit pos r_vector_EC_to_SAT_km_frame_IJK. Outputs : SAT Velocity magnitude and component Xw Yw in frame PQW in meter per sec S20A 011. Satellite Velocity magnitude meter per sec at UT time = 7504.3851274216

Page 203: ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM …myreaders.info/00_Orbital__Mechanics__-__Model_____Simulation... · ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM-MSS)

www.m

yrea

ders

.inf

o

OM-MSS Page 203 (b) Inputs : SAT orbit semi-major axis SMA, GM_EARTH, SAT orbit eccentricity_at_time_t, SAT eccentric anomaly deg calculated at time_t. Outputs : Satellite Velocity components Xw Yw in frame PQW in meter per sec S20B 011. Satellite Velocity components Xw in frame PQW in meter per sec = 7457.0858889990 S20C 011. Satellite Velocity components Yw in frame PQW in meter per sec = -841.2289728478 21. Finding Satellite(SAT) Velocity Vector (vX, vY, vZ) in meter per sec in orbit in frame XYZ. Note - Transform_5 SAT Vel Vct(Xw, Yw) in frame PQW To SAT Vel Vct(vX, vY, vZ) in frame XYZ Inputs : SAT velocity vectors(Xw, Yw), SAT Right Ascension Alpha, SAT Argument of perigee, SAT orbit inclination at_time_t, SAT eccentric_anomaly_deg_calculated_at_time_t. Outputs : earth velocity vector(vX, vY, vZ, vR) meter per sec in frame XYZ S21A 011. vX Sat Velocity vector component in meter per sec = -655.5016695670 S21B 011. vY Sat Velocity vector component in meter per sec = 849.8345806371 S21C 011. vZ Sat Velocity vector component in meter per sec = 7427.2400585557 S21D 011. vR Sat Velocity magnitude meter in meter per sec = 7504.3851274216 22. Finding Satellite(SAT) Pitch and Roll angles Inputs : Earth equator radious km, ES lat, ES log, Sub_Sat point lat, Sub_Sat point log, Sat_orbit pos r_vector_EC_to_SAT_km_frame_IJK, Outputs : SAT Pitch and Roll angles S22A 011. pitch_angle_deg_for_earth_stn_at_sat_lat_log_at_time_t = 18.0730937568 S22B 011. roll_angle_deg_for_earth_stn_at_sat_lat_log_at_time_t = 11.5734570323 23. Finding Satellite State Vectors - Position [ X, Y, Z ] in km and velocity [ Vx, Vy, Vz ] in meter per sec at time_t . Note - same as values of rI rJ rK r for pos and vX vY vZ vR for vel (a) Satellite State Position Vector [X, Y, Z] in km at time_t Inputs : position vector(rI, rJ, rK, r) in frame IJK values assiged to state position vector Outputs : State Position Vector(X, Y, Z, R) in km, frame XYZ S23A 011. State vector position X km at time_t = -5535.2447229896

Page 204: ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM …myreaders.info/00_Orbital__Mechanics__-__Model_____Simulation... · ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM-MSS)

www.m

yrea

ders

.inf

o

OM-MSS Page 204 S23B 011. State vector position Y km at time_t = -4411.0085700927 S23C 011. State vector position Z km at time_t = 15.4200278230 S23D 011. State vector position R km at time_t = 7077.8646869006 (b) Satellite State Velocity Vector [Vx, Vy, Vz] in meter per sec at time input UT. Inputs : velocity vector(vX, vY, vZ, vR) meter per sec in frame XYZ values assiged to state velocity vector Outputs : state velocity vector(Vx, Vy, Vz, V) meter per sec, frame XYZ S23E 011. State vector velocity Vx meter per sec at time_t = -655.5016695670 S23F 011. State vector velocity Vy meter per sec at time_t = 849.8345806371 S23G 011. State vector velocity Vz meter per sec at time_t = 7427.2400585557 S23H 011. State vector velocity V meter per sec at time_t = 7504.3851274216 24. Satellite Direction ie right ascension alpha deg and declination delta deg using sat position vector . Note - results same as that using angles incl, RA, Aug of peri, true anomaly Inputs : SAT State Vectors Position(X, Y, Z, R) in km , in frame XYZ Outputs : SAT right ascension alpha deg and declination delta deg S24A 011. Satellite direction right_asc alpha deg at time_t = 218.5511644199 S24B 011. Satellite direction_declination_delta_deg_at_time_t = 0.1248262368 25. Satellite Angular momentum km sqr per sec : finding Hx Hy Hz H from state vector pos and vel . Inputs : SAT State Vectors Position(X, Y, Z, R) in km and Velocity (vX, vY, vZ, vR) meter per sec, in frame XYZ Outputs : SAT angular momentum (Hx Hy Hz H) componts in km sqr per sec S25A 011. Satellite angular momentum Hx in km sqr per sec at time_t = -32774.7240233036 S25B 011. Satellite angular momentum Hy in km sqr per sec at time_t = 41101.4834865149 S25C 011. Satellite angular momentum Hz in km sqr per sec at time_t = -7595.4658600556 S25D 011. Satellite angular momentum H in km sqr per sec at time_t = 53115.0221804269 26. Satellite Orbit normal Vector : finding Wx Wy Wz W Delta Alpha from r_sat_pos frame IJK, i, RA Inputs : SAT Position Vector(rI rJ rK) EC to Sat in km in frame IJK , inclination_deg_at_time_t, right_ascension_ascending_node_deg_at_time_t

Page 205: ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM …myreaders.info/00_Orbital__Mechanics__-__Model_____Simulation... · ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM-MSS)

www.m

yrea

ders

.inf

o

OM-MSS Page 205 Outputs : SAT orbit normal vector (Wx, Wy, Wz, W) in km , RA , i S26A 011. Satellite Orbit normal_W in km = 7077.8646869006 S26B 011. Satellite Orbit normal_Wx in km = -4367.4096755425 S26C 011. Satellite Orbit normal_Wy in km = 5476.9955204054 S26D 011. Satellite Orbit normal_Wz in km = -1012.1370072826 S26E 011. Satellite Orbit normal_Delta_W in deg = -8.2215000000 S26F 011. Satellite Orbit interpreted inclination i = 98.2215000000 S26G 011. Satellite Orbit normal_Alpha_W in deg = -51.4308000000 S26H 011. Satellite Orbit interpreted RA of asc node = 218.5692000000 Transform Satellite State Vectors to Keplerian elements. 27. Finding Satellite position Keplerian elements computed using State Vector, at time input UT. Inputs : State vector year, days decimal of year, revolution, node, State Position Vector [ X, Y, Z ], State Velocity Vector [ Vx, Vy, Vz ] Outputs : Keplerian elements : year, days decimal of year, revolution, node, inclination, right ascension, eccentricity, argument of perigee, mean anomaly, mean motion rev per day, mean angular velocity rev per day, mean motion rev per_day from SMA considering oblateness S27A 011. Keplerian elements year = 2014, days_decimal_of_year = 147.14086, revolution no = 6853, node = 1 ie ascending S27B 011. inclination_deg = 98.2215000000 S27C 011. right ascension ascending node deg = 218.5692000000 S27D 011. eccentricity = 0.0001087000 S27E 011. argument of perigee_deg = 96.5686000000 S27F 011. mean anomaly deg = 263.5699000001 S27G 011. mean_motion rev per day = 14.5709892500 S27H 011. mean angular velocity rev_per_day = 14.5799930299 S27I 011. mean motion rev per day using SMA considering oblateness = 14.5619910304 Transform Satellite Keplerian elements to State Vectors . 28. Finding Satellite position State Vectors, computed using Keplerian elements at time input UT

Page 206: ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM …myreaders.info/00_Orbital__Mechanics__-__Model_____Simulation... · ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM-MSS)

www.m

yrea

ders

.inf

o

OM-MSS Page 206 (computed again to validate model equations, Keplerian elements to State Vectors & back) Inputs : Keplerian elements : year, days decimal of year, revolution, node, inclination, right ascension, eccentricity, argument of perigee, mean anomaly, mean motion rev per day, mean angular velocity rev per day, mean motion rev per_day from SMA considering oblateness Outputs : State vector year, days decimal of year, revolution, node, State Position Vector [ X, Y, Z ], State Velocity Vector [ Vx, Vy, Vz ] S28A 011. State vectors year = 2014, days_decimal_of_year = 147.14086, revolution no = 6853, node = 1 ie decending S28B 011. state vector position X km = -5535.2447229901, state vector velocity Vx meter per sec = -655.5016695622 S28C 011. state vector position Y km = -4411.0085700921, state vector velocity Vy meter per sec = 849.8345806409 S28D 011. state vector position Z km = 15.4200278287, state vector velocity Vz meter per sec = 7427.2400585557 S28E 011. state vector position R km = 7077.8646869005, state vector velocity V meter per sec = 7504.3851274216 Move on to next Satellite. Next Section - 6.2 Computing Orbital & Positional parameters for Satellite SPOT 6

Page 207: ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM …myreaders.info/00_Orbital__Mechanics__-__Model_____Simulation... · ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM-MSS)

www.m

yrea

ders

.inf

o

OM-MSS Page 207 OM-MSS Section - 6.2 ---------------------------------------------------------------------------------------------------50 Satellite SPOT 6 : Computing Orbital & Positional parameters corresponding to input NASA/NORAD 'Two-Line Elements'(TLE) Bulletins. (b) SPOT 6 'Two-Line Elements'(TLE) downloaded on May 28, 2014, 18:13 hrs IST, Satellite launched on September 9, 2012 1 38755U 12047A 14148.14295346 .00000295 00000-0 73402-4 0 9574 2 38755 98.1987 215.8134 0001368 80.3963 279.7434 14.58528066 91251 From this TLE, the data relevant for the purpose are manually interpreted & extracted : Satellite number 38755, SPOT 6 , EPOCH_year = 2014 EPOCH_days_decimal_of_year = 147.1429534600 EPOCH_inclination_deg = 98.1987000000 EPOCH_right_asc_acnd_node_deg = 215.8134000000 EPOCH_eccentricity = 0.0001368000 EPOCH_argument_of_perigee_deg = 80.3963000000 EPOCH_mean_anomaly_deg = 279.7434000000 EPOCH_mean_motion_rev_per_day = 14.5852806600 EPOCH_revolution = 9125 EPOCH_node_condition = 1 Earth_stn_latitude_deg = 23.25993 Earth stn longitude_deg = 77.41261 Earth surface height_meter = 494.70000 Earth stn tower_height_meter = 15.00000 Earth stn_height_meter = 509.70000 Earth stn min EL look_angle_deg = -5.00000 Note : EPOCH Corresponds to UT year = 2014, month = 5, day = 28, hr = 3, min = 25, sec = 51.17894 which is Greenwich meam time ie GMT Converted to Local Meam Time at Earth Stn Longitude, as regular Calender date : year = 2014, month = 5, day = 28, hr = 8, min = 35, sec = 30.21 At this instant Sun Position as seen from Earth Stn Longitude : Sun angles EL deg = 43.56, AZ deg = 81.94, Sun Surface distance km = 5169.96, Radial km = 151596361.23, Sun Rise D:28, H:05, M:17, S:03 Sun Set D:28, H:18, M:40, S:20 Move to Compute Satellie Orbital parameters corresponding to input NASA/NORAD 'Two-Line Elements'(TLE) Bulletins, and Earth Stn location. 01. Input EPOCH_year and EPOCH_days_decimal_of_year, Converted into UT YY MM DD hh min sec & Julian day. S01 011. Input UT year = 2014, month = 5, day = 28, hr = 3, min = 25, sec = 51.17894, and julian_day = 2456805.6429534601 02. Finding Satellite orbit Semi major axis in km, Ignoring and also Considering earth oblatenes . (a) Semi major axis (SMA) km at time t Ignoring earth oblatenes . Inputs : SAT mean_motion rev per day at time t, GM_EARTH . Outputs : SAT Orbit semi major axis km in km and constant_A, constant_k1 .

Page 208: ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM …myreaders.info/00_Orbital__Mechanics__-__Model_____Simulation... · ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM-MSS)

www.m

yrea

ders

.inf

o

OM-MSS Page 208 S02A 011. Satellite orbit Semi major axis in km at time t, Ignoring earth oblatenes = 7076.06773, (b) Semi major axis (SMA) in km at time_t Considering earth oblatenes Inputs : SAT mean_motion rev per day at time_t, GM_EARTH , inclination deg at time_t, eccentricity at time_t, constant_k2 Outputs : SAT Orbit semi major axis km in km at time_t and constant_A, constant_k1, constant_k3 . S02B 011. Satellite orbit Semi major axis km at time t, Considering earth oblatenes = 7073.14938, 03. Finding Satellite Mean motion in rev per day, Ignoring and also Considering earth oblatenes . (a) Nominal mean motion rev per day at time_t Ignoring earth oblateness . Inputs : SAT Orbit semi major axis in km ignoring oblateness at time_t, constant_k1 . Outputs : SAT nominal mean motion in rev_per_day at time_t, ignoring earth oblateness S03A 011. Satellite Nominal Mean motion in rev_per_day at time_t using SMA Ignoring earth oblateness = 14.58528, (b) Mean motion rev per day at time_t Considering earth oblatenes Inputs : SAT nominal mean motion rad per day at time_t Ignoring_oblateness, constant_k2, constant_k3, SAT orbit semi major axis in km considering oblateness at time_t. Outputs : SAT mean motion rev per day at time_t, considering earth oblatenes . S03B 011. Satellite Mean motion in rev_per_day at time t using SMA Considering earth oblatenes = 14.57626, Note - This calculted value is slightly less than the mean motion rev_per_day as EPH input from NORAD TLE 04. Finding Satellite Orbit Time Period in minute at time_t Considering earth oblatenes . Inputs : SAT orbit semi major axis in km considering oblateness at time_t, GM_EARTH . Outputs : SAT orbit time period in minute at time_t considering earth oblatenes . S04 011. Satellite orbit Time Period in minute at time_t using SMA Considering earth oblatenes = 98.66860, 05. Finding Satellite Rate of change of Right Ascension and Argument of Perigee in deg per_day at time_t. (a) Rate of change of Right Ascension in deg per day at time_t . Inputs : SAT mean motion rev per day at time_t considering earth oblatenes, constant_k2, SAT orbit eccentricity at time_t, SAT semi major axis km considering oblateness at time_t, SAT orbit inclination deg at time_t . Outputs : SAT rate of change of right ascension in deg per day at time_t and constant_k_deg_per_day

Page 209: ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM …myreaders.info/00_Orbital__Mechanics__-__Model_____Simulation... · ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM-MSS)

www.m

yrea

ders

.inf

o

OM-MSS Page 209 S05A 011. Satellite Rate of change of Right Ascension in deg per day at time_t = 0.98594, (b) Rate of change of Argument of Perigee in deg per_day at time_t . Inputs : SAT orbit constant_k_deg_per_day, SAT orbit inclination deg at time_t SAT orbit semi major axis km considering oblateness at time_t Outputs : SAT rate of change of argument of perigee in deg per day at time_t S05B 011. Satellite Rate of change of Argument of Perigee in deg per day at time_t = -3.10534, 06. Finding Satellite Mean anomaly, Eccentric anomaly, True anomaly in deg at time_t considering earth oblateness. Inputs : SAT mean anomaly rad at time_t, mean_motion_rad_per_day_at_time_t considering_oblateness, SAT orbit eccentricity_at_time_t Outputs : SAT mean anomaly, eccentric anomaly, and true anomaly in deg at time_t onsidering earth oblateness. S06A 011. Satellite Mean anomaly in deg at time_t = 279.74340, same as EPH mean anomaly S06A 011. Satellite Eccentric anomaly in deg at time_t = 279.73567, S06A 011. Satellite True anomaly in deg at time_t = 279.72795, Note - 1. Here after, the Earth Oblateness is always considered for the computation of satellite orbit parameters, and not repeatedly mentioned. Satellite to Earth, the Position Vectors coordinate and the Vector Coordinate Transforms are in PQW, IJK, SEZ frames . - Perifocal Coordinate System (PQW) is Earth Centered Inertial coordinate frame defined in terms of Kepler Orbital Elements. - Geocentric Coordinate System(IJK) is Earth Centered Inertial (ECI) frame, a Conventional Inertial System (CIS). - Topocentric Horizon Coordinate System(SEZ), is Non-Inertial coordinate frame, known as Earth-Centered Earth-Fixed Coordinates (ECEF). Each of these coordinate system were explained in detail before and therefore not repeated any more. 07. Finding Satellite position vector[rp, rq] from Earth center(EC) to Sat in PQW frame, perifocal coordinate system. Inputs : SAT orbit semi-major axis (SMA), SAT orbit eccentricity, SAT eccentric anomaly, SATtrue anomaly at time_t Outputs : Vector(r, rp rq) in PQW frame S07A 011. r Satellite pos vector magnitude EC to Sat km in PQW frame perifocal cord at time_t = 7072.98575 S07B 011. rp Satellite pos vector component EC to Sat km in PQW frame perifocal cord at time_t = 1195.1237964113 S07C 011. rq Satellite pos vector component EC to Sat km in PQW frame perifocal cord at time_t = -6971.2844253704 08. Satellite Position Vector Earth Ceter(EC) to Satellite(SAT) - finding Range Vector(rI rJ rK r) Components in km in frame IJK

Page 210: ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM …myreaders.info/00_Orbital__Mechanics__-__Model_____Simulation... · ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM-MSS)

www.m

yrea

ders

.inf

o

OM-MSS Page 210 Note - Transform_1 : EC to SAT Vector(rp, rq) in frame PQW To EC to SAT Vector(rI rJ rK r) in frame IJK. Inputs : Vector(rp, rq) EC to Sat in km in frame PQW, SAT right ascension of ascending node at time_t, SAT argument of perigee rad at time_t, SAT orbit inclination rad at time_t . Outputs : Vector(rI, rJ, rK, r) EC to SAT in km in frame IJK S08A 011. rI Satellite pos vector component EC to Sat km frame IJK at at time_t = -5736.9414700815 S08B 011. rJ Satellite pos vector component EC to Sat km frame IJK at at time_t = -4136.9553443077 S08C 011. rK Satellite pos vector component EC to Sat km frame IJK at at time_t = 15.1814434008 S08D 011. r Satellite pos vector magnitude EC to Sat km frame IJK at at time_t = 7072.9857505978 Note - r Satellite pos vector magnitude EC to Sat km in PQW frame is same as that computed above in PQW frame. 09. Finding GST Greenwich sidereal time and GHA Greenwich hour angle in 0 to 360 deg, at input at time_t . Note - for GST, the year 1900 JAN day_1 hr 1200 is ref for time difference in terms of julian_century, for GHA, the year 2000_JAN_day_1 hr_1200 is ref for time difference in terms of julian days. Inputs : Time t UT year = 2014, month = 5, day = 29, hour = 3, minute = 25, seconds = 51.17894 Outputs : GST & GHA in 0-360 deg over Greenwich. S09A 011. GST Greenwich sidereal time in 0-360 deg, over Greenwich = 297.06238, hr = 19, min = 48, sec = 14.97000 S09B 011. GHA Greenwich hour angle in 0 to 360 deg, over Greenwich = 297.06431, deg = 297, min = 3, sec = 51.52460 10. Satellite(SAT) Orbit point direction : Finding Right Ascension(Alpha) deg and Declination(Delta) deg using angles Inputs : SAT orbit inclination deg at_time_t, EPH right ascension ascending node deg, SAT argument of perigee deg at time_t, SAT true anomaly deg calculated at time_t Outputs : SAT Right Ascension(Alpha) and Declination(Delta) in deg at time_t S10A 011. SAT Right Ascension(Alpha) in deg = 215.8311188173 S10B 011. SAT Declination(Delta) in deg = 0.1229796485 11. Finding Satellite Longitude & Latitude in deg at time_t; (ie Sub-Sat point log & lat on earth surface ). Inputs : SAT right ascension ascending node deg at time_t, GST in 0-360 deg over Greenwich at time_t Outputs : Satellite (Sub-Sat point) longitude 0 to 360 deg at time_t. S11A 011. Satellite longitude 0 to 360 deg at time_t = 215.83 ie deg = 215, min = 49, sec = 52.03

Page 211: ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM …myreaders.info/00_Orbital__Mechanics__-__Model_____Simulation... · ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM-MSS)

www.m

yrea

ders

.inf

o

OM-MSS Page 211 Inputs : argument of_perigee rad at_time_t, inclination rad at time_t, true anomaly rad calculated at time_t. Outputs : Satellite (Sub-Sat point) latitude +ve or -ve in 0 to 90 deg at time_t. S11B 011. Satellite latitude +ve or -ve in 0 to 90 deg at time_t = 0.12 ie deg = 0, min = 7, sec = 22.73 12. Finding Satellite height in km from EC to Sat and from Earth surface to Sat at time_t. (a) Satellite height in km from EC to Sat; (ie Sat orbit radius EC to Sat in km at time_t). Note - This is SAME as r sat pos vector magnitude EC to Sat in frame IJK calculated above in TRANSFORN_1 . Inputs : SAT true anomaly at time_t, semi_major_axis_km, inclination at time_t . Outputs : Sub-Sat point longitude 0 to 360 deg at time_t. S12A 011. Satellite orbital radious EC to SAT in km using SAT true anomaly at time_t = 7072.99 (b) Satellite height in km from earth surface. Inputs : Sub-Sat point latitude +ve or -ve in 0 to 90 deg at time_t, earth_equator_radious_km . Outputs : Sat height in km from earth surface. S12B 011. Satellite height in km from earth surface at time_t = 694.84 13. Finding Distance of Sub-Sat point To Earth Stn(ES) in km over Earth surface at time_t . Inputs : Sub-Sat point lat & log, ES lat & log . Outputs : Distance of Sub-Sat point To Earth Stn(ES) in km over Earth surface S13 011. Distance of Sub-Sat point To Earth Stn(ES) in km over Earth surface = 14843.67830 14. Finding Local sidereal time(LST) and Local mean time(LMT) over Sub-Sat point Longitude on earth . (a) Local sidereal time(LST) in 0 to 360 deg over Sub-Sat point Longitude on earth . Inputs : GST sidereal_time in 0 to 360 deg at Greenwich at time_t, satellite log in 0 to 360 deg at time_t . Outputs : LST local sidereal time in 0 to_360 deg at SAT longitude at time_t. S14A 011. Local sidereal time(LST) over Sub-Sat point Longitude at time_t = 152.89 (b) Local sidereal time(LST) and local Mean time(LMT) adjusted to calendar date(CD) over Sub-Sat point Longitude on earth . Note - The LST and LMT in hr min sec with YY MM DD adjusted to calendar date (CD) of longitude at time_t . Here LST in deg is re-calculated alterately in terms of Julian Day (JD) that account for calendar date (CD) of longitude. Inputs : GMT_JD, Sat longitude_in_0_to_360_deg .

Page 212: ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM …myreaders.info/00_Orbital__Mechanics__-__Model_____Simulation... · ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM-MSS)

www.m

yrea

ders

.inf

o

OM-MSS Page 212 Outputs : LST local sidereal time in 0 to_360 deg at SAT longitude at time_t. S14B 011. Local sidereal time(LST) in 0 to 360_deg over Sub-Sat point Longitude at time_t = 152.89 S14C 011. LST over Sub-Sat Log, with date adj to CD expressed in JD = 2456805.92, ie YY = 2014, MM = 5, DD = 28, hr = 10, min = 11, sec = 34.53 S14D 011. LMT over Sub-Sat Log, with date adj to CD expressed in JD = 2456805.24, ie YY = 2014, MM = 5, DD = 27, hr = 17, min = 49, sec = 10.658 15. Finding Local sidereal time(LST) and Local mean time(LMT) Over Earth stn (ES) or Earth point(EP) Longitude . (a) Local sidereal time(LST) in 0 to 360 deg over Earth stn(ES) Longitude . Inputs : GST sidereal_time in 0 to 360 deg at Greenwich at time_t, Earth stn(ES) longitude_in_0_to_360_deg . Outputs : LST local sidereal time in 0 to_360 deg at Earth stn(ES) longitude at time_t. S15A 011. Local sidereal time(LST) over Earth stn(ES) Longitude at time_t = 14.47 (b) Local sidereal time(LST) and local Mean time(LMT) adjusted to calendar date(CD) over Earth stn(ES) Longitude . Note - The LST and LMT in hr min sec with YY MM DD adjusted to calendar date (CD) of longitude at time_t . Here LST in deg is re-calculated alterately in terms of Julian Day (JD) that account for calendar date (CD) of longitude. Inputs : GMT_JD, Earth stn(ES) longitude_in_0_to_360_deg . Outputs : LST local sidereal time in 0 to_360 deg at Earth stn (ES) longitude at time_t. S15B 011. Local sidereal time(LST) in 0 to 360_deg over Earth stn (ES) Longitude at time_t = 14.48 S14C 011. LST over ES Log, with date adj to CD expressed in JD = 2456806.54, ie YY = 2014, MM = 5, DD = 29, hr = 0, min = 57, sec = 54.09 S15D 011. LMT over ES Log, with date adj to CD expressed in JD = 2456805.86, ie YY = 2014, MM = 5, DD = 28, hr = 8, min = 35, sec = 30.21 16. Earth Stn (ES) Position Vector from Earth Center(EC) to Earth Stn(ES) : Finding Range Vector(RI, RJ, RK, R) Components in IJK frame Note - Transform_2 : ES position cord(lat, log, hgt) To EC to ES position Vector(RI, RJ, RK, R) in frame IJK . Inputs : ES latitude positive_negative 0 to 90 deg, ES longitude in 0 to 360_deg, ES height in meter (is earth surface + tower hgt), LST in 0 to 360 deg at ES log at time_t . Outputs : ES Position Vector(RI, RJ, RK, R) Components EC to ES in km in IJK frame . S16A 011. RI_earth_stn_pos_vector_component_EC_to_ES_km_frame_IJK = 5671.2345911565 S16B 011. RJ_earth_stn_pos_vector_component_EC_to_ES_km_frame_IJK = 1464.0401861835 S16C 011. RK_earth_stn_pos_vector_component_EC_to_ES_km_frame_IJK = 2517.6372173288 S16D 011. R_earth_stn_pos_vector_component_EC_to_ES_km_frame_IJK = 6375.3284317570

Page 213: ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM …myreaders.info/00_Orbital__Mechanics__-__Model_____Simulation... · ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM-MSS)

www.m

yrea

ders

.inf

o

OM-MSS Page 213 17. Satellite(SAT) Position Range Vector from Earth Stn(ES) to SAT : Finding Range Vector(rvI, rvJ, rvK, rv) Components in km in IJK frame Note - Transform_3 SAT Pos Vct(rI rJ rK) and ES Pos Vct(RI RJ RK) To SAT Pos Vct(rvI, rvJ, rvK, rv) Inputs : SAT Position Vector(rI rJ rK) EC to Sat in km in frame IJK , ES Position Vector(RI RJ RK) EC to ES in km in IJK frame. Outputs : SAT Position Range Vector(rvI, rvJ, rvK, rv) Components ES to Sat in km in IJK frame S17A 011. rv_I range vector component ES to SAT km frame IJK = -11408.176061238 S17B 011. rv_J range vector component ES to SAT km frame IJK = -5600.9955304911 S17C 011. rv_K range vector component ES to SAT km frame IJK = -2502.4557739280 S17D 011. rv range vector component ES to SAT km frame IJK = 12952.9887237367 18. Satellite(SAT) Position Range Vector from Earth Stn(ES) to SAT : Finding Range Vector(rvS, rvE, rvZ, rv) Components in km in SEZ frame Note - Transform_4 SAT Pos Vct(rvI, rvJ, rvK, rv) in IJK frame To SAT Pos Vct(rvS, rvE, rvZ, rv) in SEZ frame Inputs : ES latitude positive_negative 0 to 90_deg, LST in 0 to 360 deg at ES longitude at time_t SAT PositionRange Vector(rvI, rvJ, rvK, rv) ES to Sat in km in IJK frame Outputs : SAT Position Range(rvS, rvE, rvZ, rv) Components ES to Sat in km in SEZ frame S18A 011. rvS range_vector component ES to SAT km_frame SEZ = -2615.9229941625 S18B 011. rvE range_vector component ES to SAT km_frame SEZ = -2571.6444671914 S18C 011. rvZ range_vector component ES to SAT km_frame SEZ = -12422.701336675 S18D 011. rv range_vector component ES to SAT km_frame SEZ = 12952.9887237367 19. Finding Elevation(EL) and Azimuth(AZ) angles of Satellite and Sun : Steps 1, 2, 3 AT UT TIME t Rem: Sub-SAT point lat deg = 0.12, log deg = 215.83 YY = 2014, MM = 5, DD = 27, hr = 17, min = 49, sec = 10.65 ES or EP point lat deg = 23.26, log deg = 77.41 YY = 2014, MM = 5, DD = 28, hr = 8, min = 35, sec = 30.21 Note : Step 1 is for Satellite EL & AZ angles. Steps 2 & 3 are for Sun EL & AZ angles Results verified from other sources; Ref URLs Geoscience Australia http://www.ga.gov.au/geodesy/astro/smpos.jsp#intzone , NOAA Research http://www.esrl.noaa.gov/gmd/grad/solcalc/ , Xavier Jubier, Member IAU http://xjubier.free.fr/en/site_pages/astronomy/ephemerides.html

Page 214: ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM …myreaders.info/00_Orbital__Mechanics__-__Model_____Simulation... · ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM-MSS)

www.m

yrea

ders

.inf

o

OM-MSS Page 214 Elevation(EL) & Azimuth(AZ) angle of SAT at Earth Observation point EP : Step 1. Inputs : Range vector component ES to SAT rv_S, rv_E, rv_Z, in frame_SEZ, EP and Sub_sat point latitude & longitude Outputs : Elevation(EL) & Azimuth(AZ) of SAT at EP S19A 011. Elevation angle deg of Satellte at Earth point EP at time_t = -73.54866 ie deg = -73, min = -32, sec = -55.19 S19B 011. Azimuth angle deg of Satellte at Earth point EP at time_t = 315.48904 ie deg = 315, min = 29, sec = 20.53 Elevation(EL) & Azimuth(AZ) angle of SUN at Sub_Satellite point on earth surface : Step 2. Inputs : Range vector component Sub_sat to Sun rv_S, rv_E, rv_Z, in frame_SEZ, Sub_sat point and Sun_Sun point latitude & longitude Outputs : Elevation(EL) & Azimuth(AZ) of Sun at Sub_Sat S19C 011. Elevation angle deg of SUN at Sub_Sat point at time_t = 1.9151336743 S19D 011. Azimuth angle deg of SUN at Sub_Sat point at time_t = 291.4445892810 Elevation(EL) & Azimuth(AZ) angle of SUN at Satellite height : Step 3. Inputs : Range vector component Sub_sat to Sun rv_S, rv_E, rv_Z, in frame_SEZ, Sub_sat point and Sun_Sun point latitude & longitude Outputs : Elevation(EL) & Azimuth(AZ) of SUN at SAT S19E 011. Elevation angle deg of Sun at Satellite height at time_t = 1.91487 S19F 011. Azimuth angle deg of Sun at Satellite height at time_t = 291.44459 20. Finding Satellite Velocity meter per sec in orbit . Note : Results computed using 2 different formulations, each require different inputs. (a) Inputs : SAT orbit semi-major axis SMA, GM_EARTH, sat_orbit pos r_vector_EC_to_SAT_km_frame_IJK. Outputs : SAT Velocity magnitude and component Xw Yw in frame PQW in meter per sec S20A 011. Satellite Velocity magnitude meter per sec at UT time = 7507.1055062891 (b) Inputs : SAT orbit semi-major axis SMA, GM_EARTH, SAT orbit eccentricity_at_time_t, SAT eccentric anomaly deg calculated at time_t. Outputs : Satellite Velocity components Xw Yw in frame PQW in meter per sec

Page 215: ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM …myreaders.info/00_Orbital__Mechanics__-__Model_____Simulation... · ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM-MSS)

www.m

yrea

ders

.inf

o

OM-MSS Page 215 S20B 011. Satellite Velocity components Xw in frame PQW in meter per sec = 7398.9909470324 S20C 011. Satellite Velocity components Yw in frame PQW in meter per sec = 1269.4747135282 21. Finding Satellite(SAT) Velocity Vector (vX, vY, vZ) in meter per sec in orbit in frame XYZ. Note - Transform_5 SAT Vel Vct(Xw, Yw) in frame PQW To SAT Vel Vct(vX, vY, vZ) in frame XYZ Inputs : SAT velocity vectors(Xw, Yw), SAT Right Ascension Alpha, SAT Argument of perigee, SAT orbit inclination at_time_t, SAT eccentric_anomaly_deg_calculated_at_time_t. Outputs : earth velocity vector(vX, vY, vZ, vR) meter per sec in frame XYZ S21A 011. vX Sat Velocity vector component in meter per sec = -612.4123815408 S21B 011. vY Sat Velocity vector component in meter per sec = 878.2634599352 S21C 011. vZ Sat Velocity vector component in meter per sec = 7430.3591738511 S21D 011. vR Sat Velocity magnitude meter in meter per sec = 7507.1055062891 22. Finding Satellite(SAT) Pitch and Roll angles Inputs : Earth equator radious km, ES lat, ES log, Sub_Sat point lat, Sub_Sat point log, Sat_orbit pos r_vector_EC_to_SAT_km_frame_IJK, Outputs : SAT Pitch and Roll angles S22A 011. pitch_angle_deg_for_earth_stn_at_sat_lat_log_at_time_t = 19.4439603698 S22B 011. roll_angle_deg_for_earth_stn_at_sat_lat_log_at_time_t = 11.6748374344 23. Finding Satellite State Vectors - Position [ X, Y, Z ] in km and velocity [ Vx, Vy, Vz ] in meter per sec at time_t . Note - same as values of rI rJ rK r for pos and vX vY vZ vR for vel (a) Satellite State Position Vector [X, Y, Z] in km at time_t Inputs : position vector(rI, rJ, rK, r) in frame IJK values assiged to state position vector Outputs : State Position Vector(X, Y, Z, R) in km, frame XYZ S23A 011. State vector position X km at time_t = -5736.9414700815 S23B 011. State vector position Y km at time_t = -4136.9553443077 S23C 011. State vector position Z km at time_t = 15.1814434008 S23D 011. State vector position R km at time_t = 7072.9857505978

Page 216: ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM …myreaders.info/00_Orbital__Mechanics__-__Model_____Simulation... · ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM-MSS)

www.m

yrea

ders

.inf

o

OM-MSS Page 216 (b) Satellite State Velocity Vector [Vx, Vy, Vz] in meter per sec at time input UT. Inputs : velocity vector(vX, vY, vZ, vR) meter per sec in frame XYZ values assiged to state velocity vector Outputs : state velocity vector(Vx, Vy, Vz, V) meter per sec, frame XYZ S23E 011. State vector velocity Vx meter per sec at time_t = -612.4123815408 S23F 011. State vector velocity Vy meter per sec at time_t = 878.2634599352 S23G 011. State vector velocity Vz meter per sec at time_t = 7430.3591738511 S23H 011. State vector velocity V meter per sec at time_t = 7507.1055062891 24. Satellite Direction ie right ascension alpha deg and declination delta deg using sat position vector . Note - results same as that using angles incl, RA, Aug of peri, true anomaly Inputs : SAT State Vectors Position(X, Y, Z, R) in km , in frame XYZ Outputs : SAT right ascension alpha deg and declination delta deg S24A 011. Satellite direction right_asc alpha deg at time_t = 215.7956811827 S24B 011. Satellite direction_declination_delta_deg_at_time_t = 0.1229796485 25. Satellite Angular momentum km sqr per sec : finding Hx Hy Hz H from state vector pos and vel . Inputs : SAT State Vectors Position(X, Y, Z, R) in km and Velocity (vX, vY, vZ, vR) meter per sec, in frame XYZ Outputs : SAT angular momentum (Hx Hy Hz H) componts in km sqr per sec S25A 011. Satellite angular momentum Hx in km sqr per sec at time_t = -30752.3974013968 S25B 011. Satellite angular momentum Hy in km sqr per sec at time_t = 42618.2383781588 S25C 011. Satellite angular momentum Hz in km sqr per sec at time_t = -7572.0687396947 S25D 011. Satellite angular momentum H in km sqr per sec at time_t = 53097.6497915837 26. Satellite Orbit normal Vector : finding Wx Wy Wz W Delta Alpha from r_sat_pos frame IJK, i, RA Inputs : SAT Position Vector(rI rJ rK) EC to Sat in km in frame IJK , inclination_deg_at_time_t, right_ascension_ascending_node_deg_at_time_t Outputs : SAT orbit normal vector (Wx, Wy, Wz, W) in km , RA , i S26A 011. Satellite Orbit normal_W in km = 7072.9857505978 S26B 011. Satellite Orbit normal_Wx in km = -4096.4387213100 Page 217

Page 217: ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM …myreaders.info/00_Orbital__Mechanics__-__Model_____Simulation... · ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM-MSS)

www.m

yrea

ders

.inf

o

OM-MSS Page 217 S26C 011. Satellite Orbit normal_Wy in km = 5677.0533902628 S26D 011. Satellite Orbit normal_Wz in km = -1008.6535752265 S26E 011. Satellite Orbit normal_Delta_W in deg = -8.1987000000 S26F 011. Satellite Orbit interpreted inclination i = 98.1987000000 S26G 011. Satellite Orbit normal_Alpha_W in deg = -54.1866000000 S26H 011. Satellite Orbit interpreted RA of asc node = 215.8134000000 Transform Satellite State Vectors to Keplerian elements. 27. Finding Satellite position Keplerian elements computed using State Vector, at time input UT. Inputs : State vector year, days decimal of year, revolution, node, State Position Vector [ X, Y, Z ], State Velocity Vector [ Vx, Vy, Vz ] Outputs : Keplerian elements : year, days decimal of year, revolution, node, inclination, right ascension, eccentricity, argument of perigee, mean anomaly, mean motion rev per day, mean angular velocity rev per day, mean motion rev per_day from SMA considering oblateness S27A 011. Keplerian elements year = 2014, days_decimal_of_year = 147.14295, revolution no = 9125, node = 1 ie ascending S27B 011. inclination_deg = 98.1987000000 S27C 011. right ascension ascending node deg = 215.8134000000 S27D 011. eccentricity = 0.0001368000 S27E 011. argument of perigee_deg = 80.3963000000 S27F 011. mean anomaly deg = 279.7434000000 S27G 011. mean_motion rev per day = 14.5852806600 S27H 011. mean angular velocity rev_per_day = 14.5943083253 S27I 011. mean motion rev per day using SMA considering oblateness = 14.5762585790 Transform Satellite Keplerian elements to State Vectors . 28. Finding Satellite position State Vectors, computed using Keplerian elements at time input UT (computed again to validate model equations, Keplerian elements to State Vectors & back) Inputs : Keplerian elements : year, days decimal of year, revolution, node, inclination, right ascension, eccentricity, argument of perigee, mean anomaly, mean motion rev per day, mean angular velocity rev per day, mean motion rev per_day from SMA considering oblateness

Page 218: ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM …myreaders.info/00_Orbital__Mechanics__-__Model_____Simulation... · ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM-MSS)

www.m

yrea

ders

.inf

o

OM-MSS Page 218 Outputs : State vector year, days decimal of year, revolution, node, State Position Vector [ X, Y, Z ], State Velocity Vector [ Vx, Vy, Vz ] S28A 011. State vectors year = 2014, days_decimal_of_year = 147.14295, revolution no = 9125, node = 1 ie decending S28B 011. state vector position X km = -5736.9414700815, state vector velocity Vx meter per sec = -612.4123815411 S28C 011. state vector position Y km = -4136.9553443077, state vector velocity Vy meter per sec = 878.2634599350 S28D 011. state vector position Z km = 15.1814434004, state vector velocity Vz meter per sec = 7430.3591738511 S28E 011. state vector position R km = 7072.9857505978, state vector velocity V meter per sec = 7507.1055062891 Move on to next Satellite. Next Section - 6.3 Computing Orbital & Positional parameters for Satellite CARTOSAT 2B

Page 219: ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM …myreaders.info/00_Orbital__Mechanics__-__Model_____Simulation... · ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM-MSS)

www.m

yrea

ders

.inf

o

OM-MSS Page 219 OM-MSS Section - 6.3 ---------------------------------------------------------------------------------------------------51 Satellite CARTOSAT 2B : Computing Orbital & Positional parameters corresponding to input NASA/NORAD 'Two-Line Elements'(TLE) Bulletins. (c) CARTOSAT 2B 'Two-Line Elements'(TLE) downloaded on May 28, 2014, 18:13 hrs IST, Satellite launched on July 12, 2010 1 36795U 10035A 14148.12955979 .00000641 00000-0 94319-4 0 3461 2 36795 97.9448 207.1202 0016257 44.4835 315.7690 14.78679483209252 From this TLE, the data relevant for the purpose are manually interpreted & extracted : Satellite number 36795, CARTOSAT 2B , EPOCH_year = 2014 EPOCH_days_decimal_of_year = 147.1295597900 EPOCH_inclination_deg = 97.9448000000 EPOCH_right_asc_acnd_node_deg = 207.1202000000 EPOCH_eccentricity = 0.0016257000 EPOCH_argument_of_perigee_deg = 44.4835000000 EPOCH_mean_anomaly_deg = 315.7690000000 EPOCH_mean_motion_rev_per_day = 14.7867948300 EPOCH_revolution = 20925 EPOCH_node_condition = 1 Earth_stn_latitude_deg = 23.25993 Earth stn longitude_deg = 77.41261 Earth surface height_meter = 494.70000 Earth stn tower_height_meter = 15.00000 Earth stn_height_meter = 509.70000 Earth stn min EL look_angle_deg = -5.00000 Note : EPOCH Corresponds to UT year = 2014, month = 5, day = 28, hr = 3, min = 6, sec = 33.96586 which is Greenwich meam time ie GMT Converted to Local Meam Time at Earth Stn Longitude, as regular Calender date : year = 2014, month = 5, day = 28, hr = 8, min = 16, sec = 12.99 At this instant Sun Position as seen from Earth Stn Longitude : Sun angles EL deg = 39.18, AZ deg = 80.63, Sun Surface distance km = 5657.39, Radial km = 151596423.96, Sun Rise D:28, H:05, M:17, S:03 Sun Set D:28, H:18, M:40, S:20 Move to Compute Satellie Orbital parameters corresponding to input NASA/NORAD 'Two-Line Elements'(TLE) Bulletins, and Earth Stn location. 01. Input EPOCH_year and EPOCH_days_decimal_of_year, Converted into UT YY MM DD hh min sec & Julian day. S01 011. Input UT year = 2014, month = 5, day = 28, hr = 3, min = 6, sec = 33.96586, and julian_day = 2456805.6295597898 02. Finding Satellite orbit Semi major axis in km, Ignoring and also Considering earth oblatenes . (a) Semi major axis (SMA) km at time t Ignoring earth oblatenes . Inputs : SAT mean_motion rev per day at time t, GM_EARTH . Outputs : SAT Orbit semi major axis km in km and constant_A, constant_k1 .

Page 220: ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM …myreaders.info/00_Orbital__Mechanics__-__Model_____Simulation... · ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM-MSS)

www.m

yrea

ders

.inf

o

OM-MSS Page 220 S02A 011. Satellite orbit Semi major axis in km at time t, Ignoring earth oblatenes = 7011.63247, (b) Semi major axis (SMA) in km at time_t Considering earth oblatenes Inputs : SAT mean_motion rev per day at time_t, GM_EARTH , inclination deg at time_t, eccentricity at time_t, constant_k2 Outputs : SAT Orbit semi major axis km in km at time_t and constant_A, constant_k1, constant_k3 . S02B 011. Satellite orbit Semi major axis km at time t, Considering earth oblatenes = 7008.67563, 03. Finding Satellite Mean motion in rev per day, Ignoring and also Considering earth oblatenes . (a) Nominal mean motion rev per day at time_t Ignoring earth oblateness . Inputs : SAT Orbit semi major axis in km ignoring oblateness at time_t, constant_k1 . Outputs : SAT nominal mean motion in rev_per_day at time_t, ignoring earth oblateness S03A 011. Satellite Nominal Mean motion in rev_per_day at time_t using SMA Ignoring earth oblateness = 14.78679, (b) Mean motion rev per day at time_t Considering earth oblatenes Inputs : SAT nominal mean motion rad per day at time_t Ignoring_oblateness, constant_k2, constant_k3, SAT orbit semi major axis in km considering oblateness at time_t. Outputs : SAT mean motion rev per day at time_t, considering earth oblatenes . S03B 011. Satellite Mean motion in rev_per_day at time t using SMA Considering earth oblatenes = 14.77744, Note - This calculted value is slightly less than the mean motion rev_per_day as EPH input from NORAD TLE 04. Finding Satellite Orbit Time Period in minute at time_t Considering earth oblatenes . Inputs : SAT orbit semi major axis in km considering oblateness at time_t, GM_EARTH . Outputs : SAT orbit time period in minute at time_t considering earth oblatenes . S04 011. Satellite orbit Time Period in minute at time_t using SMA Considering earth oblatenes = 97.32259, 05. Finding Satellite Rate of change of Right Ascension and Argument of Perigee in deg per_day at time_t. (a) Rate of change of Right Ascension in deg per day at time_t . Inputs : SAT mean motion rev per day at time_t considering earth oblatenes, constant_k2, SAT orbit eccentricity at time_t, SAT semi major axis km considering oblateness at time_t, SAT orbit inclination deg at time_t . Outputs : SAT rate of change of right ascension in deg per day at time_t and constant_k_deg_per_day

Page 221: ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM …myreaders.info/00_Orbital__Mechanics__-__Model_____Simulation... · ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM-MSS)

www.m

yrea

ders

.inf

o

OM-MSS Page 221 S05A 011. Satellite Rate of change of Right Ascension in deg per day at time_t = 0.98670, (b) Rate of change of Argument of Perigee in deg per_day at time_t . Inputs : SAT orbit constant_k_deg_per_day, SAT orbit inclination deg at time_t SAT orbit semi major axis km considering oblateness at time_t Outputs : SAT rate of change of argument of perigee in deg per day at time_t S05B 011. Satellite Rate of change of Argument of Perigee in deg per day at time_t = -3.22839, 06. Finding Satellite Mean anomaly, Eccentric anomaly, True anomaly in deg at time_t considering earth oblateness. Inputs : SAT mean anomaly rad at time_t, mean_motion_rad_per_day_at_time_t considering_oblateness, SAT orbit eccentricity_at_time_t Outputs : SAT mean anomaly, eccentric anomaly, and true anomaly in deg at time_t onsidering earth oblateness. S06A 011. Satellite Mean anomaly in deg at time_t = 315.76900, same as EPH mean anomaly S06A 011. Satellite Eccentric anomaly in deg at time_t = 315.70395, S06A 011. Satellite True anomaly in deg at time_t = 315.63886, Note - 1. Here after, the Earth Oblateness is always considered for the computation of satellite orbit parameters, and not repeatedly mentioned. Satellite to Earth, the Position Vectors coordinate and the Vector Coordinate Transforms are in PQW, IJK, SEZ frames . - Perifocal Coordinate System (PQW) is Earth Centered Inertial coordinate frame defined in terms of Kepler Orbital Elements. - Geocentric Coordinate System(IJK) is Earth Centered Inertial (ECI) frame, a Conventional Inertial System (CIS). - Topocentric Horizon Coordinate System(SEZ), is Non-Inertial coordinate frame, known as Earth-Centered Earth-Fixed Coordinates (ECEF). Each of these coordinate system were explained in detail before and therefore not repeated any more. 07. Finding Satellite position vector[rp, rq] from Earth center(EC) to Sat in PQW frame, perifocal coordinate system. Inputs : SAT orbit semi-major axis (SMA), SAT orbit eccentricity, SAT eccentric anomaly, SATtrue anomaly at time_t Outputs : Vector(r, rp rq) in PQW frame S07A 011. r Satellite pos vector magnitude EC to Sat km in PQW frame perifocal cord at time_t = 7000.52048 S07B 011. rp Satellite pos vector component EC to Sat km in PQW frame perifocal cord at time_t = 5005.0016826023 S07C 011. rq Satellite pos vector component EC to Sat km in PQW frame perifocal cord at time_t = -4894.6138857698 08. Satellite Position Vector Earth Ceter(EC) to Satellite(SAT) - finding Range Vector(rI rJ rK r) Components in km in frame IJK

Page 222: ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM …myreaders.info/00_Orbital__Mechanics__-__Model_____Simulation... · ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM-MSS)

www.m

yrea

ders

.inf

o

OM-MSS Page 222 Note - Transform_1 : EC to SAT Vector(rp, rq) in frame PQW To EC to SAT Vector(rI rJ rK r) in frame IJK. Inputs : Vector(rp, rq) EC to Sat in km in frame PQW, SAT right ascension of ascending node at time_t, SAT argument of perigee rad at time_t, SAT orbit inclination rad at time_t . Outputs : Vector(rI, rJ, rK, r) EC to SAT in km in frame IJK S08A 011. rI Satellite pos vector component EC to Sat km frame IJK at at time_t = -6231.7560551250 S08B 011. rJ Satellite pos vector component EC to Sat km frame IJK at at time_t = -3189.4018492384 S08C 011. rK Satellite pos vector component EC to Sat km frame IJK at at time_t = 14.8069953230 S08D 011. r Satellite pos vector magnitude EC to Sat km frame IJK at at time_t = 7000.5204759091 Note - r Satellite pos vector magnitude EC to Sat km in PQW frame is same as that computed above in PQW frame. 09. Finding GST Greenwich sidereal time and GHA Greenwich hour angle in 0 to 360 deg, at input at time_t . Note - for GST, the year 1900 JAN day_1 hr 1200 is ref for time difference in terms of julian_century, for GHA, the year 2000_JAN_day_1 hr_1200 is ref for time difference in terms of julian days. Inputs : Time t UT year = 2014, month = 5, day = 28, hour = 3, minute = 6, seconds = 33.96586 Outputs : GST & GHA in 0-360 deg over Greenwich. S09A 011. GST Greenwich sidereal time in 0-360 deg, over Greenwich = 292.22745, hr = 19, min = 28, sec = 54.58857 S09B 011. GHA Greenwich hour angle in 0 to 360 deg, over Greenwich = 292.22920, deg = 292, min = 13, sec = 45.10952 10. Satellite(SAT) Orbit point direction : Finding Right Ascension(Alpha) deg and Declination(Delta) deg using angles Inputs : SAT orbit inclination deg at_time_t, EPH right ascension ascending node deg, SAT argument of perigee deg at time_t, SAT true anomaly deg calculated at time_t Outputs : SAT Right Ascension(Alpha) and Declination(Delta) in deg at time_t S10A 011. SAT Right Ascension(Alpha) in deg = 207.1371128409 S10B 011. SAT Declination(Delta) in deg = 0.1211879852 11. Finding Satellite Longitude & Latitude in deg at time_t; (ie Sub-Sat point log & lat on earth surface ). Inputs : SAT right ascension ascending node deg at time_t, GST in 0-360 deg over Greenwich at time_t Outputs : Satellite (Sub-Sat point) longitude 0 to 360 deg at time_t. S11A 011. Satellite longitude 0 to 360 deg at time_t = 207.14 ie deg = 207, min = 8, sec = 13.61

Page 223: ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM …myreaders.info/00_Orbital__Mechanics__-__Model_____Simulation... · ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM-MSS)

www.m

yrea

ders

.inf

o

OM-MSS Page 223 Inputs : argument of_perigee rad at_time_t, inclination rad at time_t, true anomaly rad calculated at time_t. Outputs : Satellite (Sub-Sat point) latitude +ve or -ve in 0 to 90 deg at time_t. S11B 011. Satellite latitude +ve or -ve in 0 to 90 deg at time_t = 0.12 ie deg = 0, min = 7, sec = 16.28 12. Finding Satellite height in km from EC to Sat and from Earth surface to Sat at time_t. (a) Satellite height in km from EC to Sat; (ie Sat orbit radius EC to Sat in km at time_t). Note - This is SAME as r sat pos vector magnitude EC to Sat in frame IJK calculated above in TRANSFORN_1 . Inputs : SAT true anomaly at time_t, semi_major_axis_km, inclination at time_t . Outputs : Sub-Sat point longitude 0 to 360 deg at time_t. S12A 011. Satellite orbital radious EC to SAT in km using SAT true anomaly at time_t = 7000.52 (b) Satellite height in km from earth surface. Inputs : Sub-Sat point latitude +ve or -ve in 0 to 90 deg at time_t, earth_equator_radious_km . Outputs : Sat height in km from earth surface. S12B 011. Satellite height in km from earth surface at time_t = 622.38 13. Finding Distance of Sub-Sat point To Earth Stn(ES) in km over Earth surface at time_t . Inputs : Sub-Sat point lat & log, ES lat & log . Outputs : Distance of Sub-Sat point To Earth Stn(ES) in km over Earth surface S13 011. Distance of Sub-Sat point To Earth Stn(ES) in km over Earth surface = 14014.66346 14. Finding Local sidereal time(LST) and Local mean time(LMT) over Sub-Sat point Longitude on earth . (a) Local sidereal time(LST) in 0 to 360 deg over Sub-Sat point Longitude on earth . Inputs : GST sidereal_time in 0 to 360 deg at Greenwich at time_t, satellite log in 0 to 360 deg at time_t . Outputs : LST local sidereal time in 0 to_360 deg at SAT longitude at time_t. S14A 011. Local sidereal time(LST) over Sub-Sat point Longitude at time_t = 139.36 (b) Local sidereal time(LST) and local Mean time(LMT) adjusted to calendar date(CD) over Sub-Sat point Longitude on earth . Note - The LST and LMT in hr min sec with YY MM DD adjusted to calendar date (CD) of longitude at time_t . Here LST in deg is re-calculated alterately in terms of Julian Day (JD) that account for calendar date (CD) of longitude. Inputs : GMT_JD, Sat longitude_in_0_to_360_deg .

Page 224: ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM …myreaders.info/00_Orbital__Mechanics__-__Model_____Simulation... · ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM-MSS)

www.m

yrea

ders

.inf

o

OM-MSS Page 224 Outputs : LST local sidereal time in 0 to_360 deg at SAT longitude at time_t. S14B 011. Local sidereal time(LST) in 0 to 360_deg over Sub-Sat point Longitude at time_t = 139.36 S14C 011. LST over Sub-Sat Log, with date adj to CD expressed in JD = 2456805.89, ie YY = 2014, MM = 5, DD = 28, hr = 9, min = 17, sec = 27.58 S14D 011. LMT over Sub-Sat Log, with date adj to CD expressed in JD = 2456805.20, ie YY = 2014, MM = 5, DD = 27, hr = 16, min = 55, sec = 6.87 15. Finding Local sidereal time(LST) and Local mean time(LMT) Over Earth stn (ES) or Earth point(EP) Longitude . (a) Local sidereal time(LST) in 0 to 360 deg over Earth stn(ES) Longitude . Inputs : GST sidereal_time in 0 to 360 deg at Greenwich at time_t, Earth stn(ES) longitude_in_0_to_360_deg . Outputs : LST local sidereal time in 0 to_360 deg at Earth stn(ES) longitude at time_t. S15A 011. Local sidereal time(LST) over Earth stn(ES) Longitude at time_t = 9.64 (b) Local sidereal time(LST) and local Mean time(LMT) adjusted to calendar date(CD) over Earth stn(ES) Longitude . Note - The LST and LMT in hr min sec with YY MM DD adjusted to calendar date (CD) of longitude at time_t . Here LST in deg is re-calculated alterately in terms of Julian Day (JD) that account for calendar date (CD) of longitude. Inputs : GMT_JD, Earth stn(ES) longitude_in_0_to_360_deg . Outputs : LST local sidereal time in 0 to_360 deg at Earth stn (ES) longitude at time_t. S15B 011. Local sidereal time(LST) in 0 to 360_deg over Earth stn (ES) Longitude at time_t = 9.64 S14C 011. LST over ES Log, with date adj to CD expressed in JD = 2456806.53, ie YY = 2014, MM = 5, DD = 29, hr = 0, min = 38, sec = 33.70 S15D 011. LMT over ES Log, with date adj to CD expressed in JD = 2456805.84, ie YY = 2014, MM = 5, DD = 28, hr = 8, min = 16, sec = 12.99 16. Earth Stn (ES) Position Vector from Earth Center(EC) to Earth Stn(ES) : Finding Range Vector(RI, RJ, RK, R) Components in IJK frame Note - Transform_2 : ES position cord(lat, log, hgt) To EC to ES position Vector(RI, RJ, RK, R) in frame IJK . Inputs : ES latitude positive_negative 0 to 90 deg, ES longitude in 0 to 360_deg, ES height in meter (is earth surface + tower hgt), LST in 0 to 360 deg at ES log at time_t . Outputs : ES Position Vector(RI, RJ, RK, R) Components EC to ES in km in IJK frame . S16A 011. RI_earth_stn_pos_vector_component_EC_to_ES_km_frame_IJK = 5774.4514013983 S16B 011. RJ_earth_stn_pos_vector_component_EC_to_ES_km_frame_IJK = 980.8294793588 S16C 011. RK_earth_stn_pos_vector_component_EC_to_ES_km_frame_IJK = 2517.6372173288 S16D 011. R_earth_stn_pos_vector_component_EC_to_ES_km_frame_IJK = 6375.3284317570

Page 225: ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM …myreaders.info/00_Orbital__Mechanics__-__Model_____Simulation... · ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM-MSS)

www.m

yrea

ders

.inf

o

OM-MSS Page 225 17. Satellite(SAT) Position Range Vector from Earth Stn(ES) to SAT : Finding Range Vector(rvI, rvJ, rvK, rv) Components in km in IJK frame Note - Transform_3 SAT Pos Vct(rI rJ rK) and ES Pos Vct(RI RJ RK) To SAT Pos Vct(rvI, rvJ, rvK, rv) Inputs : SAT Position Vector(rI rJ rK) EC to Sat in km in frame IJK , ES Position Vector(RI RJ RK) EC to ES in km in IJK frame. Outputs : SAT Position Range Vector(rvI, rvJ, rvK, rv) Components ES to Sat in km in IJK frame S17A 011. rv_I range vector component ES to SAT km frame IJK = -12006.207456523 S17B 011. rv_J range vector component ES to SAT km frame IJK = -4170.2313285972 S17C 011. rv_K range vector component ES to SAT km frame IJK = -2502.8302220058 S17D 011. rv range vector component ES to SAT km frame IJK = 12953.9185555289 18. Satellite(SAT) Position Range Vector from Earth Stn(ES) to SAT : Finding Range Vector(rvS, rvE, rvZ, rv) Components in km in SEZ frame Note - Transform_4 SAT Pos Vct(rvI, rvJ, rvK, rv) in IJK frame To SAT Pos Vct(rvS, rvE, rvZ, rv) in SEZ frame Inputs : ES latitude positive_negative 0 to 90_deg, LST in 0 to 360 deg at ES longitude at time_t SAT PositionRange Vector(rvI, rvJ, rvK, rv) ES to Sat in km in IJK frame Outputs : SAT Position Range(rvS, rvE, rvZ, rv) Components ES to Sat in km in SEZ frame S18A 011. rvS range_vector component ES to SAT km_frame SEZ = -2650.7074843436 S18B 011. rvE range_vector component ES to SAT km_frame SEZ = -2100.8060786626 S18C 011. rvZ range_vector component ES to SAT km_frame SEZ = -12504.573946983 S18D 011. rv range_vector component ES to SAT km_frame SEZ = 12953.9185555289 19. Finding Elevation(EL) and Azimuth(AZ) angles of Satellite and Sun : Steps 1, 2, 3 AT UT TIME t Rem: Sub-SAT point lat deg = 0.12, log deg = 207.14 YY = 2014, MM = 5, DD = 27, hr = 16, min = 55, sec = 6.87 ES or EP point lat deg = 23.26, log deg = 77.41 YY = 2014, MM = 5, DD = 28, hr = 8, min = 16, sec = 12.99 Note : Step 1 is for Satellite EL & AZ angles. Steps 2 & 3 are for Sun EL & AZ angles Results verified from other sources; Ref URLs Geoscience Australia http://www.ga.gov.au/geodesy/astro/smpos.jsp#intzone , NOAA Research http://www.esrl.noaa.gov/gmd/grad/solcalc/ , Xavier Jubier, Member IAU http://xjubier.free.fr/en/site_pages/astronomy/ephemerides.html

Page 226: ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM …myreaders.info/00_Orbital__Mechanics__-__Model_____Simulation... · ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM-MSS)

www.m

yrea

ders

.inf

o

OM-MSS Page 226 Elevation(EL) & Azimuth(AZ) angle of SAT at Earth Observation point EP : Step 1. Inputs : Range vector component ES to SAT rv_S, rv_E, rv_Z, in frame_SEZ, EP and Sub_sat point latitude & longitude Outputs : Elevation(EL) & Azimuth(AZ) of SAT at EP S19A 011. Elevation angle deg of Satellte at Earth point EP at time_t = -74.86473 ie deg = -74, min = -51, sec = -53.02 S19B 011. Azimuth angle deg of Satellte at Earth point EP at time_t = 321.60158 ie deg = 321, min = 36, sec = 5.68 Elevation(EL) & Azimuth(AZ) angle of SUN at Sub_Satellite point on earth surface : Step 2. Inputs : Range vector component Sub_sat to Sun rv_S, rv_E, rv_Z, in frame_SEZ, Sub_sat point and Sun_Sun point latitude & longitude Outputs : Elevation(EL) & Azimuth(AZ) of Sun at Sub_Sat S19C 011. Elevation angle deg of SUN at Sub_Sat point at time_t = 14.4723644816 S19D 011. Azimuth angle deg of SUN at Sub_Sat point at time_t = 292.1397432144 Elevation(EL) & Azimuth(AZ) angle of SUN at Satellite height : Step 3. Inputs : Range vector component Sub_sat to Sun rv_S, rv_E, rv_Z, in frame_SEZ, Sub_sat point and Sun_Sun point latitude & longitude Outputs : Elevation(EL) & Azimuth(AZ) of SUN at SAT S19E 011. Elevation angle deg of Sun at Satellite height at time_t = 14.47214 S19F 011. Azimuth angle deg of Sun at Satellite height at time_t = 292.13974 20. Finding Satellite Velocity meter per sec in orbit . Note : Results computed using 2 different formulations, each require different inputs. (a) Inputs : SAT orbit semi-major axis SMA, GM_EARTH, sat_orbit pos r_vector_EC_to_SAT_km_frame_IJK. Outputs : SAT Velocity magnitude and component Xw Yw in frame PQW in meter per sec S20A 011. Satellite Velocity magnitude meter per sec at UT time = 7550.1615459169 (b) Inputs : SAT orbit semi-major axis SMA, GM_EARTH, SAT orbit eccentricity_at_time_t, SAT eccentric anomaly deg calculated at time_t. Outputs : Satellite Velocity components Xw Yw in frame PQW in meter per sec

Page 227: ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM …myreaders.info/00_Orbital__Mechanics__-__Model_____Simulation... · ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM-MSS)

www.m

yrea

ders

.inf

o

OM-MSS Page 227 S20B 011. Satellite Velocity components Xw in frame PQW in meter per sec = 5272.7792443276 S20C 011. Satellite Velocity components Yw in frame PQW in meter per sec = 5403.9558112581 21. Finding Satellite(SAT) Velocity Vector (vX, vY, vZ) in meter per sec in orbit in frame XYZ. Note - Transform_5 SAT Vel Vct(Xw, Yw) in frame PQW To SAT Vel Vct(vX, vY, vZ) in frame XYZ Inputs : SAT velocity vectors(Xw, Yw), SAT Right Ascension Alpha, SAT Argument of perigee, SAT orbit inclination at_time_t, SAT eccentric_anomaly_deg_calculated_at_time_t. Outputs : earth velocity vector(vX, vY, vZ, vR) meter per sec in frame XYZ S21A 011. vX Sat Velocity vector component in meter per sec = -453.7396013124 S21B 011. vY Sat Velocity vector component in meter per sec = 940.0898291212 S21C 011. vZ Sat Velocity vector component in meter per sec = 7477.6527638575 S21D 011. vR Sat Velocity magnitude meter in meter per sec = 7550.1615459169 22. Finding Satellite(SAT) Pitch and Roll angles Inputs : Earth equator radious km, ES lat, ES log, Sub_Sat point lat, Sub_Sat point log, Sat_orbit pos r_vector_EC_to_SAT_km_frame_IJK, Outputs : SAT Pitch and Roll angles S22A 011. pitch_angle_deg_for_earth_stn_at_sat_lat_log_at_time_t = 24.0229508063 S22B 011. roll_angle_deg_for_earth_stn_at_sat_lat_log_at_time_t = 12.1020326731 23. Finding Satellite State Vectors - Position [ X, Y, Z ] in km and velocity [ Vx, Vy, Vz ] in meter per sec at time_t . Note - same as values of rI rJ rK r for pos and vX vY vZ vR for vel (a) Satellite State Position Vector [X, Y, Z] in km at time_t Inputs : position vector(rI, rJ, rK, r) in frame IJK values assiged to state position vector Outputs : State Position Vector(X, Y, Z, R) in km, frame XYZ S23A 011. State vector position X km at time_t = -6231.7560551250 S23B 011. State vector position Y km at time_t = -3189.4018492384 S23C 011. State vector position Z km at time_t = 14.8069953230 S23D 011. State vector position R km at time_t = 7000.5204759091

Page 228: ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM …myreaders.info/00_Orbital__Mechanics__-__Model_____Simulation... · ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM-MSS)

www.m

yrea

ders

.inf

o

OM-MSS Page 228 (b) Satellite State Velocity Vector [Vx, Vy, Vz] in meter per sec at time input UT. Inputs : velocity vector(vX, vY, vZ, vR) meter per sec in frame XYZ values assiged to state velocity vector Outputs : state velocity vector(Vx, Vy, Vz, V) meter per sec, frame XYZ S23E 011. State vector velocity Vx meter per sec at time_t = -453.7396013124 S23F 011. State vector velocity Vy meter per sec at time_t = 940.0898291212 S23G 011. State vector velocity Vz meter per sec at time_t = 7477.6527638575 S23H 011. State vector velocity V meter per sec at time_t = 7550.1615459169 24. Satellite Direction ie right ascension alpha deg and declination delta deg using sat position vector . Note - results same as that using angles incl, RA, Aug of peri, true anomaly Inputs : SAT State Vectors Position(X, Y, Z, R) in km , in frame XYZ Outputs : SAT right ascension alpha deg and declination delta deg S24A 011. Satellite direction right_asc alpha deg at time_t = 207.1032871591 S24B 011. Satellite direction_declination_delta_deg_at_time_t = 0.1211879852 25. Satellite Angular momentum km sqr per sec : finding Hx Hy Hz H from state vector pos and vel . Inputs : SAT State Vectors Position(X, Y, Z, R) in km and Velocity (vX, vY, vZ, vR) meter per sec, in frame XYZ Outputs : SAT angular momentum (Hx Hy Hz H) componts in km sqr per sec S25A 011. Satellite angular momentum Hx in km sqr per sec at time_t = -23863.1594587127 S25B 011. Satellite angular momentum Hy in km sqr per sec at time_t = 46592.1893691367 S25C 011. Satellite angular momentum Hz in km sqr per sec at time_t = -7305.5684084861 S25D 011. Satellite angular momentum H in km sqr per sec at time_t = 52855.0264339402 26. Satellite Orbit normal Vector : finding Wx Wy Wz W Delta Alpha from r_sat_pos frame IJK, i, RA Inputs : SAT Position Vector(rI rJ rK) EC to Sat in km in frame IJK , inclination_deg_at_time_t, right_ascension_ascending_node_deg_at_time_t Outputs : SAT orbit normal vector (Wx, Wy, Wz, W) in km , RA , i S26A 011. Satellite Orbit normal_W in km = 7000.5204759091 S26B 011. Satellite Orbit normal_Wx in km = -3160.6177819132 S26C 011. Satellite Orbit normal_Wy in km = 6171.0228468759

Page 229: ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM …myreaders.info/00_Orbital__Mechanics__-__Model_____Simulation... · ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM-MSS)

www.m

yrea

ders

.inf

o

OM-MSS Page 229 S26D 011. Satellite Orbit normal_Wz in km = -967.6048747356 S26E 011. Satellite Orbit normal_Delta_W in deg = -7.9448000000 S26F 011. Satellite Orbit interpreted inclination i = 97.9448000000 S26G 011. Satellite Orbit normal_Alpha_W in deg = -62.8798000000 S26H 011. Satellite Orbit interpreted RA of asc node = 207.1202000000 Transform Satellite State Vectors to Keplerian elements. 27. Finding Satellite position Keplerian elements computed using State Vector, at time input UT. Inputs : State vector year, days decimal of year, revolution, node, State Position Vector [ X, Y, Z ], State Velocity Vector [ Vx, Vy, Vz ] Outputs : Keplerian elements : year, days decimal of year, revolution, node, inclination, right ascension, eccentricity, argument of perigee, mean anomaly, mean motion rev per day, mean angular velocity rev per day, mean motion rev per_day from SMA considering oblateness S27A 011. Keplerian elements year = 2014, days_decimal_of_year = 147.12956, revolution no = 20925, node = 1 ie ascending S27B 011. inclination_deg = 97.9448000000 S27C 011. right ascension ascending node deg = 207.1202000000 S27D 011. eccentricity = 0.0016257000 S27E 011. argument of perigee_deg = 44.4835000000 S27F 011. mean anomaly deg = 315.7690000000 S27G 011. mean_motion rev per day = 14.7867948300 S27H 011. mean angular velocity rev_per_day = 14.7961532483 S27I 011. mean motion rev per day using SMA considering oblateness = 14.7774423308 Transform Satellite Keplerian elements to State Vectors . 28. Finding Satellite position State Vectors, computed using Keplerian elements at time input UT (computed again to validate model equations, Keplerian elements to State Vectors & back) Inputs : Keplerian elements : year, days decimal of year, revolution, node, inclination, right ascension, eccentricity, argument of perigee, mean anomaly, mean motion rev per day, mean angular velocity rev per day, mean motion rev per_day from SMA considering oblateness Outputs : State vector year, days decimal of year, revolution, node, State Position Vector [ X, Y, Z ], State Velocity Vector [ Vx, Vy, Vz ]

Page 230: ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM …myreaders.info/00_Orbital__Mechanics__-__Model_____Simulation... · ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM-MSS)

www.m

yrea

ders

.inf

o

OM-MSS Page 230 S28A 011. State vectors year = 2014, days_decimal_of_year = 147.12956, revolution no = 20925, node = 1 ie decending S28B 011. state vector position X km = -6231.7560551250, state vector velocity Vx meter per sec = -453.7396013125 S28C 011. state vector position Y km = -3189.4018492384, state vector velocity Vy meter per sec = 940.0898291212 S28D 011. state vector position Z km = 14.8069953229, state vector velocity Vz meter per sec = 7477.6527638575 S28E 011. state vector position R km = 7000.5204759091, state vector velocity V meter per sec = 7550.1615459169 Move on to next Satellite. Next Section - 6.4 Computing Orbital & Positional parameters for Satellite ISS (ZARYA)

Page 231: ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM …myreaders.info/00_Orbital__Mechanics__-__Model_____Simulation... · ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM-MSS)

www.m

yrea

ders

.inf

o

OM-MSS Page 231 OM-MSS Section - 6.4 ---------------------------------------------------------------------------------------------------52 Satellite ISS (ZARYA) : Computing Orbital & Positional parameters corresponding to input NASA/NORAD 'Two-Line Elements'(TLE) Bulletins. (d) ISS (ZARYA) 'Two-Line Elements'(TLE) downloaded on May 28, 2014, 18:13 hrs IST, Satellite launched on November 20, 1998 1 25544U 98067A 14148.25353351 .00006506 00000-0 11951-3 0 3738 2 25544 51.6471 198.4055 0003968 47.6724 33.3515 15.50569135888233 From this TLE, the data relevant for the purpose are manually interpreted & extracted : Satellite number 25544, ISS (ZARYA) , EPOCH_year = 2014 EPOCH_days_decimal_of_year = 147.2535335100 EPOCH_inclination_deg = 51.6471000000 EPOCH_right_asc_acnd_node_deg = 198.4055000000 EPOCH_eccentricity = 0.0003968000 EPOCH_argument_of_perigee_deg = 47.6724000000 EPOCH_mean_anomaly_deg = 33.3515000000 EPOCH_mean_motion_rev_per_day = 15.5056913500 EPOCH_revolution = 88823 EPOCH_node_condition = 1 Earth_stn_latitude_deg = 23.25993 Earth stn longitude_deg = 77.41261 Earth surface height_meter = 494.70000 Earth stn tower_height_meter = 15.00000 Earth stn_height_meter = 509.70000 Earth stn min EL look_angle_deg = -5.00000 Note : EPOCH Corresponds to UT year = 2014, month = 5, day = 28, hr = 6, min = 5, sec = 5.29526 which is Greenwich meam time ie GMT Converted to Local Meam Time at Earth Stn Longitude, as regular Calender date : year = 2014, month = 5, day = 28, hr = 11, min = 14, sec = 44.32 At this instant Sun Position as seen from Earth Stn Longitude : Sun angles EL deg = 80.01, AZ deg = 98.36, Sun Surface distance km = 1111.87, Radial km = 151595496.79, Sun Rise D:28, H:05, M:17, S:03 Sun Set D:28, H:18, M:40, S:20 Move to Compute Satellie Orbital parameters corresponding to input NASA/NORAD 'Two-Line Elements'(TLE) Bulletins, and Earth Stn location. 01. Input EPOCH_year and EPOCH_days_decimal_of_year, Converted into UT YY MM DD hh min sec & Julian day. S01 011. Input UT year = 2014, month = 5, day = 28, hr = 6, min = 5, sec = 5.29526, and julian_day = 2456805.7535335100 02. Finding Satellite orbit Semi major axis in km, Ignoring and also Considering earth oblatenes . (a) Semi major axis (SMA) km at time t Ignoring earth oblatenes . Inputs : SAT mean_motion rev per day at time t, GM_EARTH . Outputs : SAT Orbit semi major axis km in km and constant_A, constant_k1 .

Page 232: ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM …myreaders.info/00_Orbital__Mechanics__-__Model_____Simulation... · ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM-MSS)

www.m

yrea

ders

.inf

o

OM-MSS Page 232 S02A 011. Satellite orbit Semi major axis in km at time t, Ignoring earth oblatenes = 6793.20027, (b) Semi major axis (SMA) in km at time_t Considering earth oblatenes Inputs : SAT mean_motion rev per day at time_t, GM_EARTH , inclination deg at time_t, eccentricity at time_t, constant_k2 Outputs : SAT Orbit semi major axis km in km at time_t and constant_A, constant_k1, constant_k3 . S02B 011. Satellite orbit Semi major axis km at time t, Considering earth oblatenes = 6793.70175, 03. Finding Satellite Mean motion in rev per day, Ignoring and also Considering earth oblatenes . (a) Nominal mean motion rev per day at time_t Ignoring earth oblateness . Inputs : SAT Orbit semi major axis in km ignoring oblateness at time_t, constant_k1 . Outputs : SAT nominal mean motion in rev_per_day at time_t, ignoring earth oblateness S03A 011. Satellite Nominal Mean motion in rev_per_day at time_t using SMA Ignoring earth oblateness = 15.50569, (b) Mean motion rev per day at time_t Considering earth oblatenes Inputs : SAT nominal mean motion rad per day at time_t Ignoring_oblateness, constant_k2, constant_k3, SAT orbit semi major axis in km considering oblateness at time_t. Outputs : SAT mean motion rev per day at time_t, considering earth oblatenes . S03B 011. Satellite Mean motion in rev_per_day at time t using SMA Considering earth oblatenes = 15.50741, Note - This calculted value is slightly less than the mean motion rev_per_day as EPH input from NORAD TLE 04. Finding Satellite Orbit Time Period in minute at time_t Considering earth oblatenes . Inputs : SAT orbit semi major axis in km considering oblateness at time_t, GM_EARTH . Outputs : SAT orbit time period in minute at time_t considering earth oblatenes . S04 011. Satellite orbit Time Period in minute at time_t using SMA Considering earth oblatenes = 92.87941, 05. Finding Satellite Rate of change of Right Ascension and Argument of Perigee in deg per_day at time_t. (a) Rate of change of Right Ascension in deg per day at time_t . Inputs : SAT mean motion rev per day at time_t considering earth oblatenes, constant_k2, SAT orbit eccentricity at time_t, SAT semi major axis km considering oblateness at time_t, SAT orbit inclination deg at time_t . Outputs : SAT rate of change of right ascension in deg per day at time_t and constant_k_deg_per_day

Page 233: ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM …myreaders.info/00_Orbital__Mechanics__-__Model_____Simulation... · ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM-MSS)

www.m

yrea

ders

.inf

o

OM-MSS Page 233 S05A 011. Satellite Rate of change of Right Ascension in deg per day at time_t = -4.94720, (b) Rate of change of Argument of Perigee in deg per_day at time_t . Inputs : SAT orbit constant_k_deg_per_day, SAT orbit inclination deg at time_t SAT orbit semi major axis km considering oblateness at time_t Outputs : SAT rate of change of argument of perigee in deg per day at time_t S05B 011. Satellite Rate of change of Argument of Perigee in deg per day at time_t = 3.68794, 06. Finding Satellite Mean anomaly, Eccentric anomaly, True anomaly in deg at time_t considering earth oblateness. Inputs : SAT mean anomaly rad at time_t, mean_motion_rad_per_day_at_time_t considering_oblateness, SAT orbit eccentricity_at_time_t Outputs : SAT mean anomaly, eccentric anomaly, and true anomaly in deg at time_t onsidering earth oblateness. S06A 011. Satellite Mean anomaly in deg at time_t = 33.35150, same as EPH mean anomaly S06A 011. Satellite Eccentric anomaly in deg at time_t = 33.36400, S06A 011. Satellite True anomaly in deg at time_t = 33.37651, Note - 1. Here after, the Earth Oblateness is always considered for the computation of satellite orbit parameters, and not repeatedly mentioned. Satellite to Earth, the Position Vectors coordinate and the Vector Coordinate Transforms are in PQW, IJK, SEZ frames . - Perifocal Coordinate System (PQW) is Earth Centered Inertial coordinate frame defined in terms of Kepler Orbital Elements. - Geocentric Coordinate System(IJK) is Earth Centered Inertial (ECI) frame, a Conventional Inertial System (CIS). - Topocentric Horizon Coordinate System(SEZ), is Non-Inertial coordinate frame, known as Earth-Centered Earth-Fixed Coordinates (ECEF). Each of these coordinate system were explained in detail before and therefore not repeated any more. 07. Finding Satellite position vector[rp, rq] from Earth center(EC) to Sat in PQW frame, perifocal coordinate system. Inputs : SAT orbit semi-major axis (SMA), SAT orbit eccentricity, SAT eccentric anomaly, SATtrue anomaly at time_t Outputs : Vector(r, rp rq) in PQW frame S07A 011. r Satellite pos vector magnitude EC to Sat km in PQW frame perifocal cord at time_t = 6791.45029 S07B 011. rp Satellite pos vector component EC to Sat km in PQW frame perifocal cord at time_t = 5671.3601057139 S07C 011. rq Satellite pos vector component EC to Sat km in PQW frame perifocal cord at time_t = 3736.2376169157 08. Satellite Position Vector Earth Ceter(EC) to Satellite(SAT) - finding Range Vector(rI rJ rK r) Components in km in frame IJK

Page 234: ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM …myreaders.info/00_Orbital__Mechanics__-__Model_____Simulation... · ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM-MSS)

www.m

yrea

ders

.inf

o

OM-MSS Page 234 Note - Transform_1 : EC to SAT Vector(rp, rq) in frame PQW To EC to SAT Vector(rI rJ rK r) in frame IJK. Inputs : Vector(rp, rq) EC to Sat in km in frame PQW, SAT right ascension of ascending node at time_t, SAT argument of perigee rad at time_t, SAT orbit inclination rad at time_t . Outputs : Vector(rI, rJ, rK, r) EC to SAT in km in frame IJK S08A 011. rI Satellite pos vector component EC to Sat km frame IJK at at time_t = 311.7253734371 S08B 011. rJ Satellite pos vector component EC to Sat km frame IJK at at time_t = -4283.4907194611 S08C 011. rK Satellite pos vector component EC to Sat km frame IJK at at time_t = 5261.0200081909 S08D 011. r Satellite pos vector magnitude EC to Sat km frame IJK at at time_t = 6791.4502853764 Note - r Satellite pos vector magnitude EC to Sat km in PQW frame is same as that computed above in PQW frame. 09. Finding GST Greenwich sidereal time and GHA Greenwich hour angle in 0 to 360 deg, at input at time_t . Note - for GST, the year 1900 JAN day_1 hr 1200 is ref for time difference in terms of julian_century, for GHA, the year 2000_JAN_day_1 hr_1200 is ref for time difference in terms of julian days. Inputs : Time t UT year = 2014, month = 5, day = 28, hour = 6, minute = 5, seconds = 5.29526 Outputs : GST & GHA in 0-360 deg over Greenwich. S09A 011. GST Greenwich sidereal time in 0-360 deg, over Greenwich = 336.98019, hr = 22, min = 27, sec = 55.24463 S09B 011. GHA Greenwich hour angle in 0 to 360 deg, over Greenwich = 336.98371, deg = 336, min = 59, sec = 1.37032 10. Satellite(SAT) Orbit point direction : Finding Right Ascension(Alpha) deg and Declination(Delta) deg using angles Inputs : SAT orbit inclination deg at_time_t, EPH right ascension ascending node deg, SAT argument of perigee deg at time_t, SAT true anomaly deg calculated at time_t Outputs : SAT Right Ascension(Alpha) and Declination(Delta) in deg at time_t S10A 011. SAT Right Ascension(Alpha) in deg = 274.1622871100 S10B 011. SAT Declination(Delta) in deg = 50.7736185669 11. Finding Satellite Longitude & Latitude in deg at time_t; (ie Sub-Sat point log & lat on earth surface ). Inputs : SAT right ascension ascending node deg at time_t, GST in 0-360 deg over Greenwich at time_t Outputs : Satellite (Sub-Sat point) longitude 0 to 360 deg at time_t. S11A 011. Satellite longitude 0 to 360 deg at time_t = 274.16 ie deg = 274, min = 9, sec = 44.23

Page 235: ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM …myreaders.info/00_Orbital__Mechanics__-__Model_____Simulation... · ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM-MSS)

www.m

yrea

ders

.inf

o

OM-MSS Page 235 Inputs : argument of_perigee rad at_time_t, inclination rad at time_t, true anomaly rad calculated at time_t. Outputs : Satellite (Sub-Sat point) latitude +ve or -ve in 0 to 90 deg at time_t. S11B 011. Satellite latitude +ve or -ve in 0 to 90 deg at time_t = 50.77 ie deg = 50, min = 46, sec = 25.03 12. Finding Satellite height in km from EC to Sat and from Earth surface to Sat at time_t. (a) Satellite height in km from EC to Sat; (ie Sat orbit radius EC to Sat in km at time_t). Note - This is SAME as r sat pos vector magnitude EC to Sat in frame IJK calculated above in TRANSFORN_1 . Inputs : SAT true anomaly at time_t, semi_major_axis_km, inclination at time_t . Outputs : Sub-Sat point longitude 0 to 360 deg at time_t. S12A 011. Satellite orbital radious EC to SAT in km using SAT true anomaly at time_t = 6791.45 (b) Satellite height in km from earth surface. Inputs : Sub-Sat point latitude +ve or -ve in 0 to 90 deg at time_t, earth_equator_radious_km . Outputs : Sat height in km from earth surface. S12B 011. Satellite height in km from earth surface at time_t = 426.15 13. Finding Distance of Sub-Sat point To Earth Stn(ES) in km over Earth surface at time_t . Inputs : Sub-Sat point lat & log, ES lat & log . Outputs : Distance of Sub-Sat point To Earth Stn(ES) in km over Earth surface S13 011. Distance of Sub-Sat point To Earth Stn(ES) in km over Earth surface = 11633.16757 14. Finding Local sidereal time(LST) and Local mean time(LMT) over Sub-Sat point Longitude on earth . (a) Local sidereal time(LST) in 0 to 360 deg over Sub-Sat point Longitude on earth . Inputs : GST sidereal_time in 0 to 360 deg at Greenwich at time_t, satellite log in 0 to 360 deg at time_t . Outputs : LST local sidereal time in 0 to_360 deg at SAT longitude at time_t. S14A 011. Local sidereal time(LST) over Sub-Sat point Longitude at time_t = 251.14 (b) Local sidereal time(LST) and local Mean time(LMT) adjusted to calendar date(CD) over Sub-Sat point Longitude on earth . Note - The LST and LMT in hr min sec with YY MM DD adjusted to calendar date (CD) of longitude at time_t . Here LST in deg is re-calculated alterately in terms of Julian Day (JD) that account for calendar date (CD) of longitude. Inputs : GMT_JD, Sat longitude_in_0_to_360_deg .

Page 236: ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM …myreaders.info/00_Orbital__Mechanics__-__Model_____Simulation... · ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM-MSS)

www.m

yrea

ders

.inf

o

OM-MSS Page 236 Outputs : LST local sidereal time in 0 to_360 deg at SAT longitude at time_t. S14B 011. Local sidereal time(LST) in 0 to 360_deg over Sub-Sat point Longitude at time_t = 251.14 S14C 011. LST over Sub-Sat Log, with date adj to CD expressed in JD = 2456806.20, ie YY = 2014, MM = 5, DD = 28, hr = 16, min = 44, sec = 34.28 S14D 011. LMT over Sub-Sat Log, with date adj to CD expressed in JD = 2456805.52, ie YY = 2014, MM = 5, DD = 28, hr = 0, min = 21, sec = 44.24 15. Finding Local sidereal time(LST) and Local mean time(LMT) Over Earth stn (ES) or Earth point(EP) Longitude . (a) Local sidereal time(LST) in 0 to 360 deg over Earth stn(ES) Longitude . Inputs : GST sidereal_time in 0 to 360 deg at Greenwich at time_t, Earth stn(ES) longitude_in_0_to_360_deg . Outputs : LST local sidereal time in 0 to_360 deg at Earth stn(ES) longitude at time_t. S15A 011. Local sidereal time(LST) over Earth stn(ES) Longitude at time_t = 54.39 (b) Local sidereal time(LST) and local Mean time(LMT) adjusted to calendar date(CD) over Earth stn(ES) Longitude . Note - The LST and LMT in hr min sec with YY MM DD adjusted to calendar date (CD) of longitude at time_t . Here LST in deg is re-calculated alterately in terms of Julian Day (JD) that account for calendar date (CD) of longitude. Inputs : GMT_JD, Earth stn(ES) longitude_in_0_to_360_deg . Outputs : LST local sidereal time in 0 to_360 deg at Earth stn (ES) longitude at time_t. S15B 011. Local sidereal time(LST) in 0 to 360_deg over Earth stn (ES) Longitude at time_t = 54.39 S14C 011. LST over ES Log, with date adj to CD expressed in JD = 2456806.65, ie YY = 2014, MM = 5, DD = 29, hr = 3, min = 37, sec = 34.36 S15D 011. LMT over ES Log, with date adj to CD expressed in JD = 2456805.97, ie YY = 2014, MM = 5, DD = 28, hr = 11, min = 14, sec = 44.32 16. Earth Stn (ES) Position Vector from Earth Center(EC) to Earth Stn(ES) : Finding Range Vector(RI, RJ, RK, R) Components in IJK frame Note - Transform_2 : ES position cord(lat, log, hgt) To EC to ES position Vector(RI, RJ, RK, R) in frame IJK . Inputs : ES latitude positive_negative 0 to 90 deg, ES longitude in 0 to 360_deg, ES height in meter (is earth surface + tower hgt), LST in 0 to 360 deg at ES log at time_t . Outputs : ES Position Vector(RI, RJ, RK, R) Components EC to ES in km in IJK frame . S16A 011. RI_earth_stn_pos_vector_component_EC_to_ES_km_frame_IJK = 3410.1853501576 S16B 011. RJ_earth_stn_pos_vector_component_EC_to_ES_km_frame_IJK = 4762.0322691327 S16C 011. RK_earth_stn_pos_vector_component_EC_to_ES_km_frame_IJK = 2517.6372173288 S16D 011. R_earth_stn_pos_vector_component_EC_to_ES_km_frame_IJK = 6375.3284317570

Page 237: ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM …myreaders.info/00_Orbital__Mechanics__-__Model_____Simulation... · ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM-MSS)

www.m

yrea

ders

.inf

o

OM-MSS Page 237 17. Satellite(SAT) Position Range Vector from Earth Stn(ES) to SAT : Finding Range Vector(rvI, rvJ, rvK, rv) Components in km in IJK frame Note - Transform_3 SAT Pos Vct(rI rJ rK) and ES Pos Vct(RI RJ RK) To SAT Pos Vct(rvI, rvJ, rvK, rv) Inputs : SAT Position Vector(rI rJ rK) EC to Sat in km in frame IJK , ES Position Vector(RI RJ RK) EC to ES in km in IJK frame. Outputs : SAT Position Range Vector(rvI, rvJ, rvK, rv) Components ES to Sat in km in IJK frame S17A 011. rv_I range vector component ES to SAT km frame IJK = -3098.4599767204 S17B 011. rv_J range vector component ES to SAT km frame IJK = -9045.5229885937 S17C 011. rv_K range vector component ES to SAT km frame IJK = 2743.3827908621 S17D 011. rv range vector component ES to SAT km frame IJK = 9947.2654283333 18. Satellite(SAT) Position Range Vector from Earth Stn(ES) to SAT : Finding Range Vector(rvS, rvE, rvZ, rv) Components in km in SEZ frame Note - Transform_4 SAT Pos Vct(rvI, rvJ, rvK, rv) in IJK frame To SAT Pos Vct(rvS, rvE, rvZ, rv) in SEZ frame Inputs : ES latitude positive_negative 0 to 90_deg, LST in 0 to 360 deg at ES longitude at time_t SAT PositionRange Vector(rvI, rvJ, rvK, rv) ES to Sat in km in IJK frame Outputs : SAT Position Range(rvS, rvE, rvZ, rv) Components ES to Sat in km in SEZ frame S18A 011. rvS range_vector component ES to SAT km_frame SEZ = -6137.0343240468 S18B 011. rvE range_vector component ES to SAT km_frame SEZ = -2747.3972741696 S18C 011. rvZ range_vector component ES to SAT km_frame SEZ = -7330.5325471668 S18D 011. rv range_vector component ES to SAT km_frame SEZ = 9947.2654283333 19. Finding Elevation(EL) and Azimuth(AZ) angles of Satellite and Sun : Steps 1, 2, 3 AT UT TIME t Rem: Sub-SAT point lat deg = 50.77, log deg = 274.16 YY = 2014, MM = 5, DD = 28, hr = 0, min = 21, sec = 44.24 ES or EP point lat deg = 23.26, log deg = 77.41 YY = 2014, MM = 5, DD = 28, hr = 11, min = 14, sec = 44.32 Note : Step 1 is for Satellite EL & AZ angles. Steps 2 & 3 are for Sun EL & AZ angles Results verified from other sources; Ref URLs Geoscience Australia http://www.ga.gov.au/geodesy/astro/smpos.jsp#intzone , NOAA Research http://www.esrl.noaa.gov/gmd/grad/solcalc/ , Xavier Jubier, Member IAU http://xjubier.free.fr/en/site_pages/astronomy/ephemerides.html

Page 238: ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM …myreaders.info/00_Orbital__Mechanics__-__Model_____Simulation... · ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM-MSS)

www.m

yrea

ders

.inf

o

OM-MSS Page 238 Elevation(EL) & Azimuth(AZ) angle of SAT at Earth Observation point EP : Step 1. Inputs : Range vector component ES to SAT rv_S, rv_E, rv_Z, in frame_SEZ, EP and Sub_sat point latitude & longitude Outputs : Elevation(EL) & Azimuth(AZ) of SAT at EP S19A 011. Elevation angle deg of Satellte at Earth point EP at time_t = -47.47135 ie deg = -47, min = -28, sec = -16.87 S19B 011. Azimuth angle deg of Satellte at Earth point EP at time_t = 335.88313 ie deg = 335, min = 52, sec = 59.26 Elevation(EL) & Azimuth(AZ) angle of SUN at Sub_Satellite point on earth surface : Step 2. Inputs : Range vector component Sub_sat to Sun rv_S, rv_E, rv_Z, in frame_SEZ, Sub_sat point and Sun_Sun point latitude & longitude Outputs : Elevation(EL) & Azimuth(AZ) of Sun at Sub_Sat S19C 011. Elevation angle deg of SUN at Sub_Sat point at time_t = -17.5724321856 S19D 011. Azimuth angle deg of SUN at Sub_Sat point at time_t = 5.9788181882 Elevation(EL) & Azimuth(AZ) angle of SUN at Satellite height : Step 3. Inputs : Range vector component Sub_sat to Sun rv_S, rv_E, rv_Z, in frame_SEZ, Sub_sat point and Sun_Sun point latitude & longitude Outputs : Elevation(EL) & Azimuth(AZ) of SUN at SAT S19E 011. Elevation angle deg of Sun at Satellite height at time_t = -17.57259 S19F 011. Azimuth angle deg of Sun at Satellite height at time_t = 5.97882 20. Finding Satellite Velocity meter per sec in orbit . Note : Results computed using 2 different formulations, each require different inputs. (a) Inputs : SAT orbit semi-major axis SMA, GM_EARTH, sat_orbit pos r_vector_EC_to_SAT_km_frame_IJK. Outputs : SAT Velocity magnitude and component Xw Yw in frame PQW in meter per sec S20A 011. Satellite Velocity magnitude meter per sec at UT time = 7662.3074951298 (b) Inputs : SAT orbit semi-major axis SMA, GM_EARTH, SAT orbit eccentricity_at_time_t, SAT eccentric anomaly deg calculated at time_t. Outputs : Satellite Velocity components Xw Yw in frame PQW in meter per sec

Page 239: ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM …myreaders.info/00_Orbital__Mechanics__-__Model_____Simulation... · ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM-MSS)

www.m

yrea

ders

.inf

o

OM-MSS Page 239 S20B 011. Satellite Velocity components Xw in frame PQW in meter per sec = -4213.9331945858 S20C 011. Satellite Velocity components Yw in frame PQW in meter per sec = 6399.5096047658 21. Finding Satellite(SAT) Velocity Vector (vX, vY, vZ) in meter per sec in orbit in frame XYZ. Note - Transform_5 SAT Vel Vct(Xw, Yw) in frame PQW To SAT Vel Vct(vX, vY, vZ) in frame XYZ Inputs : SAT velocity vectors(Xw, Yw), SAT Right Ascension Alpha, SAT Argument of perigee, SAT orbit inclination at_time_t, SAT eccentric_anomaly_deg_calculated_at_time_t. Outputs : earth velocity vector(vX, vY, vZ, vR) meter per sec in frame XYZ S21A 011. vX Sat Velocity vector component in meter per sec = 7415.4532574405 S21B 011. vY Sat Velocity vector component in meter per sec = 1686.8647169809 S21C 011. vZ Sat Velocity vector component in meter per sec = 936.2139516379 S21D 011. vR Sat Velocity magnitude meter in meter per sec = 7662.3074951298 22. Finding Satellite(SAT) Pitch and Roll angles Inputs : Earth equator radious km, ES lat, ES log, Sub_Sat point lat, Sub_Sat point log, Sat_orbit pos r_vector_EC_to_SAT_km_frame_IJK, Outputs : SAT Pitch and Roll angles S22A 011. pitch_angle_deg_for_earth_stn_at_sat_lat_log_at_time_t = -7.7991142227 S22B 011. roll_angle_deg_for_earth_stn_at_sat_lat_log_at_time_t = 11.2997817577 23. Finding Satellite State Vectors - Position [ X, Y, Z ] in km and velocity [ Vx, Vy, Vz ] in meter per sec at time_t . Note - same as values of rI rJ rK r for pos and vX vY vZ vR for vel (a) Satellite State Position Vector [X, Y, Z] in km at time_t Inputs : position vector(rI, rJ, rK, r) in frame IJK values assiged to state position vector Outputs : State Position Vector(X, Y, Z, R) in km, frame XYZ S23A 011. State vector position X km at time_t = 311.7253734371 S23B 011. State vector position Y km at time_t = -4283.4907194611 S23C 011. State vector position Z km at time_t = 5261.0200081909 S23D 011. State vector position R km at time_t = 6791.4502853764

Page 240: ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM …myreaders.info/00_Orbital__Mechanics__-__Model_____Simulation... · ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM-MSS)

www.m

yrea

ders

.inf

o

OM-MSS Page 240 (b) Satellite State Velocity Vector [Vx, Vy, Vz] in meter per sec at time input UT. Inputs : velocity vector(vX, vY, vZ, vR) meter per sec in frame XYZ values assiged to state velocity vector Outputs : state velocity vector(Vx, Vy, Vz, V) meter per sec, frame XYZ S23E 011. State vector velocity Vx meter per sec at time_t = 7415.4532574405 S23F 011. State vector velocity Vy meter per sec at time_t = 1686.8647169809 S23G 011. State vector velocity Vz meter per sec at time_t = 936.2139516379 S23H 011. State vector velocity V meter per sec at time_t = 7662.3074951298 24. Satellite Direction ie right ascension alpha deg and declination delta deg using sat position vector . Note - results same as that using angles incl, RA, Aug of peri, true anomaly Inputs : SAT State Vectors Position(X, Y, Z, R) in km , in frame XYZ Outputs : SAT right ascension alpha deg and declination delta deg S24A 011. Satellite direction right_asc alpha deg at time_t = 274.1622871100 S24B 011. Satellite direction_declination_delta_deg_at_time_t = 50.7736185669 25. Satellite Angular momentum km sqr per sec : finding Hx Hy Hz H from state vector pos and vel . Inputs : SAT State Vectors Position(X, Y, Z, R) in km and Velocity (vX, vY, vZ, vR) meter per sec, in frame XYZ Outputs : SAT angular momentum (Hx Hy Hz H) componts in km sqr per sec S25A 011. Satellite angular momentum Hx in km sqr per sec at time_t = -12884.8928004185 S25B 011. Satellite angular momentum Hy in km sqr per sec at time_t = 38721.0063135077 S25C 011. Satellite angular momentum Hz in km sqr per sec at time_t = 32289.8637426827 S25D 011. Satellite angular momentum H in km sqr per sec at time_t = 52038.1791853826 26. Satellite Orbit normal Vector : finding Wx Wy Wz W Delta Alpha from r_sat_pos frame IJK, i, RA Inputs : SAT Position Vector(rI rJ rK) EC to Sat in km in frame IJK , inclination_deg_at_time_t, right_ascension_ascending_node_deg_at_time_t Outputs : SAT orbit normal vector (Wx, Wy, Wz, W) in km , RA , i S26A 011. Satellite Orbit normal_W in km = 6791.4502853764 S26B 011. Satellite Orbit normal_Wx in km = -1681.5943650662 S26C 011. Satellite Orbit normal_Wy in km = 5053.4394841355

Page 241: ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM …myreaders.info/00_Orbital__Mechanics__-__Model_____Simulation... · ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM-MSS)

www.m

yrea

ders

.inf

o

OM-MSS Page 241 S26D 011. Satellite Orbit normal_Wz in km = 4214.1175529755 S26E 011. Satellite Orbit normal_Delta_W in deg = 38.3529000000 S26F 011. Satellite Orbit interpreted inclination i = 51.6471000000 S26G 011. Satellite Orbit normal_Alpha_W in deg = -71.5945000000 S26H 011. Satellite Orbit interpreted RA of asc node = 198.4055000000 Transform Satellite State Vectors to Keplerian elements. 27. Finding Satellite position Keplerian elements computed using State Vector, at time input UT. Inputs : State vector year, days decimal of year, revolution, node, State Position Vector [ X, Y, Z ], State Velocity Vector [ Vx, Vy, Vz ] Outputs : Keplerian elements : year, days decimal of year, revolution, node, inclination, right ascension, eccentricity, argument of perigee, mean anomaly, mean motion rev per day, mean angular velocity rev per day, mean motion rev per_day from SMA considering oblateness S27A 011. Keplerian elements year = 2014, days_decimal_of_year = 147.25353, revolution no = 88823, node = 1 ie ascending S27B 011. inclination_deg = 51.6471000000 S27C 011. right ascension ascending node deg = 198.4055000000 S27D 011. eccentricity = 0.0003968000 S27E 011. argument of perigee_deg = 47.6723999999 S27F 011. mean anomaly deg = 33.3515000001 S27G 011. mean_motion rev per day = 15.5056913500 S27H 011. mean angular velocity rev_per_day = 15.5039745355 S27I 011. mean motion rev per day using SMA considering oblateness = 15.5074083546 Transform Satellite Keplerian elements to State Vectors . 28. Finding Satellite position State Vectors, computed using Keplerian elements at time input UT (computed again to validate model equations, Keplerian elements to State Vectors & back) Inputs : Keplerian elements : year, days decimal of year, revolution, node, inclination, right ascension, eccentricity, argument of perigee, mean anomaly, mean motion rev per day, mean angular velocity rev per day, mean motion rev per_day from SMA considering oblateness Outputs : State vector year, days decimal of year, revolution, node, State Position Vector [ X, Y, Z ], State Velocity Vector [ Vx, Vy, Vz ]

Page 242: ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM …myreaders.info/00_Orbital__Mechanics__-__Model_____Simulation... · ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM-MSS)

www.m

yrea

ders

.inf

o

OM-MSS Page 242 S28A 011. State vectors year = 2014, days_decimal_of_year = 147.25353, revolution no = 88823, node = 1 ie decending S28B 011. state vector position X km = 311.7253734381, state vector velocity Vx meter per sec = 7415.4532574405 S28C 011. state vector position Y km = -4283.4907194609, state vector velocity Vy meter per sec = 1686.8647169816 S28D 011. state vector position Z km = 5261.0200081910, state vector velocity Vz meter per sec = 936.2139516370 S28E 011. state vector position R km = 6791.4502853764, state vector velocity V meter per sec = 7662.3074951298 Move on to next Satellite. Next Section - 6.5 Computing Computing Orbital & Positional parameters for Satellite GSAT-14

Page 243: ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM …myreaders.info/00_Orbital__Mechanics__-__Model_____Simulation... · ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM-MSS)

www.m

yrea

ders

.inf

o

OM-MSS Page 243 OM-MSS Section - 6.5 ---------------------------------------------------------------------------------------------------53 Satellite GSAT-14 : Computing Orbital & Positional parameters corresponding to input NASA/NORAD 'Two-Line Elements'(TLE) Bulletins. (e) GSAT-14 'Two-Line Elements'(TLE) downloaded on May 28, 2014, 18:14 hrs IST, Satellite launched on January 05, 2014 1 39498U 14001A 14146.03167358 -.00000092 00000-0 00000+0 0 1238 2 39498 0.0049 223.9821 0002051 110.2671 354.6468 1.00272265 1407 From this TLE, the data relevant for the purpose are manually interpreted & extracted : Satellite number 39498, GSAT-14 , EPOCH_year = 2014 EPOCH_days_decimal_of_year = 145.0316735800 EPOCH_inclination_deg = 0.0049000000 EPOCH_right_asc_acnd_node_deg = 223.9821000000 EPOCH_eccentricity = 0.0002051000 EPOCH_argument_of_perigee_deg = 110.2671000000 EPOCH_mean_anomaly_deg = 354.6468000000 EPOCH_mean_motion_rev_per_day = 1.0027226500 EPOCH_revolution = 140 EPOCH_node_condition = 1 Earth_stn_latitude_deg = 23.25993 Earth stn longitude_deg = 77.41261 Earth surface height_meter = 494.70000 Earth stn tower_height_meter = 15.00000 Earth stn_height_meter = 509.70000 Earth stn min EL look_angle_deg = -5.00000 Note : EPOCH Corresponds to UT year = 2014, month = 5, day = 26, hr = 0, min = 45, sec = 36.59731 which is Greenwich meam time ie GMT Converted to Local Meam Time at Earth Stn Longitude, as regular Calender date : year = 2014, month = 5, day = 26, hr = 5, min = 55, sec = 15.62 At this instant Sun Position as seen from Earth Stn Longitude : Sun angles EL deg = 7.79, AZ deg = 70.35, Sun Surface distance km = 9151.22, Radial km = 151543715.47, Sun Rise D:26, H:05, M:17, S:33 Sun Set D:26, H:18, M:39, S:23 Move to Compute Satellie Orbital parameters corresponding to input NASA/NORAD 'Two-Line Elements'(TLE) Bulletins, and Earth Stn location. 01. Input EPOCH_year and EPOCH_days_decimal_of_year, Converted into UT YY MM DD hh min sec & Julian day. S01 011. Input UT year = 2014, month = 5, day = 26, hr = 0, min = 45, sec = 36.59731, and julian_day = 2456803.5316735799 02. Finding Satellite orbit Semi major axis in km, Ignoring and also Considering earth oblatenes . (a) Semi major axis (SMA) km at time t Ignoring earth oblatenes . Inputs : SAT mean_motion rev per day at time t, GM_EARTH . Outputs : SAT Orbit semi major axis km in km and constant_A, constant_k1 .

Page 244: ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM …myreaders.info/00_Orbital__Mechanics__-__Model_____Simulation... · ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM-MSS)

www.m

yrea

ders

.inf

o

OM-MSS Page 244 S02A 011. Satellite orbit Semi major axis in km at time t, Ignoring earth oblatenes = 42164.59740, (b) Semi major axis (SMA) in km at time_t Considering earth oblatenes Inputs : SAT mean_motion rev per day at time_t, GM_EARTH , inclination deg at time_t, eccentricity at time_t, constant_k2 Outputs : SAT Orbit semi major axis km in km at time_t and constant_A, constant_k1, constant_k3 . S02B 011. Satellite orbit Semi major axis km at time t, Considering earth oblatenes = 42165.63953, 03. Finding Satellite Mean motion in rev per day, Ignoring and also Considering earth oblatenes . (a) Nominal mean motion rev per day at time_t Ignoring earth oblateness . Inputs : SAT Orbit semi major axis in km ignoring oblateness at time_t, constant_k1 . Outputs : SAT nominal mean motion in rev_per_day at time_t, ignoring earth oblateness S03A 011. Satellite Nominal Mean motion in rev_per_day at time_t using SMA Ignoring earth oblateness = 1.00272, (b) Mean motion rev per day at time_t Considering earth oblatenes Inputs : SAT nominal mean motion rad per day at time_t Ignoring_oblateness, constant_k2, constant_k3, SAT orbit semi major axis in km considering oblateness at time_t. Outputs : SAT mean motion rev per day at time_t, considering earth oblatenes . S03B 011. Satellite Mean motion in rev_per_day at time t using SMA Considering earth oblatenes = 1.00276, Note - This calculted value is slightly less than the mean motion rev_per_day as EPH input from NORAD TLE 04. Finding Satellite Orbit Time Period in minute at time_t Considering earth oblatenes . Inputs : SAT orbit semi major axis in km considering oblateness at time_t, GM_EARTH . Outputs : SAT orbit time period in minute at time_t considering earth oblatenes . S04 011. Satellite orbit Time Period in minute at time_t using SMA Considering earth oblatenes = 1436.14327, 05. Finding Satellite Rate of change of Right Ascension and Argument of Perigee in deg per_day at time_t. (a) Rate of change of Right Ascension in deg per day at time_t . Inputs : SAT mean motion rev per day at time_t considering earth oblatenes, constant_k2, SAT orbit eccentricity at time_t, SAT semi major axis km considering oblateness at time_t, SAT orbit inclination deg at time_t . Outputs : SAT rate of change of right ascension in deg per day at time_t and constant_k_deg_per_day

Page 245: ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM …myreaders.info/00_Orbital__Mechanics__-__Model_____Simulation... · ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM-MSS)

www.m

yrea

ders

.inf

o

OM-MSS Page 245 S05A 011. Satellite Rate of change of Right Ascension in deg per day at time_t = -0.01338, (b) Rate of change of Argument of Perigee in deg per_day at time_t . Inputs : SAT orbit constant_k_deg_per_day, SAT orbit inclination deg at time_t SAT orbit semi major axis km considering oblateness at time_t Outputs : SAT rate of change of argument of perigee in deg per day at time_t S05B 011. Satellite Rate of change of Argument of Perigee in deg per day at time_t = 0.02677, 06. Finding Satellite Mean anomaly, Eccentric anomaly, True anomaly in deg at time_t considering earth oblateness. Inputs : SAT mean anomaly rad at time_t, mean_motion_rad_per_day_at_time_t considering_oblateness, SAT orbit eccentricity_at_time_t Outputs : SAT mean anomaly, eccentric anomaly, and true anomaly in deg at time_t onsidering earth oblateness. S06A 011. Satellite Mean anomaly in deg at time_t = 354.64680, same as EPH mean anomaly S06A 011. Satellite Eccentric anomaly in deg at time_t = 354.64570, S06A 011. Satellite True anomaly in deg at time_t = 354.64461, Note - 1. Here after, the Earth Oblateness is always considered for the computation of satellite orbit parameters, and not repeatedly mentioned. Satellite to Earth, the Position Vectors coordinate and the Vector Coordinate Transforms are in PQW, IJK, SEZ frames . - Perifocal Coordinate System (PQW) is Earth Centered Inertial coordinate frame defined in terms of Kepler Orbital Elements. - Geocentric Coordinate System(IJK) is Earth Centered Inertial (ECI) frame, a Conventional Inertial System (CIS). - Topocentric Horizon Coordinate System(SEZ), is Non-Inertial coordinate frame, known as Earth-Centered Earth-Fixed Coordinates (ECEF). Each of these coordinate system were explained in detail before and therefore not repeated any more. 07. Finding Satellite position vector[rp, rq] from Earth center(EC) to Sat in PQW frame, perifocal coordinate system. Inputs : SAT orbit semi-major axis (SMA), SAT orbit eccentricity, SAT eccentric anomaly, SATtrue anomaly at time_t Outputs : Vector(r, rp rq) in PQW frame S07A 011. r Satellite pos vector magnitude EC to Sat km in PQW frame perifocal cord at time_t = 42157.02910 S07B 011. rp Satellite pos vector component EC to Sat km in PQW frame perifocal cord at time_t = 41973.0106897037 S07C 011. rq Satellite pos vector component EC to Sat km in PQW frame perifocal cord at time_t = -3934.6506542903 08. Satellite Position Vector Earth Ceter(EC) to Satellite(SAT) - finding Range Vector(rI rJ rK r) Components in km in frame IJK

Page 246: ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM …myreaders.info/00_Orbital__Mechanics__-__Model_____Simulation... · ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM-MSS)

www.m

yrea

ders

.inf

o

OM-MSS Page 246 Note - Transform_1 : EC to SAT Vector(rp, rq) in frame PQW To EC to SAT Vector(rI rJ rK r) in frame IJK. Inputs : Vector(rp, rq) EC to Sat in km in frame PQW, SAT right ascension of ascending node at time_t, SAT argument of perigee rad at time_t, SAT orbit inclination rad at time_t . Outputs : Vector(rI, rJ, rK, r) EC to SAT in km in frame IJK S08A 011. rI Satellite pos vector component EC to Sat km frame IJK at at time_t = 36095.3223130873 S08B 011. rJ Satellite pos vector component EC to Sat km frame IJK at at time_t = -21779.4122305000 S08C 011. rK Satellite pos vector component EC to Sat km frame IJK at at time_t = 3.4839025250 S08D 011. r Satellite pos vector magnitude EC to Sat km frame IJK at at time_t = 42157.0290951495 Note - r Satellite pos vector magnitude EC to Sat km in PQW frame is same as that computed above in PQW frame. 09. Finding GST Greenwich sidereal time and GHA Greenwich hour angle in 0 to 360 deg, at input at time_t . Note - for GST, the year 1900 JAN day_1 hr 1200 is ref for time difference in terms of julian_century, for GHA, the year 2000_JAN_day_1 hr_1200 is ref for time difference in terms of julian days. Inputs : Time t UT year = 2014, month = 5, day = 26, hour = 0, minute = 45, seconds = 36.59731 Outputs : GST & GHA in 0-360 deg over Greenwich. S09A 011. GST Greenwich sidereal time in 0-360 deg, over Greenwich = 254.92064, hr = 16, min = 59, sec = 40.95379 S09B 011. GHA Greenwich hour angle in 0 to 360 deg, over Greenwich = 254.92098, deg = 254, min = 55, sec = 15.51883 10. Satellite(SAT) Orbit point direction : Finding Right Ascension(Alpha) deg and Declination(Delta) deg using angles Inputs : SAT orbit inclination deg at_time_t, EPH right ascension ascending node deg, SAT argument of perigee deg at time_t, SAT true anomaly deg calculated at time_t Outputs : SAT Right Ascension(Alpha) and Declination(Delta) in deg at time_t S10A 011. SAT Right Ascension(Alpha) in deg = 328.8938068030 S10B 011. SAT Declination(Delta) in deg = 0.0047349853 11. Finding Satellite Longitude & Latitude in deg at time_t; (ie Sub-Sat point log & lat on earth surface ). Inputs : SAT right ascension ascending node deg at time_t, GST in 0-360 deg over Greenwich at time_t Outputs : Satellite (Sub-Sat point) longitude 0 to 360 deg at time_t. S11A 011. Satellite longitude 0 to 360 deg at time_t = 328.89 ie deg = 328, min = 53, sec = 37.70

Page 247: ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM …myreaders.info/00_Orbital__Mechanics__-__Model_____Simulation... · ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM-MSS)

www.m

yrea

ders

.inf

o

OM-MSS Page 247 Inputs : argument of_perigee rad at_time_t, inclination rad at time_t, true anomaly rad calculated at time_t. Outputs : Satellite (Sub-Sat point) latitude +ve or -ve in 0 to 90 deg at time_t. S11B 011. Satellite latitude +ve or -ve in 0 to 90 deg at time_t = 0.00 ie deg = 0, min = 0, sec = 17.05 12. Finding Satellite height in km from EC to Sat and from Earth surface to Sat at time_t. (a) Satellite height in km from EC to Sat; (ie Sat orbit radius EC to Sat in km at time_t). Note - This is SAME as r sat pos vector magnitude EC to Sat in frame IJK calculated above in TRANSFORN_1 . Inputs : SAT true anomaly at time_t, semi_major_axis_km, inclination at time_t . Outputs : Sub-Sat point longitude 0 to 360 deg at time_t. S12A 011. Satellite orbital radious EC to SAT in km using SAT true anomaly at time_t = 42157.03 (b) Satellite height in km from earth surface. Inputs : Sub-Sat point latitude +ve or -ve in 0 to 90 deg at time_t, earth_equator_radious_km . Outputs : Sat height in km from earth surface. S12B 011. Satellite height in km from earth surface at time_t = 35778.89 13. Finding Distance of Sub-Sat point To Earth Stn(ES) in km over Earth surface at time_t . Inputs : Sub-Sat point lat & log, ES lat & log . Outputs : Distance of Sub-Sat point To Earth Stn(ES) in km over Earth surface S13 011. Distance of Sub-Sat point To Earth Stn(ES) in km over Earth surface = 11907.14680 14. Finding Local sidereal time(LST) and Local mean time(LMT) over Sub-Sat point Longitude on earth . (a) Local sidereal time(LST) in 0 to 360 deg over Sub-Sat point Longitude on earth . Inputs : GST sidereal_time in 0 to 360 deg at Greenwich at time_t, satellite log in 0 to 360 deg at time_t . Outputs : LST local sidereal time in 0 to_360 deg at SAT longitude at time_t. S14A 011. Local sidereal time(LST) over Sub-Sat point Longitude at time_t = 223.81 (b) Local sidereal time(LST) and local Mean time(LMT) adjusted to calendar date(CD) over Sub-Sat point Longitude on earth . Note - The LST and LMT in hr min sec with YY MM DD adjusted to calendar date (CD) of longitude at time_t . Here LST in deg is re-calculated alterately in terms of Julian Day (JD) that account for calendar date (CD) of longitude. Inputs : GMT_JD, Sat longitude_in_0_to_360_deg .

Page 248: ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM …myreaders.info/00_Orbital__Mechanics__-__Model_____Simulation... · ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM-MSS)

www.m

yrea

ders

.inf

o

OM-MSS Page 248 Outputs : LST local sidereal time in 0 to_360 deg at SAT longitude at time_t. S14B 011. Local sidereal time(LST) in 0 to 360_deg over Sub-Sat point Longitude at time_t = 223.81 S14C 011. LST over Sub-Sat Log, with date adj to CD expressed in JD = 2456804.12, ie YY = 2014, MM = 5, DD = 26, hr = 14, min = 55, sec = 15.56 S14D 011. LMT over Sub-Sat Log, with date adj to CD expressed in JD = 2456803.45, ie YY = 2014, MM = 5, DD = 25, hr = 22, min = 41, sec = 11.11 15. Finding Local sidereal time(LST) and Local mean time(LMT) Over Earth stn (ES) or Earth point(EP) Longitude . (a) Local sidereal time(LST) in 0 to 360 deg over Earth stn(ES) Longitude . Inputs : GST sidereal_time in 0 to 360 deg at Greenwich at time_t, Earth stn(ES) longitude_in_0_to_360_deg . Outputs : LST local sidereal time in 0 to_360 deg at Earth stn(ES) longitude at time_t. S15A 011. Local sidereal time(LST) over Earth stn(ES) Longitude at time_t = 332.33 (b) Local sidereal time(LST) and local Mean time(LMT) adjusted to calendar date(CD) over Earth stn(ES) Longitude . Note - The LST and LMT in hr min sec with YY MM DD adjusted to calendar date (CD) of longitude at time_t . Here LST in deg is re-calculated alterately in terms of Julian Day (JD) that account for calendar date (CD) of longitude. Inputs : GMT_JD, Earth stn(ES) longitude_in_0_to_360_deg . Outputs : LST local sidereal time in 0 to_360 deg at Earth stn (ES) longitude at time_t. S15B 011. Local sidereal time(LST) in 0 to 360_deg over Earth stn (ES) Longitude at time_t = 332.33 S14C 011. LST over ES Log, with date adj to CD expressed in JD = 2456804.42, ie YY = 2014, MM = 5, DD = 26, hr = 22, min = 9, sec = 20.07 S15D 011. LMT over ES Log, with date adj to CD expressed in JD = 2456803.75, ie YY = 2014, MM = 5, DD = 26, hr = 5, min = 55, sec = 15.62 16. Earth Stn (ES) Position Vector from Earth Center(EC) to Earth Stn(ES) : Finding Range Vector(RI, RJ, RK, R) Components in IJK frame Note - Transform_2 : ES position cord(lat, log, hgt) To EC to ES position Vector(RI, RJ, RK, R) in frame IJK . Inputs : ES latitude positive_negative 0 to 90 deg, ES longitude in 0 to 360_deg, ES height in meter (is earth surface + tower hgt), LST in 0 to 360 deg at ES log at time_t . Outputs : ES Position Vector(RI, RJ, RK, R) Components EC to ES in km in IJK frame . S16A 011. RI_earth_stn_pos_vector_component_EC_to_ES_km_frame_IJK = 5187.4709555096 S16B 011. RJ_earth_stn_pos_vector_component_EC_to_ES_km_frame_IJK = -2719.6434583296 S16C 011. RK_earth_stn_pos_vector_component_EC_to_ES_km_frame_IJK = 2517.6372173288 S16D 011. R_earth_stn_pos_vector_component_EC_to_ES_km_frame_IJK = 6375.3284317570

Page 249: ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM …myreaders.info/00_Orbital__Mechanics__-__Model_____Simulation... · ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM-MSS)

www.m

yrea

ders

.inf

o

OM-MSS Page 249 17. Satellite(SAT) Position Range Vector from Earth Stn(ES) to SAT : Finding Range Vector(rvI, rvJ, rvK, rv) Components in km in IJK frame Note - Transform_3 SAT Pos Vct(rI rJ rK) and ES Pos Vct(RI RJ RK) To SAT Pos Vct(rvI, rvJ, rvK, rv) Inputs : SAT Position Vector(rI rJ rK) EC to Sat in km in frame IJK , ES Position Vector(RI RJ RK) EC to ES in km in IJK frame. Outputs : SAT Position Range Vector(rvI, rvJ, rvK, rv) Components ES to Sat in km in IJK frame S17A 011. rv_I range vector component ES to SAT km frame IJK = 30907.8513575778 S17B 011. rv_J range vector component ES to SAT km frame IJK = -19059.7687721703 S17C 011. rv_K range vector component ES to SAT km frame IJK = -2514.1533148038 S17D 011. rv range vector component ES to SAT km frame IJK = 36399.0525712011 18. Satellite(SAT) Position Range Vector from Earth Stn(ES) to SAT : Finding Range Vector(rvS, rvE, rvZ, rv) Components in km in SEZ frame Note - Transform_4 SAT Pos Vct(rvI, rvJ, rvK, rv) in IJK frame To SAT Pos Vct(rvS, rvE, rvZ, rv) in SEZ frame Inputs : ES latitude positive_negative 0 to 90_deg, LST in 0 to 360 deg at ES longitude at time_t SAT PositionRange Vector(rvI, rvJ, rvK, rv) ES to Sat in km in IJK frame Outputs : SAT Position Range(rvS, rvE, rvZ, rv) Components ES to Sat in km in SEZ frame S18A 011. rvS range_vector component ES to SAT km_frame SEZ = 16614.7553985861 S18B 011. rvE range_vector component ES to SAT km_frame SEZ = -2529.1545484668 S18C 011. rvZ range_vector component ES to SAT km_frame SEZ = 32286.9061446925 S18D 011. rv range_vector component ES to SAT km_frame SEZ = 36399.0525712011 19. Finding Elevation(EL) and Azimuth(AZ) angles of Satellite and Sun : Steps 1, 2, 3 AT UT TIME t Rem: Sub-SAT point lat deg = 0.00, log deg = 328.89 YY = 2014, MM = 5, DD = 25, hr = 22, min = 41, sec = 11.11 ES or EP point lat deg = 23.26, log deg = 77.41 YY = 2014, MM = 5, DD = 26, hr = 5, min = 55, sec = 15.62 Note : Step 1 is for Satellite EL & AZ angles. Steps 2 & 3 are for Sun EL & AZ angles Results verified from other sources; Ref URLs Geoscience Australia http://www.ga.gov.au/geodesy/astro/smpos.jsp#intzone , NOAA Research http://www.esrl.noaa.gov/gmd/grad/solcalc/ , Xavier Jubier, Member IAU http://xjubier.free.fr/en/site_pages/astronomy/ephemerides.html

Page 250: ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM …myreaders.info/00_Orbital__Mechanics__-__Model_____Simulation... · ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM-MSS)

www.m

yrea

ders

.inf

o

OM-MSS Page 250 Elevation(EL) & Azimuth(AZ) angle of SAT at Earth Observation point EP : Step 1. Inputs : Range vector component ES to SAT rv_S, rv_E, rv_Z, in frame_SEZ, EP and Sub_sat point latitude & longitude Outputs : Elevation(EL) & Azimuth(AZ) of SAT at EP S19A 011. Elevation angle deg of Satellte at Earth point EP at time_t = 62.50188 ie deg = 62, min = 30, sec = 6.78 S19B 011. Azimuth angle deg of Satellte at Earth point EP at time_t = 188.65531 ie deg = 188, min = 39, sec = 19.13 Elevation(EL) & Azimuth(AZ) angle of SUN at Sub_Satellite point on earth surface : Step 2. Inputs : Range vector component Sub_sat to Sun rv_S, rv_E, rv_Z, in frame_SEZ, Sub_sat point and Sun_Sun point latitude & longitude Outputs : Elevation(EL) & Azimuth(AZ) of Sun at Sub_Sat S19C 011. Elevation angle deg of SUN at Sub_Sat point at time_t = -61.9436264693 S19D 011. Azimuth angle deg of SUN at Sub_Sat point at time_t = 319.8944977041 Elevation(EL) & Azimuth(AZ) angle of SUN at Satellite height : Step 3. Inputs : Range vector component Sub_sat to Sun rv_S, rv_E, rv_Z, in frame_SEZ, Sub_sat point and Sun_Sun point latitude & longitude Outputs : Elevation(EL) & Azimuth(AZ) of SUN at SAT S19E 011. Elevation angle deg of Sun at Satellite height at time_t = -61.94999 S19F 011. Azimuth angle deg of Sun at Satellite height at time_t = 319.89450 20. Finding Satellite Velocity meter per sec in orbit . Note : Results computed using 2 different formulations, each require different inputs. (a) Inputs : SAT orbit semi-major axis SMA, GM_EARTH, sat_orbit pos r_vector_EC_to_SAT_km_frame_IJK. Outputs : SAT Velocity magnitude and component Xw Yw in frame PQW in meter per sec S20A 011. Satellite Velocity magnitude meter per sec at UT time = 3075.2344215913 (b) Inputs : SAT orbit semi-major axis SMA, GM_EARTH, SAT orbit eccentricity_at_time_t, SAT eccentric anomaly deg calculated at time_t. Outputs : Satellite Velocity components Xw Yw in frame PQW in meter per sec

Page 251: ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM …myreaders.info/00_Orbital__Mechanics__-__Model_____Simulation... · ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM-MSS)

www.m

yrea

ders

.inf

o

OM-MSS Page 251 S20B 011. Satellite Velocity components Xw in frame PQW in meter per sec = 286.9628865990 S20C 011. Satellite Velocity components Yw in frame PQW in meter per sec = 3061.8162991033 21. Finding Satellite(SAT) Velocity Vector (vX, vY, vZ) in meter per sec in orbit in frame XYZ. Note - Transform_5 SAT Vel Vct(Xw, Yw) in frame PQW To SAT Vel Vct(vX, vY, vZ) in frame XYZ Inputs : SAT velocity vectors(Xw, Yw), SAT Right Ascension Alpha, SAT Argument of perigee, SAT orbit inclination at_time_t, SAT eccentric_anomaly_deg_calculated_at_time_t. Outputs : earth velocity vector(vX, vY, vZ, vR) meter per sec in frame XYZ S21A 011. vX Sat Velocity vector component in meter per sec = 1588.6953038064 S21B 011. vY Sat Velocity vector component in meter per sec = 2633.0807004007 S21C 011. vZ Sat Velocity vector component in meter per sec = -0.0676820819 S21D 011. vR Sat Velocity magnitude meter in meter per sec = 3075.2344215913 22. Finding Satellite(SAT) Pitch and Roll angles Inputs : Earth equator radious km, ES lat, ES log, Sub_Sat point lat, Sub_Sat point log, Sat_orbit pos r_vector_EC_to_SAT_km_frame_IJK, Outputs : SAT Pitch and Roll angles S22A 011. pitch_angle_deg_for_earth_stn_at_sat_lat_log_at_time_t = -7.2287185764 S22B 011. roll_angle_deg_for_earth_stn_at_sat_lat_log_at_time_t = 3.2458714002 23. Finding Satellite State Vectors - Position [ X, Y, Z ] in km and velocity [ Vx, Vy, Vz ] in meter per sec at time_t . Note - same as values of rI rJ rK r for pos and vX vY vZ vR for vel (a) Satellite State Position Vector [X, Y, Z] in km at time_t Inputs : position vector(rI, rJ, rK, r) in frame IJK values assiged to state position vector Outputs : State Position Vector(X, Y, Z, R) in km, frame XYZ S23A 011. State vector position X km at time_t = 36095.3223130873 S23B 011. State vector position Y km at time_t = -21779.4122305000 S23C 011. State vector position Z km at time_t = 3.4839025250 S23D 011. State vector position R km at time_t = 42157.0290951495

Page 252: ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM …myreaders.info/00_Orbital__Mechanics__-__Model_____Simulation... · ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM-MSS)

www.m

yrea

ders

.inf

o

OM-MSS Page 252 (b) Satellite State Velocity Vector [Vx, Vy, Vz] in meter per sec at time input UT. Inputs : velocity vector(vX, vY, vZ, vR) meter per sec in frame XYZ values assiged to state velocity vector Outputs : state velocity vector(Vx, Vy, Vz, V) meter per sec, frame XYZ S23E 011. State vector velocity Vx meter per sec at time_t = 1588.6953038064 S23F 011. State vector velocity Vy meter per sec at time_t = 2633.0807004007 S23G 011. State vector velocity Vz meter per sec at time_t = -0.0676820819 S23H 011. State vector velocity V meter per sec at time_t = 3075.2344215913 24. Satellite Direction ie right ascension alpha deg and declination delta deg using sat position vector . Note - results same as that using angles incl, RA, Aug of peri, true anomaly Inputs : SAT State Vectors Position(X, Y, Z, R) in km , in frame XYZ Outputs : SAT right ascension alpha deg and declination delta deg S24A 011. Satellite direction right_asc alpha deg at time_t = 328.8938068030 S24B 011. Satellite direction_declination_delta_deg_at_time_t = 0.0047349853 25. Satellite Angular momentum km sqr per sec : finding Hx Hy Hz H from state vector pos and vel . Inputs : SAT State Vectors Position(X, Y, Z, R) in km and Velocity (vX, vY, vZ, vR) meter per sec, in frame XYZ Outputs : SAT angular momentum (Hx Hy Hz H) componts in km sqr per sec S25A 011. Satellite angular momentum Hx in km sqr per sec at time_t = -7.6993205387 S25B 011. Satellite angular momentum Hy in km sqr per sec at time_t = 7.9778661408 S25C 011. Satellite angular momentum Hz in km sqr per sec at time_t = 129642.7464875925 S25D 011. Satellite angular momentum H in km sqr per sec at time_t = 129642.7469616872 26. Satellite Orbit normal Vector : finding Wx Wy Wz W Delta Alpha from r_sat_pos frame IJK, i, RA Inputs : SAT Position Vector(rI rJ rK) EC to Sat in km in frame IJK , inclination_deg_at_time_t, right_ascension_ascending_node_deg_at_time_t Outputs : SAT orbit normal vector (Wx, Wy, Wz, W) in km , RA , i S26A 011. Satellite Orbit normal_W in km = 42157.0290951495 S26B 011. Satellite Orbit normal_Wx in km = -2.5036532129 S26C 011. Satellite Orbit normal_Wy in km = 2.5942302435

Page 253: ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM …myreaders.info/00_Orbital__Mechanics__-__Model_____Simulation... · ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM-MSS)

www.m

yrea

ders

.inf

o

OM-MSS Page 253 S26D 011. Satellite Orbit normal_Wz in km = 42157.0289409842 S26E 011. Satellite Orbit normal_Delta_W in deg = 89.9951000000 S26F 011. Satellite Orbit interpreted inclination i = 0.0049000000 S26G 011. Satellite Orbit normal_Alpha_W in deg = -46.0179000000 S26H 011. Satellite Orbit interpreted RA of asc node = 223.9821000000 Transform Satellite State Vectors to Keplerian elements. 27. Finding Satellite position Keplerian elements computed using State Vector, at time input UT. Inputs : State vector year, days decimal of year, revolution, node, State Position Vector [ X, Y, Z ], State Velocity Vector [ Vx, Vy, Vz ] Outputs : Keplerian elements : year, days decimal of year, revolution, node, inclination, right ascension, eccentricity, argument of perigee, mean anomaly, mean motion rev per day, mean angular velocity rev per day, mean motion rev per_day from SMA considering oblateness S27A 011. Keplerian elements year = 2014, days_decimal_of_year = 145.03167, revolution no = 140, node = 1 ie ascending S27B 011. inclination_deg = 0.0049000000 S27C 011. right ascension ascending node deg = 223.9821000000 S27D 011. eccentricity = 0.0002051000 S27E 011. argument of perigee_deg = 110.2671000002 S27F 011. mean anomaly deg = 354.6467999998 S27G 011. mean_motion rev per day = 1.0027226500 S27H 011. mean angular velocity rev_per_day = 1.0026854765 S27I 011. mean motion rev per day using SMA considering oblateness = 1.0027598249 Transform Satellite Keplerian elements to State Vectors . 28. Finding Satellite position State Vectors, computed using Keplerian elements at time input UT (computed again to validate model equations, Keplerian elements to State Vectors & back) Inputs : Keplerian elements : year, days decimal of year, revolution, node, inclination, right ascension, eccentricity, argument of perigee, mean anomaly, mean motion rev per day, mean angular velocity rev per day, mean motion rev per_day from SMA considering oblateness Outputs : State vector year, days decimal of year, revolution, node, State Position Vector [ X, Y, Z ], State Velocity Vector [ Vx, Vy, Vz ]

Page 254: ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM …myreaders.info/00_Orbital__Mechanics__-__Model_____Simulation... · ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM-MSS)

www.m

yrea

ders

.inf

o

OM-MSS Page 254 S28A 011. State vectors year = 2014, days_decimal_of_year = 145.03167, revolution no = 140, node = 1 ie decending S28B 011. state vector position X km = 36095.3223130876, state vector velocity Vx meter per sec = 1588.6953038064 S28C 011. state vector position Y km = -21779.4122304995, state vector velocity Vy meter per sec = 2633.0807004007 S28D 011. state vector position Z km = 3.4839025250, state vector velocity Vz meter per sec = -0.0676820819 S28E 011. state vector position R km = 42157.0290951495, state vector velocity V meter per sec = 3075.2344215913 Move on to next Satellite. Next Section - 6.6 Computing Orbital & Positional parameters for Satellite MOON

Page 255: ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM …myreaders.info/00_Orbital__Mechanics__-__Model_____Simulation... · ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM-MSS)

www.m

yrea

ders

.inf

o

OM-MSS Page 255 OM-MSS Section - 6.6 ---------------------------------------------------------------------------------------------------54 Satellite MOON : Computing Orbital & Positional parameters corresponding to input NASA/NORAD 'Two-Line Elements'(TLE) Bulletins. (f) MOON 'Two-Line Elements'(TLE) downloaded on Jun 14, 2014, 16:14 hrs IST, Natural Satellite 1 00000U 00000A 14143.16621081 .00000000 00000-0 00000-0 0 3574 2 00000 18.7965 352.4777 0512000 316.1136 40.2074 00.036600996 0006 From this TLE, the data relevant for the purpose are manually interpreted & extracted : Satellite number 00000, MOON , EPOCH_year = 2014 EPOCH_days_decimal_of_year = 142.1662108168 EPOCH_inclination_deg = 18.7965000000 EPOCH_right_asc_acnd_node_deg = 352.4777000000 EPOCH_eccentricity = 0.0512000000 EPOCH_argument_of_perigee_deg = 316.1136000000 EPOCH_mean_anomaly_deg = 40.2074000000 EPOCH_mean_motion_rev_per_day = 0.0366009960 EPOCH_revolution = 0 EPOCH_node_condition = 1 Earth_stn_latitude_deg = 23.25993 Earth stn longitude_deg = 77.41261 Earth surface height_meter = 494.70000 Earth stn tower_height_meter = 15.00000 Earth stn_height_meter = 509.70000 Earth stn min EL look_angle_deg = -5.00000 Note : EPOCH Corresponds to UT year = 2014, month = 5, day = 23, hr = 3, min = 59, sec = 20.61457 which is Greenwich meam time ie GMT Converted to Local Meam Time at Earth Stn Longitude, as regular Calender date : year = 2014, month = 5, day = 23, hr = 9, min = 8, sec = 59.64 At this instant Sun Position as seen from Earth Stn Longitude : Sun angles EL deg = 51.13, AZ deg = 85.66, Sun Surface distance km = 4326.36, Radial km = 151461044.87, Sun Rise D:23, H:05, M:18, S:26 Sun Set D:23, H:18, M:37, S:54 Move to Compute Satellie Orbital parameters corresponding to input NASA/NORAD 'Two-Line Elements'(TLE) Bulletins, and Earth Stn location. 01. Input EPOCH_year and EPOCH_days_decimal_of_year, Converted into UT YY MM DD hh min sec & Julian day. S01 011. Input UT year = 2014, month = 5, day = 24, hr = 3, min = 59, sec = 20.61457, and julian_day = 2456800.6662108167 02. Finding Satellite orbit Semi major axis in km, Ignoring and also Considering earth oblatenes . (a) Semi major axis (SMA) km at time t Ignoring earth oblatenes . Inputs : SAT mean_motion rev per day at time t, GM_EARTH . Outputs : SAT Orbit semi major axis km in km and constant_A, constant_k1 .

Page 256: ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM …myreaders.info/00_Orbital__Mechanics__-__Model_____Simulation... · ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM-MSS)

www.m

yrea

ders

.inf

o

OM-MSS Page 256 S02A 011. Satellite orbit Semi major axis in km at time t, Ignoring earth oblatenes = 383183.29902, (b) Semi major axis (SMA) in km at time_t Considering earth oblatenes Inputs : SAT mean_motion rev per day at time_t, GM_EARTH , inclination deg at time_t, eccentricity at time_t, constant_k2 Outputs : SAT Orbit semi major axis km in km at time_t and constant_A, constant_k1, constant_k3 . S02B 011. Satellite orbit Semi major axis km at time t, Considering earth oblatenes = 383183.39622, 03. Finding Satellite Mean motion in rev per day, Ignoring and also Considering earth oblatenes . (a) Nominal mean motion rev per day at time_t Ignoring earth oblateness . Inputs : SAT Orbit semi major axis in km ignoring oblateness at time_t, constant_k1 . Outputs : SAT nominal mean motion in rev_per_day at time_t, ignoring earth oblateness S03A 011. Satellite Nominal Mean motion in rev_per_day at time_t using SMA Ignoring earth oblateness = 0.03660, (b) Mean motion rev per day at time_t Considering earth oblatenes Inputs : SAT nominal mean motion rad per day at time_t Ignoring_oblateness, constant_k2, constant_k3, SAT orbit semi major axis in km considering oblateness at time_t. Outputs : SAT mean motion rev per day at time_t, considering earth oblatenes . S03B 011. Satellite Mean motion in rev_per_day at time t using SMA Considering earth oblatenes = 0.03660, Note - This calculted value is slightly less than the mean motion rev_per_day as EPH input from NORAD TLE 04. Finding Satellite Orbit Time Period in minute at time_t Considering earth oblatenes . Inputs : SAT orbit semi major axis in km considering oblateness at time_t, GM_EARTH . Outputs : SAT orbit time period in minute at time_t considering earth oblatenes . S04 011. Satellite orbit Time Period in minute at time_t using SMA Considering earth oblatenes = 39343.20661, 05. Finding Satellite Rate of change of Right Ascension and Argument of Perigee in deg per_day at time_t. (a) Rate of change of Right Ascension in deg per day at time_t . Inputs : SAT mean motion rev per day at time_t considering earth oblatenes, constant_k2, SAT orbit eccentricity at time_t, SAT semi major axis km considering oblateness at time_t, SAT orbit inclination deg at time_t . Outputs : SAT rate of change of right ascension in deg per day at time_t and constant_k_deg_per_day

Page 257: ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM …myreaders.info/00_Orbital__Mechanics__-__Model_____Simulation... · ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM-MSS)

www.m

yrea

ders

.inf

o

OM-MSS Page 257 S05A 011. Satellite Rate of change of Right Ascension in deg per day at time_t = -0.00001, (b) Rate of change of Argument of Perigee in deg per_day at time_t . Inputs : SAT orbit constant_k_deg_per_day, SAT orbit inclination deg at time_t SAT orbit semi major axis km considering oblateness at time_t Outputs : SAT rate of change of argument of perigee in deg per day at time_t S05B 011. Satellite Rate of change of Argument of Perigee in deg per day at time_t = 0.00001, 06. Finding Satellite Mean anomaly, Eccentric anomaly, True anomaly in deg at time_t considering earth oblateness. Inputs : SAT mean anomaly rad at time_t, mean_motion_rad_per_day_at_time_t considering_oblateness, SAT orbit eccentricity_at_time_t Outputs : SAT mean anomaly, eccentric anomaly, and true anomaly in deg at time_t onsidering earth oblateness. S06A 011. Satellite Mean anomaly in deg at time_t = 40.20740, same as EPH mean anomaly S06A 011. Satellite Eccentric anomaly in deg at time_t = 42.17705, S06A 011. Satellite True anomaly in deg at time_t = 44.18593, Note - 1. Here after, the Earth Oblateness is always considered for the computation of satellite orbit parameters, and not repeatedly mentioned. Satellite to Earth, the Position Vectors coordinate and the Vector Coordinate Transforms are in PQW, IJK, SEZ frames . - Perifocal Coordinate System (PQW) is Earth Centered Inertial coordinate frame defined in terms of Kepler Orbital Elements. - Geocentric Coordinate System(IJK) is Earth Centered Inertial (ECI) frame, a Conventional Inertial System (CIS). - Topocentric Horizon Coordinate System(SEZ), is Non-Inertial coordinate frame, known as Earth-Centered Earth-Fixed Coordinates (ECEF). Each of these coordinate system were explained in detail before and therefore not repeated any more. 07. Finding Satellite position vector[rp, rq] from Earth center(EC) to Sat in PQW frame, perifocal coordinate system. Inputs : SAT orbit semi-major axis (SMA), SAT orbit eccentricity, SAT eccentric anomaly, SATtrue anomaly at time_t Outputs : Vector(r, rp rq) in PQW frame S07A 011. r Satellite pos vector magnitude EC to Sat km in PQW frame perifocal cord at time_t = 368644.28111 S07B 011. rp Satellite pos vector component EC to Sat km in PQW frame perifocal cord at time_t = 264348.1020492621 S07C 011. rq Satellite pos vector component EC to Sat km in PQW frame perifocal cord at time_t = 256941.0184081715 08. Satellite Position Vector Earth Ceter(EC) to Satellite(SAT) - finding Range Vector(rI rJ rK r) Components in km in frame IJK

Page 258: ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM …myreaders.info/00_Orbital__Mechanics__-__Model_____Simulation... · ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM-MSS)

www.m

yrea

ders

.inf

o

OM-MSS Page 258 Note - Transform_1 : EC to SAT Vector(rp, rq) in frame PQW To EC to SAT Vector(rI rJ rK r) in frame IJK. Inputs : Vector(rp, rq) EC to Sat in km in frame PQW, SAT right ascension of ascending node at time_t, SAT argument of perigee rad at time_t, SAT orbit inclination rad at time_t . Outputs : Vector(rI, rJ, rK, r) EC to SAT in km in frame IJK S08A 011. rI Satellite pos vector component EC to Sat km frame IJK at at time_t = 365705.5648844948 S08B 011. rJ Satellite pos vector component EC to Sat km frame IJK at at time_t = -46450.6213911481 S08C 011. rK Satellite pos vector component EC to Sat km frame IJK at at time_t = 620.9529484744 S08D 011. r Satellite pos vector magnitude EC to Sat km frame IJK at at time_t = 368644.2811134813 Note - r Satellite pos vector magnitude EC to Sat km in PQW frame is same as that computed above in PQW frame. 09. Finding GST Greenwich sidereal time and GHA Greenwich hour angle in 0 to 360 deg, at input at time_t . Note - for GST, the year 1900 JAN day_1 hr 1200 is ref for time difference in terms of julian_century, for GHA, the year 2000_JAN_day_1 hr_1200 is ref for time difference in terms of julian days. Inputs : Time t UT year = 2014, month = 5, day = 23, hour = 3, minute = 59, seconds = 20.61457 Outputs : GST & GHA in 0-360 deg over Greenwich. S09A 011. GST Greenwich sidereal time in 0-360 deg, over Greenwich = 300.52971, hr = 20, min = 2, sec = 7.13045 S09B 011. GHA Greenwich hour angle in 0 to 360 deg, over Greenwich = 300.53198, deg = 300, min = 31, sec = 55.13594 10. Satellite(SAT) Orbit point direction : Finding Right Ascension(Alpha) deg and Declination(Delta) deg using angles Inputs : SAT orbit inclination deg at_time_t, EPH right ascension ascending node deg, SAT argument of perigee deg at time_t, SAT true anomaly deg calculated at time_t Outputs : SAT Right Ascension(Alpha) and Declination(Delta) in deg at time_t S10A 011. SAT Right Ascension(Alpha) in deg = 352.7612555840 S10B 011. SAT Declination(Delta) in deg = 0.0965103811 11. Finding Satellite Longitude & Latitude in deg at time_t; (ie Sub-Sat point log & lat on earth surface ). Inputs : SAT right ascension ascending node deg at time_t, GST in 0-360 deg over Greenwich at time_t Outputs : Satellite (Sub-Sat point) longitude 0 to 360 deg at time_t. S11A 011. Satellite longitude 0 to 360 deg at time_t = 352.76 ie deg = 352, min = 45, sec = 40.52

Page 259: ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM …myreaders.info/00_Orbital__Mechanics__-__Model_____Simulation... · ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM-MSS)

www.m

yrea

ders

.inf

o

OM-MSS Page 259 Inputs : argument of_perigee rad at_time_t, inclination rad at time_t, true anomaly rad calculated at time_t. Outputs : Satellite (Sub-Sat point) latitude +ve or -ve in 0 to 90 deg at time_t. S11B 011. Satellite latitude +ve or -ve in 0 to 90 deg at time_t = 0.10 ie deg = 0, min = 5, sec = 47.44 12. Finding Satellite height in km from EC to Sat and from Earth surface to Sat at time_t. (a) Satellite height in km from EC to Sat; (ie Sat orbit radius EC to Sat in km at time_t). Note - This is SAME as r sat pos vector magnitude EC to Sat in frame IJK calculated above in TRANSFORN_1 . Inputs : SAT true anomaly at time_t, semi_major_axis_km, inclination at time_t . Outputs : Sub-Sat point longitude 0 to 360 deg at time_t. S12A 011. Satellite orbital radious EC to SAT in km using SAT true anomaly at time_t = 368644.28 (b) Satellite height in km from earth surface. Inputs : Sub-Sat point latitude +ve or -ve in 0 to 90 deg at time_t, earth_equator_radious_km . Outputs : Sat height in km from earth surface. S12B 011. Satellite height in km from earth surface at time_t = 362266.14 13. Finding Distance of Sub-Sat point To Earth Stn(ES) in km over Earth surface at time_t . Inputs : Sub-Sat point lat & log, ES lat & log . Outputs : Distance of Sub-Sat point To Earth Stn(ES) in km over Earth surface S13 011. Distance of Sub-Sat point To Earth Stn(ES) in km over Earth surface = 9467.59402 14. Finding Local sidereal time(LST) and Local mean time(LMT) over Sub-Sat point Longitude on earth . (a) Local sidereal time(LST) in 0 to 360 deg over Sub-Sat point Longitude on earth . Inputs : GST sidereal_time in 0 to 360 deg at Greenwich at time_t, satellite log in 0 to 360 deg at time_t . Outputs : LST local sidereal time in 0 to_360 deg at SAT longitude at time_t. S14A 011. Local sidereal time(LST) over Sub-Sat point Longitude at time_t = 293.29 (b) Local sidereal time(LST) and local Mean time(LMT) adjusted to calendar date(CD) over Sub-Sat point Longitude on earth . Note - The LST and LMT in hr min sec with YY MM DD adjusted to calendar date (CD) of longitude at time_t . Here LST in deg is re-calculated alterately in terms of Julian Day (JD) that account for calendar date (CD) of longitude. Inputs : GMT_JD, Sat longitude_in_0_to_360_deg .

Page 260: ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM …myreaders.info/00_Orbital__Mechanics__-__Model_____Simulation... · ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM-MSS)

www.m

yrea

ders

.inf

o

OM-MSS Page 260 Outputs : LST local sidereal time in 0 to_360 deg at SAT longitude at time_t. S14B 011. Local sidereal time(LST) in 0 to 360_deg over Sub-Sat point Longitude at time_t = 293.29 S14C 011. LST over Sub-Sat Log, with date adj to CD expressed in JD = 2456801.31, ie YY = 2014, MM = 5, DD = 23, hr = 19, min = 33, sec = 9.92 S14D 011. LMT over Sub-Sat Log, with date adj to CD expressed in JD = 2456800.65, ie YY = 2014, MM = 5, DD = 23, hr = 3, min = 30, sec = 23.32 15. Finding Local sidereal time(LST) and Local mean time(LMT) Over Earth stn (ES) or Earth point(EP) Longitude . (a) Local sidereal time(LST) in 0 to 360 deg over Earth stn(ES) Longitude . Inputs : GST sidereal_time in 0 to 360 deg at Greenwich at time_t, Earth stn(ES) longitude_in_0_to_360_deg . Outputs : LST local sidereal time in 0 to_360 deg at Earth stn(ES) longitude at time_t. S15A 011. Local sidereal time(LST) over Earth stn(ES) Longitude at time_t = 17.94 (b) Local sidereal time(LST) and local Mean time(LMT) adjusted to calendar date(CD) over Earth stn(ES) Longitude . Note - The LST and LMT in hr min sec with YY MM DD adjusted to calendar date (CD) of longitude at time_t . Here LST in deg is re-calculated alterately in terms of Julian Day (JD) that account for calendar date (CD) of longitude. Inputs : GMT_JD, Earth stn(ES) longitude_in_0_to_360_deg . Outputs : LST local sidereal time in 0 to_360 deg at Earth stn (ES) longitude at time_t. S15B 011. Local sidereal time(LST) in 0 to 360_deg over Earth stn (ES) Longitude at time_t = 17.94 S14C 011. LST over ES Log, with date adj to CD expressed in JD = 2456801.55, ie YY = 2014, MM = 5, DD = 24, hr = 1, min = 11, sec = 46.25 S15D 011. LMT over ES Log, with date adj to CD expressed in JD = 2456800.88, ie YY = 2014, MM = 5, DD = 23, hr = 9, min = 8, sec = 59.64 16. Earth Stn (ES) Position Vector from Earth Center(EC) to Earth Stn(ES) : Finding Range Vector(RI, RJ, RK, R) Components in IJK frame Note - Transform_2 : ES position cord(lat, log, hgt) To EC to ES position Vector(RI, RJ, RK, R) in frame IJK . Inputs : ES latitude positive_negative 0 to 90 deg, ES longitude in 0 to 360_deg, ES height in meter (is earth surface + tower hgt), LST in 0 to 360 deg at ES log at time_t . Outputs : ES Position Vector(RI, RJ, RK, R) Components EC to ES in km in IJK frame . S16A 011. RI_earth_stn_pos_vector_component_EC_to_ES_km_frame_IJK = 5572.3086624356 S16B 011. RJ_earth_stn_pos_vector_component_EC_to_ES_km_frame_IJK = 1804.3535200274 S16C 011. RK_earth_stn_pos_vector_component_EC_to_ES_km_frame_IJK = 2517.6372173288 S16D 011. R_earth_stn_pos_vector_component_EC_to_ES_km_frame_IJK = 6375.3284317570

Page 261: ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM …myreaders.info/00_Orbital__Mechanics__-__Model_____Simulation... · ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM-MSS)

www.m

yrea

ders

.inf

o

OM-MSS Page 261 17. Satellite(SAT) Position Range Vector from Earth Stn(ES) to SAT : Finding Range Vector(rvI, rvJ, rvK, rv) Components in km in IJK frame Note - Transform_3 SAT Pos Vct(rI rJ rK) and ES Pos Vct(RI RJ RK) To SAT Pos Vct(rvI, rvJ, rvK, rv) Inputs : SAT Position Vector(rI rJ rK) EC to Sat in km in frame IJK , ES Position Vector(RI RJ RK) EC to ES in km in IJK frame. Outputs : SAT Position Range Vector(rvI, rvJ, rvK, rv) Components ES to Sat in km in IJK frame S17A 011. rv_I range vector component ES to SAT km frame IJK = 360133.2562220591 S17B 011. rv_J range vector component ES to SAT km frame IJK = -48254.9749111755 S17C 011. rv_K range vector component ES to SAT km frame IJK = -1896.6842688544 S17D 011. rv range vector component ES to SAT km frame IJK = 363356.7148849698 18. Satellite(SAT) Position Range Vector from Earth Stn(ES) to SAT : Finding Range Vector(rvS, rvE, rvZ, rv) Components in km in SEZ frame Note - Transform_4 SAT Pos Vct(rvI, rvJ, rvK, rv) in IJK frame To SAT Pos Vct(rvS, rvE, rvZ, rv) in SEZ frame Inputs : ES latitude positive_negative 0 to 90_deg, LST in 0 to 360 deg at ES longitude at time_t SAT PositionRange Vector(rvI, rvJ, rvK, rv) ES to Sat in km in IJK frame Outputs : SAT Position Range(rvS, rvE, rvZ, rv) Components ES to Sat in km in SEZ frame S18A 011. rvS range_vector component ES to SAT km_frame SEZ = 131173.4240060395 S18B 011. rvE range_vector component ES to SAT km_frame SEZ = -156850.6627498179 S18C 011. rvZ range_vector component ES to SAT km_frame SEZ = 300365.6183411674 S18D 011. rv range_vector component ES to SAT km_frame SEZ = 363356.7148849697 19. Finding Elevation(EL) and Azimuth(AZ) angles of Satellite and Sun : Steps 1, 2, 3 AT UT TIME t Rem: Sub-SAT point lat deg = 0.10, log deg = 352.76 YY = 2014, MM = 5, DD = 23, hr = 3, min = 30, sec = 23.32 ES or EP point lat deg = 23.26, log deg = 77.41 YY = 2014, MM = 5, DD = 23, hr = 9, min = 8, sec = 59.64 Note : Step 1 is for Satellite EL & AZ angles. Steps 2 & 3 are for Sun EL & AZ angles Results verified from other sources; Ref URLs Geoscience Australia http://www.ga.gov.au/geodesy/astro/smpos.jsp#intzone , NOAA Research http://www.esrl.noaa.gov/gmd/grad/solcalc/ , Xavier Jubier, Member IAU http://xjubier.free.fr/en/site_pages/astronomy/ephemerides.html

Page 262: ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM …myreaders.info/00_Orbital__Mechanics__-__Model_____Simulation... · ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM-MSS)

www.m

yrea

ders

.inf

o

OM-MSS Page 262 Elevation(EL) & Azimuth(AZ) angle of SAT at Earth Observation point EP : Step 1. Inputs : Range vector component ES to SAT rv_S, rv_E, rv_Z, in frame_SEZ, EP and Sub_sat point latitude & longitude Outputs : Elevation(EL) & Azimuth(AZ) of SAT at EP S19A 011. Elevation angle deg of Satellte at Earth point EP at time_t = 55.75523 ie deg = 55, min = 45, sec = 18.85 S19B 011. Azimuth angle deg of Satellte at Earth point EP at time_t = 230.09443 ie deg = 230, min = 5, sec = 39.95 Elevation(EL) & Azimuth(AZ) angle of SUN at Sub_Satellite point on earth surface : Step 2. Inputs : Range vector component Sub_sat to Sun rv_S, rv_E, rv_Z, in frame_SEZ, Sub_sat point and Sun_Sun point latitude & longitude Outputs : Elevation(EL) & Azimuth(AZ) of Sun at Sub_Sat S19C 011. Elevation angle deg of SUN at Sub_Sat point at time_t = -33.8802777238 S19D 011. Azimuth angle deg of SUN at Sub_Sat point at time_t = 64.9100330114 Elevation(EL) & Azimuth(AZ) angle of SUN at Satellite height : Step 3. Inputs : Range vector component Sub_sat to Sun rv_S, rv_E, rv_Z, in frame_SEZ, Sub_sat point and Sun_Sun point latitude & longitude Outputs : Elevation(EL) & Azimuth(AZ) of SUN at SAT S19E 011. Elevation angle deg of Sun at Satellite height at time_t = -33.99390 S19F 011. Azimuth angle deg of Sun at Satellite height at time_t = 64.91003 20. Finding Satellite Velocity meter per sec in orbit . Note : Results computed using 2 different formulations, each require different inputs. (a) Inputs : SAT orbit semi-major axis SMA, GM_EARTH, sat_orbit pos r_vector_EC_to_SAT_km_frame_IJK. Outputs : SAT Velocity magnitude and component Xw Yw in frame PQW in meter per sec S20A 011. Satellite Velocity magnitude meter per sec at UT time = 1059.3802758296 (b) Inputs : SAT orbit semi-major axis SMA, GM_EARTH, SAT orbit eccentricity_at_time_t, SAT eccentric anomaly deg calculated at time_t. Outputs : Satellite Velocity components Xw Yw in frame PQW in meter per sec

Page 263: ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM …myreaders.info/00_Orbital__Mechanics__-__Model_____Simulation... · ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM-MSS)

www.m

yrea

ders

.inf

o

OM-MSS Page 263 S20B 011. Satellite Velocity components Xw in frame PQW in meter per sec = -711.8057186065 S20C 011. Satellite Velocity components Yw in frame PQW in meter per sec = 784.6140374578 21. Finding Satellite(SAT) Velocity Vector (vX, vY, vZ) in meter per sec in orbit in frame XYZ. Note - Transform_5 SAT Vel Vct(Xw, Yw) in frame PQW To SAT Vel Vct(vX, vY, vZ) in frame XYZ Inputs : SAT velocity vectors(Xw, Yw), SAT Right Ascension Alpha, SAT Argument of perigee, SAT orbit inclination at_time_t, SAT eccentric_anomaly_deg_calculated_at_time_t. Outputs : earth velocity vector(vX, vY, vZ, vR) meter per sec in frame XYZ S21A 011. vX Sat Velocity vector component in meter per sec = 161.8765603889 S21B 011. vY Sat Velocity vector component in meter per sec = 989.7819390712 S21C 011. vZ Sat Velocity vector component in meter per sec = 341.1953415596 S21D 011. vR Sat Velocity magnitude meter in meter per sec = 1059.3802758296 22. Finding Satellite(SAT) Pitch and Roll angles Inputs : Earth equator radious km, ES lat, ES log, Sub_Sat point lat, Sub_Sat point log, Sat_orbit pos r_vector_EC_to_SAT_km_frame_IJK, Outputs : SAT Pitch and Roll angles S22A 011. pitch_angle_deg_for_earth_stn_at_sat_lat_log_at_time_t = -0.9076449658 S22B 011. roll_angle_deg_for_earth_stn_at_sat_lat_log_at_time_t = 0.3917892859 23. Finding Satellite State Vectors - Position [ X, Y, Z ] in km and velocity [ Vx, Vy, Vz ] in meter per sec at time_t . Note - same as values of rI rJ rK r for pos and vX vY vZ vR for vel (a) Satellite State Position Vector [X, Y, Z] in km at time_t Inputs : position vector(rI, rJ, rK, r) in frame IJK values assiged to state position vector Outputs : State Position Vector(X, Y, Z, R) in km, frame XYZ S23A 011. State vector position X km at time_t = 365705.5648844948 S23B 011. State vector position Y km at time_t = -46450.6213911481 S23C 011. State vector position Z km at time_t = 620.9529484744 S23D 011. State vector position R km at time_t = 368644.2811134813

Page 264: ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM …myreaders.info/00_Orbital__Mechanics__-__Model_____Simulation... · ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM-MSS)

www.m

yrea

ders

.inf

o

OM-MSS Page 264 (b) Satellite State Velocity Vector [Vx, Vy, Vz] in meter per sec at time input UT. Inputs : velocity vector(vX, vY, vZ, vR) meter per sec in frame XYZ values assiged to state velocity vector Outputs : state velocity vector(Vx, Vy, Vz, V) meter per sec, frame XYZ S23E 011. State vector velocity Vx meter per sec at time_t = 161.8765603889 S23F 011. State vector velocity Vy meter per sec at time_t = 989.7819390712 S23G 011. State vector velocity Vz meter per sec at time_t = 341.1953415596 S23H 011. State vector velocity V meter per sec at time_t = 1059.3802758296 24. Satellite Direction ie right ascension alpha deg and declination delta deg using sat position vector . Note - results same as that using angles incl, RA, Aug of peri, true anomaly Inputs : SAT State Vectors Position(X, Y, Z, R) in km , in frame XYZ Outputs : SAT right ascension alpha deg and declination delta deg S24A 011. Satellite direction right_asc alpha deg at time_t = 352.7612555840 S24B 011. Satellite direction_declination_delta_deg_at_time_t = 0.0965103811 25. Satellite Angular momentum km sqr per sec : finding Hx Hy Hz H from state vector pos and vel . Inputs : SAT State Vectors Position(X, Y, Z, R) in km and Velocity (vX, vY, vZ, vR) meter per sec, in frame XYZ Outputs : SAT angular momentum (Hx Hy Hz H) componts in km sqr per sec S25A 011. Satellite angular momentum Hx in km sqr per sec at time_t = -16463.3436446211 S25B 011. Satellite angular momentum Hy in km sqr per sec at time_t = -124676.5173935477 S25C 011. Satellite angular momentum Hz in km sqr per sec at time_t = 369488.0299592165 S25D 011. Satellite angular momentum H in km sqr per sec at time_t = 390303.3178906982 26. Satellite Orbit normal Vector : finding Wx Wy Wz W Delta Alpha from r_sat_pos frame IJK, i, RA Inputs : SAT Position Vector(rI rJ rK) EC to Sat in km in frame IJK , inclination_deg_at_time_t, right_ascension_ascending_node_deg_at_time_t Outputs : SAT orbit normal vector (Wx, Wy, Wz, W) in km , RA , i S26A 011. Satellite Orbit normal_W in km = 368644.2811134813 S26B 011. Satellite Orbit normal_Wx in km = -15549.7460677369 S26C 011. Satellite Orbit normal_Wy in km = -117757.8642545590

Page 265: ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM …myreaders.info/00_Orbital__Mechanics__-__Model_____Simulation... · ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM-MSS)

www.m

yrea

ders

.inf

o

OM-MSS Page 265 S26D 011. Satellite Orbit normal_Wz in km = 348984.0924757304 S26E 011. Satellite Orbit normal_Delta_W in deg = 71.2035000000 S26F 011. Satellite Orbit interpreted inclination i = 18.7965000000 S26G 011. Satellite Orbit normal_Alpha_W in deg = 82.4777000000 S26H 011. Satellite Orbit interpreted RA of asc node = 352.4777000000 Transform Satellite State Vectors to Keplerian elements. 27. Finding Satellite position Keplerian elements computed using State Vector, at time input UT. Inputs : State vector year, days decimal of year, revolution, node, State Position Vector [ X, Y, Z ], State Velocity Vector [ Vx, Vy, Vz ] Outputs : Keplerian elements : year, days decimal of year, revolution, node, inclination, right ascension, eccentricity, argument of perigee, mean anomaly, mean motion rev per day, mean angular velocity rev per day, mean motion rev per_day from SMA considering oblateness S27A 011. Keplerian elements year = 2014, days_decimal_of_year = 142.16621, revolution no = 0, node = 1 ie ascending S27B 011. inclination_deg = 18.7965000000 S27C 011. right ascension ascending node deg = 352.4777000000 S27D 011. eccentricity = 0.0512000000 S27E 011. argument of perigee_deg = 316.1136000000 S27F 011. mean anomaly deg = 40.2074000000 S27G 011. mean_motion rev per day = 0.0366009960 S27H 011. mean angular velocity rev_per_day = 0.0366009821 S27I 011. mean motion rev per day using SMA considering oblateness = 0.0366010099 Transform Satellite Keplerian elements to State Vectors . 28. Finding Satellite position State Vectors, computed using Keplerian elements at time input UT (computed again to validate model equations, Keplerian elements to State Vectors & back) Inputs : Keplerian elements : year, days decimal of year, revolution, node, inclination, right ascension, eccentricity, argument of perigee, mean anomaly, mean motion rev per day, mean angular velocity rev per day, mean motion rev per_day from SMA considering oblateness Outputs : State vector year, days decimal of year, revolution, node, State Position Vector [ X, Y, Z ], State Velocity Vector [ Vx, Vy, Vz ]

Page 266: ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM …myreaders.info/00_Orbital__Mechanics__-__Model_____Simulation... · ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM-MSS)

www.m

yrea

ders

.inf

o

OM-MSS Page 266 S28A 011. State vectors year = 2014, days_decimal_of_year = 142.16621, revolution no = 0, node = 1 ie decending S28B 011. state vector position X km = 365705.5648844945, state vector velocity Vx meter per sec = 161.8765603889 S28C 011. state vector position Y km = -46450.6213911481, state vector velocity Vy meter per sec = 989.7819390712 S28D 011. state vector position Z km = 620.9529484743, state vector velocity Vz meter per sec = 341.1953415596 S28E 011. state vector position R km = 368644.2811134810, state vector velocity V meter per sec = 1059.3802758296 End of Computing Orbital & Positional Parameters of Six Satellites. A Summary of Computing Orbital & Positional Parameters are presented next. Next Section - 6.7 Concluding Orbital & Positional parameters of the six Satellites

Page 267: ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM …myreaders.info/00_Orbital__Mechanics__-__Model_____Simulation... · ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM-MSS)

www.m

yrea

ders

.inf

o

OM-MSS Page 267 OM-MSS Section - 6.7 -----------------------------------------------------------------------------------------------------55 Summary of Orbital & Positional parameters of the six Satellites computed above. Summary of Computed Orbital & Positional parameters of six Earth Orbiting Satellites in previous Sections (6.1 to 6.6) : (a) Computed the Orbital & Positional parameters for four LEO, one GEO and one natural satellite around earth. The Input for each satellite, is NASA/NORAD 'Two-Line Elements'(TLE) Bulletin and the Earth Stn Location. The Output is Satellite around earth the Orbital & Positional parameters at Epoch, considering earth oblateness . (b) The Orbital & Positional parameters computed were : Orbit Semi major axis in km, Sat Mean motion in rev per day, Sat Time Period in minute, Sat Rate of change of Right Ascension & Argument of Perigee in deg per_day, Sat Mean, Eccentric & True anomalies in deg, Sat Position, Range & Velocity Vectors from earth center & earth station in PQW, IJK & SEZ frams, Sat Altitude (Alt) & Distance in km over Earth surface, SAt Elevation(EL) & Azimuth(AZ) angles in deg at Earth station, Sun Elevation(EL) & Azimuth(AZ) at Sub-Sat point on Earth surface, Local sidereal time(LST) & Local mean time(LMT) over Sub-Sat point & Earth station Longitude, Keplerian elements & State Vectors, and more. (c) The parameters are large in numbers. Few parameters are recalculated from different input considerations. Readers may examine the parameter values computed for different satellites and compare the variations, that would answer to their many specific questions. End of Computing Six Satellites Orbital & Positional parameters at Epoch corresponding to input NASA/NORAD 'Two-Line Elements'(TLE) Bulletins. Move on to Satellite Pass for Earth Stn - Prediction of Ground Trace Coordinates & Look Angles. Next Section - 7 Satellite Pass for Earth Stn, Prediction of Ground Trace & Look Angles at UT and Local Time.

Page 268: ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM …myreaders.info/00_Orbital__Mechanics__-__Model_____Simulation... · ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM-MSS)

www.m

yrea

ders

.inf

o

OM-MSS Page 268 OM-MSS Section - 7 -------------------------------------------------------------------------------------------------------56 SATELLITE PASS FOR EARTH STN - PREDICTION OF GROUND TRACE COORDINATES, LOOK ANGLES, UNIVERSAL & LOCAL TIME AND MORE. The Satellites, look like slow-moving Stars, are most visible when they are in Sunlight while the viewer is in darkness. A typical Satellite in low Earth orbit (LEO) circles the Earth about sixteen times each day. The Orbital Velocity of a LEO satellite is about 7500 meters/sec. The Orbital Velocity of a Geo-stationary satellite is about 3007 meters/sec. The Moon, the only natural satellite of earth has orbital velocity about 1003 meters/sec. Satellite Pass for Earth Stn is OM-MSS utility is applied to six satellites, LANDSAT 8, SPOT 6, CARTOSAT-2B, ISS (ZARYA), GSAT-14, and Moon. The input is of respective Satellite's NASA/NORAD 'Two-Line Elements'(TLE). The Satellite Pass goes through a Time_Step of 2 minutes (120 sec). For Moon the Time_Step is of 1 hr (3600 sec). The Output is the predictions of instantaneous ground trace coordinates, look angles at each Time_Step on computer screen, in a Table form. The Table form filled with an example of one 'time line' of computed values is described below. ORBIT, INPUT TIME, POSIION, SAT VELOCITY, GROUND TRACE, RANGE, DIST, PITCH/ROLL, EL/AZ, ACCESS EL/AZ, DATA SOLAR TIME EL/AZ, DIST Line 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 @ES 18 19 20 @SS 21 22 23 24 25 26 27 @ES 28 29 30 No. Node GMT Anomaly Height At Vel Lat(SAT)Log Slant S-Sat Pitch Roll EL(SAT)AZ Control EL(SUN)AZ Acq. LMT(ES) EL(SUN)AZ S-Sun Nos D H M S deg km meter deg deg km km deg deg deg D H M S deg km 06853 A 29 03 32 50 299.96 706.66 7504.88 36.08 224.62 11592.1 12585.5 15.1 11.4 -57.70 28.41 OBC 6.1 292.4 VBC 29 08 42 29 45.1 82.2 4992.5 1 Format describtion : 1st line Columns - group name, 2nd line Columns - nos 1-29, 3rd & 4th line Columns - name & Unit, all subsequent lines are 'time lines' of Sat Pass Prediction Values. For each Satellite the 'time lines' are limited to around 800, which means a Satellite pass of around 6 hrs and for Moon around 33 days. In short, the 'time lines' dislays Artificial Satellite's Pass predictions of around 6hrs and that for Moon about one month since Epoch. Acronyms : A is Ascending, D is Decending, Pri is Perigee, Eqa is Equator, Apo is Apogee, LOS is Line Of Sight, OBC is On Board Computer, VBC is Visible Band Camera, NVD / NVD is Night Vision Device / Camera. Values : Col 1 - Orbit no, Col 2 - Node Ascending or Decending, Col 3 to 6 - Input time GMT D H M S, Col 7 - True Anomaly, Col 8 - Sat Height from earth surface, Col 9 - Sat at Perigee, Equator, or Apogee, Col 10 - Sat Velocity, Col 11 , 12 - Latitude & Longitude at sub-satellite point on earth surface,

Page 269: ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM …myreaders.info/00_Orbital__Mechanics__-__Model_____Simulation... · ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM-MSS)

www.m

yrea

ders

.inf

o

OM-MSS Page 269 Col 13 - Sat Slant Range from earth stn, Col 14 - Distance of sub-satellite point from earth stn, Col 15 , 16 - Sat Pitch & Roll angles, Col 17 , 18 - Sat Elevation & Azimuh angles at earth stn, Col 19 - Access to Sat through On Board Computer or Direct Line Of Sight based on elevaion angle at ES, Col 20 , 21 - Sun Elevation & Azimuh angles at sub-Satellite point on earth surface, Col 22 - Data Acquisition using Visible Band Camera or Night Vision Devices as per illumination over observed surface , Col 23 , 24 , 25 , 26 - Local Mean Time at earth stn, Col 27 & 28 - Sun Elevation & Azimuh angles at earth stn, Col 29 - Distance of sub-Sun point on earth surface from earth stn, Col 30 - Line number . Move to Compute Satellites Pass for Earth Stn. The input is NASA/NORAD 'Two-Line Elements'(TLE) Bulletins of respective Satellites. Computing Six Satellite's Pass round Earth - Prediction of Ground Trace, Look Angles & Time for Earth Stn, in Sections (7.1 to 7.6). (a) LANDSAT 8 : American satellite launched on February 11, 2013, the NASA/NORAD TLE down load on May 28, 2014, 18:13 hrs IST (a) SPOT 6 : French satellite launched on September 9, 2012, the NASA/NORAD TLE down load on May 28, 2014, 18:13 hrs IST (a) CARTOSAT 2B : Indian satellite launched on July 12, 2010, the NASA/NORAD TLE down load on May 28, 2014, 18:13 hrs IST (a) ISS (ZARYA) : International Space Stn launched on Nov. 20, 1998, the NASA/NORAD TLE down load on May 28, 2014, 18:13 hrs IST (a) GSAT-14 : Indian Geo Comm. Sat launched on Jan. 05, 2014, the NASA/NORAD TLE down load on May 28, 2014, 18:13 hrs IST (a) Moon : Natural satellite, moves around Earth , the Keplerian elements set down load on Jun 14, 2014, 16:14 hrs IST Input NASA/NORAD 'TWO-LINE ELEMENTS' of respective Satellite, and Earth stn Latitude & Longitude in deg and Height in meter. Next Section - 7.1 Satellite Pass for Earth Stn - Prediction of Ground Trace for Satellite LANDSAT 8

Page 270: ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM …myreaders.info/00_Orbital__Mechanics__-__Model_____Simulation... · ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM-MSS)

www.m

yrea

ders

.inf

o

OM-MSS Page 270 OM-MSS Section - 7.1 -----------------------------------------------------------------------------------------------------57 Satellite LANDSAT 8 : SAT PASS FOR EARTH STN - Prediction of Ground Trace Coordinates, Look Angles & more at Instantaneous Time. (a) LANDSAT 8 'Two-Line Elements'(TLE) downloaded on May 28, 2014, 18:13 hrs IST, Satellite launched on February 11, 2013 1 39084U 13008A 14148.14086282 .00000288 00000-0 73976-4 0 4961 2 39084 98.2215 218.5692 0001087 96.5686 263.5699 14.57098925 68534 From this TLE, the data relevant for the purpose are manually interpreted & extracted : Satellite number 39084, LANDSAT 8 , EPOCH_year = 2014 EPOCH_days_decimal_of_year = 147.1408628200 EPOCH_inclination_deg = 98.2215000000 EPOCH_right_asc_acnd_node_deg = 218.5692000000 EPOCH_eccentricity = 0.0001087000 EPOCH_argument_of_perigee_deg = 96.5686000000 EPOCH_mean_anomaly_deg = 263.5699000000 EPOCH_mean_motion_rev_per_day = 14.5709892500 EPOCH_revolution = 6853 EPOCH_node_condition = 1 Earth_stn_latitude_deg = 23.25993 Earth stn longitude_deg = 77.41261 Earth surface height_meter = 494.70000 Earth stn tower_height_meter = 15.00000 Earth stn_height_meter = 509.70000 Earth stn min EL look_angle_deg = -5.00000 Input UT Year and Days decimal of year : Convert into UT YY MM DD hh min sec & Julian day Start Time UT year = 2014, month = 5, day = 28, hr = 3, min = 22, sec = 50.54765, and julian_day = 2456805.6408628202 Sat_motion_direction = Forward Sat_motion_Time_Step_in_sec_pos_or_neg = 120.00000 seconds

Page 271: ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM …myreaders.info/00_Orbital__Mechanics__-__Model_____Simulation... · ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM-MSS)

www.m

yrea

ders

.inf

o

OM-MSS Page 271 SATELLITE PASS - GROUND TRACE [acronym - Line Of Sight (LOS), On Board Computerr (OBC), Visible Band Camera (VBC), Night Vision Devices (NVD)] ORBIT, INPUT TIME, POSIION, SAT VELOCITY, GROUND TRACE, RANGE, DIST, PITCH/ROLL, EL/AZ, ACCESS EL/AZ, DATA SOLAR TIME EL/AZ, DIST Line 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 @ES 18 19 20 @SS 21 22 23 24 25 26 27 @ES 28 29 30 No. Node GMT Anomaly Height @ Vel Lat(SAT)Log Slant S-Sat Pitch Roll EL(SAT)AZ Control EL(SUN)AZ Acq. LMT(ES) EL(SUN)AZ S-Sun Nos D H M S deg km meter deg deg km km deg deg deg D H M S deg km 06853 A 28 03 22 50 263.56 699.72 7504.39 0.12 218.59 12880.6 15098.6 18.1 11.6 -72.30 310.64 OBC 0.1 291.4 NVD 28 08 32 29 42.9 81.7 5246.2 1 06853 A 28 03 24 50 270.84 699.97 7504.49 7.33 219.63 12717.4 14700.5 17.6 11.5 -69.90 320.58 OBC 1.2 291.5 NVD 28 08 34 29 43.3 81.9 5195.5 2 06853 A 28 03 26 50 278.12 700.87 7504.59 14.53 220.72 12504.8 14236.0 17.0 11.5 -67.14 328.56 OBC 2.4 291.5 NVD 28 08 36 29 43.8 82.0 5144.9 3 06853 A 28 03 28 50 285.40 702.35 7504.69 21.72 221.87 12243.5 13720.7 16.5 11.5 -64.12 335.05 OBC 3.6 291.7 NVD 28 08 38 29 44.2 82.1 5094.3 4 06853 A 28 03 30 50 292.68 704.32 7504.79 28.90 223.15 11934.4 13167.2 15.9 11.4 -60.92 340.43 OBC 4.8 291.9 NVD 28 08 40 29 44.7 82.3 5043.6 5 06853 A 28 03 32 50 299.96 706.66 7504.88 36.08 224.62 11578.5 12585.5 15.1 11.4 -57.58 345.01 OBC 6.0 292.3 VBC 28 08 42 29 45.1 82.4 4992.9 6 06853 A 28 03 34 50 307.25 709.20 7504.97 43.23 226.38 11177.2 11983.3 14.3 11.3 -54.13 348.99 OBC 7.1 292.9 VBC 28 08 44 29 45.6 82.6 4942.2 7 06853 A 28 03 36 50 314.53 711.78 7505.05 50.34 228.62 10732.1 11366.8 13.2 11.3 -50.60 352.53 OBC 8.2 293.9 VBC 28 08 46 29 46.1 82.7 4891.5 8 06853 A 28 03 38 50 321.81 714.23 7505.12 57.40 231.64 10245.1 10741.2 11.8 11.2 -46.99 355.76 OBC 9.3 295.6 VBC 28 08 48 29 46.5 82.8 4840.8 9 06853 A 28 03 40 50 329.09 716.40 7505.18 64.35 236.10 9718.2 10110.8 9.7 11.1 -43.31 358.77 OBC 10.3 298.7 VBC 28 08 50 29 47.0 83.0 4790.0 10 06853 A 28 03 42 50 336.37 718.13 7505.22 71.08 243.51 9154.0 9479.8 6.3 11.0 -39.57 1.65 OBC 11.3 304.7 VBC 28 08 52 29 47.4 83.1 4739.3 11 06853 A 28 03 44 50 343.66 719.31 7505.26 77.22 258.14 8555.1 8852.3 -0.3 10.9 -35.76 4.47 OBC 12.2 317.7 VBC 28 08 54 29 47.9 83.2 4688.5 12 06853 A 28 03 46 50 350.94 719.87 7505.28 81.40 291.33 7924.8 8232.5 -15.7 11.4 -31.88 7.30 OBC 13.0 349.2 VBC 28 08 56 29 48.3 83.4 4637.7 13 06853 A 28 03 48 50 358.22 719.75 7505.29 80.52 338.67 7266.7 7625.3 -41.6 14.2 -27.91 10.24 OBC 13.7 34.8 VBC 28 08 58 29 48.8 83.5 4586.9 14 06854 A 28 03 49 19 360.00 719.62 Pri 7505.29 79.53 347.18 7102.3 7479.7 -47.3 15.1 -26.92 348.63 OBC 13.9 42.9 VBC 28 08 58 58 48.9 83.5 4574.5 15 06853 A 28 03 50 50 5.51 718.98 7505.29 75.48 4.69 6585.0 7036.6 60.0 17.7 -23.83 13.38 OBC 14.4 59.0 VBC 28 09 00 29 49.2 83.6 4536.1 16 06854 A 28 03 52 50 12.79 717.60 7505.27 69.09 16.37 5885.1 6473.7 69.2 20.3 -19.62 16.87 OBC 14.9 68.7 VBC 28 09 02 29 49.7 83.8 4485.3 17 06854 A 28 03 54 50 20.07 715.71 7505.24 62.28 22.63 5173.9 5945.7 74.1 22.0 -15.23 20.94 OBC 15.3 72.9 VBC 28 09 04 29 50.2 83.9 4434.4 18 06854 A 28 03 56 50 27.35 713.42 7505.20 55.28 26.56 4461.0 5464.5 77.0 23.3 -10.60 25.91 OBC 15.5 74.6 VBC 28 09 06 29 50.6 84.1 4383.6 19 06854 A 28 03 58 50 34.63 710.89 7505.15 48.20 29.29 3761.4 5044.8 78.9 24.2 -5.63 32.38 OBC 15.6 75.1 VBC 28 09 08 29 51.1 84.2 4332.7 20 06854 A 28 04 00 50 41.92 708.29 7505.08 41.08 31.36 3100.3 4704.2 80.2 25.0 -0.25 41.36 LOS 15.5 74.9 VBC 28 09 10 29 51.5 84.3 4281.8 21 06854 A 28 04 02 50 49.20 705.78 7505.01 33.92 33.02 2524.7 4461.7 81.2 25.7 5.47 54.63 LOS 15.3 74.2 VBC 28 09 12 29 52.0 84.5 4230.9 22 06854 A 28 04 04 50 56.48 703.53 7504.93 26.74 34.42 2120.2 4334.4 81.9 26.3 10.55 74.44 LOS 14.8 73.1 VBC 28 09 14 29 52.4 84.6 4180.0 23 06854 A 28 04 06 50 63.76 701.68 7504.84 19.55 35.66 2003.1 4332.7 82.5 26.8 12.28 100.17 LOS 14.2 71.9 VBC 28 09 16 29 52.9 84.8 4129.1 24 06854 A 28 04 08 50 71.04 700.36 7504.74 12.36 36.79 2223.0 4456.8 83.0 27.4 9.14 124.52 LOS 13.4 70.6 VBC 28 09 18 29 53.4 84.9 4078.2 25 06854 A 28 04 10 50 78.33 699.65 7504.64 5.15 37.86 2697.3 4696.4 83.4 27.9 3.62 142.01 LOS 12.3 69.1 VBC 28 09 20 29 53.8 85.1 4027.2 26 06854 A 28 04 12 16 83.54 699.55 Eqa 7504.57 0.00 38.60 3129.0 4929.6 83.7 28.2 -0.49 243.85 LOS 11.5 68.1 VBC 28 09 21 55 54.1 85.2 3990.8 27 06854 D 28 04 12 50 85.61 699.60 7504.54 -2.05 38.31 3313.7 5087.8 83.6 28.1 -2.08 153.51 LOS 10.6 67.7 VBC 28 09 22 29 54.3 85.2 3976.3 28 06854 D 28 04 14 50 92.89 700.22 7504.44 -9.25 37.26 4000.5 5675.1 83.2 27.6 -7.38 161.28 OBC 7.3 66.8 VBC 28 09 24 29 54.7 85.3 3925.3 29 06854 D 28 04 16 50 100.17 701.48 7504.33 -16.45 36.16 4719.0 6299.3 82.7 27.1 -12.30 166.83 OBC 3.9 66.3 NVD 28 09 26 29 55.2 85.5 3874.3 30 06854 D 28 04 18 50 107.45 703.29 7504.23 -23.64 34.98 5447.7 6949.3 82.2 26.5 -16.93 171.00 OBC 0.4 66.3 NVD 28 09 28 29 55.7 85.6 3823.4 31 06854 D 28 04 20 50 114.73 705.56 7504.14 -30.82 33.66 6173.6 7617.6 81.5 26.0 -21.35 174.29 OBC -3.1 66.8 NVD 28 09 30 29 56.1 85.8 3772.4 32 06854 D 28 04 22 50 122.01 708.13 7504.04 -37.98 32.13 6887.7 8298.3 80.6 25.3 -25.63 176.97 OBC -6.7 67.9 NVD 28 09 32 29 56.6 85.9 3721.4 33 06854 D 28 04 24 50 129.29 710.86 7503.96 -45.12 30.27 7583.5 8987.1 79.5 24.6 -29.80 179.24 OBC -10.2 69.8 NVD 28 09 34 29 57.0 86.1 3670.4 34 06854 D 28 04 26 50 136.57 713.57 7503.88 -52.23 27.87 8255.8 9680.6 77.9 23.7 -33.89 181.20 OBC -13.7 72.5 NVD 28 09 36 29 57.5 86.2 3619.3 35 06854 D 28 04 28 50 143.85 716.09 7503.82 -59.26 24.55 8900.1 10375.5 75.5 22.6 -37.93 182.94 OBC -17.1 76.6 NVD 28 09 38 29 57.9 86.4 3568.3 36 06854 D 28 04 30 50 151.13 718.25 7503.76 -66.17 19.52 9512.6 11068.8 71.7 21.1 -41.92 184.52 OBC -20.4 82.8 NVD 28 09 40 29 58.4 86.5 3517.3 37 06854 D 28 04 32 50 158.41 719.93 7503.72 -72.79 10.81 10090.0 11757.6 64.8 19.0 -45.87 185.98 OBC -23.5 93.2 NVD 28 09 42 29 58.9 86.7 3466.2 38 06854 D 28 04 34 50 165.69 721.01 7503.69 -78.62 352.75 10629.2 12438.1 -51.1 15.8 -49.80 187.37 OBC -26.4 113.3 NVD 28 09 44 29 59.3 86.8 3415.2 39 06854 D 28 04 36 50 172.97 721.43 7503.67 -81.76 312.96 11127.4 13105.9 -26.6 12.3 -53.71 188.71 OBC -29.0 155.6 NVD 28 09 46 29 59.8 87.0 3364.1 40 06854 D 28 04 38 46 180.00 721.17 Apo 7503.66 -79.59 270.49 11567.4 13733.8 -5.9 11.0 -57.46 182.81 OBC -31.2 200.9 NVD 28 09 48 25 60.2 87.1 3314.8 41 06854 D 28 04 38 50 180.25 721.15 7503.66 -79.44 269.42 11582.1 13755.5 -5.5 11.0 -57.60 190.06 OBC -31.3 202.1 NVD 28 09 48 29 60.2 87.1 3313.0 42 06854 D 28 04 40 50 187.53 720.20 7503.67 -73.87 248.59 11991.2 14379.0 4.0 11.0 -61.47 191.45 OBC -33.2 226.3 NVD 28 09 50 29 60.7 87.3 3262.0 43

Page 272: ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM …myreaders.info/00_Orbital__Mechanics__-__Model_____Simulation... · ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM-MSS)

www.m

yrea

ders

.inf

o

OM-MSS Page 272 SATELLITE PASS - GROUND TRACE [acronym - Line Of Sight (LOS), On Board Computerr (OBC), Visible Band Camera (VBC), Night Vision Devices (NVD)] ORBIT, INPUT TIME, POSIION, SAT VELOCITY, GROUND TRACE, RANGE, DIST, PITCH/ROLL, EL/AZ, ACCESS EL/AZ, DATA SOLAR TIME EL/AZ, DIST Line 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 @ES 18 19 20 @SS 21 22 23 24 25 26 27 @ES 28 29 30 No. Node GMT Anomaly Height @ Vel Lat(SAT)Log Slant S-Sat Pitch Roll EL(SAT)AZ Control EL(SUN)AZ Acq. LMT(ES) EL(SUN)AZ S-Sun Nos D H M S deg km meter deg deg km km deg deg deg D H M S deg km 06854 D 28 04 42 50 194.81 718.64 7503.69 -67.33 238.86 12352.6 14965.4 8.5 11.1 -65.33 192.96 OBC -34.7 239.8 NVD 28 09 52 29 61.2 87.5 3210.9 44 06854 D 28 04 44 50 202.09 716.57 7503.72 -60.45 233.39 12664.6 15499.2 11.0 11.2 -69.17 194.71 OBC -35.7 249.3 NVD 28 09 54 29 61.6 87.6 3159.8 45 06854 D 28 04 46 50 209.37 714.12 7503.77 -53.44 229.86 12925.6 15958.8 12.6 11.3 -73.00 196.88 OBC -36.1 257.0 NVD 28 09 56 29 62.1 87.8 3108.7 46 06854 D 28 04 48 50 216.65 711.45 7503.82 -46.34 227.34 13134.4 16315.9 13.8 11.3 -76.81 199.91 OBC -36.0 263.8 NVD 28 09 58 29 62.5 87.9 3057.6 47 06854 D 28 04 50 50 223.93 708.73 7503.89 -39.21 225.40 13290.0 16538.4 14.8 11.4 -80.57 204.89 OBC -35.4 270.0 NVD 28 10 00 29 63.0 88.1 3006.5 48 06854 D 28 04 52 50 231.20 706.13 7503.97 -32.05 223.82 13391.5 16599.6 15.5 11.4 -84.20 215.54 OBC -34.1 275.6 NVD 28 10 02 29 63.5 88.3 2955.4 49 06854 D 28 04 54 50 238.49 703.81 7504.05 -24.87 222.47 13438.4 16491.1 16.2 11.4 -87.14 251.65 OBC -32.4 280.6 NVD 28 10 04 29 63.9 88.4 2904.3 50 06854 D 28 04 56 50 245.77 701.92 7504.14 -17.68 221.27 13430.4 16227.5 16.8 11.5 -86.47 325.48 OBC -30.1 285.0 NVD 28 10 06 29 64.4 88.6 2853.2 51 06854 D 28 04 58 50 253.05 700.56 7504.24 -10.48 220.17 13367.4 15838.2 17.3 11.5 -83.17 349.52 OBC -27.5 288.8 NVD 28 10 08 29 64.8 88.8 2802.0 52 06854 D 28 05 00 50 260.33 699.83 7504.34 -3.28 219.11 13249.5 15355.0 17.8 11.6 -79.48 357.59 OBC -24.4 292.1 NVD 28 10 10 29 65.3 89.0 2750.9 53 06854 D 28 05 01 45 263.64 699.72 Eqa 7504.39 -0.00 218.64 13177.8 15111.0 18.0 11.6 -77.75 63.82 OBC -23.0 293.4 NVD 28 10 11 24 65.5 89.1 2727.6 54 06854 A 28 05 02 50 267.61 699.77 7504.44 3.92 219.20 13077.3 14904.1 17.8 11.6 -75.68 1.57 OBC -22.1 295.1 NVD 28 10 12 29 65.7 89.2 2699.8 55 06854 A 28 05 04 50 274.89 700.36 7504.55 11.12 220.27 12851.3 14468.3 17.3 11.5 -71.85 3.95 OBC -20.3 298.0 NVD 28 10 14 29 66.2 89.3 2648.7 56 06854 A 28 05 06 50 282.17 701.58 7504.65 18.32 221.38 12572.4 13974.6 16.7 11.5 -67.98 5.55 OBC -18.1 300.9 NVD 28 10 16 29 66.7 89.5 2597.5 57 06854 A 28 05 08 50 289.45 703.33 7504.75 25.51 222.59 12241.7 13437.2 16.1 11.4 -64.10 6.70 OBC -15.6 303.6 NVD 28 10 18 29 67.1 89.7 2546.4 58 06854 A 28 05 10 50 296.73 705.51 7504.84 32.69 223.96 11860.7 12867.2 15.5 11.4 -60.20 7.55 OBC -12.8 306.3 NVD 28 10 20 29 67.6 89.9 2495.2 59 06854 A 28 05 12 50 304.01 707.98 7504.93 39.85 225.57 11430.8 12273.2 14.7 11.4 -56.27 8.19 OBC -9.8 308.9 NVD 28 10 22 29 68.0 90.1 2444.1 60 06854 A 28 05 14 50 311.30 710.56 7505.01 46.98 227.55 10954.0 11662.3 13.7 11.3 -52.32 8.67 OBC -6.6 311.5 NVD 28 10 24 29 68.5 90.3 2393.0 61 06854 A 28 05 16 50 318.58 713.10 7505.09 54.07 230.15 10432.1 11039.8 12.5 11.2 -48.35 9.01 OBC -3.2 314.5 NVD 28 10 26 29 69.0 90.5 2341.8 62 06854 A 28 05 18 50 325.86 715.42 7505.15 61.08 233.81 9867.6 10410.6 10.8 11.2 -44.33 9.23 OBC 0.4 318.2 NVD 28 10 28 29 69.4 90.7 2290.7 63 06854 A 28 05 20 50 333.14 717.37 7505.20 67.94 239.54 9262.7 9778.9 8.1 11.1 -40.28 9.33 OBC 4.0 323.5 NVD 28 10 30 29 69.9 90.9 2239.6 64 06854 A 28 05 22 50 340.43 718.83 7505.25 74.43 249.89 8620.3 9148.7 3.4 11.0 -36.17 9.32 OBC 7.7 333.2 VBC 28 10 32 29 70.3 91.2 2188.5 65 06854 A 28 05 24 50 347.71 719.68 7505.27 79.84 272.40 7943.2 8524.1 -6.8 11.0 -31.99 9.18 OBC 11.3 354.6 VBC 28 10 34 29 70.8 91.4 2137.3 66 06854 A 28 05 26 50 354.99 719.89 7505.29 81.68 317.62 7234.7 7909.7 -29.2 12.6 -27.71 8.88 OBC 15.0 38.3 VBC 28 10 36 29 71.3 91.6 2086.2 67 06855 A 28 05 28 13 360.00 719.64 Pri 7505.29 79.66 346.32 6730.8 7495.7 -46.7 15.0 -24.70 348.78 OBC 17.5 65.7 VBC 28 10 37 52 71.6 91.8 2051.1 68 06854 A 28 05 28 50 2.27 719.43 7505.29 78.14 355.16 6498.1 7310.8 -52.9 16.2 -23.31 8.40 OBC 18.6 73.9 VBC 28 10 38 29 71.7 91.8 2035.1 69 06855 A 28 05 30 50 9.56 718.33 7505.28 72.19 11.92 5737.3 6734.0 65.7 19.2 -18.72 7.67 OBC 22.0 88.2 VBC 28 10 40 29 72.2 92.1 1984.0 70 06855 A 28 05 32 50 16.84 716.66 7505.26 65.53 20.15 4956.9 6187.5 72.2 21.3 -13.85 6.59 OBC 25.2 93.4 VBC 28 10 42 29 72.6 92.3 1932.9 71 06855 A 28 05 34 50 24.12 714.54 7505.22 58.61 24.96 4162.6 5681.7 75.8 22.7 -8.55 4.96 OBC 28.2 94.7 VBC 28 10 44 29 73.1 92.6 1881.8 72 06855 A 28 05 36 50 31.40 712.11 7505.17 51.56 28.17 3362.3 5230.1 78.1 23.8 -2.49 2.41 LOS 30.9 93.9 VBC 28 10 46 29 73.6 92.9 1830.7 73 06855 A 28 05 38 50 38.69 709.52 7505.11 44.45 30.51 2569.8 4848.9 79.7 24.7 4.97 358.02 LOS 33.1 91.6 VBC 28 10 48 29 74.0 93.2 1779.7 74 06855 A 28 05 40 50 45.97 706.95 7505.04 37.31 32.34 1817.2 4557.0 80.8 25.4 15.37 349.24 LOS 34.9 88.3 VBC 28 10 50 29 74.5 93.4 1728.6 75 06855 A 28 05 42 50 53.25 704.55 7504.96 30.14 33.85 1205.5 4372.8 81.6 26.1 31.32 326.42 LOS 36.1 84.3 VBC 28 10 52 29 74.9 93.7 1677.6 76 06855 A 28 05 44 50 60.53 702.50 7504.88 22.95 35.16 1042.4 4310.7 82.3 26.6 38.96 268.73 LOS 36.7 79.6 VBC 28 10 54 29 75.4 94.1 1626.6 77 06855 A 28 05 46 50 67.81 700.92 7504.78 15.76 36.33 1485.7 4375.9 82.8 27.1 22.46 229.48 LOS 36.6 74.7 VBC 28 10 56 29 75.8 94.4 1575.6 78 06855 A 28 05 48 50 75.09 699.91 7504.69 8.56 37.42 2189.7 4562.9 83.2 27.6 9.59 215.83 LOS 35.9 69.7 VBC 28 10 58 29 76.3 94.7 1524.6 79 06855 A 28 05 50 50 82.38 699.54 7504.58 1.36 38.47 2967.1 4857.2 83.6 28.2 0.98 209.61 LOS 34.5 64.7 VBC 28 11 00 29 76.8 95.1 1473.6 80 06855 A 28 05 51 13 83.75 699.55 Eqa 7504.57 0.00 38.67 3116.8 4923.3 83.7 28.2 -0.38 243.79 LOS 34.2 63.8 VBC 28 11 00 52 76.8 95.2 1464.0 81 06855 D 28 05 52 50 89.66 699.85 7504.48 -5.84 37.82 3763.6 5386.0 83.4 27.8 -5.64 206.03 OBC 31.1 60.6 VBC 28 11 02 29 77.2 95.5 1422.7 82 06855 D 28 05 54 50 96.94 700.81 7504.38 -13.04 36.76 4559.3 5994.8 83.0 27.3 -11.24 203.63 OBC 26.9 57.4 VBC 28 11 04 29 77.7 95.9 1371.8 83 06855 D 28 05 56 50 104.22 702.37 7504.28 -20.24 35.62 5343.9 6634.1 82.5 26.8 -16.28 201.85 OBC 22.4 55.0 VBC 28 11 06 29 78.1 96.3 1321.0 84 06855 D 28 05 58 50 111.50 704.44 7504.18 -27.42 34.38 6110.9 7295.0 81.9 26.3 -20.97 200.39 OBC 17.6 53.3 VBC 28 11 08 29 78.6 96.7 1270.2 85 06855 D 28 06 00 50 118.78 706.89 7504.08 -34.60 32.96 6855.4 7970.8 81.1 25.7 -25.43 199.12 OBC 12.7 52.4 VBC 28 11 10 29 79.0 97.2 1219.4 86 06855 D 28 06 02 50 126.06 709.57 7504.00 -41.75 31.27 7573.2 8656.7 80.1 25.0 -29.74 197.94 OBC 7.5 52.2 VBC 28 11 12 29 79.5 97.7 1168.7 87

Page 273: ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM …myreaders.info/00_Orbital__Mechanics__-__Model_____Simulation... · ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM-MSS)

www.m

yrea

ders

.inf

o

OM-MSS Page 272 SATELLITE PASS - GROUND TRACE [acronym - Line Of Sight (LOS), On Board Computerr (OBC), Visible Band Camera (VBC), Night Vision Devices (NVD) ] ORBIT, INPUT TIME, POSIION, SAT VELOCITY, GROUND TRACE, RANGE, DIST, PITCH/ROLL, EL/AZ, ACCESS EL/AZ, DATA SOLAR TIME EL/AZ, DIST Line 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 @ES 18 19 20 @SS 21 22 23 24 25 26 27 @ES 28 29 30 No. Node GMT Anomaly Height @ Vel Lat(SAT)Log Slant S-Sat Pitch Roll EL(SAT)AZ Control EL(SUN)AZ Acq. LMT(ES) EL(SUN)AZ S-Sun Nos D H M S deg km meter deg deg km km deg deg deg D H M S deg km 06855 D 28 06 04 50 133.34 712.30 7503.92 -48.87 29.16 8260.7 9348.8 78.8 24.2 -33.92 196.79 OBC 2.3 52.9 NVD 28 11 14 29 80.0 98.3 1118.1 88 06855 D 28 06 06 50 140.62 714.93 7503.85 -55.94 26.34 8914.5 10043.8 76.8 23.2 -38.02 195.62 OBC -3.0 54.8 NVD 28 11 16 29 80.4 98.9 1067.5 89 06855 D 28 06 08 50 147.90 717.28 7503.79 -62.92 22.27 9531.7 10738.6 73.8 21.9 -42.05 194.38 OBC -8.4 58.4 NVD 28 11 18 29 80.9 99.5 1017.0 90 06855 D 28 06 10 50 155.18 719.21 7503.74 -69.71 15.68 10109.6 11430.4 68.7 20.1 -46.01 193.03 OBC -13.7 64.9 NVD 28 11 20 29 81.3 100.2 966.7 91 06855 D 28 06 12 50 162.46 720.58 7503.70 -76.03 3.19 10645.5 12115.7 58.9 17.5 -49.93 191.51 OBC -19.1 77.8 NVD 28 11 22 29 81.8 101.0 916.4 92 06855 D 28 06 14 50 169.74 721.32 7503.67 -80.84 335.10 11137.3 12790.7 -39.4 13.9 -53.79 189.76 OBC -24.4 106.8 NVD 28 11 24 29 82.2 101.8 866.3 93 06855 D 28 06 16 50 177.02 721.37 7503.66 -81.18 287.26 11582.7 13450.4 -13.7 11.3 -57.60 187.69 OBC -29.6 156.2 NVD 28 11 26 29 82.7 102.8 816.3 94 06855 D 28 06 17 39 180.00 721.19 Apo 7503.66 -79.72 271.50 11751.4 13714.7 -6.4 11.0 -59.15 182.98 OBC -31.7 172.8 NVD 28 11 27 18 82.9 103.2 795.9 95 06855 D 28 06 18 50 184.30 720.73 7503.66 -76.70 256.38 11980.0 14087.9 0.5 10.9 -61.36 185.17 OBC -34.6 189.3 NVD 28 11 28 29 83.1 103.8 766.5 96 06855 D 28 06 20 50 191.58 719.45 7503.68 -70.48 242.75 12327.4 14694.2 6.7 11.0 -65.04 182.00 OBC -39.4 206.0 NVD 28 11 30 29 83.6 105.0 717.0 97 06855 D 28 06 22 50 198.86 717.60 7503.70 -63.73 235.71 12623.6 15256.1 9.9 11.1 -68.63 177.87 OBC -43.8 217.1 NVD 28 11 32 29 84.0 106.3 667.7 98 06855 D 28 06 24 50 206.14 715.31 7503.74 -56.77 231.43 12867.5 15755.0 11.9 11.2 -72.08 172.25 OBC -47.7 226.6 NVD 28 11 34 29 84.4 107.8 618.9 99 06855 D 28 06 26 50 213.41 712.73 7503.80 -49.71 228.51 13058.0 16165.6 13.3 11.3 -75.31 164.23 OBC -51.0 236.0 NVD 28 11 36 29 84.9 109.6 570.4 100 06855 D 28 06 28 50 220.69 710.01 7503.86 -42.59 226.33 13194.6 16456.9 14.3 11.3 -78.12 152.29 OBC -53.5 246.0 NVD 28 11 38 29 85.3 111.7 522.5 101 06855 D 28 06 30 50 227.97 707.33 7503.93 -35.44 224.60 13276.7 16597.7 15.2 11.4 -80.19 134.47 OBC -54.9 256.6 NVD 28 11 40 29 85.7 114.2 475.4 102 06855 D 28 06 32 50 235.25 704.86 7504.01 -28.27 223.15 13304.2 16569.7 15.8 11.4 -80.99 110.83 OBC -55.1 267.5 NVD 28 11 42 29 86.1 117.2 429.3 103 06855 D 28 06 34 50 242.53 702.75 7504.10 -21.08 221.89 13277.2 16376.8 16.5 11.5 -80.21 87.14 OBC -54.0 277.8 NVD 28 11 44 29 86.5 120.8 384.6 104 06855 D 28 06 36 50 249.81 701.13 7504.20 -13.89 220.75 13196.0 16042.8 17.0 11.5 -78.16 69.18 OBC -51.9 287.2 NVD 28 11 46 29 86.9 125.4 341.7 105 06855 D 28 06 38 50 257.10 700.10 7504.29 -6.69 219.67 13061.2 15600.0 17.5 11.5 -75.37 57.03 OBC -48.7 295.1 NVD 28 11 48 29 87.3 131.3 301.5 106 06855 D 28 06 40 41 263.86 699.72 Eqa 7504.39 -0.00 218.70 12888.7 15117.3 18.0 11.6 -72.42 63.77 OBC -45.1 301.2 NVD 28 11 50 21 87.6 138.2 267.7 107 06855 A 28 06 40 50 264.38 699.71 7504.40 0.51 218.78 12873.6 15091.5 18.0 11.6 -72.19 48.74 OBC -44.9 301.7 NVD 28 11 50 29 87.6 138.8 265.3 108 06855 A 28 06 42 50 271.66 700.00 7504.50 7.71 219.83 12634.4 14688.2 17.5 11.5 -68.78 42.77 OBC -42.1 308.3 NVD 28 11 52 29 87.9 148.4 234.8 109 06855 A 28 06 44 50 278.94 700.93 7504.60 14.91 220.91 12345.0 14219.4 16.9 11.5 -65.25 38.20 OBC -38.5 314.1 NVD 28 11 54 29 88.1 160.4 212.6 110 06855 A 28 06 46 50 286.22 702.44 7504.70 22.11 222.07 12007.0 13700.5 16.4 11.5 -61.64 34.50 OBC -34.3 319.1 NVD 28 11 56 29 88.2 174.5 201.4 111 06855 A 28 06 48 50 293.50 704.44 7504.80 29.29 223.36 11622.5 13144.1 15.8 11.4 -57.97 31.35 OBC -29.7 323.5 NVD 28 11 58 29 88.2 189.2 203.0 112 06855 A 28 06 50 50 300.78 706.78 7504.89 36.46 224.84 11193.6 12560.0 15.0 11.4 -54.26 28.54 OBC -24.8 327.4 NVD 28 12 00 29 88.0 202.8 217.2 113 06855 A 28 06 52 50 308.06 709.33 7504.98 43.61 226.62 10723.0 11955.7 14.2 11.3 -50.53 25.92 OBC -19.5 330.9 NVD 28 12 02 29 87.8 214.2 241.7 114 06855 A 28 06 54 50 315.35 711.91 7505.06 50.73 228.89 10213.5 11337.5 13.1 11.3 -46.76 23.40 OBC -14.1 334.5 NVD 28 12 04 29 87.5 223.3 273.8 115 06855 A 28 06 56 50 322.63 714.36 7505.12 57.78 231.97 9668.5 10710.4 11.7 11.2 -42.98 20.87 OBC -8.4 338.3 NVD 28 12 06 29 87.2 230.4 311.2 116 06855 A 28 06 58 50 329.91 716.50 7505.18 64.72 236.54 9091.8 10078.8 9.5 11.1 -39.17 18.26 OBC -2.7 343.2 NVD 28 12 08 29 86.8 235.9 352.1 117 06855 A 28 07 00 50 337.19 718.21 7505.23 71.43 244.19 8487.9 9446.8 6.0 11.0 -35.34 15.49 OBC 3.1 350.8 NVD 28 12 10 29 86.4 240.2 395.5 118 06855 A 28 07 02 50 344.48 719.36 7505.26 77.52 259.45 7861.7 8818.5 -0.9 10.9 -31.49 12.45 OBC 9.0 5.5 VBC 28 12 12 29 86.0 243.7 440.6 119 06855 A 28 07 04 50 351.76 719.88 7505.28 81.50 294.01 7219.5 8198.1 -17.0 11.5 -27.62 9.04 OBC 14.9 39.1 VBC 28 12 14 29 85.6 246.6 487.0 120 06855 A 28 07 06 50 359.04 719.73 7505.29 80.32 340.83 6569.0 7590.5 -43.0 14.4 -23.73 5.11 OBC 20.8 84.5 VBC 28 12 16 29 85.2 248.9 534.3 121 06856 A 28 07 07 06 360.00 719.66 Pri 7505.29 79.78 345.43 6483.2 7511.8 -46.1 14.9 -23.22 348.94 OBC 21.6 88.9 VBC 28 12 16 45 85.1 249.2 540.6 122 06855 A 28 07 08 50 6.32 718.92 7505.29 75.15 5.70 5920.0 7001.7 60.8 17.9 -19.83 0.45 OBC 26.7 107.3 VBC 28 12 18 29 84.8 250.9 582.3 123 06856 A 28 07 10 50 13.61 717.52 7505.27 68.73 16.94 5285.7 6439.0 69.7 20.4 -15.93 354.79 OBC 32.4 115.9 VBC 28 12 20 29 84.3 252.6 630.9 124 06856 A 28 07 12 50 20.89 715.60 7505.24 61.90 23.03 4684.5 5911.8 74.4 22.1 -12.08 347.75 OBC 38.0 118.5 VBC 28 12 22 29 83.9 254.1 679.9 125 06856 A 28 07 14 50 28.17 713.29 7505.20 54.90 26.86 4142.4 5431.9 77.2 23.4 -8.40 338.87 OBC 43.3 117.8 VBC 28 12 24 29 83.4 255.4 729.2 126 06856 A 28 07 16 50 35.45 710.76 7505.14 47.82 29.55 3695.8 5014.4 79.1 24.3 -5.14 327.67 OBC 48.2 114.7 VBC 28 12 26 29 83.0 256.5 778.8 127 06856 A 28 07 18 50 42.74 708.15 7505.08 40.69 31.59 3390.4 4677.1 80.3 25.1 -2.72 313.97 LOS 52.6 109.3 VBC 28 12 28 29 82.6 257.5 828.6 128 06856 A 28 07 20 50 50.02 705.65 7505.00 33.53 33.24 3270.4 4439.2 81.3 25.8 -1.72 298.44 LOS 56.2 101.6 VBC 28 12 30 29 82.1 258.4 878.6 129 06856 A 28 07 22 50 57.30 703.42 7504.92 26.35 34.63 3356.6 4317.6 82.0 26.4 -2.44 282.76 LOS 58.7 91.6 VBC 28 12 32 29 81.7 259.3 928.8 130 06856 A 28 07 24 50 64.58 701.60 7504.83 19.16 35.86 3631.7 4322.4 82.6 26.9 -4.64 268.65 LOS 59.7 80.0 VBC 28 12 34 29 81.2 260.0 979.1 131

Page 274: ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM …myreaders.info/00_Orbital__Mechanics__-__Model_____Simulation... · ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM-MSS)

www.m

yrea

ders

.inf

o

OM-MSS Page 274 SATELLITE PASS - GROUND TRACE [acronym - Line Of Sight (LOS), On Board Computerr (OBC), Visible Band Camera (VBC), Night Vision Devices (NVD) ] ORBIT, INPUT TIME, POSIION, SAT VELOCITY, GROUND TRACE, RANGE, DIST, PITCH/ROLL, EL/AZ, ACCESS EL/AZ, DATA SOLAR TIME EL/AZ, DIST Line 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 @ES 18 19 20 @SS 21 22 23 24 25 26 27 @ES 28 29 30 No. Node GMT Anomaly Height @ Vel Lat(SAT)Log Slant S-Sat Pitch Roll EL(SAT)AZ Control EL(SUN)AZ Acq. LMT(ES) EL(SUN)AZ S-Sun Nos D H M S deg km meter deg deg km km deg deg deg D H M S deg km 06856 A 28 07 26 50 71.86 700.31 7504.73 11.97 36.98 4052.4 4453.2 83.1 27.4 -7.76 256.93 OBC 59.2 68.0 VBC 28 12 36 29 80.8 260.7 1029.5 132 06856 A 28 07 28 50 79.14 699.64 7504.63 4.77 38.05 4571.6 4699.3 83.5 27.9 -11.33 247.52 OBC 57.3 56.7 VBC 28 12 38 29 80.3 261.3 1080.0 133 06856 A 28 07 30 09 83.96 699.55 Eqa 7504.56 0.00 38.74 4950.5 4917.1 83.7 28.3 -13.80 243.74 OBC 55.2 50.1 VBC 28 12 39 48 80.0 261.7 1113.5 134 06856 D 28 07 30 50 86.43 699.62 7504.53 -2.44 38.39 5151.5 5106.2 83.6 28.1 -15.08 239.94 OBC 53.5 47.7 VBC 28 12 40 29 79.8 261.9 1130.6 135 06856 D 28 07 32 50 93.71 700.28 7504.42 -9.64 37.33 5764.7 5696.7 83.2 27.6 -18.88 233.71 OBC 48.0 42.0 VBC 28 12 42 29 79.4 262.4 1181.2 136 06856 D 28 07 34 50 100.99 701.57 7504.32 -16.83 36.24 6392.1 6323.3 82.8 27.1 -22.66 228.44 OBC 42.1 38.0 VBC 28 12 44 29 78.9 263.0 1231.9 137 06856 D 28 07 36 50 108.27 703.41 7504.22 -24.03 35.05 7019.9 6975.4 82.2 26.6 -26.42 223.84 OBC 35.9 35.1 VBC 28 12 46 29 78.5 263.4 1282.7 138 06856 D 28 07 38 50 115.55 705.70 7504.12 -31.21 33.72 7638.3 7645.2 81.5 26.0 -30.13 219.68 OBC 29.6 33.3 VBC 28 12 48 29 78.0 263.9 1333.5 139 06856 D 28 07 40 50 122.83 708.28 7504.03 -38.37 32.18 8239.6 8327.3 80.7 25.4 -33.79 215.81 OBC 23.1 32.3 VBC 28 12 50 29 77.6 264.3 1384.4 140 06856 D 28 07 42 50 130.11 711.01 7503.95 -45.51 30.29 8817.7 9017.3 79.5 24.6 -37.40 212.09 OBC 16.5 32.2 VBC 28 12 52 29 77.1 264.7 1435.3 141 06856 D 28 07 44 50 137.39 713.71 7503.88 -52.61 27.85 9367.6 9711.7 77.9 23.7 -40.96 208.41 OBC 9.8 33.0 VBC 28 12 54 29 76.6 265.1 1486.2 142 06856 D 28 07 46 50 144.67 716.22 7503.81 -59.64 24.47 9885.4 10407.4 75.5 22.6 -44.45 204.67 OBC 3.1 35.1 NVD 28 12 56 29 76.2 265.4 1537.1 143 06856 D 28 07 48 50 151.95 718.36 7503.76 -66.53 19.31 10367.4 11101.4 71.5 21.1 -47.86 200.78 OBC -3.7 39.3 NVD 28 12 58 29 75.7 265.7 1588.1 144 06856 D 28 07 50 50 159.23 720.01 7503.71 -73.13 10.29 10810.6 11790.7 64.4 18.9 -51.19 196.62 OBC -10.5 47.6 NVD 28 13 00 29 75.3 266.1 1639.1 145 06856 D 28 07 52 50 166.51 721.05 7503.68 -78.89 351.41 11212.7 12471.6 -50.2 15.6 -54.41 192.07 OBC -17.3 66.1 NVD 28 13 02 29 74.8 266.4 1690.1 146 06856 D 28 07 54 50 173.79 721.43 7503.67 -81.78 310.36 11571.2 13139.7 -25.2 12.2 -57.50 187.00 OBC -24.1 107.0 NVD 28 13 04 29 74.4 266.7 1741.1 147 06856 D 28 07 56 32 180.00 721.21 Apo 7503.66 -79.85 272.53 11841.6 13695.6 -6.9 11.0 -60.00 183.14 OBC -29.9 144.9 NVD 28 13 06 12 74.0 266.9 1784.7 148 06856 D 28 07 56 50 181.07 721.12 7503.66 -79.19 267.92 11884.6 13789.3 -4.8 11.0 -60.42 181.25 OBC -30.9 149.6 NVD 28 13 06 29 73.9 267.0 1792.2 149 06856 D 28 07 58 50 188.35 720.13 7503.67 -73.53 248.01 12151.1 14412.5 4.3 11.0 -63.11 174.61 OBC -37.7 170.1 NVD 28 13 08 29 73.4 267.2 1843.3 150 06856 D 28 08 00 50 195.62 718.54 7503.69 -66.96 238.62 12369.7 14998.1 8.6 11.1 -65.52 166.90 OBC -44.5 180.6 NVD 28 13 10 29 73.0 267.5 1894.3 151 06856 D 28 08 02 50 202.90 716.44 7503.73 -60.08 233.30 12539.5 15530.5 11.0 11.2 -67.56 157.94 OBC -51.2 187.9 NVD 28 13 12 29 72.5 267.8 1945.4 152 06856 D 28 08 04 50 210.18 713.97 7503.77 -53.06 229.84 12659.8 15987.5 12.7 11.3 -69.11 147.67 OBC -57.8 194.5 NVD 28 13 14 29 72.1 268.0 1996.5 153 06856 D 28 08 06 50 217.46 711.30 7503.83 -45.96 227.36 12730.4 16340.5 13.8 11.3 -70.08 136.26 OBC -64.1 202.3 NVD 28 13 16 29 71.6 268.3 2047.6 154 06856 D 28 08 08 50 224.74 708.58 7503.90 -38.82 225.44 12751.3 16557.0 14.7 11.4 -70.37 124.20 OBC -70.0 213.3 NVD 28 13 18 29 71.1 268.5 2098.7 155 06856 D 28 08 10 50 232.02 705.99 7503.97 -31.66 223.88 12722.8 16610.7 15.5 11.4 -69.97 112.20 OBC -74.7 231.2 NVD 28 13 20 29 70.7 268.7 2149.8 156 06856 D 28 08 12 50 239.30 703.69 7504.06 -24.48 222.54 12645.5 16494.3 16.1 11.4 -68.92 100.91 OBC -77.2 259.2 NVD 28 13 22 29 70.2 269.0 2200.9 157 06856 D 28 08 14 50 246.58 701.82 7504.15 -17.29 221.35 12520.2 16223.3 16.7 11.5 -67.32 90.77 OBC -75.9 289.6 NVD 28 13 24 29 69.8 269.2 2252.1 158 06856 D 28 08 16 50 253.86 700.50 7504.25 -10.09 220.24 12348.1 15827.7 17.3 11.5 -65.28 81.86 OBC -71.8 310.3 NVD 28 13 26 29 69.3 269.4 2303.2 159 06856 D 28 08 18 50 261.14 699.81 7504.35 -2.89 219.19 12130.8 15339.5 17.8 11.6 -62.91 74.10 OBC -66.1 322.3 NVD 28 13 28 29 68.8 269.6 2354.3 160 06856 D 28 08 19 38 264.07 699.71 Eqa 7504.39 -0.00 218.77 12031.3 15123.5 18.0 11.6 -61.88 63.71 OBC -63.7 325.6 NVD 28 13 29 17 68.7 269.7 2374.9 161 06856 A 28 08 20 50 268.43 699.78 7504.45 4.31 219.40 11870.2 14894.1 17.7 11.5 -60.29 67.31 OBC -60.5 331.4 NVD 28 13 30 29 68.4 269.8 2405.4 162 06856 A 28 08 22 50 275.71 700.41 7504.56 11.51 220.46 11568.4 14453.6 17.2 11.5 -57.48 61.27 OBC -54.6 338.6 NVD 28 13 32 29 67.9 270.0 2456.6 163 06856 A 28 08 24 50 282.99 701.65 7504.66 18.71 221.58 11228.0 13956.0 16.6 11.5 -54.55 55.79 OBC -48.3 343.8 NVD 28 13 34 29 67.5 270.2 2507.7 164 06856 A 28 08 26 50 290.27 703.44 7504.76 25.90 222.80 10852.0 13415.4 16.0 11.4 -51.52 50.71 OBC -41.7 347.8 NVD 28 13 36 29 67.0 270.4 2558.8 165 06856 A 28 08 28 50 297.55 705.64 7504.85 33.07 224.18 10443.9 12842.7 15.4 11.4 -48.43 45.90 OBC -34.9 351.0 NVD 28 13 38 29 66.6 270.6 2610.0 166 06856 A 28 08 30 50 304.83 708.11 7504.94 40.23 225.80 10007.5 12246.6 14.6 11.4 -45.30 41.24 OBC -28.1 353.9 NVD 28 13 40 29 66.1 270.8 2661.1 167 06856 A 28 08 32 50 312.11 710.70 7505.02 47.37 227.81 9547.4 11633.7 13.6 11.3 -42.16 36.60 OBC -21.1 356.7 NVD 28 13 42 29 65.6 271.0 2712.2 168 06856 A 28 08 34 50 319.40 713.23 7505.10 54.45 230.45 9068.9 11009.7 12.4 11.2 -39.02 31.90 OBC -14.1 359.9 NVD 28 13 44 29 65.2 271.1 2763.3 169 06856 A 28 08 36 50 326.68 715.53 7505.16 61.46 234.19 8578.1 10379.2 10.6 11.2 -35.91 27.03 OBC -7.0 3.8 NVD 28 13 46 29 64.7 271.3 2814.4 170 06856 A 28 08 38 50 333.96 717.46 7505.21 68.30 240.08 8082.3 9746.3 7.9 11.1 -32.84 21.90 OBC 0.1 9.7 NVD 28 13 48 29 64.3 271.5 2865.5 171 06856 A 28 08 40 50 341.24 718.89 7505.25 74.76 250.83 7589.8 9115.2 3.0 11.0 -29.85 16.38 OBC 7.2 20.3 VBC 28 13 50 29 63.8 271.7 2916.7 172 06856 A 28 08 42 50 348.53 719.71 7505.28 80.07 274.39 7110.7 8489.9 -7.7 11.1 -26.97 10.38 OBC 14.4 43.5 VBC 28 13 52 29 63.3 271.8 2967.8 173 06856 A 28 08 44 50 355.81 719.88 7505.29 81.61 320.42 6657.1 7875.0 -30.7 12.7 -24.26 3.77 OBC 21.6 89.0 VBC 28 13 54 29 62.9 272.0 3018.9 174 06857 A 28 08 45 59 360.00 719.68 Pri 7505.29 79.91 344.52 6412.8 7527.9 -45.5 14.8 -22.80 349.09 OBC 25.7 112.7 VBC 28 13 55 38 62.6 272.1 3048.3 175 06856 A 28 08 46 50 3.09 719.38 7505.29 77.86 356.60 6242.7 7275.9 -53.9 16.4 -21.78 356.45 OBC 28.7 124.4 VBC 28 13 56 29 62.4 272.2 3069.9 176

Page 275: ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM …myreaders.info/00_Orbital__Mechanics__-__Model_____Simulation... · ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM-MSS)

www.m

yrea

ders

.inf

o

OM-MSS Page 275 SATELLITE PASS - GROUND TRACE [acronym - Line Of Sight (LOS), On Board Computerr (OBC), Visible Band Camera (VBC), Night Vision Devices (NVD) ] ORBIT, INPUT TIME, POSIION, SAT VELOCITY, GROUND TRACE, RANGE, DIST, PITCH/ROLL, EL/AZ, ACCESS EL/AZ, DATA SOLAR TIME EL/AZ, DIST Line 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 @ES 18 19 20 @SS 21 22 23 24 25 26 27 @ES 28 29 30 No. Node GMT Anomaly Height @ Vel Lat(SAT)Log Slant S-Sat Pitch Roll EL(SAT)AZ Control EL(SUN)AZ Acq. LMT(ES) EL(SUN)AZ S-Sun Nos D H M S deg km meter deg deg km km deg deg deg D H M S deg km 06857 A 28 08 48 50 10.37 718.25 7505.28 71.85 12.65 5883.3 6699.1 66.3 19.4 -19.61 348.35 OBC 35.9 139.4 VBC 28 13 58 29 62.0 272.3 3121.0 177 06857 A 28 08 50 50 17.66 716.56 7505.25 65.16 20.61 5595.8 6153.1 72.5 21.4 -17.85 339.45 OBC 43.1 146.0 VBC 28 14 00 29 61.5 272.5 3172.1 178 06857 A 28 08 52 50 24.94 714.42 7505.22 58.23 25.30 5396.2 5648.4 76.1 22.9 -16.62 329.86 OBC 50.3 148.9 VBC 28 14 02 29 61.0 272.6 3223.2 179 06857 A 28 08 54 50 32.22 711.98 7505.17 51.18 28.45 5297.2 5198.5 78.3 23.9 -16.00 319.79 OBC 57.4 149.4 VBC 28 14 04 29 60.6 272.8 3274.3 180 06857 A 28 08 56 50 39.50 709.38 7505.11 44.07 30.76 5305.3 4820.2 79.8 24.8 -16.05 309.57 OBC 64.5 147.7 VBC 28 14 06 29 60.1 273.0 3325.3 181 06857 A 28 08 58 50 46.79 706.81 7505.04 36.92 32.57 5418.7 4532.2 80.9 25.5 -16.76 299.54 OBC 71.4 142.6 VBC 28 14 08 29 59.7 273.1 3376.4 182 06857 A 28 09 00 50 54.07 704.44 7504.96 29.75 34.06 5628.2 4353.2 81.7 26.1 -18.05 290.02 OBC 77.7 130.2 VBC 28 14 10 29 59.2 273.3 3427.4 183 06857 A 28 09 02 50 61.35 702.41 7504.87 22.56 35.36 5919.1 4297.2 82.4 26.7 -19.82 281.17 OBC 82.3 96.6 VBC 28 14 12 29 58.8 273.4 3478.5 184 06857 A 28 09 04 50 68.63 700.85 7504.77 15.37 36.53 6274.6 4369.2 82.9 27.2 -21.96 273.06 OBC 81.3 44.6 VBC 28 14 14 29 58.3 273.6 3529.5 185 06857 A 28 09 06 50 75.91 699.88 7504.68 8.17 37.62 6677.6 4562.8 83.3 27.7 -24.38 265.66 OBC 75.9 19.3 VBC 28 14 16 29 57.8 273.7 3580.5 186 06857 A 28 09 08 50 83.19 699.55 7504.57 0.97 38.67 7112.8 4863.3 83.7 28.2 -26.98 258.88 OBC 69.2 9.0 VBC 28 14 18 29 57.4 273.9 3631.5 187 06857 A 28 09 09 06 84.18 699.56 Eqa 7504.56 0.00 38.81 7173.2 4910.9 83.7 28.3 -27.34 243.68 OBC 68.3 8.1 VBC 28 14 18 45 57.3 273.9 3638.4 188 06857 D 28 09 10 50 90.48 699.89 7504.47 -6.23 37.90 7567.0 5406.2 83.4 27.9 -29.70 252.61 OBC 62.1 7.4 VBC 28 14 20 29 56.9 274.0 3682.5 189 06857 D 28 09 12 50 97.76 700.89 7504.37 -13.43 36.83 8028.9 6017.8 83.0 27.4 -32.50 246.73 OBC 54.8 6.9 VBC 28 14 22 29 56.5 274.2 3733.5 190 06857 D 28 09 14 50 105.04 702.48 7504.27 -20.62 35.69 8489.2 6659.3 82.5 26.9 -35.34 241.13 OBC 47.6 6.8 VBC 28 14 24 29 56.0 274.3 3784.5 191 06857 D 28 09 16 50 112.32 704.57 7504.17 -27.81 34.44 8940.1 7322.0 81.9 26.3 -38.19 235.71 OBC 40.4 6.9 VBC 28 14 26 29 55.5 274.5 3835.5 192 06857 D 28 09 18 50 119.60 707.03 7504.07 -34.98 33.01 9375.1 7999.3 81.1 25.7 -41.01 230.36 OBC 33.2 7.3 VBC 28 14 28 29 55.1 274.6 3886.5 193 06857 D 28 09 20 50 126.88 709.72 7503.99 -42.14 31.30 9788.9 8686.4 80.1 25.0 -43.78 224.99 OBC 26.0 8.1 VBC 28 14 30 29 54.6 274.8 3937.4 194 06857 D 28 09 22 50 134.16 712.45 7503.91 -49.26 29.16 10176.8 9379.5 78.8 24.2 -46.49 219.52 OBC 18.8 9.3 VBC 28 14 32 29 54.2 274.9 3988.4 195 06857 D 28 09 24 50 141.44 715.07 7503.84 -56.32 26.29 10535.0 10075.3 76.8 23.2 -49.10 213.84 OBC 11.6 11.2 VBC 28 14 34 29 53.7 275.0 4039.3 196 06857 D 28 09 26 50 148.72 717.40 7503.78 -63.30 22.13 10860.3 10770.9 73.7 21.9 -51.58 207.88 OBC 4.4 14.4 NVD 28 14 36 29 53.3 275.2 4090.2 197 06857 D 28 09 28 50 156.00 719.30 7503.73 -70.07 15.34 11149.9 11463.3 68.4 20.0 -53.89 201.55 OBC -2.8 20.2 NVD 28 14 38 29 52.8 275.3 4141.1 198 06857 D 28 09 30 50 163.28 720.64 7503.70 -76.34 2.34 11401.7 12149.1 58.2 17.3 -56.01 194.77 OBC -10.0 32.1 NVD 28 14 40 29 52.3 275.5 4192.0 199 06857 D 28 09 32 50 170.56 721.34 7503.67 -81.00 332.99 11613.8 12824.4 -38.1 13.7 -57.88 187.47 OBC -17.2 60.3 NVD 28 14 42 29 51.9 275.6 4242.9 200 06857 D 28 09 34 50 177.84 721.35 7503.66 -81.03 285.05 11784.8 13484.2 -12.7 11.3 -59.46 179.65 OBC -24.4 107.0 NVD 28 14 44 29 51.4 275.8 4293.8 201 06857 D 28 09 35 26 180.00 721.22 Apo 7503.66 -79.97 273.59 11827.5 13676.5 -7.4 11.1 -59.87 183.31 OBC -26.5 118.0 NVD 28 14 45 05 51.3 275.8 4308.9 202 06857 D 28 09 36 50 185.11 720.68 7503.66 -76.39 255.48 11913.7 14121.7 0.9 10.9 -60.70 171.29 OBC -31.5 135.0 NVD 28 14 46 29 51.0 275.9 4344.7 203 06857 D 28 09 38 50 192.39 719.36 7503.68 -70.13 242.39 11999.8 14727.5 6.8 11.0 -61.56 162.50 OBC -38.6 146.3 NVD 28 14 48 29 50.5 276.0 4395.5 204 06857 D 28 09 40 50 199.67 717.49 7503.71 -63.36 235.57 12042.8 15288.3 10.0 11.1 -61.99 153.40 OBC -45.7 150.8 NVD 28 14 50 29 50.1 276.2 4446.4 205 06857 D 28 09 42 50 206.95 715.18 7503.75 -56.39 231.38 12042.8 15785.1 11.9 11.2 -61.99 144.20 OBC -52.7 152.0 NVD 28 14 52 29 49.6 276.3 4497.2 206 06857 D 28 09 44 50 214.23 712.58 7503.80 -49.32 228.51 12000.2 16192.4 13.3 11.3 -61.56 135.10 OBC -59.6 150.8 NVD 28 14 54 29 49.1 276.4 4548.0 207 06857 D 28 09 46 50 221.51 709.86 7503.87 -42.20 226.36 11915.5 16478.5 14.3 11.3 -60.72 126.28 OBC -66.3 146.6 NVD 28 14 56 29 48.7 276.6 4598.8 208 06857 D 28 09 48 50 228.79 707.18 7503.94 -35.05 224.65 11790.0 16612.6 15.1 11.4 -59.51 117.89 OBC -72.5 137.7 NVD 28 14 58 29 48.2 276.7 4649.6 209 06857 D 28 09 50 50 236.07 704.73 7504.02 -27.88 223.22 11625.1 16576.7 15.8 11.4 -57.99 109.98 OBC -77.7 118.7 NVD 28 15 00 29 47.8 276.9 4700.3 210 06857 D 28 09 52 50 243.35 702.64 7504.11 -20.69 221.96 11422.5 16375.9 16.4 11.5 -56.19 102.57 OBC -79.8 83.6 NVD 28 15 02 29 47.3 277.0 4751.1 211 06857 D 28 09 54 50 250.63 701.05 7504.21 -13.50 220.83 11184.5 16035.1 17.0 11.5 -54.18 95.61 OBC -77.4 49.2 NVD 28 15 04 29 46.9 277.1 4801.8 212 06857 D 28 09 56 50 257.91 700.05 7504.31 -6.30 219.75 10913.7 15586.7 17.5 11.5 -52.00 89.05 OBC -72.2 30.6 NVD 28 15 06 29 46.4 277.3 4852.6 213 06857 D 28 09 58 35 264.28 699.71 Eqa 7504.40 -0.00 218.84 10652.3 15129.7 17.9 11.6 -49.98 63.66 OBC -66.7 22.1 NVD 28 15 08 14 46.0 277.4 4896.9 214 06857 A 28 09 58 50 265.19 699.70 7504.41 0.90 218.97 10613.1 15084.0 17.9 11.6 -49.69 82.81 OBC -65.8 21.7 NVD 28 15 08 29 46.0 277.4 4903.3 215 06857 A 28 10 00 50 272.48 700.02 7504.51 8.10 220.02 10286.4 14675.6 17.4 11.5 -47.28 76.80 OBC -58.5 19.7 NVD 28 15 10 29 45.5 277.5 4954.0 216 06857 A 28 10 02 50 279.76 700.99 7504.61 15.30 221.11 9937.6 14202.5 16.8 11.5 -44.81 70.93 OBC -51.2 18.8 NVD 28 15 12 29 45.0 277.7 5004.6 217 06857 A 28 10 04 50 287.04 702.53 7504.72 22.50 222.27 9571.3 13680.1 16.3 11.5 -42.32 65.12 OBC -43.9 18.4 NVD 28 15 14 29 44.6 277.8 5055.3 218 06857 A 28 10 06 50 294.32 704.55 7504.81 29.68 223.57 9193.1 13120.8 15.6 11.4 -39.82 59.30 OBC -36.6 18.6 NVD 28 15 16 29 44.1 278.0 5105.9 219 06857 A 28 10 08 50 301.60 706.91 7504.90 36.85 225.06 8809.1 12534.2 14.9 11.4 -37.36 53.38 OBC -29.3 19.2 NVD 28 15 18 29 43.7 278.1 5156.6 220

Page 276: ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM …myreaders.info/00_Orbital__Mechanics__-__Model_____Simulation... · ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM-MSS)

www.m

yrea

ders

.inf

o

OM-MSS Page 276 SATELLITE PASS - GROUND TRACE [acronym - Line Of Sight (LOS), On Board Computerr (OBC), Visible Band Camera (VBC), Night Vision Devices (NVD) ] ORBIT, INPUT TIME, POSIION, SAT VELOCITY, GROUND TRACE, RANGE, DIST, PITCH/ROLL, EL/AZ, ACCESS EL/AZ, DATA SOLAR TIME EL/AZ, DIST Line 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 @ES 18 19 20 @SS 21 22 23 24 25 26 27 @ES 28 29 30 No. Node GMT Anomaly Height @ Vel Lat(SAT)Log Slant S-Sat Pitch Roll EL(SAT)AZ Control EL(SUN)AZ Acq. LMT(ES) EL(SUN)AZ S-Sun Nos D H M S deg km meter deg deg km km deg deg deg D H M S deg km 06857 A 28 10 10 50 308.88 709.47 7504.99 44.00 226.87 8426.2 11927.9 14.1 11.3 -34.96 47.27 OBC -21.9 20.3 NVD 28 15 20 29 43.2 278.2 5207.2 221 06857 A 28 10 12 50 316.17 712.05 7505.07 51.11 229.17 8052.3 11308.0 13.0 11.3 -32.65 40.92 OBC -14.6 22.1 NVD 28 15 22 29 42.8 278.4 5257.8 222 06857 A 28 10 14 50 323.45 714.48 7505.13 58.16 232.31 7696.3 10679.5 11.5 11.2 -30.49 34.25 OBC -7.3 24.9 NVD 28 15 24 29 42.3 278.5 5308.3 223 06857 A 28 10 16 50 330.73 716.60 7505.19 65.09 236.98 7367.9 10046.7 9.3 11.1 -28.51 27.20 OBC -0.0 29.4 NVD 28 15 26 29 41.9 278.6 5358.9 224 06857 A 28 10 18 50 338.01 718.28 7505.23 71.78 244.89 7077.4 9413.7 5.7 11.0 -26.77 19.75 OBC 7.2 37.3 VBC 28 15 28 29 41.4 278.8 5409.4 225 06857 A 28 10 20 50 345.29 719.40 7505.27 77.81 260.82 6835.2 8784.5 -1.5 11.0 -25.33 11.89 OBC 14.5 53.5 VBC 28 15 30 29 41.0 278.9 5459.9 226 06857 A 28 10 22 50 352.58 719.88 7505.29 81.59 296.75 6651.1 8163.5 -18.3 11.6 -24.23 3.66 OBC 21.7 89.8 VBC 28 15 32 29 40.5 279.0 5510.4 227 06857 A 28 10 24 50 359.86 719.70 7505.29 80.11 342.92 6533.4 7555.6 -44.4 14.6 -23.52 355.13 OBC 28.9 136.7 VBC 28 15 34 29 40.0 279.2 5560.9 228 06858 A 28 10 24 52 360.00 719.69 Pri 7505.29 80.03 343.59 6531.8 7544.1 -44.8 14.7 -23.51 349.24 OBC 29.0 137.4 VBC 28 15 34 31 40.0 279.2 5561.9 229 06857 A 28 10 26 50 7.14 718.86 7505.29 74.82 6.67 6487.6 6966.7 61.6 18.1 -23.25 346.44 OBC 36.0 161.6 VBC 28 15 36 29 39.6 279.3 5611.4 230 06858 A 28 10 28 50 14.43 717.42 7505.27 68.37 17.49 6515.7 6404.3 70.1 20.6 -23.42 337.73 OBC 43.0 174.1 VBC 28 15 38 29 39.1 279.4 5661.8 231 06858 A 28 10 30 50 21.71 715.48 7505.23 61.53 23.41 6616.0 5877.8 74.7 22.3 -24.01 329.15 OBC 49.9 182.6 VBC 28 15 40 29 38.7 279.6 5712.3 232 06858 A 28 10 32 50 28.99 713.16 7505.19 54.52 27.17 6783.0 5399.4 77.4 23.5 -25.01 320.83 OBC 56.6 190.3 VBC 28 15 42 29 38.2 279.7 5762.7 233 06858 A 28 10 34 50 36.27 710.62 7505.13 47.44 29.81 7008.6 4984.2 79.2 24.4 -26.36 312.85 OBC 63.0 199.2 VBC 28 15 44 29 37.8 279.9 5813.0 234 06858 A 28 10 36 50 43.55 708.02 7505.07 40.30 31.83 7283.0 4650.2 80.5 25.2 -28.00 305.26 OBC 68.7 211.4 VBC 28 15 46 29 37.3 280.0 5863.4 235 06858 A 28 10 38 50 50.84 705.53 7504.99 33.14 33.45 7595.5 4416.9 81.4 25.9 -29.88 298.06 OBC 73.1 229.9 VBC 28 15 48 29 36.9 280.1 5913.7 236 06858 A 28 10 40 50 58.12 703.32 7504.91 25.96 34.83 7935.9 4301.0 82.1 26.5 -31.94 291.22 OBC 74.9 256.0 VBC 28 15 50 29 36.4 280.3 5964.1 237 06858 A 28 10 42 50 65.40 701.52 7504.82 18.77 36.06 8294.4 4312.4 82.7 27.0 -34.14 284.68 OBC 73.4 282.3 VBC 28 15 52 29 36.0 280.4 6014.3 238 06858 A 28 10 44 50 72.68 700.26 7504.72 11.58 37.18 8662.0 4450.0 83.2 27.5 -36.43 278.39 OBC 69.2 300.9 VBC 28 15 54 29 35.5 280.5 6064.6 239 06858 A 28 10 46 50 79.96 699.62 7504.62 4.38 38.24 9030.9 4702.5 83.5 28.0 -38.77 272.27 OBC 63.7 312.3 VBC 28 15 56 29 35.1 280.7 6114.9 240 06858 A 28 10 48 03 84.39 699.56 Eqa 7504.56 0.00 38.87 9252.7 4904.7 83.7 28.3 -40.21 243.63 OBC 59.9 317.0 VBC 28 15 57 42 34.8 280.8 6145.4 241 06858 D 28 10 48 50 87.24 699.65 7504.52 -2.82 38.47 9394.0 5124.8 83.6 28.1 -41.14 266.24 OBC 57.9 320.3 VBC 28 15 58 29 34.6 280.8 6165.1 242 06858 D 28 10 50 50 94.53 700.34 7504.41 -10.03 37.41 9745.3 5718.5 83.2 27.6 -43.49 260.24 OBC 52.4 327.2 VBC 28 16 00 29 34.2 281.0 6215.3 243 06858 D 28 10 52 50 101.81 701.66 7504.31 -17.22 36.31 10079.5 6347.6 82.8 27.1 -45.80 254.18 OBC 46.5 332.2 VBC 28 16 02 29 33.7 281.1 6265.5 244 06858 D 28 10 54 50 109.09 703.53 7504.21 -24.41 35.12 10391.9 7001.6 82.2 26.6 -48.04 248.00 OBC 40.3 335.9 VBC 28 16 04 29 33.3 281.2 6315.6 245 06858 D 28 10 56 50 116.37 705.83 7504.11 -31.59 33.78 10678.7 7673.0 81.6 26.0 -50.18 241.61 OBC 34.0 338.9 VBC 28 16 06 29 32.8 281.4 6365.8 246 06858 D 28 10 58 50 123.65 708.43 7504.02 -38.76 32.22 10936.4 8356.4 80.7 25.4 -52.18 234.96 OBC 27.5 341.5 VBC 28 16 08 29 32.4 281.5 6415.9 247 06858 D 28 11 00 50 130.93 711.17 7503.94 -45.89 30.31 11162.2 9047.5 79.5 24.6 -54.00 227.99 OBC 21.0 343.8 VBC 28 16 10 29 31.9 281.7 6466.0 248 06858 D 28 11 02 50 138.21 713.86 7503.87 -52.99 27.83 11353.6 9742.8 77.9 23.7 -55.60 220.66 OBC 14.5 346.3 VBC 28 16 12 29 31.5 281.8 6516.0 249 06858 D 28 11 04 50 145.49 716.35 7503.80 -60.01 24.38 11508.8 10439.3 75.4 22.6 -56.94 212.95 OBC 8.0 349.4 VBC 28 16 14 29 31.0 281.9 6566.1 250 06858 D 28 11 06 50 152.77 718.46 7503.75 -66.90 19.09 11626.1 11134.1 71.3 21.0 -57.99 204.89 OBC 1.5 354.0 NVD 28 16 16 29 30.6 282.1 6616.1 251 06858 D 28 11 08 50 160.05 720.08 7503.71 -73.47 9.75 11704.4 11823.9 64.0 18.7 -58.71 196.53 OBC -5.0 2.2 NVD 28 16 18 29 30.1 282.2 6666.0 252 06858 D 28 11 10 50 167.33 721.09 7503.68 -79.15 350.00 11743.0 12505.2 -49.2 15.5 -59.07 187.98 OBC -11.4 20.5 NVD 28 16 20 29 29.7 282.4 6716.0 253 06858 D 28 11 12 50 174.61 721.43 7503.66 -81.78 307.75 11741.4 13173.6 -23.9 12.0 -59.05 179.36 OBC -17.6 60.8 NVD 28 16 22 29 29.2 282.5 6765.9 254 06858 D 28 11 14 19 180.00 721.24 Apo 7503.66 -80.09 274.67 11714.2 13657.2 -7.9 11.1 -58.80 183.48 OBC -22.2 92.1 NVD 28 16 23 58 28.9 282.6 6802.9 255 06858 D 28 11 14 50 181.88 721.08 7503.66 -78.93 266.50 11699.6 13823.2 -4.1 11.0 -58.67 170.82 OBC -23.8 99.6 NVD 28 16 24 29 28.8 282.6 6815.8 256 06858 D 28 11 16 50 189.16 720.06 7503.67 -73.19 247.47 11617.8 14446.1 4.5 11.0 -57.92 162.49 OBC -29.7 115.5 NVD 28 16 26 29 28.3 282.8 6865.7 257 06858 D 28 11 18 50 196.44 718.44 7503.69 -66.60 238.40 11496.9 15030.9 8.7 11.1 -56.84 154.46 OBC -35.4 120.8 NVD 28 16 28 29 27.9 282.9 6915.5 258 06858 D 28 11 20 50 203.72 716.31 7503.73 -59.70 233.21 11337.9 15561.8 11.1 11.2 -55.46 146.79 OBC -40.8 121.2 NVD 28 16 30 29 27.4 283.1 6965.4 259 06858 D 28 11 22 50 211.00 713.83 7503.78 -52.67 229.82 11142.2 16016.1 12.7 11.3 -53.83 139.51 OBC -45.7 118.6 NVD 28 16 32 29 27.0 283.2 7015.1 260 06858 D 28 11 24 50 218.28 711.15 7503.84 -45.58 227.38 10911.7 16364.9 13.8 11.3 -51.98 132.58 OBC -50.0 113.7 NVD 28 16 34 29 26.5 283.4 7064.9 261 06858 D 28 11 26 50 225.56 708.43 7503.91 -38.44 225.49 10648.7 16575.3 14.7 11.4 -49.95 125.99 OBC -53.4 106.5 NVD 28 16 36 29 26.1 283.5 7114.6 262 06858 D 28 11 28 50 232.84 705.85 7503.98 -31.27 223.94 10356.1 16621.6 15.5 11.4 -47.78 119.66 OBC -55.8 97.5 NVD 28 16 38 29 25.6 283.6 7164.3 263 06858 D 28 11 30 50 240.12 703.57 7504.07 -24.09 222.61 10037.1 16497.1 16.1 11.4 -45.50 113.53 OBC -56.8 87.2 NVD 28 16 40 29 25.2 283.8 7214.0 264

Page 277: ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM …myreaders.info/00_Orbital__Mechanics__-__Model_____Simulation... · ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM-MSS)

www.m

yrea

ders

.inf

o

OM-MSS Page 277 SATELLITE PASS - GROUND TRACE [acronym - Line Of Sight (LOS), On Board Computerr (OBC), Visible Band Camera (VBC), Night Vision Devices (NVD) ] ORBIT, INPUT TIME, POSIION, SAT VELOCITY, GROUND TRACE, RANGE, DIST, PITCH/ROLL, EL/AZ, ACCESS EL/AZ, DATA SOLAR TIME EL/AZ, DIST Line 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 @ES 18 19 20 @SS 21 22 23 24 25 26 27 @ES 28 29 30 No. Node GMT Anomaly Height @ Vel Lat(SAT)Log Slant S-Sat Pitch Roll EL(SAT)AZ Control EL(SUN)AZ Acq. LMT(ES) EL(SUN)AZ S-Sun Nos D H M S deg km meter deg deg km km deg deg deg D H M S deg km 06858 D 28 11 32 50 247.40 701.73 7504.16 -16.90 221.42 9695.7 16218.6 16.7 11.5 -43.15 107.52 OBC -56.4 76.4 NVD 28 16 42 29 24.7 283.9 7263.6 265 06858 D 28 11 34 50 254.68 700.44 7504.26 -9.70 220.32 9336.3 15816.9 17.2 11.5 -40.75 101.58 OBC -54.7 66.3 NVD 28 16 44 29 24.3 284.1 7313.2 266 06858 D 28 11 36 50 261.96 699.78 7504.36 -2.50 219.27 8964.2 15323.8 17.7 11.6 -38.34 95.60 OBC -51.7 57.5 NVD 28 16 46 29 23.9 284.2 7362.8 267 06858 D 28 11 37 32 264.50 699.71 Eqa 7504.40 -0.00 218.91 8833.0 15135.9 17.9 11.6 -37.50 63.60 OBC -50.5 54.8 NVD 28 16 47 11 23.7 284.3 7380.0 268 06858 A 28 11 38 50 269.24 699.79 7504.47 4.70 219.59 8585.6 14883.8 17.6 11.5 -35.95 89.53 OBC -46.9 51.3 NVD 28 16 48 29 23.4 284.4 7412.3 269 06858 A 28 11 40 50 276.53 700.45 7504.57 11.90 220.65 8207.4 14438.6 17.1 11.5 -33.60 83.28 OBC -41.0 47.2 NVD 28 16 50 29 23.0 284.5 7461.8 270 06858 A 28 11 42 50 283.81 701.73 7504.67 19.09 221.78 7837.8 13937.2 16.5 11.5 -31.34 76.77 OBC -34.9 44.5 NVD 28 16 52 29 22.5 284.7 7511.3 271 06858 A 28 11 44 50 291.09 703.54 7504.77 26.28 223.00 7485.9 13393.4 15.9 11.4 -29.22 69.94 OBC -28.5 42.8 NVD 28 16 54 29 22.1 284.8 7560.7 272 06858 A 28 11 46 50 298.37 705.76 7504.86 33.46 224.39 7161.7 12818.0 15.3 11.4 -27.27 62.72 OBC -22.1 42.0 NVD 28 16 56 29 21.6 285.0 7610.1 273 06858 A 28 11 48 50 305.65 708.24 7504.95 40.62 226.03 6876.4 12219.7 14.5 11.3 -25.57 55.08 OBC -15.7 42.1 NVD 28 16 58 29 21.2 285.1 7659.5 274 06858 A 28 11 50 50 312.93 710.83 7505.03 47.75 228.07 6640.9 11605.0 13.5 11.3 -24.16 47.03 OBC -9.2 43.1 NVD 28 17 00 29 20.7 285.3 7708.8 275 06858 A 28 11 52 50 320.22 713.35 7505.10 54.83 230.75 6466.1 10979.4 12.2 11.2 -23.12 38.59 OBC -2.7 45.2 NVD 28 17 02 29 20.3 285.4 7758.1 276 06858 A 28 11 54 50 327.50 715.64 7505.16 61.83 234.57 6360.7 10347.6 10.4 11.2 -22.49 29.87 OBC 3.7 48.9 NVD 28 17 04 29 19.9 285.6 7807.4 277 06858 A 28 11 56 50 334.78 717.55 7505.21 68.66 240.63 6331.0 9713.6 7.6 11.1 -22.31 21.01 OBC 10.1 55.4 VBC 28 17 06 29 19.4 285.7 7856.6 278 06858 A 28 11 58 50 342.06 718.95 7505.25 75.09 251.79 6378.9 9081.6 2.5 11.0 -22.60 12.17 OBC 16.3 67.4 VBC 28 17 08 29 19.0 285.9 7905.8 279 06858 A 28 12 00 50 349.35 719.74 7505.28 80.28 276.45 6502.5 8455.6 -8.7 11.1 -23.34 3.51 OBC 22.4 93.4 VBC 28 17 10 29 18.5 286.1 7955.0 280 06858 A 28 12 02 50 356.63 719.87 7505.29 81.52 323.17 6695.8 7840.2 -32.3 12.9 -24.49 355.18 OBC 28.3 142.2 VBC 28 17 12 29 18.1 286.2 8004.1 281 06859 A 28 12 03 46 360.00 719.71 Pri 7505.29 80.15 342.63 6806.5 7560.3 -44.2 14.6 -25.15 349.40 OBC 30.9 162.9 VBC 28 17 13 25 17.9 286.3 8026.8 282 06858 A 28 12 04 50 3.91 719.34 7505.29 77.57 357.97 6950.0 7240.9 -54.9 16.6 -26.01 347.26 OBC 33.9 179.9 VBC 28 17 14 29 17.7 286.4 8053.1 283 06859 A 28 12 06 50 11.19 718.18 7505.28 71.50 13.35 7254.5 6664.2 66.8 19.5 -27.83 339.79 OBC 39.2 199.0 VBC 28 17 16 29 17.2 286.5 8102.2 284 06859 A 28 12 08 50 18.48 716.46 7505.25 64.79 21.06 7598.3 6118.7 72.9 21.6 -29.90 332.77 OBC 43.9 211.6 VBC 28 17 18 29 16.8 286.7 8151.2 285 06859 A 28 12 10 50 25.76 714.30 7505.21 57.85 25.64 7970.6 5615.0 76.3 23.0 -32.16 326.16 OBC 48.0 222.4 VBC 28 17 20 29 16.3 286.8 8200.1 286 06859 A 28 12 12 50 33.04 711.84 7505.16 50.80 28.73 8361.2 5167.0 78.5 24.0 -34.55 319.90 OBC 51.2 233.2 VBC 28 17 22 29 15.9 287.0 8249.0 287 06859 A 28 12 14 50 40.32 709.25 7505.10 43.68 31.00 8761.1 4791.5 80.0 24.9 -37.06 313.91 OBC 53.3 244.3 VBC 28 17 24 29 15.5 287.2 8297.9 288 06859 A 28 12 16 50 47.60 706.68 7505.03 36.53 32.79 9162.1 4507.5 81.0 25.6 -39.62 308.12 OBC 54.1 255.8 VBC 28 17 26 29 15.0 287.3 8346.7 289 06859 A 28 12 18 50 54.89 704.32 7504.95 29.36 34.27 9557.1 4333.8 81.8 26.2 -42.22 302.45 OBC 53.5 266.9 VBC 28 17 28 29 14.6 287.5 8395.5 290 06859 A 28 12 20 50 62.17 702.31 7504.86 22.18 35.56 9939.7 4284.1 82.5 26.8 -44.83 296.81 OBC 51.6 277.0 VBC 28 17 30 29 14.1 287.6 8444.3 291 06859 A 28 12 22 50 69.45 700.79 7504.76 14.98 36.72 10304.6 4362.8 83.0 27.3 -47.41 291.12 OBC 48.7 285.7 VBC 28 17 32 29 13.7 287.8 8493.0 292 06859 A 28 12 24 50 76.73 699.85 7504.66 7.78 37.81 10646.9 4563.1 83.4 27.8 -49.94 285.28 OBC 44.8 292.7 VBC 28 17 34 29 13.3 288.0 8541.6 293 06859 A 28 12 26 50 84.01 699.56 7504.56 0.58 38.86 10962.6 4869.6 83.7 28.3 -52.39 279.21 OBC 40.3 298.2 VBC 28 17 36 29 12.8 288.1 8590.2 294 06859 A 28 12 27 00 84.60 699.56 Eqa 7504.55 0.00 38.94 10986.8 4898.5 83.8 28.4 -52.58 243.57 OBC 39.9 298.5 VBC 28 17 36 39 12.8 288.1 8594.1 295 06859 D 28 12 28 50 91.29 699.93 7504.46 -6.62 37.98 11247.8 5426.6 83.4 27.9 -54.71 272.80 OBC 37.0 303.3 VBC 28 17 38 29 12.4 288.3 8638.8 296 06859 D 28 12 30 50 98.57 700.96 7504.36 -13.82 36.91 11499.7 6041.0 83.0 27.4 -56.87 265.98 OBC 33.2 307.8 VBC 28 17 40 29 12.0 288.5 8687.3 297 06859 D 28 12 32 50 105.86 702.59 7504.25 -21.01 35.76 11715.3 6684.7 82.5 26.9 -58.82 258.64 OBC 29.1 311.5 VBC 28 17 42 29 11.5 288.6 8735.8 298 06859 D 28 12 34 50 113.14 704.70 7504.16 -28.20 34.50 11892.6 7349.1 81.9 26.3 -60.50 250.74 OBC 24.7 314.8 VBC 28 17 44 29 11.1 288.8 8784.2 299 06859 D 28 12 36 50 120.42 707.18 7504.06 -35.37 33.06 12029.5 8027.8 81.2 25.7 -61.86 242.26 OBC 20.1 317.5 VBC 28 17 46 29 10.7 289.0 8832.5 300 06859 D 28 12 38 50 127.70 709.87 7503.98 -42.52 31.34 12124.6 8716.1 80.2 25.0 -62.84 233.26 OBC 15.3 320.1 VBC 28 17 48 29 10.2 289.1 8880.9 301 06859 D 28 12 40 50 134.98 712.60 7503.90 -49.64 29.16 12176.7 9410.2 78.8 24.2 -63.39 223.88 OBC 10.5 322.5 VBC 28 17 50 29 9.8 289.3 8929.1 302 06859 D 28 12 42 50 142.26 715.21 7503.83 -56.70 26.24 12185.1 10107.0 76.7 23.2 -63.48 214.32 OBC 5.6 325.2 VBC 28 17 52 29 9.4 289.5 8977.4 303 06859 D 28 12 44 50 149.54 717.52 7503.77 -63.67 21.98 12149.1 10803.3 73.6 21.8 -63.09 204.85 OBC 0.8 328.8 NVD 28 17 54 29 8.9 289.7 9025.5 304 06859 D 28 12 46 50 156.82 719.39 7503.73 -70.42 14.98 12068.7 11496.3 68.1 19.9 -62.26 195.70 OBC -3.9 334.6 NVD 28 17 56 29 8.5 289.8 9073.7 305 06859 D 28 12 48 50 164.10 720.70 7503.69 -76.65 1.45 11944.0 12182.6 57.5 17.2 -61.00 187.07 OBC -8.5 346.5 NVD 28 17 58 29 8.1 290.0 9121.7 306 06859 D 28 12 50 50 171.37 721.36 7503.67 -81.15 330.79 11775.7 12858.2 -36.7 13.5 -59.38 179.04 OBC -13.0 15.1 NVD 28 18 00 29 7.6 290.2 9169.7 307 06859 D 28 12 52 50 178.65 721.33 7503.66 -80.86 282.92 11564.5 13518.2 -11.7 11.2 -57.44 171.63 OBC -17.2 60.4 NVD 28 18 02 29 7.2 290.4 9217.7 308

Page 278: ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM …myreaders.info/00_Orbital__Mechanics__-__Model_____Simulation... · ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM-MSS)

www.m

yrea

ders

.inf

o

OM-MSS Page 278 SATELLITE PASS - GROUND TRACE [acronym - Line Of Sight (LOS), On Board Computerr (OBC), Visible Band Camera (VBC), Night Vision Devices (NVD) ] ORBIT, INPUT TIME, POSIION, SAT VELOCITY, GROUND TRACE, RANGE, DIST, PITCH/ROLL, EL/AZ, ACCESS EL/AZ, DATA SOLAR TIME EL/AZ, DIST Line 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 @ES 18 19 20 @SS 21 22 23 24 25 26 27 @ES 28 29 30 No. Node GMT Anomaly Height @ Vel Lat(SAT)Log Slant S-Sat Pitch Roll EL(SAT)AZ Control EL(SUN)AZ Acq. LMT(ES) EL(SUN)AZ S-Sun Nos D H M S deg km meter deg deg km km deg deg deg D H M S deg km 06859 D 28 12 53 12 180.00 721.25 Apo 7503.66 -80.21 275.78 11520.8 13638.0 -8.4 11.1 -57.05 183.64 OBC -17.9 67.0 NVD 28 18 02 51 7.1 290.4 9226.5 309 06859 D 28 12 54 50 185.93 720.62 7503.67 -76.08 254.62 11311.6 14155.5 1.3 10.9 -55.24 164.82 OBC -21.1 85.5 NVD 28 18 04 29 6.8 290.5 9265.6 310 06859 D 28 12 56 50 193.21 719.27 7503.68 -69.77 242.05 11018.8 14760.8 7.0 11.0 -52.83 158.54 OBC -24.6 94.5 NVD 28 18 06 29 6.3 290.7 9313.4 311 06859 D 28 12 58 50 200.49 717.37 7503.71 -62.99 235.43 10687.9 15320.4 10.0 11.1 -50.25 152.68 OBC -27.7 96.9 NVD 28 18 08 29 5.9 290.9 9361.2 312 06859 D 28 13 00 50 207.77 715.04 7503.75 -56.01 231.34 10321.5 15815.2 12.0 11.2 -47.53 147.17 OBC -30.3 96.2 NVD 28 18 10 29 5.5 291.1 9409.0 313 06859 D 28 13 02 50 215.05 712.43 7503.81 -48.94 228.51 9922.5 16219.1 13.3 11.3 -44.70 141.90 OBC -32.4 93.9 NVD 28 18 12 29 5.0 291.3 9456.6 314 06859 D 28 13 04 50 222.33 709.71 7503.87 -41.82 226.39 9494.4 16500.0 14.3 11.3 -41.80 136.77 OBC -33.8 90.4 NVD 28 18 14 29 4.6 291.4 9504.2 315 06859 D 28 13 06 50 229.61 707.04 7503.95 -34.66 224.70 9041.4 16627.2 15.1 11.4 -38.83 131.70 OBC -34.5 86.3 NVD 28 18 16 29 4.2 291.6 9551.8 316 06859 D 28 13 08 50 236.89 704.60 7504.03 -27.49 223.28 8568.4 16583.3 15.8 11.4 -35.83 126.59 OBC -34.6 81.8 NVD 28 18 18 29 3.8 291.8 9599.3 317 06859 D 28 13 10 50 244.17 702.54 7504.12 -20.30 222.04 8081.4 16374.7 16.4 11.5 -32.82 121.33 OBC -33.9 77.2 NVD 28 18 20 29 3.3 292.0 9646.7 318 06859 D 28 13 12 50 251.45 700.98 7504.22 -13.11 220.90 7587.6 16027.0 16.9 11.5 -29.83 115.81 OBC -32.6 72.7 NVD 28 18 22 29 2.9 292.2 9694.1 319 06859 D 28 13 14 50 258.73 700.01 7504.32 -5.91 219.83 7095.8 15573.1 17.5 11.5 -26.87 109.91 OBC -30.8 68.5 NVD 28 18 24 29 2.5 292.4 9741.4 320 06859 D 28 13 16 29 264.71 699.71 Eqa 7504.40 -0.00 218.98 6701.1 15142.1 17.9 11.6 -24.52 63.55 OBC -28.8 65.3 NVD 28 18 26 08 2.1 292.5 9780.2 321 06859 A 28 13 16 50 266.01 699.70 7504.42 1.29 219.16 6616.7 15076.1 17.8 11.6 -24.01 103.49 OBC -28.0 64.7 NVD 28 18 26 29 2.1 292.6 9788.6 322 06859 A 28 13 18 50 273.29 700.05 7504.52 8.49 220.21 6163.5 14662.7 17.3 11.5 -21.29 96.40 OBC -23.4 62.1 NVD 28 18 28 29 1.6 292.8 9835.8 323 06859 A 28 13 20 50 280.58 701.05 7504.63 15.69 221.30 5752.2 14185.4 16.7 11.5 -18.80 88.53 OBC -18.6 60.3 NVD 28 18 30 29 1.2 292.9 9882.9 324 06859 A 28 13 22 50 287.86 702.62 7504.73 22.88 222.48 5401.4 13659.5 16.2 11.4 -16.65 79.76 OBC -13.6 59.2 NVD 28 18 32 29 0.8 293.1 9930.0 325 06859 A 28 13 24 50 295.14 704.66 7504.82 30.07 223.78 5131.3 13097.3 15.5 11.4 -14.96 70.09 OBC -8.5 59.0 NVD 28 18 34 29 0.4 293.3 9976.9 326 06859 A 28 13 26 50 302.42 707.04 7504.91 37.24 225.29 4961.4 12508.3 14.8 11.4 -13.88 59.67 OBC -3.4 59.6 NVD 28 18 36 29 -0.0 293.5 10023.8 327 06859 A 28 13 28 50 309.70 709.60 7505.00 44.38 227.11 4906.3 11900.0 14.0 11.3 -13.52 48.82 OBC 1.7 61.0 NVD 28 18 38 29 -0.5 293.7 10070.7 328 06859 A 28 13 30 50 316.98 712.18 7505.07 51.49 229.45 4971.9 11278.4 12.8 11.3 -13.95 38.00 OBC 6.7 63.5 VBC 28 18 40 29 -0.9 293.9 10117.4 329 06859 A 28 13 32 50 324.27 714.60 7505.14 58.54 232.64 5153.7 10648.5 11.3 11.2 -15.10 27.65 OBC 11.5 67.4 VBC 28 18 42 29 -1.3 294.1 10164.1 330 06859 A 28 13 34 50 331.55 716.70 7505.19 65.46 237.44 5437.9 10014.5 9.1 11.1 -16.88 18.11 OBC 16.2 73.5 VBC 28 18 44 29 -1.7 294.3 10210.7 331 06859 A 28 13 36 50 338.83 718.35 7505.24 72.13 245.62 5805.8 9380.5 5.4 11.0 -19.14 9.53 OBC 20.6 83.6 VBC 28 18 46 29 -2.1 294.5 10257.3 332 06859 A 28 13 38 50 346.11 719.44 7505.27 78.09 262.25 6237.5 8750.5 -2.2 11.0 -21.75 1.91 OBC 24.6 102.7 VBC 28 18 48 29 -2.6 294.7 10303.7 333 06859 A 28 13 40 50 353.40 719.89 7505.29 81.67 299.54 6714.6 8128.9 -19.7 11.7 -24.60 355.15 OBC 28.3 143.2 VBC 28 18 50 29 -3.0 295.0 10350.1 334 06860 A 28 13 42 39 360.00 719.72 Pri 7505.29 80.26 341.65 7173.0 7576.6 -43.6 14.5 -27.35 349.55 OBC 31.1 188.7 VBC 28 18 52 18 -3.4 295.1 10392.1 335 06859 A 28 13 42 50 0.68 719.67 7505.29 79.88 344.91 7221.0 7520.7 -45.7 14.9 -27.63 349.13 OBC 31.4 192.3 VBC 28 18 52 29 -3.4 295.2 10396.4 336 06860 A 28 13 44 50 7.96 718.80 7505.28 74.49 7.61 7743.4 6931.7 62.3 18.3 -30.78 343.70 OBC 33.9 219.4 VBC 28 18 54 29 -3.8 295.4 10442.6 337 06860 A 28 13 46 50 15.24 717.33 7505.26 68.01 18.04 8270.7 6369.6 70.5 20.7 -34.00 338.73 OBC 35.8 234.8 VBC 28 18 56 29 -4.2 295.6 10488.8 338 06860 A 28 13 48 50 22.53 715.37 7505.23 61.15 23.79 8793.8 5843.8 75.0 22.4 -37.26 334.10 OBC 36.8 245.8 VBC 28 18 58 29 -4.6 295.8 10534.9 339 06860 A 28 13 50 50 29.81 713.03 7505.18 54.14 27.47 9305.1 5366.8 77.6 23.6 -40.56 329.69 OBC 37.1 254.9 VBC 28 19 00 29 -5.1 296.0 10580.8 340 06860 A 28 13 52 50 37.09 710.48 7505.13 47.05 30.07 9798.2 4954.0 79.4 24.5 -43.86 325.41 OBC 36.5 262.8 VBC 28 19 02 29 -5.5 296.2 10626.7 341 06860 A 28 13 54 50 44.37 707.88 7505.06 39.92 32.06 10267.7 4623.5 80.6 25.3 -47.15 321.15 OBC 35.2 269.7 VBC 28 19 04 29 -5.9 296.4 10672.5 342 06860 A 28 13 56 50 51.66 705.41 7504.98 32.76 33.67 10708.9 4394.8 81.5 26.0 -50.42 316.81 OBC 33.1 275.8 VBC 28 19 06 29 -6.3 296.7 10718.3 343 06860 A 28 13 58 50 58.94 703.21 7504.90 25.58 35.04 11117.7 4284.8 82.2 26.6 -53.64 312.27 OBC 30.5 280.9 VBC 28 19 08 29 -6.7 296.9 10763.9 344 06860 A 28 14 00 50 66.22 701.44 7504.81 18.39 36.25 11490.6 4302.8 82.8 27.1 -56.79 307.40 OBC 27.3 285.3 VBC 28 19 10 29 -7.1 297.1 10809.5 345 06860 A 28 14 02 50 73.50 700.22 7504.71 11.19 37.37 11824.6 4447.2 83.2 27.6 -59.85 302.03 OBC 23.7 288.7 VBC 28 19 12 29 -7.5 297.3 10854.9 346 06860 A 28 14 04 50 80.78 699.61 7504.61 3.99 38.43 12116.9 4706.1 83.6 28.1 -62.77 295.95 OBC 19.8 291.4 VBC 28 19 14 29 -7.9 297.6 10900.3 347 06860 A 28 14 05 57 84.81 699.56 Eqa 7504.55 0.00 39.01 12260.0 4892.3 83.8 28.4 -64.30 243.52 OBC 17.5 292.6 VBC 28 19 15 36 -8.1 297.7 10925.4 348 06860 D 28 14 06 50 88.06 699.68 7504.50 -3.21 38.55 12365.2 5143.7 83.6 28.2 -65.48 288.92 OBC 16.4 293.5 VBC 28 19 16 29 -8.3 297.8 10945.5 349 06860 D 28 14 08 50 95.34 700.40 7504.40 -10.41 37.49 12567.7 5740.5 83.3 27.7 -67.92 280.65 OBC 13.9 295.4 VBC 28 19 18 29 -8.7 298.0 10990.7 350 06860 D 28 14 10 50 102.62 701.75 7504.30 -17.61 36.38 12722.7 6372.0 82.8 27.2 -69.97 270.88 OBC 11.3 297.1 VBC 28 19 20 29 -9.1 298.3 11035.8 351 06860 D 28 14 12 50 109.91 703.65 7504.20 -24.80 35.19 12828.9 7027.9 82.3 26.6 -71.50 259.49 OBC 8.5 298.5 VBC 28 19 22 29 -9.5 298.5 11080.8 352 06860 D 28 14 14 50 117.19 705.97 7504.10 -31.98 33.84 12885.3 7701.0 81.6 26.0 -72.37 246.73 OBC 5.7 299.7 VBC 28 19 24 29 -9.9 298.7 11125.7 353

Page 279: ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM …myreaders.info/00_Orbital__Mechanics__-__Model_____Simulation... · ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM-MSS)

www.m

yrea

ders

.inf

o

OM-MSS Page 279 SATELLITE PASS - GROUND TRACE [acronym - Line Of Sight (LOS), On Board Computerr (OBC), Visible Band Camera (VBC), Night Vision Devices (NVD) ] ORBIT, INPUT TIME, POSIION, SAT VELOCITY, GROUND TRACE, RANGE, DIST, PITCH/ROLL, EL/AZ, ACCESS EL/AZ, DATA SOLAR TIME EL/AZ, DIST Line 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 @ES 18 19 20 @SS 21 22 23 24 25 26 27 @ES 28 29 30 No. Node GMT Anomaly Height @ Vel Lat(SAT)Log Slant S-Sat Pitch Roll EL(SAT)AZ Control EL(SUN)AZ Acq. LMT(ES) EL(SUN)AZ S-Sun Nos D H M S deg km meter deg deg km km deg deg deg D H M S deg km 06860 D 28 14 16 50 124.47 708.58 7504.02 -39.14 32.26 12891.1 8385.7 80.7 25.4 -72.46 233.34 OBC 2.8 300.9 NVD 28 19 26 29 -10.3 299.0 11170.4 354 06860 D 28 14 18 50 131.75 711.32 7503.93 -46.28 30.33 12846.0 9077.9 79.5 24.6 -71.76 220.36 OBC -0.0 302.0 NVD 28 19 28 29 -10.7 299.2 11215.1 355 06860 D 28 14 20 50 139.03 714.00 7503.86 -53.37 27.81 12749.9 9774.1 77.9 23.7 -70.35 208.66 OBC -2.8 303.4 NVD 28 19 30 29 -11.2 299.4 11259.7 356 06860 D 28 14 22 50 146.31 716.47 7503.80 -60.39 24.29 12602.8 10471.4 75.3 22.5 -68.36 198.63 OBC -5.4 305.4 NVD 28 19 32 29 -11.5 299.7 11304.1 357 06860 D 28 14 24 50 153.58 718.57 7503.75 -67.27 18.85 12405.2 11166.8 71.2 20.9 -65.94 190.23 OBC -7.8 309.1 NVD 28 19 34 29 -11.9 299.9 11348.5 358 06860 D 28 14 26 50 160.86 720.15 7503.71 -73.81 9.18 12157.8 11857.1 63.5 18.6 -63.19 183.23 OBC -10.0 316.7 NVD 28 19 36 29 -12.3 300.2 11392.7 359 06860 D 28 14 28 50 168.14 721.13 7503.68 -79.40 348.51 11861.7 12538.9 -48.2 15.3 -60.20 177.33 OBC -12.0 335.0 NVD 28 19 38 29 -12.7 300.4 11436.9 360 06860 D 28 14 30 50 175.42 721.43 7503.66 -81.76 305.15 11518.0 13207.5 -22.5 11.9 -57.03 172.29 OBC -13.6 15.7 NVD 28 19 40 29 -13.1 300.7 11480.9 361 06860 D 28 14 32 05 180.00 721.27 Apo 7503.66 -80.32 276.91 11278.4 13618.6 -8.9 11.1 -54.96 183.81 OBC -14.5 42.2 NVD 28 19 41 45 -13.4 300.8 11508.5 362 06860 D 28 14 32 50 182.70 721.04 7503.66 -78.66 265.15 11128.5 13857.2 -3.5 11.0 -53.72 167.88 OBC -14.9 52.9 NVD 28 19 42 29 -13.5 300.9 11524.8 363 06860 D 28 14 34 50 189.98 719.99 7503.67 -72.85 246.94 10694.9 14479.7 4.7 11.0 -50.30 163.95 OBC -15.9 68.1 NVD 28 19 44 29 -13.9 301.2 11568.6 364 06860 D 28 14 36 50 197.26 718.33 7503.70 -66.23 238.18 10219.5 15063.8 8.8 11.1 -46.79 160.36 OBC -16.4 73.8 NVD 28 19 46 29 -14.3 301.4 11612.3 365 06860 D 28 14 38 50 204.54 716.19 7503.73 -59.33 233.13 9704.8 15593.0 11.1 11.2 -43.21 157.00 OBC -16.6 75.7 NVD 28 19 48 29 -14.7 301.7 11655.8 366 06860 D 28 14 40 50 211.82 713.69 7503.78 -52.29 229.80 9153.8 16044.7 12.7 11.3 -39.56 153.76 OBC -16.5 75.9 NVD 28 19 50 29 -15.1 302.0 11699.3 367 06860 D 28 14 42 50 219.10 711.00 7503.84 -45.19 227.40 8570.0 16389.1 13.8 11.3 -35.84 150.55 OBC -15.9 75.3 NVD 28 19 52 29 -15.5 302.2 11742.6 368 06860 D 28 14 44 50 226.38 708.28 7503.91 -38.05 225.53 7957.3 16593.4 14.7 11.4 -32.06 147.28 OBC -15.0 74.2 NVD 28 19 54 29 -15.9 302.5 11785.7 369 06860 D 28 14 46 50 233.66 705.71 7503.99 -30.89 224.00 7320.5 16632.0 15.4 11.4 -28.22 143.83 OBC -13.8 73.0 NVD 28 19 56 29 -16.3 302.8 11828.8 370 06860 D 28 14 48 50 240.94 703.45 7504.08 -23.70 222.68 6665.6 16499.5 16.1 11.4 -24.30 140.07 OBC -12.3 71.7 NVD 28 19 58 29 -16.6 303.0 11871.7 371 06860 D 28 14 50 50 248.22 701.64 7504.17 -16.51 221.50 5999.9 16213.6 16.7 11.5 -20.30 135.82 OBC -10.6 70.5 NVD 28 20 00 29 -17.0 303.3 11914.5 372 06860 D 28 14 52 50 255.50 700.39 7504.27 -9.32 220.40 5333.6 15805.7 17.2 11.5 -16.22 130.81 OBC -8.7 69.5 NVD 28 20 02 29 -17.4 303.6 11957.1 373 06860 D 28 14 54 50 262.78 699.76 7504.37 -2.12 219.35 4680.8 15307.7 17.7 11.5 -12.05 124.68 OBC -6.6 68.6 NVD 28 20 04 29 -17.8 303.9 11999.7 374 06860 D 28 14 55 25 264.92 699.70 Eqa 7504.40 -0.00 219.04 4494.4 15148.3 17.8 11.6 -10.81 63.49 OBC -6.0 68.4 NVD 28 20 05 04 -17.9 303.9 12012.1 375 06860 A 28 14 56 50 270.06 699.80 7504.48 5.09 219.78 4062.6 14873.1 17.5 11.5 -7.83 116.88 OBC -3.1 68.1 NVD 28 20 06 29 -18.2 304.1 12042.0 376 06860 A 28 14 58 50 277.34 700.50 7504.58 12.29 220.85 3511.7 14423.3 17.0 11.5 -3.69 106.64 LOS 1.1 68.2 NVD 28 20 08 29 -18.6 304.4 12084.3 377 06860 A 28 15 00 50 284.63 701.81 7504.68 19.48 221.98 3077.3 13918.1 16.4 11.5 -0.03 93.17 LOS 5.1 69.0 VBC 28 20 10 29 -18.9 304.7 12126.4 378 06860 A 28 15 02 50 291.91 703.65 7504.78 26.67 223.21 2823.9 13371.1 15.8 11.4 2.34 76.31 LOS 9.1 70.4 VBC 28 20 12 29 -19.3 305.0 12168.3 379 06860 A 28 15 04 50 299.19 705.88 7504.87 33.85 224.61 2807.0 12793.1 15.1 11.4 2.51 57.72 LOS 13.0 72.6 VBC 28 20 14 29 -19.7 305.3 12210.1 380 06860 A 28 15 06 50 306.47 708.38 7504.96 41.01 226.27 3032.0 12192.6 14.4 11.3 0.37 40.50 LOS 16.6 75.6 VBC 28 20 16 29 -20.1 305.6 12251.7 381 06860 A 28 15 08 50 313.75 710.97 7505.04 48.13 228.33 3449.8 11576.1 13.4 11.3 -3.20 26.62 LOS 19.9 79.6 VBC 28 20 18 29 -20.4 305.9 12293.2 382 06860 A 28 15 10 50 321.03 713.48 7505.11 55.21 231.06 3995.5 10949.0 12.1 11.2 -7.36 16.15 OBC 22.8 84.8 VBC 28 20 20 29 -20.8 306.2 12334.6 383 06860 A 28 15 12 50 328.32 715.76 7505.17 62.21 234.97 4617.2 10315.8 10.3 11.2 -11.64 8.32 OBC 25.4 91.7 VBC 28 20 22 29 -21.2 306.5 12375.7 384 06860 A 28 15 14 50 335.60 717.64 7505.22 69.03 241.20 5280.2 9680.8 7.4 11.1 -15.90 2.35 OBC 27.4 101.3 VBC 28 20 24 29 -21.5 306.8 12416.8 385 06860 A 28 15 16 50 342.88 719.00 7505.26 75.42 252.80 5961.9 9047.9 2.1 11.0 -20.08 357.65 OBC 28.8 116.7 VBC 28 20 26 29 -21.9 307.1 12457.6 386 06860 A 28 15 18 50 350.16 719.76 7505.28 80.48 278.60 6647.0 8421.2 -9.7 11.1 -24.20 353.86 OBC 29.6 146.6 VBC 28 20 28 29 -22.3 307.4 12498.3 387 06860 A 28 15 20 50 357.45 719.86 7505.29 81.42 325.86 7324.8 7805.3 -33.8 13.1 -28.26 350.68 OBC 29.7 198.0 VBC 28 20 30 29 -22.6 307.7 12538.8 388 06861 A 28 15 21 32 360.00 719.73 Pri 7505.29 80.37 340.64 7559.2 7593.0 -42.9 14.4 -29.66 349.70 OBC 29.6 214.2 VBC 28 20 31 11 -22.8 307.8 12553.0 389 06860 A 28 15 22 50 4.73 719.29 7505.29 77.27 359.29 7987.4 7205.8 -55.9 16.8 -32.26 347.96 OBC 29.2 235.5 VBC 28 20 32 29 -23.0 308.0 12579.2 390 06861 A 28 15 24 50 12.01 718.10 7505.27 71.14 14.04 8628.5 6629.2 67.4 19.7 -36.22 345.56 OBC 28.0 254.2 VBC 28 20 34 29 -23.4 308.4 12619.3 391 06861 A 28 15 26 50 19.29 716.35 7505.25 64.42 21.50 9242.8 6084.2 73.2 21.7 -40.15 343.37 OBC 26.2 265.2 VBC 28 20 36 29 -23.7 308.7 12659.3 392 06861 A 28 15 28 50 26.58 714.17 7505.21 57.47 25.97 9825.9 5581.7 76.6 23.1 -44.05 341.33 OBC 23.9 272.9 VBC 28 20 38 29 -24.1 309.0 12699.1 393 06861 A 28 15 30 50 33.86 711.71 7505.15 50.41 29.00 10374.0 5135.6 78.7 24.1 -47.92 339.36 OBC 21.2 278.6 VBC 28 20 40 29 -24.4 309.3 12738.8 394 06861 A 28 15 32 50 41.14 709.11 7505.09 43.30 31.24 10883.8 4762.9 80.1 25.0 -51.77 337.39 OBC 18.0 282.9 VBC 28 20 42 29 -24.8 309.7 12778.2 395 06861 A 28 15 34 50 48.42 706.55 7505.02 36.15 33.01 11352.3 4483.0 81.2 25.7 -55.60 335.35 OBC 14.5 286.3 VBC 28 20 44 29 -25.1 310.0 12817.4 396 06861 A 28 15 36 50 55.71 704.21 7504.94 28.97 34.48 11776.9 4314.6 81.9 26.3 -59.40 333.14 OBC 10.8 288.8 VBC 28 20 46 29 -25.5 310.3 12856.5 397

Page 280: ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM …myreaders.info/00_Orbital__Mechanics__-__Model_____Simulation... · ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM-MSS)

www.m

yrea

ders

.inf

o

OM-MSS Page 280 SATELLITE PASS - GROUND TRACE [acronym - Line Of Sight (LOS), On Board Computerr (OBC), Visible Band Camera (VBC), Night Vision Devices (NVD) ] ORBIT, INPUT TIME, POSIION, SAT VELOCITY, GROUND TRACE, RANGE, DIST, PITCH/ROLL, EL/AZ, ACCESS EL/AZ, DATA SOLAR TIME EL/AZ, DIST Line 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 @ES 18 19 20 @SS 21 22 23 24 25 26 27 @ES 28 29 30 No. Node GMT Anomaly Height @ Vel Lat(SAT)Log Slant S-Sat Pitch Roll EL(SAT)AZ Control EL(SUN)AZ Acq. LMT(ES) EL(SUN)AZ S-Sun Nos D H M S deg km meter deg deg km km deg deg deg D H M S deg km 06861 A 28 15 38 50 62.99 702.22 7504.85 21.79 35.76 12155.2 4271.3 82.6 26.9 -63.17 330.64 OBC 6.8 290.5 VBC 28 20 48 29 -25.8 310.7 12895.4 398 06861 A 28 15 40 50 70.27 700.73 7504.75 14.59 36.92 12485.2 4356.8 83.1 27.4 -66.90 327.64 OBC 2.8 291.5 NVD 28 20 50 29 -26.2 311.0 12934.0 399 06861 A 28 15 42 50 77.55 699.82 7504.65 7.39 38.00 12765.1 4563.8 83.5 27.9 -70.58 323.81 OBC -1.3 291.9 NVD 28 20 52 29 -26.5 311.4 12972.5 400 06861 A 28 15 44 50 84.83 699.57 7504.55 0.19 39.05 12993.5 4876.4 83.8 28.4 -74.16 318.55 OBC -5.5 291.6 NVD 28 20 54 29 -26.9 311.7 13010.7 401 06861 A 28 15 44 53 85.03 699.57 Eqa 7504.55 0.00 39.08 12999.0 4886.1 83.8 28.5 -74.25 243.46 OBC -5.6 291.6 NVD 28 20 54 32 -26.9 311.7 13011.8 402 06861 D 28 15 46 50 92.11 699.98 7504.45 -7.01 38.06 13169.2 5447.3 83.5 28.0 -77.57 310.66 OBC -7.6 290.9 NVD 28 20 56 29 -27.2 312.1 13048.8 403 06861 D 28 15 48 50 99.39 701.04 7504.34 -14.21 36.98 13291.1 6064.3 83.1 27.4 -80.61 297.63 OBC -9.6 289.9 NVD 28 20 58 29 -27.6 312.4 13086.6 404 06861 D 28 15 50 50 106.67 702.69 7504.24 -21.40 35.84 13358.5 6710.2 82.6 26.9 -82.83 275.01 OBC -11.4 288.8 NVD 28 21 00 29 -27.9 312.8 13124.2 405 06861 D 28 15 52 50 113.95 704.83 7504.15 -28.59 34.57 13371.1 7376.4 82.0 26.4 -83.32 242.51 OBC -13.0 287.6 NVD 28 21 02 29 -28.2 313.2 13161.6 406 06861 D 28 15 54 50 121.23 707.33 7504.05 -35.76 33.11 13328.5 8056.5 81.2 25.7 -81.76 214.58 OBC -14.3 286.4 NVD 28 21 04 29 -28.6 313.5 13198.8 407 06861 D 28 15 56 50 128.51 710.02 7503.97 -42.91 31.37 13230.9 8746.0 80.2 25.0 -78.99 197.94 OBC -15.3 285.3 NVD 28 21 06 29 -28.9 313.9 13235.7 408 06861 D 28 15 58 50 135.79 712.75 7503.89 -50.02 29.16 13078.5 9441.1 78.8 24.2 -75.70 188.35 OBC -16.0 284.5 NVD 28 21 08 29 -29.2 314.3 13272.4 409 06861 D 28 16 00 50 143.07 715.34 7503.82 -57.08 26.19 12871.9 10138.7 76.7 23.2 -72.15 182.39 OBC -16.4 284.4 NVD 28 21 10 29 -29.6 314.6 13308.9 410 06861 D 28 16 02 50 150.35 717.63 7503.77 -64.04 21.83 12612.0 10835.8 73.5 21.8 -68.48 178.38 OBC -16.4 285.7 NVD 28 21 12 29 -29.9 315.0 13345.2 411 06861 D 28 16 04 50 157.63 719.48 7503.72 -70.78 14.61 12299.6 11529.3 67.8 19.8 -64.73 175.52 OBC -16.0 289.8 NVD 28 21 14 29 -30.2 315.4 13381.2 412 06861 D 28 16 06 50 164.91 720.75 7503.69 -76.96 0.51 11936.1 12216.1 56.8 17.0 -60.92 173.38 OBC -15.2 300.9 NVD 28 21 16 29 -30.5 315.8 13416.9 413 06861 D 28 16 08 50 172.19 721.38 7503.67 -81.29 328.51 11522.9 12892.1 -35.4 13.3 -57.07 171.73 OBC -14.0 330.0 NVD 28 21 18 29 -30.8 316.2 13452.4 414 06861 D 28 16 10 50 179.47 721.31 7503.66 -80.69 280.87 11061.9 13552.2 -10.7 11.2 -53.18 170.41 OBC -12.5 15.0 NVD 28 21 20 29 -31.2 316.6 13487.6 415 06861 D 28 16 10 59 180.00 721.28 Apo 7503.66 -80.43 278.06 11026.6 13599.2 -9.4 11.1 -52.89 183.97 OBC -12.4 17.6 NVD 28 21 20 38 -31.2 316.6 13490.2 416 06861 D 28 16 12 50 186.75 720.56 7503.67 -75.76 253.81 10554.8 14189.4 1.6 11.0 -49.24 169.34 OBC -10.7 39.6 NVD 28 21 22 29 -31.5 317.0 13522.6 417 06861 D 28 16 14 50 194.03 719.18 7503.69 -69.41 241.72 10004.0 14794.1 7.1 11.0 -45.27 168.46 OBC -8.7 49.5 NVD 28 21 24 29 -31.8 317.4 13557.4 418 06861 D 28 16 16 50 201.31 717.25 7503.72 -62.61 235.29 9411.6 15352.6 10.1 11.1 -41.25 167.71 OBC -6.4 54.0 NVD 28 21 26 29 -32.1 317.8 13591.8 419 06861 D 28 16 18 50 208.59 714.90 7503.76 -55.63 231.30 8780.3 15845.3 12.0 11.2 -37.17 167.08 OBC -3.8 56.4 NVD 28 21 28 29 -32.4 318.2 13626.0 420 06861 D 28 16 20 50 215.87 712.28 7503.82 -48.56 228.52 8112.8 16245.6 13.3 11.3 -33.01 166.53 OBC -1.2 57.9 NVD 28 21 30 29 -32.7 318.6 13659.9 421 06861 D 28 16 22 50 223.15 709.55 7503.88 -41.43 226.43 7412.0 16521.3 14.3 11.3 -28.77 166.04 OBC 1.6 59.1 NVD 28 21 32 29 -33.0 319.1 13693.5 422 06861 D 28 16 24 50 230.43 706.90 7503.96 -34.28 224.76 6681.1 16641.4 15.1 11.4 -24.39 165.59 OBC 4.4 60.1 NVD 28 21 34 29 -33.3 319.5 13726.9 423 06861 D 28 16 26 50 237.71 704.47 7504.04 -27.10 223.35 5923.6 16589.5 15.8 11.4 -19.84 165.16 OBC 7.2 61.3 VBC 28 21 36 29 -33.6 319.9 13759.9 424 06861 D 28 16 28 50 244.99 702.43 7504.13 -19.92 222.11 5143.3 16373.0 16.4 11.5 -15.02 164.71 OBC 10.0 62.6 VBC 28 21 38 29 -33.9 320.4 13792.7 425 06861 D 28 16 30 50 252.27 700.90 7504.23 -12.72 220.98 4344.3 16018.6 16.9 11.5 -9.79 164.20 OBC 12.7 64.1 VBC 28 21 40 29 -34.2 320.8 13825.1 426 06861 D 28 16 32 50 259.55 699.97 7504.33 -5.52 219.91 3532.2 15559.2 17.4 11.5 -3.85 163.54 LOS 15.2 65.9 VBC 28 21 42 29 -34.5 321.2 13857.3 427 06861 D 28 16 34 22 265.13 699.70 Eqa 7504.41 -0.00 219.11 2905.3 15154.5 17.8 11.6 1.56 63.43 LOS 17.1 67.4 VBC 28 21 44 01 -34.7 321.6 13881.7 428 06861 A 28 16 34 50 266.83 699.70 7504.43 1.68 219.35 2714.7 15067.9 17.7 11.5 3.45 162.52 LOS 18.0 67.9 VBC 28 21 44 29 -34.8 321.7 13889.1 429 06861 A 28 16 36 50 274.11 700.09 7504.54 8.88 220.41 1907.6 14649.5 17.2 11.5 13.82 160.57 LOS 22.0 70.3 VBC 28 21 46 29 -35.1 322.1 13920.6 430 06861 A 28 16 38 50 281.39 701.12 7504.64 16.08 221.50 1160.4 14167.9 16.6 11.5 33.20 154.97 LOS 25.8 73.5 VBC 28 21 48 29 -35.3 322.6 13951.8 431 06861 A 28 16 40 50 288.68 702.72 7504.74 23.27 222.68 728.1 13638.6 16.1 11.4 73.83 89.23 LOS 29.1 77.4 VBC 28 21 50 29 -35.6 323.0 13982.7 432 06861 A 28 16 42 50 295.96 704.78 7504.83 30.45 223.99 1097.1 13073.5 15.4 11.4 36.10 359.83 LOS 32.0 82.3 VBC 28 21 52 29 -35.9 323.5 14013.3 433 06861 A 28 16 44 50 303.24 707.17 7504.92 37.62 225.51 1831.7 12482.2 14.7 11.4 15.11 353.51 LOS 34.3 88.0 VBC 28 21 54 29 -36.2 324.0 14043.5 434 06861 A 28 16 46 50 310.52 709.74 7505.01 44.77 227.36 2636.1 11871.9 13.8 11.3 4.26 351.59 LOS 35.9 94.6 VBC 28 21 56 29 -36.4 324.4 14073.4 435 06861 A 28 16 48 50 317.80 712.31 7505.08 51.87 229.73 3453.1 11248.6 12.7 11.3 -3.23 350.78 LOS 36.7 102.1 VBC 28 21 58 29 -36.7 324.9 14102.9 436 06861 A 28 16 50 50 325.08 714.72 7505.15 58.91 232.99 4265.8 10617.3 11.2 11.2 -9.26 350.45 OBC 36.8 110.7 VBC 28 22 00 29 -37.0 325.4 14132.1 437 06861 A 28 16 52 50 332.37 716.80 7505.20 65.83 237.91 5065.9 9982.1 8.9 11.1 -14.55 350.38 OBC 36.1 120.9 VBC 28 22 02 29 -37.2 325.9 14161.0 438 06861 A 28 16 54 50 339.65 718.43 7505.24 72.48 246.36 5847.9 9347.1 5.0 11.0 -19.39 350.47 OBC 34.5 134.4 VBC 28 22 04 29 -37.5 326.4 14189.5 439 06861 A 28 16 56 50 346.93 719.48 7505.27 78.37 263.73 6607.4 8716.4 -2.9 11.0 -23.96 350.68 OBC 32.3 156.4 VBC 28 22 06 29 -37.7 326.9 14217.6 440 06861 A 28 16 58 50 354.21 719.90 7505.29 81.72 302.37 7340.6 8094.2 -21.1 11.8 -28.35 351.01 OBC 29.4 199.0 VBC 28 22 08 29 -38.0 327.4 14245.3 441

Page 281: ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM …myreaders.info/00_Orbital__Mechanics__-__Model_____Simulation... · ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM-MSS)

www.m

yrea

ders

.inf

o

OM-MSS Page 281 SATELLITE PASS - GROUND TRACE [acronym - Line Of Sight (LOS), On Board Computerr (OBC), Visible Band Camera (VBC), Night Vision Devices (NVD) ] ORBIT, INPUT TIME, POSIION, SAT VELOCITY, GROUND TRACE, RANGE, DIST, PITCH/ROLL, EL/AZ, ACCESS EL/AZ, DATA SOLAR TIME EL/AZ, DIST Line 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 @ES 18 19 20 @SS 21 22 23 24 25 26 27 @ES 28 29 30 No. Node GMT Anomaly Height @ Vel Lat(SAT)Log Slant S-Sat Pitch Roll EL(SAT)AZ Control EL(SUN)AZ Acq. LMT(ES) EL(SUN)AZ S-Sun Nos D H M S deg km meter deg deg km km deg deg deg D H M S deg km 06862 A 28 17 00 25 360.00 719.75 Pri 7505.29 80.48 339.61 7902.1 7609.4 -42.2 14.3 -31.74 349.85 OBC 26.7 239.0 VBC 28 22 10 04 -38.2 327.8 14267.1 442 06861 A 28 17 00 50 1.50 719.64 7505.29 79.65 346.83 8044.2 7485.6 -47.0 15.1 -32.61 351.42 OBC 25.9 246.8 VBC 28 22 10 29 -38.2 327.9 14272.7 443 06862 A 28 17 02 50 8.78 718.74 7505.28 74.16 8.52 8715.0 6896.6 63.0 18.5 -36.77 351.94 OBC 22.1 271.3 VBC 28 22 12 29 -38.5 328.4 14299.7 444 06862 A 28 17 04 50 16.06 717.24 7505.26 67.64 18.57 9350.0 6334.8 71.0 20.9 -40.85 352.55 OBC 17.8 283.4 VBC 28 22 14 29 -38.7 328.9 14326.3 445 06862 A 28 17 06 50 23.34 715.25 7505.23 60.78 24.17 9946.6 5809.9 75.3 22.5 -44.88 353.28 OBC 13.3 290.6 VBC 28 22 16 29 -38.9 329.4 14352.5 446 06862 A 28 17 08 50 30.63 712.90 7505.18 53.76 27.77 10502.1 5334.3 77.8 23.7 -48.86 354.13 OBC 8.5 295.1 VBC 28 22 18 29 -39.2 329.9 14378.3 447 06862 A 28 17 10 50 37.91 710.34 7505.12 46.67 30.33 11014.4 4923.8 79.6 24.6 -52.81 355.15 OBC 3.6 298.0 NVD 28 22 20 29 -39.4 330.4 14403.7 448 06862 A 28 17 12 50 45.19 707.75 7505.05 39.53 32.29 11481.3 4596.9 80.7 25.4 -56.71 356.36 OBC -1.5 299.8 NVD 28 22 22 29 -39.6 331.0 14428.7 449 06862 A 28 17 14 50 52.47 705.28 7504.97 32.37 33.88 11900.9 4373.0 81.6 26.1 -60.59 357.85 OBC -6.5 300.7 NVD 28 22 24 29 -39.8 331.5 14453.3 450 06862 A 28 17 16 50 59.76 703.11 7504.89 25.19 35.24 12271.5 4268.9 82.3 26.7 -64.43 359.70 OBC -11.6 300.7 NVD 28 22 26 29 -40.1 332.0 14477.5 451 06862 A 28 17 18 50 67.04 701.37 7504.79 18.00 36.45 12591.6 4293.6 82.9 27.2 -68.23 2.11 OBC -16.6 300.0 NVD 28 22 28 29 -40.3 332.6 14501.2 452 06862 A 28 17 20 50 74.32 700.17 7504.70 10.80 37.56 12860.1 4444.8 83.3 27.7 -71.98 5.37 OBC -21.5 298.5 NVD 28 22 30 29 -40.5 333.1 14524.5 453 06862 A 28 17 22 50 81.60 699.61 7504.60 3.60 38.62 13075.8 4710.1 83.7 28.2 -75.66 10.14 OBC -26.2 296.1 NVD 28 22 32 29 -40.7 333.7 14547.4 454 06862 A 28 17 23 50 85.24 699.57 Eqa 7504.54 0.00 39.15 13163.6 4879.9 83.8 28.5 -77.45 243.41 OBC -28.4 294.7 NVD 28 22 33 29 -40.8 333.9 14558.7 455 06862 D 28 17 24 50 88.88 699.70 7504.49 -3.60 38.62 13238.1 5162.8 83.7 28.2 -79.19 17.80 OBC -29.6 292.8 NVD 28 22 34 29 -40.9 334.2 14569.9 456 06862 D 28 17 26 50 96.16 700.47 7504.39 -10.80 37.57 13346.3 5762.7 83.3 27.7 -82.38 31.91 OBC -31.7 288.7 NVD 28 22 36 29 -41.1 334.8 14591.9 457 06862 D 28 17 28 50 103.44 701.85 7504.29 -18.00 36.46 13400.2 6396.6 82.8 27.2 -84.63 60.68 OBC -33.2 284.4 NVD 28 22 38 29 -41.3 335.3 14613.4 458 06862 D 28 17 30 50 110.72 703.77 7504.19 -25.19 35.25 13399.7 7054.5 82.3 26.7 -84.60 103.08 OBC -34.0 279.9 NVD 28 22 40 29 -41.5 335.9 14634.5 459 06862 D 28 17 32 50 118.00 706.11 7504.09 -32.37 33.90 13345.0 7729.1 81.6 26.1 -82.33 131.47 OBC -34.2 275.4 NVD 28 22 42 29 -41.7 336.5 14655.1 460 06862 D 28 17 34 50 125.28 708.73 7504.01 -39.53 32.31 13236.5 8415.0 80.7 25.4 -79.14 145.51 OBC -33.8 271.2 NVD 28 22 44 29 -41.8 337.0 14675.2 461 06862 D 28 17 36 50 132.56 711.47 7503.92 -46.66 30.35 13075.0 9108.3 79.5 24.6 -75.63 153.32 OBC -32.6 267.5 NVD 28 22 46 29 -42.0 337.6 14694.9 462 06862 D 28 17 38 50 139.84 714.15 7503.85 -53.75 27.79 12861.2 9805.5 77.8 23.7 -71.99 158.36 OBC -30.8 264.8 NVD 28 22 48 29 -42.2 338.2 14714.1 463 06862 D 28 17 40 50 147.12 716.60 7503.79 -60.77 24.20 12596.3 10503.6 75.2 22.5 -68.28 162.01 OBC -28.4 263.5 NVD 28 22 50 29 -42.3 338.8 14732.8 464 06862 D 28 17 42 50 154.40 718.67 7503.74 -67.63 18.61 12281.9 11199.6 71.0 20.9 -64.53 164.90 OBC -25.5 264.7 NVD 28 22 52 29 -42.5 339.4 14751.1 465 06862 D 28 17 44 50 161.68 720.22 7503.70 -74.15 8.58 11919.4 11890.5 63.0 18.5 -60.76 167.36 OBC -22.2 270.9 NVD 28 22 54 29 -42.7 340.0 14768.8 466 06862 D 28 17 46 50 168.96 721.16 7503.68 -79.64 346.95 11510.8 12572.6 -47.1 15.1 -56.96 169.55 OBC -18.4 289.3 NVD 28 22 56 29 -42.8 340.6 14786.0 467 06862 D 28 17 48 50 176.24 721.43 7503.66 -81.72 302.56 11058.2 13241.5 -21.2 11.8 -53.15 171.61 OBC -14.3 330.9 NVD 28 22 58 29 -43.0 341.2 14802.8 468 06862 D 28 17 49 52 180.00 721.29 Apo 7503.66 -80.54 279.24 10808.1 13579.8 -10.0 11.1 -51.17 184.13 OBC -12.1 353.0 NVD 28 22 59 31 -43.1 341.5 14811.2 469 06862 D 28 17 50 50 183.52 721.00 7503.66 -78.39 263.86 10564.1 13891.2 -2.9 11.0 -49.31 173.61 OBC -10.0 7.3 NVD 28 23 00 29 -43.1 341.8 14819.0 470 06862 D 28 17 52 50 190.80 719.91 7503.68 -72.50 246.45 10031.0 14513.4 5.0 11.0 -45.46 175.62 OBC -5.5 23.0 NVD 28 23 02 29 -43.3 342.4 14834.7 471 06862 D 28 17 54 50 198.08 718.22 7503.70 -65.86 237.98 9462.2 15096.6 8.9 11.1 -41.58 177.69 OBC -0.8 30.1 NVD 28 23 04 29 -43.4 343.0 14849.9 472 06862 D 28 17 56 50 205.36 716.06 7503.74 -58.95 233.05 8860.8 15624.2 11.1 11.2 -37.68 179.88 OBC 3.9 34.2 NVD 28 23 06 29 -43.5 343.6 14864.5 473 06862 D 28 17 58 50 212.64 713.54 7503.79 -51.91 229.79 8230.7 16073.1 12.7 11.3 -33.74 182.25 OBC 8.7 37.1 VBC 28 23 08 29 -43.7 344.2 14878.7 474 06862 D 28 18 00 50 219.92 710.84 7503.85 -44.81 227.42 7576.4 16413.1 13.8 11.3 -29.75 184.88 OBC 13.5 39.5 VBC 28 23 10 29 -43.8 344.9 14892.3 475 06862 D 28 18 02 50 227.20 708.13 7503.92 -37.66 225.58 6902.9 16611.2 14.7 11.4 -25.72 187.88 OBC 18.3 42.0 VBC 28 23 12 29 -43.9 345.5 14905.3 476 06862 D 28 18 04 50 234.48 705.58 7504.00 -30.50 224.06 6216.7 16642.1 15.4 11.4 -21.61 191.37 OBC 22.9 44.6 VBC 28 23 14 29 -44.0 346.1 14917.9 477 06862 D 28 18 06 50 241.76 703.34 7504.09 -23.32 222.75 5525.9 16501.4 16.0 11.4 -17.41 195.58 OBC 27.4 47.7 VBC 28 23 16 29 -44.1 346.7 14929.9 478 06862 D 28 18 08 50 249.04 701.55 7504.18 -16.13 221.57 4841.8 16208.2 16.6 11.5 -13.10 200.80 OBC 31.6 51.2 VBC 28 23 18 29 -44.2 347.4 14941.3 479 06862 D 28 18 10 50 256.32 700.33 7504.28 -8.93 220.48 4180.7 15794.2 17.1 11.5 -8.66 207.52 OBC 35.4 55.4 VBC 28 23 20 29 -44.3 348.0 14952.2 480 06862 D 28 18 12 50 263.60 699.74 7504.39 -1.73 219.43 3568.3 15291.4 17.7 11.5 -4.14 216.47 LOS 38.8 60.3 VBC 28 23 22 29 -44.4 348.6 14962.5 481 06862 D 28 18 13 19 265.35 699.70 Eqa 7504.41 -0.00 219.18 3432.9 15160.7 17.8 11.6 -3.06 63.38 LOS 39.5 61.6 VBC 28 23 22 58 -44.4 348.8 14964.9 482 06862 A 28 18 14 50 270.88 699.82 7504.49 5.48 219.97 3045.8 14862.1 17.4 11.5 0.26 228.68 LOS 43.0 65.5 VBC 28 23 24 29 -44.5 349.3 14972.3 483 06862 A 28 18 16 50 278.16 700.55 7504.59 12.68 221.04 2675.4 14407.7 16.9 11.5 3.85 245.02 LOS 47.1 71.9 VBC 28 23 26 29 -44.6 349.9 14981.5 484 06862 A 28 18 18 50 285.44 701.89 7504.69 19.87 222.18 2530.3 13898.7 16.3 11.5 5.42 264.89 LOS 50.4 79.9 VBC 28 23 28 29 -44.7 350.6 14990.1 485 06862 A 28 18 20 50 292.73 703.75 7504.79 27.06 223.42 2648.3 13348.6 15.7 11.4 4.13 284.96 LOS 52.7 89.4 VBC 28 23 30 29 -44.7 351.2 14998.2 486

Page 282: ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM …myreaders.info/00_Orbital__Mechanics__-__Model_____Simulation... · ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM-MSS)

www.m

yrea

ders

.inf

o

OM-MSS Page 282 SATELLITE PASS - GROUND TRACE [acronym - Line Of Sight (LOS), On Board Computerr (OBC), Visible Band Camera (VBC), Night Vision Devices (NVD) ] ORBIT, INPUT TIME, POSIION, SAT VELOCITY, GROUND TRACE, RANGE, DIST, PITCH/ROLL, EL/AZ, ACCESS EL/AZ, DATA SOLAR TIME EL/AZ, DIST Line 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 @ES 18 19 20 @SS 21 22 23 24 25 26 27 @ES 28 29 30 No. Node GMT Anomaly Height @ Vel Lat(SAT)Log Slant S-Sat Pitch Roll EL(SAT)AZ Control EL(SUN)AZ Acq. LMT(ES) EL(SUN)AZ S-Sun Nos D H M S deg km meter deg deg km km deg deg deg D H M S deg km 06862 A 28 18 22 50 300.01 706.01 7504.88 34.23 224.83 2995.3 12768.0 15.0 11.4 0.71 301.78 LOS 53.7 100.2 VBC 28 23 32 29 -44.8 351.9 15005.7 487 06862 A 28 18 24 50 307.29 708.51 7504.97 41.39 226.50 3498.2 12165.3 14.2 11.3 -3.59 314.51 LOS 53.4 111.5 VBC 28 23 34 29 -44.9 352.5 15012.6 488 06862 A 28 18 26 50 314.57 711.10 7505.05 48.52 228.59 4092.2 11547.0 13.2 11.3 -8.05 323.97 OBC 51.8 122.7 VBC 28 23 36 29 -44.9 353.2 15019.0 489 06862 A 28 18 28 50 321.85 713.61 7505.12 55.60 231.37 4734.6 10918.4 11.9 11.2 -12.41 331.22 OBC 49.0 133.6 VBC 28 23 38 29 -45.0 353.8 15024.8 490 06862 A 28 18 30 50 329.14 715.87 7505.18 62.58 235.36 5398.9 10284.0 10.1 11.1 -16.64 337.01 OBC 45.2 144.2 VBC 28 23 40 29 -45.0 354.5 15030.0 491 06862 A 28 18 32 50 336.42 717.72 7505.22 69.39 241.78 6068.2 9647.9 7.1 11.0 -20.73 341.84 OBC 40.7 156.0 VBC 28 23 42 29 -45.1 355.1 15034.6 492 06862 A 28 18 34 50 343.70 719.06 7505.26 75.74 253.84 6731.2 9014.1 1.6 11.0 -24.70 346.04 OBC 35.7 172.2 VBC 28 23 44 29 -45.1 355.8 15038.6 493 06862 A 28 18 36 50 350.98 719.78 7505.28 80.68 280.84 7379.9 8386.7 -10.7 11.2 -28.59 349.84 OBC 30.2 202.4 VBC 28 23 46 29 -45.1 356.4 15042.1 494 06862 A 28 18 38 50 358.27 719.84 7505.29 81.30 328.48 8008.1 7770.4 -35.4 13.3 -32.39 353.40 OBC 24.4 252.4 VBC 28 23 48 29 -45.2 357.1 15044.9 495 06863 A 28 18 39 19 360.00 719.76 Pri 7505.29 80.59 338.55 8154.1 7625.8 -41.6 14.2 -33.28 350.00 OBC 23.0 262.9 VBC 28 23 48 58 -45.2 357.3 15045.5 496 06862 A 28 18 40 50 5.55 719.24 7505.29 76.97 0.56 8610.9 7170.6 56.9 17.0 -36.11 356.82 OBC 18.4 286.1 VBC 28 23 50 29 -45.2 357.8 15047.2 497 06863 A 28 18 42 50 12.83 718.02 7505.27 70.79 14.70 9184.4 6594.2 67.9 19.9 -39.77 0.21 OBC 12.2 301.3 VBC 28 23 52 29 -45.2 358.4 15048.9 498 06863 A 28 18 44 50 20.11 716.25 7505.24 64.05 21.93 9725.1 6049.7 73.6 21.8 -43.36 3.66 OBC 5.9 309.0 VBC 28 23 54 29 -45.2 359.1 15050.0 499 06863 A 28 18 46 50 27.40 714.05 7505.20 57.09 26.30 10230.1 5548.4 76.8 23.2 -46.88 7.24 OBC -0.4 313.4 NVD 28 23 56 29 -45.2 359.7 15050.5 500 06863 A 28 18 48 50 34.68 711.57 7505.15 50.03 29.28 10697.0 5104.2 78.9 24.2 -50.33 11.05 OBC -6.9 316.0 NVD 28 23 58 29 -45.2 0.4 15050.4 501 06863 A 28 18 50 50 41.96 708.97 7505.08 42.91 31.49 11123.4 4734.5 80.3 25.1 -53.69 15.18 OBC -13.3 317.4 NVD 29 00 00 29 -45.2 1.1 15049.7 502 06863 A 28 18 52 50 49.24 706.43 7505.01 35.76 33.23 11507.6 4458.8 81.3 25.8 -56.95 19.75 OBC -19.8 317.7 NVD 29 00 02 29 -45.2 1.7 15048.5 503 06863 A 28 18 54 50 56.52 704.09 7504.93 28.59 34.69 11848.0 4295.8 82.0 26.4 -60.08 24.93 OBC -26.2 317.2 NVD 29 00 04 29 -45.2 2.4 15046.6 504 06863 A 28 18 56 50 63.81 702.13 7504.84 21.40 35.96 12143.3 4258.8 82.6 27.0 -63.04 30.90 OBC -32.5 315.9 NVD 29 00 06 29 -45.1 3.0 15044.2 505 06863 A 28 18 58 50 71.09 700.67 7504.74 14.21 37.11 12392.3 4351.2 83.1 27.5 -65.80 37.90 OBC -38.7 313.5 NVD 29 00 08 29 -45.1 3.7 15041.2 506 06863 A 28 19 00 50 78.37 699.80 7504.64 7.01 38.19 12594.3 4564.9 83.5 28.0 -68.26 46.20 OBC -44.7 309.9 NVD 29 00 10 29 -45.1 4.3 15037.6 507 06863 A 28 19 02 47 85.45 699.57 Eqa 7504.54 0.00 39.21 12745.3 4873.7 83.8 28.5 -70.29 243.35 OBC -50.1 304.9 NVD 29 00 12 26 -45.1 5.0 15033.5 508 06863 D 28 19 02 50 85.65 699.58 7504.54 -0.20 39.18 12748.8 4888.7 83.8 28.5 -70.34 56.07 OBC -50.2 304.7 NVD 29 00 12 29 -45.0 5.0 15033.4 509 06863 D 28 19 04 50 92.93 700.03 7504.43 -7.40 38.14 12855.5 5468.2 83.5 28.0 -71.91 67.61 OBC -53.4 296.5 NVD 29 00 14 29 -45.0 5.7 15028.6 510 06863 D 28 19 06 50 100.21 701.12 7504.33 -14.60 37.06 12914.3 6087.9 83.1 27.5 -72.83 80.61 OBC -55.6 286.9 NVD 29 00 16 29 -45.0 6.3 15023.3 511 06863 D 28 19 08 50 107.49 702.80 7504.23 -21.79 35.91 12925.5 6735.9 82.6 26.9 -73.01 94.35 OBC -56.4 276.5 NVD 29 00 18 29 -44.9 7.0 15017.3 512 06863 D 28 19 10 50 114.77 704.96 7504.13 -28.97 34.63 12889.5 7403.8 82.0 26.4 -72.43 107.82 OBC -55.9 266.0 NVD 29 00 20 29 -44.8 7.6 15010.8 513 06863 D 28 19 12 50 122.05 707.47 7504.04 -36.14 33.16 12806.9 8085.3 81.2 25.8 -71.17 120.12 OBC -54.0 256.6 NVD 29 00 22 29 -44.8 8.3 15003.7 514 06863 D 28 19 14 50 129.33 710.17 7503.96 -43.29 31.40 12678.8 8776.0 80.2 25.0 -69.37 130.87 OBC -50.9 248.9 NVD 29 00 24 29 -44.7 8.9 14996.1 515 06863 D 28 19 16 50 136.61 712.90 7503.88 -50.41 29.16 12506.5 9472.1 78.8 24.2 -67.15 140.06 OBC -46.9 243.3 NVD 29 00 26 29 -44.6 9.6 14987.8 516 06863 D 28 19 18 50 143.89 715.48 7503.82 -57.46 26.14 12291.3 10170.5 76.7 23.1 -64.64 147.93 OBC -42.3 239.9 NVD 29 00 28 29 -44.6 10.2 14979.0 517 06863 D 28 19 20 50 151.17 717.75 7503.76 -64.41 21.67 12035.0 10868.3 73.3 21.7 -61.91 154.76 OBC -37.1 239.2 NVD 29 00 30 29 -44.5 10.8 14969.7 518 06863 D 28 19 22 50 158.45 719.56 7503.72 -71.13 14.22 11739.7 11562.5 67.5 19.7 -59.04 160.80 OBC -31.5 242.5 NVD 29 00 32 29 -44.4 11.5 14959.8 519 06863 D 28 19 24 50 165.73 720.80 7503.69 -77.26 359.51 11407.7 12249.7 -56.1 16.8 -56.06 166.28 OBC -25.7 253.9 NVD 29 00 34 29 -44.3 12.1 14949.3 520 06863 D 28 19 26 50 173.01 721.39 7503.67 -81.41 326.16 11041.6 12926.0 -34.0 13.1 -53.01 171.36 OBC -19.6 284.6 NVD 29 00 36 29 -44.2 12.8 14938.2 521 06863 D 28 19 28 45 180.00 721.31 Apo 7503.66 -80.64 280.45 10660.9 13560.2 -10.5 11.2 -50.04 184.30 OBC -13.6 328.3 NVD 29 00 38 24 -44.1 13.4 14927.1 522 06863 D 28 19 28 50 180.29 721.29 7503.66 -80.50 278.90 10644.4 13586.2 -9.8 11.1 -49.92 176.18 OBC -13.4 329.8 NVD 29 00 38 29 -44.1 13.4 14926.7 523 06863 D 28 19 30 50 187.57 720.50 7503.67 -75.44 253.03 10219.6 14223.3 2.0 11.0 -46.79 180.85 OBC -7.1 354.0 NVD 29 00 40 29 -44.0 14.0 14914.5 524 06863 D 28 19 32 50 194.85 719.09 7503.69 -69.05 241.41 9770.8 14827.5 7.3 11.0 -43.66 185.48 OBC -0.7 4.4 NVD 29 00 42 29 -43.9 14.6 14901.9 525 06863 D 28 19 34 50 202.13 717.13 7503.72 -62.24 235.17 9302.5 15384.7 10.2 11.1 -40.53 190.16 OBC 5.8 9.8 VBC 29 00 44 29 -43.7 15.3 14888.6 526 06863 D 28 19 36 50 209.41 714.76 7503.77 -55.25 231.26 8819.5 15875.2 12.0 11.2 -37.41 194.96 OBC 12.3 13.2 VBC 29 00 46 29 -43.6 15.9 14874.9 527 06863 D 28 19 38 50 216.69 712.13 7503.82 -48.17 228.53 8327.7 16272.0 13.3 11.3 -34.34 199.99 OBC 18.8 15.8 VBC 29 00 48 29 -43.5 16.5 14860.6 528 06863 D 28 19 40 50 223.97 709.40 7503.89 -41.05 226.47 7833.6 16542.3 14.3 11.3 -31.31 205.32 OBC 25.3 18.2 VBC 29 00 50 29 -43.4 17.1 14845.8 529 06863 D 28 19 42 50 231.25 706.75 7503.97 -33.89 224.81 7345.1 16655.3 15.1 11.4 -28.36 211.06 OBC 31.7 20.6 VBC 29 00 52 29 -43.2 17.7 14830.5 530

Page 283: ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM …myreaders.info/00_Orbital__Mechanics__-__Model_____Simulation... · ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM-MSS)

www.m

yrea

ders

.inf

o

OM-MSS Page 283 SATELLITE PASS - GROUND TRACE [acronym - Line Of Sight (LOS), On Board Computerr (OBC), Visible Band Camera (VBC), Night Vision Devices (NVD) ] ORBIT, INPUT TIME, POSIION, SAT VELOCITY, GROUND TRACE, RANGE, DIST, PITCH/ROLL, EL/AZ, ACCESS EL/AZ, DATA SOLAR TIME EL/AZ, DIST Line 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 @ES 18 19 20 @SS 21 22 23 24 25 26 27 @ES 28 29 30 No. Node GMT Anomaly Height @ Vel Lat(SAT)Log Slant S-Sat Pitch Roll EL(SAT)AZ Control EL(SUN)AZ Acq. LMT(ES) EL(SUN)AZ S-Sun Nos D H M S deg km meter deg deg km km deg deg deg D H M S deg km 06863 D 28 19 44 50 238.53 704.35 7504.05 -26.72 223.41 6871.3 16595.4 15.7 11.4 -25.53 217.32 OBC 38.1 23.5 VBC 29 00 54 29 -43.1 18.3 14814.6 531 06863 D 28 19 46 50 245.81 702.33 7504.14 -19.53 222.18 6423.2 16371.0 16.3 11.5 -22.85 224.20 OBC 44.3 27.0 VBC 29 00 56 29 -42.9 18.9 14798.3 532 06863 D 28 19 48 50 253.09 700.83 7504.24 -12.33 221.05 6013.3 16009.8 16.9 11.5 -20.38 231.80 OBC 50.3 31.6 VBC 29 00 58 29 -42.8 19.5 14781.4 533 06863 D 28 19 50 50 260.37 699.93 7504.34 -5.13 219.99 5656.2 15545.0 17.4 11.5 -18.21 240.20 OBC 55.9 37.7 VBC 29 01 00 29 -42.6 20.1 14764.0 534 06863 D 28 19 52 16 265.56 699.69 Eqa 7504.41 -0.00 219.25 5442.3 15166.9 17.7 11.6 -16.90 63.32 OBC 59.6 43.5 VBC 29 01 01 55 -42.5 20.6 14751.4 535 06863 A 28 19 52 50 267.65 699.69 7504.44 2.07 219.55 5367.1 15059.3 17.6 11.5 -16.43 249.42 OBC 61.4 45.5 VBC 29 01 02 29 -42.5 20.7 14746.2 536 06863 A 28 19 54 50 274.93 700.12 7504.55 9.27 220.60 5161.0 14635.9 17.1 11.5 -15.14 259.36 OBC 67.2 55.2 VBC 29 01 04 29 -42.3 21.3 14727.8 537 06863 A 28 19 56 50 282.21 701.18 7504.65 16.47 221.70 5050.0 14150.2 16.6 11.5 -14.44 269.82 OBC 71.9 70.9 VBC 29 01 06 29 -42.1 21.9 14709.0 538 06863 A 28 19 58 50 289.49 702.81 7504.75 23.66 222.88 5040.3 13617.4 16.0 11.4 -14.38 280.49 OBC 74.4 94.5 VBC 29 01 08 29 -42.0 22.5 14689.6 539 06863 A 28 20 00 50 296.78 704.90 7504.84 30.84 224.20 5131.2 13049.5 15.3 11.4 -14.96 291.02 OBC 73.7 121.3 VBC 29 01 10 29 -41.8 23.1 14669.8 540 06863 A 28 20 02 50 304.06 707.30 7504.93 38.01 225.74 5314.6 12455.8 14.6 11.4 -16.11 301.10 OBC 70.1 142.4 VBC 29 01 12 29 -41.6 23.6 14649.6 541 06863 A 28 20 04 50 311.34 709.88 7505.02 45.15 227.61 5577.0 11843.6 13.7 11.3 -17.73 310.52 OBC 64.9 156.5 VBC 29 01 14 29 -41.4 24.2 14628.8 542 06863 A 28 20 06 50 318.62 712.44 7505.09 52.26 230.01 5902.9 11218.7 12.6 11.3 -19.72 319.22 OBC 58.7 166.3 VBC 29 01 16 29 -41.2 24.8 14607.6 543 06863 A 28 20 08 50 325.90 714.84 7505.15 59.29 233.34 6276.4 10586.0 11.0 11.2 -21.98 327.20 OBC 52.2 174.3 VBC 29 01 18 29 -41.0 25.3 14585.9 544 06863 A 28 20 10 50 333.19 716.90 7505.20 66.20 238.38 6683.1 9949.6 8.7 11.1 -24.42 334.56 OBC 45.3 182.3 VBC 29 01 20 29 -40.8 25.9 14563.8 545 06863 A 28 20 12 50 340.47 718.50 7505.25 72.82 247.13 7110.6 9313.7 4.7 11.0 -26.97 341.38 OBC 38.4 193.1 VBC 29 01 22 29 -40.6 26.4 14541.3 546 06863 A 28 20 14 50 347.75 719.52 7505.27 78.65 265.28 7548.5 8682.2 -3.6 11.0 -29.60 347.78 OBC 31.3 212.6 VBC 29 01 24 29 -40.4 27.0 14518.3 547 06863 A 28 20 16 50 355.03 719.90 7505.29 81.76 305.23 7988.0 8059.4 -22.6 11.9 -32.26 353.86 OBC 24.1 253.4 VBC 29 01 26 29 -40.2 27.5 14494.8 548 06864 A 28 20 18 12 360.00 719.77 Pri 7505.29 80.69 337.47 8285.1 7642.3 -40.9 14.1 -34.09 350.15 OBC 19.2 286.1 VBC 29 01 27 51 -40.1 27.9 14478.6 549 06863 A 28 20 18 50 2.32 719.61 7505.29 79.41 348.67 8422.2 7450.5 -48.3 15.3 -34.93 359.73 OBC 16.9 297.4 VBC 29 01 28 29 -40.0 28.1 14471.0 550 06864 A 28 20 20 50 9.60 718.67 7505.28 73.82 9.39 8845.2 6861.4 63.7 18.7 -37.59 5.46 OBC 9.7 318.4 VBC 29 01 30 29 -39.8 28.6 14446.7 551 06864 A 28 20 22 50 16.88 717.15 7505.26 67.28 19.08 9252.1 6299.9 71.4 21.0 -40.21 11.14 OBC 2.5 328.1 NVD 29 01 32 29 -39.6 29.1 14422.0 552 06864 A 28 20 24 50 24.16 715.13 7505.22 60.40 24.53 9638.9 5775.9 75.5 22.6 -42.78 16.85 OBC -4.8 333.5 NVD 29 01 34 29 -39.3 29.7 14396.9 553 06864 A 28 20 26 50 31.45 712.77 7505.17 53.38 28.06 10002.3 5301.9 78.1 23.8 -45.27 22.65 OBC -12.1 336.7 NVD 29 01 36 29 -39.1 30.2 14371.4 554 06864 A 28 20 28 50 38.73 710.21 7505.11 46.28 30.58 10339.5 4893.8 79.7 24.7 -47.67 28.60 OBC -19.4 338.8 NVD 29 01 38 29 -38.9 30.7 14345.5 555 06864 A 28 20 30 50 46.01 707.62 7505.04 39.15 32.52 10648.2 4570.4 80.9 25.5 -49.96 34.78 OBC -26.7 340.1 NVD 29 01 40 29 -38.6 31.2 14319.1 556 06864 A 28 20 32 50 53.29 705.16 7504.96 31.98 34.10 10926.6 4351.4 81.7 26.2 -52.11 41.24 OBC -34.0 340.8 NVD 29 01 42 29 -38.4 31.7 14292.4 557 06864 A 28 20 34 50 60.57 703.01 7504.88 24.80 35.45 11173.2 4253.3 82.4 26.7 -54.10 48.04 OBC -41.4 341.1 NVD 29 01 44 29 -38.1 32.2 14265.3 558 06864 A 28 20 36 50 67.86 701.29 7504.78 17.61 36.65 11386.9 4284.7 82.9 27.3 -55.89 55.21 OBC -48.7 340.8 NVD 29 01 46 29 -37.9 32.7 14237.9 559 06864 A 28 20 38 50 75.14 700.13 7504.69 10.41 37.76 11566.8 4442.8 83.4 27.8 -57.47 62.80 OBC -56.0 340.0 NVD 29 01 48 29 -37.7 33.2 14210.0 560 06864 A 28 20 40 50 82.42 699.60 7504.58 3.21 38.82 11712.4 4714.5 83.7 28.3 -58.79 70.79 OBC -63.3 338.3 NVD 29 01 50 29 -37.4 33.7 14181.8 561 06864 A 28 20 41 44 85.67 699.58 Eqa 7504.54 0.00 39.28 11766.2 4867.5 83.9 28.6 -59.30 243.29 OBC -66.5 337.1 NVD 29 01 51 23 -37.3 33.9 14169.1 562 06864 D 28 20 42 50 89.70 699.73 7504.48 -3.99 38.70 11823.5 5182.2 83.7 28.3 -59.84 79.16 OBC -70.0 332.1 NVD 29 01 52 29 -37.1 34.2 14153.2 563 06864 D 28 20 44 50 96.98 700.53 7504.38 -11.19 37.64 11900.1 5785.1 83.3 27.8 -60.58 87.85 OBC -75.6 317.2 NVD 29 01 54 29 -36.9 34.7 14124.3 564 06864 D 28 20 46 50 104.26 701.94 7504.28 -18.39 36.53 11942.4 6421.4 82.9 27.2 -60.99 96.76 OBC -79.1 288.7 NVD 29 01 56 29 -36.6 35.2 14095.0 565 06864 D 28 20 48 50 111.54 703.89 7504.18 -25.58 35.32 11951.0 7081.1 82.3 26.7 -61.07 105.76 OBC -78.5 252.0 NVD 29 01 58 29 -36.4 35.6 14065.4 566 06864 D 28 20 50 50 118.82 706.25 7504.08 -32.75 33.95 11926.6 7757.3 81.6 26.1 -60.83 114.74 OBC -74.1 228.2 NVD 29 02 00 29 -36.1 36.1 14035.4 567 06864 D 28 20 52 50 126.10 708.89 7504.00 -39.91 32.35 11870.2 8444.5 80.8 25.4 -60.28 123.56 OBC -68.2 216.6 NVD 29 02 02 29 -35.8 36.6 14005.1 568 06864 D 28 20 54 50 133.38 711.62 7503.92 -47.05 30.36 11783.0 9138.9 79.5 24.6 -59.45 132.13 OBC -61.7 211.1 NVD 29 02 04 29 -35.5 37.0 13974.4 569 06864 D 28 20 56 50 140.66 714.29 7503.85 -54.13 27.76 11666.4 9837.0 77.8 23.7 -58.36 140.39 OBC -54.9 208.8 NVD 29 02 06 29 -35.3 37.5 13943.5 570 06864 D 28 20 58 50 147.94 716.73 7503.79 -61.14 24.09 11522.2 10535.8 75.2 22.5 -57.06 148.32 OBC -47.9 209.1 NVD 29 02 08 29 -35.0 37.9 13912.2 571 06864 D 28 21 00 50 155.22 718.77 7503.74 -67.99 18.35 11352.2 11232.5 70.8 20.8 -55.58 155.93 OBC -40.9 212.3 NVD 29 02 10 29 -34.7 38.4 13880.6 572 06864 D 28 21 02 50 162.50 720.29 7503.70 -74.48 7.94 11158.5 11923.9 62.5 18.4 -53.96 163.24 OBC -33.8 220.7 NVD 29 02 12 29 -34.4 38.8 13848.6 573 06864 D 28 21 04 50 169.78 721.20 7503.67 -79.87 345.31 10943.4 12606.5 -46.0 14.9 -52.23 170.28 OBC -26.7 241.7 NVD 29 02 14 29 -34.1 39.3 13816.4 574

Page 284: ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM …myreaders.info/00_Orbital__Mechanics__-__Model_____Simulation... · ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM-MSS)

www.m

yrea

ders

.inf

o

OM-MSS Page 284 SATELLITE PASS - GROUND TRACE [acronym - Line Of Sight (LOS), On Board Computerr (OBC), Visible Band Camera (VBC), Night Vision Devices (NVD) ] ORBIT, INPUT TIME, POSIION, SAT VELOCITY, GROUND TRACE, RANGE, DIST, PITCH/ROLL, EL/AZ, ACCESS EL/AZ, DATA SOLAR TIME EL/AZ, DIST Line 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 @ES 18 19 20 @SS 21 22 23 24 25 26 27 @ES 28 29 30 No. Node GMT Anomaly Height @ Vel Lat(SAT)Log Slant S-Sat Pitch Roll EL(SAT)AZ Control EL(SUN)AZ Acq. LMT(ES) EL(SUN)AZ S-Sun Nos D H M S deg km meter deg deg km km deg deg deg D H M S deg km 06864 D 28 21 06 50 177.06 721.42 7503.66 -81.67 300.00 10709.7 13275.6 -19.9 11.7 -50.41 177.12 OBC -19.5 285.6 NVD 29 02 16 29 -33.8 39.7 13783.9 575 06864 D 28 21 07 39 180.00 721.32 Apo 7503.66 -80.74 281.68 10610.6 13540.7 -11.1 11.2 -49.66 184.46 OBC -16.6 303.5 NVD 29 02 17 18 -33.7 39.9 13770.7 576 06864 D 28 21 08 50 184.34 720.96 7503.66 -78.11 262.64 10460.0 13925.2 -2.4 11.0 -48.54 183.79 OBC -12.4 321.8 NVD 29 02 18 29 -33.5 40.1 13751.0 577 06864 D 28 21 10 50 191.62 719.83 7503.68 -72.16 245.97 10197.5 14547.1 5.2 11.0 -46.64 190.36 OBC -5.2 337.4 NVD 29 02 20 29 -33.2 40.6 13717.9 578 06864 D 28 21 12 50 198.90 718.12 7503.70 -65.49 237.78 9925.3 15129.5 9.0 11.1 -44.72 196.86 OBC 2.0 344.5 NVD 29 02 22 29 -32.9 41.0 13684.5 579 06864 D 28 21 14 50 206.18 715.92 7503.74 -58.57 232.98 9647.1 15655.4 11.2 11.2 -42.82 203.36 OBC 9.2 348.4 VBC 29 02 24 29 -32.6 41.4 13650.8 580 06864 D 28 21 16 50 213.46 713.40 7503.80 -51.53 229.78 9366.6 16101.5 12.7 11.3 -40.95 209.89 OBC 16.4 350.6 VBC 29 02 26 29 -32.3 41.8 13616.8 581 06864 D 28 21 18 50 220.74 710.69 7503.86 -44.42 227.45 9087.8 16437.0 13.8 11.3 -39.13 216.49 OBC 23.6 352.1 VBC 29 02 28 29 -32.0 42.2 13582.6 582 06864 D 28 21 20 50 228.02 707.99 7503.93 -37.28 225.62 8814.8 16628.7 14.7 11.4 -37.39 223.19 OBC 30.8 353.0 VBC 29 02 30 29 -31.7 42.6 13548.1 583 06864 D 28 21 22 50 235.30 705.44 7504.01 -30.11 224.12 8551.9 16651.8 15.4 11.4 -35.73 230.04 OBC 38.1 353.5 VBC 29 02 32 29 -31.4 43.0 13513.3 584 06864 D 28 21 24 50 242.58 703.22 7504.10 -22.93 222.81 8303.7 16503.0 16.0 11.4 -34.19 237.05 OBC 45.3 353.8 VBC 29 02 34 29 -31.1 43.4 13478.2 585 06864 D 28 21 26 50 249.86 701.47 7504.20 -15.74 221.65 8074.4 16202.4 16.6 11.5 -32.78 244.24 OBC 52.5 353.8 VBC 29 02 36 29 -30.8 43.8 13442.9 586 06864 D 28 21 28 50 257.14 700.28 7504.30 -8.54 220.56 7868.4 15782.4 17.1 11.5 -31.53 251.61 OBC 59.7 353.7 VBC 29 02 38 29 -30.4 44.2 13407.3 587 06864 D 28 21 30 50 264.42 699.72 7504.40 -1.34 219.51 7689.5 15274.8 17.6 11.5 -30.44 259.17 OBC 66.9 353.1 VBC 29 02 40 29 -30.1 44.6 13371.5 588 06864 D 28 21 31 12 265.77 699.69 Eqa 7504.42 -0.00 219.31 7659.6 15173.1 17.7 11.5 -30.26 63.27 OBC 68.3 353.0 VBC 29 02 40 51 -30.1 44.7 13364.9 589 06864 A 28 21 32 50 271.70 699.83 7504.50 5.86 220.17 7541.3 14850.7 17.3 11.5 -29.55 266.90 OBC 73.8 346.4 VBC 29 02 42 29 -29.8 45.0 13335.5 590 06864 A 28 21 34 50 278.98 700.60 7504.60 13.06 221.24 7426.6 14391.8 16.8 11.5 -28.86 274.78 OBC 80.0 328.5 VBC 29 02 44 29 -29.5 45.4 13299.2 591 06864 A 28 21 36 50 286.26 701.97 7504.71 20.26 222.38 7347.4 13879.0 16.2 11.5 -28.39 282.77 OBC 83.1 282.1 VBC 29 02 46 29 -29.1 45.8 13262.6 592 06864 A 28 21 38 50 293.54 703.86 7504.80 27.45 223.62 7304.6 13325.8 15.6 11.4 -28.13 290.83 OBC 79.9 236.2 VBC 29 02 48 29 -28.8 46.1 13225.9 593 06864 A 28 21 40 50 300.83 706.13 7504.89 34.62 225.05 7298.0 12742.7 14.9 11.4 -28.09 298.92 OBC 73.8 219.2 VBC 29 02 50 29 -28.5 46.5 13188.9 594 06864 A 28 21 42 50 308.11 708.65 7504.98 41.78 226.74 7326.7 12137.9 14.1 11.3 -28.26 307.00 OBC 67.0 212.7 VBC 29 02 52 29 -28.1 46.9 13151.6 595 06864 A 28 21 44 50 315.39 711.24 7505.06 48.90 228.86 7388.3 11517.8 13.1 11.3 -28.63 315.02 OBC 59.9 210.2 VBC 29 02 54 29 -27.8 47.2 13114.2 596 06864 A 28 21 46 50 322.67 713.73 7505.13 55.98 231.68 7480.1 10887.6 11.8 11.2 -29.19 322.95 OBC 52.8 210.2 VBC 29 02 56 29 -27.5 47.6 13076.5 597 06864 A 28 21 48 50 329.95 715.97 7505.18 62.95 235.77 7598.4 10252.0 9.9 11.1 -29.90 330.77 OBC 45.6 212.2 VBC 29 02 58 29 -27.1 48.0 13038.6 598 06864 A 28 21 50 50 337.24 717.81 7505.23 69.74 242.38 7739.5 9614.8 6.8 11.0 -30.75 338.48 OBC 38.4 217.4 VBC 29 03 00 29 -26.8 48.3 13000.5 599 06864 A 28 21 52 50 344.52 719.11 7505.26 76.06 254.92 7899.2 8980.1 1.1 10.9 -31.72 346.05 OBC 31.2 228.8 VBC 29 03 02 29 -26.4 48.7 12962.2 600 06864 A 28 21 54 50 351.80 719.80 7505.28 80.85 283.15 8073.4 8352.1 -11.8 11.2 -32.78 353.51 OBC 24.0 256.2 VBC 29 03 04 29 -26.1 49.0 12923.7 601 06864 A 28 21 56 50 359.08 719.83 7505.29 81.16 331.04 8258.4 7735.3 -36.9 13.5 -33.92 0.85 OBC 16.8 303.5 VBC 29 03 06 29 -25.8 49.4 12885.0 602 06865 A 28 21 57 05 360.00 719.79 Pri 7505.29 80.79 336.36 8282.2 7658.8 -40.2 14.0 -34.07 350.30 OBC 15.9 308.8 VBC 29 03 06 44 -25.7 49.4 12880.1 603 06864 A 28 21 58 50 6.37 719.19 7505.29 76.66 1.78 8450.3 7135.4 57.8 17.2 -35.11 8.09 OBC 9.7 333.9 VBC 29 03 08 29 -25.4 49.7 12846.1 604 06865 A 28 22 00 50 13.65 717.94 7505.27 70.44 15.34 8645.8 6559.1 68.4 20.0 -36.33 15.26 OBC 2.5 347.2 NVD 29 03 10 29 -25.0 50.0 12807.0 605 06865 A 28 22 02 50 20.93 716.14 7505.24 63.68 22.35 8841.8 6015.2 73.9 21.9 -37.57 22.36 OBC -4.6 354.2 NVD 29 03 12 29 -24.7 50.4 12767.7 606 06865 A 28 22 04 50 28.21 713.92 7505.20 56.71 26.63 9035.6 5515.0 77.0 23.3 -38.81 29.42 OBC -11.7 358.6 NVD 29 03 14 29 -24.3 50.7 12728.2 607 06865 A 28 22 06 50 35.50 711.44 7505.14 49.65 29.55 9225.0 5072.8 79.0 24.3 -40.03 36.46 OBC -18.8 1.9 NVD 29 03 16 29 -24.0 51.0 12688.5 608 06865 A 28 22 08 50 42.78 708.84 7505.08 42.53 31.73 9407.7 4706.1 80.4 25.2 -41.23 43.50 OBC -25.8 4.8 NVD 29 03 18 29 -23.6 51.3 12648.7 609 06865 A 28 22 10 50 50.06 706.30 7505.00 35.37 33.45 9582.2 4434.7 81.4 25.9 -42.39 50.56 OBC -32.7 7.6 NVD 29 03 20 29 -23.3 51.7 12608.6 610 06865 A 28 22 12 50 57.34 703.98 7504.92 28.20 34.90 9747.0 4277.2 82.2 26.5 -43.51 57.64 OBC -39.5 10.6 NVD 29 03 22 29 -22.9 52.0 12568.4 611 06865 A 28 22 14 50 64.62 702.05 7504.83 21.01 36.16 9900.9 4246.7 82.7 27.1 -44.56 64.76 OBC -46.2 14.2 NVD 29 03 24 29 -22.5 52.3 12528.0 612 06865 A 28 22 16 50 71.91 700.61 7504.73 13.82 37.31 10043.1 4346.0 83.2 27.6 -45.55 71.93 OBC -52.7 18.9 NVD 29 03 26 29 -22.2 52.6 12487.5 613 06865 A 28 22 18 50 79.19 699.77 7504.63 6.62 38.39 10172.8 4566.4 83.6 28.1 -46.47 79.16 OBC -58.8 25.3 NVD 29 03 28 29 -21.8 52.9 12446.8 614 06865 A 28 22 20 40 85.88 699.58 Eqa 7504.54 0.00 39.35 10280.7 4861.3 83.9 28.6 -47.24 243.24 OBC -63.8 33.5 NVD 29 03 30 19 -21.5 53.2 12409.2 615 06865 D 28 22 20 50 86.47 699.59 7504.53 -0.58 39.26 10289.6 4906.4 83.9 28.5 -47.30 86.45 OBC -64.3 34.1 NVD 29 03 30 29 -21.4 53.2 12405.9 616 06865 D 28 22 22 50 93.75 700.08 7504.42 -7.79 38.22 10393.2 5489.3 83.5 28.0 -48.06 93.81 OBC -70.3 44.1 NVD 29 03 32 29 -21.1 53.5 12364.8 617 06865 D 28 22 24 50 101.03 701.21 7504.32 -14.98 37.14 10483.4 6111.7 83.1 27.5 -48.72 101.22 OBC -75.2 61.6 NVD 29 03 34 29 -20.7 53.8 12323.6 618 06865 D 28 22 26 50 108.31 702.91 7504.22 -22.18 35.98 10560.3 6761.8 82.6 27.0 -49.29 108.69 OBC -77.6 90.3 NVD 29 03 36 29 -20.3 54.1 12282.2 619

Page 285: ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM …myreaders.info/00_Orbital__Mechanics__-__Model_____Simulation... · ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM-MSS)

www.m

yrea

ders

.inf

o

OM-MSS Page 285 SATELLITE PASS - GROUND TRACE [acronym - Line Of Sight (LOS), On Board Computerr (OBC), Visible Band Camera (VBC), Night Vision Devices (NVD) ] ORBIT, INPUT TIME, POSIION, SAT VELOCITY, GROUND TRACE, RANGE, DIST, PITCH/ROLL, EL/AZ, ACCESS EL/AZ, DATA SOLAR TIME EL/AZ, DIST Line 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 @ES 18 19 20 @SS 21 22 23 24 25 26 27 @ES 28 29 30 No. Node GMT Anomaly Height @ Vel Lat(SAT)Log Slant S-Sat Pitch Roll EL(SAT)AZ Control EL(SUN)AZ Acq. LMT(ES) EL(SUN)AZ S-Sun Nos D H M S deg km meter deg deg km km deg deg deg D H M S deg km 06865 D 28 22 28 50 115.59 705.10 7504.12 -29.36 34.69 10623.9 7431.3 82.0 26.4 -49.77 116.22 OBC -76.2 121.6 NVD 29 03 38 29 -20.0 54.4 12240.7 620 06865 D 28 22 30 50 122.87 707.62 7504.03 -36.53 33.21 10674.4 8114.3 81.2 25.8 -50.15 123.79 OBC -72.0 142.9 NVD 29 03 40 29 -19.6 54.7 12199.0 621 06865 D 28 22 32 50 130.15 710.33 7503.95 -43.68 31.43 10712.3 8806.1 80.2 25.1 -50.43 131.39 OBC -66.3 155.6 NVD 29 03 42 29 -19.2 55.0 12157.2 622 06865 D 28 22 34 50 137.43 713.05 7503.88 -50.79 29.16 10737.8 9503.2 78.8 24.2 -50.63 139.02 OBC -60.0 164.0 NVD 29 03 44 29 -18.8 55.3 12115.2 623 06865 D 28 22 36 50 144.71 715.62 7503.81 -57.84 26.07 10751.4 10202.5 76.6 23.1 -50.73 146.66 OBC -53.5 170.7 NVD 29 03 46 29 -18.5 55.6 12073.1 624 06865 D 28 22 38 50 151.99 717.86 7503.76 -64.78 21.50 10753.6 10901.0 73.2 21.7 -50.75 154.31 OBC -46.8 177.5 NVD 29 03 48 29 -18.1 55.9 12030.8 625 06865 D 28 22 40 50 159.27 719.65 7503.71 -71.48 13.81 10744.8 11595.7 67.2 19.6 -50.68 161.95 OBC -40.0 186.5 NVD 29 03 50 29 -17.7 56.1 11988.4 626 06865 D 28 22 42 50 166.55 720.85 7503.68 -77.55 358.47 10725.7 12283.4 -55.3 16.7 -50.53 169.58 OBC -33.2 202.5 NVD 29 03 52 29 -17.3 56.4 11945.9 627 06865 D 28 22 44 50 173.83 721.40 7503.67 -81.52 323.75 10696.6 12960.0 -32.6 13.0 -50.31 177.19 OBC -26.3 237.5 NVD 29 03 54 29 -16.9 56.7 11903.2 628 06865 D 28 22 46 32 180.00 721.33 Apo 7503.66 -80.83 282.93 10664.7 13521.1 -11.7 11.2 -50.07 184.61 OBC -20.5 278.3 NVD 29 03 56 11 -16.6 56.9 11866.9 629 06865 D 28 22 46 50 181.11 721.26 7503.66 -80.29 277.02 10658.2 13620.3 -8.9 11.1 -50.02 184.77 OBC -19.5 284.2 NVD 29 03 56 29 -16.5 57.0 11860.4 630 06865 D 28 22 48 50 188.39 720.44 7503.67 -75.12 252.30 10611.0 14257.3 2.3 11.0 -49.66 192.32 OBC -12.6 308.5 NVD 29 03 58 29 -16.2 57.2 11817.4 631 06865 D 28 22 50 50 195.67 718.99 7503.69 -68.69 241.11 10555.4 14860.8 7.4 11.1 -49.25 199.84 OBC -5.8 319.1 NVD 29 04 00 29 -15.8 57.5 11774.3 632 06865 D 28 22 52 50 202.95 717.01 7503.73 -61.87 235.05 10492.0 15416.9 10.2 11.1 -48.78 207.33 OBC 1.0 324.2 NVD 29 04 02 29 -15.4 57.8 11731.1 633 06865 D 28 22 54 50 210.23 714.62 7503.77 -54.87 231.22 10421.1 15905.2 12.0 11.2 -48.25 214.77 OBC 7.7 326.9 VBC 29 04 04 29 -15.0 58.0 11687.8 634 06865 D 28 22 56 50 217.51 711.98 7503.83 -47.79 228.54 10343.2 16298.3 13.3 11.3 -47.69 222.19 OBC 14.4 328.1 VBC 29 04 06 29 -14.6 58.3 11644.3 635 06865 D 28 22 58 50 224.79 709.25 7503.90 -40.66 226.50 10258.6 16563.1 14.2 11.3 -47.08 229.56 OBC 21.1 328.2 VBC 29 04 08 29 -14.2 58.6 11600.8 636 06865 D 28 23 00 50 232.07 706.61 7503.98 -33.50 224.86 10167.9 16668.9 15.0 11.4 -46.43 236.91 OBC 27.6 327.6 VBC 29 04 10 29 -13.8 58.8 11557.1 637 06865 D 28 23 02 50 239.35 704.22 7504.06 -26.33 223.48 10071.4 16600.8 15.7 11.4 -45.75 244.22 OBC 34.0 326.0 VBC 29 04 12 29 -13.4 59.1 11513.3 638 06865 D 28 23 04 50 246.63 702.23 7504.15 -19.14 222.25 9969.4 16368.5 16.3 11.5 -45.03 251.51 OBC 40.3 323.6 VBC 29 04 14 29 -13.0 59.3 11469.3 639 06865 D 28 23 06 50 253.91 700.76 7504.25 -11.94 221.13 9862.4 16000.6 16.8 11.5 -44.29 258.77 OBC 46.3 320.0 VBC 29 04 16 29 -12.6 59.6 11425.3 640 06865 D 28 23 08 50 261.19 699.90 7504.35 -4.74 220.07 9750.8 15530.5 17.3 11.5 -43.53 266.02 OBC 52.0 314.9 VBC 29 04 18 29 -12.2 59.8 11381.1 641 06865 D 28 23 10 09 265.98 699.69 Eqa 7504.42 -0.00 219.38 9675.0 15179.3 17.7 11.5 -43.01 63.21 OBC 55.5 310.5 VBC 29 04 19 48 -12.0 60.0 11352.0 642 06865 A 28 23 10 50 268.47 699.69 7504.45 2.46 219.74 9635.0 15050.3 17.5 11.5 -42.74 273.25 OBC 56.6 307.2 VBC 29 04 20 29 -11.8 60.1 11336.8 643 06865 A 28 23 12 50 275.75 700.16 7504.56 9.66 220.79 9515.6 14622.0 17.0 11.5 -41.94 280.47 OBC 59.1 296.2 VBC 29 04 22 29 -11.4 60.3 11292.5 644 06865 A 28 23 14 50 283.03 701.25 7504.66 16.86 221.89 9393.0 14132.2 16.5 11.5 -41.13 287.69 OBC 60.1 284.1 VBC 29 04 24 29 -11.0 60.6 11248.0 645 06865 A 28 23 16 50 290.31 702.91 7504.76 24.05 223.08 9268.0 13596.0 15.9 11.4 -40.31 294.90 OBC 59.6 272.0 VBC 29 04 26 29 -10.6 60.8 11203.4 646 06865 A 28 23 18 50 297.59 705.02 7504.85 31.23 224.41 9141.3 13025.3 15.2 11.4 -39.49 302.13 OBC 57.5 261.3 VBC 29 04 28 29 -10.2 61.0 11158.7 647 06865 A 28 23 20 50 304.88 707.44 7504.94 38.40 225.96 9013.8 12429.3 14.5 11.4 -38.66 309.37 OBC 54.3 252.7 VBC 29 04 30 29 -9.8 61.3 11113.9 648 06865 A 28 23 22 50 312.16 710.01 7505.02 45.54 227.86 8886.5 11815.1 13.6 11.3 -37.85 316.64 OBC 50.1 246.4 VBC 29 04 32 29 -9.4 61.5 11069.0 649 06865 A 28 23 24 50 319.44 712.57 7505.10 52.64 230.30 8760.5 11188.6 12.4 11.2 -37.05 323.93 OBC 45.3 242.5 VBC 29 04 34 29 -9.0 61.7 11024.0 650 06865 A 28 23 26 50 326.72 714.96 7505.16 59.67 233.69 8637.1 10554.5 10.9 11.2 -36.27 331.25 OBC 40.0 241.0 VBC 29 04 36 29 -8.6 62.0 10978.9 651 06865 A 28 23 28 50 334.00 717.00 7505.21 66.57 238.87 8517.6 9917.0 8.5 11.1 -35.53 338.62 OBC 34.5 242.4 VBC 29 04 38 29 -8.2 62.2 10933.7 652 06865 A 28 23 30 50 341.29 718.57 7505.25 73.17 247.92 8403.8 9280.1 4.3 11.0 -34.82 346.03 OBC 28.8 248.5 VBC 29 04 40 29 -7.8 62.4 10888.4 653 06865 A 28 23 32 50 348.57 719.56 7505.28 78.91 266.91 8297.2 8647.8 -4.3 11.0 -34.16 353.50 OBC 22.9 265.3 VBC 29 04 42 29 -7.4 62.7 10843.0 654 06865 A 28 23 34 50 355.85 719.90 7505.29 81.78 308.10 8199.6 8024.5 -24.1 12.1 -33.56 1.01 OBC 17.0 304.9 VBC 29 04 44 29 -7.0 62.9 10797.6 655 06866 A 28 23 35 58 360.00 719.80 Pri 7505.29 80.88 335.23 8148.8 7675.4 -39.5 13.9 -33.25 350.44 OBC 13.6 331.3 VBC 29 04 45 37 -6.8 63.0 10771.6 656 06865 A 28 23 36 50 3.13 719.58 7505.29 79.16 350.43 8113.0 7415.3 -49.5 15.5 -33.03 8.58 OBC 11.1 346.1 VBC 29 04 46 29 -6.6 63.1 10752.0 657 06866 A 28 23 38 50 10.42 718.60 7505.28 73.49 10.24 8039.3 6826.2 64.4 18.8 -32.58 16.20 OBC 5.1 5.2 VBC 29 04 48 29 -6.2 63.3 10706.3 658 06866 A 28 23 40 50 17.70 717.05 7505.25 66.91 19.59 7980.2 6265.0 71.8 21.1 -32.22 23.87 OBC -0.8 14.4 NVD 29 04 50 29 -5.8 63.5 10660.6 659 06866 A 28 23 42 50 24.98 715.02 7505.22 60.02 24.90 7937.8 5741.8 75.8 22.7 -31.96 31.57 OBC -6.6 19.9 NVD 29 04 52 29 -5.4 63.8 10614.8 660 06866 A 28 23 44 50 32.26 712.64 7505.17 53.00 28.35 7913.4 5269.4 78.2 23.9 -31.81 39.30 OBC -12.3 23.9 NVD 29 04 54 29 -4.9 64.0 10568.9 661 06866 A 28 23 46 50 39.55 710.07 7505.11 45.90 30.83 7908.7 4863.9 79.9 24.8 -31.78 47.04 OBC -17.8 27.5 NVD 29 04 56 29 -4.5 64.2 10522.9 662 06866 A 28 23 48 50 46.83 707.48 7505.03 38.76 32.75 7924.7 4544.1 81.0 25.6 -31.87 54.78 OBC -23.2 31.0 NVD 29 04 58 29 -4.1 64.4 10476.8 663

Page 286: ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM …myreaders.info/00_Orbital__Mechanics__-__Model_____Simulation... · ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM-MSS)

www.m

yrea

ders

.inf

o

OM-MSS Page 286 SATELLITE PASS - GROUND TRACE [acronym - Line Of Sight (LOS), On Board Computerr (OBC), Visible Band Camera (VBC), Night Vision Devices/Camera (NVD)] ORBIT, INPUT TIME, POSIION, SAT VELOCITY, GROUND TRACE, RANGE, DIST, PITCH/ROLL, EL/AZ, ACCESS EL/AZ, DATA SOLAR TIME EL/AZ, DIST Line 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 @ES 18 19 20 @SS 21 22 23 24 25 26 27 @ES 28 29 30 No. Node GMT Anomaly Height @ Vel Lat(SAT)Log Slant S-Sat Pitch Roll EL(SAT)AZ Control EL(SUN)AZ Acq. LMT(ES) EL(SUN)AZ S-Sun Nos D H M S deg km meter deg deg km km deg deg deg D H M S deg km 06866 A 28 23 50 50 54.11 705.04 7504.95 31.59 34.31 7962.0 4330.0 81.9 26.2 -32.10 62.50 OBC -28.3 34.8 NVD 29 05 00 29 -3.7 64.6 10430.6 664 06866 A 28 23 52 50 61.39 702.91 7504.87 24.41 35.65 8021.1 4238.0 82.5 26.8 -32.46 70.19 OBC -33.1 39.0 NVD 29 05 02 29 -3.3 64.8 10384.4 665 06866 A 28 23 54 50 68.67 701.22 7504.77 17.22 36.85 8101.8 4276.3 83.0 27.4 -32.95 77.82 OBC -37.4 43.8 NVD 29 05 04 29 -2.9 65.0 10338.0 666 06866 A 28 23 56 50 75.96 700.09 7504.67 10.02 37.95 8203.6 4441.2 83.4 27.9 -33.58 85.38 OBC -41.2 49.3 NVD 29 05 06 29 -2.5 65.2 10291.6 667 06866 A 28 23 58 50 83.24 699.60 7504.57 2.82 39.01 8325.4 4719.3 83.8 28.4 -34.33 92.86 OBC -44.4 55.7 NVD 29 05 08 29 -2.0 65.4 10245.2 668 06866 A 28 23 59 37 86.09 699.58 Eqa 7504.53 0.00 39.42 8378.3 4855.1 83.9 28.6 -34.65 243.18 OBC -45.4 58.4 NVD 29 05 09 16 -1.9 65.5 10226.9 669 06866 D 29 00 00 50 90.52 699.77 7504.47 -4.38 38.78 8465.7 5201.8 83.7 28.3 -35.20 100.25 OBC -47.9 62.3 NVD 29 05 10 29 -1.6 65.6 10198.6 670 06866 D 29 00 02 50 97.80 700.60 7504.37 -11.58 37.72 8622.9 5807.7 83.4 27.8 -36.18 107.55 OBC -51.3 69.8 NVD 29 05 12 29 -1.2 65.8 10152.0 671 06866 D 29 00 04 50 105.08 702.04 7504.26 -18.78 36.60 8794.8 6446.3 82.9 27.3 -37.26 114.76 OBC -53.9 78.9 NVD 29 05 14 29 -0.8 66.0 10105.3 672 06866 D 29 00 06 50 112.36 704.02 7504.17 -25.96 35.39 8979.2 7108.0 82.4 26.7 -38.44 121.87 OBC -55.3 89.1 NVD 29 05 16 29 -0.4 66.2 10058.5 673 06866 D 29 00 08 50 119.64 706.40 7504.07 -33.14 34.01 9173.4 7785.6 81.7 26.1 -39.69 128.91 OBC -55.5 100.0 NVD 29 05 18 29 0.1 66.4 10011.7 674 06866 D 29 00 10 50 126.92 709.04 7503.99 -40.30 32.39 9374.8 8474.2 80.8 25.4 -41.01 135.89 OBC -54.4 110.9 NVD 29 05 20 29 0.5 66.6 9964.8 675 06866 D 29 00 12 50 134.20 711.77 7503.91 -47.43 30.38 9580.8 9169.6 79.6 24.7 -42.37 142.81 OBC -52.3 121.2 NVD 29 05 22 29 0.9 66.8 9917.8 676 06866 D 29 00 14 50 141.48 714.43 7503.84 -54.51 27.73 9788.6 9868.6 77.8 23.7 -43.78 149.71 OBC -49.2 130.9 NVD 29 05 24 29 1.3 67.0 9870.7 677 06866 D 29 00 16 50 148.76 716.85 7503.78 -61.52 23.98 9995.5 10568.2 75.1 22.4 -45.21 156.61 OBC -45.4 140.3 NVD 29 05 26 29 1.8 67.2 9823.6 678 06866 D 29 00 18 50 156.04 718.87 7503.73 -68.36 18.08 10198.8 11265.5 70.5 20.7 -46.64 163.53 OBC -41.0 150.6 NVD 29 05 28 29 2.2 67.4 9776.4 679 06866 D 29 00 20 50 163.32 720.36 7503.70 -74.81 7.28 10395.8 11957.5 62.0 18.2 -48.07 170.50 OBC -36.3 164.8 NVD 29 05 30 29 2.6 67.6 9729.2 680 06866 D 29 00 22 50 170.60 721.23 7503.67 -80.10 343.59 10584.1 12640.4 -44.8 14.7 -49.46 177.55 OBC -31.3 190.9 NVD 29 05 32 29 3.0 67.8 9681.9 681 06866 D 29 00 24 50 177.88 721.42 7503.66 -81.60 297.48 10761.3 13309.7 -18.7 11.6 -50.81 184.70 OBC -26.1 238.8 NVD 29 05 34 29 3.4 68.0 9634.5 682 06866 D 29 00 25 25 180.00 721.34 Apo 7503.66 -80.93 284.21 10810.4 13501.4 -12.3 11.2 -51.19 184.77 OBC -24.6 252.4 NVD 29 05 35 04 3.6 68.0 9620.7 683 06866 D 29 00 26 50 185.16 720.91 7503.66 -77.83 261.49 10924.9 13959.3 -1.8 11.0 -52.08 191.99 OBC -20.8 275.9 NVD 29 05 36 29 3.9 68.2 9587.1 684 06866 D 29 00 28 50 192.44 719.75 7503.68 -71.81 245.52 11073.0 14580.9 5.4 11.0 -53.27 199.43 OBC -15.5 292.4 NVD 29 05 38 29 4.3 68.3 9539.6 685 06866 D 29 00 30 50 199.72 718.01 7503.71 -65.13 237.59 11203.3 15162.3 9.0 11.1 -54.33 207.05 OBC -10.0 300.4 NVD 29 05 40 29 4.7 68.5 9492.0 686 06866 D 29 00 32 50 207.00 715.79 7503.75 -58.19 232.91 11314.2 15686.6 11.2 11.2 -55.26 214.84 OBC -4.6 304.7 NVD 29 05 42 29 5.2 68.7 9444.4 687 06866 D 29 00 34 50 214.28 713.25 7503.80 -51.15 229.77 11403.7 16129.7 12.7 11.3 -56.03 222.80 OBC 0.7 307.0 NVD 29 05 44 29 5.6 68.9 9396.7 688 06866 D 29 00 36 50 221.56 710.54 7503.87 -44.04 227.47 11470.5 16460.6 13.8 11.3 -56.61 230.92 OBC 6.0 308.1 VBC 29 05 46 29 6.0 69.1 9348.9 689 06866 D 29 00 38 50 228.84 707.84 7503.94 -36.89 225.67 11513.1 16645.9 14.6 11.4 -56.98 239.16 OBC 11.2 308.1 VBC 29 05 48 29 6.4 69.3 9301.2 690 06866 D 29 00 40 50 236.12 705.31 7504.02 -29.72 224.18 11530.3 16661.2 15.4 11.4 -57.14 247.47 OBC 16.3 307.4 VBC 29 05 50 29 6.9 69.4 9253.3 691 06866 D 29 00 42 50 243.40 703.11 7504.11 -22.54 222.88 11521.2 16504.2 16.0 11.4 -57.06 255.79 OBC 21.1 306.0 VBC 29 05 52 29 7.3 69.6 9205.4 692 06866 D 29 00 44 50 250.68 701.38 7504.21 -15.35 221.72 11484.9 16196.3 16.5 11.5 -56.74 264.06 OBC 25.8 303.8 VBC 29 05 54 29 7.7 69.8 9157.4 693 06866 D 29 00 46 50 257.96 700.22 7504.31 -8.15 220.63 11420.8 15770.2 17.1 11.5 -56.18 272.22 OBC 30.1 300.8 VBC 29 05 56 29 8.2 70.0 9109.4 694 06866 D 29 00 48 50 265.24 699.70 7504.41 -0.95 219.59 11328.7 15258.0 17.6 11.5 -55.39 280.20 OBC 34.1 297.1 VBC 29 05 58 29 8.6 70.1 9061.3 695 06866 D 29 00 49 06 266.20 699.69 Eqa 7504.42 -0.00 219.45 11314.4 15185.5 17.6 11.5 -55.27 63.15 OBC 34.6 296.5 VBC 29 05 58 45 8.7 70.2 9055.0 696 06866 A 29 00 50 50 272.52 699.85 7504.51 6.25 220.36 11208.2 14839.0 17.2 11.5 -54.38 287.98 OBC 35.9 292.2 VBC 29 06 00 29 9.0 70.3 9013.2 697 06866 A 29 00 52 50 279.80 700.66 7504.62 13.45 221.43 11059.6 14375.6 16.7 11.5 -53.17 295.52 OBC 36.9 287.1 VBC 29 06 02 29 9.5 70.5 8965.0 698 06866 A 29 00 54 50 287.08 702.06 7504.72 20.65 222.58 10883.2 13859.1 16.1 11.4 -51.76 302.82 OBC 37.2 282.0 VBC 29 06 04 29 9.9 70.6 8916.8 699 06866 A 29 00 56 50 294.36 703.97 7504.81 27.83 223.83 10679.6 13302.8 15.5 11.4 -50.19 309.87 OBC 36.8 277.2 VBC 29 06 06 29 10.3 70.8 8868.5 700 06866 A 29 00 58 50 301.64 706.26 7504.90 35.01 225.27 10449.8 12717.2 14.8 11.4 -48.48 316.70 OBC 35.8 272.8 VBC 29 06 08 29 10.8 71.0 8820.2 701 06866 A 29 01 00 50 308.93 708.78 7504.99 42.16 226.98 10195.1 12110.3 14.0 11.3 -46.63 323.34 OBC 34.1 269.2 VBC 29 06 10 29 11.2 71.2 8771.8 702 06866 A 29 01 02 50 316.21 711.37 7505.07 49.29 229.13 9917.1 11488.4 13.0 11.3 -44.68 329.81 OBC 32.0 266.5 VBC 29 06 12 29 11.6 71.3 8723.4 703 06866 A 29 01 04 50 323.49 713.86 7505.13 56.35 232.00 9617.8 10856.8 11.6 11.2 -42.63 336.17 OBC 29.5 265.0 VBC 29 06 14 29 12.1 71.5 8674.9 704 06866 A 29 01 06 50 330.77 716.08 7505.19 63.33 236.18 9299.7 10219.8 9.7 11.1 -40.52 342.45 OBC 26.5 265.5 VBC 29 06 16 29 12.5 71.7 8626.4 705 06866 A 29 01 08 50 338.06 717.89 7505.23 70.10 242.99 8965.8 9581.6 6.6 11.0 -38.36 348.72 OBC 23.3 269.1 VBC 29 06 18 29 12.9 71.8 8577.9 706 06866 A 29 01 10 50 345.34 719.16 7505.27 76.37 256.05 8619.8 8946.1 0.6 10.9 -36.17 355.01 OBC 19.9 279.6 VBC 29 06 20 29 13.4 72.0 8529.3 707

Page 287: ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM …myreaders.info/00_Orbital__Mechanics__-__Model_____Simulation... · ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM-MSS)

www.m

yrea

ders

.inf

o

OM-MSS Page 287 SATELLITE PASS - GROUND TRACE [acronym - Line Of Sight (LOS), On Board Computerr (OBC), Visible Band Camera (VBC), Night Vision Devices (NVD) ] ORBIT, INPUT TIME, POSIION, SAT VELOCITY, GROUND TRACE, RANGE, DIST, PITCH/ROLL, EL/AZ, ACCESS EL/AZ, DATA SOLAR TIME EL/AZ, DIST Line 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 @ES 18 19 20 @SS 21 22 23 24 25 26 27 @ES 28 29 30 No. Node GMT Anomaly Height @ Vel Lat(SAT)Log Slant S-Sat Pitch Roll EL(SAT)AZ Control EL(SUN)AZ Acq. LMT(ES) EL(SUN)AZ S-Sun Nos D H M S deg km meter deg deg km km deg deg deg D H M S deg km 06866 A 29 01 12 50 352.62 719.82 7505.29 81.02 285.56 8265.8 8317.4 -12.9 11.3 -33.97 1.40 OBC 16.3 306.9 VBC 29 06 22 29 13.8 72.1 8480.6 708 06866 A 29 01 14 50 359.90 719.81 7505.29 81.01 333.51 7908.9 7700.2 -38.4 13.7 -31.78 7.95 OBC 12.7 353.2 VBC 29 06 24 29 14.3 72.3 8431.9 709 06867 A 29 01 14 52 360.00 719.81 Pri 7505.29 80.97 334.08 7904.2 7692.1 -38.7 13.8 -31.75 350.59 OBC 12.6 353.8 VBC 29 06 24 31 14.3 72.3 8431.2 710 06866 A 29 01 16 50 7.19 719.14 7505.29 76.35 2.95 7555.2 7100.1 58.7 17.4 -29.64 14.71 OBC 8.9 21.4 VBC 29 06 26 29 14.7 72.5 8383.2 711 06867 A 29 01 18 50 14.47 717.85 7505.27 70.08 15.97 7211.4 6524.0 68.9 20.2 -27.58 21.76 OBC 5.2 33.6 VBC 29 06 28 29 15.1 72.6 8334.4 712 06867 A 29 01 20 50 21.75 716.03 7505.23 63.31 22.77 6885.8 5980.7 74.2 22.1 -25.63 29.15 OBC 1.5 39.9 NVD 29 06 30 29 15.6 72.8 8285.5 713 06867 A 29 01 22 50 29.03 713.80 7505.19 56.33 26.95 6587.4 5481.7 77.3 23.4 -23.84 36.95 OBC -2.1 44.0 NVD 29 06 32 29 16.0 73.0 8236.7 714 06867 A 29 01 24 50 36.32 711.30 7505.13 49.26 29.82 6326.0 5041.5 79.2 24.4 -22.28 45.17 OBC -5.6 47.2 NVD 29 06 34 29 16.4 73.1 8187.8 715 06867 A 29 01 26 50 43.60 708.70 7505.07 42.14 31.96 6112.2 4677.9 80.6 25.3 -20.99 53.81 OBC -8.9 49.9 NVD 29 06 36 29 16.9 73.3 8138.8 716 06867 A 29 01 28 50 50.88 706.17 7504.99 34.99 33.67 5955.9 4410.8 81.5 26.0 -20.04 62.84 OBC -12.1 52.5 NVD 29 06 38 29 17.3 73.4 8089.8 717 06867 A 29 01 30 50 58.16 703.87 7504.91 27.81 35.11 5865.7 4258.9 82.3 26.6 -19.50 72.15 OBC -15.0 55.1 NVD 29 06 40 29 17.8 73.6 8040.8 718 06867 A 29 01 32 50 65.44 701.96 7504.82 20.62 36.36 5847.7 4235.0 82.8 27.2 -19.39 81.58 OBC -17.6 57.9 NVD 29 06 42 29 18.2 73.7 7991.7 719 06867 A 29 01 34 50 72.72 700.55 7504.72 13.43 37.50 5904.5 4341.2 83.3 27.7 -19.73 90.97 OBC -19.9 60.7 NVD 29 06 44 29 18.6 73.9 7942.6 720 06867 A 29 01 36 50 80.01 699.75 7504.62 6.23 38.58 6034.5 4568.2 83.7 28.2 -20.52 100.14 OBC -21.9 63.7 NVD 29 06 46 29 19.1 74.0 7893.4 721 06867 A 29 01 38 34 86.30 699.58 Eqa 7504.53 0.00 39.48 6202.3 4848.9 83.9 28.7 -21.53 243.13 OBC -23.3 66.4 NVD 29 06 48 13 19.5 74.2 7850.9 722 06867 D 29 01 38 50 87.29 699.60 7504.52 -0.97 39.34 6232.8 4924.3 83.9 28.6 -21.71 108.95 OBC -23.8 66.8 NVD 29 06 48 29 19.5 74.2 7844.3 723 06867 D 29 01 40 50 94.57 700.13 7504.41 -8.17 38.30 6491.5 5510.6 83.6 28.1 -23.26 117.28 OBC -27.0 69.9 NVD 29 06 50 29 20.0 74.3 7795.0 724 06867 D 29 01 42 50 101.85 701.29 7504.31 -15.37 37.21 6801.0 6135.6 83.2 27.5 -25.11 125.11 OBC -29.8 73.6 NVD 29 06 52 29 20.4 74.5 7745.8 725 06867 D 29 01 44 50 109.13 703.03 7504.21 -22.57 36.05 7151.4 6787.8 82.7 27.0 -27.21 132.43 OBC -32.1 77.9 NVD 29 06 54 29 20.9 74.7 7696.5 726 06867 D 29 01 46 50 116.41 705.23 7504.11 -29.75 34.75 7532.8 7459.0 82.1 26.4 -29.49 139.28 OBC -34.1 82.8 NVD 29 06 56 29 21.3 74.8 7647.1 727 06867 D 29 01 48 50 123.69 707.77 7504.02 -36.92 33.26 7936.0 8143.4 81.3 25.8 -31.93 145.70 OBC -35.4 88.3 NVD 29 06 58 29 21.7 75.0 7597.8 728 06867 D 29 01 50 50 130.97 710.48 7503.94 -44.06 31.45 8352.5 8836.3 80.2 25.1 -34.49 151.77 OBC -36.3 94.3 NVD 29 07 00 29 22.2 75.1 7548.4 729 06867 D 29 01 52 50 138.25 713.20 7503.87 -51.17 29.15 8774.8 9534.4 78.8 24.2 -37.13 157.55 OBC -36.5 101.0 NVD 29 07 02 29 22.6 75.2 7498.9 730 06867 D 29 01 54 50 145.53 715.75 7503.80 -58.22 26.01 9196.3 10234.5 76.6 23.1 -39.83 163.12 OBC -36.2 108.4 NVD 29 07 04 29 23.1 75.4 7449.5 731 06867 D 29 01 56 50 152.81 717.97 7503.75 -65.15 21.32 9611.0 10933.7 73.1 21.6 -42.58 168.55 OBC -35.4 117.3 NVD 29 07 06 29 23.5 75.5 7400.0 732 06867 D 29 01 58 50 160.09 719.73 7503.71 -71.83 13.38 10013.9 11629.0 66.8 19.5 -45.34 173.92 OBC -34.0 129.1 NVD 29 07 08 29 24.0 75.7 7350.4 733 06867 D 29 02 00 50 167.37 720.90 7503.68 -77.85 357.37 10400.1 12317.2 -54.5 16.5 -48.10 179.31 OBC -32.2 148.7 NVD 29 07 10 29 24.4 75.8 7300.9 734 06867 D 29 02 02 50 174.65 721.41 7503.66 -81.60 321.28 10765.7 12994.1 -31.2 12.8 -50.84 184.80 OBC -29.9 187.9 NVD 29 07 12 29 24.9 76.0 7251.3 735 06867 D 29 02 04 18 180.00 721.35 Apo 7503.66 -81.01 285.51 11019.1 13481.6 -12.9 11.3 -52.83 184.93 OBC -28.0 225.6 NVD 29 07 13 57 25.2 76.1 7214.8 736 06867 D 29 02 04 50 181.93 721.24 7503.66 -80.08 275.22 11106.9 13654.5 -8.1 11.1 -53.54 190.48 OBC -27.3 236.6 NVD 29 07 14 29 25.3 76.1 7201.6 737 06867 D 29 02 06 50 189.21 720.38 7503.67 -74.79 251.60 11420.5 14291.3 2.6 11.0 -56.17 196.46 OBC -24.5 262.4 NVD 29 07 16 29 25.8 76.3 7152.0 738 06867 D 29 02 08 50 196.49 718.90 7503.69 -68.33 240.83 11703.4 14894.2 7.5 11.1 -58.70 202.87 OBC -21.4 274.9 NVD 29 07 18 29 26.2 76.4 7102.3 739 06867 D 29 02 10 50 203.77 716.89 7503.73 -61.49 234.93 11953.2 15449.0 10.3 11.1 -61.09 209.82 OBC -18.1 282.1 NVD 29 07 20 29 26.6 76.6 7052.5 740 06867 D 29 02 12 50 211.05 714.48 7503.78 -54.49 231.19 12167.6 15935.0 12.0 11.2 -63.29 217.48 OBC -14.7 286.8 NVD 29 07 22 29 27.1 76.7 7002.8 741 06867 D 29 02 14 50 218.33 711.83 7503.84 -47.41 228.55 12344.5 16324.4 13.3 11.3 -65.24 225.97 OBC -11.2 289.9 NVD 29 07 24 29 27.5 76.8 6953.0 742 06867 D 29 02 16 50 225.60 709.10 7503.91 -40.27 226.54 12482.2 16583.6 14.2 11.3 -66.86 235.38 OBC -7.6 291.9 NVD 29 07 26 29 28.0 77.0 6903.2 743 06867 D 29 02 18 50 232.88 706.47 7503.98 -33.12 224.92 12579.2 16682.1 15.0 11.4 -68.06 245.70 OBC -4.0 293.3 NVD 29 07 28 29 28.4 77.1 6853.4 744 06867 D 29 02 20 50 240.17 704.10 7504.07 -25.94 223.54 12634.3 16605.8 15.7 11.4 -68.78 256.75 OBC -0.4 293.9 NVD 29 07 30 29 28.9 77.3 6803.5 745 06867 D 29 02 22 50 247.45 702.13 7504.16 -18.75 222.33 12646.7 16365.7 16.2 11.5 -68.94 268.18 OBC 3.1 294.1 NVD 29 07 32 29 29.3 77.4 6753.6 746 06867 D 29 02 24 50 254.73 700.69 7504.26 -11.56 221.21 12615.5 15991.1 16.8 11.5 -68.53 279.51 OBC 6.6 293.7 VBC 29 07 34 29 29.8 77.6 6703.7 747 06867 D 29 02 26 50 262.01 699.86 7504.36 -4.36 220.15 12540.3 15515.7 17.3 11.5 -67.58 290.27 OBC 9.9 292.8 VBC 29 07 36 29 30.2 77.7 6653.7 748 06867 D 29 02 28 03 266.41 699.68 Eqa 7504.43 -0.00 219.52 12473.4 15191.7 17.6 11.5 -66.76 63.10 OBC 11.9 292.1 VBC 29 07 37 42 30.5 77.8 6623.5 749 06867 A 29 02 28 50 269.29 699.70 7504.47 2.85 219.93 12420.9 15041.0 17.4 11.5 -66.13 300.15 OBC 12.4 291.5 VBC 29 07 38 29 30.7 77.8 6603.7 750 06867 A 29 02 30 50 276.57 700.19 7504.57 10.05 220.99 12257.5 14607.7 16.9 11.5 -64.27 309.02 OBC 13.5 290.0 VBC 29 07 40 29 31.1 78.0 6553.7 751 06867 A 29 02 32 50 283.85 701.32 7504.67 17.24 222.09 12050.3 14113.9 16.4 11.5 -62.08 316.90 OBC 14.4 288.5 VBC 29 07 42 29 31.6 78.1 6503.7 752

Page 288: ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM …myreaders.info/00_Orbital__Mechanics__-__Model_____Simulation... · ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM-MSS)

www.m

yrea

ders

.inf

o

OM-MSS Page 288 SATELLITE PASS - GROUND TRACE [acronym - Line Of Sight (LOS), On Board Computerr (OBC), Visible Band Camera (VBC), Night Vision Devices (NVD) ] ORBIT, INPUT TIME, POSIION, SAT VELOCITY, GROUND TRACE, RANGE, DIST, PITCH/ROLL, EL/AZ, ACCESS EL/AZ, DATA SOLAR TIME EL/AZ, DIST Line 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 @ES 18 19 20 @SS 21 22 23 24 25 26 27 @ES 28 29 30 No. Node GMT Anomaly Height @ Vel Lat(SAT)Log Slant S-Sat Pitch Roll EL(SAT)AZ Control EL(SUN)AZ Acq. LMT(ES) EL(SUN)AZ S-Sun Nos D H M S deg km meter deg deg km km deg deg deg D H M S deg km 06867 A 29 02 34 50 291.13 703.01 7504.77 24.44 223.29 11799.8 13574.3 15.8 11.4 -59.62 323.89 OBC 15.1 287.2 VBC 29 07 44 29 32.0 78.3 6453.7 753 06867 A 29 02 36 50 298.41 705.13 7504.86 31.62 224.63 11507.1 13000.9 15.1 11.4 -56.94 330.13 OBC 15.6 286.1 VBC 29 07 46 29 32.5 78.4 6403.6 754 06867 A 29 02 38 50 305.69 707.57 7504.95 38.78 226.19 11173.1 12402.6 14.4 11.3 -54.09 335.76 OBC 15.9 285.2 VBC 29 07 48 29 32.9 78.5 6353.5 755 06867 A 29 02 40 50 312.98 710.15 7505.03 45.92 228.11 10799.3 11786.5 13.5 11.3 -51.11 340.91 OBC 16.0 284.7 VBC 29 07 50 29 33.4 78.7 6303.3 756 06867 A 29 02 42 50 320.26 712.71 7505.10 53.02 230.59 10387.4 11158.4 12.3 11.2 -48.02 345.69 OBC 15.9 284.9 VBC 29 07 52 29 33.8 78.8 6253.2 757 06867 A 29 02 44 50 327.54 715.07 7505.16 60.05 234.05 9939.6 10522.9 10.7 11.2 -44.83 350.21 OBC 15.7 286.1 VBC 29 07 54 29 34.3 78.9 6203.0 758 06867 A 29 02 46 50 334.82 717.09 7505.21 66.93 239.36 9458.2 9884.2 8.2 11.1 -41.57 354.55 OBC 15.3 289.3 VBC 29 07 56 29 34.7 79.1 6152.8 759 06867 A 29 02 48 50 342.11 718.63 7505.25 73.51 248.74 8946.3 9246.4 3.9 11.0 -38.23 358.82 OBC 14.8 296.6 VBC 29 07 58 29 35.2 79.2 6102.6 760 06867 A 29 02 50 50 349.39 719.59 7505.28 79.17 268.60 8407.3 8613.4 -5.1 11.0 -34.84 3.08 OBC 14.2 314.5 VBC 29 08 00 29 35.6 79.4 6052.3 761 06867 A 29 02 52 50 356.67 719.90 7505.29 81.78 310.99 7845.4 7989.5 -25.6 12.2 -31.39 7.45 OBC 13.4 355.1 VBC 29 08 02 29 36.1 79.5 6002.1 762 06868 A 29 02 53 45 360.00 719.82 Pri 7505.29 81.06 332.90 7582.2 7708.8 -38.0 13.7 -29.80 350.74 OBC 13.0 16.2 VBC 29 08 03 24 36.3 79.6 5979.1 763 06867 A 29 02 54 50 3.95 719.54 7505.29 78.90 352.12 7265.6 7380.0 -50.7 15.7 -27.90 12.04 OBC 12.5 34.5 VBC 29 08 04 29 36.5 79.6 5951.8 764 06868 A 29 02 56 50 11.24 718.54 7505.28 73.15 11.05 6674.3 6790.9 65.0 19.0 -24.36 16.96 OBC 11.6 51.8 VBC 29 08 06 29 37.0 79.8 5901.5 765 06868 A 29 02 58 50 18.52 716.95 7505.25 66.55 20.09 6079.7 6230.1 72.1 21.3 -20.80 22.42 OBC 10.6 59.4 VBC 29 08 08 29 37.4 79.9 5851.1 766 06868 A 29 03 00 50 25.80 714.90 7505.21 59.65 25.26 5492.5 5707.8 76.1 22.8 -17.22 28.61 OBC 9.5 63.1 VBC 29 08 10 29 37.9 80.0 5800.8 767 06868 A 29 03 02 50 33.08 712.51 7505.16 52.62 28.64 4927.7 5237.0 78.4 24.0 -13.66 35.86 OBC 8.4 65.2 VBC 29 08 12 29 38.3 80.2 5750.4 768 06868 A 29 03 04 50 40.37 709.93 7505.10 45.51 31.08 4405.7 4834.0 80.0 24.9 -10.22 44.52 OBC 7.3 66.5 VBC 29 08 14 29 38.8 80.3 5700.0 769 06868 A 29 03 06 50 47.65 707.35 7505.03 38.37 32.98 3955.0 4518.0 81.1 25.7 -7.06 55.01 OBC 6.1 67.2 VBC 29 08 16 29 39.2 80.4 5649.6 770 06868 A 29 03 08 50 54.93 704.92 7504.95 31.21 34.52 3612.6 4308.9 82.0 26.3 -4.49 67.60 LOS 4.9 67.7 NVD 29 08 18 29 39.7 80.6 5599.2 771 06868 A 29 03 10 50 62.21 702.81 7504.86 24.02 35.85 3418.9 4223.1 82.6 26.9 -2.95 82.06 LOS 3.7 68.0 NVD 29 08 20 29 40.2 80.7 5548.7 772 06868 A 29 03 12 50 69.49 701.15 7504.76 16.83 37.04 3404.7 4268.1 83.1 27.5 -2.83 97.39 LOS 2.5 68.2 NVD 29 08 22 29 40.6 80.8 5498.2 773 06868 A 29 03 14 50 76.77 700.05 7504.66 9.63 38.14 3573.8 4440.0 83.5 28.0 -4.18 112.06 LOS 1.3 68.3 NVD 29 08 24 29 41.1 81.0 5447.7 774 06868 A 29 03 16 50 84.06 699.59 7504.56 2.43 39.20 3901.7 4724.5 83.8 28.5 -6.67 124.92 OBC 0.0 68.4 NVD 29 08 26 29 41.5 81.1 5397.2 775 06868 A 29 03 17 31 86.52 699.59 Eqa 7504.53 0.00 39.55 4041.6 4842.7 83.9 28.7 -7.68 243.07 OBC -0.4 68.4 NVD 29 08 27 10 41.7 81.2 5380.2 776 06868 D 29 03 18 50 91.34 699.80 7504.46 -4.77 38.86 4349.3 5221.7 83.7 28.3 -9.83 135.60 OBC -2.5 68.5 NVD 29 08 28 29 42.0 81.2 5346.7 777 06868 D 29 03 20 50 98.62 700.67 7504.35 -11.97 37.80 4878.8 5830.5 83.4 27.8 -13.34 144.28 OBC -5.6 69.1 NVD 29 08 30 29 42.4 81.4 5296.1 778 06868 D 29 03 22 50 105.90 702.14 7504.25 -19.16 36.68 5460.0 6471.5 82.9 27.3 -17.00 151.37 OBC -8.7 70.1 NVD 29 08 32 29 42.9 81.5 5245.6 779 06868 D 29 03 24 50 113.18 704.14 7504.16 -26.35 35.45 6070.9 7134.9 82.4 26.7 -20.73 157.26 OBC -11.7 71.5 NVD 29 08 34 29 43.3 81.6 5195.0 780 06868 D 29 03 26 50 120.46 706.54 7504.06 -33.53 34.06 6695.4 7814.1 81.7 26.1 -24.48 162.25 OBC -14.6 73.5 NVD 29 08 36 29 43.8 81.8 5144.4 781 06868 D 29 03 28 50 127.74 709.19 7503.98 -40.69 32.42 7321.6 8503.9 80.8 25.5 -28.22 166.57 OBC -17.3 76.1 NVD 29 08 38 29 44.2 81.9 5093.8 782 06868 D 29 03 30 50 135.02 711.92 7503.90 -47.81 30.39 7940.6 9200.4 79.6 24.7 -31.96 170.40 OBC -19.9 79.4 NVD 29 08 40 29 44.7 82.1 5043.1 783 06868 D 29 03 32 50 142.30 714.58 7503.83 -54.89 27.70 8545.1 9900.2 77.8 23.7 -35.69 173.87 OBC -22.3 83.8 NVD 29 08 42 29 45.1 82.2 4992.5 784 06868 D 29 03 34 50 149.58 716.97 7503.77 -61.89 23.87 9129.3 10600.6 75.0 22.4 -39.40 177.09 OBC -24.5 89.6 NVD 29 08 44 29 45.6 82.3 4941.8 785 06868 D 29 03 36 50 156.86 718.97 7503.73 -68.72 17.79 9688.4 11298.6 70.3 20.6 -43.10 180.15 OBC -26.3 98.0 NVD 29 08 46 29 46.1 82.5 4891.1 786 06868 D 29 03 38 50 164.14 720.43 7503.69 -75.14 6.58 10218.0 11991.1 61.5 18.1 -46.78 183.13 OBC -27.9 111.8 NVD 29 08 48 29 46.5 82.6 4840.4 787 06868 D 29 03 40 50 171.42 721.26 7503.67 -80.31 341.78 10714.5 12674.4 -43.6 14.5 -50.45 186.09 OBC -29.1 139.4 NVD 29 08 50 29 47.0 82.7 4789.7 788 06868 D 29 03 42 50 178.70 721.41 7503.66 -81.51 295.02 11174.6 13343.9 -17.5 11.5 -54.10 189.14 OBC -30.0 189.3 NVD 29 08 52 29 47.4 82.9 4739.0 789 06868 D 29 03 43 12 180.00 721.36 Apo 7503.66 -81.10 286.84 11252.9 13461.8 -13.5 11.3 -54.75 185.09 OBC -30.1 198.0 NVD 29 08 52 51 47.5 82.9 4729.9 790 06868 D 29 03 44 50 185.98 720.87 7503.67 -77.54 260.39 11595.5 13993.5 -1.3 10.9 -57.72 192.36 OBC -30.5 227.1 NVD 29 08 54 29 47.9 83.0 4688.2 791 06868 D 29 03 46 50 193.26 719.67 7503.68 -71.46 245.09 11974.6 14614.7 5.6 11.0 -61.30 195.89 OBC -30.5 245.6 NVD 29 08 56 29 48.3 83.1 4637.5 792 06868 D 29 03 48 50 200.54 717.90 7503.71 -64.76 237.42 12309.7 15195.2 9.1 11.1 -64.84 199.92 OBC -30.2 256.5 NVD 29 08 58 29 48.8 83.3 4586.7 793 06868 D 29 03 50 50 207.81 715.66 7503.76 -57.82 232.85 12598.6 15717.8 11.2 11.2 -68.31 204.74 OBC -29.4 264.2 NVD 29 09 00 29 49.3 83.4 4535.9 794 06868 D 29 03 52 50 215.09 713.10 7503.81 -50.76 229.77 12839.8 16157.9 12.7 11.3 -71.66 210.83 OBC -28.2 270.2 NVD 29 09 02 29 49.7 83.5 4485.1 795 06868 D 29 03 54 50 222.37 710.39 7503.87 -43.65 227.50 13031.7 16484.1 13.8 11.3 -74.82 218.97 OBC -26.7 275.1 NVD 29 09 04 29 50.2 83.7 4434.3 796

Page 289: ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM …myreaders.info/00_Orbital__Mechanics__-__Model_____Simulation... · ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM-MSS)

www.m

yrea

ders

.inf

o

OM-MSS Page 289 SATELLITE PASS - GROUND TRACE [acronym - Line Of Sight (LOS), On Board Computerr (OBC), Visible Band Camera (VBC), Night Vision Devices (NVD) ] ORBIT, INPUT TIME, POSIION, SAT VELOCITY, GROUND TRACE, RANGE, DIST, PITCH/ROLL, EL/AZ, ACCESS EL/AZ, DATA SOLAR TIME EL/AZ, DIST Line 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 @ES 18 19 20 @SS 21 22 23 24 25 26 27 @ES 28 29 30 No. Node GMT Anomaly Height @ Vel Lat(SAT)Log Slant S-Sat Pitch Roll EL(SAT)AZ Control EL(SUN)AZ Acq. LMT(ES) EL(SUN)AZ S-Sun Nos D H M S deg km meter deg deg km km deg deg deg D H M S deg km 06868 D 29 03 56 50 229.65 707.69 7503.95 -36.51 225.72 13173.1 16662.8 14.6 11.4 -77.64 230.52 OBC -24.8 279.3 NVD 29 09 06 29 50.6 83.8 4383.4 797 06868 D 29 03 58 50 236.93 705.18 7504.03 -29.34 224.24 13263.1 16670.1 15.3 11.4 -79.83 247.31 OBC -22.6 282.9 NVD 29 09 08 29 51.1 83.9 4332.6 798 06868 D 29 04 00 50 244.21 703.00 7504.12 -22.15 222.95 13300.9 16505.0 15.9 11.4 -80.90 269.99 OBC -20.2 285.9 NVD 29 09 10 29 51.5 84.1 4281.7 799 06868 D 29 04 02 50 251.49 701.30 7504.22 -14.96 221.80 13286.1 16189.7 16.5 11.5 -80.47 294.23 OBC -17.4 288.4 NVD 29 09 12 29 52.0 84.2 4230.9 800 06868 D 29 04 04 50 258.78 700.17 7504.32 -7.76 220.71 13218.5 15757.7 17.0 11.5 -78.70 313.74 OBC -14.5 290.4 NVD 29 09 14 29 52.4 84.4 4180.0 801 06868 D 29 04 06 50 266.06 699.69 7504.42 -0.56 219.67 13098.0 15240.8 17.5 11.5 -76.09 327.25 OBC -11.4 291.9 NVD 29 09 16 29 52.9 84.5 4129.1 802 06868 D 29 04 06 59 266.62 699.68 Eqa 7504.43 -0.00 219.59 13086.5 15197.8 17.6 11.5 -75.86 63.04 OBC -11.1 292.0 NVD 29 09 16 38 52.9 84.5 4125.1 803 06868 A 29 04 08 50 273.34 699.87 7504.52 6.64 220.55 12925.0 14826.9 17.1 11.5 -73.01 336.47 OBC -9.9 293.4 NVD 29 09 18 29 53.4 84.6 4078.2 804 06868 A 29 04 10 50 280.62 700.71 7504.63 13.84 221.63 12699.9 14359.1 16.6 11.5 -69.66 343.02 OBC -8.4 294.8 NVD 29 09 20 29 53.8 84.8 4027.3 805 06868 A 29 04 12 50 287.90 702.14 7504.73 21.04 222.78 12423.4 13838.9 16.0 11.4 -66.16 347.90 OBC -6.7 296.2 NVD 29 09 22 29 54.3 84.9 3976.3 806 06868 A 29 04 14 50 295.18 704.08 7504.82 28.22 224.04 12096.5 13279.6 15.4 11.4 -62.56 351.71 OBC -4.9 297.7 NVD 29 09 24 29 54.7 85.1 3925.4 807 06868 A 29 04 16 50 302.46 706.39 7504.91 35.40 225.49 11720.5 12691.5 14.7 11.4 -58.87 354.80 OBC -2.9 299.2 NVD 29 09 26 29 55.2 85.2 3874.5 808 06868 A 29 04 18 50 309.74 708.92 7505.00 42.55 227.22 11296.7 12082.4 13.9 11.3 -55.13 357.39 OBC -0.8 300.8 NVD 29 09 28 29 55.7 85.3 3823.5 809 06868 A 29 04 20 50 317.03 711.51 7505.07 49.67 229.39 10826.8 11458.8 12.9 11.3 -51.33 359.63 OBC 1.4 302.7 NVD 29 09 30 29 56.1 85.5 3772.5 810 Next Next Section - 7.2 Satellite Pass for Earth Stn - Prediction of Ground Trace for Satellite SPOT 6

Page 290: ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM …myreaders.info/00_Orbital__Mechanics__-__Model_____Simulation... · ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM-MSS)

www.m

yrea

ders

.inf

o

OM-MSS Page 290 OM-MSS Section - 7.2 -----------------------------------------------------------------------------------------------------58 Satellite SPOT 6 : SAT PASS FOR EARTH STN - Prediction of Ground Trace Coordinates, Look Angles & more at Instantaneous Time. (b) SPOT 6 'Two-Line Elements'(TLE) downloaded on May 28, 2014, 18:13 hrs IST, Satellite launched on September 9, 2012 1 38755U 12047A 14148.14295346 .00000295 00000-0 73402-4 0 9574 2 38755 98.1987 215.8134 0001368 80.3963 279.7434 14.58528066 91251 From this TLE, the data relevant for the purpose are manually interpreted & extracted : Satellite number 38755, SPOT 6 , EPOCH_year = 2014 EPOCH_days_decimal_of_year = 147.1429534600 EPOCH_inclination_deg = 98.1987000000 EPOCH_right_asc_acnd_node_deg = 215.8134000000 EPOCH_eccentricity = 0.0001368000 EPOCH_argument_of_perigee_deg = 80.3963000000 EPOCH_mean_anomaly_deg = 279.7434000000 EPOCH_mean_motion_rev_per_day = 14.5852806600 EPOCH_revolution = 9125 EPOCH_node_condition = 1 Earth_stn_latitude_deg = 23.25993 Earth stn longitude_deg = 77.41261 Earth surface height_meter = 494.70000 Earth stn tower_height_meter = 15.00000 Earth stn_height_meter = 509.70000 Earth stn min EL look_angle_deg = -5.00000 Input UT Year and Days decimal of year : Convert into UT YY MM DD hh min sec & Julian day Start Time UT year = 2014, month = 5, day = 28, hr = 3, min = 25, sec = 51.17894, and julian_day = 2456805.6429534601 Sat_motion_direction = Forward Sat_motion_Time_Step_in_sec_pos_or_neg = 120.00000 seconds

Page 291: ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM …myreaders.info/00_Orbital__Mechanics__-__Model_____Simulation... · ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM-MSS)

www.m

yrea

ders

.inf

o

OM-MSS Page 291 SATELLITE PASS - GROUND TRACE [acronym - Line Of Sight (LOS), On Board Computerr (OBC), Visible Band Camera (VBC), Night Vision Devices (NVD) ] ORBIT, INPUT TIME, POSIION, SAT VELOCITY, GROUND TRACE, RANGE, DIST, PITCH/ROLL, EL/AZ, ACCESS EL/AZ, DATA SOLAR TIME EL/AZ, DIST Line 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 @ES 18 19 20 @SS 21 22 23 24 25 26 27 @ES 28 29 30 No. Node GMT Anomaly Height @ Vel Lat(SAT)Log Slant S-Sat Pitch Roll EL(SAT)AZ Control EL(SUN)AZ Acq. LMT(ES) EL(SUN)AZ S-Sun Nos D H M S deg km meter deg deg km km deg deg deg D H M S deg km 09125 A 28 03 25 51 279.73 694.84 7507.11 0.12 215.83 12953.0 14843.7 19.4 11.7 -73.55 315.49 OBC 1.9 291.4 NVD 28 08 35 30 43.6 81.9 5170.0 1 09125 A 28 03 27 51 287.02 695.07 7507.23 7.33 216.88 12784.9 14466.0 18.9 11.6 -70.93 325.37 OBC 3.1 291.2 NVD 28 08 37 30 44.0 82.1 5119.3 2 09125 A 28 03 29 51 294.31 695.95 7507.35 14.54 217.96 12566.5 14024.1 18.4 11.6 -67.98 333.02 OBC 4.3 291.1 NVD 28 08 39 30 44.5 82.2 5068.7 3 09125 A 28 03 31 51 301.59 697.42 7507.47 21.74 219.11 12298.2 13532.1 17.8 11.6 -64.79 339.08 OBC 5.4 291.0 VBC 28 08 41 30 44.9 82.3 5018.0 4 09125 A 28 03 33 51 308.88 699.39 7507.58 28.94 220.39 11981.1 13002.0 17.2 11.5 -61.43 344.01 OBC 6.4 291.0 VBC 28 08 43 30 45.4 82.5 4967.3 5 09125 A 28 03 35 51 316.17 701.73 7507.67 36.12 221.85 11616.3 12443.1 16.5 11.5 -57.97 348.14 OBC 7.5 291.1 VBC 28 08 45 30 45.8 82.6 4916.6 6 09125 A 28 03 37 51 323.46 704.27 7507.76 43.27 223.62 11205.1 11863.3 15.6 11.4 -54.41 351.69 OBC 8.5 291.6 VBC 28 08 47 30 46.3 82.8 4865.9 7 09125 A 28 03 39 51 330.75 706.87 7507.83 50.40 225.85 10749.2 11268.8 14.6 11.4 -50.77 354.83 OBC 9.4 292.4 VBC 28 08 49 30 46.7 82.9 4815.1 8 09125 A 28 03 41 51 338.04 709.33 7507.88 57.46 228.88 10250.4 10665.0 13.1 11.3 -47.07 357.67 OBC 10.3 294.0 VBC 28 08 51 30 47.2 83.0 4764.4 9 09125 A 28 03 43 51 345.33 711.51 7507.93 64.42 233.35 9710.9 10056.5 11.0 11.2 -43.31 0.29 OBC 11.1 297.0 VBC 28 08 53 30 47.7 83.2 4713.6 10 09125 A 28 03 45 51 352.62 713.26 7507.95 71.16 240.80 9133.0 9447.8 7.6 11.1 -39.48 2.79 OBC 11.8 302.9 VBC 28 08 55 30 48.1 83.3 4662.8 11 09125 A 28 03 47 51 359.91 714.47 7507.96 77.30 255.55 8519.5 8843.0 0.8 11.0 -35.58 5.22 OBC 12.5 316.0 VBC 28 08 57 30 48.6 83.4 4612.0 12 09126 A 28 03 47 52 360.00 714.48 Pri 7507.96 77.36 255.81 8511.9 8835.8 0.7 11.0 -35.54 0.36 OBC 12.5 316.2 VBC 28 08 57 31 48.6 83.4 4611.4 13 09125 A 28 03 49 51 7.20 715.04 7507.95 81.44 289.11 7873.2 8247.0 -14.6 11.4 -31.61 7.64 OBC 13.1 347.8 VBC 28 08 59 30 49.0 83.6 4561.2 14 09126 A 28 03 51 51 14.49 714.95 7507.93 80.49 336.50 7197.7 7664.9 -40.3 14.0 -27.54 10.14 OBC 13.6 33.5 VBC 28 09 01 30 49.5 83.7 4510.4 15 09126 A 28 03 53 51 21.78 714.21 7507.89 75.40 2.24 6496.9 7102.8 58.2 17.3 -23.35 12.82 OBC 14.0 57.4 VBC 28 09 03 30 49.9 83.9 4459.6 16 09126 A 28 03 55 51 29.07 712.86 7507.83 69.00 13.79 5775.5 6568.3 67.3 19.7 -19.01 15.79 OBC 14.3 67.0 VBC 28 09 05 30 50.4 84.0 4408.7 17 09126 A 28 03 57 51 36.36 710.99 7507.76 62.17 20.00 5039.7 6070.6 72.2 21.3 -14.44 19.26 OBC 14.4 71.2 VBC 28 09 07 30 50.9 84.1 4357.9 18 09126 A 28 03 59 51 43.65 708.73 7507.67 55.17 23.89 4297.6 5621.4 75.1 22.4 -9.55 23.56 OBC 14.4 73.1 VBC 28 09 09 30 51.3 84.3 4307.0 19 09126 A 28 04 01 51 50.94 706.24 7507.58 48.08 26.61 3562.4 5234.4 77.1 23.3 -4.18 29.27 LOS 14.3 73.7 VBC 28 09 11 30 51.8 84.4 4256.1 20 09126 A 28 04 03 51 58.23 703.67 7507.47 40.94 28.66 2856.8 4925.6 78.6 24.0 1.91 37.57 LOS 14.1 73.7 VBC 28 09 13 30 52.2 84.6 4205.2 21 09126 A 28 04 05 51 65.52 701.20 7507.36 33.77 30.31 2227.8 4711.2 79.7 24.6 8.94 50.82 LOS 13.7 73.2 VBC 28 09 15 30 52.7 84.7 4154.3 22 09126 A 28 04 07 51 72.81 698.99 7507.24 26.59 31.71 1776.1 4605.0 80.5 25.2 15.96 73.13 LOS 13.1 72.4 VBC 28 09 17 30 53.1 84.8 4103.4 23 09126 A 28 04 09 51 80.10 697.19 7507.11 19.39 32.94 1664.7 4614.7 81.2 25.7 18.15 104.91 LOS 12.4 71.4 VBC 28 09 19 30 53.6 85.0 4052.4 24 09126 A 28 04 11 51 87.39 695.91 7506.98 12.19 34.06 1955.9 4739.6 81.8 26.2 12.88 133.08 LOS 11.5 70.3 VBC 28 09 21 30 54.1 85.1 4001.5 25 09126 A 28 04 13 51 94.67 695.24 7506.85 4.98 35.13 2511.2 4970.6 82.4 26.6 5.52 150.51 LOS 10.4 69.1 VBC 28 09 23 30 54.5 85.3 3950.5 26 09126 A 28 04 15 14 99.71 695.17 Eqa 7506.76 0.00 35.85 2972.6 5184.8 82.7 26.9 0.83 246.00 LOS 9.6 68.2 VBC 28 09 24 53 54.8 85.4 3915.3 27 09126 D 28 04 15 51 101.96 695.24 7506.72 -2.23 35.53 3190.2 5352.2 82.6 26.8 -1.11 160.84 LOS 8.6 67.9 VBC 28 09 25 30 55.0 85.4 3899.6 28 09126 D 28 04 17 51 109.25 695.90 7506.59 -9.44 34.48 3921.9 5924.2 82.1 26.3 -6.88 167.45 OBC 5.4 67.2 VBC 28 09 27 30 55.4 85.6 3848.6 29 09126 D 28 04 19 51 116.54 697.18 7506.47 -16.64 33.38 4672.9 6532.4 81.5 25.9 -12.06 172.02 OBC 2.0 66.9 NVD 28 09 29 30 55.9 85.7 3797.6 30 09126 D 28 04 21 51 123.82 699.03 7506.36 -23.84 32.20 5425.8 7166.6 80.8 25.4 -16.84 175.40 OBC -1.4 67.1 NVD 28 09 31 30 56.3 85.8 3746.6 31 09126 D 28 04 23 51 131.11 701.31 7506.26 -31.03 30.88 6170.1 7819.1 80.0 24.9 -21.38 178.03 OBC -4.8 67.8 NVD 28 09 33 30 56.8 86.0 3695.6 32 09126 D 28 04 25 51 138.40 703.90 7506.16 -38.20 29.34 6898.4 8484.2 79.0 24.3 -25.74 180.15 OBC -8.2 69.1 NVD 28 09 35 30 57.3 86.1 3644.6 33 09126 D 28 04 27 51 145.68 706.63 7506.08 -45.34 27.47 7605.2 9157.3 77.7 23.6 -29.97 181.92 OBC -11.6 71.2 NVD 28 09 37 30 57.7 86.3 3593.6 34 09126 D 28 04 29 51 152.97 709.32 7506.02 -52.45 25.05 8285.9 9834.8 76.0 22.8 -34.12 183.43 OBC -15.0 74.1 NVD 28 09 39 30 58.2 86.4 3542.5 35 09126 D 28 04 31 51 160.26 711.82 7505.97 -59.49 21.71 8936.5 10513.2 73.5 21.7 -38.20 184.75 OBC -18.2 78.4 NVD 28 09 41 30 58.6 86.6 3491.5 36 09126 D 28 04 33 51 167.54 713.96 7505.93 -66.40 16.60 9553.5 11189.2 69.5 20.3 -42.23 185.92 OBC -21.3 84.9 NVD 28 09 43 30 59.1 86.7 3440.4 37 09126 D 28 04 35 51 174.83 715.60 7505.91 -73.02 7.71 10133.8 11859.2 62.4 18.3 -46.22 186.97 OBC -24.2 95.5 NVD 28 09 45 30 59.6 86.9 3389.4 38 09126 D 28 04 37 16 180.00 716.40 Apo 7505.90 -77.28 356.20 10521.8 12328.9 -53.7 16.3 -49.04 193.46 OBC -26.1 108.6 NVD 28 09 46 55 59.9 87.0 3353.1 39 09126 D 28 04 37 51 182.12 716.63 7505.91 -78.81 349.12 10674.5 12519.2 -48.6 15.4 -50.19 187.93 OBC -26.8 116.3 NVD 28 09 47 30 60.0 87.1 3338.3 40 09126 D 28 04 39 51 189.40 716.99 7505.92 -81.79 308.40 11173.0 13164.2 -24.2 12.1 -54.13 188.83 OBC -29.2 159.6 NVD 28 09 49 30 60.5 87.2 3287.2 41 09126 D 28 04 41 51 196.69 716.66 7505.95 -79.29 265.46 11626.9 13787.7 -3.7 11.0 -58.05 189.69 OBC -31.2 205.6 NVD 28 09 51 30 60.9 87.4 3236.2 42 09126 D 28 04 43 51 203.97 715.65 7505.99 -73.64 245.27 12034.0 14381.0 5.5 11.0 -61.95 190.52 OBC -32.8 229.2 NVD 28 09 53 30 61.4 87.5 3185.1 43

Page 292: ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM …myreaders.info/00_Orbital__Mechanics__-__Model_____Simulation... · ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM-MSS)

www.m

yrea

ders

.inf

o

OM-MSS Page 292 SATELLITE PASS - GROUND TRACE [acronym - Line Of Sight (LOS), On Board Computerr (OBC), Visible Band Camera (VBC), Night Vision Devices (NVD) ] ORBIT, INPUT TIME, POSIION, SAT VELOCITY, GROUND TRACE, RANGE, DIST, PITCH/ROLL, EL/AZ, ACCESS EL/AZ, DATA SOLAR TIME EL/AZ, DIST Line 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 @ES 18 19 20 @SS 21 22 23 24 25 26 27 @ES 28 29 30 No. Node GMT Anomaly Height @ Vel Lat(SAT)Log Slant S-Sat Pitch Roll EL(SAT)AZ Control EL(SUN)AZ Acq. LMT(ES) EL(SUN)AZ S-Sun Nos D H M S deg km meter deg deg km km deg deg deg D H M S deg km 09126 D 28 04 45 51 211.26 714.03 7506.05 -67.07 235.78 12392.6 14932.2 9.9 11.1 -65.85 191.36 OBC -34.0 242.3 NVD 28 09 55 30 61.8 87.7 3134.0 44 09126 D 28 04 47 51 218.55 711.89 7506.13 -60.18 230.43 12700.9 15425.0 12.4 11.2 -69.73 192.26 OBC -34.7 251.6 NVD 28 09 57 30 62.3 87.9 3082.9 45 09126 D 28 04 49 51 225.83 709.39 7506.22 -53.15 226.96 12957.4 15837.7 14.0 11.3 -73.61 193.28 OBC -34.9 259.1 NVD 28 09 59 30 62.8 88.0 3031.8 46 09126 D 28 04 51 51 233.12 706.67 7506.32 -46.05 224.47 13161.0 16144.0 15.2 11.4 -77.48 194.62 OBC -34.6 265.7 NVD 28 10 01 30 63.2 88.2 2980.7 47 09126 D 28 04 53 51 240.41 703.91 7506.42 -38.91 222.55 13310.8 16317.0 16.1 11.5 -81.34 196.73 OBC -33.7 271.5 NVD 28 10 03 30 63.7 88.4 2929.6 48 09126 D 28 04 55 51 247.69 701.28 7506.54 -31.74 220.99 13405.9 16337.7 16.9 11.5 -85.18 201.57 OBC -32.3 276.7 NVD 28 10 05 30 64.1 88.5 2878.5 49 09126 D 28 04 57 51 254.98 698.94 7506.67 -24.55 219.65 13446.0 16203.6 17.6 11.5 -88.78 235.84 OBC -30.5 281.4 NVD 28 10 07 30 64.6 88.7 2827.3 50 09126 D 28 04 59 51 262.27 697.03 7506.79 -17.35 218.46 13430.7 15930.0 18.1 11.6 -86.89 356.12 OBC -28.2 285.5 NVD 28 10 09 30 65.1 88.9 2776.2 51 09126 D 28 05 01 51 269.56 695.67 7506.92 -10.15 217.36 13360.1 15542.5 18.7 11.6 -83.08 5.12 OBC -25.5 289.0 NVD 28 10 11 30 65.5 89.1 2725.1 52 09126 D 28 05 03 51 276.85 694.95 7507.05 -2.94 216.30 13234.5 15068.4 19.2 11.7 -79.22 7.83 OBC -22.4 292.0 NVD 28 10 13 30 66.0 89.2 2673.9 53 09126 D 28 05 04 40 279.82 694.84 Eqa 7507.11 -0.00 215.88 13167.5 14855.8 19.4 11.7 -77.64 65.97 OBC -21.1 293.1 NVD 28 10 14 19 66.2 89.3 2653.1 54 09126 A 28 05 05 51 284.13 694.89 7507.18 4.27 216.50 13054.2 14641.1 19.1 11.7 -75.34 9.16 OBC -20.2 294.7 NVD 28 10 15 30 66.4 89.4 2622.8 55 09126 A 28 05 07 51 291.42 695.50 7507.31 11.48 217.56 12820.1 14224.1 18.6 11.6 -71.45 9.96 OBC -18.4 297.4 NVD 28 10 17 30 66.9 89.6 2571.7 56 09126 A 28 05 09 51 298.71 696.73 7507.43 18.68 218.68 12533.2 13751.2 18.0 11.6 -67.56 10.47 OBC -16.3 300.1 NVD 28 10 19 30 67.4 89.8 2520.5 57 09126 A 28 05 11 51 306.00 698.50 7507.54 25.88 219.89 12194.6 13235.4 17.4 11.5 -63.65 10.80 OBC -13.9 302.6 NVD 28 10 21 30 67.8 90.0 2469.4 58 09126 A 28 05 13 51 313.29 700.70 7507.64 33.07 221.27 11805.8 12687.1 16.8 11.5 -59.73 11.00 OBC -11.3 305.1 NVD 28 10 23 30 68.3 90.2 2418.3 59 09126 A 28 05 15 51 320.58 703.17 7507.73 40.24 222.89 11368.5 12114.8 16.0 11.4 -55.78 11.09 OBC -8.4 307.5 NVD 28 10 25 30 68.7 90.4 2367.1 60 09126 A 28 05 17 51 327.87 705.77 7507.80 47.38 224.90 10884.6 11525.3 15.0 11.4 -51.82 11.08 OBC -5.3 310.1 NVD 28 10 27 30 69.2 90.6 2316.0 61 09126 A 28 05 19 51 335.16 708.31 7507.86 54.47 227.53 10356.2 10924.3 13.8 11.3 -47.84 10.98 OBC -2.1 312.9 NVD 28 10 29 30 69.7 90.8 2264.9 62 09126 A 28 05 21 51 342.45 710.63 7507.91 61.49 231.27 9785.8 10316.7 12.0 11.2 -43.82 10.79 OBC 1.2 316.6 NVD 28 10 31 30 70.1 91.0 2213.7 63 09126 A 28 05 23 51 349.74 712.58 7507.94 68.34 237.17 9175.9 9706.9 9.2 11.1 -39.76 10.48 OBC 4.7 322.1 NVD 28 10 33 30 70.6 91.3 2162.6 64 09126 A 28 05 25 51 357.03 714.03 7507.96 74.81 247.94 8529.3 9099.3 4.3 11.0 -35.65 10.04 OBC 8.1 332.1 VBC 28 10 35 30 71.0 91.5 2111.5 65 09127 A 28 05 26 40 360.00 714.45 Pri 7507.96 77.20 255.25 8256.2 8853.5 1.0 11.0 -33.95 0.49 OBC 9.5 338.9 VBC 28 10 36 19 71.2 91.6 2090.7 66 09126 A 28 05 27 51 4.32 714.88 7507.96 80.11 271.64 7849.3 8498.4 -6.5 11.0 -31.46 9.46 OBC 11.6 354.6 VBC 28 10 37 30 71.5 91.7 2060.4 67 09127 A 28 05 29 51 11.61 715.07 7507.94 81.62 317.92 7139.3 7909.1 -29.3 12.6 -27.19 8.67 OBC 15.0 39.3 VBC 28 10 39 30 71.9 92.0 2009.3 68 09127 A 28 05 31 51 18.90 714.60 7507.90 77.83 353.98 6403.1 7337.0 -52.1 16.0 -22.79 7.64 OBC 18.4 73.3 VBC 28 10 41 30 72.4 92.2 1958.2 69 09127 A 28 05 33 51 26.19 713.50 7507.85 71.79 9.92 5645.4 6789.0 64.2 18.8 -18.21 6.25 OBC 21.6 86.8 VBC 28 10 43 30 72.9 92.5 1907.1 70 09127 A 28 05 35 51 33.48 711.84 7507.79 65.10 17.82 4871.4 6273.7 70.5 20.7 -13.36 4.34 OBC 24.6 91.8 VBC 28 10 45 30 73.3 92.7 1856.0 71 09127 A 28 05 37 51 40.77 709.73 7507.71 58.15 22.49 4088.8 5801.6 74.1 22.0 -8.10 1.61 OBC 27.4 93.0 VBC 28 10 47 30 73.8 93.0 1804.9 72 09127 A 28 05 39 51 48.06 707.32 7507.62 51.09 25.62 3308.7 5385.6 76.4 23.0 -2.14 357.48 LOS 29.8 92.2 VBC 28 10 49 30 74.2 93.3 1753.9 73 09127 A 28 05 41 51 55.35 704.76 7507.52 43.97 27.92 2552.2 5040.8 78.1 23.8 5.05 350.62 LOS 31.8 90.0 VBC 28 10 51 30 74.7 93.6 1702.8 74 09127 A 28 05 43 51 62.64 702.23 7507.40 36.82 29.72 1868.1 4783.8 79.3 24.4 14.31 337.69 LOS 33.4 86.9 VBC 28 10 53 30 75.2 93.9 1651.8 75 09127 A 28 05 45 51 69.93 699.89 7507.28 29.64 31.21 1387.0 4629.7 80.2 25.0 24.94 310.43 LOS 34.4 83.1 VBC 28 10 55 30 75.6 94.2 1600.8 76 09127 A 28 05 47 51 77.22 697.90 7507.16 22.45 32.50 1356.2 4589.4 81.0 25.5 25.86 267.43 LOS 34.9 78.8 VBC 28 10 57 30 76.1 94.6 1549.8 77 09127 A 28 05 49 51 84.50 696.39 7507.03 15.25 33.66 1798.6 4666.0 81.6 26.0 15.55 237.82 LOS 34.7 74.2 VBC 28 10 59 30 76.5 94.9 1498.8 78 09127 A 28 05 51 51 91.79 695.45 7506.90 8.04 34.75 2466.7 4853.6 82.2 26.4 6.02 223.67 LOS 33.9 69.5 VBC 28 11 01 30 77.0 95.3 1447.9 79 09127 A 28 05 53 51 99.08 695.16 7506.77 0.83 35.79 3215.2 5139.8 82.7 26.9 -1.33 216.13 LOS 32.6 64.9 VBC 28 11 03 30 77.4 95.7 1397.0 80 09127 A 28 05 54 05 99.92 695.17 Eqa 7506.76 0.00 35.91 3304.0 5178.5 82.8 27.0 -2.08 245.94 LOS 32.4 64.3 VBC 28 11 03 44 77.5 95.7 1391.1 81 09127 D 28 05 55 51 106.37 695.54 7506.64 -6.37 34.99 3989.8 5670.1 82.3 26.6 -7.37 211.46 OBC 29.0 61.1 VBC 28 11 05 30 77.9 96.1 1346.1 82 09127 D 28 05 57 51 113.66 696.57 7506.52 -13.58 33.92 4767.7 6264.8 81.8 26.1 -12.68 208.22 OBC 24.9 58.2 VBC 28 11 07 30 78.4 96.5 1295.3 83 09127 D 28 05 59 51 120.94 698.19 7506.40 -20.78 32.78 5536.9 6889.5 81.1 25.6 -17.53 205.75 OBC 20.5 56.0 VBC 28 11 09 30 78.8 97.0 1244.5 84 09127 D 28 06 01 51 128.23 700.30 7506.30 -27.97 31.53 6289.8 7535.4 80.4 25.1 -22.10 203.73 OBC 15.8 54.5 VBC 28 11 11 30 79.3 97.5 1193.8 85 09127 D 28 06 03 51 135.52 702.78 7506.20 -35.15 30.10 7020.8 8196.2 79.5 24.6 -26.47 201.97 OBC 10.9 53.7 VBC 28 11 13 30 79.7 98.0 1143.1 86 09127 D 28 06 05 51 142.80 705.46 7506.11 -42.31 28.39 7725.4 8866.8 78.3 23.9 -30.70 200.34 OBC 5.9 53.7 VBC 28 11 15 30 80.2 98.6 1092.5 87

Page 293: ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM …myreaders.info/00_Orbital__Mechanics__-__Model_____Simulation... · ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM-MSS)

www.m

yrea

ders

.inf

o

OM-MSS Page 293 SATELLITE PASS - GROUND TRACE [acronym - Line Of Sight (LOS), On Board Computerr (OBC), Visible Band Camera (VBC), Night Vision Devices (NVD) ] ORBIT, INPUT TIME, POSIION, SAT VELOCITY, GROUND TRACE, RANGE, DIST, PITCH/ROLL, EL/AZ, ACCESS EL/AZ, DATA SOLAR TIME EL/AZ, DIST Line 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 @ES 18 19 20 @SS 21 22 23 24 25 26 27 @ES 28 29 30 No. Node GMT Anomaly Height @ Vel Lat(SAT)Log Slant S-Sat Pitch Roll EL(SAT)AZ Control EL(SUN)AZ Acq. LMT(ES) EL(SUN)AZ S-Sun Nos D H M S deg km meter deg deg km km deg deg deg D H M S deg km 09127 D 28 06 07 51 150.09 708.20 7506.04 -49.44 26.23 8399.6 9543.3 76.8 23.2 -34.82 198.78 OBC 0.8 54.6 NVD 28 11 17 30 80.6 99.2 1042.0 88 09127 D 28 06 09 51 157.38 710.80 7505.98 -56.51 23.35 9040.1 10222.1 74.7 22.2 -38.86 197.21 OBC -4.4 56.7 NVD 28 11 19 30 81.1 99.9 991.6 89 09127 D 28 06 11 51 164.66 713.11 7505.94 -63.49 19.14 9643.7 10900.0 71.5 21.0 -42.84 195.57 OBC -9.6 60.5 NVD 28 11 21 30 81.5 100.6 941.3 90 09127 D 28 06 13 51 171.95 714.97 7505.92 -70.26 12.25 10207.7 11573.4 66.0 19.3 -46.75 193.81 OBC -14.8 67.4 NVD 28 11 23 30 82.0 101.4 891.1 91 09127 D 28 06 15 51 179.23 716.27 7505.91 -76.52 358.98 10729.5 12238.8 -55.7 16.8 -50.61 191.86 OBC -20.0 81.3 NVD 28 11 25 30 82.4 102.3 841.0 92 09127 D 28 06 16 03 180.00 716.37 Apo 7505.90 -77.12 356.88 10781.8 12308.0 -54.2 16.4 -51.01 193.58 OBC -20.5 83.5 NVD 28 11 25 42 82.5 102.4 835.8 93 09127 D 28 06 17 51 186.52 716.92 7505.91 -81.11 328.87 11206.9 12891.4 -35.6 13.3 -54.41 189.65 OBC -25.1 112.5 NVD 28 11 27 30 82.9 103.3 791.1 94 09127 D 28 06 19 51 193.81 716.89 7505.93 -80.96 280.80 11637.7 13525.6 -10.7 11.2 -58.14 187.05 OBC -30.1 162.3 NVD 28 11 29 30 83.3 104.4 741.5 95 09127 D 28 06 21 51 201.09 716.16 7505.97 -76.22 251.92 12020.2 14133.6 2.5 11.0 -61.81 183.92 OBC -34.9 193.6 NVD 28 11 31 30 83.8 105.6 692.1 96 09127 D 28 06 23 51 208.38 714.78 7506.03 -69.92 239.15 12352.7 14705.2 8.3 11.1 -65.39 180.02 OBC -39.4 209.6 NVD 28 11 33 30 84.2 107.0 643.0 97 09127 D 28 06 25 51 215.67 712.85 7506.10 -63.13 232.46 12634.0 15226.0 11.4 11.2 -68.83 175.00 OBC -43.6 220.5 NVD 28 11 35 30 84.7 108.7 594.3 98 09127 D 28 06 27 51 222.95 710.49 7506.18 -56.15 228.34 12862.9 15676.8 13.4 11.3 -72.09 168.29 OBC -47.2 230.0 NVD 28 11 37 30 85.1 110.6 546.1 99 09127 D 28 06 29 51 230.24 707.84 7506.28 -49.07 225.51 13038.6 16032.8 14.7 11.4 -75.03 159.00 OBC -50.1 239.4 NVD 28 11 39 30 85.5 112.9 498.6 100 09127 D 28 06 31 51 237.53 705.07 7506.38 -41.94 223.38 13160.4 16266.5 15.7 11.4 -77.47 145.89 OBC -52.2 249.1 NVD 28 11 41 30 85.9 115.6 452.0 101 09127 D 28 06 33 51 244.81 702.37 7506.49 -34.78 221.69 13228.1 16354.2 16.6 11.5 -79.04 128.07 OBC -53.3 259.3 NVD 28 11 43 30 86.3 118.9 406.5 102 09127 D 28 06 35 51 252.10 699.88 7506.62 -27.60 220.26 13241.6 16285.5 17.3 11.5 -79.39 107.01 OBC -53.2 269.4 NVD 28 11 45 30 86.7 123.0 362.6 103 09127 D 28 06 37 51 259.39 697.78 7506.74 -20.41 219.02 13201.0 16068.6 17.9 11.6 -78.39 87.13 OBC -52.0 279.1 NVD 28 11 47 30 87.1 128.2 321.0 104 09127 D 28 06 39 51 266.68 696.17 7506.87 -13.21 217.88 13106.7 15726.0 18.4 11.6 -76.35 71.61 OBC -49.7 287.7 NVD 28 11 49 30 87.5 134.8 282.6 105 09127 D 28 06 41 51 273.96 695.17 7507.00 -6.00 216.82 12959.6 15285.4 19.0 11.6 -73.66 60.41 OBC -46.5 295.1 NVD 28 11 51 30 87.8 143.4 249.1 106 09127 D 28 06 43 31 280.03 694.84 Eqa 7507.11 -0.00 215.95 12797.5 14862.1 19.4 11.7 -71.12 65.92 OBC -43.3 300.2 NVD 28 11 53 10 88.0 152.2 226.3 107 09127 A 28 06 43 51 281.25 694.83 7507.13 1.21 216.12 12760.5 14804.0 19.3 11.7 -70.58 52.29 OBC -42.9 301.3 NVD 28 11 53 30 88.0 154.2 222.4 108 09127 A 28 06 45 51 288.54 695.15 7507.26 8.42 217.17 12510.8 14414.6 18.8 11.6 -67.28 46.17 OBC -40.1 307.5 NVD 28 11 55 30 88.2 167.3 205.4 109 09127 A 28 06 47 51 295.83 696.13 7507.38 15.63 218.26 12211.9 13963.1 18.2 11.6 -63.83 41.32 OBC -36.7 313.0 NVD 28 11 57 30 88.2 181.9 200.6 110 09127 A 28 06 49 51 303.12 697.69 7507.49 22.83 219.43 11865.6 13463.6 17.7 11.5 -60.30 37.31 OBC -32.6 317.8 NVD 28 11 59 30 88.1 196.3 208.7 111 09127 A 28 06 51 51 310.41 699.72 7507.60 30.02 220.73 11474.2 12927.3 17.0 11.5 -56.70 33.83 OBC -28.2 322.1 NVD 28 12 01 30 87.9 208.9 228.5 112 09127 A 28 06 53 51 317.70 702.10 7507.69 37.20 222.23 11040.1 12363.7 16.3 11.5 -53.06 30.68 OBC -23.3 325.9 NVD 28 12 03 30 87.7 219.1 257.1 113 09127 A 28 06 55 51 324.99 704.66 7507.77 44.35 224.05 10566.0 11780.2 15.4 11.4 -49.38 27.73 OBC -18.2 329.4 NVD 28 12 05 30 87.4 227.1 292.1 114 09127 A 28 06 57 51 332.28 707.25 7507.84 51.47 226.38 10055.2 11182.8 14.3 11.3 -45.68 24.86 OBC -12.9 332.9 NVD 28 12 07 30 87.0 233.3 331.5 115 09127 A 28 06 59 51 339.57 709.68 7507.89 58.52 229.57 9511.3 10576.9 12.8 11.3 -41.96 21.97 OBC -7.4 336.8 NVD 28 12 09 30 86.6 238.2 373.8 116 09127 A 28 07 01 51 346.86 711.81 7507.93 65.46 234.36 8938.5 9966.9 10.5 11.2 -38.23 18.99 OBC -1.8 341.9 NVD 28 12 11 30 86.2 242.1 418.1 117 09127 A 28 07 03 51 354.15 713.48 7507.95 72.14 242.52 8341.6 9357.3 6.8 11.0 -34.48 15.81 OBC 3.9 349.9 NVD 28 12 13 30 85.8 245.2 463.9 118 09128 A 28 07 05 27 360.00 714.42 Pri 7507.96 77.04 254.71 7849.0 8871.2 1.2 11.0 -31.46 0.62 OBC 8.5 1.7 VBC 28 12 15 06 85.5 247.3 501.5 119 09127 A 28 07 05 51 1.44 714.59 7507.96 78.11 259.15 7726.5 8752.4 -0.8 11.0 -30.72 12.33 OBC 9.6 5.9 VBC 28 12 15 30 85.4 247.8 510.8 120 09128 A 28 07 07 51 8.73 715.07 7507.95 81.69 296.55 7100.1 8156.9 -18.2 11.6 -26.96 8.43 OBC 15.4 42.3 VBC 28 12 17 30 85.0 250.0 558.5 121 09128 A 28 07 09 51 16.02 714.88 7507.92 79.89 342.04 6471.3 7576.1 -43.8 14.5 -23.20 3.95 OBC 21.1 86.2 VBC 28 12 19 30 84.5 251.8 606.8 122 09128 A 28 07 11 51 23.31 714.04 7507.88 74.49 4.70 5851.4 7016.3 60.1 17.7 -19.47 358.66 OBC 26.8 106.8 VBC 28 12 21 30 84.1 253.4 655.6 123 09128 A 28 07 13 51 30.60 712.61 7507.82 67.98 15.09 5255.5 6485.2 68.3 20.0 -15.80 352.31 OBC 32.4 114.4 VBC 28 12 23 30 83.7 254.8 704.8 124 09128 A 28 07 15 51 37.89 710.68 7507.74 61.12 20.83 4704.2 5992.6 72.8 21.5 -12.28 344.54 OBC 37.7 116.5 VBC 28 12 25 30 83.2 256.0 754.2 125 09128 A 28 07 17 51 45.18 708.37 7507.66 54.10 24.49 4225.4 5550.2 75.6 22.6 -9.05 334.99 OBC 42.8 115.5 VBC 28 12 27 30 82.8 257.1 804.0 126 09128 A 28 07 19 51 52.47 705.86 7507.56 47.00 27.08 3854.8 5172.4 77.5 23.5 -6.40 323.39 OBC 47.5 112.1 VBC 28 12 29 30 82.3 258.0 853.9 127 09128 A 28 07 21 51 59.76 703.30 7507.45 39.86 29.07 3631.5 4875.4 78.8 24.2 -4.72 309.91 LOS 51.6 106.6 VBC 28 12 31 30 81.9 258.9 904.0 128 09128 A 28 07 23 51 67.05 700.86 7507.33 32.69 30.67 3586.0 4675.4 79.9 24.8 -4.37 295.42 LOS 54.8 99.0 VBC 28 12 33 30 81.4 259.7 954.2 129 09128 A 28 07 25 51 74.33 698.70 7507.21 25.50 32.04 3724.4 4585.5 80.7 25.3 -5.43 281.29 OBC 57.0 89.4 VBC 28 12 35 30 81.0 260.4 1004.5 130 09128 A 28 07 27 51 81.62 696.97 7507.08 18.31 33.25 4024.3 4612.5 81.4 25.8 -7.63 268.67 OBC 57.8 78.6 VBC 28 12 37 30 80.5 261.0 1055.0 131

Page 294: ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM …myreaders.info/00_Orbital__Mechanics__-__Model_____Simulation... · ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM-MSS)

www.m

yrea

ders

.inf

o

OM-MSS Page 294 SATELLITE PASS - GROUND TRACE [acronym - Line Of Sight (LOS), On Board Computerr (OBC), Visible Band Camera (VBC), Night Vision Devices (NVD) ] ORBIT, INPUT TIME, POSIION, SAT VELOCITY, GROUND TRACE, RANGE, DIST, PITCH/ROLL, EL/AZ, ACCESS EL/AZ, DATA SOLAR TIME EL/AZ, DIST Line 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 @ES 18 19 20 @SS 21 22 23 24 25 26 27 @ES 28 29 30 No. Node GMT Anomaly Height @ Vel Lat(SAT)Log Slant S-Sat Pitch Roll EL(SAT)AZ Control EL(SUN)AZ Acq. LMT(ES) EL(SUN)AZ S-Sun Nos D H M S deg km meter deg deg km km deg deg deg D H M S deg km 09128 A 28 07 29 51 88.91 695.78 7506.95 11.10 34.36 4447.6 4754.2 82.0 26.3 -10.56 258.02 OBC 57.2 67.4 VBC 28 12 39 30 80.1 261.6 1105.5 132 09128 A 28 07 31 51 96.20 695.21 7506.82 3.90 35.42 4955.8 5000.7 82.5 26.7 -13.89 249.23 OBC 55.2 57.0 VBC 28 12 41 30 79.6 262.2 1156.2 133 09128 A 28 07 32 56 100.14 695.18 Eqa 7506.75 0.00 35.98 5254.1 5172.2 82.8 27.0 -15.78 245.89 OBC 53.6 51.9 VBC 28 12 42 35 79.4 262.5 1183.5 134 09128 D 28 07 33 51 103.49 695.30 7506.69 -3.31 35.51 5517.1 5423.3 82.6 26.8 -17.41 241.95 OBC 51.3 48.8 VBC 28 12 43 30 79.2 262.7 1206.8 135 09128 D 28 07 35 51 110.77 696.06 7506.57 -10.52 34.45 6107.9 6002.3 82.0 26.3 -21.01 235.80 OBC 45.9 43.4 VBC 28 12 45 30 78.7 263.2 1257.6 136 09128 D 28 07 37 51 118.06 697.44 7506.45 -17.73 33.35 6710.9 6615.9 81.4 25.8 -24.62 230.47 OBC 40.1 39.5 VBC 28 12 47 30 78.2 263.7 1308.4 137 09128 D 28 07 39 51 125.35 699.35 7506.34 -24.92 32.15 7313.6 7254.1 80.8 25.4 -28.22 225.73 OBC 34.1 36.8 VBC 28 12 49 30 77.8 264.1 1359.2 138 09128 D 28 07 41 51 132.64 701.69 7506.24 -32.11 30.80 7906.4 7909.6 79.9 24.8 -31.80 221.38 OBC 27.8 35.0 VBC 28 12 51 30 77.3 264.5 1410.1 139 09128 D 28 07 43 51 139.92 704.31 7506.15 -39.28 29.22 8481.7 8577.0 78.9 24.2 -35.33 217.27 OBC 21.4 34.1 VBC 28 12 53 30 76.9 264.9 1461.0 140 09128 D 28 07 45 51 147.21 707.04 7506.07 -46.42 27.28 9033.8 9251.9 77.6 23.5 -38.82 213.28 OBC 14.9 34.1 VBC 28 12 55 30 76.4 265.2 1511.9 141 09128 D 28 07 47 51 154.50 709.72 7506.01 -53.52 24.76 9557.6 9930.5 75.8 22.7 -42.26 209.30 OBC 8.3 35.0 VBC 28 12 57 30 76.0 265.6 1562.9 142 09128 D 28 07 49 51 161.78 712.17 7505.96 -60.54 21.21 10049.1 10609.6 73.1 21.6 -45.62 205.23 OBC 1.6 37.3 NVD 28 12 59 30 75.5 265.9 1613.9 143 09128 D 28 07 51 51 169.07 714.24 7505.92 -67.42 15.72 10504.8 11285.8 68.8 20.1 -48.91 200.96 OBC -5.1 41.9 NVD 28 13 01 30 75.0 266.2 1664.9 144 09128 D 28 07 53 51 176.35 715.79 7505.91 -73.97 5.91 10921.9 11955.6 61.0 18.0 -52.10 196.40 OBC -11.8 51.1 NVD 28 13 03 30 74.6 266.5 1715.9 145 09128 D 28 07 54 51 180.00 716.35 Apo 7505.90 -76.95 357.55 11115.3 12287.1 -54.7 16.5 -53.65 193.71 OBC -15.1 59.2 NVD 28 13 04 30 74.4 266.7 1741.4 146 09128 D 28 07 55 51 183.64 716.73 7505.91 -79.52 344.82 11297.7 12614.8 -45.7 14.8 -55.17 191.40 OBC -18.5 71.9 NVD 28 13 05 30 74.1 266.8 1766.9 147 09128 D 28 07 57 51 190.93 716.99 7505.92 -81.77 300.85 11630.4 13258.2 -20.4 11.7 -58.08 185.84 OBC -25.3 115.8 NVD 28 13 07 30 73.7 267.1 1818.0 148 09128 D 28 07 59 51 198.21 716.55 7505.96 -78.55 261.36 11918.0 13879.1 -1.8 11.0 -60.79 179.56 OBC -32.0 155.7 NVD 28 13 09 30 73.2 267.4 1869.1 149 09128 D 28 08 01 51 205.50 715.44 7506.01 -72.69 243.54 12159.2 14468.4 6.3 11.0 -63.25 172.39 OBC -38.7 174.4 NVD 28 13 11 30 72.8 267.6 1920.1 150 09128 D 28 08 03 51 212.78 713.73 7506.07 -66.05 234.93 12352.9 15013.7 10.3 11.2 -65.39 164.18 OBC -45.4 184.5 NVD 28 13 13 30 72.3 267.9 1971.2 151 09128 D 28 08 05 51 220.07 711.53 7506.15 -59.13 229.95 12498.3 15497.9 12.6 11.3 -67.11 154.84 OBC -51.9 192.0 NVD 28 13 15 30 71.8 268.2 2022.3 152 09128 D 28 08 07 51 227.36 708.99 7506.24 -52.09 226.67 12594.9 15898.5 14.2 11.3 -68.32 144.43 OBC -58.3 199.2 NVD 28 13 17 30 71.4 268.4 2073.4 153 09128 D 28 08 09 51 234.64 706.25 7506.34 -44.98 224.29 12642.7 16188.6 15.3 11.4 -68.95 133.24 OBC -64.3 207.9 NVD 28 13 19 30 70.9 268.6 2124.5 154 09128 D 28 08 11 51 241.93 703.50 7506.45 -37.83 222.43 12641.7 16341.6 16.2 11.5 -68.94 121.76 OBC -69.7 220.2 NVD 28 13 21 30 70.5 268.9 2175.7 155 09128 D 28 08 13 51 249.22 700.90 7506.57 -30.65 220.91 12592.3 16340.2 16.9 11.5 -68.30 110.58 OBC -73.8 239.1 NVD 28 13 23 30 70.0 269.1 2226.8 156 09128 D 28 08 15 51 256.51 698.61 7506.69 -23.47 219.60 12495.4 16184.5 17.6 11.5 -67.08 100.17 OBC -75.3 265.3 NVD 28 13 25 30 69.5 269.3 2277.9 157 09128 D 28 08 17 51 263.79 696.78 7506.82 -16.27 218.42 12352.0 15892.0 18.2 11.6 -65.39 90.78 OBC -73.6 291.1 NVD 28 13 27 30 69.1 269.5 2329.0 158 09128 D 28 08 19 51 271.08 695.52 7506.95 -9.06 217.33 12163.4 15489.5 18.7 11.6 -63.31 82.45 OBC -69.5 309.1 NVD 28 13 29 30 68.6 269.7 2380.1 159 09128 D 28 08 21 51 278.37 694.89 7507.08 -1.85 216.28 11931.3 15003.8 19.2 11.7 -60.93 75.07 OBC -64.0 320.2 NVD 28 13 31 30 68.2 269.9 2431.3 160 09128 D 28 08 22 22 280.24 694.83 Eqa 7507.11 -0.00 216.02 11865.0 14868.4 19.4 11.7 -60.29 65.87 OBC -62.4 322.3 NVD 28 13 32 01 68.0 270.0 2444.4 161 09128 A 28 08 23 51 285.66 694.93 7507.21 5.36 216.79 11657.9 14594.4 19.0 11.6 -58.34 68.49 OBC -58.6 329.4 NVD 28 13 33 30 67.7 270.1 2482.4 162 09128 A 28 08 25 51 292.95 695.64 7507.33 12.57 217.86 11345.6 14166.9 18.4 11.6 -55.59 62.53 OBC -52.9 336.5 NVD 28 13 35 30 67.2 270.3 2533.5 163 09128 A 28 08 27 51 300.24 696.96 7507.45 19.77 218.99 10997.2 13685.6 17.9 11.6 -52.71 57.04 OBC -46.7 341.7 NVD 28 13 37 30 66.8 270.5 2584.7 164 09128 A 28 08 29 51 307.53 698.80 7507.56 26.97 220.23 10615.9 13163.1 17.3 11.5 -49.76 51.88 OBC -40.3 345.8 NVD 28 13 39 30 66.3 270.7 2635.8 165 09128 A 28 08 31 51 314.82 701.05 7507.66 34.15 221.63 10205.6 12609.5 16.6 11.5 -46.75 46.92 OBC -33.6 349.1 NVD 28 13 41 30 65.9 270.9 2686.9 166 09128 A 28 08 33 51 322.11 703.56 7507.74 41.32 223.30 9770.5 12033.0 15.8 11.4 -43.71 42.05 OBC -26.8 352.1 NVD 28 13 43 30 65.4 271.0 2738.0 167 09128 A 28 08 35 51 329.40 706.16 7507.82 48.45 225.38 9315.7 11440.3 14.8 11.4 -40.67 37.17 OBC -19.9 355.1 NVD 28 13 45 30 64.9 271.2 2789.1 168 09128 A 28 08 37 51 336.69 708.68 7507.88 55.54 228.15 8847.0 10836.9 13.5 11.3 -37.64 32.18 OBC -13.0 358.4 NVD 28 13 47 30 64.5 271.4 2840.3 169 09128 A 28 08 39 51 343.98 710.95 7507.92 62.53 232.12 8371.1 10227.5 11.6 11.2 -34.66 26.98 OBC -6.0 2.6 NVD 28 13 49 30 64.0 271.6 2891.4 170 09128 A 28 08 41 51 351.27 712.83 7507.95 69.35 238.50 7895.8 9616.7 8.6 11.1 -31.75 21.47 OBC 1.1 9.0 NVD 28 13 51 30 63.6 271.7 2942.5 171 09128 A 28 08 43 51 358.56 714.20 7507.96 75.72 250.50 7430.4 9008.6 3.1 11.0 -28.94 15.55 OBC 8.2 20.8 VBC 28 13 53 30 63.1 271.9 2993.6 172 09129 A 28 08 44 14 360.00 714.40 Pri 7507.96 76.87 254.18 7340.3 8888.9 1.5 11.0 -28.40 0.75 OBC 9.6 24.4 VBC 28 13 53 53 63.0 271.9 3003.7 173 09128 A 28 08 45 51 5.85 714.95 7507.95 80.68 277.42 6985.8 8407.9 -9.1 11.1 -26.27 9.11 OBC 15.3 47.3 VBC 28 13 55 30 62.6 272.1 3044.7 174 09129 A 28 08 47 51 13.14 715.05 7507.93 81.33 325.20 6574.5 7819.5 -33.5 13.1 -23.82 2.06 OBC 22.4 94.4 VBC 28 13 57 30 62.2 272.2 3095.8 175 09129 A 28 08 49 51 20.43 714.48 7507.89 77.00 357.42 6210.5 7249.3 -54.6 16.5 -21.64 354.32 OBC 29.5 125.7 VBC 28 13 59 30 61.7 272.4 3146.8 176

Page 295: ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM …myreaders.info/00_Orbital__Mechanics__-__Model_____Simulation... · ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM-MSS)

www.m

yrea

ders

.inf

o

OM-MSS Page 295 SATELLITE PASS - GROUND TRACE [acronym - Line Of Sight (LOS), On Board Computerr (OBC), Visible Band Camera (VBC), Night Vision Devices (NVD) ] ORBIT, INPUT TIME, POSIION, SAT VELOCITY, GROUND TRACE, RANGE, DIST, PITCH/ROLL, EL/AZ, ACCESS EL/AZ, DATA SOLAR TIME EL/AZ, DIST Line 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 @ES 18 19 20 @SS 21 22 23 24 25 26 27 @ES 28 29 30 No. Node GMT Anomaly Height @ Vel Lat(SAT)Log Slant S-Sat Pitch Roll EL(SAT)AZ Control EL(SUN)AZ Acq. LMT(ES) EL(SUN)AZ S-Sun Nos D H M S deg km meter deg deg km km deg deg deg D H M S deg km 09129 A 28 08 51 51 27.72 713.29 7507.84 70.81 11.58 5909.1 6704.2 65.5 19.1 -19.82 345.88 OBC 36.7 138.6 VBC 28 14 01 30 61.3 272.6 3197.9 177 09129 A 28 08 53 51 35.01 711.55 7507.77 64.06 18.81 5685.3 6193.2 71.2 20.9 -18.46 336.77 OBC 43.8 144.1 VBC 28 14 03 30 60.8 272.7 3249.0 178 09129 A 28 08 55 51 42.30 709.39 7507.69 57.09 23.17 5551.8 5727.1 74.6 22.2 -17.64 327.17 OBC 50.8 146.2 VBC 28 14 05 30 60.4 272.9 3300.1 179 09129 A 28 08 57 51 49.58 706.95 7507.60 50.02 26.15 5516.7 5319.3 76.8 23.1 -17.42 317.31 OBC 57.9 145.9 VBC 28 14 07 30 59.9 273.0 3351.1 180 09129 A 28 08 59 51 56.87 704.38 7507.49 42.90 28.35 5581.5 4985.2 78.4 23.9 -17.82 307.49 OBC 64.8 143.0 VBC 28 14 09 30 59.4 273.2 3402.2 181 09129 A 28 09 01 51 64.16 701.87 7507.38 35.74 30.09 5740.7 4741.4 79.5 24.6 -18.79 297.99 OBC 71.4 136.2 VBC 28 14 11 30 59.0 273.3 3453.2 182 09129 A 28 09 03 51 71.45 699.57 7507.26 28.56 31.55 5983.2 4603.0 80.4 25.1 -20.26 289.03 OBC 77.2 120.9 VBC 28 14 13 30 58.5 273.5 3504.3 183 09129 A 28 09 05 51 78.74 697.65 7507.13 21.36 32.82 6294.4 4579.8 81.2 25.6 -22.13 280.71 OBC 80.7 87.5 VBC 28 14 15 30 58.1 273.7 3555.3 184 09129 A 28 09 07 51 86.03 696.21 7507.00 14.16 33.96 6658.8 4673.6 81.8 26.1 -24.31 273.04 OBC 79.2 46.3 VBC 28 14 17 30 57.6 273.8 3606.3 185 09129 A 28 09 09 51 93.32 695.37 7506.87 6.96 35.04 7061.2 4877.4 82.3 26.6 -26.72 265.97 OBC 74.1 23.7 VBC 28 14 19 30 57.1 274.0 3657.3 186 09129 A 28 09 11 46 100.35 695.18 Eqa 7506.75 0.00 36.05 7473.1 5165.9 82.8 27.0 -29.18 245.84 OBC 67.9 13.3 VBC 28 14 21 25 56.7 274.1 3706.5 187 09129 D 28 09 11 51 100.61 695.18 7506.74 -0.25 36.01 7488.4 5184.7 82.8 27.0 -29.27 259.41 OBC 67.7 13.2 VBC 28 14 21 30 56.7 274.1 3708.3 188 09129 D 28 09 13 51 107.89 695.66 7506.62 -7.46 34.97 7928.6 5745.6 82.3 26.5 -31.93 253.26 OBC 60.5 11.2 VBC 28 14 23 30 56.2 274.2 3759.3 189 09129 D 28 09 15 51 115.18 696.78 7506.50 -14.67 33.89 8371.9 6346.3 81.7 26.1 -34.65 247.43 OBC 53.3 10.1 VBC 28 14 25 30 55.8 274.4 3810.3 190 09129 D 28 09 17 51 122.47 698.48 7506.38 -21.87 32.74 8810.0 6975.5 81.1 25.6 -37.40 241.79 OBC 46.1 9.6 VBC 28 14 27 30 55.3 274.5 3861.3 191 09129 D 28 09 19 51 129.75 700.66 7506.28 -29.06 31.46 9236.0 7624.8 80.3 25.1 -40.13 236.27 OBC 38.9 9.4 VBC 28 14 29 30 54.9 274.7 3912.2 192 09129 D 28 09 21 51 137.04 703.18 7506.18 -36.23 30.00 9643.9 8288.2 79.4 24.5 -42.84 230.76 OBC 31.7 9.7 VBC 28 14 31 30 54.4 274.8 3963.2 193 09129 D 28 09 23 51 144.33 705.88 7506.10 -43.39 28.23 10028.7 8960.8 78.2 23.9 -45.48 225.18 OBC 24.5 10.3 VBC 28 14 33 30 53.9 275.0 4014.1 194 09129 D 28 09 25 51 151.61 708.60 7506.03 -50.51 25.99 10386.4 9638.6 76.7 23.1 -48.04 219.44 OBC 17.3 11.6 VBC 28 14 35 30 53.5 275.1 4065.0 195 09129 D 28 09 27 51 158.90 711.17 7505.97 -57.57 22.95 10713.3 10318.4 74.4 22.1 -50.48 213.46 OBC 10.0 13.6 VBC 28 14 37 30 53.0 275.3 4116.0 196 09129 D 28 09 29 51 166.19 713.42 7505.93 -64.53 18.46 11006.5 10996.7 70.9 20.8 -52.77 207.16 OBC 2.8 17.1 NVD 28 14 39 30 52.6 275.4 4166.9 197 09129 D 28 09 31 51 173.47 715.21 7505.91 -71.25 10.95 11263.6 11670.1 65.0 19.0 -54.88 200.45 OBC -4.4 23.6 NVD 28 14 41 30 52.1 275.5 4217.8 198 09129 D 28 09 33 38 180.00 716.32 Apo 7505.90 -76.79 358.21 11461.4 12266.1 -55.1 16.6 -56.57 193.84 OBC -10.8 35.4 NVD 28 14 43 17 51.7 275.7 4263.3 199 09129 D 28 09 33 51 180.76 716.41 7505.91 -77.37 356.04 11482.4 12334.8 -53.6 16.3 -56.76 193.29 OBC -11.6 37.5 NVD 28 14 43 30 51.7 275.7 4268.6 200 09129 D 28 09 35 51 188.05 716.96 7505.92 -81.47 322.16 11661.4 12986.2 -31.7 12.8 -58.36 185.64 OBC -18.8 70.2 NVD 28 14 45 30 51.2 275.8 4319.5 201 09129 D 28 09 37 51 195.33 716.82 7505.94 -80.44 274.92 11799.5 13618.3 -8.0 11.1 -59.65 177.50 OBC -26.0 116.2 NVD 28 14 47 30 50.7 276.0 4370.4 202 09129 D 28 09 39 51 202.62 715.99 7505.98 -75.33 249.46 11895.7 14223.0 3.6 11.0 -60.57 168.93 OBC -33.2 140.3 NVD 28 14 49 30 50.3 276.1 4421.2 203 09129 D 28 09 41 51 209.90 714.52 7506.04 -68.92 238.02 11949.7 14789.6 8.8 11.1 -61.11 160.06 OBC -40.3 150.0 NVD 28 14 51 30 49.8 276.2 4472.0 204 09129 D 28 09 43 51 217.19 712.52 7506.11 -62.09 231.86 11961.3 15303.2 11.7 11.2 -61.22 151.03 OBC -47.4 154.1 NVD 28 14 53 30 49.4 276.4 4522.9 205 09129 D 28 09 45 51 224.48 710.10 7506.20 -55.09 227.99 11930.7 15743.4 13.5 11.3 -60.92 142.05 OBC -54.5 155.2 NVD 28 14 55 30 48.9 276.5 4573.7 206 09129 D 28 09 47 51 231.76 707.42 7506.30 -48.00 225.28 11858.6 16085.0 14.8 11.4 -60.22 133.28 OBC -61.5 154.1 NVD 28 14 57 30 48.5 276.7 4624.4 207 09129 D 28 09 49 51 239.05 704.65 7506.40 -40.87 223.24 11745.9 16300.2 15.8 11.4 -59.15 124.87 OBC -68.3 150.1 NVD 28 14 59 30 48.0 276.8 4675.2 208 09129 D 28 09 51 51 246.34 701.97 7506.52 -33.70 221.59 11593.9 16366.3 16.6 11.5 -57.75 116.89 OBC -74.8 140.9 NVD 28 15 01 30 47.5 276.9 4726.0 209 09129 D 28 09 53 51 253.63 699.53 7506.64 -26.52 220.20 11404.3 16275.4 17.3 11.5 -56.08 109.37 OBC -80.1 118.6 NVD 28 15 03 30 47.1 277.1 4776.7 210 09129 D 28 09 55 51 260.91 697.49 7506.77 -19.32 218.98 11179.3 16038.2 17.9 11.6 -54.18 102.28 OBC -81.6 73.6 NVD 28 15 05 30 46.6 277.2 4827.5 211 09129 D 28 09 57 51 268.20 695.97 7506.90 -12.12 217.85 10921.2 15678.9 18.4 11.6 -52.10 95.58 OBC -77.9 38.2 NVD 28 15 07 30 46.2 277.3 4878.2 212 09129 D 28 09 59 51 275.49 695.07 7507.03 -4.91 216.79 10633.1 15225.2 19.0 11.6 -49.88 89.20 OBC -71.9 22.9 NVD 28 15 09 30 45.7 277.5 4928.9 213 09129 D 28 10 01 12 280.46 694.83 Eqa 7507.12 -0.00 216.08 10421.2 14874.7 19.3 11.7 -48.31 65.82 OBC -67.4 17.4 NVD 28 15 10 51 45.4 277.6 4963.4 214 09129 A 28 10 01 51 282.78 694.83 7507.16 2.30 216.42 10318.3 14762.2 19.2 11.7 -47.56 83.06 OBC -65.1 16.9 NVD 28 15 11 30 45.3 277.6 4979.6 215 09129 A 28 10 03 51 290.07 695.25 7507.28 9.51 217.47 9980.9 14361.4 18.6 11.6 -45.16 77.09 OBC -57.7 16.0 NVD 28 15 13 30 44.8 277.7 5030.2 216 09129 A 28 10 05 51 297.36 696.32 7507.40 16.71 218.57 9625.4 13900.8 18.1 11.6 -42.73 71.19 OBC -50.4 15.7 NVD 28 15 15 30 44.4 277.9 5080.9 217 09129 A 28 10 07 51 304.64 697.96 7507.52 23.91 219.75 9257.1 13393.8 17.5 11.5 -40.28 65.28 OBC -43.0 15.9 NVD 28 15 17 30 43.9 278.0 5131.5 218 09129 A 28 10 09 51 311.93 700.05 7507.62 31.10 221.08 8881.8 12851.7 16.9 11.5 -37.86 59.30 OBC -35.7 16.3 NVD 28 15 19 30 43.4 278.2 5182.1 219 09129 A 28 10 11 51 319.22 702.47 7507.71 38.28 222.62 8506.5 12283.5 16.1 11.5 -35.50 53.17 OBC -28.3 17.2 NVD 28 15 21 30 43.0 278.3 5232.7 220

Page 296: ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM …myreaders.info/00_Orbital__Mechanics__-__Model_____Simulation... · ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM-MSS)

www.m

yrea

ders

.inf

o

OM-MSS Page 296 SATELLITE PASS - GROUND TRACE [acronym - Line Of Sight (LOS), On Board Computerr (OBC), Visible Band Camera (VBC), Night Vision Devices (NVD) ] ORBIT, INPUT TIME, POSIION, SAT VELOCITY, GROUND TRACE, RANGE, DIST, PITCH/ROLL, EL/AZ, ACCESS EL/AZ, DATA SOLAR TIME EL/AZ, DIST Line 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 @ES 18 19 20 @SS 21 22 23 24 25 26 27 @ES 28 29 30 No. Node GMT Anomaly Height @ Vel Lat(SAT)Log Slant S-Sat Pitch Roll EL(SAT)AZ Control EL(SUN)AZ Acq. LMT(ES) EL(SUN)AZ S-Sun Nos D H M S deg km meter deg deg km km deg deg deg D H M S deg km 09129 A 28 10 13 51 326.51 705.05 7507.79 45.43 224.50 8138.7 11696.4 15.2 11.4 -33.23 46.80 OBC -21.0 18.6 NVD 28 15 23 30 42.5 278.4 5283.3 221 09129 A 28 10 15 51 333.80 707.62 7507.85 52.54 226.93 7787.1 11096.3 14.0 11.3 -31.09 40.14 OBC -13.6 20.6 NVD 28 15 25 30 42.1 278.6 5333.9 222 09129 A 28 10 17 51 341.09 710.02 7507.90 59.58 230.30 7461.1 10488.3 12.4 11.2 -29.12 33.13 OBC -6.3 23.7 NVD 28 15 27 30 41.6 278.7 5384.4 223 09129 A 28 10 19 51 348.38 712.09 7507.94 66.49 235.44 7170.6 9877.0 10.0 11.1 -27.38 25.74 OBC 1.0 28.7 NVD 28 15 29 30 41.2 278.8 5435.0 224 09129 A 28 10 21 51 355.67 713.69 7507.96 73.10 244.41 6925.9 9266.7 5.9 11.0 -25.92 17.95 OBC 8.3 37.7 VBC 28 15 31 30 40.7 279.0 5485.5 225 09130 A 28 10 23 02 360.00 714.37 Pri 7507.96 76.70 253.67 6806.4 8906.6 1.7 11.0 -25.20 0.87 OBC 12.7 47.0 VBC 28 15 32 41 40.5 279.1 5515.4 226 09129 A 28 10 23 51 2.96 714.71 7507.96 78.88 263.23 6736.8 8661.7 -2.6 11.0 -24.79 9.80 OBC 15.6 56.7 VBC 28 15 33 30 40.3 279.1 5536.0 227 09130 A 28 10 25 51 10.25 715.09 7507.94 81.80 304.31 6611.6 8066.8 -22.1 11.9 -24.04 1.35 OBC 22.9 98.2 VBC 28 15 35 30 39.8 279.2 5586.4 228 09130 A 28 10 27 51 17.54 714.80 7507.91 79.22 346.95 6556.2 7487.4 -47.1 15.1 -23.71 352.73 OBC 30.1 141.5 VBC 28 15 37 30 39.4 279.4 5636.9 229 09130 A 28 10 29 51 24.83 713.87 7507.86 73.55 6.91 6573.1 6930.0 61.8 18.2 -23.81 344.07 OBC 37.3 162.4 VBC 28 15 39 30 38.9 279.5 5687.3 230 09130 A 28 10 31 51 32.12 712.35 7507.80 66.97 16.30 6661.3 6402.6 69.2 20.3 -24.34 335.52 OBC 44.4 173.4 VBC 28 15 41 30 38.5 279.7 5737.7 231 09130 A 28 10 33 51 39.41 710.35 7507.73 60.07 21.61 6816.1 5915.2 73.4 21.7 -25.26 327.19 OBC 51.4 181.1 VBC 28 15 43 30 38.0 279.8 5788.1 232 09130 A 28 10 35 51 46.70 708.01 7507.64 53.03 25.07 7030.0 5480.0 76.0 22.8 -26.54 319.19 OBC 58.2 188.4 VBC 28 15 45 30 37.5 279.9 5838.5 233 09130 A 28 10 37 51 53.99 705.48 7507.54 45.93 27.55 7293.8 5111.8 77.8 23.6 -28.11 311.56 OBC 64.8 197.0 VBC 28 15 47 30 37.1 280.1 5888.8 234 09130 A 28 10 39 51 61.28 702.92 7507.43 38.78 29.46 7597.2 4827.0 79.1 24.3 -29.93 304.31 OBC 70.6 209.5 VBC 28 15 49 30 36.6 280.2 5939.2 235 09130 A 28 10 41 51 68.57 700.51 7507.31 31.61 31.02 7930.0 4641.7 80.1 24.9 -31.95 297.42 OBC 75.2 230.0 VBC 28 15 51 30 36.2 280.3 5989.5 236 09130 A 28 10 43 51 75.86 698.41 7507.18 24.42 32.36 8282.5 4568.4 80.9 25.4 -34.11 290.83 OBC 76.8 260.0 VBC 28 15 53 30 35.7 280.5 6039.8 237 09130 A 28 10 45 51 83.15 696.76 7507.05 17.22 33.55 8645.7 4612.8 81.6 25.9 -36.37 284.49 OBC 74.6 288.6 VBC 28 15 55 30 35.3 280.6 6090.0 238 09130 A 28 10 47 51 90.44 695.66 7506.92 10.02 34.66 9011.6 4771.4 82.2 26.4 -38.69 278.34 OBC 69.8 306.7 VBC 28 15 57 30 34.8 280.8 6140.3 239 09130 A 28 10 49 51 97.72 695.19 7506.79 2.81 35.71 9373.2 5033.0 82.7 26.9 -41.04 272.29 OBC 63.8 317.0 VBC 28 15 59 30 34.4 280.9 6190.5 240 09130 A 28 10 50 37 100.56 695.18 Eqa 7506.74 0.00 36.12 9511.5 5159.6 82.8 27.1 -41.96 245.79 OBC 61.3 319.8 VBC 28 16 00 16 34.2 280.9 6210.0 241 09130 D 28 10 51 51 105.01 695.38 7506.67 -4.40 35.48 9724.2 5495.7 82.6 26.8 -43.39 266.27 OBC 58.0 324.8 VBC 28 16 01 30 33.9 281.0 6240.7 242 09130 D 28 10 53 51 112.30 696.23 7506.54 -11.61 34.42 10059.0 6081.5 82.0 26.3 -45.70 260.21 OBC 52.2 331.1 VBC 28 16 03 30 33.5 281.2 6290.8 243 09130 D 28 10 55 51 119.59 697.70 7506.42 -18.81 33.31 10373.1 6700.2 81.4 25.8 -47.95 254.03 OBC 46.0 335.6 VBC 28 16 05 30 33.0 281.3 6341.0 244 09130 D 28 10 57 51 126.87 699.69 7506.32 -26.01 32.09 10662.4 7342.2 80.7 25.3 -50.10 247.65 OBC 39.6 339.0 VBC 28 16 07 30 32.6 281.4 6391.1 245 09130 D 28 10 59 51 134.16 702.08 7506.22 -33.19 30.72 10923.2 8000.7 79.9 24.8 -52.11 241.02 OBC 33.1 341.8 VBC 28 16 09 30 32.1 281.6 6441.2 246 09130 D 28 11 01 51 141.45 704.72 7506.13 -40.35 29.09 11152.7 8670.3 78.8 24.2 -53.96 234.08 OBC 26.5 344.1 VBC 28 16 11 30 31.7 281.7 6491.3 247 09130 D 28 11 03 51 148.73 707.46 7506.05 -47.49 27.08 11348.2 9346.7 77.4 23.5 -55.60 226.77 OBC 19.9 346.4 VBC 28 16 13 30 31.2 281.9 6541.3 248 09130 D 28 11 05 51 156.02 710.11 7505.99 -54.58 24.44 11507.8 10026.5 75.5 22.6 -56.98 219.08 OBC 13.3 348.9 VBC 28 16 15 30 30.8 282.0 6591.3 249 09130 D 28 11 07 51 163.31 712.51 7505.95 -61.59 20.68 11629.7 10706.3 72.7 21.4 -58.07 211.03 OBC 6.6 352.2 VBC 28 16 17 30 30.3 282.1 6641.3 250 09130 D 28 11 09 51 170.59 714.51 7505.92 -68.44 14.75 11712.7 11382.7 68.0 19.9 -58.83 202.67 OBC 0.0 357.3 NVD 28 16 19 30 29.9 282.3 6691.3 251 09130 D 28 11 11 51 177.88 715.98 7505.91 -74.89 3.87 11755.9 12052.1 59.4 17.6 -59.24 194.09 OBC -6.5 7.0 NVD 28 16 21 30 29.4 282.4 6741.2 252 09130 D 28 11 12 26 180.00 716.29 Apo 7505.90 -76.62 358.85 11760.9 12245.1 -55.6 16.7 -59.28 193.97 OBC -8.4 11.6 NVD 28 16 22 05 29.3 282.5 6755.8 253 09130 D 28 11 13 51 185.16 716.81 7505.91 -80.17 339.91 11758.7 12710.3 -42.4 14.3 -59.26 185.44 OBC -13.0 29.4 NVD 28 16 23 30 29.0 282.6 6791.1 254 09130 D 28 11 15 51 192.45 716.96 7505.93 -81.60 293.49 11721.1 13352.0 -16.7 11.5 -58.91 176.84 OBC -19.4 73.8 NVD 28 16 25 30 28.5 282.7 6841.0 255 09130 D 28 11 17 51 199.74 716.42 7505.97 -77.76 257.77 11643.2 13970.2 -0.2 10.9 -58.19 168.45 OBC -25.6 107.0 NVD 28 16 27 30 28.1 282.9 6890.9 256 09130 D 28 11 19 51 207.02 715.21 7506.02 -71.72 241.99 11525.6 14555.3 7.0 11.0 -57.14 160.36 OBC -31.7 119.7 NVD 28 16 29 30 27.6 283.0 6940.7 257 09130 D 28 11 21 51 214.31 713.42 7506.08 -65.02 234.15 11369.3 15094.4 10.6 11.2 -55.78 152.64 OBC -37.5 123.5 NVD 28 16 31 30 27.2 283.1 6990.5 258 09130 D 28 11 23 51 221.60 711.16 7506.16 -58.08 229.51 11175.6 15569.6 12.8 11.3 -54.15 145.31 OBC -43.0 123.2 NVD 28 16 33 30 26.8 283.3 7040.3 259 09130 D 28 11 25 51 228.88 708.58 7506.26 -51.02 226.40 10946.3 15957.5 14.3 11.3 -52.30 138.36 OBC -48.0 120.0 NVD 28 16 35 30 26.3 283.4 7090.0 260 09130 D 28 11 27 51 236.17 705.82 7506.36 -43.90 224.11 10683.6 16230.8 15.4 11.4 -50.26 131.75 OBC -52.3 114.4 NVD 28 16 37 30 25.9 283.6 7139.7 261 09130 D 28 11 29 51 243.46 703.08 7506.47 -36.75 222.32 10390.1 16363.2 16.3 11.5 -48.07 125.42 OBC -55.7 106.5 NVD 28 16 39 30 25.4 283.7 7189.4 262 09130 D 28 11 31 51 250.74 700.52 7506.59 -29.57 220.84 10068.9 16339.4 17.0 11.5 -45.77 119.32 OBC -58.0 96.5 NVD 28 16 41 30 25.0 283.9 7239.1 263 09130 D 28 11 33 51 258.03 698.30 7506.72 -22.38 219.55 9724.0 16162.3 17.6 11.5 -43.39 113.35 OBC -58.8 85.1 NVD 28 16 43 30 24.5 284.0 7288.7 264

Page 297: ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM …myreaders.info/00_Orbital__Mechanics__-__Model_____Simulation... · ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM-MSS)

www.m

yrea

ders

.inf

o

OM-MSS Page 297 SATELLITE PASS - GROUND TRACE [acronym - Line Of Sight (LOS), On Board Computerr (OBC), Visible Band Camera (VBC), Night Vision Devices (NVD) ] ORBIT, INPUT TIME, POSIION, SAT VELOCITY, GROUND TRACE, RANGE, DIST, PITCH/ROLL, EL/AZ, ACCESS EL/AZ, DATA SOLAR TIME EL/AZ, DIST Line 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 @ES 18 19 20 @SS 21 22 23 24 25 26 27 @ES 28 29 30 No. Node GMT Anomaly Height @ Vel Lat(SAT)Log Slant S-Sat Pitch Roll EL(SAT)AZ Control EL(SUN)AZ Acq. LMT(ES) EL(SUN)AZ S-Sun Nos D H M S deg km meter deg deg km km deg deg deg D H M S deg km 09130 D 28 11 35 51 265.32 696.55 7506.85 -15.18 218.39 9359.5 15851.5 18.2 11.6 -40.95 107.45 OBC -58.1 73.6 NVD 28 16 45 30 24.1 284.2 7338.3 265 09130 D 28 11 37 51 272.61 695.37 7506.98 -7.97 217.31 8980.8 15434.3 18.7 11.6 -38.49 101.54 OBC -55.9 63.0 NVD 28 16 47 30 23.6 284.3 7387.8 266 09130 D 28 11 39 51 279.90 694.84 7507.11 -0.77 216.26 8593.6 14937.5 19.2 11.7 -36.04 95.53 OBC -52.6 54.1 NVD 28 16 49 30 23.2 284.5 7437.3 267 09130 D 28 11 40 03 280.67 694.83 Eqa 7507.12 -0.00 216.15 8552.3 14881.1 19.3 11.7 -35.78 65.77 OBC -52.2 53.3 NVD 28 16 49 42 23.1 284.5 7442.6 268 09130 A 28 11 41 51 287.18 694.99 7507.24 6.44 217.09 8205.0 14545.7 18.8 11.6 -33.63 89.35 OBC -47.1 48.5 NVD 28 16 51 30 22.7 284.6 7486.8 269 09130 A 28 11 43 51 294.47 695.79 7507.36 13.65 218.16 7823.0 14108.1 18.3 11.6 -31.30 82.92 OBC -41.0 44.7 NVD 28 16 53 30 22.3 284.8 7536.3 270 09130 A 28 11 45 51 301.76 697.20 7507.47 20.85 219.30 7456.6 13618.7 17.7 11.6 -29.09 76.16 OBC -34.7 42.2 NVD 28 16 55 30 21.9 284.9 7585.7 271 09130 A 28 11 47 51 309.05 699.11 7507.58 28.05 220.56 7116.2 13089.7 17.1 11.5 -27.05 69.01 OBC -28.2 40.8 NVD 28 16 57 30 21.4 285.1 7635.1 272 09130 A 28 11 49 51 316.34 701.41 7507.67 35.23 222.00 6813.1 12531.0 16.4 11.5 -25.24 61.41 OBC -21.7 40.2 NVD 28 16 59 30 21.0 285.2 7684.4 273 09130 A 28 11 51 51 323.63 703.94 7507.76 42.39 223.72 6559.1 11950.6 15.6 11.4 -23.72 53.35 OBC -15.1 40.5 NVD 28 17 01 30 20.5 285.4 7733.8 274 09130 A 28 11 53 51 330.92 706.54 7507.83 49.52 225.88 6365.7 11354.7 14.5 11.4 -22.57 44.88 OBC -8.5 41.7 NVD 28 17 03 30 20.1 285.5 7783.0 275 09130 A 28 11 55 51 338.21 709.04 7507.89 56.60 228.78 6242.9 10749.0 13.2 11.3 -21.83 36.07 OBC -2.0 44.1 NVD 28 17 05 30 19.6 285.7 7832.3 276 09130 A 28 11 57 51 345.50 711.26 7507.93 63.58 233.02 6197.9 10138.0 11.2 11.2 -21.56 27.08 OBC 4.6 48.3 NVD 28 17 07 30 19.2 285.8 7881.5 277 09130 A 28 11 59 51 352.79 713.07 7507.95 70.35 239.96 6233.9 9526.1 7.9 11.1 -21.78 18.08 OBC 11.0 55.7 VBC 28 17 09 30 18.8 286.0 7930.7 278 09131 A 28 12 01 49 360.00 714.34 Pri 7507.96 76.54 253.17 6347.8 8924.4 1.9 11.0 -22.46 1.00 OBC 17.3 69.8 VBC 28 17 11 28 18.3 286.1 7979.2 279 09130 A 28 12 01 51 0.08 714.35 7507.96 76.60 253.38 6349.5 8917.7 1.8 11.0 -22.47 9.25 OBC 17.4 70.0 VBC 28 17 11 30 18.3 286.1 7979.8 280 09131 A 28 12 03 51 7.37 715.01 7507.95 81.15 283.85 6539.0 8317.3 -12.1 11.2 -23.61 0.75 OBC 23.6 101.9 VBC 28 17 13 30 17.9 286.3 8028.9 281 09131 A 28 12 05 51 14.66 715.00 7507.93 80.91 331.93 6793.4 7730.0 -37.4 13.6 -25.13 352.70 OBC 29.6 152.1 VBC 28 17 15 30 17.4 286.4 8077.9 282 09131 A 28 12 07 51 21.95 714.34 7507.88 76.13 0.46 7101.7 7161.7 56.9 17.0 -26.97 345.13 OBC 35.3 183.5 VBC 28 17 17 30 17.0 286.6 8126.9 283 09131 A 28 12 09 51 29.24 713.06 7507.83 69.82 13.10 7452.2 6619.8 66.7 19.5 -29.07 338.04 OBC 40.7 200.1 VBC 28 17 19 30 16.6 286.8 8175.9 284 09131 A 28 12 11 51 36.53 711.25 7507.76 63.02 19.73 7833.7 6113.3 72.0 21.2 -31.37 331.40 OBC 45.6 211.8 VBC 28 17 21 30 16.1 286.9 8224.8 285 09131 A 28 12 13 51 43.82 709.04 7507.67 56.03 23.83 8235.3 5653.5 75.1 22.4 -33.82 325.15 OBC 49.7 222.5 VBC 28 17 23 30 15.7 287.1 8273.7 286 09131 A 28 12 15 51 51.11 706.57 7507.58 48.95 26.65 8647.7 5254.2 77.2 23.3 -36.38 319.20 OBC 53.0 233.4 VBC 28 17 25 30 15.2 287.2 8322.6 287 09131 A 28 12 17 51 58.40 704.00 7507.47 41.82 28.77 9062.2 4931.1 78.6 24.1 -39.02 313.48 OBC 55.1 245.0 VBC 28 17 27 30 14.8 287.4 8371.4 288 09131 A 28 12 19 51 65.69 701.51 7507.35 34.66 30.46 9471.5 4701.1 79.8 24.7 -41.70 307.91 OBC 55.8 257.1 VBC 28 17 29 30 14.4 287.6 8420.1 289 09131 A 28 12 21 51 72.98 699.26 7507.23 27.47 31.88 9869.1 4578.6 80.6 25.3 -44.38 302.39 OBC 55.0 268.7 VBC 28 17 31 30 13.9 287.7 8468.9 290 09131 A 28 12 23 51 80.27 697.40 7507.11 20.28 33.13 10249.4 4572.7 81.3 25.8 -47.06 296.84 OBC 52.9 279.1 VBC 28 17 33 30 13.5 287.9 8517.5 291 09131 A 28 12 25 51 87.55 696.05 7506.98 13.08 34.27 10607.3 4683.8 82.0 26.2 -49.69 291.17 OBC 49.7 287.9 VBC 28 17 35 30 13.0 288.0 8566.2 292 09131 A 28 12 27 51 94.84 695.31 7506.85 5.87 35.34 10938.6 4903.7 82.5 26.7 -52.24 285.27 OBC 45.6 294.9 VBC 28 17 37 30 12.6 288.2 8614.8 293 09131 A 28 12 29 28 100.78 695.19 Eqa 7506.74 0.00 36.19 11186.1 5153.3 82.9 27.1 -54.24 245.74 OBC 41.8 299.4 VBC 28 17 39 07 12.3 288.3 8654.3 294 09131 D 28 12 29 51 102.13 695.22 7506.72 -1.34 35.99 11239.5 5253.6 82.8 27.0 -54.68 279.05 OBC 41.2 300.5 VBC 28 17 39 30 12.2 288.4 8663.3 295 09131 D 28 12 31 51 109.42 695.80 7506.59 -8.55 34.95 11506.9 5822.2 82.3 26.5 -56.98 272.40 OBC 37.7 305.8 VBC 28 17 41 30 11.7 288.5 8711.8 296 09131 D 28 12 33 51 116.70 697.01 7506.47 -15.75 33.86 11737.9 6428.7 81.7 26.1 -59.07 265.22 OBC 33.7 310.3 VBC 28 17 43 30 11.3 288.7 8760.2 297 09131 D 28 12 35 51 123.99 698.79 7506.36 -22.95 32.69 11930.2 7062.2 81.1 25.6 -60.92 257.44 OBC 29.4 314.0 VBC 28 17 45 30 10.9 288.9 8808.6 298 09131 D 28 12 37 51 131.28 701.02 7506.25 -30.14 31.39 12081.7 7714.8 80.3 25.1 -62.44 249.01 OBC 24.7 317.2 VBC 28 17 47 30 10.4 289.1 8857.0 299 09131 D 28 12 39 51 138.57 703.58 7506.16 -37.31 29.89 12190.9 8380.6 79.4 24.5 -63.59 239.96 OBC 19.9 320.0 VBC 28 17 49 30 10.0 289.2 8905.3 300 09131 D 28 12 41 51 145.85 706.30 7506.08 -44.47 28.06 12256.5 9055.1 78.1 23.8 -64.31 230.41 OBC 14.9 322.5 VBC 28 17 51 30 9.6 289.4 8953.5 301 09131 D 28 12 43 51 153.14 709.01 7506.02 -51.58 25.73 12277.6 9734.3 76.5 23.0 -64.54 220.59 OBC 9.9 325.0 VBC 28 17 53 30 9.1 289.6 9001.7 302 09131 D 28 12 45 51 160.42 711.54 7505.96 -58.63 22.53 12253.6 10414.9 74.1 22.0 -64.27 210.78 OBC 4.9 327.9 NVD 28 17 55 30 8.7 289.7 9049.9 303 09131 D 28 12 47 51 167.71 713.72 7505.93 -65.56 17.72 12184.1 11093.5 70.3 20.6 -63.52 201.28 OBC -0.1 331.9 NVD 28 17 57 30 8.3 289.9 9097.9 304 09131 D 28 12 49 51 175.00 715.43 7505.91 -72.23 9.49 12069.4 11766.9 63.8 18.7 -62.31 192.31 OBC -5.0 338.9 NVD 28 17 59 30 7.8 290.1 9146.0 305 09131 D 28 12 51 13 180.00 716.26 Apo 7505.90 -76.45 359.48 11964.5 12224.1 -56.1 16.8 -61.25 194.09 OBC -8.3 347.8 NVD 28 18 00 52 7.5 290.2 9178.9 306 09131 D 28 12 51 51 182.28 716.54 7505.91 -78.18 352.68 11909.7 12431.0 -51.1 15.8 -60.71 184.01 OBC -9.8 354.0 NVD 28 18 01 30 7.4 290.3 9194.0 307 09131 D 28 12 53 51 189.57 716.98 7505.92 -81.71 314.96 11705.8 13081.0 -27.7 12.4 -58.77 176.40 OBC -14.3 29.5 NVD 28 18 03 30 7.0 290.4 9241.9 308 09131 D 28 12 55 51 196.86 716.73 7505.95 -79.84 269.71 11458.9 13710.8 -5.6 11.0 -56.55 169.47 OBC -18.7 72.1 NVD 28 18 05 30 6.5 290.6 9289.8 309

Page 298: ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM …myreaders.info/00_Orbital__Mechanics__-__Model_____Simulation... · ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM-MSS)

www.m

yrea

ders

.inf

o

OM-MSS Page 298 SATELLITE PASS - GROUND TRACE [acronym - Line Of Sight (LOS), On Board Computerr (OBC), Visible Band Camera (VBC), Night Vision Devices (NVD) ] ORBIT, INPUT TIME, POSIION, SAT VELOCITY, GROUND TRACE, RANGE, DIST, PITCH/ROLL, EL/AZ, ACCESS EL/AZ, DATA SOLAR TIME EL/AZ, DIST Line 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 @ES 18 19 20 @SS 21 22 23 24 25 26 27 @ES 28 29 30 No. Node GMT Anomaly Height @ Vel Lat(SAT)Log Slant S-Sat Pitch Roll EL(SAT)AZ Control EL(SUN)AZ Acq. LMT(ES) EL(SUN)AZ S-Sun Nos D H M S deg km meter deg deg km km deg deg deg D H M S deg km 09131 D 28 12 57 51 204.14 715.80 7505.99 -74.41 247.30 11170.3 14312.0 4.6 11.0 -54.10 163.13 OBC -22.7 91.2 NVD 28 18 07 30 6.1 290.8 9337.6 310 09131 D 28 12 59 51 211.43 714.25 7506.06 -67.91 237.00 10841.8 14873.4 9.3 11.1 -51.47 157.28 OBC -26.4 97.7 NVD 28 18 09 30 5.7 291.0 9385.3 311 09131 D 28 13 01 51 218.71 712.17 7506.13 -61.04 231.30 10475.7 15379.2 12.0 11.2 -48.70 151.82 OBC -29.6 98.9 NVD 28 18 11 30 5.3 291.2 9433.0 312 09131 D 28 13 03 51 226.00 709.70 7506.22 -54.03 227.66 10074.8 15808.4 13.7 11.3 -45.81 146.65 OBC -32.3 97.6 NVD 28 18 13 30 4.8 291.3 9480.7 313 09131 D 28 13 05 51 233.29 707.00 7506.32 -46.93 225.08 9642.1 16135.0 14.9 11.4 -42.83 141.67 OBC -34.3 94.6 NVD 28 18 15 30 4.4 291.5 9528.3 314 09131 D 28 13 07 51 240.58 704.23 7506.43 -39.79 223.10 9181.6 16331.0 15.9 11.4 -39.78 136.79 OBC -35.7 90.7 NVD 28 18 17 30 4.0 291.7 9575.8 315 09131 D 28 13 09 51 247.86 701.57 7506.54 -32.62 221.50 8697.8 16375.2 16.7 11.5 -36.69 131.89 OBC -36.4 86.1 NVD 28 18 19 30 3.6 291.9 9623.3 316 09131 D 28 13 11 51 255.15 699.19 7506.67 -25.44 220.14 8196.1 16262.1 17.3 11.5 -33.57 126.89 OBC -36.4 81.1 NVD 28 18 21 30 3.1 292.1 9670.7 317 09131 D 28 13 13 51 262.44 697.22 7506.80 -18.24 218.94 7683.2 16005.0 17.9 11.6 -30.45 121.66 OBC -35.6 76.2 NVD 28 18 23 30 2.7 292.3 9718.0 318 09131 D 28 13 15 51 269.73 695.79 7506.93 -11.03 217.83 7167.1 15629.5 18.5 11.6 -27.35 116.08 OBC -34.1 71.4 NVD 28 18 25 30 2.3 292.5 9765.3 319 09131 D 28 13 17 51 277.01 694.98 7507.06 -3.83 216.77 6658.0 15163.2 19.0 11.6 -24.31 110.01 OBC -32.1 66.9 NVD 28 18 27 30 1.9 292.7 9812.5 320 09131 D 28 13 18 54 280.88 694.82 Eqa 7507.13 -0.00 216.22 6394.7 14887.4 19.3 11.7 -22.73 65.71 OBC -30.8 64.7 NVD 28 18 28 33 1.6 292.8 9837.5 321 09131 A 28 13 19 51 284.30 694.84 7507.19 3.38 216.71 6168.3 14718.4 19.0 11.6 -21.38 103.28 OBC -28.6 63.2 NVD 28 18 29 30 1.4 292.9 9859.6 322 09131 A 28 13 21 51 291.59 695.37 7507.31 10.59 217.77 5713.5 14306.6 18.5 11.6 -18.62 95.73 OBC -23.9 60.6 NVD 28 18 31 30 1.0 293.0 9906.7 323 09131 A 28 13 23 51 298.88 696.53 7507.43 17.80 218.87 5312.6 13837.0 17.9 11.6 -16.15 87.22 OBC -18.9 58.9 NVD 28 18 33 30 0.6 293.2 9953.7 324 09131 A 28 13 25 51 306.17 698.24 7507.54 25.00 220.08 4987.5 13322.9 17.4 11.5 -14.11 77.64 OBC -13.8 57.9 NVD 28 18 35 30 0.2 293.4 10000.6 325 09131 A 28 13 27 51 313.46 700.40 7507.64 32.18 221.43 4761.1 12775.1 16.7 11.5 -12.65 67.09 OBC -8.6 57.8 NVD 28 18 37 30 -0.3 293.6 10047.5 326 09131 A 28 13 29 51 320.75 702.85 7507.73 39.36 223.01 4653.4 12202.5 15.9 11.4 -11.94 55.86 OBC -3.3 58.5 NVD 28 18 39 30 -0.7 293.8 10094.3 327 09131 A 28 13 31 51 328.04 705.44 7507.80 46.50 224.96 4675.5 11611.9 15.0 11.4 -12.09 44.43 OBC 1.8 60.1 NVD 28 18 41 30 -1.1 294.0 10141.0 328 09131 A 28 13 33 51 335.33 708.00 7507.87 53.60 227.50 4826.5 11009.2 13.8 11.3 -13.08 33.39 OBC 7.0 62.8 VBC 28 18 43 30 -1.5 294.2 10187.7 329 09131 A 28 13 35 51 342.62 710.36 7507.91 60.63 231.06 5093.6 10399.3 12.1 11.2 -14.78 23.20 OBC 11.9 67.1 VBC 28 18 45 30 -1.9 294.4 10234.2 330 09131 A 28 13 37 51 349.91 712.36 7507.94 67.51 236.60 5456.2 9786.7 9.5 11.1 -17.05 14.08 OBC 16.7 74.0 VBC 28 18 47 30 -2.4 294.6 10280.7 331 09131 A 28 13 39 51 357.20 713.88 7507.96 74.05 246.51 5892.0 9175.7 5.0 11.0 -19.72 6.07 OBC 21.2 85.9 VBC 28 18 49 30 -2.8 294.9 10327.2 332 09132 A 28 13 40 37 360.00 714.31 Pri 7507.96 76.37 252.68 6074.4 8942.3 2.1 11.0 -20.82 1.13 OBC 22.9 93.0 VBC 28 18 50 16 -2.9 294.9 10345.0 333 09131 A 28 13 41 51 4.49 714.81 7507.96 79.59 267.86 6379.9 8570.8 -4.7 11.0 -22.65 359.07 OBC 25.4 109.8 VBC 28 18 51 30 -3.2 295.1 10373.5 334 09132 A 28 13 43 51 11.78 715.09 7507.94 81.76 312.12 6901.8 7976.6 -26.2 12.3 -25.77 352.92 OBC 29.1 157.3 VBC 28 18 53 30 -3.6 295.3 10419.8 335 09132 A 28 13 45 51 19.07 714.70 7507.90 78.47 351.28 7442.7 7398.8 -50.1 15.6 -29.01 347.47 OBC 32.4 200.4 VBC 28 18 55 30 -4.0 295.5 10466.0 336 09132 A 28 13 47 51 26.36 713.68 7507.85 72.59 8.89 7990.8 6844.0 63.4 18.6 -32.32 342.54 OBC 35.0 222.5 VBC 28 18 57 30 -4.4 295.7 10512.1 337 09132 A 28 13 49 51 33.65 712.08 7507.79 65.94 17.41 8536.1 6320.5 70.1 20.6 -35.69 338.02 OBC 36.9 236.2 VBC 28 18 59 30 -4.8 295.9 10558.1 338 09132 A 28 13 51 51 40.94 710.02 7507.71 59.02 22.36 9070.7 5838.5 74.0 21.9 -39.08 333.78 OBC 38.0 246.6 VBC 28 19 01 30 -5.3 296.1 10604.0 339 09132 A 28 13 53 51 48.23 707.64 7507.62 51.97 25.63 9587.9 5410.9 76.4 23.0 -42.47 329.71 OBC 38.3 255.5 VBC 28 19 03 30 -5.7 296.3 10649.9 340 09132 A 28 13 55 51 55.52 705.09 7507.51 44.85 28.00 10081.9 5052.7 78.1 23.8 -45.87 325.71 OBC 37.7 263.4 VBC 28 19 05 30 -6.1 296.6 10695.7 341 09132 A 28 13 57 51 62.81 702.55 7507.40 37.70 29.85 10548.0 4780.5 79.4 24.5 -49.25 321.68 OBC 36.3 270.4 VBC 28 19 07 30 -6.5 296.8 10741.3 342 09132 A 28 13 59 51 70.10 700.18 7507.28 30.53 31.37 10981.9 4610.3 80.3 25.1 -52.59 317.50 OBC 34.2 276.5 VBC 28 19 09 30 -6.9 297.0 10786.9 343 09132 A 28 14 01 51 77.38 698.14 7507.16 23.34 32.69 11380.0 4553.9 81.1 25.6 -55.88 313.06 OBC 31.5 281.8 VBC 28 19 11 30 -7.3 297.2 10832.4 344 09132 A 28 14 03 51 84.67 696.56 7507.03 16.14 33.86 11739.2 4615.8 81.7 26.1 -59.09 308.19 OBC 28.2 286.1 VBC 28 19 13 30 -7.7 297.4 10877.8 345 09132 A 28 14 05 51 91.96 695.55 7506.90 8.93 34.95 12056.7 4791.1 82.3 26.5 -62.19 302.70 OBC 24.5 289.6 VBC 28 19 15 30 -8.1 297.7 10923.2 346 09132 A 28 14 07 51 99.25 695.18 7506.77 1.72 36.00 12330.0 5067.6 82.8 27.0 -65.14 296.33 OBC 20.5 292.4 VBC 28 19 17 30 -8.5 297.9 10968.4 347 09132 A 28 14 08 19 100.99 695.19 Eqa 7506.74 0.00 36.25 12388.6 5147.0 82.9 27.1 -65.81 245.69 OBC 19.5 292.9 VBC 28 19 17 58 -8.6 298.0 10979.2 348 09132 D 28 14 09 51 106.54 695.48 7506.64 -5.49 35.46 12557.3 5569.4 82.5 26.8 -67.85 288.76 OBC 17.6 294.6 VBC 28 19 19 30 -8.9 298.1 11013.5 349 09132 D 28 14 11 51 113.82 696.42 7506.52 -12.69 34.40 12736.7 6161.7 82.0 26.3 -70.24 279.62 OBC 15.0 296.7 VBC 28 19 21 30 -9.3 298.4 11058.5 350 09132 D 28 14 13 51 121.11 697.97 7506.40 -19.90 33.27 12866.9 6785.2 81.4 25.8 -72.15 268.61 OBC 12.2 298.5 VBC 28 19 23 30 -9.7 298.6 11103.5 351 09132 D 28 14 15 51 128.40 700.03 7506.29 -27.09 32.03 12946.8 7431.0 80.7 25.3 -73.43 255.69 OBC 9.3 300.0 VBC 28 19 25 30 -10.1 298.8 11148.3 352 09132 D 28 14 17 51 135.68 702.47 7506.20 -34.27 30.63 12975.5 8092.2 79.8 24.8 -73.92 241.47 OBC 6.3 301.4 VBC 28 19 27 30 -10.6 299.1 11193.0 353

Page 299: ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM …myreaders.info/00_Orbital__Mechanics__-__Model_____Simulation... · ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM-MSS)

www.m

yrea

ders

.inf

o

OM-MSS Page 299 SATELLITE PASS - GROUND TRACE [acronym - Line Of Sight (LOS), On Board Computerr (OBC), Visible Band Camera (VBC), Night Vision Devices (NVD) ] ORBIT, INPUT TIME, POSIION, SAT VELOCITY, GROUND TRACE, RANGE, DIST, PITCH/ROLL, EL/AZ, ACCESS EL/AZ, DATA SOLAR TIME EL/AZ, DIST Line 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 @ES 18 19 20 @SS 21 22 23 24 25 26 27 @ES 28 29 30 No. Node GMT Anomaly Height @ Vel Lat(SAT)Log Slant S-Sat Pitch Roll EL(SAT)AZ Control EL(SUN)AZ Acq. LMT(ES) EL(SUN)AZ S-Sun Nos D H M S deg km meter deg deg km km deg deg deg D H M S deg km 09132 D 28 14 19 51 142.97 705.14 7506.11 -41.43 28.96 12952.6 8763.9 78.7 24.1 -73.53 227.18 OBC 3.2 302.7 NVD 28 19 29 30 -11.0 299.3 11237.6 354 09132 D 28 14 21 51 150.26 707.87 7506.04 -48.56 26.87 12877.7 9442.0 77.3 23.4 -72.31 214.11 OBC 0.3 304.0 NVD 28 19 31 30 -11.4 299.6 11282.2 355 09132 D 28 14 23 51 157.54 710.50 7505.98 -55.65 24.10 12751.0 10122.8 75.3 22.5 -70.43 202.96 OBC -2.6 305.7 NVD 28 19 33 30 -11.8 299.8 11326.6 356 09132 D 28 14 25 51 164.83 712.85 7505.94 -62.64 20.10 12572.7 10803.1 72.2 21.3 -68.04 193.80 OBC -5.4 308.2 NVD 28 19 35 30 -12.1 300.0 11370.9 357 09132 D 28 14 27 51 172.12 714.77 7505.91 -69.44 13.67 12343.5 11479.6 67.1 19.6 -65.28 186.33 OBC -8.0 312.8 NVD 28 19 37 30 -12.5 300.3 11415.1 358 09132 D 28 14 29 51 179.40 716.15 7505.91 -75.80 1.56 12064.2 12148.6 57.7 17.2 -62.26 180.19 OBC -10.4 322.8 NVD 28 19 39 30 -12.9 300.5 11459.1 359 09132 D 28 14 30 01 180.00 716.23 Apo 7505.90 -76.28 0.09 12039.1 12203.0 56.6 16.9 -62.00 194.22 OBC -10.5 324.1 NVD 28 19 39 40 -13.0 300.6 11462.8 360 09132 D 28 14 31 51 186.69 716.88 7505.91 -80.73 334.35 11736.0 12805.8 -38.9 13.8 -59.05 175.07 OBC -12.5 347.6 NVD 28 19 41 30 -13.3 300.8 11503.1 361 09132 D 28 14 33 51 193.97 716.92 7505.94 -81.30 286.52 11360.3 13445.7 -13.4 11.3 -55.70 170.69 OBC -14.3 32.8 NVD 28 19 43 30 -13.7 301.1 11547.0 362 09132 D 28 14 35 51 201.26 716.28 7505.97 -76.93 254.64 10938.8 14060.9 1.3 11.0 -52.23 166.86 OBC -15.7 61.8 NVD 28 19 45 30 -14.1 301.3 11590.7 363 09132 D 28 14 37 51 208.55 714.97 7506.03 -70.73 240.62 10473.5 14641.7 7.6 11.1 -48.68 163.43 OBC -16.8 72.7 NVD 28 19 47 30 -14.5 301.6 11634.3 364 09132 D 28 14 39 51 215.83 713.11 7506.10 -63.98 233.44 9966.7 15174.2 11.0 11.2 -45.05 160.27 OBC -17.5 76.6 NVD 28 19 49 30 -14.9 301.8 11677.8 365 09132 D 28 14 41 51 223.12 710.78 7506.18 -57.02 229.10 9421.1 15639.9 13.0 11.3 -41.35 157.29 OBC -17.8 77.7 NVD 28 19 51 30 -15.3 302.1 11721.2 366 09132 D 28 14 43 51 230.41 708.16 7506.28 -49.95 226.15 8839.8 16014.6 14.4 11.3 -37.59 154.39 OBC -17.7 77.4 NVD 28 19 53 30 -15.7 302.4 11764.4 367 09132 D 28 14 45 51 237.69 705.40 7506.38 -42.83 223.95 8226.2 16270.4 15.5 11.4 -33.75 151.48 OBC -17.2 76.3 NVD 28 19 55 30 -16.1 302.6 11807.5 368 09132 D 28 14 47 51 244.98 702.68 7506.50 -35.67 222.22 7584.6 16381.7 16.3 11.5 -29.85 148.47 OBC -16.4 74.9 NVD 28 19 57 30 -16.5 302.9 11850.5 369 09132 D 28 14 49 51 252.27 700.15 7506.62 -28.49 220.77 6919.7 16335.5 17.0 11.5 -25.87 145.24 OBC -15.2 73.4 NVD 28 19 59 30 -16.8 303.2 11893.3 370 09132 D 28 14 51 51 259.56 697.99 7506.75 -21.30 219.50 6237.6 16137.2 17.6 11.5 -21.79 141.63 OBC -13.7 71.9 NVD 28 20 01 30 -17.2 303.4 11936.1 371 09132 D 28 14 53 51 266.84 696.32 7506.88 -14.09 218.36 5546.4 15808.4 18.2 11.6 -17.59 137.45 OBC -12.0 70.5 NVD 28 20 03 30 -17.6 303.7 11978.6 372 09132 D 28 14 55 51 274.13 695.24 7507.01 -6.89 217.28 4856.9 15377.2 18.7 11.6 -13.26 132.35 OBC -10.0 69.3 NVD 28 20 05 30 -18.0 304.0 12021.1 373 09132 D 28 14 57 45 281.10 694.82 Eqa 7507.13 -0.00 216.29 4214.4 14893.7 19.2 11.7 -8.97 65.66 OBC -8.0 68.3 NVD 28 20 07 24 -18.4 304.3 12061.5 374 09132 A 28 14 57 51 281.42 694.81 7507.14 0.32 216.33 4185.2 14878.3 19.2 11.7 -8.77 125.86 OBC -7.8 68.2 NVD 28 20 07 30 -18.4 304.3 12063.4 375 09132 A 28 14 59 51 288.71 695.06 7507.26 7.53 217.38 3557.0 14495.2 18.7 11.6 -4.14 117.19 LOS -3.7 67.7 NVD 28 20 09 30 -18.7 304.6 12105.6 376 09132 A 28 15 01 51 296.00 695.96 7507.38 14.74 218.46 3014.6 14047.7 18.1 11.6 0.43 105.23 LOS 0.5 67.9 NVD 28 20 11 30 -19.1 304.9 12147.6 377 09132 A 28 15 03 51 303.29 697.45 7507.50 21.94 219.62 2624.9 13550.5 17.6 11.5 4.26 88.86 LOS 4.6 68.7 NVD 28 20 13 30 -19.5 305.1 12189.4 378 09132 A 28 15 05 51 310.58 699.43 7507.60 29.13 220.90 2470.5 13015.3 17.0 11.5 5.96 68.59 LOS 8.7 70.1 VBC 28 20 15 30 -19.9 305.4 12231.2 379 09132 A 28 15 07 51 317.87 701.78 7507.69 36.31 222.37 2597.5 12451.7 16.2 11.5 4.55 48.08 LOS 12.6 72.4 VBC 28 20 17 30 -20.3 305.7 12272.7 380 09132 A 28 15 09 51 325.16 704.33 7507.77 43.47 224.15 2969.4 11867.3 15.4 11.4 0.84 31.30 LOS 16.2 75.5 VBC 28 20 19 30 -20.6 306.0 12314.1 381 09132 A 28 15 11 51 332.45 706.92 7507.84 50.59 226.40 3505.0 11268.6 14.3 11.3 -3.74 19.06 LOS 19.6 79.6 VBC 28 20 21 30 -21.0 306.3 12355.4 382 09132 A 28 15 13 51 339.74 709.39 7507.90 57.66 229.45 4134.8 10660.6 12.8 11.3 -8.43 10.34 OBC 22.6 85.1 VBC 28 20 23 30 -21.4 306.6 12396.5 383 09132 A 28 15 15 51 347.03 711.56 7507.93 64.61 233.97 4814.3 10048.1 10.7 11.2 -13.00 3.98 OBC 25.2 92.6 VBC 28 20 25 30 -21.7 306.9 12437.4 384 09132 A 28 15 17 51 354.32 713.30 7507.95 71.34 241.55 5516.1 9435.3 7.2 11.1 -17.42 359.18 OBC 27.2 103.6 VBC 28 20 27 30 -22.1 307.3 12478.2 385 09133 A 28 15 19 24 360.00 714.28 Pri 7507.96 76.20 252.21 6067.6 8960.2 2.4 11.0 -20.78 1.26 OBC 28.4 117.1 VBC 28 20 29 03 -22.4 307.5 12509.9 386 09132 A 28 15 19 51 1.61 714.49 7507.96 77.45 256.63 6223.2 8826.6 0.4 11.0 -21.71 355.42 OBC 28.7 122.4 VBC 28 20 29 30 -22.5 307.6 12518.8 387 09133 A 28 15 21 51 8.90 715.05 7507.95 81.50 290.89 6924.2 8226.6 -15.5 11.4 -25.91 352.37 OBC 29.6 160.7 VBC 28 20 31 30 -22.8 307.9 12559.2 388 09133 A 28 15 23 51 16.19 714.95 7507.92 80.39 338.01 7610.6 7640.5 -41.2 14.1 -30.02 349.83 OBC 29.8 212.0 VBC 28 20 33 30 -23.2 308.2 12599.5 389 09133 A 28 15 25 51 23.48 714.19 7507.87 75.24 3.16 8276.0 7074.3 58.9 17.5 -34.07 347.64 OBC 29.3 241.3 VBC 28 20 35 30 -23.5 308.5 12639.6 390 09133 A 28 15 27 51 30.77 712.82 7507.81 68.81 14.49 8915.1 6535.7 67.8 19.8 -38.08 345.71 OBC 28.2 256.6 VBC 28 20 37 30 -23.9 308.8 12679.5 391 09133 A 28 15 29 51 38.06 710.95 7507.74 61.98 20.60 9523.7 6034.0 72.6 21.4 -42.05 343.95 OBC 26.5 266.3 VBC 28 20 39 30 -24.3 309.2 12719.2 392 09133 A 28 15 31 51 45.35 708.68 7507.65 54.97 24.45 10097.7 5580.8 75.6 22.6 -45.98 342.30 OBC 24.2 273.4 VBC 28 20 41 30 -24.6 309.5 12758.7 393 09133 A 28 15 33 51 52.63 706.19 7507.56 47.88 27.14 10633.9 5190.4 77.5 23.5 -49.89 340.70 OBC 21.5 278.7 VBC 28 20 43 30 -25.0 309.8 12798.0 394 09133 A 28 15 35 51 59.92 703.62 7507.45 40.74 29.18 11129.2 4878.8 78.9 24.2 -53.78 339.10 OBC 18.4 282.9 VBC 28 20 45 30 -25.3 310.2 12837.2 395 09133 A 28 15 37 51 67.21 701.16 7507.33 33.58 30.83 11581.0 4662.9 80.0 24.8 -57.65 337.41 OBC 14.9 286.2 VBC 28 20 47 30 -25.7 310.5 12876.2 396 09133 A 28 15 39 51 74.50 698.96 7507.21 26.39 32.22 11986.9 4556.7 80.8 25.4 -61.49 335.56 OBC 11.2 288.6 VBC 28 20 49 30 -26.0 310.8 12914.9 397

Page 300: ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM …myreaders.info/00_Orbital__Mechanics__-__Model_____Simulation... · ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM-MSS)

www.m

yrea

ders

.inf

o

OM-MSS Page 300 SATELLITE PASS - GROUND TRACE [acronym - Line Of Sight (LOS), On Board Computerr (OBC), Visible Band Camera (VBC), Night Vision Devices (NVD) ] ORBIT, INPUT TIME, POSIION, SAT VELOCITY, GROUND TRACE, RANGE, DIST, PITCH/ROLL, EL/AZ, ACCESS EL/AZ, DATA SOLAR TIME EL/AZ, DIST Line 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 @ES 18 19 20 @SS 21 22 23 24 25 26 27 @ES 28 29 30 No. Node GMT Anomaly Height @ Vel Lat(SAT)Log Slant S-Sat Pitch Roll EL(SAT)AZ Control EL(SUN)AZ Acq. LMT(ES) EL(SUN)AZ S-Sun Nos D H M S deg km meter deg deg km km deg deg deg D H M S deg km 09133 A 28 15 41 51 81.79 697.17 7507.08 19.19 33.44 12344.8 4568.3 81.5 25.9 -65.31 333.41 OBC 7.3 290.3 VBC 28 20 51 30 -26.4 311.2 12953.5 398 09133 A 28 15 43 51 89.08 695.91 7506.95 11.99 34.57 12652.8 4696.6 82.1 26.4 -69.09 330.75 OBC 3.3 291.3 NVD 28 20 53 30 -26.7 311.5 12991.8 399 09133 A 28 15 45 51 96.37 695.26 7506.82 4.78 35.63 12909.5 4932.2 82.6 26.8 -72.83 327.20 OBC -0.8 291.7 NVD 28 20 55 30 -27.1 311.9 13030.0 400 09133 A 28 15 47 10 101.20 695.19 Eqa 7506.73 0.00 36.32 13050.8 5140.6 82.9 27.1 -75.27 245.64 OBC -3.5 291.6 NVD 28 20 56 49 -27.3 312.1 13055.2 401 09133 D 28 15 47 51 103.65 695.27 7506.69 -2.43 35.97 13113.5 5324.0 82.8 27.0 -76.49 321.99 OBC -4.3 291.4 NVD 28 20 57 30 -27.4 312.3 13067.9 402 09133 D 28 15 49 51 110.94 695.95 7506.56 -9.63 34.92 13263.8 5900.0 82.3 26.5 -79.97 313.35 OBC -6.3 290.8 NVD 28 20 59 30 -27.7 312.6 13105.6 403 09133 D 28 15 51 51 118.23 697.25 7506.45 -16.84 33.83 13359.5 6511.9 81.7 26.0 -83.03 296.76 OBC -8.3 290.1 NVD 28 21 01 30 -28.1 313.0 13143.1 404 09133 D 28 15 53 51 125.52 699.11 7506.34 -24.04 32.64 13400.1 7149.6 81.0 25.6 -84.85 263.33 OBC -10.1 289.2 NVD 28 21 03 30 -28.4 313.3 13180.4 405 09133 D 28 15 55 51 132.80 701.40 7506.23 -31.22 31.32 13385.4 7805.4 80.3 25.0 -84.12 222.64 OBC -11.7 288.2 NVD 28 21 05 30 -28.7 313.7 13217.5 406 09133 D 28 15 57 51 140.09 703.99 7506.14 -38.39 29.77 13315.4 8473.6 79.3 24.4 -81.47 199.37 OBC -13.1 287.2 NVD 28 21 07 30 -29.1 314.1 13254.3 407 09133 D 28 15 59 51 147.38 706.72 7506.07 -45.54 27.89 13190.1 9149.8 78.0 23.7 -78.12 188.04 OBC -14.2 286.4 NVD 28 21 09 30 -29.4 314.5 13290.9 408 09133 D 28 16 01 51 154.66 709.41 7506.00 -52.65 25.45 13010.1 9830.2 76.3 22.9 -74.51 181.80 OBC -15.0 286.0 NVD 28 21 11 30 -29.7 314.8 13327.3 409 09133 D 28 16 03 51 161.95 711.89 7505.96 -59.68 22.07 12776.1 10511.6 73.7 21.9 -70.79 177.94 OBC -15.4 286.5 NVD 28 21 13 30 -30.0 315.2 13363.4 410 09133 D 28 16 05 51 169.24 714.02 7505.92 -66.59 16.90 12489.0 11190.6 69.7 20.4 -66.99 175.35 OBC -15.4 288.6 NVD 28 21 15 30 -30.4 315.6 13399.3 411 09133 D 28 16 07 51 176.52 715.64 7505.91 -73.19 7.85 12150.0 11863.7 62.5 18.4 -63.15 173.51 OBC -15.2 294.7 NVD 28 21 17 30 -30.7 316.0 13434.9 412 09133 D 28 16 08 48 180.00 716.20 Apo 7505.90 -76.11 0.70 11970.3 12181.9 57.0 17.0 -61.31 194.34 OBC -14.9 300.5 NVD 28 21 18 27 -30.8 316.2 13451.8 413 09133 D 28 16 09 51 183.81 716.65 7505.91 -78.94 348.83 11760.6 12527.1 -48.4 15.3 -59.28 172.16 OBC -14.5 310.8 NVD 28 21 19 30 -31.0 316.4 13470.2 414 09133 D 28 16 11 51 191.09 716.99 7505.92 -81.80 307.47 11322.2 13175.6 -23.7 12.0 -55.37 171.14 OBC -13.5 349.4 NVD 28 21 21 30 -31.3 316.8 13505.4 415 09133 D 28 16 13 51 198.38 716.63 7505.96 -79.16 265.12 10836.9 13803.0 -3.5 11.0 -51.43 170.37 OBC -12.1 29.1 NVD 28 21 23 30 -31.6 317.2 13540.2 416 09133 D 28 16 15 51 205.67 715.60 7506.01 -73.47 245.39 10306.6 14400.6 5.5 11.0 -47.46 169.78 OBC -10.5 46.4 NVD 28 21 25 30 -31.9 317.6 13574.8 417 09133 D 28 16 17 51 212.95 713.96 7506.07 -66.89 236.07 9733.6 14956.4 9.7 11.1 -43.45 169.35 OBC -8.5 53.6 NVD 28 21 27 30 -32.3 318.0 13609.1 418 09133 D 28 16 19 51 220.24 711.81 7506.15 -59.99 230.79 9120.5 15454.1 12.2 11.2 -39.38 169.03 OBC -6.4 56.9 NVD 28 21 29 30 -32.6 318.4 13643.2 419 09133 D 28 16 21 51 227.53 709.30 7506.24 -52.96 227.35 8469.7 15871.8 13.8 11.3 -35.26 168.82 OBC -4.0 58.8 NVD 28 21 31 30 -32.9 318.9 13676.9 420 09133 D 28 16 23 51 234.81 706.58 7506.34 -45.86 224.88 7784.3 16182.7 15.0 11.4 -31.06 168.70 OBC -1.5 60.0 NVD 28 21 33 30 -33.2 319.3 13710.4 421 09133 D 28 16 25 51 242.10 703.81 7506.45 -38.71 222.98 7067.2 16358.9 15.9 11.4 -26.75 168.68 OBC 1.2 60.9 NVD 28 21 35 30 -33.5 319.7 13743.6 422 09133 D 28 16 27 51 249.39 701.19 7506.57 -31.54 221.42 6321.8 16380.8 16.7 11.5 -22.29 168.75 OBC 3.8 61.8 NVD 28 21 37 30 -33.8 320.1 13776.5 423 09133 D 28 16 29 51 256.67 698.85 7506.70 -24.35 220.09 5551.6 16245.6 17.3 11.5 -17.62 168.92 OBC 6.5 62.8 VBC 28 21 39 30 -34.1 320.6 13809.1 424 09133 D 28 16 31 51 263.96 696.96 7506.82 -17.15 218.90 4760.7 15969.1 17.9 11.6 -12.64 169.22 OBC 9.2 64.0 VBC 28 21 41 30 -34.3 321.0 13841.4 425 09133 D 28 16 33 51 271.25 695.62 7506.95 -9.95 217.80 3953.7 15577.8 18.5 11.6 -7.12 169.69 OBC 11.7 65.4 VBC 28 21 43 30 -34.6 321.5 13873.4 426 09133 D 28 16 35 51 278.54 694.91 7507.08 -2.74 216.75 3136.9 15099.5 19.0 11.6 -0.66 170.43 LOS 14.2 67.0 VBC 28 21 45 30 -34.9 321.9 13905.1 427 09133 D 28 16 36 36 281.31 694.82 Eqa 7507.13 -0.00 216.35 2825.7 14900.0 19.2 11.7 2.22 65.61 LOS 15.0 67.7 VBC 28 21 46 15 -35.0 322.1 13917.0 428 09133 A 28 16 37 51 285.83 694.87 7507.21 4.47 217.00 2320.4 14672.6 18.9 11.6 7.76 171.71 LOS 17.6 68.8 VBC 28 21 47 30 -35.2 322.4 13936.4 429 09133 A 28 16 39 51 293.12 695.50 7507.34 11.68 218.06 1529.2 14250.1 18.3 11.6 21.17 174.49 LOS 21.5 71.3 VBC 28 21 49 30 -35.5 322.8 13967.5 430 09133 A 28 16 41 51 300.41 696.75 7507.45 18.88 219.18 867.3 13771.8 17.8 11.6 51.26 186.01 LOS 25.1 74.5 VBC 28 21 51 30 -35.8 323.3 13998.2 431 09133 A 28 16 43 51 307.69 698.54 7507.56 26.08 220.40 806.5 13250.8 17.2 11.5 58.05 325.06 LOS 28.4 78.5 VBC 28 21 53 30 -36.0 323.7 14028.6 432 09133 A 28 16 45 51 314.98 700.74 7507.66 33.27 221.78 1426.1 12697.6 16.5 11.5 23.81 341.16 LOS 31.1 83.3 VBC 28 21 55 30 -36.3 324.2 14058.7 433 09133 A 28 16 47 51 322.27 703.23 7507.74 40.43 223.41 2208.5 12120.7 15.7 11.4 9.19 344.50 LOS 33.3 89.0 VBC 28 21 57 30 -36.6 324.7 14088.4 434 09133 A 28 16 49 51 329.56 705.83 7507.82 47.57 225.43 3022.0 11526.8 14.8 11.4 0.36 346.13 LOS 34.8 95.7 VBC 28 21 59 30 -36.8 325.2 14117.7 435 09133 A 28 16 51 51 336.85 708.37 7507.88 54.67 228.09 3837.5 10921.6 13.5 11.3 -6.28 347.24 OBC 35.6 103.3 VBC 28 22 01 30 -37.1 325.6 14146.8 436 09133 A 28 16 53 51 344.14 710.68 7507.92 61.68 231.87 4643.7 10309.9 11.7 11.2 -11.88 348.14 OBC 35.6 112.2 VBC 28 22 03 30 -37.3 326.1 14175.4 437 09133 A 28 16 55 51 351.43 712.62 7507.95 68.53 237.85 5434.3 9696.1 8.9 11.1 -16.91 348.95 OBC 34.9 123.3 VBC 28 22 05 30 -37.6 326.6 14203.7 438 09133 A 28 16 57 51 358.72 714.06 7507.96 74.98 248.84 6204.3 9084.6 3.9 11.0 -21.60 349.73 OBC 33.3 139.1 VBC 28 22 07 30 -37.8 327.1 14231.6 439 09134 A 28 16 58 12 360.00 714.25 Pri 7507.96 76.03 251.75 6336.7 8978.1 2.6 11.0 -22.39 1.38 OBC 33.0 142.8 VBC 28 22 07 51 -37.9 327.2 14236.5 440 09133 A 28 16 59 51 6.01 714.89 7507.95 80.22 273.10 6949.7 8479.7 -7.1 11.0 -26.06 350.52 OBC 31.1 167.8 VBC 28 22 09 30 -38.1 327.6 14259.2 441 09134 A 28 17 01 51 13.30 715.07 7507.93 81.58 319.74 7667.1 7886.4 -30.3 12.7 -30.36 351.34 OBC 28.3 218.2 VBC 28 22 11 30 -38.3 328.1 14286.4 442

Page 301: ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM …myreaders.info/00_Orbital__Mechanics__-__Model_____Simulation... · ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM-MSS)

www.m

yrea

ders

.inf

o

OM-MSS Page 301 SATELLITE PASS - GROUND TRACE [acronym - Line Of Sight (LOS), On Board Computerr (OBC), Visible Band Camera (VBC), Night Vision Devices (NVD) ] ORBIT, INPUT TIME, POSIION, SAT VELOCITY, GROUND TRACE, RANGE, DIST, PITCH/ROLL, EL/AZ, ACCESS EL/AZ, DATA SOLAR TIME EL/AZ, DIST Line 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 @ES 18 19 20 @SS 21 22 23 24 25 26 27 @ES 28 29 30 No. Node GMT Anomaly Height @ Vel Lat(SAT)Log Slant S-Sat Pitch Roll EL(SAT)AZ Control EL(SUN)AZ Acq. LMT(ES) EL(SUN)AZ S-Sun Nos D H M S deg km meter deg deg km km deg deg deg D H M S deg km 09134 A 28 17 03 51 20.59 714.59 7507.89 77.68 355.09 8353.2 7310.3 -52.9 16.2 -34.55 352.22 OBC 24.9 256.8 VBC 28 22 13 30 -38.6 328.6 14313.2 443 09134 A 28 17 05 51 27.88 713.47 7507.84 71.62 10.68 9005.0 6758.2 64.8 19.0 -38.65 353.17 OBC 21.1 275.1 VBC 28 22 15 30 -38.8 329.1 14339.6 444 09134 A 28 17 07 51 35.17 711.80 7507.77 64.91 18.46 9619.7 6238.8 71.0 20.8 -42.69 354.21 OBC 16.9 284.8 VBC 28 22 17 30 -39.1 329.7 14365.6 445 09134 A 28 17 09 51 42.46 709.69 7507.69 57.96 23.07 10194.6 5762.7 74.5 22.2 -46.67 355.37 OBC 12.4 290.9 VBC 28 22 19 30 -39.3 330.2 14391.2 446 09134 A 28 17 11 51 49.75 707.27 7507.60 50.90 26.17 10727.5 5342.9 76.8 23.2 -50.60 356.69 OBC 7.7 294.8 VBC 28 22 21 30 -39.5 330.7 14416.4 447 09134 A 28 17 13 51 57.04 704.71 7507.49 43.78 28.44 11216.1 4995.0 78.4 23.9 -54.50 358.22 OBC 2.9 297.4 NVD 28 22 23 30 -39.7 331.2 14441.2 448 09134 A 28 17 15 51 64.33 702.19 7507.38 36.62 30.23 11658.5 4735.9 79.6 24.6 -58.35 0.01 OBC -2.0 298.9 NVD 28 22 25 30 -39.9 331.8 14465.6 449 09134 A 28 17 17 51 71.62 699.86 7507.26 29.44 31.72 12052.9 4581.2 80.5 25.2 -62.16 2.18 OBC -7.0 299.6 NVD 28 22 27 30 -40.2 332.3 14489.5 450 09134 A 28 17 19 51 78.91 697.88 7507.13 22.25 33.00 12397.7 4542.0 81.3 25.7 -65.92 4.90 OBC -11.9 299.4 NVD 28 22 29 30 -40.4 332.8 14513.1 451 09134 A 28 17 21 51 86.20 696.38 7507.00 15.05 34.17 12691.7 4621.3 81.9 26.2 -69.62 8.43 OBC -16.8 298.6 NVD 28 22 31 30 -40.6 333.4 14536.2 452 09134 A 28 17 23 51 93.49 695.46 7506.87 7.84 35.25 12933.7 4813.2 82.4 26.7 -73.22 13.27 OBC -21.5 296.9 NVD 28 22 33 30 -40.8 333.9 14558.8 453 09134 A 28 17 25 51 100.77 695.19 7506.74 0.64 36.30 13122.9 5104.4 82.9 27.1 -76.68 20.40 OBC -26.0 294.4 NVD 28 22 35 30 -41.0 334.5 14581.0 454 09134 A 28 17 26 01 101.42 695.20 Eqa 7506.73 0.00 36.39 13137.0 5134.3 83.0 27.2 -76.97 245.59 OBC -26.4 294.2 NVD 28 22 35 40 -41.0 334.5 14583.0 455 09134 D 28 17 27 51 108.06 695.58 7506.61 -6.57 35.44 13258.7 5644.3 82.5 26.8 -79.84 31.83 OBC -28.5 291.0 NVD 28 22 37 30 -41.2 335.1 14602.8 456 09134 D 28 17 29 51 115.35 696.63 7506.49 -13.78 34.37 13340.6 6242.9 82.0 26.3 -82.34 51.45 OBC -30.3 287.1 NVD 28 22 39 30 -41.4 335.6 14624.1 457 09134 D 28 17 31 51 122.64 698.26 7506.38 -20.98 33.23 13368.6 6871.1 81.4 25.8 -83.40 82.11 OBC -31.6 283.0 NVD 28 22 41 30 -41.6 336.2 14645.0 458 09134 D 28 17 33 51 129.92 700.38 7506.27 -28.17 31.97 13342.8 7520.4 80.7 25.3 -82.40 113.05 OBC -32.3 278.9 NVD 28 22 43 30 -41.7 336.8 14665.3 459 09134 D 28 17 35 51 137.21 702.86 7506.18 -35.35 30.53 13263.4 8184.3 79.8 24.7 -79.95 133.11 OBC -32.3 274.8 NVD 28 22 45 30 -41.9 337.3 14685.2 460 09134 D 28 17 37 51 144.50 705.55 7506.10 -42.51 28.81 13131.0 8858.0 78.6 24.1 -76.83 144.91 OBC -31.8 271.0 NVD 28 22 47 30 -42.1 337.9 14704.7 461 09134 D 28 17 39 51 151.78 708.28 7506.03 -49.64 26.64 12946.6 9537.5 77.1 23.3 -73.42 152.41 OBC -30.5 267.9 NVD 28 22 49 30 -42.3 338.5 14723.6 462 09134 D 28 17 41 51 159.07 710.88 7505.97 -56.71 23.73 12711.2 10219.3 75.0 22.4 -69.87 157.68 OBC -28.7 265.9 NVD 28 22 51 30 -42.4 339.1 14742.1 463 09134 D 28 17 43 51 166.35 713.17 7505.93 -63.68 19.47 12426.0 10900.1 71.7 21.1 -66.24 161.69 OBC -26.3 265.6 NVD 28 22 53 30 -42.6 339.7 14760.1 464 09134 D 28 17 45 51 173.64 715.02 7505.91 -70.44 12.48 12092.8 11576.7 66.2 19.3 -62.55 164.98 OBC -23.4 268.5 NVD 28 22 55 30 -42.8 340.3 14777.6 465 09134 D 28 17 47 35 180.00 716.17 Apo 7505.90 -75.94 1.28 11764.0 12160.8 57.5 17.1 -59.31 194.47 OBC -20.6 276.6 NVD 28 22 57 14 -42.9 340.8 14792.4 466 09134 D 28 17 47 51 180.93 716.30 7505.91 -76.68 358.92 11713.2 12245.2 -55.7 16.8 -58.84 167.83 OBC -20.1 278.5 NVD 28 22 57 30 -42.9 340.9 14794.5 467 09134 D 28 17 49 51 188.21 716.93 7505.92 -81.18 328.14 11289.4 12901.3 -35.2 13.3 -55.10 170.41 OBC -16.5 306.2 NVD 28 22 59 30 -43.1 341.5 14811.0 468 09134 D 28 17 51 51 195.50 716.87 7505.94 -80.87 280.13 10823.8 13539.2 -10.4 11.2 -51.33 172.85 OBC -12.5 351.7 NVD 28 23 01 30 -43.2 342.1 14827.0 469 09134 D 28 17 53 51 202.79 716.12 7505.99 -76.06 251.90 10319.0 14151.3 2.5 11.0 -47.55 175.24 OBC -8.3 17.8 NVD 28 23 03 30 -43.3 342.7 14842.4 470 09134 D 28 17 55 51 210.07 714.72 7506.04 -69.74 239.38 9777.9 14727.4 8.2 11.1 -43.75 177.64 OBC -3.9 28.7 NVD 28 23 05 30 -43.5 343.3 14857.3 471 09134 D 28 17 57 51 217.36 712.78 7506.12 -62.94 232.80 9204.0 15253.0 11.3 11.2 -39.93 180.13 OBC 0.6 34.1 NVD 28 23 07 30 -43.6 343.9 14871.7 472 09134 D 28 17 59 51 224.64 710.40 7506.20 -55.96 228.73 8600.9 15708.8 13.2 11.3 -36.08 182.76 OBC 5.2 37.5 VBC 28 23 09 30 -43.7 344.5 14885.6 473 09134 D 28 18 01 51 231.93 707.74 7506.30 -48.88 225.91 7973.1 16069.6 14.5 11.4 -32.20 185.62 OBC 9.9 40.0 VBC 28 23 11 30 -43.8 345.2 14898.9 474 09134 D 28 18 03 51 239.22 704.98 7506.41 -41.75 223.80 7325.6 16307.3 15.5 11.4 -28.29 188.80 OBC 14.5 42.4 VBC 28 23 13 30 -44.0 345.8 14911.7 475 09134 D 28 18 05 51 246.51 702.27 7506.52 -34.59 222.12 6664.7 16397.1 16.4 11.5 -24.34 192.42 OBC 19.0 44.8 VBC 28 23 15 30 -44.1 346.4 14924.0 476 09134 D 28 18 07 51 253.79 699.79 7506.65 -27.41 220.70 5998.0 16328.3 17.0 11.5 -20.34 196.66 OBC 23.4 47.5 VBC 28 23 17 30 -44.2 347.1 14935.7 477 09134 D 28 18 09 51 261.08 697.70 7506.77 -20.21 219.46 5336.0 16109.1 17.7 11.5 -16.29 201.76 OBC 27.6 50.6 VBC 28 23 19 30 -44.3 347.7 14946.9 478 09134 D 28 18 11 51 268.37 696.11 7506.90 -13.01 218.33 4692.9 15763.0 18.2 11.6 -12.19 208.07 OBC 31.6 54.3 VBC 28 23 21 30 -44.4 348.3 14957.5 479 09134 D 28 18 13 51 275.66 695.13 7507.03 -5.80 217.26 4089.7 15318.2 18.7 11.6 -8.09 216.11 OBC 35.1 58.5 VBC 28 23 23 30 -44.5 349.0 14967.5 480 09134 D 28 18 15 27 281.52 694.81 Eqa 7507.14 -0.00 216.42 3654.2 14906.3 19.2 11.7 -4.89 65.56 LOS 37.6 62.4 VBC 28 23 25 06 -44.5 349.5 14975.2 481 09134 A 28 18 15 51 282.95 694.80 7507.16 1.41 216.63 3557.8 14837.8 19.0 11.6 -4.14 226.54 LOS 38.5 63.3 VBC 28 23 25 30 -44.5 349.6 14977.0 482 09134 A 28 18 17 51 290.23 695.15 7507.29 8.62 217.68 3143.1 14442.8 18.5 11.6 -0.71 240.03 LOS 42.8 68.5 VBC 28 23 27 30 -44.6 350.2 14985.9 483 09134 A 28 18 19 51 297.52 696.14 7507.41 15.82 218.77 2902.2 13985.9 18.0 11.6 1.48 256.58 LOS 46.6 75.2 VBC 28 23 29 30 -44.7 350.9 14994.3 484 09134 A 28 18 21 51 304.81 697.71 7507.52 23.02 219.94 2881.8 13481.0 17.4 11.5 1.67 274.67 LOS 49.5 83.3 VBC 28 23 31 30 -44.8 351.5 15002.1 485 09134 A 28 18 23 51 312.10 699.76 7507.62 30.22 221.24 3084.7 12939.8 16.8 11.5 -0.20 291.66 LOS 51.3 92.8 VBC 28 23 33 30 -44.8 352.2 15009.3 486

Page 302: ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM …myreaders.info/00_Orbital__Mechanics__-__Model_____Simulation... · ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM-MSS)

www.m

yrea

ders

.inf

o

OM-MSS Page 302 SATELLITE PASS - GROUND TRACE [acronym - Line Of Sight (LOS), On Board Computerr (OBC), Visible Band Camera (VBC), Night Vision Devices (NVD) ] ORBIT, INPUT TIME, POSIION, SAT VELOCITY, GROUND TRACE, RANGE, DIST, PITCH/ROLL, EL/AZ, ACCESS EL/AZ, DATA SOLAR TIME EL/AZ, DIST Line 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 @ES 18 19 20 @SS 21 22 23 24 25 26 27 @ES 28 29 30 No. Node GMT Anomaly Height @ Vel Lat(SAT)Log Slant S-Sat Pitch Roll EL(SAT)AZ Control EL(SUN)AZ Acq. LMT(ES) EL(SUN)AZ S-Sun Nos D H M S deg km meter deg deg km km deg deg deg D H M S deg km 09134 A 28 18 25 51 319.39 702.15 7507.71 37.39 222.75 3467.7 12371.5 16.1 11.4 -3.44 305.78 LOS 52.0 103.2 VBC 28 23 35 30 -44.9 352.8 15015.9 487 09134 A 28 18 27 51 326.68 704.72 7507.79 44.55 224.58 3972.7 11783.4 15.2 11.4 -7.27 316.87 OBC 51.4 114.0 VBC 28 23 37 30 -44.9 353.5 15022.0 488 09134 A 28 18 29 51 333.97 707.31 7507.85 51.66 226.93 4551.6 11181.8 14.0 11.3 -11.27 325.53 OBC 49.5 124.8 VBC 28 23 39 30 -45.0 354.1 15027.5 489 09134 A 28 18 31 51 341.26 709.74 7507.90 58.72 230.15 5170.8 10571.8 12.5 11.3 -15.27 332.48 OBC 46.6 135.4 VBC 28 23 41 30 -45.0 354.8 15032.4 490 09134 A 28 18 33 51 348.55 711.86 7507.94 65.65 235.00 5808.4 9957.8 10.2 11.2 -19.21 338.23 OBC 42.8 146.4 VBC 28 23 43 30 -45.1 355.5 15036.7 491 09134 A 28 18 35 51 355.84 713.52 7507.96 72.31 243.30 6449.4 9344.2 6.4 11.0 -23.07 343.19 OBC 38.3 159.6 VBC 28 23 45 30 -45.1 356.1 15040.4 492 09135 A 28 18 36 59 360.00 714.22 Pri 7507.96 75.85 251.30 6812.5 8996.0 2.8 11.0 -25.24 1.51 OBC 35.5 170.0 VBC 28 23 46 38 -45.1 356.5 15042.3 493 09134 A 28 18 37 51 3.13 714.62 7507.96 78.25 260.30 7083.4 8735.4 -1.3 11.0 -26.86 347.60 OBC 33.3 180.5 VBC 28 23 47 30 -45.1 356.8 15043.6 494 09135 A 28 18 39 51 10.42 715.08 7507.94 81.72 298.40 7702.6 8135.9 -19.2 11.7 -30.58 351.66 OBC 27.9 221.5 VBC 28 23 49 30 -45.2 357.4 15046.1 495 09135 A 28 18 41 51 17.71 714.88 7507.91 79.77 343.44 8301.1 7551.1 -44.8 14.7 -34.23 355.51 OBC 22.1 268.7 VBC 28 23 51 30 -45.2 358.1 15048.1 496 09135 A 28 18 43 51 25.00 714.02 7507.86 74.31 5.57 8874.1 6987.2 60.8 17.9 -37.82 359.26 OBC 16.2 292.3 VBC 28 23 53 30 -45.2 358.7 15049.5 497 09135 A 28 18 45 51 32.29 712.57 7507.80 67.80 15.77 9417.7 6452.0 68.8 20.1 -41.34 3.01 OBC 10.1 303.4 VBC 28 23 55 30 -45.2 359.4 15050.3 498 09135 A 28 18 47 51 39.58 710.63 7507.72 60.93 21.42 9928.5 5955.3 73.3 21.7 -44.80 6.84 OBC 3.9 309.4 NVD 28 23 57 30 -45.2 0.1 15050.5 499 09135 A 28 18 49 51 46.87 708.32 7507.63 53.91 25.05 10403.7 5509.1 76.0 22.8 -48.18 10.85 OBC -2.4 313.0 NVD 28 23 59 30 -45.2 0.7 15050.1 500 09135 A 28 18 51 51 54.16 705.81 7507.53 46.81 27.62 10840.9 5127.9 77.9 23.7 -51.48 15.12 OBC -8.8 315.0 NVD 29 00 01 30 -45.2 1.4 15049.2 501 09135 A 28 18 53 51 61.45 703.25 7507.42 39.66 29.59 11238.0 4828.3 79.2 24.4 -54.68 19.76 OBC -15.1 315.9 NVD 29 00 03 30 -45.2 2.0 15047.6 502 09135 A 28 18 55 51 68.74 700.81 7507.30 32.49 31.18 11593.2 4626.9 80.2 25.0 -57.75 24.91 OBC -21.4 315.9 NVD 29 00 05 30 -45.2 2.7 15045.5 503 09135 A 28 18 57 51 76.03 698.67 7507.18 25.31 32.55 11905.1 4537.3 81.0 25.5 -60.68 30.71 OBC -27.7 315.0 NVD 29 00 07 30 -45.1 3.4 15042.7 504 09135 A 28 18 59 51 83.32 696.95 7507.05 18.11 33.75 12172.6 4566.4 81.7 26.0 -63.41 37.36 OBC -33.9 313.2 NVD 29 00 09 30 -45.1 4.0 15039.4 505 09135 A 28 19 01 51 90.60 695.78 7506.92 10.90 34.86 12394.6 4711.9 82.3 26.5 -65.88 45.05 OBC -39.8 310.3 NVD 29 00 11 30 -45.1 4.7 15035.5 506 09135 A 28 19 03 51 97.89 695.23 7506.79 3.70 35.92 12570.5 4963.1 82.8 27.0 -68.02 53.99 OBC -45.5 306.2 NVD 29 00 13 30 -45.0 5.3 15031.0 507 09135 A 28 19 04 52 101.63 695.20 Eqa 7506.72 0.00 36.46 12642.7 5128.0 83.0 27.2 -68.96 245.54 OBC -48.3 303.5 NVD 29 00 14 31 -45.0 5.7 15028.5 508 09135 D 28 19 05 51 105.18 695.34 7506.66 -3.51 35.95 12700.0 5395.8 82.8 27.0 -69.73 64.29 OBC -49.9 299.9 NVD 29 00 15 30 -45.0 6.0 15026.0 509 09135 D 28 19 07 51 112.47 696.11 7506.54 -10.72 34.90 12782.8 5978.8 82.3 26.5 -70.89 75.90 OBC -52.5 291.5 NVD 29 00 17 30 -44.9 6.6 15020.3 510 09135 D 28 19 09 51 119.75 697.50 7506.42 -17.92 33.79 12819.2 6596.0 81.7 26.0 -71.43 88.41 OBC -54.1 282.2 NVD 29 00 19 30 -44.9 7.3 15014.1 511 09135 D 28 19 11 51 127.04 699.43 7506.31 -25.12 32.59 12809.4 7237.6 81.0 25.5 -71.28 101.14 OBC -54.3 272.4 NVD 29 00 21 30 -44.8 7.9 15007.3 512 09135 D 28 19 13 51 134.33 701.78 7506.21 -32.30 31.24 12754.1 7896.4 80.2 25.0 -70.48 113.33 OBC -53.3 263.0 NVD 29 00 23 30 -44.7 8.6 14999.9 513 09135 D 28 19 15 51 141.61 704.40 7506.13 -39.47 29.65 12654.2 8566.9 79.2 24.4 -69.10 124.45 OBC -51.0 254.8 NVD 29 00 25 30 -44.7 9.2 14992.0 514 09135 D 28 19 17 51 148.90 707.13 7506.05 -46.61 27.70 12510.8 9244.8 77.9 23.7 -67.26 134.29 OBC -47.8 248.3 NVD 29 00 27 30 -44.6 9.9 14983.5 515 09135 D 28 19 19 51 156.19 709.80 7505.99 -53.71 25.15 12325.2 9926.4 76.0 22.8 -65.07 142.89 OBC -43.7 243.7 NVD 29 00 29 30 -44.5 10.5 14974.4 516 09135 D 28 19 21 51 163.47 712.24 7505.95 -60.73 21.57 12099.1 10608.5 73.3 21.7 -62.62 150.43 OBC -39.0 241.5 NVD 29 00 31 30 -44.4 11.2 14964.7 517 09135 D 28 19 23 51 170.76 714.30 7505.92 -67.61 16.00 11834.5 11287.8 69.0 20.2 -59.98 157.13 OBC -33.8 242.4 NVD 29 00 33 30 -44.3 11.8 14954.5 518 09135 D 28 19 25 51 178.05 715.83 7505.91 -74.14 6.01 11533.6 11960.7 61.1 18.0 -57.21 163.19 OBC -28.2 248.6 NVD 29 00 35 30 -44.2 12.4 14943.8 519 09135 D 28 19 26 23 180.00 716.14 Apo 7505.90 -75.77 1.86 11447.0 12139.6 57.9 17.2 -56.45 194.59 OBC -26.7 251.8 NVD 29 00 36 02 -44.2 12.6 14940.8 520 09135 D 28 19 27 51 185.33 716.74 7505.91 -79.65 344.42 11198.8 12623.2 -45.4 14.8 -54.34 168.77 OBC -22.4 267.1 NVD 29 00 37 30 -44.1 13.1 14932.5 521 09135 D 28 19 29 51 192.62 716.98 7505.93 -81.75 299.94 10833.1 13270.2 -19.9 11.7 -51.40 174.03 OBC -16.5 309.2 NVD 29 00 39 30 -44.0 13.7 14920.6 522 09135 D 28 19 31 51 199.90 716.52 7505.97 -78.41 261.11 10439.6 13895.0 -1.7 11.0 -48.43 179.08 OBC -10.3 346.1 NVD 29 00 41 30 -43.9 14.3 14908.2 523 09135 D 28 19 33 51 207.19 715.39 7506.02 -72.51 243.69 10022.0 14488.7 6.2 11.0 -45.44 184.03 OBC -4.1 2.0 NVD 29 00 43 30 -43.8 15.0 14895.2 524 09135 D 28 19 35 51 214.48 713.66 7506.09 -65.86 235.23 9584.5 15038.6 10.1 11.1 -42.44 188.97 OBC 2.3 9.4 NVD 29 00 45 30 -43.7 15.6 14881.8 525 09135 D 28 19 37 51 221.76 711.45 7506.17 -58.94 230.32 9131.5 15527.8 12.4 11.2 -39.45 193.98 OBC 8.6 13.7 VBC 29 00 47 30 -43.6 16.2 14867.7 526 09135 D 28 19 39 51 229.05 708.89 7506.26 -51.89 227.07 8668.5 15933.4 14.0 11.3 -36.50 199.15 OBC 15.0 16.6 VBC 29 00 49 30 -43.4 16.8 14853.2 527 09135 D 28 19 41 51 236.34 706.15 7506.36 -44.78 224.70 8201.5 16227.9 15.1 11.4 -33.60 204.56 OBC 21.4 19.1 VBC 29 00 51 30 -43.3 17.4 14838.1 528 09135 D 28 19 43 51 243.62 703.40 7506.48 -37.63 222.86 7737.5 16383.9 16.0 11.4 -30.77 210.30 OBC 27.8 21.6 VBC 29 00 53 30 -43.2 18.0 14822.5 529 09135 D 28 19 45 51 250.91 700.80 7506.60 -30.46 221.34 7284.7 16383.3 16.7 11.5 -28.05 216.46 OBC 34.0 24.3 VBC 29 00 55 30 -43.0 18.6 14806.4 530

Page 303: ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM …myreaders.info/00_Orbital__Mechanics__-__Model_____Simulation... · ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM-MSS)

www.m

yrea

ders

.inf

o

OM-MSS Page 303 SATELLITE PASS - GROUND TRACE [acronym - Line Of Sight (LOS), On Board Computerr (OBC), Visible Band Camera (VBC), Night Vision Devices (NVD) ] ORBIT, INPUT TIME, POSIION, SAT VELOCITY, GROUND TRACE, RANGE, DIST, PITCH/ROLL, EL/AZ, ACCESS EL/AZ, DATA SOLAR TIME EL/AZ, DIST Line 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 @ES 18 19 20 @SS 21 22 23 24 25 26 27 @ES 28 29 30 No. Node GMT Anomaly Height @ Vel Lat(SAT)Log Slant S-Sat Pitch Roll EL(SAT)AZ Control EL(SUN)AZ Acq. LMT(ES) EL(SUN)AZ S-Sun Nos D H M S deg km meter deg deg km km deg deg deg D H M S deg km 09135 D 28 19 47 51 258.20 698.53 7506.72 -23.27 220.04 6852.6 16226.1 17.4 11.5 -25.47 223.13 OBC 40.2 27.6 VBC 29 00 57 30 -42.9 19.2 14789.8 531 09135 D 28 19 49 51 265.49 696.71 7506.85 -16.07 218.87 6451.9 15930.6 17.9 11.6 -23.07 230.39 OBC 46.1 31.6 VBC 29 00 59 30 -42.7 19.8 14772.7 532 09135 D 28 19 51 51 272.78 695.46 7506.98 -8.86 217.78 6094.7 15524.1 18.5 11.6 -20.93 238.31 OBC 51.8 37.0 VBC 29 01 01 30 -42.5 20.4 14755.1 533 09135 D 28 19 53 51 280.06 694.85 7507.11 -1.65 216.73 5794.0 15034.2 19.0 11.6 -19.11 246.91 OBC 56.9 44.2 VBC 29 01 03 30 -42.4 21.0 14737.0 534 09135 D 28 19 54 18 281.74 694.81 Eqa 7507.14 -0.00 216.49 5734.4 14912.6 19.1 11.7 -18.75 65.51 OBC 58.0 46.1 VBC 29 01 03 57 -42.3 21.2 14732.7 535 09135 A 28 19 55 51 287.35 694.92 7507.24 5.56 217.29 5562.7 14624.9 18.7 11.6 -17.70 256.16 OBC 62.5 52.2 VBC 29 01 05 30 -42.2 21.6 14718.4 536 09135 A 28 19 57 51 294.64 695.64 7507.36 12.76 218.36 5412.1 14191.9 18.2 11.6 -16.77 265.93 OBC 67.7 63.9 VBC 29 01 07 30 -42.0 22.2 14699.3 537 09135 A 28 19 59 51 301.93 696.98 7507.48 19.97 219.49 5349.8 13705.3 17.6 11.5 -16.39 276.01 OBC 71.4 81.6 VBC 29 01 09 30 -41.9 22.8 14679.7 538 09135 A 28 20 01 51 309.22 698.84 7507.58 27.16 220.74 5378.3 13177.6 17.0 11.5 -16.56 286.14 OBC 72.6 104.9 VBC 29 01 11 30 -41.7 23.3 14659.7 539 09135 A 28 20 03 51 316.51 701.10 7507.68 34.35 222.15 5494.0 12619.2 16.3 11.5 -17.28 296.06 OBC 70.8 127.7 VBC 29 01 13 30 -41.5 23.9 14639.1 540 09135 A 28 20 05 51 323.80 703.61 7507.76 41.51 223.82 5688.5 12038.1 15.5 11.4 -18.48 305.55 OBC 66.8 145.1 VBC 29 01 15 30 -41.3 24.5 14618.2 541 09135 A 28 20 07 51 331.09 706.21 7507.83 48.65 225.92 5949.7 11441.1 14.5 11.4 -20.06 314.48 OBC 61.4 157.3 VBC 29 01 17 30 -41.1 25.0 14596.7 542 09135 A 28 20 09 51 338.38 708.73 7507.89 55.73 228.71 6264.1 10833.4 13.2 11.3 -21.96 322.81 OBC 55.3 166.6 VBC 29 01 19 30 -40.9 25.6 14574.8 543 09135 A 28 20 11 51 345.67 711.00 7507.93 62.72 232.73 6618.4 10220.0 11.3 11.2 -24.08 330.56 OBC 48.7 174.9 VBC 29 01 21 30 -40.7 26.2 14552.5 544 09135 A 28 20 13 51 352.96 712.87 7507.95 69.53 239.21 7000.5 9605.2 8.3 11.1 -26.36 337.80 OBC 42.0 184.2 VBC 29 01 23 30 -40.5 26.7 14529.7 545 09136 A 28 20 15 47 360.00 714.19 Pri 7507.96 75.68 250.87 7385.9 9014.0 3.0 11.0 -28.67 1.64 OBC 35.3 197.7 VBC 29 01 25 26 -40.3 27.2 14507.3 546 09135 A 28 20 15 51 0.25 714.23 7507.96 75.88 251.45 7399.7 8993.2 2.7 11.0 -28.75 344.62 OBC 35.0 198.4 VBC 29 01 25 30 -40.3 27.3 14506.5 547 09136 A 28 20 17 51 7.54 714.96 7507.95 80.77 279.00 7806.8 8388.6 -9.9 11.1 -31.21 351.09 OBC 28.0 227.2 VBC 29 01 27 30 -40.1 27.8 14482.8 548 09136 A 28 20 19 51 14.83 715.05 7507.92 81.26 326.92 8214.3 7796.2 -34.5 13.2 -33.69 357.30 OBC 20.9 276.0 VBC 29 01 29 30 -39.9 28.3 14458.8 549 09136 A 28 20 21 51 22.12 714.46 7507.88 76.84 358.45 8615.8 7221.9 -55.3 16.7 -36.19 3.35 OBC 13.7 308.0 VBC 29 01 31 30 -39.7 28.9 14434.3 550 09136 A 28 20 23 51 29.41 713.26 7507.83 70.63 12.32 9005.9 6672.8 66.1 19.3 -38.66 9.30 OBC 6.5 322.1 VBC 29 01 33 30 -39.4 29.4 14409.4 551 09136 A 28 20 25 51 36.70 711.51 7507.76 63.87 19.43 9380.3 6157.7 71.7 21.1 -41.09 15.22 OBC -0.7 329.2 NVD 29 01 35 30 -39.2 29.9 14384.0 552 09136 A 28 20 27 51 43.99 709.34 7507.67 56.90 23.74 9735.2 5687.6 75.0 22.4 -43.47 21.19 OBC -7.9 333.3 NVD 29 01 37 30 -39.0 30.4 14358.3 553 09136 A 28 20 29 51 51.28 706.89 7507.57 49.83 26.69 10067.5 5276.1 77.2 23.3 -45.77 27.26 OBC -15.2 335.8 NVD 29 01 39 30 -38.8 31.0 14332.2 554 09136 A 28 20 31 51 58.57 704.33 7507.47 42.70 28.88 10374.7 4939.0 78.7 24.1 -47.97 33.50 OBC -22.5 337.4 NVD 29 01 41 30 -38.5 31.5 14305.7 555 09136 A 28 20 33 51 65.86 701.83 7507.35 35.54 30.61 10654.8 4693.3 79.8 24.8 -50.05 39.94 OBC -29.8 338.2 NVD 29 01 43 30 -38.3 32.0 14278.8 556 09136 A 28 20 35 51 73.14 699.54 7507.23 28.36 32.06 10906.0 4554.5 80.7 25.3 -51.99 46.66 OBC -37.1 338.5 NVD 29 01 45 30 -38.0 32.5 14251.5 557 09136 A 28 20 37 51 80.43 697.62 7507.10 21.17 33.32 11127.1 4532.6 81.5 25.8 -53.76 53.67 OBC -44.3 338.3 NVD 29 01 47 30 -37.8 33.0 14223.8 558 09136 A 28 20 39 51 87.72 696.21 7506.97 13.96 34.47 11317.0 4629.5 82.1 26.3 -55.34 61.02 OBC -51.6 337.4 NVD 29 01 49 30 -37.5 33.5 14195.8 559 09136 A 28 20 41 51 95.01 695.38 7506.84 6.76 35.54 11475.2 4837.8 82.6 26.8 -56.70 68.70 OBC -58.8 335.5 NVD 29 01 51 30 -37.3 34.0 14167.4 560 09136 A 28 20 43 43 101.84 695.20 Eqa 7506.72 0.00 36.52 11594.2 5121.7 83.0 27.2 -57.76 245.48 OBC -65.5 332.5 NVD 29 01 53 22 -37.0 34.4 14140.5 561 09136 D 28 20 43 51 102.30 695.21 7506.71 -0.45 36.46 11601.2 5155.5 83.0 27.2 -57.82 76.72 OBC -65.9 332.0 NVD 29 01 53 30 -37.0 34.4 14138.7 562 09136 D 28 20 45 51 109.59 695.71 7506.59 -7.66 35.42 11694.9 5720.5 82.5 26.7 -58.67 85.02 OBC -71.6 320.5 NVD 29 01 55 30 -36.8 34.9 14109.5 563 09136 D 28 20 47 51 116.87 696.84 7506.47 -14.86 34.34 11756.4 6325.0 82.0 26.3 -59.25 93.56 OBC -75.9 300.3 NVD 29 01 57 30 -36.5 35.4 14080.1 564 09136 D 28 20 49 51 124.16 698.56 7506.36 -22.06 33.18 11786.2 6957.7 81.4 25.8 -59.53 102.23 OBC -77.3 270.3 NVD 29 01 59 30 -36.2 35.9 14050.3 565 09136 D 28 20 51 51 131.45 700.74 7506.25 -29.26 31.90 11784.9 7610.3 80.6 25.3 -59.51 110.95 OBC -74.9 242.8 NVD 29 02 01 30 -35.9 36.3 14020.1 566 09136 D 28 20 53 51 138.73 703.27 7506.16 -36.43 30.43 11753.2 8276.9 79.7 24.7 -59.21 119.62 OBC -70.0 226.3 NVD 29 02 03 30 -35.7 36.8 13989.6 567 09136 D 28 20 55 51 146.02 705.97 7506.08 -43.59 28.65 11692.3 8952.5 78.5 24.0 -58.65 128.14 OBC -64.0 217.5 NVD 29 02 05 30 -35.4 37.3 13958.8 568 09136 D 28 20 57 51 153.31 708.69 7506.01 -50.71 26.39 11603.5 9633.3 77.0 23.2 -57.84 136.45 OBC -57.5 213.2 NVD 29 02 07 30 -35.1 37.7 13927.7 569 09136 D 28 20 59 51 160.59 711.25 7505.96 -57.77 23.33 11488.3 10316.0 74.7 22.2 -56.81 144.51 OBC -50.7 211.8 NVD 29 02 09 30 -34.8 38.2 13896.2 570 09136 D 28 21 01 51 167.88 713.48 7505.93 -64.72 18.78 11348.4 10997.3 71.2 20.9 -55.60 152.31 OBC -43.8 213.1 NVD 29 02 11 30 -34.5 38.6 13864.5 571 09136 D 28 21 03 51 175.17 715.25 7505.91 -71.43 11.14 11185.6 11673.9 65.1 19.0 -54.23 159.85 OBC -36.8 218.3 NVD 29 02 13 30 -34.3 39.1 13832.4 572 09136 D 28 21 05 10 180.00 716.11 Apo 7505.90 -75.59 2.42 11066.1 12118.3 58.3 17.3 -53.25 194.71 OBC -32.1 225.6 NVD 29 02 14 49 -34.1 39.3 13810.9 573 09136 D 28 21 05 51 182.45 716.44 7505.91 -77.52 355.91 11002.2 12341.8 -53.5 16.3 -52.74 167.15 OBC -29.7 231.5 NVD 29 02 15 30 -34.0 39.5 13800.0 574 09136 D 28 21 07 51 189.74 716.96 7505.92 -81.52 321.33 10800.4 12996.7 -31.2 12.8 -51.15 174.25 OBC -22.6 264.5 NVD 29 02 17 30 -33.7 39.9 13767.3 575

Page 304: ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM …myreaders.info/00_Orbital__Mechanics__-__Model_____Simulation... · ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM-MSS)

www.m

yrea

ders

.inf

o

OM-MSS Page 304 SATELLITE PASS - GROUND TRACE [acronym - Line Of Sight (LOS), On Board Computerr (OBC), Visible Band Camera (VBC), Night Vision Devices (NVD) ] ORBIT, INPUT TIME, POSIION, SAT VELOCITY, GROUND TRACE, RANGE, DIST, PITCH/ROLL, EL/AZ, ACCESS EL/AZ, DATA SOLAR TIME EL/AZ, DIST Line 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 @ES 18 19 20 @SS 21 22 23 24 25 26 27 @ES 28 29 30 No. Node GMT Anomaly Height @ Vel Lat(SAT)Log Slant S-Sat Pitch Roll EL(SAT)AZ Control EL(SUN)AZ Acq. LMT(ES) EL(SUN)AZ S-Sun Nos D H M S deg km meter deg deg km km deg deg deg D H M S deg km 09136 D 28 21 09 51 197.02 716.80 7505.95 -80.34 274.37 10582.8 13632.5 -7.7 11.1 -49.49 181.18 OBC -15.5 310.0 NVD 29 02 19 30 -33.4 40.4 13734.3 576 09136 D 28 21 11 51 204.31 715.94 7506.00 -75.16 249.50 10352.1 14241.4 3.6 11.0 -47.79 187.98 OBC -8.3 333.7 NVD 29 02 21 30 -33.1 40.8 13701.1 577 09136 D 28 21 13 51 211.60 714.46 7506.06 -68.73 238.27 10111.2 14812.5 8.7 11.1 -46.06 194.70 OBC -1.2 343.8 NVD 29 02 23 30 -32.8 41.2 13667.5 578 09136 D 28 21 15 51 218.88 712.44 7506.13 -61.90 232.20 9863.2 15330.9 11.6 11.2 -44.33 201.37 OBC 6.0 348.9 VBC 29 02 25 30 -32.5 41.6 13633.7 579 09136 D 28 21 17 51 226.17 710.01 7506.22 -54.90 228.38 9611.3 15776.2 13.4 11.3 -42.62 208.05 OBC 13.2 351.9 VBC 29 02 27 30 -32.2 42.0 13599.6 580 09136 D 28 21 19 51 233.46 707.32 7506.32 -47.81 225.69 9359.1 16122.5 14.6 11.4 -40.94 214.75 OBC 20.4 353.7 VBC 29 02 29 30 -31.9 42.4 13565.2 581 09136 D 28 21 21 51 240.74 704.55 7506.43 -40.67 223.66 9110.0 16341.4 15.6 11.4 -39.32 221.52 OBC 27.6 355.0 VBC 29 02 31 30 -31.5 42.8 13530.5 582 09136 D 28 21 23 51 248.03 701.87 7506.55 -33.51 222.02 8867.8 16409.3 16.4 11.5 -37.77 228.38 OBC 34.8 355.9 VBC 29 02 33 30 -31.2 43.3 13495.6 583 09136 D 28 21 25 51 255.32 699.44 7506.67 -26.32 220.64 8636.2 16317.9 17.1 11.5 -36.30 235.36 OBC 42.0 356.5 VBC 29 02 35 30 -30.9 43.6 13460.4 584 09136 D 28 21 27 51 262.61 697.42 7506.80 -19.13 219.42 8418.8 16078.2 17.7 11.5 -34.95 242.47 OBC 49.3 357.1 VBC 29 02 37 30 -30.6 44.0 13425.0 585 09136 D 28 21 29 51 269.89 695.92 7506.93 -11.92 218.30 8219.2 15715.2 18.2 11.6 -33.72 249.72 OBC 56.5 357.6 VBC 29 02 39 30 -30.3 44.4 13389.3 586 09136 D 28 21 31 51 277.18 695.03 7507.06 -4.71 217.24 8040.8 15257.4 18.7 11.6 -32.62 257.12 OBC 63.7 358.2 VBC 29 02 41 30 -30.0 44.8 13353.3 587 09136 D 28 21 33 09 281.95 694.80 Eqa 7507.14 -0.00 216.56 7937.1 14918.9 19.1 11.6 -31.99 65.46 OBC 68.4 358.7 VBC 29 02 42 48 -29.7 45.1 13329.7 588 09136 A 28 21 33 51 284.47 694.80 7507.19 2.49 216.92 7886.7 14795.1 18.9 11.6 -31.68 264.66 OBC 70.9 357.0 VBC 29 02 43 30 -29.6 45.2 13317.2 589 09136 A 28 21 35 51 291.76 695.25 7507.31 9.70 217.97 7759.4 14388.8 18.4 11.6 -30.91 272.33 OBC 77.9 348.4 VBC 29 02 45 30 -29.3 45.6 13280.7 590 09136 A 28 21 37 51 299.05 696.34 7507.43 16.91 219.07 7660.8 13922.6 17.8 11.6 -30.32 280.11 OBC 83.9 320.2 VBC 29 02 47 30 -29.0 46.0 13244.1 591 09136 A 28 21 39 51 306.34 697.99 7507.54 24.11 220.26 7592.3 13410.4 17.3 11.5 -29.91 287.98 OBC 84.0 246.0 VBC 29 02 49 30 -28.6 46.3 13207.2 592 09136 A 28 21 41 51 313.63 700.10 7507.64 31.30 221.59 7554.3 12863.4 16.6 11.5 -29.68 295.90 OBC 78.1 217.2 VBC 29 02 51 30 -28.3 46.7 13170.1 593 09136 A 28 21 43 51 320.92 702.52 7507.73 38.47 223.14 7546.6 12290.4 15.9 11.4 -29.63 303.84 OBC 71.1 209.2 VBC 29 02 53 30 -28.0 47.1 13132.7 594 09136 A 28 21 45 51 328.21 705.11 7507.80 45.62 225.03 7568.0 11698.9 15.0 11.4 -29.76 311.77 OBC 64.0 206.5 VBC 29 02 55 30 -27.6 47.4 13095.2 595 09136 A 28 21 47 51 335.50 707.68 7507.87 52.73 227.48 7616.8 11094.6 13.8 11.3 -30.06 319.67 OBC 56.7 206.2 VBC 29 02 57 30 -27.3 47.8 13057.4 596 09136 A 28 21 49 51 342.79 710.08 7507.91 59.77 230.88 7690.8 10482.5 12.2 11.2 -30.50 327.50 OBC 49.5 207.8 VBC 29 02 59 30 -27.0 48.1 13019.4 597 09136 A 28 21 51 51 350.08 712.14 7507.94 66.67 236.09 7787.0 9867.2 9.7 11.1 -31.09 335.26 OBC 42.2 211.7 VBC 29 03 01 30 -26.6 48.5 12981.2 598 09136 A 28 21 53 51 357.37 713.72 7507.96 73.28 245.23 7902.6 9252.9 5.5 11.0 -31.79 342.93 OBC 34.9 219.8 VBC 29 03 03 30 -26.3 48.8 12942.8 599 09137 A 28 21 54 34 360.00 714.16 Pri 7507.96 75.51 250.44 7948.4 9032.1 3.2 11.0 -32.07 1.76 OBC 32.3 224.7 VBC 29 03 04 13 -26.1 49.0 12928.9 600 09136 A 28 21 55 51 4.66 714.73 7507.96 79.01 264.48 8034.2 8644.0 -3.2 11.0 -32.59 350.50 OBC 27.7 238.3 VBC 29 03 05 30 -25.9 49.2 12904.2 601 09137 A 28 21 57 51 11.95 715.09 7507.94 81.80 306.19 8178.7 8045.1 -23.1 12.0 -33.48 357.99 OBC 20.4 279.4 VBC 29 03 07 30 -25.6 49.5 12865.4 602 09137 A 28 21 59 51 19.24 714.79 7507.90 79.08 348.23 8333.0 7461.7 -48.0 15.2 -34.43 5.39 OBC 13.2 321.1 VBC 29 03 09 30 -25.2 49.9 12826.4 603 09137 A 28 22 01 51 26.53 713.84 7507.85 73.37 7.73 8494.2 6900.3 62.5 18.3 -35.43 12.71 OBC 6.0 340.3 VBC 29 03 11 30 -24.9 50.2 12787.2 604 09137 A 28 22 03 51 33.82 712.31 7507.79 66.78 16.96 8659.4 6368.8 69.8 20.4 -36.46 19.97 OBC -1.2 349.4 NVD 29 03 13 30 -24.5 50.5 12747.8 605 09137 A 28 22 05 51 41.11 710.31 7507.71 59.88 22.20 8826.3 5877.3 73.9 21.9 -37.51 27.18 OBC -8.4 354.7 NVD 29 03 15 30 -24.2 50.9 12708.2 606 09137 A 28 22 07 51 48.40 707.96 7507.61 52.84 25.62 8992.6 5438.3 76.4 23.0 -38.57 34.35 OBC -15.6 358.3 NVD 29 03 17 30 -23.8 51.2 12668.4 607 09137 A 28 22 09 51 55.69 705.43 7507.51 45.73 28.08 9156.3 5066.8 78.2 23.8 -39.63 41.49 OBC -22.7 1.2 NVD 29 03 19 30 -23.4 51.5 12628.5 608 09137 A 28 22 11 51 62.97 702.88 7507.40 38.58 29.98 9315.9 4779.5 79.4 24.5 -40.67 48.63 OBC -29.8 3.9 NVD 29 03 21 30 -23.1 51.8 12588.3 609 09137 A 28 22 13 51 70.26 700.48 7507.28 31.41 31.54 9469.8 4593.1 80.4 25.1 -41.68 55.77 OBC -36.8 6.6 NVD 29 03 23 30 -22.7 52.1 12548.0 610 09137 A 28 22 15 51 77.55 698.39 7507.15 24.22 32.87 9616.9 4520.5 81.2 25.7 -42.67 62.92 OBC -43.6 9.7 NVD 29 03 25 30 -22.4 52.5 12507.6 611 09137 A 28 22 17 51 84.84 696.74 7507.02 17.02 34.06 9756.2 4567.2 81.9 26.2 -43.61 70.09 OBC -50.4 13.5 NVD 29 03 27 30 -22.0 52.8 12466.9 612 09137 A 28 22 19 51 92.13 695.66 7506.89 9.82 35.16 9886.8 4729.7 82.4 26.6 -44.50 77.29 OBC -56.9 18.6 NVD 29 03 29 30 -21.6 53.1 12426.1 613 09137 A 28 22 21 51 99.42 695.21 7506.76 2.61 36.21 10008.3 4996.3 82.9 27.1 -45.35 84.53 OBC -63.0 26.0 NVD 29 03 31 30 -21.3 53.4 12385.1 614 09137 A 28 22 22 34 102.06 695.21 Eqa 7506.72 0.00 36.59 10049.9 5115.4 83.1 27.3 -45.64 245.43 OBC -65.0 29.5 NVD 29 03 32 13 -21.1 53.5 12370.3 615 09137 D 28 22 23 51 106.70 695.42 7506.64 -4.60 35.93 10120.2 5468.9 82.8 27.0 -46.13 91.81 OBC -69.1 34.6 NVD 29 03 33 30 -20.9 53.7 12344.0 616 09137 D 28 22 25 51 113.99 696.29 7506.51 -11.81 34.87 10222.0 6058.6 82.2 26.5 -46.86 99.13 OBC -74.9 48.1 NVD 29 03 35 30 -20.5 54.0 12302.7 617 09137 D 28 22 27 51 121.28 697.77 7506.40 -19.01 33.75 10313.8 6680.9 81.7 26.0 -47.52 106.50 OBC -79.0 74.6 NVD 29 03 37 30 -20.1 54.3 12261.3 618 09137 D 28 22 29 51 128.57 699.77 7506.29 -26.20 32.53 10395.3 7326.4 81.0 25.5 -48.11 113.92 OBC -79.2 113.2 NVD 29 03 39 30 -19.8 54.6 12219.7 619

Page 305: ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM …myreaders.info/00_Orbital__Mechanics__-__Model_____Simulation... · ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM-MSS)

www.m

yrea

ders

.inf

o

OM-MSS Page 305 SATELLITE PASS - GROUND TRACE [acronym - Line Of Sight (LOS), On Board Computerr (OBC), Visible Band Camera (VBC), Night Vision Devices (NVD) ] ORBIT, INPUT TIME, POSIION, SAT VELOCITY, GROUND TRACE, RANGE, DIST, PITCH/ROLL, EL/AZ, ACCESS EL/AZ, DATA SOLAR TIME EL/AZ, DIST Line 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 @ES 18 19 20 @SS 21 22 23 24 25 26 27 @ES 28 29 30 No. Node GMT Anomaly Height @ Vel Lat(SAT)Log Slant S-Sat Pitch Roll EL(SAT)AZ Control EL(SUN)AZ Acq. LMT(ES) EL(SUN)AZ S-Sun Nos D H M S deg km meter deg deg km km deg deg deg D H M S deg km 09137 D 28 22 31 51 135.85 702.16 7506.20 -33.39 31.15 10466.5 7988.1 80.2 25.0 -48.63 121.37 OBC -75.4 141.3 NVD 29 03 41 30 -19.4 54.9 12177.9 620 09137 D 28 22 33 51 143.14 704.81 7506.11 -40.55 29.52 10527.6 8660.7 79.1 24.3 -49.08 128.87 OBC -69.6 156.3 NVD 29 03 43 30 -19.0 55.2 12136.0 621 09137 D 28 22 35 51 150.43 707.55 7506.04 -47.69 27.49 10578.5 9340.2 77.7 23.6 -49.46 136.40 OBC -63.3 165.1 NVD 29 03 45 30 -18.6 55.4 12093.9 622 09137 D 28 22 37 51 157.71 710.19 7505.98 -54.78 24.83 10619.5 10022.9 75.8 22.7 -49.77 143.95 OBC -56.6 171.6 NVD 29 03 47 30 -18.3 55.7 12051.7 623 09137 D 28 22 39 51 165.00 712.58 7505.94 -61.78 21.03 10650.6 10705.6 72.9 21.5 -50.00 151.54 OBC -49.8 177.6 NVD 29 03 49 30 -17.9 56.0 12009.4 624 09137 D 28 22 41 51 172.28 714.56 7505.91 -68.62 15.01 10672.1 11385.1 68.2 19.9 -50.17 159.14 OBC -42.9 184.9 NVD 29 03 51 30 -17.5 56.3 11966.9 625 09137 D 28 22 43 51 179.57 716.01 7505.90 -75.06 3.92 10684.1 12057.7 59.5 17.6 -50.26 166.75 OBC -36.0 196.7 NVD 29 03 53 30 -17.1 56.6 11924.3 626 09137 D 28 22 43 58 180.00 716.08 Apo 7505.90 -75.42 2.98 10684.6 12097.1 58.7 17.4 -50.26 194.83 OBC -35.6 197.6 NVD 29 03 53 37 -17.1 56.6 11921.8 627 09137 D 28 22 45 51 186.86 716.82 7505.91 -80.27 339.40 10686.8 12719.3 -42.1 14.3 -50.28 174.37 OBC -29.0 221.4 NVD 29 03 55 30 -16.7 56.8 11881.6 628 09137 D 28 22 47 51 194.14 716.95 7505.94 -81.55 292.63 10680.3 13364.6 -16.3 11.5 -50.23 181.98 OBC -22.1 268.1 NVD 29 03 57 30 -16.4 57.1 11838.7 629 09137 D 28 22 49 51 201.43 716.39 7505.98 -77.61 257.61 10664.8 13986.7 -0.1 10.9 -50.11 189.59 OBC -15.2 302.8 NVD 29 03 59 30 -16.0 57.4 11795.7 630 09137 D 28 22 51 51 208.72 715.16 7506.03 -71.54 242.18 10640.2 14576.2 6.9 11.0 -49.93 197.18 OBC -8.2 317.6 NVD 29 04 01 30 -15.6 57.6 11752.5 631 09137 D 28 22 53 51 216.00 713.35 7506.10 -64.83 234.47 10606.8 15120.0 10.5 11.2 -49.68 204.75 OBC -1.4 324.5 NVD 29 04 03 30 -15.2 57.9 11709.3 632 09137 D 28 22 55 51 223.29 711.08 7506.18 -57.88 229.88 10564.6 15600.2 12.6 11.3 -49.36 212.30 OBC 5.5 328.0 VBC 29 04 05 30 -14.8 58.2 11665.9 633 09137 D 28 22 57 51 230.58 708.48 7506.28 -50.82 226.80 10513.7 15993.1 14.1 11.3 -48.98 219.82 OBC 12.3 329.8 VBC 29 04 07 30 -14.4 58.4 11622.3 634 09137 D 28 22 59 51 237.86 705.73 7506.39 -43.71 224.53 10454.0 16270.7 15.2 11.4 -48.54 227.31 OBC 19.1 330.4 VBC 29 04 09 30 -14.0 58.7 11578.7 635 09137 D 28 23 01 51 245.15 702.99 7506.50 -36.55 222.75 10385.7 16405.8 16.1 11.4 -48.04 234.77 OBC 25.8 330.1 VBC 29 04 11 30 -13.6 58.9 11534.9 636 09137 D 28 23 03 51 252.44 700.43 7506.62 -29.37 221.27 10308.8 16382.5 16.8 11.5 -47.48 242.19 OBC 32.4 329.0 VBC 29 04 13 30 -13.2 59.2 11491.1 637 09137 D 28 23 05 51 259.72 698.22 7506.75 -22.18 219.99 10223.4 16203.6 17.4 11.5 -46.87 249.57 OBC 38.9 327.0 VBC 29 04 15 30 -12.8 59.5 11447.1 638 09137 D 28 23 07 51 267.01 696.48 7506.88 -14.98 218.83 10129.6 15889.5 18.0 11.6 -46.20 256.91 OBC 45.2 324.0 VBC 29 04 17 30 -12.4 59.7 11403.0 639 09137 D 28 23 09 51 274.30 695.32 7507.01 -7.78 217.75 10027.6 15468.3 18.5 11.6 -45.48 264.22 OBC 51.2 319.6 VBC 29 04 19 30 -12.0 59.9 11358.8 640 09137 D 28 23 11 51 281.59 694.81 7507.14 -0.57 216.71 9917.6 14967.3 19.0 11.6 -44.72 271.49 OBC 56.8 313.4 VBC 29 04 21 30 -11.6 60.2 11314.4 641 09137 D 28 23 12 00 282.16 694.80 Eqa 7507.15 -0.00 216.63 9908.7 14925.2 19.0 11.6 -44.66 65.41 OBC 57.2 312.8 VBC 29 04 21 39 -11.6 60.2 11310.9 642 09137 A 28 23 13 51 288.88 694.98 7507.26 6.64 217.59 9800.1 14575.3 18.6 11.6 -43.91 278.73 OBC 60.2 302.8 VBC 29 04 23 30 -11.2 60.4 11270.0 643 09137 A 28 23 15 51 296.17 695.80 7507.38 13.85 218.66 9675.4 14132.2 18.0 11.6 -43.06 285.95 OBC 62.0 290.1 VBC 29 04 25 30 -10.8 60.7 11225.5 644 09137 A 28 23 17 51 303.46 697.22 7507.50 21.05 219.81 9544.0 13637.4 17.5 11.5 -42.18 293.14 OBC 62.1 276.6 VBC 29 04 27 30 -10.4 60.9 11180.8 645 09137 A 28 23 19 51 310.74 699.15 7507.60 28.25 221.07 9406.8 13103.4 16.9 11.5 -41.27 300.33 OBC 60.6 264.1 VBC 29 04 29 30 -10.0 61.2 11136.1 646 09137 A 28 23 21 51 318.03 701.46 7507.70 35.43 222.52 9264.5 12539.9 16.2 11.5 -40.33 307.50 OBC 57.6 253.8 VBC 29 04 31 30 -9.6 61.4 11091.2 647 09137 A 28 23 23 51 325.32 704.00 7507.78 42.59 224.24 9118.2 11954.9 15.3 11.4 -39.38 314.69 OBC 53.5 246.3 VBC 29 04 33 30 -9.2 61.6 11046.3 648 09137 A 28 23 25 51 332.61 706.60 7507.84 49.72 226.42 8969.2 11354.7 14.3 11.3 -38.42 321.88 OBC 48.6 241.3 VBC 29 04 35 30 -8.8 61.9 11001.2 649 09137 A 28 23 27 51 339.90 709.09 7507.90 56.79 229.35 8818.9 10744.8 12.9 11.3 -37.47 329.10 OBC 43.3 238.8 VBC 29 04 37 30 -8.4 62.1 10956.1 650 09137 A 28 23 29 51 347.19 711.31 7507.93 63.77 233.64 8669.0 10129.8 10.9 11.2 -36.52 336.36 OBC 37.7 238.9 VBC 29 04 39 30 -8.0 62.3 10910.8 651 09137 A 28 23 31 51 354.48 713.11 7507.95 70.53 240.69 8521.3 9514.0 7.6 11.1 -35.60 343.66 OBC 31.8 242.8 VBC 29 04 41 30 -7.6 62.5 10865.5 652 09138 A 28 23 33 21 360.00 714.12 Pri 7507.96 75.33 250.03 8412.4 9050.1 3.3 11.0 -34.92 1.89 OBC 27.3 250.2 VBC 29 04 43 01 -7.3 62.7 10831.1 653 09137 A 28 23 33 51 1.77 714.38 7507.96 76.76 254.39 8378.0 8901.7 1.4 11.0 -34.70 351.02 OBC 25.8 254.1 VBC 29 04 43 30 -7.2 62.8 10820.1 654 09138 A 28 23 35 51 9.06 715.02 7507.95 81.22 285.55 8241.5 8297.3 -12.9 11.3 -33.86 358.44 OBC 19.8 283.4 VBC 29 04 45 30 -6.8 63.0 10774.5 655 09138 A 28 23 37 51 16.35 715.00 7507.92 80.82 333.54 8114.1 7706.0 -38.4 13.7 -33.08 5.93 OBC 13.7 330.2 VBC 29 04 47 30 -6.4 63.2 10728.9 656 09138 A 28 23 39 51 23.64 714.32 7507.87 75.97 1.43 7998.6 7133.7 57.6 17.2 -32.37 13.50 OBC 7.6 357.2 VBC 29 04 49 30 -6.0 63.4 10683.2 657 09138 A 28 23 41 51 30.93 713.03 7507.81 69.63 13.81 7897.6 6587.7 67.3 19.7 -31.76 21.15 OBC 1.5 9.2 NVD 29 04 51 30 -5.6 63.6 10637.4 658 09138 A 28 23 43 51 38.22 711.21 7507.74 62.83 20.34 7813.7 6077.1 72.4 21.4 -31.25 28.86 OBC -4.5 15.8 NVD 29 04 53 30 -5.1 63.9 10591.6 659 09138 A 28 23 45 51 45.51 708.99 7507.65 55.84 24.39 7749.7 5613.4 75.5 22.6 -30.86 36.64 OBC -10.5 20.3 NVD 29 04 55 30 -4.7 64.1 10545.6 660 09138 A 28 23 47 51 52.80 706.52 7507.55 48.76 27.19 7707.8 5210.5 77.6 23.5 -30.60 44.46 OBC -16.3 24.0 NVD 29 04 57 30 -4.3 64.3 10499.6 661 09138 A 28 23 49 51 60.09 703.95 7507.44 41.62 29.30 7690.0 4884.6 79.0 24.3 -30.50 52.32 OBC -21.9 27.5 NVD 29 04 59 30 -3.9 64.5 10453.5 662 09138 A 28 23 51 51 67.38 701.47 7507.33 34.46 30.98 7697.9 4652.8 80.1 24.9 -30.54 60.18 OBC -27.3 31.1 NVD 29 05 01 30 -3.5 64.7 10407.3 663

Page 306: ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM …myreaders.info/00_Orbital__Mechanics__-__Model_____Simulation... · ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM-MSS)

www.m

yrea

ders

.inf

o

OM-MSS Page 306 SATELLITE PASS - GROUND TRACE [acronym - Line Of Sight (LOS), On Board Computerr (OBC), Visible Band Camera (VBC), Night Vision Devices (NVD) ] ORBIT, INPUT TIME, POSIION, SAT VELOCITY, GROUND TRACE, RANGE, DIST, PITCH/ROLL, EL/AZ, ACCESS EL/AZ, DATA SOLAR TIME EL/AZ, DIST Line 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 @ES 18 19 20 @SS 21 22 23 24 25 26 27 @ES 28 29 30 No. Node GMT Anomaly Height @ Vel Lat(SAT)Log Slant S-Sat Pitch Roll EL(SAT)AZ Control EL(SUN)AZ Acq. LMT(ES) EL(SUN)AZ S-Sun Nos D H M S deg km meter deg deg km km deg deg deg D H M S deg km 09138 A 28 23 53 51 74.67 699.23 7507.20 27.28 32.39 7732.6 4530.2 80.9 25.5 -30.75 68.02 OBC -32.4 35.2 NVD 29 05 03 30 -3.1 64.9 10361.0 664 09138 A 28 23 55 51 81.96 697.38 7507.08 20.08 33.64 7794.3 4525.9 81.6 26.0 -31.12 75.82 OBC -37.2 39.8 NVD 29 05 05 30 -2.7 65.1 10314.6 665 09138 A 28 23 57 51 89.25 696.05 7506.95 12.88 34.77 7882.8 4640.3 82.2 26.5 -31.66 83.55 OBC -41.4 45.2 NVD 29 05 07 30 -2.2 65.3 10268.2 666 09138 A 28 23 59 51 96.53 695.32 7506.82 5.67 35.84 7997.3 4864.8 82.7 26.9 -32.35 91.19 OBC -45.1 51.5 NVD 29 05 09 30 -1.8 65.5 10221.7 667 09138 A 29 00 01 25 102.27 695.21 Eqa 7506.71 0.00 36.66 8104.7 5109.2 83.1 27.3 -33.01 245.38 OBC -47.4 57.1 NVD 29 05 11 04 -1.5 65.7 10185.0 668 09138 D 29 00 01 51 103.82 695.25 7506.69 -1.54 36.44 8136.2 5225.1 83.0 27.2 -33.20 98.72 OBC -48.3 58.5 NVD 29 05 11 30 -1.4 65.7 10175.1 669 09138 D 29 00 03 51 111.11 695.85 7506.56 -8.75 35.39 8297.5 5797.7 82.5 26.7 -34.19 106.13 OBC -52.2 65.9 NVD 29 05 13 30 -1.0 65.9 10128.4 670 09138 D 29 00 05 51 118.40 697.07 7506.44 -15.95 34.30 8478.7 6408.0 82.0 26.3 -35.32 113.42 OBC -55.1 75.0 NVD 29 05 15 30 -0.6 66.1 10081.7 671 09138 D 29 00 07 51 125.68 698.87 7506.33 -23.15 33.13 8677.0 7045.0 81.3 25.8 -36.56 120.58 OBC -57.0 85.6 NVD 29 05 17 30 -0.1 66.3 10034.9 672 09138 D 29 00 09 51 132.97 701.11 7506.23 -30.34 31.83 8889.2 7700.9 80.6 25.2 -37.90 127.63 OBC -57.5 97.2 NVD 29 05 19 30 0.3 66.5 9988.0 673 09138 D 29 00 11 51 140.26 703.67 7506.14 -37.51 30.32 9112.2 8369.9 79.6 24.6 -39.33 134.57 OBC -56.7 108.9 NVD 29 05 21 30 0.7 66.7 9941.0 674 09138 D 29 00 13 51 147.54 706.39 7506.07 -44.66 28.48 9342.7 9047.3 78.4 24.0 -40.83 141.43 OBC -54.7 120.0 NVD 29 05 23 30 1.1 66.9 9894.0 675 09138 D 29 00 15 51 154.83 709.09 7506.00 -51.77 26.13 9577.3 9729.5 76.8 23.1 -42.39 148.23 OBC -51.6 130.1 NVD 29 05 25 30 1.5 67.1 9846.9 676 09138 D 29 00 17 51 162.12 711.61 7505.95 -58.82 22.90 9812.7 10413.0 74.4 22.1 -43.99 155.00 OBC -47.7 139.5 NVD 29 05 27 30 2.0 67.3 9799.8 677 09138 D 29 00 19 51 169.40 713.78 7505.92 -65.75 18.02 10045.7 11094.7 70.6 20.7 -45.60 161.77 OBC -43.3 149.2 NVD 29 05 29 30 2.4 67.5 9752.6 678 09138 D 29 00 21 51 176.69 715.47 7505.91 -72.40 9.65 10273.3 11771.1 63.9 18.7 -47.22 168.56 OBC -38.4 161.2 NVD 29 05 31 30 2.8 67.7 9705.3 679 09138 D 29 00 22 45 180.00 716.04 Apo 7505.90 -75.24 3.52 10374.1 12075.7 59.2 17.5 -47.95 194.95 OBC -36.1 168.6 NVD 29 05 32 24 3.0 67.8 9683.8 680 09138 D 29 00 23 51 183.98 716.56 7505.91 -78.32 352.47 10492.5 12438.5 -51.0 15.8 -48.82 175.43 OBC -33.3 181.0 NVD 29 05 33 30 3.2 67.9 9657.9 681 09138 D 29 00 25 51 191.26 716.98 7505.92 -81.73 314.06 10700.5 13092.0 -27.2 12.4 -50.38 182.39 OBC -27.9 221.3 NVD 29 05 35 30 3.7 68.1 9610.5 682 09138 D 29 00 27 51 198.55 716.71 7505.96 -79.72 269.28 10894.6 13725.6 -5.4 11.0 -51.89 189.50 OBC -22.4 267.2 NVD 29 05 37 30 4.1 68.3 9563.1 683 09138 D 29 00 29 51 205.83 715.76 7506.01 -74.24 247.38 11072.5 14331.0 4.6 11.0 -53.30 196.78 OBC -16.9 289.8 NVD 29 05 39 30 4.5 68.4 9515.5 684 09138 D 29 00 31 51 213.12 714.18 7506.07 -67.72 237.27 11231.7 14897.0 9.2 11.1 -54.61 204.27 OBC -11.3 300.0 NVD 29 05 41 30 4.9 68.6 9467.9 685 09138 D 29 00 33 51 220.41 712.09 7506.15 -60.85 231.65 11370.1 15407.7 11.8 11.2 -55.78 211.97 OBC -5.7 305.3 NVD 29 05 43 30 5.4 68.8 9420.3 686 09138 D 29 00 35 51 227.69 709.61 7506.24 -53.83 228.05 11485.9 15842.0 13.5 11.3 -56.79 219.91 OBC -0.2 308.2 NVD 29 05 45 30 5.8 69.0 9372.6 687 09138 D 29 00 37 51 234.98 706.90 7506.34 -46.73 225.49 11577.3 16173.2 14.7 11.4 -57.60 228.07 OBC 5.3 309.6 VBC 29 05 47 30 6.2 69.2 9324.8 688 09138 D 29 00 39 51 242.27 704.13 7506.45 -39.59 223.53 11642.7 16372.7 15.7 11.4 -58.19 236.42 OBC 10.7 309.9 VBC 29 05 49 30 6.7 69.3 9277.0 689 09138 D 29 00 41 51 249.56 701.48 7506.57 -32.42 221.94 11680.8 16418.3 16.4 11.5 -58.55 244.90 OBC 15.9 309.4 VBC 29 05 51 30 7.1 69.5 9229.1 690 09138 D 29 00 43 51 256.84 699.10 7506.70 -25.24 220.58 11690.5 16304.4 17.1 11.5 -58.64 253.46 OBC 21.0 308.1 VBC 29 05 53 30 7.5 69.7 9181.2 691 09138 D 29 00 45 51 264.13 697.15 7506.83 -18.04 219.38 11670.8 16044.6 17.7 11.6 -58.46 262.00 OBC 25.9 306.0 VBC 29 05 55 30 8.0 69.9 9133.2 692 09138 D 29 00 47 51 271.42 695.73 7506.96 -10.84 218.27 11621.0 15665.2 18.2 11.6 -58.00 270.45 OBC 30.5 303.2 VBC 29 05 57 30 8.4 70.0 9085.1 693 09138 D 29 00 49 51 278.71 694.94 7507.09 -3.63 217.22 11540.7 15194.7 18.8 11.6 -57.28 278.72 OBC 34.7 299.5 VBC 29 05 59 30 8.8 70.2 9037.0 694 09138 D 29 00 50 51 282.37 694.80 Eqa 7507.15 -0.00 216.69 11488.7 14931.5 19.0 11.6 -56.82 65.35 OBC 36.6 297.3 VBC 29 06 00 30 9.0 70.3 9012.8 695 09138 A 29 00 51 51 286.00 694.82 7507.21 3.58 217.21 11429.6 14750.4 18.8 11.6 -56.31 286.76 OBC 37.5 294.6 VBC 29 06 01 30 9.2 70.4 8988.9 696 09138 A 29 00 53 51 293.28 695.37 7507.34 10.79 218.27 11287.7 14333.0 18.2 11.6 -55.09 294.51 OBC 38.8 289.1 VBC 29 06 03 30 9.7 70.6 8940.7 697 09138 A 29 00 55 51 300.57 696.55 7507.45 18.00 219.38 11115.3 13857.9 17.7 11.6 -53.67 301.97 OBC 39.3 283.5 VBC 29 06 05 30 10.1 70.7 8892.4 698 09138 A 29 00 57 51 307.86 698.28 7507.56 25.19 220.58 10912.9 13338.6 17.1 11.5 -52.04 309.12 OBC 39.1 278.1 VBC 29 06 07 30 10.5 70.9 8844.1 699 09138 A 29 00 59 51 315.15 700.44 7507.66 32.38 221.94 10681.4 12785.9 16.4 11.5 -50.25 316.00 OBC 38.2 273.2 VBC 29 06 09 30 11.0 71.1 8795.8 700 09138 A 29 01 01 51 322.44 702.90 7507.75 39.55 223.53 10421.8 12208.6 15.7 11.4 -48.32 322.62 OBC 36.6 268.9 VBC 29 06 11 30 11.4 71.2 8747.4 701 09138 A 29 01 03 51 329.73 705.50 7507.82 46.70 225.50 10135.8 11613.7 14.7 11.4 -46.25 329.02 OBC 34.5 265.5 VBC 29 06 13 30 11.9 71.4 8698.9 702 09138 A 29 01 05 51 337.02 708.06 7507.88 53.80 228.06 9825.2 11006.7 13.5 11.3 -44.09 335.26 OBC 31.8 263.4 VBC 29 06 15 30 12.3 71.6 8650.4 703 09138 A 29 01 07 51 344.31 710.41 7507.92 60.82 231.66 9492.3 10392.8 11.8 11.2 -41.84 341.39 OBC 28.8 262.9 VBC 29 06 17 30 12.7 71.7 8601.9 704 09138 A 29 01 09 51 351.60 712.41 7507.95 67.70 237.27 9140.0 9776.2 9.2 11.1 -39.53 347.46 OBC 25.4 265.1 VBC 29 06 19 30 13.2 71.9 8553.3 705 09138 A 29 01 11 51 358.89 713.91 7507.96 74.22 247.36 8771.7 9161.3 4.6 11.0 -37.17 353.53 OBC 21.8 272.3 VBC 29 06 21 30 13.6 72.1 8504.7 706 09139 A 29 01 12 09 360.00 714.09 Pri 7507.96 75.15 249.63 8714.6 9068.2 3.5 11.0 -36.81 2.01 OBC 21.2 274.2 VBC 29 06 21 48 13.7 72.1 8497.3 707 09138 A 29 01 13 51 6.18 714.83 7507.95 79.71 269.22 8391.5 8552.4 -5.4 11.0 -34.79 359.66 OBC 18.0 291.8 VBC 29 06 23 30 14.0 72.2 8456.0 708

Page 307: ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM …myreaders.info/00_Orbital__Mechanics__-__Model_____Simulation... · ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM-MSS)

www.m

yrea

ders

.inf

o

OM-MSS Page 307 SATELLITE PASS - GROUND TRACE [acronym - Line Of Sight (LOS), On Board Computerr (OBC), Visible Band Camera (VBC), Night Vision Devices (NVD) ] ORBIT, INPUT TIME, POSIION, SAT VELOCITY, GROUND TRACE, RANGE, DIST, PITCH/ROLL, EL/AZ, ACCESS EL/AZ, DATA SOLAR TIME EL/AZ, DIST Line 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 @ES 18 19 20 @SS 21 22 23 24 25 26 27 @ES 28 29 30 No. Node GMT Anomaly Height @ Vel Lat(SAT)Log Slant S-Sat Pitch Roll EL(SAT)AZ Control EL(SUN)AZ Acq. LMT(ES) EL(SUN)AZ S-Sun Nos D H M S deg km meter deg deg km km deg deg deg D H M S deg km 09139 A 29 01 15 51 13.47 715.09 7507.93 81.74 313.99 8004.2 7954.3 -27.2 12.4 -32.41 5.94 OBC 14.1 334.8 VBC 29 06 25 30 14.5 72.4 8407.3 709 09139 A 29 01 17 51 20.76 714.69 7507.89 78.33 352.46 7615.7 7372.4 -51.0 15.8 -30.05 12.42 OBC 10.2 11.9 VBC 29 06 27 30 14.9 72.6 8358.5 710 09139 A 29 01 19 51 28.05 713.65 7507.84 72.41 9.68 7232.8 6813.6 64.0 18.7 -27.75 19.19 OBC 6.2 28.2 VBC 29 06 29 30 15.4 72.7 8309.7 711 09139 A 29 01 21 51 35.34 712.04 7507.77 65.75 18.06 6863.8 6286.0 70.6 20.7 -25.54 26.32 OBC 2.3 36.0 NVD 29 06 31 30 15.8 72.9 8260.9 712 09139 A 29 01 23 51 42.63 709.98 7507.69 58.82 22.94 6518.2 5800.1 74.4 22.1 -23.48 33.90 OBC -1.6 40.8 NVD 29 06 33 30 16.2 73.0 8212.0 713 09139 A 29 01 25 51 49.92 707.59 7507.59 51.77 26.18 6206.9 5368.7 76.8 23.2 -21.61 41.98 OBC -5.4 44.2 NVD 29 06 35 30 16.7 73.2 8163.0 714 09139 A 29 01 27 51 57.21 705.05 7507.49 44.66 28.53 5941.7 5007.2 78.5 24.0 -20.01 50.59 OBC -9.0 47.2 NVD 29 06 37 30 17.1 73.3 8114.1 715 09139 A 29 01 29 51 64.50 702.51 7507.37 37.50 30.37 5734.8 4732.7 79.7 24.7 -18.75 59.71 OBC -12.4 49.9 NVD 29 06 39 30 17.5 73.5 8065.0 716 09139 A 29 01 31 51 71.79 700.14 7507.25 30.33 31.89 5597.7 4561.6 80.6 25.3 -17.91 69.25 OBC -15.6 52.7 NVD 29 06 41 30 18.0 73.7 8016.0 717 09139 A 29 01 33 51 79.08 698.11 7507.13 23.14 33.19 5539.4 4506.2 81.4 25.8 -17.55 79.05 OBC -18.5 55.6 NVD 29 06 43 30 18.4 73.8 7966.9 718 09139 A 29 01 35 51 86.37 696.55 7507.00 15.94 34.37 5564.9 4570.7 82.0 26.3 -17.71 88.91 OBC -21.1 58.7 NVD 29 06 45 30 18.9 74.0 7917.8 719 09139 A 29 01 37 51 93.65 695.56 7506.87 8.73 35.46 5674.2 4750.1 82.5 26.8 -18.38 98.57 OBC -23.3 61.9 NVD 29 06 47 30 19.3 74.1 7868.6 720 09139 A 29 01 39 51 100.94 695.20 7506.74 1.52 36.51 5862.5 5031.8 83.0 27.2 -19.52 107.85 OBC -25.1 65.2 NVD 29 06 49 30 19.8 74.3 7819.4 721 09139 A 29 01 40 16 102.48 695.21 Eqa 7506.71 0.00 36.73 5911.6 5102.9 83.1 27.3 -19.82 245.33 OBC -25.5 66.0 NVD 29 06 49 55 19.8 74.3 7809.0 722 09139 D 29 01 41 51 108.23 695.52 7506.61 -5.68 35.91 6121.1 5543.2 82.7 27.0 -21.09 116.59 OBC -28.1 68.5 NVD 29 06 51 30 20.2 74.4 7770.1 723 09139 D 29 01 43 51 115.52 696.48 7506.49 -12.89 34.84 6439.0 6139.5 82.2 26.5 -22.99 124.73 OBC -31.0 72.4 NVD 29 06 53 30 20.6 74.6 7720.9 724 09139 D 29 01 45 51 122.80 698.05 7506.38 -20.09 33.71 6804.4 6766.6 81.6 26.0 -25.18 132.26 OBC -33.5 76.8 NVD 29 06 55 30 21.1 74.7 7671.6 725 09139 D 29 01 47 51 130.09 700.11 7506.27 -27.29 32.47 7205.7 7415.7 80.9 25.5 -27.57 139.22 OBC -35.5 81.9 NVD 29 06 57 30 21.5 74.9 7622.2 726 09139 D 29 01 49 51 137.38 702.56 7506.18 -34.47 31.06 7632.2 8080.2 80.1 24.9 -30.13 145.67 OBC -36.9 87.6 NVD 29 06 59 30 22.0 75.0 7572.8 727 09139 D 29 01 51 51 144.66 705.23 7506.09 -41.63 29.38 8074.4 8754.9 79.0 24.3 -32.82 151.70 OBC -37.8 93.8 NVD 29 07 01 30 22.4 75.2 7523.4 728 09139 D 29 01 53 51 151.95 707.96 7506.03 -48.76 27.28 8523.9 9435.9 77.6 23.5 -35.59 157.37 OBC -38.0 100.6 NVD 29 07 03 30 22.9 75.3 7473.9 729 09139 D 29 01 55 51 159.24 710.58 7505.97 -55.84 24.48 8973.3 10119.7 75.6 22.6 -38.43 162.79 OBC -37.6 108.0 NVD 29 07 05 30 23.3 75.5 7424.5 730 09139 D 29 01 57 51 166.52 712.91 7505.93 -62.83 20.44 9416.4 10803.0 72.5 21.4 -41.32 168.02 OBC -36.7 116.5 NVD 29 07 07 30 23.7 75.6 7374.9 731 09139 D 29 01 59 51 173.81 714.82 7505.91 -69.63 13.91 9847.5 11482.6 67.3 19.7 -44.22 173.14 OBC -35.1 127.1 NVD 29 07 09 30 24.2 75.8 7325.4 732 09139 D 29 02 01 33 180.00 716.01 Apo 7505.90 -75.06 4.05 10200.7 12054.4 59.6 17.6 -46.70 195.07 OBC -33.5 140.1 NVD 29 07 11 12 24.6 75.9 7283.3 733 09139 D 29 02 01 51 181.09 716.17 7505.91 -75.96 1.55 10261.6 12154.8 57.7 17.2 -47.14 178.25 OBC -33.1 143.2 NVD 29 07 11 30 24.6 75.9 7275.8 734 09139 D 29 02 03 51 188.38 716.89 7505.92 -80.82 333.72 10654.6 12815.4 -38.5 13.7 -50.03 183.42 OBC -30.7 174.2 NVD 29 07 13 30 25.1 76.1 7226.2 735 09139 D 29 02 05 51 195.67 716.91 7505.94 -81.23 285.76 11022.5 13458.9 -13.0 11.3 -52.90 188.75 OBC -28.0 224.9 NVD 29 07 15 30 25.5 76.2 7176.5 736 09139 D 29 02 07 51 202.95 716.24 7505.99 -76.78 254.56 11361.9 14078.1 1.3 11.0 -55.71 194.35 OBC -24.9 258.3 NVD 29 07 17 30 26.0 76.3 7126.9 737 09139 D 29 02 09 51 210.24 714.92 7506.04 -70.55 240.83 11669.8 14663.2 7.5 11.1 -58.44 200.35 OBC -21.6 273.8 NVD 29 07 19 30 26.4 76.5 7077.1 738 09139 D 29 02 11 51 217.53 713.03 7506.12 -63.79 233.77 11943.5 15200.6 10.8 11.2 -61.05 206.90 OBC -18.1 282.2 NVD 29 07 21 30 26.9 76.6 7027.4 739 09139 D 29 02 13 51 224.81 710.70 7506.20 -56.82 229.48 12180.7 15671.3 12.8 11.3 -63.48 214.16 OBC -14.6 287.3 NVD 29 07 23 30 27.3 76.8 6977.6 740 09139 D 29 02 15 51 232.10 708.07 7506.30 -49.75 226.55 12379.2 16050.9 14.2 11.3 -65.69 222.31 OBC -10.9 290.7 NVD 29 07 25 30 27.8 76.9 6927.8 741 09139 D 29 02 17 51 239.39 705.30 7506.41 -42.63 224.37 12537.4 16310.8 15.3 11.4 -67.60 231.53 OBC -7.2 292.9 NVD 29 07 27 30 28.2 77.1 6878.0 742 09139 D 29 02 19 51 246.67 702.58 7506.53 -35.47 222.65 12653.5 16424.6 16.1 11.4 -69.10 241.89 OBC -3.4 294.2 NVD 29 07 29 30 28.7 77.2 6828.2 743 09139 D 29 02 21 51 253.96 700.07 7506.65 -28.29 221.20 12726.4 16378.4 16.8 11.5 -70.09 253.29 OBC 0.3 294.9 NVD 29 07 31 30 29.1 77.3 6778.3 744 09139 D 29 02 23 51 261.25 697.91 7506.78 -21.10 219.94 12755.1 16178.1 17.4 11.5 -70.50 265.37 OBC 4.0 295.0 NVD 29 07 33 30 29.6 77.5 6728.4 745 09139 D 29 02 25 51 268.54 696.26 7506.91 -13.90 218.80 12738.9 15845.9 18.0 11.6 -70.27 277.55 OBC 7.5 294.5 VBC 29 07 35 30 30.0 77.6 6678.4 746 09139 D 29 02 27 51 275.83 695.20 7507.04 -6.69 217.73 12677.1 15410.5 18.5 11.6 -69.42 289.18 OBC 11.0 293.6 VBC 29 07 37 30 30.5 77.8 6628.5 747 09139 D 29 02 29 42 282.59 694.79 Eqa 7507.16 -0.00 216.76 12578.9 14937.8 19.0 11.6 -68.13 65.30 OBC 14.1 292.3 VBC 29 07 39 21 30.9 77.9 6582.1 748 09139 A 29 02 29 51 283.11 694.79 7507.16 0.52 216.84 12569.7 14912.6 18.9 11.6 -68.01 299.81 OBC 14.2 292.2 VBC 29 07 39 30 30.9 77.9 6578.5 749 09139 A 29 02 31 51 290.40 695.05 7507.29 7.73 217.88 12416.5 14523.9 18.4 11.6 -66.14 309.23 OBC 15.3 290.4 VBC 29 07 41 30 31.4 78.0 6528.5 750 09139 A 29 02 33 51 297.69 695.97 7507.41 14.94 218.97 12217.9 14070.9 17.9 11.6 -63.90 317.45 OBC 16.3 288.6 VBC 29 07 43 30 31.8 78.2 6478.4 751 09139 A 29 02 35 51 304.98 697.48 7507.52 22.14 220.13 11974.3 13568.3 17.3 11.5 -61.37 324.61 OBC 17.0 286.9 VBC 29 07 45 30 32.3 78.3 6428.4 752

Page 308: ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM …myreaders.info/00_Orbital__Mechanics__-__Model_____Simulation... · ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM-MSS)

www.m

yrea

ders

.inf

o

OM-MSS Page 308 SATELLITE PASS - GROUND TRACE [acronym - Line Of Sight (LOS), On Board Computerr (OBC), Visible Band Camera (VBC), Night Vision Devices (NVD) ] ORBIT, INPUT TIME, POSIION, SAT VELOCITY, GROUND TRACE, RANGE, DIST, PITCH/ROLL, EL/AZ, ACCESS EL/AZ, DATA SOLAR TIME EL/AZ, DIST Line 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 @ES 18 19 20 @SS 21 22 23 24 25 26 27 @ES 28 29 30 No. Node GMT Anomaly Height @ Vel Lat(SAT)Log Slant S-Sat Pitch Roll EL(SAT)AZ Control EL(SUN)AZ Acq. LMT(ES) EL(SUN)AZ S-Sun Nos D H M S deg km meter deg deg km km deg deg deg D H M S deg km 09139 A 29 02 37 51 312.27 699.47 7507.62 29.33 221.41 11686.7 13028.1 16.7 11.5 -58.61 330.90 OBC 17.4 285.4 VBC 29 07 47 30 32.7 78.5 6378.3 753 09139 A 29 02 39 51 319.56 701.83 7507.71 36.51 222.89 11355.9 12459.7 16.0 11.4 -55.68 336.48 OBC 17.7 284.2 VBC 29 07 49 30 33.2 78.6 6328.2 754 09139 A 29 02 41 51 326.85 704.39 7507.79 43.67 224.67 10983.4 11870.9 15.1 11.4 -52.61 341.50 OBC 17.7 283.3 VBC 29 07 51 30 33.6 78.7 6278.0 755 09139 A 29 02 43 51 334.14 706.98 7507.86 50.79 226.94 10570.8 11267.9 14.0 11.3 -49.42 346.11 OBC 17.4 283.0 VBC 29 07 53 30 34.1 78.9 6227.8 756 09139 A 29 02 45 51 341.43 709.45 7507.91 57.85 230.03 10120.1 10655.8 12.6 11.3 -46.14 350.41 OBC 17.0 283.6 VBC 29 07 55 30 34.5 79.0 6177.7 757 09139 A 29 02 47 51 348.72 711.61 7507.94 64.80 234.61 9633.4 10039.2 10.4 11.2 -42.78 354.50 OBC 16.4 285.9 VBC 29 07 57 30 35.0 79.2 6127.4 758 09139 A 29 02 49 51 356.01 713.34 7507.96 71.52 242.31 9113.7 9422.5 6.9 11.0 -39.35 358.47 OBC 15.7 291.4 VBC 29 07 59 30 35.4 79.3 6077.2 759 09140 A 29 02 50 56 360.00 714.06 Pri 7507.96 74.98 249.24 8816.2 9086.4 3.7 11.0 -37.45 2.13 OBC 15.2 297.2 VBC 29 08 00 35 35.7 79.4 6049.7 760 09139 A 29 02 51 51 3.30 714.52 7507.96 77.60 257.71 8563.9 8809.9 -0.1 11.0 -35.86 2.41 OBC 14.8 304.8 VBC 29 08 01 30 35.9 79.4 6027.0 761 09140 A 29 02 53 51 10.59 715.06 7507.94 81.55 292.68 7987.9 8206.0 -16.3 11.5 -32.31 6.42 OBC 13.8 337.8 VBC 29 08 03 30 36.3 79.6 5976.7 762 09140 A 29 02 55 51 17.88 714.94 7507.91 80.28 339.50 7390.2 7615.9 -42.2 14.3 -28.69 10.59 OBC 12.7 22.9 VBC 29 08 05 30 36.8 79.7 5926.4 763 09140 A 29 02 57 51 25.17 714.17 7507.86 75.07 4.07 6776.4 7045.7 59.6 17.6 -25.02 15.05 OBC 11.5 45.9 VBC 29 08 07 30 37.2 79.8 5876.0 764 09140 A 29 02 59 51 32.46 712.79 7507.80 68.63 15.18 6153.7 6503.0 68.4 20.0 -21.29 19.97 OBC 10.2 55.6 VBC 29 08 09 30 37.7 80.0 5825.7 765 09140 A 29 03 01 51 39.75 710.90 7507.72 61.79 21.21 5531.5 5997.2 73.1 21.6 -17.51 25.57 OBC 8.9 60.3 VBC 29 08 11 30 38.1 80.1 5775.3 766 09140 A 29 03 03 51 47.04 708.64 7507.63 54.78 25.01 4922.9 5540.1 76.0 22.8 -13.69 32.16 OBC 7.6 62.9 VBC 29 08 13 30 38.6 80.2 5725.0 767 09140 A 29 03 05 51 54.33 706.14 7507.53 47.68 27.68 4346.6 5146.1 77.9 23.7 -9.89 40.15 OBC 6.2 64.5 VBC 29 08 15 30 39.0 80.4 5674.5 768 09140 A 29 03 07 51 61.62 703.58 7507.42 40.55 29.71 3829.8 4831.9 79.3 24.4 -6.22 50.10 OBC 4.8 65.6 NVD 29 08 17 30 39.5 80.5 5624.1 769 09140 A 29 03 09 51 68.91 701.12 7507.30 33.38 31.34 3411.5 4614.4 80.3 25.0 -2.98 62.54 LOS 3.5 66.3 NVD 29 08 19 30 39.9 80.6 5573.7 770 09140 A 29 03 11 51 76.19 698.93 7507.18 26.19 32.73 3140.9 4508.4 81.1 25.6 -0.69 77.61 LOS 2.1 66.9 NVD 29 08 21 30 40.4 80.8 5523.2 771 09140 A 29 03 13 51 83.48 697.15 7507.05 19.00 33.95 3064.1 4521.9 81.8 26.1 -0.01 94.38 LOS 0.8 67.4 NVD 29 08 23 30 40.8 80.9 5472.7 772 09140 A 29 03 15 51 90.77 695.91 7506.92 11.79 35.07 3197.9 4653.7 82.4 26.6 -1.18 110.86 LOS -0.5 67.8 NVD 29 08 25 30 41.3 81.0 5422.2 773 09140 A 29 03 17 51 98.06 695.28 7506.79 4.58 36.13 3518.0 4894.2 82.9 27.1 -3.82 125.21 LOS -1.8 68.2 NVD 29 08 27 30 41.7 81.2 5371.7 774 09140 A 29 03 19 07 102.69 695.22 Eqa 7506.71 0.00 36.79 3796.9 5096.6 83.1 27.4 -5.96 245.28 OBC -2.6 68.4 NVD 29 08 28 46 42.0 81.3 5339.6 775 09140 D 29 03 19 51 105.35 695.31 7506.66 -2.62 36.42 3976.7 5296.2 83.0 27.2 -7.28 136.82 OBC -3.7 68.5 NVD 29 08 29 30 42.2 81.3 5321.2 776 09140 D 29 03 21 51 112.63 696.00 7506.54 -9.83 35.37 4526.9 5876.1 82.5 26.7 -11.09 145.95 OBC -6.8 69.2 NVD 29 08 31 30 42.7 81.4 5270.6 777 09140 D 29 03 23 51 119.92 697.32 7506.42 -17.04 34.27 5132.8 6491.8 81.9 26.2 -15.01 153.19 OBC -9.9 70.3 NVD 29 08 33 30 43.1 81.6 5220.0 778 09140 D 29 03 25 51 127.21 699.18 7506.31 -24.23 33.08 5769.3 7133.0 81.3 25.7 -18.95 159.03 OBC -12.8 71.9 NVD 29 08 35 30 43.6 81.7 5169.4 779 09140 D 29 03 27 51 134.50 701.48 7506.21 -31.42 31.75 6419.2 7792.0 80.5 25.2 -22.87 163.88 OBC -15.6 73.9 NVD 29 08 37 30 44.0 81.9 5118.8 780 09140 D 29 03 29 51 141.78 704.08 7506.13 -38.59 30.20 7070.0 8463.3 79.6 24.6 -26.76 168.00 OBC -18.3 76.6 NVD 29 08 39 30 44.5 82.0 5068.2 781 09140 D 29 03 31 51 149.07 706.80 7506.05 -45.74 28.30 7712.7 9142.5 78.3 23.9 -30.62 171.59 OBC -20.8 79.9 NVD 29 08 41 30 44.9 82.1 5017.5 782 09140 D 29 03 33 51 156.36 709.49 7505.99 -52.84 25.85 8339.9 9825.9 76.6 23.0 -34.45 174.80 OBC -23.0 84.2 NVD 29 08 43 30 45.4 82.3 4966.9 783 09140 D 29 03 35 51 163.64 711.97 7505.95 -59.88 22.43 8946.1 10510.2 74.0 22.0 -38.26 177.75 OBC -25.0 89.7 NVD 29 08 45 30 45.8 82.4 4916.2 784 09140 D 29 03 37 51 170.93 714.07 7505.92 -66.77 17.19 9526.2 11192.2 69.9 20.5 -42.05 180.50 OBC -26.7 97.4 NVD 29 08 47 30 46.3 82.5 4865.5 785 09140 D 29 03 39 51 178.21 715.67 7505.91 -73.36 7.98 10076.1 11868.5 62.6 18.4 -45.81 183.15 OBC -28.1 109.2 NVD 29 08 49 30 46.7 82.7 4814.8 786 09140 D 29 03 40 20 180.00 715.98 Apo 7505.90 -74.89 4.57 10205.9 12033.0 60.0 17.7 -46.74 195.19 OBC -28.4 113.3 NVD 29 08 49 59 46.9 82.7 4802.4 787 09140 D 29 03 41 51 185.50 716.67 7505.91 -79.08 348.52 10592.2 12535.2 -48.2 15.3 -49.56 185.76 OBC -29.1 131.6 NVD 29 08 51 30 47.2 82.8 4764.1 788 09140 D 29 03 43 51 192.79 716.98 7505.93 -81.80 306.54 11071.3 13187.3 -23.3 12.0 -53.29 188.40 OBC -29.8 176.6 NVD 29 08 53 30 47.7 82.9 4713.3 789 09140 D 29 03 45 51 200.07 716.60 7505.97 -79.03 264.80 11510.4 13818.5 -3.3 11.0 -57.00 191.16 OBC -30.0 221.5 NVD 29 08 55 30 48.1 83.1 4662.6 790 09140 D 29 03 47 51 207.36 715.55 7506.02 -73.30 245.51 11907.2 14420.3 5.4 11.0 -60.69 194.16 OBC -29.9 243.9 NVD 29 08 57 30 48.6 83.2 4611.8 791 09140 D 29 03 49 51 214.65 713.89 7506.09 -66.70 236.36 12259.1 14980.7 9.6 11.1 -64.33 197.54 OBC -29.4 256.2 NVD 29 08 59 30 49.0 83.3 4561.0 792 09140 D 29 03 51 51 221.93 711.73 7506.17 -59.80 231.15 12564.4 15483.3 12.0 11.2 -67.93 201.56 OBC -28.5 264.3 NVD 29 09 01 30 49.5 83.5 4510.2 793 09140 D 29 03 53 51 229.22 709.21 7506.26 -52.77 227.75 12821.2 15906.1 13.7 11.3 -71.46 206.62 OBC -27.2 270.5 NVD 29 09 03 30 49.9 83.6 4459.4 794 09140 D 29 03 55 51 236.51 706.48 7506.37 -45.66 225.30 13028.1 16221.5 14.8 11.4 -74.85 213.45 OBC -25.5 275.5 NVD 29 09 05 30 50.4 83.7 4408.6 795 09140 D 29 03 57 51 243.79 703.72 7506.48 -38.51 223.41 13183.9 16401.0 15.7 11.4 -77.99 223.44 OBC -23.5 279.6 NVD 29 09 07 30 50.9 83.9 4357.8 796

Page 309: ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM …myreaders.info/00_Orbital__Mechanics__-__Model_____Simulation... · ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM-MSS)

www.m

yrea

ders

.inf

o

OM-MSS Page 309 SATELLITE PASS - GROUND TRACE [acronym - Line Of Sight (LOS), On Board Computerr (OBC), Visible Band Camera (VBC), Night Vision Devices (NVD) ] ORBIT, INPUT TIME, POSIION, SAT VELOCITY, GROUND TRACE, RANGE, DIST, PITCH/ROLL, EL/AZ, ACCESS EL/AZ, DATA SOLAR TIME EL/AZ, DIST Line 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 @ES 18 19 20 @SS 21 22 23 24 25 26 27 @ES 28 29 30 No. Node GMT Anomaly Height @ Vel Lat(SAT)Log Slant S-Sat Pitch Roll EL(SAT)AZ Control EL(SUN)AZ Acq. LMT(ES) EL(SUN)AZ S-Sun Nos D H M S deg km meter deg deg km km deg deg deg D H M S deg km 09140 D 29 03 59 51 251.08 701.09 7506.60 -31.34 221.86 13287.6 16424.0 16.5 11.5 -80.64 239.10 OBC -21.3 283.0 NVD 29 09 09 30 51.3 84.0 4306.9 797 09140 D 29 04 01 51 258.37 698.77 7506.72 -24.15 220.53 13338.3 16287.6 17.1 11.5 -82.26 263.30 OBC -18.8 285.9 NVD 29 09 11 30 51.8 84.2 4256.0 798 09140 D 29 04 03 51 265.66 696.89 7506.85 -16.96 219.34 13335.8 16008.1 17.7 11.6 -82.18 292.45 OBC -16.1 288.2 NVD 29 09 13 30 52.2 84.3 4205.2 799 09140 D 29 04 05 51 272.94 695.57 7506.98 -9.75 218.25 13279.6 15612.9 18.2 11.6 -80.42 315.83 OBC -13.1 290.1 NVD 29 09 15 30 52.7 84.4 4154.3 800 09140 D 29 04 07 51 280.23 694.88 7507.11 -2.54 217.19 13169.9 15130.4 18.8 11.6 -77.69 330.72 OBC -10.1 291.5 NVD 29 09 17 30 53.1 84.6 4103.4 801 09140 D 29 04 08 33 282.80 694.79 Eqa 7507.16 -0.00 216.83 13118.5 14944.1 18.9 11.6 -76.60 65.25 OBC -8.9 291.9 NVD 29 09 18 12 53.3 84.6 4085.4 802 09140 A 29 04 09 51 287.52 694.86 7507.24 4.67 217.50 13006.9 14703.7 18.6 11.6 -74.48 340.12 OBC -8.1 292.6 NVD 29 09 19 30 53.6 84.7 4052.5 803 09140 A 29 04 11 51 294.81 695.50 7507.36 11.88 218.57 12791.0 14275.5 18.1 11.6 -71.02 346.44 OBC -6.7 293.8 NVD 29 09 21 30 54.1 84.8 4001.5 804 09140 A 29 04 13 51 302.10 696.77 7507.48 19.08 219.69 12522.9 13791.8 17.5 11.5 -67.43 350.97 OBC -5.1 295.0 NVD 29 09 23 30 54.5 85.0 3950.6 805 09140 A 29 04 15 51 309.39 698.57 7507.58 26.28 220.91 12203.7 13265.7 16.9 11.5 -63.75 354.41 OBC -3.5 296.2 NVD 29 09 25 30 55.0 85.1 3899.7 806 09140 A 29 04 17 51 316.68 700.79 7507.68 33.46 222.30 11834.5 12707.6 16.3 11.5 -60.00 357.13 OBC -1.7 297.4 NVD 29 09 27 30 55.4 85.3 3848.7 807 09140 A 29 04 19 51 323.97 703.29 7507.76 40.63 223.94 11416.8 12126.1 15.5 11.4 -56.20 359.38 OBC 0.2 298.8 NVD 29 09 29 30 55.9 85.4 3797.7 808 09140 A 29 04 21 51 331.26 705.89 7507.83 47.77 225.97 10952.1 11527.8 14.5 11.4 -52.36 1.28 OBC 2.1 300.4 NVD 29 09 31 30 56.3 85.6 3746.8 809 09140 A 29 04 23 51 338.55 708.43 7507.89 54.86 228.65 10442.3 10918.4 13.2 11.3 -48.47 2.92 OBC 4.2 302.5 NVD 29 09 33 30 56.8 85.7 3695.8 810 Next Next Section - 7.3 Satellite Pass for Earth Stn - Prediction of Ground Trace for Satellite CARTOSAT 2B

Page 310: ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM …myreaders.info/00_Orbital__Mechanics__-__Model_____Simulation... · ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM-MSS)

www.m

yrea

ders

.inf

o

OM-MSS Page 310 OM-MSS Section - 7.3 -----------------------------------------------------------------------------------------------------59 Satellite CARTOSAT 2B : SAT PASS FOR EARTH STN - Prediction of Ground Trace Coordinates, Look Angles & more at Instantaneous Time. (c) CARTOSAT 2B 'Two-Line Elements'(TLE) downloaded on May 28, 2014, 18:13 hrs IST, Satellite launched on July 12, 2010 1 36795U 10035A 14148.12955979 .00000641 00000-0 94319-4 0 3461 2 36795 97.9448 207.1202 0016257 44.4835 315.7690 14.78679483209252 From this TLE, the data relevant for the purpose are manually interpreted & extracted : Satellite number 36795, CARTOSAT 2B , EPOCH_year = 2014 EPOCH_days_decimal_of_year = 147.1295597900 EPOCH_inclination_deg = 97.9448000000 EPOCH_right_asc_acnd_node_deg = 207.1202000000 EPOCH_eccentricity = 0.0016257000 EPOCH_argument_of_perigee_deg = 44.4835000000 EPOCH_mean_anomaly_deg = 315.7690000000 EPOCH_mean_motion_rev_per_day = 14.7867948300 EPOCH_revolution = 20925 EPOCH_node_condition = 1 Earth_stn_latitude_deg = 23.25993 Earth stn longitude_deg = 77.41261 Earth surface height_meter = 494.70000 Earth stn tower_height_meter = 15.00000 Earth stn_height_meter = 509.70000 Earth stn min EL look_angle_deg = -5.00000 Input UT Year and Days decimal of year : Convert into UT YY MM DD hh min sec & Julian day Start Time UT year = 2014, month = 5, day = 28, hr = 3, min = 6, sec = 33.96586, and julian_day = 2456805.6295597898 Sat_motion_direction = Forward Sat_motion_Time_Step_in_sec_pos_or_neg = 120.00000 seconds

Page 311: ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM …myreaders.info/00_Orbital__Mechanics__-__Model_____Simulation... · ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM-MSS)

www.m

yrea

ders

.inf

o

OM-MSS Page 311 SATELLITE PASS - GROUND TRACE [acronym - Line Of Sight (LOS), On Board Computerr (OBC), Visible Band Camera (VBC), Night Vision Devices (NVD) ] ORBIT, INPUT TIME, POSIION, SAT VELOCITY, GROUND TRACE, RANGE, DIST, PITCH/ROLL, EL/AZ, ACCESS EL/AZ, DATA SOLAR TIME EL/AZ, DIST Line 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 @ES 18 19 20 @SS 21 22 23 24 25 26 27 @ES 28 29 30 No. Node GMT Anomaly Height @ Vel Lat(SAT)Log Slant S-Sat Pitch Roll EL(SAT)AZ Control EL(SUN)AZ Acq. LMT(ES) EL(SUN)AZ S-Sun Nos D H M S deg km meter deg deg km km deg deg deg D H M S deg km 20925 A 28 03 06 33 315.64 622.38 7550.16 0.12 207.14 12953.9 14014.7 24.0 12.1 -74.86 321.60 OBC 14.5 292.1 VBC 28 08 16 12 39.2 80.6 5657.4 1 20925 A 28 03 08 33 323.05 621.78 7551.19 7.45 208.17 12776.8 13683.5 23.5 12.1 -71.95 331.23 OBC 15.7 290.2 VBC 28 08 18 12 39.6 80.8 5606.9 2 20925 A 28 03 10 33 330.45 622.00 7552.06 14.78 209.23 12547.0 13296.4 22.9 12.0 -68.73 338.34 OBC 16.7 288.4 VBC 28 08 20 12 40.1 80.9 5556.4 3 20925 A 28 03 12 33 337.87 622.99 7552.75 22.11 210.37 12265.4 12864.0 22.3 12.0 -65.32 343.80 OBC 17.4 286.6 VBC 28 08 22 12 40.5 81.0 5505.9 4 20925 A 28 03 14 33 345.28 624.66 7553.25 29.43 211.64 11932.8 12395.7 21.7 11.9 -61.78 348.14 OBC 17.9 285.0 VBC 28 08 24 12 41.0 81.2 5455.4 5 20925 A 28 03 16 33 352.69 626.87 7553.55 36.73 213.11 11550.6 11900.0 20.9 11.8 -58.15 351.72 OBC 18.1 283.7 VBC 28 08 26 12 41.4 81.3 5404.9 6 20926 A 28 03 18 32 360.00 629.43 Pri 7553.65 43.92 214.85 11126.5 11391.1 20.1 11.8 -54.49 29.91 OBC 18.0 282.7 VBC 28 08 28 11 41.9 81.4 5355.0 7 20925 A 28 03 18 33 0.10 629.46 7553.65 44.02 214.88 11120.3 11383.9 20.1 11.8 -54.44 354.77 OBC 18.0 282.7 VBC 28 08 28 12 41.9 81.4 5354.3 8 20926 A 28 03 20 33 7.51 632.26 7553.55 51.27 217.15 10643.6 10854.0 18.9 11.7 -50.66 357.43 OBC 17.8 282.3 VBC 28 08 30 12 42.4 81.6 5303.7 9 20926 A 28 03 22 33 14.93 635.08 7553.24 58.46 220.27 10122.5 10315.9 17.4 11.6 -46.84 359.82 OBC 17.3 282.9 VBC 28 08 32 12 42.8 81.7 5253.1 10 20926 A 28 03 24 33 22.34 637.76 7552.73 65.53 224.99 9559.2 9774.9 15.1 11.4 -42.95 2.02 OBC 16.7 285.3 VBC 28 08 34 12 43.3 81.9 5202.5 11 20926 A 28 03 26 33 29.75 640.12 7552.04 72.35 233.15 8956.3 9236.4 11.2 11.3 -39.01 4.09 OBC 15.8 291.2 VBC 28 08 36 12 43.7 82.0 5151.9 12 20926 A 28 03 28 33 37.16 642.05 7551.17 78.45 250.21 8316.5 8705.6 3.3 11.0 -34.99 6.10 OBC 14.9 306.2 VBC 28 08 38 12 44.2 82.1 5101.3 13 20926 A 28 03 30 33 44.56 643.46 7550.13 81.99 289.90 7642.9 8188.1 -15.1 11.4 -30.90 8.10 OBC 13.8 343.9 VBC 28 08 40 12 44.6 82.3 5050.6 14 20926 A 28 03 32 33 51.97 644.30 7548.95 79.81 336.17 6938.8 7690.3 -40.4 14.0 -26.71 10.15 OBC 12.5 28.5 VBC 28 08 42 12 45.1 82.4 4999.9 15 20926 A 28 03 34 33 59.37 644.57 7547.64 74.12 357.76 6208.2 7219.2 -55.5 16.7 -22.39 12.35 OBC 11.2 48.5 VBC 28 08 44 12 45.5 82.5 4949.2 16 20926 A 28 03 36 33 66.77 644.31 7546.24 67.44 7.52 5455.5 6783.0 63.1 18.4 -17.87 14.82 OBC 9.9 56.8 VBC 28 08 46 12 46.0 82.7 4898.5 17 20926 A 28 03 38 33 74.17 643.62 7544.75 60.43 12.91 4686.3 6391.0 67.5 19.6 -13.09 17.74 OBC 8.5 60.9 VBC 28 08 48 12 46.4 82.8 4847.8 18 20926 A 28 03 40 33 81.56 642.60 7543.20 53.28 16.36 3908.4 6053.5 70.4 20.4 -7.87 21.46 OBC 7.1 63.3 VBC 28 08 50 12 46.9 82.9 4797.0 19 20926 A 28 03 42 33 88.95 641.40 7541.63 46.07 18.82 3133.8 5781.6 72.4 21.0 -1.93 26.68 LOS 5.6 64.7 VBC 28 08 52 12 47.4 83.1 4746.3 20 20926 A 28 03 44 33 96.34 640.17 7540.05 38.81 20.70 2386.1 5585.7 73.9 21.6 5.28 34.94 LOS 4.2 65.7 NVD 28 08 54 12 47.8 83.2 4695.5 21 20926 A 28 03 46 33 103.72 639.06 7538.49 31.54 22.23 1722.7 5474.7 75.1 22.0 14.63 50.30 LOS 2.7 66.4 NVD 28 08 56 12 48.3 83.4 4644.7 22 20926 A 28 03 48 33 111.11 638.22 7536.99 24.25 23.54 1301.7 5454.1 76.1 22.4 24.34 82.02 LOS 1.3 67.0 NVD 28 08 58 12 48.7 83.5 4593.9 23 20926 A 28 03 50 33 118.48 637.76 7535.55 16.96 24.71 1377.8 5525.0 77.0 22.8 22.26 125.34 LOS -0.1 67.5 NVD 28 09 00 12 49.2 83.6 4543.1 24 20926 A 28 03 52 33 125.86 637.79 7534.22 9.66 25.79 1892.2 5683.4 77.8 23.1 11.94 151.48 LOS -1.4 68.0 NVD 28 09 02 12 49.6 83.8 4492.3 25 20926 A 28 03 54 33 133.23 638.36 7533.00 2.37 26.82 2591.4 5921.8 78.6 23.5 3.25 164.08 LOS -2.7 68.4 NVD 28 09 04 12 50.1 83.9 4441.4 26 20926 A 28 03 55 12 135.63 638.67 Eqa 7532.63 0.00 27.15 2835.0 6014.6 78.8 23.6 0.88 251.82 LOS -3.1 68.5 NVD 28 09 04 51 50.2 84.0 4425.0 27 20926 D 28 03 56 33 140.61 639.49 7531.92 -4.93 26.46 3354.7 6359.5 78.3 23.4 -3.56 171.01 LOS -5.2 68.9 NVD 28 09 06 12 50.6 84.0 4390.6 28 20926 D 28 03 58 33 147.97 641.14 7531.00 -12.22 25.42 4138.0 6902.7 77.5 23.0 -9.28 175.38 OBC -8.3 69.7 NVD 28 09 08 12 51.0 84.2 4339.7 29 20926 D 28 04 00 33 155.34 643.26 7530.25 -19.51 24.32 4922.0 7475.9 76.6 22.7 -14.40 178.41 OBC -11.3 71.1 NVD 28 09 10 12 51.5 84.3 4288.8 30 20926 D 28 04 02 33 162.71 645.74 7529.69 -26.79 23.12 5696.1 8070.8 75.7 22.3 -19.14 180.65 OBC -14.2 72.9 NVD 28 09 12 12 51.9 84.5 4238.0 31 20926 D 28 04 04 33 170.07 648.45 7529.32 -34.05 21.75 6453.2 8680.9 74.6 21.9 -23.65 182.39 OBC -16.9 75.2 NVD 28 09 14 12 52.4 84.6 4187.1 32 20926 D 28 04 06 33 177.44 651.22 7529.14 -41.30 20.12 7188.1 9300.8 73.2 21.4 -28.00 183.79 OBC -19.5 78.1 NVD 28 09 16 12 52.8 84.7 4136.1 33 20926 D 28 04 07 15 180.00 652.17 Apo 7529.13 -43.81 19.47 7437.6 9517.8 72.7 21.2 -29.49 217.84 OBC -20.3 79.3 NVD 28 09 16 54 53.0 84.8 4118.4 34 20926 D 28 04 08 33 184.80 653.89 7529.17 -48.52 18.08 7896.3 9925.8 71.6 20.8 -32.24 184.94 OBC -21.8 81.8 NVD 28 09 18 12 53.3 84.9 4085.2 35 20926 D 28 04 10 33 192.17 656.28 7529.41 -55.69 15.36 8573.9 10551.4 69.3 20.1 -36.40 185.90 OBC -23.9 86.5 NVD 28 09 20 12 53.8 85.0 4034.3 36 20926 D 28 04 12 33 199.53 658.22 7529.84 -62.77 11.43 9217.5 11173.4 66.1 19.2 -40.50 186.70 OBC -25.7 92.8 NVD 28 09 22 12 54.2 85.2 3983.3 37 20926 D 28 04 14 33 206.90 659.55 7530.46 -69.68 5.03 9823.8 11787.2 61.0 17.9 -44.56 187.38 OBC -27.2 101.7 NVD 28 09 24 12 54.7 85.3 3932.4 38 20926 D 28 04 16 33 214.27 660.17 7531.26 -76.13 352.75 10390.1 12387.5 -51.6 15.9 -48.58 187.96 OBC -28.3 116.8 NVD 28 09 26 12 55.1 85.5 3881.4 39 20926 D 28 04 18 33 221.64 659.99 7532.23 -81.09 324.23 10913.6 12968.3 -33.1 13.0 -52.58 188.43 OBC -29.1 148.3 NVD 28 09 28 12 55.6 85.6 3830.4 40 20926 D 28 04 20 33 229.01 658.98 7533.36 -81.39 274.35 11391.8 13521.7 -7.7 11.1 -56.55 188.80 OBC -29.5 201.3 NVD 28 09 30 12 56.0 85.8 3779.4 41 20926 D 28 04 22 33 236.39 657.16 7534.61 -76.70 243.36 11822.7 14038.3 6.4 11.1 -60.51 189.07 OBC -29.5 235.4 NVD 28 09 32 12 56.5 85.9 3728.4 42 20926 D 28 04 24 33 243.76 654.57 7535.98 -70.31 230.13 12204.0 14505.7 12.6 11.3 -64.45 189.23 OBC -29.1 251.7 NVD 28 09 34 12 57.0 86.0 3677.4 43

Page 312: ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM …myreaders.info/00_Orbital__Mechanics__-__Model_____Simulation... · ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM-MSS)

www.m

yrea

ders

.inf

o

OM-MSS Page 312 SATELLITE PASS - GROUND TRACE [acronym - Line Of Sight (LOS), On Board Computerr (OBC), Visible Band Camera (VBC), Night Vision Devices (NVD) ] ORBIT, INPUT TIME, POSIION, SAT VELOCITY, GROUND TRACE, RANGE, DIST, PITCH/ROLL, EL/AZ, ACCESS EL/AZ, DATA SOLAR TIME EL/AZ, DIST Line 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 @ES 18 19 20 @SS 21 22 23 24 25 26 27 @ES 28 29 30 No. Node GMT Anomaly Height @ Vel Lat(SAT)Log Slant S-Sat Pitch Roll EL(SAT)AZ Control EL(SUN)AZ Acq. LMT(ES) EL(SUN)AZ S-Sun Nos D H M S deg km meter deg deg km km deg deg deg D H M S deg km 20926 D 28 04 26 33 251.14 651.35 7537.44 -63.42 223.37 12534.2 14909.1 15.8 11.5 -68.38 189.25 OBC -28.3 261.5 NVD 28 09 36 12 57.4 86.2 3626.4 44 20926 D 28 04 28 33 258.52 647.62 7538.96 -56.33 219.27 12811.6 15230.9 17.8 11.6 -72.31 189.06 OBC -27.1 268.4 NVD 28 09 38 12 57.9 86.3 3575.4 45 20926 D 28 04 30 33 265.91 643.57 7540.53 -49.15 216.47 13035.0 15452.9 19.2 11.7 -76.22 188.54 OBC -25.6 273.8 NVD 28 09 40 12 58.3 86.5 3524.3 46 20926 D 28 04 32 33 273.30 639.39 7542.11 -41.91 214.38 13203.3 15559.6 20.3 11.8 -80.13 187.34 OBC -23.7 278.2 NVD 28 09 42 12 58.8 86.7 3473.3 47 20926 D 28 04 34 33 280.69 635.30 7543.68 -34.64 212.71 13315.7 15542.3 21.1 11.9 -84.02 184.22 OBC -21.6 281.8 NVD 28 09 44 12 59.3 86.8 3422.2 48 20926 D 28 04 36 33 288.08 631.48 7545.21 -27.35 211.32 13371.6 15402.2 21.8 11.9 -87.82 169.16 OBC -19.1 284.8 NVD 28 09 46 12 59.7 87.0 3371.2 49 20926 D 28 04 38 33 295.48 628.12 7546.67 -20.04 210.10 13370.8 15150.1 22.5 12.0 -87.89 37.38 OBC -16.5 287.3 NVD 28 09 48 12 60.2 87.1 3320.1 50 20926 D 28 04 40 33 302.88 625.37 7548.05 -12.72 208.99 13313.2 14802.7 23.1 12.0 -84.10 21.51 OBC -13.6 289.3 NVD 28 09 50 12 60.6 87.3 3269.0 51 20926 D 28 04 42 33 310.29 623.34 7549.32 -5.39 207.94 13199.1 14378.0 23.6 12.1 -80.20 18.16 OBC -10.6 290.9 NVD 28 09 52 12 61.1 87.4 3217.9 52 20926 D 28 04 44 02 315.74 622.36 Eqa 7550.18 -0.00 207.19 13079.2 14026.1 24.0 12.1 -77.32 71.80 OBC -8.3 291.7 NVD 28 09 53 41 61.4 87.5 3180.4 53 20926 A 28 04 44 33 317.69 622.12 7550.46 1.94 207.46 13028.9 13944.9 23.9 12.1 -76.29 16.71 OBC -7.9 292.0 NVD 28 09 54 12 61.6 87.6 3166.9 54 20926 A 28 04 46 33 325.10 621.73 7551.45 9.27 208.49 12803.3 13598.4 23.3 12.0 -72.36 15.86 OBC -6.5 293.1 NVD 28 09 56 12 62.0 87.8 3115.8 55 20926 A 28 04 48 33 332.51 622.16 7552.27 16.60 209.57 12523.4 13198.7 22.8 12.0 -68.43 15.25 OBC -5.0 294.1 NVD 28 09 58 12 62.5 87.9 3064.7 56 20926 A 28 04 50 33 339.92 623.33 7552.91 23.92 210.74 12190.4 12756.1 22.2 11.9 -64.49 14.76 OBC -3.4 295.3 NVD 28 10 00 12 62.9 88.1 3013.6 57 20926 A 28 04 52 33 347.33 625.15 7553.35 31.24 212.05 11805.9 12279.7 21.5 11.9 -60.53 14.30 OBC -1.6 296.4 NVD 28 10 02 12 63.4 88.3 2962.5 58 20926 A 28 04 54 33 354.74 627.48 7553.60 38.54 213.58 11371.6 11777.7 20.7 11.8 -56.56 13.85 OBC 0.2 297.7 NVD 28 10 04 12 63.8 88.4 2911.3 59 20927 A 28 04 55 59 360.00 629.34 Pri 7553.65 43.71 214.86 11034.6 11410.0 20.1 11.8 -53.74 30.05 OBC 1.6 298.7 NVD 28 10 05 38 64.2 88.5 2875.1 60 20926 A 28 04 56 33 2.16 630.14 7553.64 45.82 215.45 10889.7 11257.0 19.8 11.8 -52.57 13.36 OBC 2.1 299.1 NVD 28 10 06 12 64.3 88.6 2860.2 61 20927 A 28 04 58 33 9.57 632.97 7553.48 53.06 217.89 10362.3 10723.9 18.5 11.7 -48.57 12.82 OBC 4.1 301.0 NVD 28 10 08 12 64.8 88.8 2809.1 62 20927 A 28 05 00 33 16.98 635.78 7553.12 60.22 221.32 9792.1 10184.0 16.9 11.6 -44.53 12.21 OBC 6.1 303.6 VBC 28 10 10 12 65.2 88.9 2758.0 63 20927 A 28 05 02 33 24.39 638.39 7552.56 67.25 226.64 9181.9 9642.5 14.3 11.4 -40.46 11.50 OBC 8.1 307.9 VBC 28 10 12 12 65.7 89.1 2706.8 64 20927 A 28 05 04 33 31.80 640.67 7551.81 73.96 236.24 8534.8 9104.7 9.7 11.2 -36.35 10.65 OBC 10.1 316.3 VBC 28 10 14 12 66.1 89.3 2655.7 65 20927 A 28 05 06 33 39.21 642.48 7550.89 79.70 257.37 7854.3 8576.0 0.0 11.0 -32.18 9.63 OBC 12.1 336.0 VBC 28 10 16 12 66.6 89.5 2604.6 66 20927 A 28 05 08 33 46.62 643.75 7549.82 82.01 303.16 7144.4 8062.1 -21.7 11.9 -27.93 8.38 OBC 14.0 20.1 VBC 28 10 18 12 67.1 89.7 2553.5 67 20927 A 28 05 10 33 54.02 644.45 7548.60 78.58 343.49 6409.3 7569.4 -45.2 14.8 -23.58 6.82 OBC 15.7 58.5 VBC 28 10 20 12 67.5 89.9 2502.3 68 20927 A 28 05 12 33 61.42 644.59 7547.26 72.52 0.90 5654.6 7105.4 57.9 17.2 -19.09 4.80 OBC 17.4 73.7 VBC 28 10 22 12 68.0 90.1 2451.2 69 20927 A 28 05 14 33 68.82 644.22 7545.83 65.72 9.19 4886.9 6678.4 64.5 18.7 -14.37 2.13 OBC 18.9 79.5 VBC 28 10 24 12 68.4 90.3 2400.0 70 20927 A 28 05 16 33 76.22 643.43 7544.32 58.67 13.96 4115.7 6298.1 68.4 19.8 -9.32 358.41 OBC 20.1 81.6 VBC 28 10 26 12 68.9 90.5 2348.9 71 20927 A 28 05 18 33 83.61 642.35 7542.77 51.50 17.11 3355.9 5975.1 71.0 20.6 -3.76 352.94 LOS 21.2 81.8 VBC 28 10 28 12 69.4 90.7 2297.8 72 20927 A 28 05 20 33 91.00 641.13 7541.19 44.27 19.39 2635.5 5720.3 72.9 21.2 2.62 344.22 LOS 21.9 80.9 VBC 28 10 30 12 69.8 90.9 2246.6 73 20927 A 28 05 22 33 98.39 639.92 7539.61 37.02 21.17 2015.1 5544.1 74.3 21.7 9.95 329.14 LOS 22.4 79.4 VBC 28 10 32 12 70.3 91.1 2195.5 74 20927 A 28 05 24 33 105.77 638.86 7538.07 29.74 22.64 1628.6 5454.7 75.4 22.1 16.41 302.86 LOS 22.5 77.4 VBC 28 10 34 12 70.7 91.3 2144.4 75 20927 A 28 05 26 33 113.15 638.10 7536.58 22.45 23.91 1655.4 5456.5 76.4 22.5 15.95 269.25 LOS 22.3 75.1 VBC 28 10 36 12 71.2 91.6 2093.3 76 20927 A 28 05 28 33 120.53 637.76 7535.17 15.16 25.05 2078.1 5549.4 77.3 22.9 9.21 244.37 LOS 21.8 72.6 VBC 28 10 38 12 71.7 91.8 2042.2 77 20927 A 28 05 30 33 127.90 637.92 7533.87 7.86 26.12 2711.9 5728.5 78.1 23.3 2.02 230.13 LOS 20.9 70.0 VBC 28 10 40 12 72.1 92.1 1991.1 78 20927 A 28 05 32 33 135.28 638.62 7532.69 0.56 27.14 3433.9 5985.4 78.8 23.6 -4.19 221.69 LOS 19.7 67.4 VBC 28 10 42 12 72.6 92.3 1940.0 79 20927 A 28 05 32 43 135.84 638.70 Eqa 7532.60 0.00 27.22 3491.3 6008.1 78.9 23.6 -4.64 251.78 LOS 19.6 67.2 VBC 28 10 42 22 72.6 92.3 1936.0 80 20927 D 28 05 34 33 142.65 639.87 7531.65 -6.73 26.28 4189.0 6484.4 78.2 23.3 -9.64 216.16 OBC 16.4 65.3 VBC 28 10 44 12 73.0 92.6 1888.9 81 20927 D 28 05 36 33 150.02 641.65 7530.77 -14.02 25.23 4951.8 7036.2 77.3 23.0 -14.59 212.19 OBC 12.8 63.7 VBC 28 10 46 12 73.5 92.8 1837.8 82 20927 D 28 05 38 33 157.38 643.86 7530.08 -21.31 24.10 5708.2 7615.8 76.4 22.6 -19.22 209.11 OBC 9.0 62.7 VBC 28 10 48 12 73.9 93.1 1786.7 83 20927 D 28 05 40 33 164.75 646.41 7529.56 -28.58 22.86 6449.4 8215.4 75.5 22.2 -23.63 206.56 OBC 5.0 62.2 NVD 28 10 50 12 74.4 93.4 1735.7 84 20927 D 28 05 42 33 172.11 649.14 7529.25 -35.85 21.44 7169.0 8828.9 74.3 21.8 -27.89 204.33 OBC 0.9 62.4 NVD 28 10 52 12 74.9 93.7 1684.6 85 20927 D 28 05 44 33 179.48 651.90 7529.13 -43.09 19.73 7862.1 9450.9 72.9 21.3 -32.04 202.27 OBC -3.2 63.3 NVD 28 10 54 12 75.3 94.0 1633.6 86 20927 D 28 05 44 42 180.00 652.09 Apo 7529.13 -43.60 19.59 7909.9 9495.0 72.8 21.2 -32.32 217.95 OBC -3.5 63.4 NVD 28 10 54 21 75.4 94.0 1630.0 87 20927 D 28 05 46 33 186.84 654.51 7529.22 -50.30 17.55 8524.3 10076.9 71.1 20.7 -36.09 200.30 OBC -7.4 65.1 NVD 28 10 56 12 75.8 94.3 1582.6 88

Page 313: ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM …myreaders.info/00_Orbital__Mechanics__-__Model_____Simulation... · ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM-MSS)

www.m

yrea

ders

.inf

o

OM-MSS Page 313 SATELLITE PASS - GROUND TRACE [acronym - Line Of Sight (LOS), On Board Computerr (OBC), Visible Band Camera (VBC), Night Vision Devices (NVD) ] ORBIT, INPUT TIME, POSIION, SAT VELOCITY, GROUND TRACE, RANGE, DIST, PITCH/ROLL, EL/AZ, ACCESS EL/AZ, DATA SOLAR TIME EL/AZ, DIST Line 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 @ES 18 19 20 @SS 21 22 23 24 25 26 27 @ES 28 29 30 No. Node GMT Anomaly Height @ Vel Lat(SAT)Log Slant S-Sat Pitch Roll EL(SAT)AZ Control EL(SUN)AZ Acq. LMT(ES) EL(SUN)AZ S-Sun Nos D H M S deg km meter deg deg km km deg deg deg D H M S deg km 20927 D 28 05 48 33 194.21 656.80 7529.51 -57.45 14.60 9152.2 10702.5 68.7 19.9 -40.08 198.32 OBC -11.6 68.1 NVD 28 10 58 12 76.2 94.7 1531.6 89 20927 D 28 05 50 33 201.58 658.59 7529.99 -64.50 10.22 9742.3 11323.4 65.1 18.9 -44.00 196.27 OBC -15.7 72.9 NVD 28 11 00 12 76.7 95.0 1480.7 90 20927 D 28 05 52 33 208.94 659.76 7530.66 -71.33 2.83 10291.9 11935.0 59.2 17.5 -47.86 194.08 OBC -19.7 81.3 NVD 28 11 02 12 77.2 95.4 1429.8 91 20927 D 28 05 54 33 216.31 660.18 7531.52 -77.58 347.93 10798.3 12531.7 -48.2 15.3 -51.66 191.67 OBC -23.7 97.6 NVD 28 11 04 12 77.6 95.8 1378.9 92 20927 D 28 05 56 33 223.68 659.79 7532.53 -81.75 312.88 11259.2 13107.2 -26.7 12.3 -55.40 188.94 OBC -27.4 134.7 NVD 28 11 06 12 78.1 96.2 1328.0 93 20927 D 28 05 58 33 231.05 658.57 7533.69 -80.54 264.12 11672.5 13653.3 -3.1 11.0 -59.07 185.74 OBC -30.9 186.0 NVD 28 11 08 12 78.5 96.7 1277.2 94 20927 D 28 06 00 33 238.43 656.55 7534.98 -75.20 239.13 12036.3 14159.8 8.4 11.1 -62.65 181.90 OBC -34.0 214.2 NVD 28 11 10 12 79.0 97.2 1226.4 95 20927 D 28 06 02 33 245.81 653.79 7536.38 -68.64 228.14 12349.2 14613.8 13.5 11.4 -66.10 177.14 OBC -36.8 229.0 NVD 28 11 12 12 79.4 97.7 1175.7 96 20927 D 28 06 04 33 253.19 650.42 7537.85 -61.68 222.25 12609.8 14999.7 16.4 11.5 -69.38 171.03 OBC -39.0 239.3 NVD 28 11 14 12 79.9 98.2 1125.1 97 20927 D 28 06 06 33 260.57 646.60 7539.39 -54.56 218.55 12817.0 15299.5 18.2 11.6 -72.40 162.98 OBC -40.6 248.0 NVD 28 11 16 12 80.3 98.8 1074.5 98 20927 D 28 06 08 33 267.96 642.50 7540.96 -47.36 215.96 12970.1 15495.2 19.5 11.7 -75.00 152.13 OBC -41.6 256.0 NVD 28 11 18 12 80.8 99.4 1024.0 99 20927 D 28 06 10 33 275.35 638.32 7542.54 -40.11 214.00 13068.6 15572.6 20.5 11.8 -76.95 137.68 OBC -41.9 263.5 NVD 28 11 20 12 81.3 100.1 973.6 100 20927 D 28 06 12 33 282.74 634.28 7544.10 -32.84 212.41 13112.2 15525.0 21.3 11.9 -77.92 119.81 OBC -41.4 270.7 NVD 28 11 22 12 81.7 100.9 923.3 101 20927 D 28 06 14 33 290.13 630.56 7545.62 -25.54 211.07 13100.9 15356.3 22.0 11.9 -77.70 100.85 OBC -40.1 277.3 NVD 28 11 24 12 82.2 101.7 873.2 102 20927 D 28 06 16 33 297.53 627.34 7547.07 -18.23 209.88 13035.1 15079.1 22.6 12.0 -76.35 84.03 OBC -38.2 283.4 NVD 28 11 26 12 82.6 102.6 823.2 103 20927 D 28 06 18 33 304.93 624.76 7548.42 -10.91 208.79 12915.3 14710.8 23.2 12.0 -74.15 70.83 OBC -35.6 288.7 NVD 28 11 28 12 83.1 103.6 773.4 104 20927 D 28 06 20 33 312.34 622.93 7549.65 -3.58 207.75 12742.5 14269.5 23.7 12.1 -71.41 60.89 OBC -32.5 293.2 NVD 28 11 30 12 83.5 104.8 723.8 105 20927 D 28 06 21 32 315.95 622.33 Eqa 7550.21 -0.00 207.25 12639.2 14032.6 24.0 12.1 -69.95 71.76 OBC -30.8 295.2 NVD 28 11 31 11 83.7 105.4 699.7 106 20927 A 28 06 22 33 319.74 621.92 7550.75 3.75 207.78 12517.8 13871.0 23.7 12.1 -68.34 53.34 OBC -29.8 297.4 NVD 28 11 32 12 83.9 106.1 674.5 107 20927 A 28 06 24 33 327.15 621.74 7551.69 11.08 208.82 12242.8 13509.9 23.1 12.0 -65.06 47.39 OBC -27.5 301.5 NVD 28 11 34 12 84.4 107.6 625.6 108 20927 A 28 06 26 33 334.56 622.36 7552.46 18.41 209.92 11919.2 13098.1 22.6 12.0 -61.64 42.51 OBC -24.8 305.3 NVD 28 11 36 12 84.8 109.3 577.1 109 20927 A 28 06 28 33 341.97 623.72 7553.05 25.73 211.12 11549.2 12645.8 22.0 11.9 -58.13 38.34 OBC -21.6 308.9 NVD 28 11 38 12 85.2 111.4 529.1 110 20927 A 28 06 30 33 349.38 625.68 7553.44 33.05 212.47 11135.3 12161.8 21.3 11.9 -54.56 34.63 OBC -18.1 312.2 NVD 28 11 40 12 85.7 113.8 481.9 111 20927 A 28 06 32 33 356.80 628.11 7553.63 40.35 214.07 10680.3 11653.9 20.5 11.8 -50.95 31.21 OBC -14.2 315.3 NVD 28 11 42 12 86.1 116.7 435.6 112 20928 A 28 06 33 25 360.00 629.26 Pri 7553.65 43.49 214.87 10471.8 11428.8 20.1 11.8 -49.37 30.18 OBC -12.5 316.6 NVD 28 11 43 04 86.3 118.2 416.0 113 20927 A 28 06 34 33 4.21 630.84 7553.62 47.61 216.06 10187.6 11129.0 19.5 11.7 -47.30 27.93 OBC -10.2 318.4 NVD 28 11 44 12 86.5 120.3 390.6 114 20928 A 28 06 36 33 11.62 633.68 7553.40 54.84 218.69 9660.8 10593.1 18.1 11.6 -43.64 24.69 OBC -5.9 321.7 NVD 28 11 46 12 86.9 124.7 347.5 115 20928 A 28 06 38 33 19.03 636.46 7552.98 61.98 222.47 9104.3 10051.7 16.3 11.5 -39.96 21.39 OBC -1.5 325.7 NVD 28 11 48 12 87.2 130.4 306.9 116 20928 A 28 06 40 33 26.45 639.01 7552.37 68.95 228.53 8523.2 9510.0 13.4 11.4 -36.28 17.92 OBC 3.1 331.6 NVD 28 11 50 12 87.6 137.6 270.0 117 20928 A 28 06 42 33 33.85 641.19 7551.58 75.52 239.98 7923.5 8973.3 8.0 11.1 -32.60 14.19 OBC 7.7 342.5 VBC 28 11 52 12 87.9 146.9 238.6 118 20928 A 28 06 44 33 41.26 642.88 7550.61 80.75 266.29 7312.3 8447.0 -4.1 11.0 -28.94 10.06 OBC 12.3 7.7 VBC 28 11 54 12 88.1 158.6 215.1 119 20928 A 28 06 46 33 48.67 644.01 7549.49 81.62 315.84 6698.5 7937.0 -28.4 12.5 -25.30 5.39 OBC 16.9 55.7 VBC 28 11 56 12 88.2 172.5 202.2 120 20928 A 28 06 48 33 56.07 644.57 7548.24 77.21 349.34 6093.7 7449.9 -49.3 15.5 -21.71 359.98 OBC 21.4 87.1 VBC 28 11 58 12 88.2 187.2 202.0 121 20928 A 28 06 50 33 63.47 644.58 7546.88 70.87 3.54 5512.4 6993.5 60.0 17.6 -18.22 353.58 OBC 25.7 98.6 VBC 28 12 00 12 88.1 201.0 214.6 122 20928 A 28 06 52 33 70.87 644.10 7545.42 63.99 10.66 4974.5 6576.3 65.7 19.1 -14.91 345.91 OBC 29.9 102.4 VBC 28 12 02 12 87.9 212.8 237.8 123 20928 A 28 06 54 33 78.27 643.23 7543.89 56.90 14.91 4505.6 6208.4 69.2 20.0 -11.91 336.66 OBC 33.7 102.6 VBC 28 12 04 12 87.6 222.2 269.0 124 20928 A 28 06 56 33 85.66 642.10 7542.33 49.71 17.80 4137.8 5900.5 71.6 20.8 -9.44 325.66 OBC 37.1 100.6 VBC 28 12 06 12 87.3 229.5 305.8 125 20928 A 28 06 58 33 93.05 640.87 7540.75 42.48 19.94 3905.8 5663.5 73.3 21.4 -7.81 313.02 OBC 40.0 97.0 VBC 28 12 08 12 86.9 235.2 346.3 126 20928 A 28 07 00 33 100.43 639.68 7539.18 35.22 21.63 3837.2 5507.6 74.6 21.8 -7.30 299.42 OBC 42.3 92.1 VBC 28 12 10 12 86.5 239.7 389.4 127 20928 A 28 07 02 33 107.82 638.68 7537.65 27.94 23.04 3940.5 5440.0 75.8 22.3 -8.01 285.94 OBC 43.9 86.3 VBC 28 12 12 12 86.1 243.3 434.3 128 20928 A 28 07 04 33 115.20 638.02 7536.18 20.65 24.27 4199.8 5464.4 76.7 22.7 -9.78 273.57 OBC 44.5 79.8 VBC 28 12 14 12 85.7 246.2 480.5 129 20928 A 28 07 06 33 122.57 637.79 7534.80 13.35 25.39 4583.7 5579.2 77.5 23.0 -12.30 262.85 OBC 44.3 72.9 VBC 28 12 16 12 85.3 248.6 527.7 130 20928 A 28 07 08 33 129.95 638.07 7533.53 6.05 26.44 5056.8 5778.5 78.3 23.4 -15.28 253.78 OBC 43.2 66.1 VBC 28 12 18 12 84.8 250.7 575.7 131

Page 314: ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM …myreaders.info/00_Orbital__Mechanics__-__Model_____Simulation... · ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM-MSS)

www.m

yrea

ders

.inf

o

OM-MSS Page 314 SATELLITE PASS - GROUND TRACE [acronym - Line Of Sight (LOS), On Board Computerr (OBC), Visible Band Camera (VBC), Night Vision Devices (NVD) ] ORBIT, INPUT TIME, POSIION, SAT VELOCITY, GROUND TRACE, RANGE, DIST, PITCH/ROLL, EL/AZ, ACCESS EL/AZ, DATA SOLAR TIME EL/AZ, DIST Line 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 @ES 18 19 20 @SS 21 22 23 24 25 26 27 @ES 28 29 30 No. Node GMT Anomaly Height @ Vel Lat(SAT)Log Slant S-Sat Pitch Roll EL(SAT)AZ Control EL(SUN)AZ Acq. LMT(ES) EL(SUN)AZ S-Sun Nos D H M S deg km meter deg deg km km deg deg deg D H M S deg km 20928 A 28 07 10 13 136.06 638.73 Eqa 7532.57 0.00 27.29 5494.8 6001.7 78.9 23.7 -17.96 251.74 OBC 41.6 60.7 VBC 28 12 19 52 84.5 252.1 615.9 132 20928 D 28 07 10 33 137.32 638.91 7532.38 -1.24 27.11 5588.4 6086.8 78.8 23.6 -18.52 246.14 OBC 40.9 59.8 VBC 28 12 20 12 84.4 252.4 624.2 133 20928 D 28 07 12 33 144.69 640.29 7531.39 -8.54 26.09 6154.4 6611.7 78.0 23.2 -21.90 239.62 OBC 36.5 55.1 VBC 28 12 22 12 84.0 253.9 673.1 134 20928 D 28 07 14 33 152.06 642.18 7530.56 -15.83 25.02 6736.8 7171.6 77.2 22.9 -25.34 233.93 OBC 31.7 51.5 VBC 28 12 24 12 83.5 255.2 722.4 135 20928 D 28 07 16 33 159.42 644.48 7529.91 -23.11 23.88 7322.0 7757.2 76.3 22.5 -28.81 228.84 OBC 26.6 48.8 VBC 28 12 26 12 83.1 256.4 771.9 136 20928 D 28 07 18 33 166.79 647.08 7529.46 -30.38 22.60 7899.6 8361.2 75.2 22.1 -32.27 224.16 OBC 21.2 47.0 VBC 28 12 28 12 82.6 257.4 821.7 137 20928 D 28 07 20 33 174.16 649.83 7529.20 -37.64 21.12 8461.6 8977.6 74.0 21.7 -35.70 219.73 OBC 15.6 45.9 VBC 28 12 30 12 82.2 258.3 871.7 138 20928 D 28 07 22 09 180.00 652.01 Apo 7529.13 -43.38 19.72 8892.3 9472.3 72.9 21.3 -38.41 218.06 OBC 11.1 45.7 VBC 28 12 31 48 81.8 259.0 911.5 139 20928 D 28 07 22 33 181.52 652.57 7529.14 -44.87 19.31 9001.7 9601.4 72.6 21.2 -39.10 215.44 OBC 9.9 45.8 VBC 28 12 32 12 81.7 259.2 921.9 140 20928 D 28 07 24 33 188.89 655.11 7529.28 -52.07 16.98 9514.5 10228.2 70.7 20.5 -42.46 211.16 OBC 4.0 46.6 NVD 28 12 34 12 81.3 259.9 972.1 141 20928 D 28 07 26 33 196.25 657.28 7529.62 -59.21 13.76 9995.7 10853.6 68.0 19.7 -45.74 206.80 OBC -1.9 48.8 NVD 28 12 36 12 80.8 260.6 1022.5 142 20928 D 28 07 28 33 203.62 658.93 7530.16 -66.22 8.84 10441.5 11473.2 64.0 18.6 -48.95 202.24 OBC -7.9 53.1 NVD 28 12 38 12 80.4 261.2 1073.0 143 20928 D 28 07 30 33 210.98 659.91 7530.88 -72.96 0.22 10849.0 12082.2 57.2 17.0 -52.05 197.37 OBC -13.9 61.5 NVD 28 12 40 12 79.9 261.8 1123.6 144 20928 D 28 07 32 33 218.35 660.13 7531.78 -78.91 341.89 11215.5 12674.9 -44.1 14.6 -55.03 192.08 OBC -20.0 80.1 NVD 28 12 42 12 79.5 262.4 1174.2 145 20928 D 28 07 34 33 225.72 659.54 7532.84 -82.05 300.15 11538.8 13244.7 -20.1 11.8 -57.84 186.23 OBC -25.9 122.6 NVD 28 12 44 12 79.0 262.9 1224.9 146 20928 D 28 07 36 33 233.10 658.11 7534.04 -79.44 255.79 11817.0 13782.8 0.7 11.0 -60.44 179.66 OBC -31.8 168.4 NVD 28 12 46 12 78.5 263.4 1275.7 147 20928 D 28 07 38 33 240.47 655.89 7535.36 -73.64 235.69 12048.7 14278.5 10.0 11.2 -62.78 172.24 OBC -37.6 190.6 NVD 28 12 48 12 78.1 263.8 1326.5 148 20928 D 28 07 40 33 247.85 652.97 7536.78 -66.94 226.44 12232.8 14718.2 14.3 11.4 -64.78 163.84 OBC -43.2 202.9 NVD 28 12 50 12 77.6 264.2 1377.3 149 20928 D 28 07 42 33 255.23 649.47 7538.28 -59.93 221.26 12368.5 15085.5 16.9 11.5 -66.35 154.42 OBC -48.4 212.3 NVD 28 12 52 12 77.2 264.6 1428.2 150 20928 D 28 07 44 33 262.62 645.56 7539.83 -52.79 217.90 12455.3 15362.2 18.5 11.7 -67.42 144.09 OBC -53.2 221.5 NVD 28 12 54 12 76.7 265.0 1479.1 151 20928 D 28 07 46 33 270.00 641.42 7541.40 -45.57 215.50 12493.1 15530.7 19.7 11.7 -67.91 133.13 OBC -57.2 231.7 NVD 28 12 56 12 76.3 265.4 1530.1 152 20928 D 28 07 48 33 277.39 637.26 7542.98 -38.31 213.64 12482.0 15578.2 20.7 11.8 -67.79 122.02 OBC -60.3 243.7 NVD 28 12 58 12 75.8 265.7 1581.1 153 20928 D 28 07 50 33 284.79 633.28 7544.53 -31.03 212.13 12422.6 15500.5 21.4 11.9 -67.07 111.24 OBC -61.9 257.3 NVD 28 13 00 12 75.3 266.0 1632.0 154 20928 D 28 07 52 33 292.18 629.67 7546.03 -23.73 210.83 12315.6 15303.9 22.1 11.9 -65.82 101.19 OBC -62.0 271.4 NVD 28 13 02 12 74.9 266.3 1683.1 155 20928 D 28 07 54 33 299.58 626.59 7547.45 -16.42 209.67 12162.4 15002.6 22.7 12.0 -64.12 92.06 OBC -60.3 284.7 NVD 28 13 04 12 74.4 266.6 1734.1 156 20928 D 28 07 56 33 306.98 624.20 7548.77 -9.09 208.60 11964.3 14614.5 23.3 12.0 -62.05 83.88 OBC -57.2 295.8 NVD 28 13 06 12 74.0 266.9 1785.1 157 20928 D 28 07 58 33 314.39 622.57 7549.97 -1.76 207.57 11723.3 14157.5 23.8 12.1 -59.71 76.54 OBC -53.1 304.6 NVD 28 13 08 12 73.5 267.2 1836.2 158 20928 D 28 07 59 02 316.17 622.30 Eqa 7550.24 -0.00 207.32 11659.1 14039.1 23.9 12.1 -59.11 71.72 OBC -51.9 306.4 NVD 28 13 08 41 73.4 267.3 1848.5 159 20928 A 28 08 00 33 321.80 621.77 7551.03 5.57 208.10 11441.6 13793.1 23.5 12.1 -57.15 69.93 OBC -49.3 312.6 NVD 28 13 10 12 73.0 267.5 1887.3 160 20928 A 28 08 02 33 329.20 621.80 7551.93 12.90 209.15 11122.0 13418.0 23.0 12.0 -54.44 63.87 OBC -45.1 319.5 NVD 28 13 12 12 72.6 267.7 1938.4 161 20928 A 28 08 04 33 336.61 622.62 7552.65 20.23 210.27 10767.5 12994.8 22.4 12.0 -51.61 58.23 OBC -40.2 325.3 NVD 28 13 14 12 72.1 268.0 1989.4 162 20928 A 28 08 06 33 344.03 624.14 7553.18 27.55 211.50 10381.8 12533.3 21.8 11.9 -48.71 52.88 OBC -34.8 330.0 NVD 28 13 16 12 71.7 268.2 2040.5 163 20928 A 28 08 08 33 351.44 626.24 7553.52 34.86 212.91 9969.0 12042.1 21.1 11.9 -45.76 47.68 OBC -29.1 334.0 NVD 28 13 18 12 71.2 268.5 2091.7 164 20928 A 28 08 10 33 358.85 628.77 7553.65 42.15 214.59 9534.1 11528.9 20.2 11.8 -42.79 42.55 OBC -23.2 337.6 NVD 28 13 20 12 70.8 268.7 2142.8 165 20929 A 28 08 10 52 360.00 629.18 Pri 7553.65 43.28 214.88 9465.0 11447.8 20.1 11.8 -42.33 30.32 OBC -22.2 338.2 NVD 28 13 20 31 70.7 268.7 2150.7 166 20928 A 28 08 12 33 6.26 631.54 7553.58 49.41 216.70 9082.5 11000.1 19.1 11.7 -39.83 37.36 OBC -17.0 341.1 NVD 28 13 22 12 70.3 268.9 2193.9 167 20929 A 28 08 14 33 13.68 634.39 7553.30 56.62 219.56 8620.7 10461.7 17.7 11.6 -36.90 32.03 OBC -10.7 344.8 NVD 28 13 24 12 69.8 269.1 2245.0 168 20929 A 28 08 16 33 21.09 637.14 7552.83 63.73 223.76 8156.4 9919.1 15.7 11.5 -34.03 26.45 OBC -4.3 349.4 NVD 28 13 26 12 69.4 269.4 2296.1 169 20929 A 28 08 18 33 28.50 639.61 7552.17 70.63 230.73 7698.1 9377.5 12.3 11.3 -31.25 20.53 OBC 2.1 356.3 NVD 28 13 28 12 68.9 269.6 2347.3 170 20929 A 28 08 20 33 35.91 641.68 7551.33 77.01 244.56 7256.3 8842.2 5.9 11.1 -28.61 14.15 OBC 8.7 9.8 VBC 28 13 30 12 68.5 269.8 2398.4 171 20929 A 28 08 22 33 43.31 643.24 7550.32 81.54 277.14 6842.5 8318.6 -9.1 11.2 -26.16 7.23 OBC 15.2 41.6 VBC 28 13 32 12 68.0 270.0 2449.5 172 20929 A 28 08 24 33 50.72 644.24 7549.16 80.88 326.94 6470.2 7812.9 -34.7 13.3 -23.95 359.70 OBC 21.8 90.1 VBC 28 13 34 12 67.5 270.2 2500.6 173 20929 A 28 08 26 33 58.12 644.66 7547.87 75.73 354.05 6153.7 7331.9 -52.7 16.1 -22.07 351.50 OBC 28.3 115.5 VBC 28 13 36 12 67.1 270.4 2551.8 174 20929 A 28 08 28 33 65.52 644.54 7546.48 69.20 5.78 5907.6 6883.6 61.7 18.1 -20.59 342.68 OBC 34.8 124.9 VBC 28 13 38 12 66.6 270.6 2602.9 175 20929 A 28 08 30 33 72.92 643.96 7545.00 62.25 11.96 5744.8 6476.9 66.8 19.3 -19.60 333.33 OBC 41.1 127.9 VBC 28 13 40 12 66.2 270.7 2654.0 176

Page 315: ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM …myreaders.info/00_Orbital__Mechanics__-__Model_____Simulation... · ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM-MSS)

www.m

yrea

ders

.inf

o

OM-MSS Page 315 SATELLITE PASS - GROUND TRACE [acronym - Line Of Sight (LOS), On Board Computerr (OBC), Visible Band Camera (VBC), Night Vision Devices (NVD) ] ORBIT, INPUT TIME, POSIION, SAT VELOCITY, GROUND TRACE, RANGE, DIST, PITCH/ROLL, EL/AZ, ACCESS EL/AZ, DATA SOLAR TIME EL/AZ, DIST Line 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 @ES 18 19 20 @SS 21 22 23 24 25 26 27 @ES 28 29 30 No. Node GMT Anomaly Height @ Vel Lat(SAT)Log Slant S-Sat Pitch Roll EL(SAT)AZ Control EL(SUN)AZ Acq. LMT(ES) EL(SUN)AZ S-Sun Nos D H M S deg km meter deg deg km km deg deg deg D H M S deg km 20929 A 28 08 32 33 80.31 643.01 7543.46 55.13 15.79 5674.9 6122.0 69.9 20.3 -19.17 323.65 OBC 47.2 127.5 VBC 28 13 42 12 65.7 270.9 2705.1 177 20929 A 28 08 34 33 87.71 641.85 7541.89 47.93 18.45 5701.5 5829.8 72.1 20.9 -19.31 313.92 OBC 53.1 124.4 VBC 28 13 44 12 65.2 271.1 2756.3 178 20929 A 28 08 36 33 95.09 640.61 7540.31 40.68 20.46 5821.8 5611.4 73.7 21.5 -20.01 304.39 OBC 58.4 118.4 VBC 28 13 46 12 64.8 271.3 2807.4 179 20929 A 28 08 38 33 102.48 639.45 7538.75 33.42 22.06 6027.2 5476.2 75.0 22.0 -21.22 295.29 OBC 62.9 109.0 VBC 28 13 48 12 64.3 271.5 2858.5 180 20929 A 28 08 40 33 109.86 638.52 7537.24 26.13 23.42 6304.9 5430.9 76.1 22.4 -22.85 286.75 OBC 66.0 95.7 VBC 28 13 50 12 63.9 271.6 2909.6 181 20929 A 28 08 42 33 117.24 637.95 7535.79 18.84 24.62 6640.1 5477.7 77.0 22.8 -24.82 278.81 OBC 67.3 79.3 VBC 28 13 52 12 63.4 271.8 2960.7 182 20929 A 28 08 44 33 124.62 637.84 7534.43 11.54 25.72 7018.1 5614.1 77.8 23.1 -27.04 271.46 OBC 66.3 62.3 VBC 28 13 54 12 62.9 272.0 3011.8 183 20929 A 28 08 46 33 131.99 638.26 7533.19 4.25 26.76 7425.1 5833.3 78.6 23.5 -29.45 264.63 OBC 63.4 47.8 VBC 28 13 56 12 62.5 272.1 3062.9 184 20929 A 28 08 47 43 136.28 638.76 Eqa 7532.54 0.00 27.35 7670.6 5995.2 79.0 23.7 -30.91 251.70 OBC 61.0 41.0 VBC 28 13 57 22 62.2 272.2 3092.6 185 20929 D 28 08 48 33 139.36 639.23 7532.09 -3.05 26.93 7849.2 6206.5 78.7 23.5 -31.98 258.22 OBC 58.5 38.0 VBC 28 13 58 12 62.0 272.3 3114.0 186 20929 D 28 08 50 33 146.73 640.74 7531.14 -10.34 25.90 8279.8 6741.4 77.9 23.2 -34.60 252.13 OBC 52.2 32.6 VBC 28 14 00 12 61.6 272.5 3165.1 187 20929 D 28 08 52 33 154.10 642.73 7530.36 -17.63 24.82 8708.1 7308.7 77.0 22.8 -37.25 246.28 OBC 45.7 29.0 VBC 28 14 02 12 61.1 272.6 3216.1 188 20929 D 28 08 54 33 161.47 645.12 7529.77 -24.91 23.64 9126.6 7899.8 76.1 22.4 -39.91 240.55 OBC 38.9 26.7 VBC 28 14 04 12 60.6 272.8 3267.2 189 20929 D 28 08 56 33 168.83 647.76 7529.36 -32.18 22.32 9529.0 8507.8 75.0 22.0 -42.55 234.86 OBC 32.1 25.2 VBC 28 14 06 12 60.2 272.9 3318.3 190 20929 D 28 08 58 33 176.20 650.52 7529.16 -39.43 20.77 9910.0 9127.0 73.8 21.6 -45.14 229.13 OBC 25.1 24.6 VBC 28 14 08 12 59.7 273.1 3369.3 191 20929 D 28 08 59 35 180.00 651.93 Apo 7529.13 -43.17 19.84 10096.9 9449.5 73.0 21.3 -46.45 218.18 OBC 21.5 24.6 VBC 28 14 09 14 59.5 273.2 3395.7 192 20929 D 28 09 00 33 183.56 653.22 7529.16 -46.66 18.86 10265.1 9752.4 72.2 21.0 -47.65 223.25 OBC 18.1 24.8 VBC 28 14 10 12 59.3 273.2 3420.4 193 20929 D 28 09 02 33 190.93 655.68 7529.35 -53.84 16.35 10590.4 10379.7 70.2 20.4 -50.05 217.15 OBC 11.1 25.8 VBC 28 14 12 12 58.8 273.4 3471.4 194 20929 D 28 09 04 33 198.29 657.73 7529.75 -60.96 12.81 10882.7 11004.6 67.2 19.5 -52.31 210.75 OBC 4.0 28.1 NVD 28 14 14 12 58.4 273.6 3522.5 195 20929 D 28 09 06 33 205.66 659.22 7530.34 -67.92 7.24 11139.5 11622.6 62.7 18.3 -54.38 203.97 OBC -3.1 32.7 NVD 28 14 16 12 57.9 273.7 3573.5 196 20929 D 28 09 08 33 213.03 660.02 7531.12 -74.54 357.06 11358.4 12228.7 -54.8 16.5 -56.24 196.76 OBC -10.2 42.1 NVD 28 14 18 12 57.4 273.9 3624.5 197 20929 D 28 09 10 33 220.40 660.04 7532.06 -80.09 334.33 11537.8 12817.1 -39.2 13.8 -57.83 189.08 OBC -17.4 64.1 NVD 28 14 20 12 57.0 274.0 3675.5 198 20929 D 28 09 12 33 227.77 659.23 7533.16 -81.93 287.13 11676.3 13380.6 -13.7 11.4 -59.10 180.94 OBC -24.6 110.9 NVD 28 14 22 12 56.5 274.2 3726.5 199 20929 D 28 09 14 33 235.14 657.60 7534.39 -78.17 249.13 11773.0 13910.1 3.8 11.0 -60.03 172.39 OBC -31.7 148.6 NVD 28 14 24 12 56.1 274.3 3777.5 200 20929 D 28 09 16 33 242.52 655.19 7535.74 -72.03 232.86 11827.3 14394.2 11.3 11.2 -60.56 163.55 OBC -38.9 164.8 NVD 28 14 26 12 55.6 274.4 3828.5 201 20929 D 28 09 18 33 249.90 652.11 7537.19 -65.22 224.97 11839.1 14818.6 15.1 11.4 -60.69 154.55 OBC -46.1 172.9 NVD 28 14 28 12 55.1 274.6 3879.4 202 20929 D 28 09 20 33 257.28 648.49 7538.70 -58.17 220.37 11808.6 15166.3 17.3 11.6 -60.41 145.59 OBC -53.3 178.1 NVD 28 14 30 12 54.7 274.7 3930.4 203 20929 D 28 09 22 33 264.66 644.50 7540.26 -51.01 217.30 11736.2 15418.8 18.8 11.7 -59.73 136.82 OBC -60.5 182.6 NVD 28 14 32 12 54.2 274.9 3981.3 204 20929 D 28 09 24 33 272.05 640.34 7541.84 -43.78 215.06 11623.0 15559.2 19.9 11.8 -58.69 128.38 OBC -67.6 187.6 NVD 28 14 34 12 53.8 275.0 4032.3 205 20929 D 28 09 26 33 279.44 636.21 7543.41 -36.51 213.31 11470.3 15576.5 20.8 11.8 -57.33 120.35 OBC -74.5 195.3 NVD 28 14 36 12 53.3 275.2 4083.2 206 20929 D 28 09 28 33 286.84 632.30 7544.95 -29.23 211.86 11279.7 15469.0 21.6 11.9 -55.69 112.75 OBC -80.9 213.0 NVD 28 14 38 12 52.9 275.3 4134.1 207 20929 D 28 09 30 33 294.23 628.81 7546.43 -21.92 210.60 11053.5 15245.2 22.2 11.9 -53.83 105.57 OBC -84.3 266.6 NVD 28 14 40 12 52.4 275.4 4185.0 208 20929 D 28 09 32 33 301.63 625.90 7547.83 -14.60 209.47 10794.3 14920.7 22.8 12.0 -51.77 98.76 OBC -80.6 318.2 NVD 28 14 42 12 51.9 275.6 4235.9 209 20929 D 28 09 34 33 309.04 623.69 7549.12 -7.28 208.41 10505.0 14513.8 23.4 12.0 -49.58 92.26 OBC -74.2 334.5 NVD 28 14 44 12 51.5 275.7 4286.8 210 20929 D 28 09 36 33 316.39 622.27 Eqa 7550.27 -0.00 207.39 10191.6 14045.6 23.9 12.1 -47.30 71.68 OBC -67.2 341.0 NVD 28 14 46 12 51.0 275.9 4337.3 211 20929 A 28 09 36 33 316.44 622.27 7550.28 0.05 207.39 10189.3 14043.5 23.9 12.1 -47.29 85.98 OBC -67.2 341.1 NVD 28 14 46 12 51.0 275.9 4337.6 212 20929 A 28 09 38 33 323.85 621.68 7551.29 7.38 208.42 9851.4 13711.4 23.4 12.0 -44.92 79.85 OBC -60.5 348.1 NVD 28 14 48 12 50.6 276.0 4388.5 213 20929 A 28 09 40 33 331.26 621.91 7552.14 14.71 209.49 9496.1 13323.0 22.8 12.0 -42.52 73.79 OBC -53.5 352.7 NVD 28 14 50 12 50.1 276.1 4439.3 214 20929 A 28 09 42 33 338.67 622.92 7552.81 22.04 210.63 9128.9 12888.9 22.2 11.9 -40.12 67.72 OBC -46.4 355.9 NVD 28 14 52 12 49.7 276.3 4490.2 215 20929 A 28 09 44 33 346.08 624.60 7553.29 29.36 211.90 8756.2 12418.7 21.6 11.9 -37.75 61.55 OBC -39.2 358.5 NVD 28 14 54 12 49.2 276.4 4541.0 216 20929 A 28 09 46 33 353.49 626.83 7553.57 36.66 213.36 8385.1 11920.8 20.8 11.8 -35.44 55.22 OBC -31.9 0.8 NVD 28 14 56 12 48.7 276.6 4591.8 217 20930 A 28 09 48 19 360.00 629.10 Pri 7553.65 43.06 214.89 8067.0 11466.7 20.0 11.8 -33.49 30.45 OBC -25.4 2.7 NVD 28 14 57 58 48.3 276.7 4636.4 218 20929 A 28 09 48 33 0.90 629.44 7553.65 43.95 215.13 8023.7 11402.5 19.9 11.8 -33.23 48.64 OBC -24.5 3.0 NVD 28 14 58 12 48.3 276.7 4642.6 219 20930 A 28 09 50 33 8.32 632.26 7553.52 51.20 217.39 7681.2 10870.2 18.8 11.7 -31.16 41.75 OBC -17.1 5.6 NVD 28 15 00 12 47.8 276.8 4693.3 220 20930 A 28 09 52 33 15.73 635.10 7553.19 58.39 220.50 7367.2 10329.7 17.3 11.6 -29.29 34.50 OBC -9.8 8.8 NVD 28 15 02 12 47.4 277.0 4744.1 221

Page 316: ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM …myreaders.info/00_Orbital__Mechanics__-__Model_____Simulation... · ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM-MSS)

www.m

yrea

ders

.inf

o

OM-MSS Page 316 SATELLITE PASS - GROUND TRACE [acronym - Line Of Sight (LOS), On Board Computerr (OBC), Visible Band Camera (VBC), Night Vision Devices (NVD) ] ORBIT, INPUT TIME, POSIION, SAT VELOCITY, GROUND TRACE, RANGE, DIST, PITCH/ROLL, EL/AZ, ACCESS EL/AZ, DATA SOLAR TIME EL/AZ, DIST Line 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 @ES 18 19 20 @SS 21 22 23 24 25 26 27 @ES 28 29 30 No. Node GMT Anomaly Height @ Vel Lat(SAT)Log Slant S-Sat Pitch Roll EL(SAT)AZ Control EL(SUN)AZ Acq. LMT(ES) EL(SUN)AZ S-Sun Nos D H M S deg km meter deg deg km km deg deg deg D H M S deg km 20930 A 28 09 54 33 23.14 637.80 7552.67 65.46 225.20 7092.2 9786.2 15.0 11.4 -27.65 26.87 OBC -2.3 13.5 NVD 28 15 04 12 46.9 277.1 4794.8 222 20930 A 28 09 56 33 30.55 640.19 7551.95 72.29 233.31 6866.5 9245.0 11.1 11.2 -26.31 18.85 OBC 5.1 21.5 VBC 28 15 06 12 46.5 277.3 4845.5 223 20930 A 28 09 58 33 37.96 642.14 7551.06 78.40 250.23 6699.6 8711.4 3.3 11.0 -25.32 10.50 OBC 12.5 38.3 VBC 28 15 08 12 46.0 277.4 4896.3 224 20930 A 28 10 00 33 45.37 643.57 7550.01 81.98 289.65 6599.2 8191.0 -15.0 11.4 -24.72 1.90 OBC 19.9 77.5 VBC 28 15 10 12 45.6 277.5 4946.9 225 20930 A 28 10 02 33 52.77 644.43 7548.82 79.86 336.12 6570.3 7690.0 -40.4 14.0 -24.54 353.17 OBC 27.4 123.7 VBC 28 15 12 12 45.1 277.7 4997.6 226 20930 A 28 10 04 33 60.17 644.72 7547.50 74.18 357.89 6614.2 7215.6 -55.6 16.7 -24.78 344.45 OBC 34.8 145.1 VBC 28 15 14 12 44.6 277.8 5048.3 227 20930 A 28 10 06 33 67.57 644.48 7546.08 67.50 7.71 6728.4 6775.8 63.3 18.4 -25.44 335.89 OBC 42.3 154.6 VBC 28 15 16 12 44.2 277.9 5098.9 228 20930 A 28 10 08 33 74.97 643.79 7544.58 60.50 13.13 6907.1 6380.2 67.7 19.6 -26.48 327.61 OBC 49.8 159.5 VBC 28 15 18 12 43.7 278.1 5149.6 229 20930 A 28 10 10 33 82.36 642.78 7543.03 53.35 16.60 7141.8 6039.0 70.6 20.5 -27.86 319.67 OBC 57.2 162.5 VBC 28 15 20 12 43.3 278.2 5200.2 230 20930 A 28 10 12 33 89.75 641.58 7541.45 46.14 19.06 7422.8 5763.4 72.6 21.1 -29.51 312.11 OBC 64.7 164.4 VBC 28 15 22 12 42.8 278.3 5250.8 231 20930 A 28 10 14 33 97.14 640.35 7539.88 38.89 20.95 7739.5 5564.1 74.1 21.6 -31.39 304.93 OBC 72.1 165.5 VBC 28 15 24 12 42.4 278.5 5301.3 232 20930 A 28 10 16 33 104.52 639.24 7538.33 31.61 22.49 8081.8 5450.1 75.3 22.1 -33.45 298.09 OBC 79.6 166.0 VBC 28 15 26 12 41.9 278.6 5351.9 233 20930 A 28 10 18 33 111.91 638.39 7536.83 24.33 23.80 8440.0 5427.2 76.3 22.5 -35.63 291.53 OBC 87.0 164.0 VBC 28 15 28 12 41.5 278.7 5402.4 234 20930 A 28 10 20 33 119.28 637.92 7535.40 17.04 24.97 8805.4 5496.5 77.2 22.9 -37.91 285.20 OBC 85.5 350.6 VBC 28 15 30 12 41.0 278.9 5453.0 235 20930 A 28 10 22 33 126.66 637.93 7534.08 9.74 26.05 9170.3 5654.2 78.0 23.2 -40.23 279.02 OBC 78.0 349.3 VBC 28 15 32 12 40.6 279.0 5503.5 236 20930 A 28 10 24 33 134.03 638.48 7532.87 2.44 27.08 9527.7 5892.6 78.8 23.6 -42.57 272.91 OBC 70.6 349.0 VBC 28 15 34 12 40.1 279.2 5554.0 237 20930 A 28 10 25 14 136.50 638.79 Eqa 7532.50 0.00 27.42 9644.6 5988.7 79.0 23.7 -43.36 251.66 OBC 68.1 348.9 VBC 28 15 34 53 40.0 279.2 5570.8 238 20930 D 28 10 26 33 141.40 639.58 7531.81 -4.85 26.74 9871.7 6329.0 78.5 23.5 -44.90 266.79 OBC 63.4 351.5 VBC 28 15 36 12 39.7 279.3 5604.4 239 20930 D 28 10 28 33 148.77 641.21 7530.91 -12.15 25.70 10197.1 6873.1 77.7 23.1 -47.18 260.59 OBC 56.2 354.1 VBC 28 15 38 12 39.2 279.4 5654.9 240 20930 D 28 10 30 33 156.14 643.31 7530.18 -19.43 24.60 10499.3 7447.5 76.8 22.7 -49.38 254.24 OBC 49.0 355.8 VBC 28 15 40 12 38.7 279.6 5705.3 241 20930 D 28 10 32 33 163.51 645.76 7529.64 -26.71 23.40 10774.4 8043.8 75.9 22.4 -51.46 247.65 OBC 41.8 357.2 VBC 28 15 42 12 38.3 279.7 5755.7 242 20930 D 28 10 34 33 170.87 648.45 7529.29 -33.98 22.03 11019.1 8655.4 74.8 21.9 -53.39 240.77 OBC 34.5 358.5 VBC 28 15 44 12 37.8 279.8 5806.1 243 20930 D 28 10 36 33 178.24 651.20 7529.14 -41.22 20.41 11230.6 9277.0 73.5 21.5 -55.13 233.54 OBC 27.3 359.8 VBC 28 15 46 12 37.4 280.0 5856.4 244 20930 D 28 10 37 02 180.00 651.85 Apo 7529.13 -42.95 19.96 11276.0 9426.7 73.1 21.3 -55.52 218.29 OBC 25.6 0.1 VBC 28 15 46 41 37.3 280.0 5868.5 245 20930 D 28 10 38 33 185.60 653.85 7529.19 -48.44 18.37 11406.4 9903.7 71.8 20.9 -56.64 225.93 OBC 20.1 1.3 VBC 28 15 48 12 36.9 280.1 5906.8 246 20930 D 28 10 40 33 192.97 656.22 7529.44 -55.61 15.67 11544.6 10531.3 69.6 20.2 -57.86 217.93 OBC 12.8 3.3 VBC 28 15 50 12 36.5 280.2 5957.1 247 20930 D 28 10 42 33 200.33 658.14 7529.90 -62.70 11.75 11643.8 11155.4 66.4 19.3 -58.77 209.59 OBC 5.6 6.5 VBC 28 15 52 12 36.0 280.4 6007.4 248 20930 D 28 10 44 33 207.70 659.46 7530.54 -69.61 5.39 11702.7 11771.5 61.2 18.0 -59.32 200.98 OBC -1.6 11.9 NVD 28 15 54 12 35.6 280.5 6057.7 249 20930 D 28 10 46 33 215.07 660.07 7531.36 -76.07 353.20 11720.8 12374.4 -51.9 16.0 -59.50 192.23 OBC -8.7 23.0 NVD 28 15 56 12 35.1 280.7 6107.9 250 20930 D 28 10 48 33 222.44 659.88 7532.35 -81.06 324.93 11697.5 12958.1 -33.5 13.1 -59.29 183.49 OBC -15.9 49.9 NVD 28 15 58 12 34.7 280.8 6158.2 251 20930 D 28 10 50 33 229.81 658.87 7533.49 -81.42 275.08 11633.0 13514.8 -8.1 11.1 -58.70 174.90 OBC -23.0 98.1 NVD 28 16 00 12 34.2 280.9 6208.4 252 20930 D 28 10 52 33 237.18 657.03 7534.75 -76.76 243.83 11527.6 14035.1 6.2 11.1 -57.76 166.59 OBC -30.0 127.4 NVD 28 16 02 12 33.8 281.1 6258.6 253 20930 D 28 10 54 33 244.56 654.45 7536.13 -70.38 230.49 11382.2 14506.8 12.4 11.3 -56.49 158.63 OBC -37.0 138.3 NVD 28 16 04 12 33.3 281.2 6308.7 254 20930 D 28 10 56 33 251.94 651.22 7537.60 -63.49 223.69 11197.8 14914.8 15.7 11.5 -54.93 151.08 OBC -43.8 142.0 NVD 28 16 06 12 32.9 281.4 6358.8 255 20930 D 28 10 58 33 259.32 647.49 7539.13 -56.41 219.57 10976.2 15241.7 17.7 11.6 -53.14 143.92 OBC -50.5 141.9 NVD 28 16 08 12 32.4 281.5 6409.0 256 20930 D 28 11 00 33 266.71 643.44 7540.70 -49.22 216.76 10719.3 15469.0 19.1 11.7 -51.13 137.13 OBC -57.0 139.0 NVD 28 16 10 12 32.0 281.6 6459.0 257 20930 D 28 11 02 33 274.10 639.26 7542.28 -41.98 214.66 10429.6 15580.6 20.1 11.8 -48.97 130.66 OBC -63.0 132.8 NVD 28 16 12 12 31.5 281.8 6509.1 258 20930 D 28 11 04 33 281.49 635.17 7543.84 -34.71 213.00 10110.4 15567.4 21.0 11.8 -46.67 124.42 OBC -68.2 122.0 NVD 28 16 14 12 31.1 281.9 6559.1 259 20930 D 28 11 06 33 288.89 631.35 7545.37 -27.42 211.60 9765.1 15430.5 21.7 11.9 -44.28 118.36 OBC -71.8 104.9 NVD 28 16 16 12 30.6 282.1 6609.2 260 20930 D 28 11 08 33 296.28 627.99 7546.83 -20.11 210.38 9398.0 15180.3 22.3 12.0 -41.83 112.39 OBC -72.9 82.2 NVD 28 16 18 12 30.2 282.2 6659.1 261 20930 D 28 11 10 33 303.68 625.24 7548.20 -12.79 209.27 9014.3 14833.7 22.9 12.0 -39.34 106.43 OBC -71.1 60.2 NVD 28 16 20 12 29.7 282.3 6709.1 262 20930 D 28 11 12 33 311.09 623.23 7549.45 -5.47 208.22 8619.8 14409.1 23.5 12.1 -36.86 100.39 OBC -67.0 44.3 NVD 28 16 22 12 29.3 282.5 6759.0 263 20930 D 28 11 14 03 316.61 622.24 Eqa 7550.31 -0.00 207.45 8322.7 14052.1 23.9 12.1 -35.03 71.64 OBC -63.1 36.1 NVD 28 16 23 42 28.9 282.6 6796.2 264 20930 A 28 11 14 33 318.49 622.01 7550.58 1.86 207.71 8221.4 13973.6 23.7 12.1 -34.41 94.19 OBC -61.3 34.6 NVD 28 16 24 12 28.8 282.6 6808.9 265

Page 317: ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM …myreaders.info/00_Orbital__Mechanics__-__Model_____Simulation... · ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM-MSS)

www.m

yrea

ders

.inf

o

OM-MSS Page 317 SATELLITE PASS - GROUND TRACE [acronym - Line Of Sight (LOS), On Board Computerr (OBC), Visible Band Camera (VBC), Night Vision Devices (NVD) ] ORBIT, INPUT TIME, POSIION, SAT VELOCITY, GROUND TRACE, RANGE, DIST, PITCH/ROLL, EL/AZ, ACCESS EL/AZ, DATA SOLAR TIME EL/AZ, DIST Line 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 @ES 18 19 20 @SS 21 22 23 24 25 26 27 @ES 28 29 30 No. Node GMT Anomaly Height @ Vel Lat(SAT)Log Slant S-Sat Pitch Roll EL(SAT)AZ Control EL(SUN)AZ Acq. LMT(ES) EL(SUN)AZ S-Sun Nos D H M S deg km meter deg deg km km deg deg deg D H M S deg km 20930 A 28 11 16 33 325.90 621.63 7551.55 9.20 208.75 7827.3 13626.1 23.2 12.0 -32.02 87.74 OBC -54.3 30.5 NVD 28 16 26 12 28.4 282.8 6858.8 266 20930 A 28 11 18 33 333.31 622.07 7552.35 16.53 209.83 7446.6 13224.9 22.6 12.0 -29.75 80.97 OBC -47.2 28.1 NVD 28 16 28 12 27.9 282.9 6908.7 267 20930 A 28 11 20 33 340.72 623.26 7552.97 23.85 211.00 7090.1 12780.5 22.0 11.9 -27.64 73.79 OBC -39.9 26.8 NVD 28 16 30 12 27.5 283.1 6958.5 268 20930 A 28 11 22 33 348.13 625.10 7553.39 31.17 212.30 6769.5 12302.1 21.4 11.9 -25.75 66.14 OBC -32.7 26.3 NVD 28 16 32 12 27.0 283.2 7008.3 269 20930 A 28 11 24 33 355.55 627.44 7553.61 38.47 213.83 6497.3 11798.0 20.6 11.8 -24.15 58.01 OBC -25.4 26.5 NVD 28 16 34 12 26.6 283.3 7058.0 270 20931 A 28 11 25 46 360.00 629.02 Pri 7553.65 42.85 214.90 6362.3 11485.6 20.0 11.8 -23.36 30.59 OBC -21.0 26.9 NVD 28 16 35 25 26.3 283.4 7087.9 271 20930 A 28 11 26 33 2.96 630.13 7553.64 45.75 215.70 6286.1 11275.1 19.6 11.7 -22.91 49.42 OBC -18.1 27.4 NVD 28 16 36 12 26.1 283.5 7107.8 272 20931 A 28 11 28 33 10.37 632.97 7553.45 52.99 218.13 6147.2 10739.6 18.4 11.7 -22.08 40.45 OBC -10.8 29.2 NVD 28 16 38 12 25.7 283.6 7157.5 273 20931 A 28 11 30 33 17.78 635.80 7553.07 60.15 221.54 6088.8 10197.2 16.7 11.5 -21.73 31.25 OBC -3.6 32.2 NVD 28 16 40 12 25.3 283.8 7207.1 274 20931 A 28 11 32 33 25.19 638.44 7552.49 67.19 226.84 6115.3 9653.2 14.2 11.4 -21.89 22.01 OBC 3.7 37.4 NVD 28 16 42 12 24.8 283.9 7256.8 275 20931 A 28 11 34 33 32.60 640.74 7551.72 73.90 236.38 6225.7 9112.7 9.7 11.2 -22.53 12.94 OBC 10.9 47.2 VBC 28 16 44 12 24.4 284.1 7306.4 276 20931 A 28 11 36 33 40.01 642.57 7550.79 79.65 257.33 6414.3 8581.1 0.0 11.0 -23.64 4.22 OBC 18.0 68.6 VBC 28 16 46 12 23.9 284.2 7355.9 277 20931 A 28 11 38 33 47.42 643.87 7549.69 82.02 302.91 6671.6 8064.1 -21.6 11.9 -25.14 355.96 OBC 25.1 115.2 VBC 28 16 48 12 23.5 284.4 7405.5 278 20931 A 28 11 40 33 54.82 644.59 7548.46 78.63 343.50 6986.0 7568.3 -45.2 14.8 -26.99 348.22 OBC 32.1 157.2 VBC 28 16 50 12 23.0 284.5 7455.0 279 20931 A 28 11 42 33 62.22 644.74 7547.11 72.58 1.06 7345.0 7100.9 58.0 17.2 -29.10 341.01 OBC 38.9 176.9 VBC 28 16 52 12 22.6 284.7 7504.5 280 20931 A 28 11 44 33 69.62 644.39 7545.67 65.79 9.39 7736.5 6670.4 64.7 18.8 -31.43 334.27 OBC 45.5 188.3 VBC 28 16 54 12 22.1 284.8 7553.9 281 20931 A 28 11 46 33 77.02 643.61 7544.16 58.74 14.19 8149.0 6286.4 68.6 19.9 -33.91 327.95 OBC 51.8 197.5 VBC 28 16 56 12 21.7 285.0 7603.3 282 20931 A 28 11 48 33 84.41 642.54 7542.60 51.57 17.35 8572.6 5959.7 71.2 20.7 -36.51 321.96 OBC 57.7 207.1 VBC 28 16 58 12 21.3 285.1 7652.7 283 20931 A 28 11 50 33 91.80 641.32 7541.02 44.35 19.64 8998.4 5701.3 73.1 21.3 -39.18 316.22 OBC 62.8 218.8 VBC 28 17 00 12 20.8 285.3 7702.0 284 20931 A 28 11 52 33 99.19 640.10 7539.44 37.09 21.42 9418.5 5521.7 74.5 21.8 -41.90 310.63 OBC 66.5 234.0 VBC 28 17 02 12 20.4 285.4 7751.3 285 20931 A 28 11 54 33 106.57 639.04 7537.90 29.81 22.90 9826.3 5429.4 75.6 22.2 -44.64 305.11 OBC 68.4 252.6 VBC 28 17 04 12 19.9 285.6 7800.6 286 20931 A 28 11 56 33 113.95 638.27 7536.42 22.52 24.17 10215.9 5429.1 76.6 22.6 -47.36 299.56 OBC 67.8 271.9 VBC 28 17 06 12 19.5 285.7 7849.8 287 20931 A 28 11 58 33 121.33 637.91 7535.02 15.23 25.31 10582.3 5520.7 77.5 23.0 -50.04 293.89 OBC 64.9 288.3 VBC 28 17 08 12 19.0 285.9 7899.0 288 20931 A 28 12 00 33 128.70 638.05 7533.73 7.93 26.37 10921.0 5699.3 78.3 23.3 -52.65 287.98 OBC 60.5 300.3 VBC 28 17 10 12 18.6 286.0 7948.2 289 20931 A 28 12 02 33 136.08 638.73 7532.57 0.64 27.40 11228.3 5956.4 79.0 23.7 -55.14 281.73 OBC 55.1 308.6 VBC 28 17 12 12 18.2 286.2 7997.3 290 20931 A 28 12 02 44 136.72 638.82 Eqa 7532.47 0.00 27.49 11253.5 5982.2 79.1 23.7 -55.36 251.62 OBC 54.6 309.2 VBC 28 17 12 23 18.1 286.2 8001.6 291 20931 D 28 12 04 33 143.45 639.96 7531.55 -6.66 26.56 11500.8 6454.1 78.4 23.4 -57.49 275.04 OBC 50.4 316.1 VBC 28 17 14 12 17.7 286.3 8046.4 292 20931 D 28 12 06 33 150.81 641.71 7530.69 -13.95 25.50 11735.6 7006.9 77.5 23.0 -59.63 267.78 OBC 45.3 321.9 VBC 28 17 16 12 17.3 286.5 8095.4 293 20931 D 28 12 08 33 158.18 643.90 7530.01 -21.23 24.38 11930.5 7587.7 76.7 22.7 -61.52 259.88 OBC 39.7 326.4 VBC 28 17 18 12 16.8 286.7 8144.4 294 20931 D 28 12 10 33 165.55 646.42 7529.52 -28.51 23.15 12083.3 8188.8 75.7 22.3 -63.08 251.27 OBC 33.8 330.0 VBC 28 17 20 12 16.4 286.8 8193.4 295 20931 D 28 12 12 33 172.91 649.14 7529.23 -35.77 21.72 12192.5 8803.8 74.5 21.9 -64.25 242.00 OBC 27.8 333.0 VBC 28 17 22 12 16.0 287.0 8242.3 296 20931 D 28 12 14 29 180.00 651.77 Apo 7529.13 -42.74 20.09 12255.1 9403.9 73.2 21.4 -64.94 218.40 OBC 21.9 335.5 VBC 28 17 24 08 15.5 287.1 8289.3 297 20931 D 28 12 14 33 180.28 651.87 7529.13 -43.01 20.01 12256.7 9427.5 73.2 21.4 -64.96 232.20 OBC 21.7 335.6 VBC 28 17 24 12 15.5 287.1 8291.2 298 20931 D 28 12 16 33 187.64 654.46 7529.24 -50.22 17.85 12275.1 10055.3 71.4 20.8 -65.17 222.12 OBC 15.5 338.1 VBC 28 17 26 12 15.1 287.3 8340.0 299 20931 D 28 12 18 33 195.01 656.73 7529.55 -57.38 14.91 12247.0 10682.9 69.0 20.0 -64.85 212.06 OBC 9.3 341.0 VBC 28 17 28 12 14.6 287.5 8388.8 300 20931 D 28 12 20 33 202.37 658.51 7530.06 -64.43 10.54 12172.1 11306.0 65.4 19.0 -64.03 202.37 OBC 3.1 344.8 NVD 28 17 30 12 14.2 287.6 8437.5 301 20931 D 28 12 22 33 209.74 659.66 7530.75 -71.27 3.20 12050.7 11919.9 59.5 17.6 -62.75 193.27 OBC -3.0 351.1 NVD 28 17 32 12 13.8 287.8 8486.2 302 20931 D 28 12 24 33 217.11 660.08 7531.62 -77.52 348.42 11883.0 12519.3 -48.5 15.3 -61.06 184.90 OBC -9.1 4.5 NVD 28 17 34 12 13.3 287.9 8534.9 303 20931 D 28 12 26 33 224.48 659.68 7532.65 -81.73 313.65 11669.8 13097.7 -27.2 12.4 -59.04 177.29 OBC -15.0 37.3 NVD 28 17 36 12 12.9 288.1 8583.5 304 20931 D 28 12 28 33 231.85 658.45 7533.82 -80.58 264.78 11412.2 13647.2 -3.4 11.0 -56.73 170.37 OBC -20.8 83.8 NVD 28 17 38 12 12.5 288.3 8632.1 305 20931 D 28 12 30 33 239.23 656.42 7535.13 -75.27 239.56 11111.8 14157.5 8.2 11.1 -54.20 164.08 OBC -26.3 105.9 NVD 28 17 40 12 12.0 288.4 8680.6 306 20931 D 28 12 32 33 246.61 653.66 7536.53 -68.71 228.49 10770.4 14615.9 13.4 11.3 -51.49 158.28 OBC -31.6 113.2 NVD 28 17 42 12 11.6 288.6 8729.1 307 20931 D 28 12 34 33 253.99 650.29 7538.02 -61.75 222.56 10390.3 15006.6 16.2 11.5 -48.64 152.89 OBC -36.5 114.4 NVD 28 17 44 12 11.1 288.8 8777.5 308 20931 D 28 12 36 33 261.37 646.46 7539.56 -54.63 218.85 9974.2 15311.6 18.0 11.6 -45.68 147.78 OBC -40.9 112.5 NVD 28 17 46 12 10.7 288.9 8825.9 309

Page 318: ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM …myreaders.info/00_Orbital__Mechanics__-__Model_____Simulation... · ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM-MSS)

www.m

yrea

ders

.inf

o

OM-MSS Page 318 SATELLITE PASS - GROUND TRACE [acronym - Line Of Sight (LOS), On Board Computerr (OBC), Visible Band Camera (VBC), Night Vision Devices (NVD) ] ORBIT, INPUT TIME, POSIION, SAT VELOCITY, GROUND TRACE, RANGE, DIST, PITCH/ROLL, EL/AZ, ACCESS EL/AZ, DATA SOLAR TIME EL/AZ, DIST Line 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 @ES 18 19 20 @SS 21 22 23 24 25 26 27 @ES 28 29 30 No. Node GMT Anomaly Height @ Vel Lat(SAT)Log Slant S-Sat Pitch Roll EL(SAT)AZ Control EL(SUN)AZ Acq. LMT(ES) EL(SUN)AZ S-Sun Nos D H M S deg km meter deg deg km km deg deg deg D H M S deg km 20931 D 28 12 38 33 268.76 642.36 7541.14 -47.43 216.25 9525.7 15512.6 19.3 11.7 -42.63 142.85 OBC -44.6 108.3 NVD 28 17 48 12 10.3 289.1 8874.2 310 20931 D 28 12 40 33 276.15 638.19 7542.71 -40.19 214.28 9048.5 15594.7 20.3 11.8 -39.52 138.00 OBC -47.6 102.3 NVD 28 17 50 12 9.8 289.3 8922.5 311 20931 D 28 12 42 33 283.54 634.15 7544.27 -32.91 212.70 8547.5 15551.0 21.1 11.9 -36.36 133.12 OBC -49.5 94.9 NVD 28 17 52 12 9.4 289.5 8970.7 312 20931 D 28 12 44 33 290.94 630.43 7545.78 -25.61 211.35 8028.5 15385.2 21.8 11.9 -33.19 128.11 OBC -50.4 86.7 NVD 28 17 54 12 9.0 289.6 9018.9 313 20931 D 28 12 46 33 298.33 627.21 7547.22 -18.30 210.16 7498.4 15109.6 22.4 12.0 -30.01 122.84 OBC -50.0 78.1 NVD 28 17 56 12 8.5 289.8 9067.0 314 20931 D 28 12 48 33 305.74 624.64 7548.56 -10.98 209.07 6966.1 14742.0 23.0 12.0 -26.87 117.18 OBC -48.6 69.9 NVD 28 17 58 12 8.1 290.0 9115.1 315 20931 D 28 12 50 33 313.14 622.82 7549.78 -3.65 208.03 6442.3 14300.6 23.6 12.1 -23.79 110.96 OBC -46.1 62.4 NVD 28 18 00 12 7.7 290.2 9163.1 316 20931 D 28 12 51 33 316.83 622.21 Eqa 7550.34 -0.00 207.52 6188.8 14058.5 23.8 12.1 -22.30 71.60 OBC -44.5 59.1 NVD 28 18 01 12 7.5 290.2 9187.0 317 20931 A 28 12 52 33 320.55 621.81 7550.86 3.68 208.04 5940.8 13899.4 23.6 12.1 -20.83 104.00 OBC -41.9 56.5 NVD 28 18 02 12 7.3 290.3 9211.1 318 20931 A 28 12 54 33 327.95 621.65 7551.79 11.01 209.08 5479.1 13537.2 23.0 12.0 -18.08 96.11 OBC -36.4 52.6 NVD 28 18 04 12 6.8 290.5 9259.0 319 20931 A 28 12 56 33 335.36 622.28 7552.54 18.34 210.18 5078.4 13123.9 22.4 12.0 -15.64 87.13 OBC -30.6 49.9 NVD 28 18 06 12 6.4 290.7 9306.8 320 20931 A 28 12 58 33 342.78 623.65 7553.10 25.66 211.37 4763.4 12669.7 21.8 11.9 -13.68 76.98 OBC -24.6 48.1 NVD 28 18 08 12 6.0 290.9 9354.6 321 20931 A 28 13 00 33 350.19 625.63 7553.47 32.98 212.72 4559.3 12183.7 21.1 11.9 -12.38 65.80 OBC -18.5 47.3 NVD 28 18 10 12 5.5 291.0 9402.4 322 20931 A 28 13 02 33 357.60 628.08 7553.64 40.28 214.32 4486.6 11673.7 20.3 11.8 -11.92 53.98 OBC -12.3 47.4 NVD 28 18 12 12 5.1 291.2 9450.0 323 20932 A 28 13 03 12 360.00 628.94 Pri 7553.65 42.63 214.91 4493.0 11504.6 20.0 11.8 -11.96 30.72 OBC -10.3 47.6 NVD 28 18 12 51 5.0 291.3 9465.5 324 20931 A 28 13 04 33 5.01 630.83 7553.60 47.55 216.30 4553.9 11146.5 19.3 11.7 -12.35 42.16 OBC -6.1 48.5 NVD 28 18 14 12 4.7 291.4 9497.7 325 20932 A 28 13 06 33 12.43 633.69 7553.36 54.77 218.93 4755.4 10608.2 18.0 11.6 -13.63 30.96 OBC 0.1 50.7 NVD 28 18 16 12 4.3 291.6 9545.2 326 20932 A 28 13 08 33 19.84 636.49 7552.93 61.91 222.69 5072.9 10064.3 16.2 11.5 -15.61 20.83 OBC 6.2 54.6 VBC 28 18 18 12 3.8 291.8 9592.7 327 20932 A 28 13 10 33 27.25 639.07 7552.29 68.89 228.72 5481.9 9520.0 13.3 11.3 -18.10 11.93 OBC 12.2 61.2 VBC 28 18 20 12 3.4 292.0 9640.2 328 20932 A 28 13 12 33 34.66 641.26 7551.48 75.46 240.09 5958.0 8980.5 7.9 11.1 -20.94 4.21 OBC 18.0 73.8 VBC 28 18 22 12 3.0 292.2 9687.5 329 20932 A 28 13 14 33 42.06 642.98 7550.50 80.72 266.18 6479.4 8451.3 -4.0 11.0 -24.02 357.51 OBC 23.7 101.7 VBC 28 18 24 12 2.5 292.3 9734.9 330 20932 A 28 13 16 33 49.47 644.13 7549.36 81.65 315.64 7028.2 7938.3 -28.3 12.5 -27.24 351.65 OBC 29.0 153.8 VBC 28 18 26 12 2.1 292.5 9782.1 331 20932 A 28 13 18 33 56.87 644.72 7548.10 77.27 349.40 7590.2 7448.0 -49.3 15.5 -30.57 346.45 OBC 34.0 190.9 VBC 28 18 28 12 1.7 292.7 9829.3 332 20932 A 28 13 20 33 64.27 644.74 7546.72 70.94 3.72 8153.8 6988.1 60.1 17.7 -33.96 341.75 OBC 38.5 209.6 VBC 28 18 30 12 1.3 292.9 9876.4 333 20932 A 28 13 22 33 71.67 644.27 7545.26 64.06 10.87 8709.9 6567.4 65.9 19.1 -37.39 337.41 OBC 42.4 222.1 VBC 28 18 32 12 0.9 293.1 9923.5 334 20932 A 28 13 24 33 79.07 643.41 7543.73 56.97 15.15 9250.7 6195.8 69.4 20.1 -40.84 333.32 OBC 45.4 232.9 VBC 28 18 34 12 0.4 293.3 9970.4 335 20932 A 28 13 26 33 86.46 642.29 7542.16 49.79 18.04 9770.1 5884.2 71.8 20.8 -44.29 329.36 OBC 47.5 243.2 VBC 28 18 36 12 0.0 293.5 10017.4 336 20932 A 28 13 28 33 93.85 641.05 7540.58 42.55 20.19 10262.5 5643.6 73.5 21.4 -47.73 325.43 OBC 48.5 253.3 VBC 28 18 38 12 -0.4 293.7 10064.2 337 20932 A 28 13 30 33 101.23 639.86 7539.01 35.29 21.88 10723.6 5484.4 74.8 21.9 -51.15 321.41 OBC 48.3 263.1 VBC 28 18 40 12 -0.8 293.9 10111.0 338 20932 A 28 13 32 33 108.62 638.86 7537.49 28.01 23.29 11149.2 5414.2 76.0 22.3 -54.53 317.20 OBC 47.0 272.2 VBC 28 18 42 12 -1.3 294.1 10157.7 339 20932 A 28 13 34 33 115.99 638.18 7536.03 20.72 24.52 11536.0 5436.6 76.9 22.7 -57.85 312.64 OBC 44.6 280.2 VBC 28 18 44 12 -1.7 294.3 10204.3 340 20932 A 28 13 36 33 123.37 637.93 7534.65 13.42 25.64 11880.9 5550.2 77.7 23.1 -61.07 307.55 OBC 41.4 287.0 VBC 28 18 46 12 -2.1 294.5 10250.8 341 20932 A 28 13 38 33 130.75 638.20 7533.39 6.13 26.69 12181.5 5749.3 78.5 23.5 -64.17 301.69 OBC 37.5 292.5 VBC 28 18 48 12 -2.5 294.7 10297.3 342 20932 A 28 13 40 14 136.94 638.85 Eqa 7532.44 0.00 27.55 12397.9 5975.7 79.1 23.7 -66.63 251.58 OBC 33.8 296.2 VBC 28 18 49 53 -2.9 294.9 10336.3 343 20932 D 28 13 40 33 138.12 639.02 7532.27 -1.17 27.39 12435.4 6055.9 79.0 23.7 -67.08 294.75 OBC 33.3 296.9 VBC 28 18 50 12 -2.9 294.9 10343.7 344 20932 D 28 13 42 33 145.49 640.38 7531.29 -8.46 26.37 12640.9 6581.6 78.2 23.3 -69.72 286.33 OBC 30.3 301.1 VBC 28 18 52 12 -3.3 295.1 10390.0 345 20932 D 28 13 44 33 152.86 642.24 7530.48 -15.75 25.30 12796.3 7142.6 77.4 23.0 -71.94 276.01 OBC 26.8 304.7 VBC 28 18 54 12 -3.8 295.3 10436.3 346 20932 D 28 13 46 33 160.22 644.52 7529.86 -23.04 24.16 12900.5 7729.5 76.5 22.6 -73.60 263.53 OBC 22.9 307.8 VBC 28 18 56 12 -4.2 295.6 10482.4 347 20932 D 28 13 48 33 167.59 647.09 7529.42 -30.31 22.88 12952.5 8334.9 75.5 22.2 -74.48 249.18 OBC 18.9 310.5 VBC 28 18 58 12 -4.6 295.8 10528.5 348 20932 D 28 13 50 33 174.95 649.82 7529.18 -37.56 21.40 12951.6 8952.9 74.3 21.8 -74.47 234.08 OBC 14.7 312.8 VBC 28 19 00 12 -5.0 296.0 10574.5 349 20932 D 28 13 51 56 180.00 651.69 Apo 7529.13 -42.53 20.21 12920.4 9381.0 73.3 21.4 -73.92 218.51 OBC 11.7 314.3 VBC 28 19 01 35 -5.3 296.1 10606.0 350 20932 D 28 13 52 33 182.32 652.53 7529.14 -44.80 19.60 12897.6 9578.5 72.8 21.2 -73.54 219.80 OBC 10.4 315.0 VBC 28 19 02 12 -5.4 296.2 10620.4 351 20932 D 28 13 54 33 189.68 655.05 7529.31 -52.00 17.28 12790.3 10207.1 70.9 20.6 -71.84 207.48 OBC 6.0 317.2 VBC 28 19 04 12 -5.8 296.4 10666.2 352 20932 D 28 13 56 33 197.05 657.21 7529.67 -59.13 14.06 12630.0 10834.5 68.3 19.8 -69.55 197.38 OBC 1.7 319.8 NVD 28 19 06 12 -6.2 296.6 10712.0 353 20932 D 28 13 58 33 204.42 658.84 7530.23 -66.15 9.17 12417.1 11456.3 64.3 18.7 -66.84 189.26 OBC -2.6 323.7 NVD 28 19 08 12 -6.6 296.9 10757.6 354

Page 319: ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM …myreaders.info/00_Orbital__Mechanics__-__Model_____Simulation... · ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM-MSS)

www.m

yrea

ders

.inf

o

OM-MSS Page 319 SATELLITE PASS - GROUND TRACE [acronym - Line Of Sight (LOS), On Board Computerr (OBC), Visible Band Camera (VBC), Night Vision Devices (NVD) ] ORBIT, INPUT TIME, POSIION, SAT VELOCITY, GROUND TRACE, RANGE, DIST, PITCH/ROLL, EL/AZ, ACCESS EL/AZ, DATA SOLAR TIME EL/AZ, DIST Line 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 @ES 18 19 20 @SS 21 22 23 24 25 26 27 @ES 28 29 30 No. Node GMT Anomaly Height @ Vel Lat(SAT)Log Slant S-Sat Pitch Roll EL(SAT)AZ Control EL(SUN)AZ Acq. LMT(ES) EL(SUN)AZ S-Sun Nos D H M S deg km meter deg deg km km deg deg deg D H M S deg km 20932 D 28 14 00 33 211.78 659.81 7530.97 -72.89 0.60 12152.4 12067.7 57.5 17.1 -63.83 182.70 OBC -6.7 330.8 NVD 28 19 10 12 -7.0 297.1 10803.2 355 20932 D 28 14 02 33 219.15 660.03 7531.89 -78.86 342.44 11837.1 12663.2 -44.4 14.6 -60.62 177.30 OBC -10.7 347.0 NVD 28 19 12 12 -7.5 297.3 10848.6 356 20932 D 28 14 04 33 226.52 659.42 7532.96 -82.04 300.96 11472.3 13236.0 -20.5 11.8 -57.25 172.76 OBC -14.4 26.1 NVD 28 19 14 12 -7.9 297.5 10894.0 357 20932 D 28 14 06 33 233.90 657.99 7534.17 -79.49 256.37 11059.8 13777.6 0.5 11.0 -53.77 168.85 OBC -17.8 67.8 NVD 28 19 16 12 -8.3 297.8 10939.3 358 20932 D 28 14 08 33 241.27 655.77 7535.51 -73.71 236.09 10601.4 14277.2 9.8 11.2 -50.19 165.38 OBC -20.9 84.7 NVD 28 19 18 12 -8.7 298.0 10984.5 359 20932 D 28 14 10 33 248.65 652.84 7536.94 -67.01 226.78 10099.5 14721.4 14.2 11.4 -46.54 162.24 OBC -23.6 90.3 NVD 28 19 20 12 -9.1 298.2 11029.6 360 20932 D 28 14 12 33 256.03 649.34 7538.44 -60.00 221.57 9556.5 15093.7 16.7 11.5 -42.81 159.30 OBC -25.8 91.3 NVD 28 19 22 12 -9.5 298.5 11074.6 361 20932 D 28 14 14 33 263.42 645.42 7540.00 -52.86 218.20 8975.4 15375.6 18.4 11.6 -39.03 156.48 OBC -27.5 90.1 NVD 28 19 24 12 -9.9 298.7 11119.5 362 20932 D 28 14 16 33 270.80 641.29 7541.57 -45.64 215.79 8359.5 15549.3 19.6 11.7 -35.18 153.68 OBC -28.6 87.7 NVD 28 19 26 12 -10.3 298.9 11164.3 363 20932 D 28 14 18 33 278.19 637.13 7543.15 -38.39 213.93 7712.8 15601.4 20.5 11.8 -31.26 150.81 OBC -29.1 84.6 NVD 28 19 28 12 -10.7 299.2 11208.9 364 20932 D 28 14 20 33 285.59 633.15 7544.70 -31.10 212.41 7040.0 15527.4 21.3 11.9 -27.27 147.76 OBC -29.0 81.1 NVD 28 19 30 12 -11.1 299.4 11253.5 365 20932 D 28 14 22 33 292.99 629.54 7546.19 -23.80 211.11 6346.6 15333.3 22.0 11.9 -23.19 144.39 OBC -28.3 77.4 NVD 28 19 32 12 -11.5 299.6 11298.0 366 20932 D 28 14 24 33 300.38 626.47 7547.60 -16.49 209.95 5640.1 15033.3 22.6 12.0 -19.00 140.49 OBC -27.1 73.9 NVD 28 19 34 12 -11.9 299.9 11342.4 367 20932 D 28 14 26 33 307.79 624.08 7548.91 -9.16 208.88 4930.1 14645.6 23.1 12.0 -14.68 135.77 OBC -25.4 70.5 NVD 28 19 36 12 -12.3 300.1 11386.6 368 20932 D 28 14 28 33 315.19 622.46 7550.09 -1.84 207.84 4231.5 14188.5 23.7 12.1 -10.19 129.74 OBC -23.3 67.3 NVD 28 19 38 12 -12.7 300.4 11430.8 369 20932 D 28 14 29 04 317.05 622.18 Eqa 7550.37 -0.00 207.59 4060.7 14065.0 23.8 12.1 -9.03 71.56 OBC -22.7 66.6 NVD 28 19 38 43 -12.8 300.4 11441.8 370 20932 A 28 14 30 33 322.60 621.67 7551.13 5.50 208.36 3567.4 13821.3 23.4 12.0 -5.52 121.65 OBC -19.4 64.9 NVD 28 19 40 12 -13.1 300.6 11474.8 371 20932 A 28 14 32 33 330.01 621.71 7552.01 12.83 209.41 2977.7 13445.0 22.8 12.0 -0.80 110.27 LOS -14.8 63.3 NVD 28 19 42 12 -13.5 300.9 11518.8 372 20932 A 28 14 34 33 337.42 622.54 7552.71 20.15 210.53 2529.8 13020.1 22.3 12.0 3.43 94.11 LOS -10.1 62.5 NVD 28 19 44 12 -13.9 301.1 11562.6 373 20932 A 28 14 36 33 344.83 624.07 7553.22 27.48 211.76 2318.9 12556.7 21.6 11.9 5.72 73.00 LOS -5.3 62.4 NVD 28 19 46 12 -14.3 301.4 11606.2 374 20932 A 28 14 38 33 352.24 626.19 7553.54 34.79 213.16 2413.0 12063.5 20.9 11.8 4.65 50.78 LOS -0.5 63.1 NVD 28 19 48 12 -14.7 301.7 11649.8 375 20932 A 28 14 40 33 359.65 628.74 7553.65 42.08 214.83 2781.2 11548.0 20.1 11.8 0.94 32.55 LOS 4.3 64.7 NVD 28 19 50 12 -15.0 301.9 11693.3 376 20933 A 28 14 40 39 360.00 628.86 Pri 7553.65 42.42 214.92 2803.5 11523.6 20.0 11.8 0.73 30.86 LOS 4.5 64.8 NVD 28 19 50 18 -15.1 301.9 11695.3 377 20932 A 28 14 42 33 7.07 631.54 7553.56 49.34 216.95 3329.7 11017.0 19.0 11.7 -3.74 19.57 LOS 8.9 67.2 VBC 28 19 52 12 -15.4 302.2 11736.6 378 20933 A 28 14 44 33 14.48 634.41 7553.26 56.55 219.79 3978.1 10476.2 17.6 11.6 -8.51 10.57 OBC 13.4 71.1 VBC 28 19 54 12 -15.8 302.5 11779.8 379 20933 A 28 14 46 33 21.89 637.18 7552.77 63.66 223.97 4676.8 9931.0 15.6 11.5 -13.13 4.16 OBC 17.6 76.9 VBC 28 19 56 12 -16.2 302.7 11822.8 380 20933 A 28 14 48 33 29.30 639.67 7552.09 70.57 230.91 5397.0 9386.8 12.2 11.3 -17.58 359.40 OBC 21.5 86.0 VBC 28 19 58 12 -16.6 303.0 11865.8 381 20933 A 28 14 50 33 36.71 641.76 7551.22 76.95 244.63 6121.1 8848.7 5.8 11.1 -21.91 355.72 OBC 25.0 102.5 VBC 28 20 00 12 -17.0 303.3 11908.6 382 20933 A 28 14 52 33 44.12 643.35 7550.20 81.52 276.95 6837.5 8322.2 -9.0 11.2 -26.13 352.78 OBC 28.0 138.2 VBC 28 20 02 12 -17.4 303.5 11951.3 383 20933 A 28 14 54 33 51.52 644.37 7549.03 80.92 326.81 7537.8 7813.4 -34.7 13.2 -30.27 350.34 OBC 30.4 192.0 VBC 28 20 04 12 -17.7 303.8 11993.8 384 20933 A 28 14 56 33 58.92 644.81 7547.73 75.79 354.15 8215.6 7329.2 -52.8 16.1 -34.35 348.26 OBC 32.2 223.8 VBC 28 20 06 12 -18.1 304.1 12036.2 385 20933 A 28 14 58 33 66.32 644.70 7546.32 69.27 5.97 8865.7 6877.4 61.9 18.1 -38.38 346.43 OBC 33.3 240.3 VBC 28 20 08 12 -18.5 304.4 12078.4 386 20933 A 28 15 00 33 73.72 644.13 7544.84 62.32 12.18 9483.5 6467.1 66.9 19.4 -42.38 344.78 OBC 33.6 251.4 VBC 28 20 10 12 -18.9 304.7 12120.5 387 20933 A 28 15 02 33 81.12 643.19 7543.29 55.20 16.03 10065.4 6108.5 70.1 20.3 -46.35 343.24 OBC 33.2 260.0 VBC 28 20 12 12 -19.3 305.0 12162.5 388 20933 A 28 15 04 33 88.51 642.03 7541.72 48.00 18.70 10608.0 5812.6 72.3 21.0 -50.29 341.76 OBC 32.0 267.2 VBC 28 20 14 12 -19.6 305.3 12204.3 389 20933 A 28 15 06 33 95.89 640.79 7540.14 40.76 20.71 11108.1 5590.7 73.9 21.6 -54.22 340.27 OBC 30.2 273.4 VBC 28 20 16 12 -20.0 305.5 12246.0 390 20933 A 28 15 08 33 103.28 639.63 7538.58 33.49 22.32 11563.2 5452.4 75.2 22.0 -58.12 338.72 OBC 27.8 278.5 VBC 28 20 18 12 -20.4 305.8 12287.5 391 20933 A 28 15 10 33 110.66 638.69 7537.07 26.21 23.68 11970.9 5404.5 76.3 22.5 -62.00 337.01 OBC 24.8 282.9 VBC 28 20 20 12 -20.8 306.1 12328.9 392 20933 A 28 15 12 33 118.04 638.11 7535.64 18.91 24.88 12329.2 5449.6 77.2 22.8 -65.86 335.02 OBC 21.5 286.4 VBC 28 20 22 12 -21.1 306.4 12370.1 393 20933 A 28 15 14 33 125.42 637.99 7534.29 11.62 25.97 12636.1 5585.0 78.0 23.2 -69.69 332.53 OBC 17.8 289.1 VBC 28 20 24 12 -21.5 306.7 12411.1 394 20933 A 28 15 16 33 132.79 638.38 7533.07 4.32 27.02 12890.2 5804.0 78.8 23.6 -73.48 329.15 OBC 13.8 291.1 VBC 28 20 26 12 -21.9 307.1 12452.0 395 20933 A 28 15 17 45 137.16 638.88 Eqa 7532.41 0.00 27.62 13015.3 5969.2 79.2 23.8 -75.69 251.54 OBC 11.4 292.0 VBC 28 20 27 24 -22.1 307.2 12476.1 396 20933 D 28 15 18 33 140.16 639.33 7531.98 -2.97 27.21 13090.2 6175.7 78.9 23.6 -77.19 324.07 OBC 10.5 292.5 VBC 28 20 28 12 -22.2 307.4 12492.7 397 20933 D 28 15 20 33 147.53 640.82 7531.05 -10.27 26.17 13235.2 6711.5 78.1 23.3 -80.74 315.27 OBC 8.1 293.7 VBC 28 20 30 12 -22.6 307.7 12533.2 398

Page 320: ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM …myreaders.info/00_Orbital__Mechanics__-__Model_____Simulation... · ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM-MSS)

www.m

yrea

ders

.inf

o

OM-MSS Page 320 SATELLITE PASS - GROUND TRACE [acronym - Line Of Sight (LOS), On Board Computerr (OBC), Visible Band Camera (VBC), Night Vision Devices (NVD) ] ORBIT, INPUT TIME, POSIION, SAT VELOCITY, GROUND TRACE, RANGE, DIST, PITCH/ROLL, EL/AZ, ACCESS EL/AZ, DATA SOLAR TIME EL/AZ, DIST Line 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 @ES 18 19 20 @SS 21 22 23 24 25 26 27 @ES 28 29 30 No. Node GMT Anomaly Height @ Vel Lat(SAT)Log Slant S-Sat Pitch Roll EL(SAT)AZ Control EL(SUN)AZ Acq. LMT(ES) EL(SUN)AZ S-Sun Nos D H M S deg km meter deg deg km km deg deg deg D H M S deg km 20933 D 28 15 22 33 154.90 642.78 7530.29 -17.56 25.09 13324.3 7280.0 77.2 22.9 -83.85 297.07 OBC 5.6 294.7 VBC 28 20 32 12 -23.0 308.0 12573.6 399 20933 D 28 15 24 33 162.26 645.14 7529.72 -24.84 23.92 13357.1 7872.5 76.3 22.5 -85.48 257.59 OBC 3.1 295.4 NVD 28 20 34 12 -23.3 308.3 12613.8 400 20933 D 28 15 26 33 169.63 647.77 7529.33 -32.10 22.60 13333.3 8482.0 75.2 22.1 -84.22 215.07 OBC 0.6 296.1 NVD 28 20 36 12 -23.7 308.6 12653.8 401 20933 D 28 15 28 33 176.99 650.50 7529.15 -39.36 21.06 13253.1 9102.7 74.0 21.7 -81.23 194.66 OBC -1.9 296.6 NVD 28 20 38 12 -24.0 309.0 12693.6 402 20933 D 28 15 29 22 180.00 651.61 Apo 7529.13 -42.31 20.33 13204.1 9358.2 73.4 21.4 -79.82 218.62 OBC -2.9 296.8 NVD 28 20 39 01 -24.2 309.1 12709.8 403 20933 D 28 15 30 33 184.36 653.18 7529.17 -46.58 19.15 13116.5 9729.9 72.4 21.1 -77.70 185.18 OBC -4.2 297.2 NVD 28 20 40 12 -24.4 309.3 12733.3 404 20933 D 28 15 32 33 191.72 655.62 7529.39 -53.77 16.65 12924.3 10359.1 70.4 20.4 -73.99 180.00 OBC -6.4 298.1 NVD 28 20 42 12 -24.7 309.6 12772.8 405 20933 D 28 15 34 33 199.09 657.65 7529.81 -60.88 13.12 12677.1 10986.0 67.5 19.6 -70.20 176.80 OBC -8.4 299.7 NVD 28 20 44 12 -25.1 310.0 12812.0 406 20933 D 28 15 36 33 206.46 659.13 7530.42 -67.85 7.58 12375.9 11606.2 63.0 18.4 -66.35 174.65 OBC -10.2 303.1 NVD 28 20 46 12 -25.4 310.3 12851.1 407 20933 D 28 15 38 33 213.82 659.92 7531.21 -74.48 357.47 12022.1 12214.9 -55.1 16.6 -62.46 173.15 OBC -11.7 310.8 NVD 28 20 48 12 -25.8 310.6 12890.0 408 20933 D 28 15 40 33 221.19 659.93 7532.17 -80.05 334.95 11617.1 12806.1 -39.6 13.9 -58.55 172.05 OBC -12.9 330.8 NVD 28 20 50 12 -26.1 311.0 12928.7 409 20933 D 28 15 42 33 228.57 659.11 7533.28 -81.94 287.93 11162.7 13372.7 -14.1 11.4 -54.60 171.25 OBC -13.8 15.1 NVD 28 20 52 12 -26.5 311.3 12967.2 410 20933 D 28 15 44 33 235.94 657.47 7534.53 -78.22 249.65 10660.7 13905.8 3.5 11.0 -50.63 170.67 OBC -14.3 50.5 NVD 28 20 54 12 -26.8 311.7 13005.5 411 20933 D 28 15 46 33 243.32 655.06 7535.89 -72.10 233.24 10113.3 14394.0 11.1 11.2 -46.62 170.25 OBC -14.4 64.1 NVD 28 20 56 12 -27.2 312.0 13043.5 412 20933 D 28 15 48 33 250.70 651.98 7537.35 -65.29 225.30 9523.0 14823.0 14.9 11.4 -42.58 169.96 OBC -14.2 69.1 NVD 28 20 58 12 -27.5 312.4 13081.4 413 20933 D 28 15 50 33 258.08 648.36 7538.87 -58.24 220.67 8892.2 15175.7 17.1 11.6 -38.49 169.80 OBC -13.6 71.0 NVD 28 21 00 12 -27.9 312.7 13119.0 414 20933 D 28 15 52 33 265.46 644.37 7540.43 -51.08 217.60 8223.8 15433.5 18.7 11.7 -34.33 169.75 OBC -12.7 71.4 NVD 28 21 02 12 -28.2 313.1 13156.5 415 20933 D 28 15 54 33 272.85 640.21 7542.01 -43.85 215.35 7520.8 15579.0 19.8 11.7 -30.10 169.79 OBC -11.5 71.1 NVD 28 21 04 12 -28.5 313.5 13193.7 416 20933 D 28 15 56 33 280.24 636.08 7543.58 -36.59 213.59 6786.4 15600.7 20.7 11.8 -25.76 169.95 OBC -10.0 70.6 NVD 28 21 06 12 -28.9 313.8 13230.6 417 20933 D 28 15 58 33 287.64 632.17 7545.12 -29.30 212.14 6024.0 15496.6 21.4 11.9 -21.27 170.23 OBC -8.3 69.9 NVD 28 21 08 12 -29.2 314.2 13267.4 418 20933 D 28 16 00 33 295.04 628.68 7546.59 -21.99 210.88 5237.5 15275.0 22.1 11.9 -16.55 170.65 OBC -6.4 69.3 NVD 28 21 10 12 -29.5 314.6 13303.9 419 20933 D 28 16 02 33 302.44 625.77 7547.97 -14.68 209.75 4431.1 14951.6 22.7 12.0 -11.48 171.28 OBC -4.4 68.9 NVD 28 21 12 12 -29.8 315.0 13340.2 420 20933 D 28 16 04 33 309.84 623.57 7549.25 -7.35 208.68 3609.9 14545.0 23.2 12.0 -5.81 172.22 OBC -2.2 68.6 NVD 28 21 14 12 -30.2 315.4 13376.2 421 20933 D 28 16 06 33 317.24 622.16 7550.40 -0.02 207.66 2781.2 14072.9 23.8 12.1 1.01 173.74 LOS -0.0 68.5 NVD 28 21 16 12 -30.5 315.8 13412.0 422 20933 D 28 16 06 34 317.27 622.15 Eqa 7550.40 -0.00 207.65 2778.9 14071.5 23.8 12.1 1.03 71.52 LOS -0.0 68.5 NVD 28 21 16 13 -30.5 315.8 13412.1 423 20933 A 28 16 08 33 324.65 621.58 7551.39 7.31 208.68 1958.7 13739.3 23.2 12.0 10.40 176.56 LOS 4.1 68.8 NVD 28 21 18 12 -30.8 316.1 13447.5 424 20933 A 28 16 10 33 332.06 621.82 7552.22 14.64 209.75 1183.5 13349.6 22.7 12.0 27.36 183.92 LOS 8.1 69.8 VBC 28 21 20 12 -31.1 316.5 13482.8 425 20933 A 28 16 12 33 339.47 622.84 7552.87 21.97 210.89 684.7 12913.7 22.1 11.9 64.17 238.52 LOS 12.0 71.4 VBC 28 21 22 12 -31.4 316.9 13517.8 426 20933 A 28 16 14 33 346.88 624.54 7553.33 29.29 212.15 1027.4 12441.6 21.4 11.9 33.69 330.06 LOS 15.7 73.8 VBC 28 21 24 12 -31.7 317.3 13552.6 427 20933 A 28 16 16 33 354.30 626.78 7553.59 36.59 213.61 1774.5 11941.6 20.7 11.8 13.21 340.24 LOS 19.2 77.0 VBC 28 21 26 12 -32.1 317.8 13587.1 428 20934 A 28 16 18 06 360.00 628.78 Pri 7553.65 42.20 214.93 2400.6 11542.5 20.0 11.8 4.79 30.99 LOS 21.6 80.0 VBC 28 21 27 45 -32.3 318.1 13613.4 429 20933 A 28 16 18 33 1.71 629.42 7553.65 43.88 215.38 2590.6 11421.1 19.8 11.8 2.79 343.79 LOS 22.3 81.0 VBC 28 21 28 12 -32.4 318.2 13621.3 430 20934 A 28 16 20 33 9.12 632.26 7553.50 51.13 217.63 3417.5 10886.5 18.7 11.7 -4.42 345.78 LOS 24.9 86.1 VBC 28 21 30 12 -32.7 318.6 13655.2 431 20934 A 28 16 22 33 16.53 635.12 7553.15 58.32 220.74 4238.6 10343.5 17.1 11.6 -10.28 347.18 OBC 27.1 92.5 VBC 28 21 32 12 -33.0 319.0 13688.9 432 20934 A 28 16 24 33 23.94 637.84 7552.60 65.40 225.41 5045.9 9797.5 14.9 11.4 -15.44 348.31 OBC 28.7 101.0 VBC 28 21 34 12 -33.3 319.4 13722.3 433 20934 A 28 16 26 33 31.35 640.25 7551.86 72.22 233.47 5833.9 9253.6 11.0 11.2 -20.21 349.33 OBC 29.7 113.1 VBC 28 21 36 12 -33.6 319.9 13755.4 434 20934 A 28 16 28 33 38.76 642.23 7550.96 78.35 250.26 6598.2 8717.2 3.3 11.0 -24.72 350.30 OBC 29.9 134.2 VBC 28 21 38 12 -33.9 320.3 13788.2 435 20934 A 28 16 30 33 46.17 643.68 7549.89 81.97 289.41 7335.1 8193.8 -14.9 11.4 -29.07 351.26 OBC 29.5 177.6 VBC 28 21 40 12 -34.2 320.7 13820.6 436 20934 A 28 16 32 33 53.57 644.56 7548.68 79.90 336.06 8041.0 7689.7 -40.3 14.0 -33.29 352.25 OBC 28.5 228.3 VBC 28 21 42 12 -34.4 321.2 13852.8 437 20934 A 28 16 34 33 60.98 644.87 7547.35 74.25 358.02 8712.9 7212.0 -55.7 16.7 -37.43 353.30 OBC 26.8 254.1 VBC 28 21 44 12 -34.7 321.6 13884.7 438 20934 A 28 16 36 33 68.37 644.64 7545.92 67.57 7.91 9347.7 6768.8 63.5 18.5 -41.49 354.43 OBC 24.5 267.3 VBC 28 21 46 12 -35.0 322.1 13916.3 439 20934 A 28 16 38 33 75.77 643.97 7544.41 60.57 13.36 9942.7 6369.5 67.9 19.7 -45.50 355.67 OBC 21.7 275.6 VBC 28 21 48 12 -35.3 322.5 13947.6 440 20934 A 28 16 40 33 83.16 642.96 7542.86 53.42 16.84 10495.4 6024.6 70.8 20.5 -49.46 357.05 OBC 18.5 281.4 VBC 28 21 50 12 -35.6 323.0 13978.5 441 20934 A 28 16 42 33 90.55 641.77 7541.28 46.21 19.31 11003.6 5745.3 72.8 21.2 -53.37 358.63 OBC 14.9 285.7 VBC 28 21 52 12 -35.8 323.4 14009.1 442

Page 321: ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM …myreaders.info/00_Orbital__Mechanics__-__Model_____Simulation... · ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM-MSS)

www.m

yrea

ders

.inf

o

OM-MSS Page 321 SATELLITE PASS - GROUND TRACE [acronym - Line Of Sight (LOS), On Board Computerr (OBC), Visible Band Camera (VBC), Night Vision Devices (NVD) ] ORBIT, INPUT TIME, POSIION, SAT VELOCITY, GROUND TRACE, RANGE, DIST, PITCH/ROLL, EL/AZ, ACCESS EL/AZ, DATA SOLAR TIME EL/AZ, DIST Line 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 @ES 18 19 20 @SS 21 22 23 24 25 26 27 @ES 28 29 30 No. Node GMT Anomaly Height @ Vel Lat(SAT)Log Slant S-Sat Pitch Roll EL(SAT)AZ Control EL(SUN)AZ Acq. LMT(ES) EL(SUN)AZ S-Sun Nos D H M S deg km meter deg deg km km deg deg deg D H M S deg km 20934 A 28 16 44 33 97.94 640.53 7539.71 38.96 21.20 11465.0 5542.5 74.3 21.7 -57.25 0.47 OBC 11.1 288.8 VBC 28 21 54 12 -36.1 323.9 14039.4 443 20934 A 28 16 46 33 105.32 639.41 7538.16 31.69 22.74 11877.9 5425.6 75.5 22.2 -61.08 2.68 OBC 7.1 291.0 VBC 28 21 56 12 -36.4 324.4 14069.3 444 20934 A 28 16 48 33 112.71 638.55 7536.67 24.40 24.05 12240.7 5400.3 76.5 22.6 -64.86 5.39 OBC 2.9 292.4 NVD 28 21 58 12 -36.7 324.9 14098.9 445 20934 A 28 16 50 33 120.08 638.07 7535.25 17.11 25.22 12551.9 5468.0 77.4 23.0 -68.58 8.88 OBC -1.4 293.0 NVD 28 22 00 12 -36.9 325.3 14128.1 446 20934 A 28 16 52 33 127.46 638.07 7533.94 9.81 26.30 12810.3 5625.0 78.2 23.3 -72.21 13.57 OBC -5.7 293.0 NVD 28 22 02 12 -37.2 325.8 14157.0 447 20934 A 28 16 54 33 134.83 638.60 7532.75 2.52 27.34 13015.2 5863.4 79.0 23.7 -75.69 20.32 OBC -9.9 292.4 NVD 28 22 04 12 -37.4 326.3 14185.5 448 20934 A 28 16 55 15 137.37 638.91 Eqa 7532.38 0.00 27.69 13073.3 5962.7 79.2 23.8 -76.84 251.50 OBC -11.3 292.0 NVD 28 22 04 54 -37.5 326.5 14195.3 449 20934 D 28 16 56 33 142.20 639.68 7531.71 -4.78 27.02 13165.7 6298.4 78.7 23.6 -78.90 30.79 OBC -12.8 291.0 NVD 28 22 06 12 -37.7 326.8 14213.7 450 20934 D 28 16 58 33 149.57 641.28 7530.82 -12.07 25.98 13261.6 6843.5 77.9 23.2 -81.54 48.19 OBC -14.8 289.4 NVD 28 22 08 12 -37.9 327.3 14241.5 451 20934 D 28 17 00 33 156.94 643.35 7530.11 -19.36 24.88 13302.5 7419.1 77.1 22.8 -82.95 75.75 OBC -16.5 287.5 NVD 28 22 10 12 -38.2 327.8 14268.9 452 20934 D 28 17 02 33 164.30 645.79 7529.59 -26.64 23.68 13288.5 8016.8 76.1 22.5 -82.41 106.69 OBC -18.0 285.6 NVD 28 22 12 12 -38.4 328.3 14296.0 453 20934 D 28 17 04 33 171.67 648.45 7529.26 -33.90 22.31 13220.1 8629.9 75.0 22.0 -80.26 128.81 OBC -19.1 283.6 NVD 28 22 14 12 -38.7 328.8 14322.6 454 20934 D 28 17 06 33 179.04 651.18 7529.13 -41.15 20.69 13097.7 9253.1 73.7 21.5 -77.29 142.19 OBC -19.8 281.7 NVD 28 22 16 12 -38.9 329.3 14348.9 455 20934 D 28 17 06 49 180.00 651.53 Apo 7529.13 -42.10 20.45 13077.7 9335.3 73.5 21.5 -76.87 218.73 OBC -19.9 281.5 NVD 28 22 16 28 -38.9 329.4 14352.3 456 20934 D 28 17 08 33 186.40 653.81 7529.21 -48.37 18.66 12922.1 9881.6 72.1 21.0 -73.95 150.65 OBC -20.1 280.1 NVD 28 22 18 12 -39.1 329.8 14374.8 457 20934 D 28 17 10 33 193.76 656.16 7529.48 -55.54 15.97 12694.4 10511.1 69.8 20.3 -70.44 156.51 OBC -20.0 279.2 NVD 28 22 20 12 -39.4 330.4 14400.2 458 20934 D 28 17 12 33 201.13 658.06 7529.96 -62.63 12.06 12416.0 11137.3 66.6 19.3 -66.82 160.93 OBC -19.4 279.5 NVD 28 22 22 12 -39.6 330.9 14425.3 459 20934 D 28 17 14 33 208.50 659.37 7530.62 -69.54 5.74 12088.4 11755.7 61.5 18.0 -63.15 164.50 OBC -18.4 282.4 NVD 28 22 24 12 -39.8 331.4 14449.9 460 20934 D 28 17 16 33 215.87 659.97 7531.46 -76.01 353.64 11713.5 12361.3 -52.3 16.0 -59.43 167.57 OBC -17.0 291.2 NVD 28 22 26 12 -40.0 332.0 14474.2 461 20934 D 28 17 18 33 223.24 659.77 7532.46 -81.02 325.63 11293.3 12947.8 -33.9 13.1 -55.69 170.33 OBC -15.2 316.2 NVD 28 22 28 12 -40.2 332.5 14498.0 462 20934 D 28 17 20 33 230.61 658.75 7533.62 -81.45 275.82 10830.2 13507.8 -8.4 11.1 -51.93 172.92 OBC -13.0 3.2 NVD 28 22 30 12 -40.4 333.0 14521.3 463 20934 D 28 17 22 33 237.98 656.91 7534.90 -76.82 244.29 10326.9 14031.8 6.0 11.1 -48.15 175.43 OBC -10.5 32.3 NVD 28 22 32 12 -40.7 333.6 14544.3 464 20934 D 28 17 24 33 245.36 654.32 7536.29 -70.45 230.85 9786.5 14507.7 12.2 11.3 -44.35 177.95 OBC -7.8 43.7 NVD 28 22 34 12 -40.9 334.1 14566.8 465 20934 D 28 17 26 33 252.74 651.09 7537.76 -63.56 224.01 9212.4 14920.4 15.5 11.5 -40.54 180.54 OBC -4.8 48.8 NVD 28 22 36 12 -41.1 334.7 14588.8 466 20934 D 28 17 28 33 260.12 647.35 7539.30 -56.48 219.87 8608.4 15252.4 17.5 11.6 -36.70 183.28 OBC -1.6 51.6 NVD 28 22 38 12 -41.2 335.3 14610.4 467 20934 D 28 17 30 33 267.51 643.30 7540.87 -49.29 217.05 7979.0 15484.9 18.9 11.7 -32.85 186.25 OBC 1.6 53.4 NVD 28 22 40 12 -41.4 335.8 14631.6 468 20934 D 28 17 32 33 274.90 639.13 7542.45 -42.06 214.95 7329.5 15601.5 20.0 11.8 -28.97 189.54 OBC 5.0 54.9 NVD 28 22 42 12 -41.6 336.4 14652.3 469 20934 D 28 17 34 33 282.29 635.04 7544.01 -34.78 213.28 6666.3 15592.5 20.8 11.8 -25.06 193.29 OBC 8.3 56.4 VBC 28 22 44 12 -41.8 337.0 14672.5 470 20934 D 28 17 36 33 289.69 631.22 7545.53 -27.49 211.88 5997.6 15458.7 21.6 11.9 -21.11 197.66 OBC 11.6 58.0 VBC 28 22 46 12 -42.0 337.5 14692.2 471 20934 D 28 17 38 33 297.09 627.87 7546.98 -20.18 210.66 5334.0 15210.5 22.2 11.9 -17.14 202.92 OBC 14.8 59.9 VBC 28 22 48 12 -42.2 338.1 14711.5 472 20934 D 28 17 40 33 304.49 625.12 7548.34 -12.86 209.55 4690.6 14864.8 22.8 12.0 -13.16 209.43 OBC 17.9 62.0 VBC 28 22 50 12 -42.3 338.7 14730.3 473 20934 D 28 17 42 33 311.89 623.11 7549.58 -5.54 208.50 4089.3 14440.2 23.3 12.0 -9.22 217.70 OBC 20.7 64.5 VBC 28 22 52 12 -42.5 339.3 14748.6 474 20934 D 28 17 44 04 317.48 622.12 Eqa 7550.43 -0.00 207.72 3682.6 14078.0 23.7 12.1 -6.36 71.48 OBC 22.6 66.6 VBC 28 22 53 43 -42.6 339.8 14762.1 475 20934 A 28 17 44 33 319.30 621.91 7550.69 1.79 207.97 3563.0 14002.2 23.6 12.1 -5.48 228.38 OBC 23.7 67.2 VBC 28 22 54 12 -42.7 339.9 14766.4 476 20934 A 28 17 46 33 326.70 621.54 7551.64 9.13 209.01 3158.7 13653.7 23.1 12.0 -2.33 242.10 LOS 27.7 70.4 VBC 28 22 56 12 -42.8 340.5 14783.7 477 20934 A 28 17 48 33 334.11 621.99 7552.42 16.46 210.09 2933.6 13251.1 22.5 12.0 -0.42 258.73 LOS 31.4 74.5 VBC 28 22 58 12 -43.0 341.1 14800.5 478 20934 A 28 17 50 33 341.52 623.19 7553.02 23.78 211.25 2931.6 12804.9 21.9 11.9 -0.41 276.66 LOS 34.6 79.4 VBC 28 23 00 12 -43.1 341.7 14816.8 479 20934 A 28 17 52 33 348.94 625.04 7553.42 31.10 212.56 3151.4 12324.5 21.2 11.9 -2.30 293.35 LOS 37.2 85.4 VBC 28 23 02 12 -43.2 342.3 14832.5 480 20934 A 28 17 54 33 356.35 627.40 7553.63 38.40 214.08 3547.4 11818.2 20.5 11.8 -5.41 307.18 OBC 39.0 92.2 VBC 28 23 04 12 -43.4 342.9 14847.8 481 20935 A 28 17 55 33 360.00 628.70 Pri 7553.65 41.99 214.95 3789.2 11561.6 20.0 11.8 -7.18 31.12 OBC 39.6 95.9 VBC 28 23 05 12 -43.4 343.2 14855.1 482 20934 A 28 17 56 33 3.76 630.11 7553.63 45.68 215.95 4061.8 11293.1 19.5 11.7 -9.09 318.08 OBC 40.0 100.0 VBC 28 23 06 12 -43.5 343.5 14862.5 483 20935 A 28 17 58 33 11.17 632.98 7553.42 52.92 218.37 4647.1 10755.3 18.3 11.7 -12.95 326.65 OBC 40.0 108.5 VBC 28 23 08 12 -43.6 344.1 14876.8 484 20935 A 28 18 00 33 18.59 635.83 7553.01 60.09 221.77 5270.9 10210.4 16.6 11.5 -16.83 333.57 OBC 39.2 117.9 VBC 28 23 10 12 -43.8 344.8 14890.4 485 20935 A 28 18 02 33 26.00 638.49 7552.41 67.12 227.04 5911.4 9663.8 14.1 11.4 -20.67 339.34 OBC 37.5 128.8 VBC 28 23 12 12 -43.9 345.4 14903.6 486 20935 A 28 18 04 33 33.41 640.81 7551.63 73.84 236.52 6554.0 9120.6 9.6 11.2 -24.47 344.33 OBC 35.0 143.4 VBC 28 23 14 12 -44.0 346.0 14916.2 487

Page 322: ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM …myreaders.info/00_Orbital__Mechanics__-__Model_____Simulation... · ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM-MSS)

www.m

yrea

ders

.inf

o

OM-MSS Page 322 SATELLITE PASS - GROUND TRACE [acronym - Line Of Sight (LOS), On Board Computerr (OBC), Visible Band Camera (VBC), Night Vision Devices (NVD) ] ORBIT, INPUT TIME, POSIION, SAT VELOCITY, GROUND TRACE, RANGE, DIST, PITCH/ROLL, EL/AZ, ACCESS EL/AZ, DATA SOLAR TIME EL/AZ, DIST Line 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 @ES 18 19 20 @SS 21 22 23 24 25 26 27 @ES 28 29 30 No. Node GMT Anomaly Height @ Vel Lat(SAT)Log Slant S-Sat Pitch Roll EL(SAT)AZ Control EL(SUN)AZ Acq. LMT(ES) EL(SUN)AZ S-Sun Nos D H M S deg km meter deg deg km km deg deg deg D H M S deg km 20935 A 28 18 06 33 40.82 642.67 7550.67 79.61 257.29 7188.1 8586.2 0.1 11.0 -28.20 348.80 OBC 31.7 168.6 VBC 28 23 16 12 -44.1 346.6 14928.2 488 20935 A 28 18 08 33 48.22 643.99 7549.57 82.03 302.66 7806.1 8066.3 -21.4 11.9 -31.88 352.94 OBC 27.9 217.7 VBC 28 23 18 12 -44.2 347.3 14939.7 489 20935 A 28 18 10 33 55.62 644.73 7548.32 78.69 343.51 8402.1 7567.3 -45.2 14.8 -35.50 356.88 OBC 23.7 261.5 VBC 28 23 20 12 -44.3 347.9 14950.7 490 20935 A 28 18 12 33 63.03 644.90 7546.96 72.65 1.22 8971.1 7096.5 58.1 17.2 -39.06 0.75 OBC 19.0 281.4 VBC 28 23 22 12 -44.4 348.5 14961.1 491 20935 A 28 18 14 33 70.42 644.56 7545.51 65.86 9.60 9509.4 6662.5 64.8 18.8 -42.56 4.63 OBC 14.1 291.4 VBC 28 23 24 12 -44.5 349.2 14971.0 492 20935 A 28 18 16 33 77.82 643.79 7543.99 58.81 14.42 10013.5 6274.8 68.8 19.9 -45.99 8.62 OBC 8.9 297.2 VBC 28 23 26 12 -44.6 349.8 14980.2 493 20935 A 28 18 18 33 85.21 642.72 7542.42 51.64 17.59 10480.6 5944.3 71.4 20.7 -49.34 12.80 OBC 3.6 300.8 NVD 28 23 28 12 -44.7 350.5 14989.0 494 20935 A 28 18 20 33 92.60 641.50 7540.85 44.42 19.89 10908.3 5682.3 73.3 21.3 -52.61 17.29 OBC -1.8 303.0 NVD 28 23 30 12 -44.7 351.1 14997.1 495 20935 A 28 18 22 33 99.99 640.28 7539.27 37.16 21.68 11294.6 5499.4 74.7 21.9 -55.77 22.20 OBC -7.3 304.1 NVD 28 23 32 12 -44.8 351.8 15004.7 496 20935 A 28 18 24 33 107.37 639.21 7537.74 29.89 23.15 11637.9 5404.3 75.8 22.3 -58.79 27.66 OBC -12.7 304.3 NVD 28 23 34 12 -44.9 352.4 15011.7 497 20935 A 28 18 26 33 114.75 638.43 7536.27 22.60 24.42 11936.5 5401.8 76.8 22.7 -61.64 33.85 OBC -18.1 303.7 NVD 28 23 36 12 -44.9 353.1 15018.1 498 20935 A 28 18 28 33 122.13 638.06 7534.88 15.30 25.56 12189.6 5492.0 77.7 23.1 -64.28 40.95 OBC -23.4 302.2 NVD 28 23 38 12 -45.0 353.7 15024.0 499 20935 A 28 18 30 33 129.50 638.18 7533.60 8.01 26.63 12396.2 5670.0 78.5 23.4 -66.63 49.18 OBC -28.5 299.9 NVD 28 23 40 12 -45.0 354.4 15029.3 500 20935 A 28 18 32 33 136.87 638.84 7532.45 0.71 27.66 12555.9 5927.3 79.2 23.8 -68.60 58.71 OBC -33.3 296.6 NVD 28 23 42 12 -45.1 355.0 15034.0 501 20935 A 28 18 32 45 137.59 638.94 Eqa 7532.34 0.00 27.75 12568.9 5956.3 79.3 23.8 -68.77 251.46 OBC -33.7 296.2 NVD 28 23 42 24 -45.1 355.1 15034.4 502 20935 D 28 18 34 33 144.24 640.05 7531.45 -6.58 26.83 12668.2 6423.7 78.6 23.5 -70.09 69.60 OBC -36.0 291.9 NVD 28 23 44 12 -45.1 355.7 15038.1 503 20935 D 28 18 36 33 151.61 641.78 7530.61 -13.87 25.78 12733.2 6977.6 77.8 23.1 -71.01 81.63 OBC -37.9 286.7 NVD 28 23 46 12 -45.1 356.3 15041.6 504 20935 D 28 18 38 33 158.98 643.94 7529.95 -21.16 24.66 12751.1 7559.7 76.9 22.8 -71.26 94.31 OBC -39.0 281.1 NVD 28 23 48 12 -45.1 357.0 15044.6 505 20935 D 28 18 40 33 166.35 646.44 7529.48 -28.43 23.43 12722.4 8162.2 75.9 22.4 -70.83 106.88 OBC -39.4 275.5 NVD 28 23 50 12 -45.2 357.7 15046.9 506 20935 D 28 18 42 33 173.71 649.13 7529.21 -35.70 22.01 12647.8 8778.7 74.8 21.9 -69.78 118.67 OBC -39.0 270.0 NVD 28 23 52 12 -45.2 358.3 15048.7 507 20935 D 28 18 44 16 180.00 651.45 Apo 7529.13 -41.88 20.57 12548.6 9312.4 73.6 21.5 -68.46 218.84 OBC -38.0 265.7 NVD 28 23 53 55 -45.2 358.9 15049.7 508 20935 D 28 18 44 33 181.08 651.84 7529.13 -42.94 20.30 12528.4 9404.1 73.4 21.4 -68.20 129.28 OBC -37.7 265.1 NVD 28 23 54 12 -45.2 359.0 15049.9 509 20935 D 28 18 46 33 188.44 654.41 7529.26 -50.15 18.14 12365.4 10033.7 71.6 20.8 -66.21 138.62 OBC -35.7 261.0 NVD 28 23 56 12 -45.2 359.6 15050.5 510 20935 D 28 18 48 33 195.81 656.66 7529.60 -57.30 15.21 12160.4 10663.3 69.2 20.1 -63.90 146.80 OBC -33.0 258.3 NVD 28 23 58 12 -45.2 0.3 15050.5 511 20935 D 28 18 50 33 203.17 658.43 7530.12 -64.36 10.87 11915.2 11288.5 65.7 19.1 -61.37 154.02 OBC -29.7 257.7 NVD 29 00 00 12 -45.2 1.0 15049.9 512 20935 D 28 18 52 33 210.54 659.57 7530.83 -71.20 3.57 11631.8 11904.8 59.8 17.6 -58.67 160.49 OBC -25.9 260.7 NVD 29 00 02 12 -45.2 1.6 15048.7 513 20935 D 28 18 54 33 217.91 659.97 7531.72 -77.46 348.91 11312.8 12506.8 -48.9 15.4 -55.85 166.41 OBC -21.7 271.8 NVD 29 00 04 12 -45.2 2.3 15046.9 514 20935 D 28 18 56 33 225.28 659.57 7532.77 -81.71 314.42 10960.9 13088.2 -27.6 12.4 -52.96 171.92 OBC -17.1 303.2 NVD 29 00 06 12 -45.1 2.9 15044.6 515 20935 D 28 18 58 33 232.65 658.33 7533.96 -80.62 265.43 10579.1 13641.0 -3.7 11.0 -50.01 177.16 OBC -12.3 349.8 NVD 29 00 08 12 -45.1 3.6 15041.6 516 20935 D 28 19 00 33 240.03 656.30 7535.27 -75.33 239.99 10171.0 14155.2 8.0 11.1 -47.03 182.25 OBC -7.3 13.3 NVD 29 00 10 12 -45.1 4.3 15038.1 517 20935 D 28 19 02 33 247.41 653.53 7536.69 -68.78 228.83 9740.6 14617.9 13.2 11.3 -44.04 187.28 OBC -2.1 23.0 NVD 29 00 12 12 -45.1 4.9 15034.0 518 20935 D 28 19 04 33 254.79 650.16 7538.18 -61.82 222.88 9292.3 15013.4 16.1 11.5 -41.06 192.35 OBC 3.2 28.0 NVD 29 00 14 12 -45.0 5.6 15029.3 519 20935 D 28 19 06 33 262.17 646.33 7539.73 -54.71 219.15 8831.3 15323.6 17.9 11.6 -38.11 197.55 OBC 8.5 31.3 VBC 29 00 16 12 -45.0 6.2 15024.0 520 20935 D 28 19 08 33 269.56 642.23 7541.31 -47.51 216.54 8363.6 15529.7 19.2 11.7 -35.20 202.95 OBC 13.9 33.9 VBC 29 00 18 12 -44.9 6.9 15018.2 521 20935 D 28 19 10 33 276.95 638.06 7542.88 -40.26 214.57 7895.8 15616.7 20.2 11.8 -32.36 208.65 OBC 19.2 36.5 VBC 29 00 20 12 -44.9 7.5 15011.7 522 20935 D 28 19 12 33 284.34 634.02 7544.44 -32.98 212.98 7436.0 15577.0 21.0 11.8 -29.62 214.75 OBC 24.4 39.2 VBC 29 00 22 12 -44.8 8.2 15004.7 523 20935 D 28 19 14 33 291.74 630.30 7545.94 -25.68 211.63 6993.3 15414.0 21.7 11.9 -27.01 221.32 OBC 29.5 42.3 VBC 29 00 24 12 -44.7 8.8 14997.2 524 20935 D 28 19 16 33 299.14 627.09 7547.37 -18.37 210.44 6578.3 15140.1 22.3 12.0 -24.57 228.46 OBC 34.3 46.0 VBC 29 00 26 12 -44.7 9.5 14989.0 525 20935 D 28 19 18 33 306.54 624.52 7548.70 -11.05 209.35 6203.1 14773.1 22.9 12.0 -22.37 236.26 OBC 38.7 50.5 VBC 29 00 28 12 -44.6 10.1 14980.3 526 20935 D 28 19 20 33 313.94 622.71 7549.90 -3.72 208.31 5880.7 14331.6 23.4 12.0 -20.47 244.74 OBC 42.7 55.9 VBC 29 00 30 12 -44.5 10.8 14971.0 527 20935 D 28 19 21 34 317.70 622.10 Eqa 7550.46 -0.00 207.79 5741.6 14084.5 23.7 12.1 -19.64 71.44 OBC 44.5 59.0 VBC 29 00 31 13 -44.4 11.1 14966.1 528 20935 A 28 19 22 33 321.35 621.71 7550.97 3.61 208.29 5624.6 13927.9 23.4 12.0 -18.95 253.89 OBC 46.9 61.9 VBC 29 00 32 12 -44.4 11.4 14961.2 529 20935 A 28 19 24 33 328.76 621.55 7551.88 10.94 209.34 5447.1 13564.5 22.9 12.0 -17.89 263.63 OBC 51.3 69.1 VBC 29 00 34 12 -44.3 12.0 14950.8 530 20935 A 28 19 26 33 336.17 622.20 7552.61 18.27 210.43 5357.3 13149.6 22.3 12.0 -17.35 273.75 OBC 54.9 78.3 VBC 29 00 36 12 -44.2 12.7 14939.8 531

Page 323: ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM …myreaders.info/00_Orbital__Mechanics__-__Model_____Simulation... · ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM-MSS)

www.m

yrea

ders

.inf

o

OM-MSS Page 323 SATELLITE PASS - GROUND TRACE [acronym - Line Of Sight (LOS), On Board Computerr (OBC), Visible Band Camera (VBC), Night Vision Devices (NVD) ] ORBIT, INPUT TIME, POSIION, SAT VELOCITY, GROUND TRACE, RANGE, DIST, PITCH/ROLL, EL/AZ, ACCESS EL/AZ, DATA SOLAR TIME EL/AZ, DIST Line 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 @ES 18 19 20 @SS 21 22 23 24 25 26 27 @ES 28 29 30 No. Node GMT Anomaly Height @ Vel Lat(SAT)Log Slant S-Sat Pitch Roll EL(SAT)AZ Control EL(SUN)AZ Acq. LMT(ES) EL(SUN)AZ S-Sun Nos D H M S deg km meter deg deg km km deg deg deg D H M S deg km 20935 A 28 19 28 33 343.58 623.58 7553.15 25.59 211.63 5359.6 12693.6 21.7 11.9 -17.37 284.00 OBC 57.3 89.5 VBC 29 00 38 12 -44.1 13.3 14928.3 532 20935 A 28 19 30 33 350.99 625.58 7553.50 32.91 212.98 5452.2 12205.6 21.0 11.9 -17.93 294.11 OBC 58.1 102.3 VBC 29 00 40 12 -44.0 13.9 14916.2 533 20935 A 28 19 32 33 358.40 628.05 7553.65 40.21 214.57 5627.5 11693.4 20.2 11.8 -18.99 303.84 OBC 57.3 115.3 VBC 29 00 42 12 -43.9 14.6 14903.6 534 20936 A 28 19 32 59 360.00 628.62 Pri 7553.65 41.77 214.96 5675.1 11580.6 20.0 11.8 -19.28 31.26 OBC 57.0 118.1 VBC 29 00 42 38 -43.9 14.7 14900.9 535 20935 A 28 19 34 33 5.82 630.82 7553.59 47.48 216.55 5874.1 11163.9 19.2 11.7 -20.46 313.03 OBC 55.1 127.7 VBC 29 00 44 12 -43.8 15.2 14890.5 536 20936 A 28 19 36 33 13.23 633.70 7553.33 54.70 219.17 6178.2 10623.3 17.9 11.6 -22.27 321.62 OBC 51.5 139.0 VBC 29 00 46 12 -43.6 15.8 14876.8 537 20936 A 28 19 38 33 20.64 636.53 7552.87 61.84 222.91 6526.2 10076.9 16.1 11.5 -24.32 329.62 OBC 47.0 149.6 VBC 29 00 48 12 -43.5 16.4 14862.6 538 20936 A 28 19 40 33 28.05 639.12 7552.21 68.82 228.92 6905.0 9530.0 13.2 11.3 -26.54 337.07 OBC 41.8 160.8 VBC 29 00 50 12 -43.4 17.0 14847.9 539 20936 A 28 19 42 33 35.46 641.34 7551.38 75.40 240.20 7303.4 8987.8 7.9 11.1 -28.89 344.08 OBC 36.1 176.0 VBC 29 00 52 12 -43.2 17.6 14832.6 540 20936 A 28 19 44 33 42.87 643.08 7550.38 80.68 266.07 7711.6 8455.7 -3.9 11.0 -31.32 350.71 OBC 30.1 204.7 VBC 29 00 54 12 -43.1 18.2 14816.9 541 20936 A 28 19 46 33 50.27 644.26 7549.23 81.67 315.43 8121.5 7939.6 -28.2 12.5 -33.78 357.07 OBC 23.8 256.1 VBC 29 00 56 12 -43.0 18.8 14800.6 542 20936 A 28 19 48 33 57.68 644.86 7547.95 77.32 349.47 8526.3 7446.2 -49.4 15.5 -36.26 3.25 OBC 17.3 291.5 VBC 29 00 58 12 -42.8 19.4 14783.8 543 20936 A 28 19 50 33 65.08 644.90 7546.57 71.01 3.89 8920.3 6982.9 60.2 17.7 -38.73 9.31 OBC 10.7 306.8 VBC 29 01 00 12 -42.7 20.0 14766.5 544 20936 A 28 19 52 33 72.47 644.44 7545.09 64.13 11.08 9298.7 6558.6 66.0 19.1 -41.16 15.34 OBC 4.0 314.3 NVD 29 01 02 12 -42.5 20.6 14748.7 545 20936 A 28 19 54 33 79.87 643.59 7543.56 57.04 15.38 9657.7 6183.3 69.6 20.1 -43.54 21.40 OBC -2.7 318.6 NVD 29 01 04 12 -42.3 21.2 14730.4 546 20936 A 28 19 56 33 87.26 642.47 7541.99 49.86 18.29 9994.1 5867.9 72.0 20.9 -45.84 27.56 OBC -9.5 321.0 NVD 29 01 06 12 -42.2 21.8 14711.6 547 20936 A 28 19 58 33 94.65 641.24 7540.41 42.62 20.43 10305.1 5623.8 73.7 21.5 -48.04 33.88 OBC -16.3 322.2 NVD 29 01 08 12 -42.0 22.4 14692.3 548 20936 A 28 20 00 33 102.03 640.04 7538.85 35.36 22.13 10588.7 5461.3 75.0 22.0 -50.12 40.41 OBC -23.1 322.4 NVD 29 01 10 12 -41.8 23.0 14672.6 549 20936 A 28 20 02 33 109.42 639.03 7537.32 28.08 23.55 10842.9 5388.4 76.2 22.4 -52.06 47.21 OBC -29.9 321.9 NVD 29 01 12 12 -41.6 23.5 14652.4 550 20936 A 28 20 04 33 116.79 638.34 7535.87 20.79 24.78 11066.6 5408.8 77.1 22.8 -53.84 54.31 OBC -36.5 320.4 NVD 29 01 14 12 -41.4 24.1 14631.7 551 20936 A 28 20 06 33 124.17 638.08 7534.51 13.50 25.90 11258.6 5521.3 77.9 23.2 -55.42 61.73 OBC -43.1 317.9 NVD 29 01 16 12 -41.3 24.7 14610.6 552 20936 A 28 20 08 33 131.55 638.33 7533.27 6.20 26.95 11418.3 5720.0 78.7 23.5 -56.78 69.50 OBC -49.4 314.0 NVD 29 01 18 12 -41.1 25.2 14589.0 553 20936 A 28 20 10 15 137.81 638.97 Eqa 7532.31 0.00 27.82 11528.3 5949.8 79.3 23.8 -57.74 251.42 OBC -54.5 309.2 NVD 29 01 19 55 -40.9 25.7 14570.3 554 20936 D 28 20 10 33 138.92 639.12 7532.15 -1.09 27.67 11545.3 6025.0 79.2 23.8 -57.89 77.60 OBC -55.1 307.9 NVD 29 01 20 12 -40.9 25.8 14566.9 555 20936 D 28 20 12 33 146.29 640.46 7531.20 -8.39 26.64 11639.5 6551.5 78.4 23.4 -58.74 85.99 OBC -58.7 298.1 NVD 29 01 22 12 -40.7 26.4 14544.4 556 20936 D 28 20 14 33 153.65 642.29 7530.41 -15.68 25.58 11700.9 7113.6 77.6 23.1 -59.31 94.61 OBC -60.9 286.3 NVD 29 01 24 12 -40.5 26.9 14521.5 557 20936 D 28 20 16 33 161.02 644.55 7529.80 -22.96 24.44 11730.1 7701.8 76.7 22.7 -59.57 103.36 OBC -61.6 273.2 NVD 29 01 26 12 -40.2 27.4 14498.1 558 20936 D 28 20 18 33 168.39 647.10 7529.38 -30.23 23.16 11727.7 8308.6 75.7 22.3 -59.55 112.16 OBC -60.5 260.4 NVD 29 01 28 12 -40.0 28.0 14474.3 559 20936 D 28 20 20 33 175.75 649.81 7529.17 -37.49 21.68 11694.5 8928.2 74.5 21.8 -59.23 120.89 OBC -57.8 249.6 NVD 29 01 30 12 -39.8 28.5 14450.1 560 20936 D 28 20 21 43 180.00 651.37 Apo 7529.13 -41.67 20.70 11661.8 9289.4 73.7 21.6 -58.93 218.95 OBC -55.6 244.5 NVD 29 01 31 22 -39.7 28.8 14435.9 561 20936 D 28 20 22 33 183.12 652.50 7529.15 -44.72 19.89 11631.7 9555.5 73.0 21.3 -58.65 129.48 OBC -53.9 241.3 NVD 29 01 32 12 -39.6 29.1 14425.4 562 20936 D 28 20 24 33 190.48 655.00 7529.34 -51.92 17.57 11540.5 10186.0 71.2 20.7 -57.82 137.85 OBC -49.1 235.8 NVD 29 01 34 12 -39.4 29.6 14400.4 563 20936 D 28 20 26 33 197.85 657.14 7529.72 -59.06 14.37 11422.6 10815.4 68.5 19.9 -56.78 145.97 OBC -43.7 232.8 NVD 29 01 36 12 -39.1 30.1 14374.9 564 20936 D 28 20 28 33 205.21 658.76 7530.30 -66.08 9.50 11279.6 11439.4 64.6 18.8 -55.56 153.83 OBC -37.8 233.0 NVD 29 01 38 12 -38.9 30.6 14349.1 565 20936 D 28 20 30 33 212.58 659.72 7531.06 -72.83 0.99 11113.5 12053.2 57.8 17.2 -54.18 161.42 OBC -31.7 237.7 NVD 29 01 40 12 -38.7 31.1 14322.8 566 20936 D 28 20 32 33 219.95 659.92 7532.00 -78.81 342.99 10926.6 12651.4 -44.8 14.7 -52.68 168.78 OBC -25.3 252.8 NVD 29 01 42 12 -38.4 31.6 14296.1 567 20936 D 28 20 34 33 227.32 659.31 7533.09 -82.04 301.77 10721.2 13227.3 -20.9 11.8 -51.08 175.94 OBC -18.8 291.7 NVD 29 01 44 12 -38.2 32.1 14269.1 568 20936 D 28 20 36 33 234.70 657.87 7534.31 -79.54 256.95 10499.9 13772.3 0.2 11.0 -49.42 182.93 OBC -12.2 334.6 NVD 29 01 46 12 -37.9 32.7 14241.7 569 20936 D 28 20 38 33 242.07 655.64 7535.66 -73.77 236.49 10265.5 14275.9 9.6 11.2 -47.71 189.80 OBC -5.4 353.6 NVD 29 01 48 12 -37.7 33.1 14213.9 570 20936 D 28 20 40 33 249.45 652.71 7537.10 -67.08 227.11 10021.1 14724.5 14.0 11.4 -45.98 196.60 OBC 1.4 1.9 NVD 29 01 50 12 -37.4 33.6 14185.7 571 20936 D 28 20 42 33 256.83 649.21 7538.61 -60.07 221.87 9769.7 15101.7 16.6 11.5 -44.26 203.36 OBC 8.2 6.4 VBC 29 01 52 12 -37.2 34.1 14157.2 572 20936 D 28 20 44 33 264.22 645.29 7540.17 -52.93 218.49 9514.9 15388.9 18.2 11.6 -42.55 210.13 OBC 15.0 9.3 VBC 29 01 54 12 -36.9 34.6 14128.3 573 20936 D 28 20 46 33 271.61 641.15 7541.74 -45.72 216.07 9260.3 15567.7 19.4 11.7 -40.88 216.94 OBC 21.9 11.6 VBC 29 01 56 12 -36.7 35.1 14099.1 574 20936 D 28 20 48 33 279.00 637.00 7543.32 -38.46 214.21 9009.4 15624.4 20.4 11.8 -39.27 223.82 OBC 28.8 13.8 VBC 29 01 58 12 -36.4 35.6 14069.5 575

Page 324: ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM …myreaders.info/00_Orbital__Mechanics__-__Model_____Simulation... · ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM-MSS)

www.m

yrea

ders

.inf

o

OM-MSS Page 324 SATELLITE PASS - GROUND TRACE [acronym - Line Of Sight (LOS), On Board Computerr (OBC), Visible Band Camera (VBC), Night Vision Devices (NVD) ] ORBIT, INPUT TIME, POSIION, SAT VELOCITY, GROUND TRACE, RANGE, DIST, PITCH/ROLL, EL/AZ, ACCESS EL/AZ, DATA SOLAR TIME EL/AZ, DIST Line 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 @ES 18 19 20 @SS 21 22 23 24 25 26 27 @ES 28 29 30 No. Node GMT Anomaly Height @ Vel Lat(SAT)Log Slant S-Sat Pitch Roll EL(SAT)AZ Control EL(SUN)AZ Acq. LMT(ES) EL(SUN)AZ S-Sun Nos D H M S deg km meter deg deg km km deg deg deg D H M S deg km 20936 D 28 20 50 33 286.39 633.02 7544.86 -31.18 212.69 8766.1 15554.2 21.1 11.9 -37.74 230.80 OBC 35.6 16.1 VBC 29 02 00 12 -36.1 36.0 14039.6 576 20936 D 28 20 52 33 293.79 629.41 7546.34 -23.87 211.39 8534.3 15362.6 21.8 11.9 -36.30 237.91 OBC 42.3 18.7 VBC 29 02 02 12 -35.8 36.5 14009.3 577 20936 D 28 20 54 33 301.19 626.35 7547.75 -16.56 210.23 8317.9 15064.0 22.4 12.0 -34.97 245.16 OBC 49.0 22.2 VBC 29 02 04 12 -35.6 37.0 13978.7 578 20936 D 28 20 56 33 308.59 623.96 7549.04 -9.24 209.15 8120.5 14676.8 23.0 12.0 -33.78 252.56 OBC 55.4 26.9 VBC 29 02 06 12 -35.3 37.4 13947.8 579 20936 D 28 20 58 33 315.99 622.35 7550.21 -1.91 208.12 7945.6 14219.4 23.5 12.1 -32.73 260.11 OBC 61.5 33.8 VBC 29 02 08 12 -35.0 37.9 13916.5 580 20936 D 28 20 59 05 317.92 622.07 Eqa 7550.50 -0.00 207.86 7904.2 14090.9 23.6 12.1 -32.48 71.40 OBC 63.0 36.0 VBC 29 02 08 44 -34.9 38.0 13908.3 581 20936 A 28 21 00 33 323.40 621.57 7551.24 5.42 208.62 7796.3 13849.5 23.3 12.0 -31.83 267.81 OBC 67.9 41.6 VBC 29 02 10 12 -34.7 38.3 13885.0 582 20936 A 28 21 02 33 330.81 621.62 7552.10 12.76 209.67 7675.1 13471.9 22.7 12.0 -31.11 275.65 OBC 74.0 54.8 VBC 29 02 12 12 -34.4 38.8 13853.1 583 20936 A 28 21 04 33 338.22 622.46 7552.78 20.08 210.78 7584.0 13045.4 22.1 11.9 -30.58 283.58 OBC 78.3 80.6 VBC 29 02 14 12 -34.2 39.2 13820.9 584 20936 A 28 21 06 33 345.63 624.01 7553.27 27.41 212.01 7524.2 12580.1 21.5 11.9 -30.22 291.60 OBC 78.7 118.8 VBC 29 02 16 12 -33.9 39.6 13788.4 585 20936 A 28 21 08 33 353.04 626.15 7553.56 34.72 213.41 7495.8 12084.8 20.8 11.8 -30.06 299.66 OBC 74.7 147.4 VBC 29 02 18 12 -33.6 40.1 13755.6 586 20937 A 28 21 10 26 360.00 628.54 Pri 7553.65 41.56 214.97 7497.4 11599.6 20.0 11.8 -30.07 31.39 OBC 69.2 162.1 VBC 29 02 20 05 -33.3 40.5 13724.6 587 20936 A 28 21 10 33 0.46 628.71 7553.65 42.01 215.08 7498.4 11567.2 19.9 11.8 -30.07 307.74 OBC 68.8 162.8 VBC 29 02 20 12 -33.3 40.5 13722.5 588 20937 A 28 21 12 33 7.87 631.53 7553.54 49.27 217.19 7530.7 11033.8 18.9 11.7 -30.26 315.79 OBC 62.1 172.0 VBC 29 02 22 12 -33.0 40.9 13689.1 589 20937 A 28 21 14 33 15.28 634.43 7553.22 56.48 220.03 7590.6 10490.6 17.5 11.6 -30.62 323.80 OBC 55.1 178.9 VBC 29 02 24 12 -32.7 41.4 13655.5 590 20937 A 28 21 16 33 22.69 637.22 7552.70 63.59 224.19 7675.4 9943.0 15.5 11.5 -31.12 331.73 OBC 47.9 185.6 VBC 29 02 26 12 -32.4 41.8 13621.5 591 20937 A 28 21 18 33 30.10 639.74 7552.00 70.50 231.08 7782.2 9396.1 12.2 11.3 -31.76 339.58 OBC 40.6 194.0 VBC 29 02 28 12 -32.1 42.2 13587.3 592 20937 A 28 21 20 33 37.51 641.85 7551.12 76.89 244.70 7907.7 8855.3 5.8 11.1 -32.50 347.33 OBC 33.2 208.6 VBC 29 02 30 12 -31.7 42.6 13552.8 593 20937 A 28 21 22 33 44.92 643.46 7550.08 81.49 276.76 8048.6 8325.9 -8.9 11.2 -33.35 354.98 OBC 25.9 241.3 VBC 29 02 32 12 -31.4 43.0 13518.1 594 20937 A 28 21 24 33 52.32 644.50 7548.89 80.95 326.68 8201.4 7814.0 -34.6 13.2 -34.27 2.54 OBC 18.4 291.6 VBC 29 02 34 12 -31.1 43.4 13483.1 595 20937 A 28 21 26 33 59.73 644.96 7547.58 75.85 354.26 8363.1 7326.5 -52.8 16.1 -35.25 10.01 OBC 11.0 319.3 VBC 29 02 36 12 -30.8 43.8 13447.8 596 20937 A 28 21 28 33 67.13 644.87 7546.17 69.33 6.16 8530.5 6871.3 62.0 18.1 -36.28 17.40 OBC 3.6 331.3 NVD 29 02 38 12 -30.5 44.2 13412.3 597 20937 A 28 21 30 33 74.52 644.31 7544.67 62.39 12.40 8701.0 6457.3 67.1 19.4 -37.33 24.73 OBC -3.9 337.5 NVD 29 02 40 12 -30.2 44.6 13376.5 598 20937 A 28 21 32 33 81.92 643.38 7543.13 55.27 16.26 8872.1 6095.0 70.3 20.4 -38.40 32.01 OBC -11.3 341.1 NVD 29 02 42 12 -29.8 45.0 13340.5 599 20937 A 28 21 34 33 89.31 642.22 7541.55 48.07 18.94 9041.5 5795.5 72.5 21.1 -39.46 39.25 OBC -18.8 343.6 NVD 29 02 44 12 -29.5 45.3 13304.2 600 20937 A 28 21 36 33 96.69 640.98 7539.97 40.83 20.95 9207.5 5570.0 74.1 21.6 -40.52 46.48 OBC -26.2 345.2 NVD 29 02 46 12 -29.2 45.7 13267.7 601 20937 A 28 21 38 33 104.08 639.81 7538.42 33.56 22.57 9368.2 5428.5 75.4 22.1 -41.56 53.70 OBC -33.7 346.4 NVD 29 02 48 12 -28.9 46.1 13231.0 602 20937 A 28 21 40 33 111.46 638.87 7536.91 26.28 23.93 9522.4 5378.1 76.4 22.5 -42.57 60.92 OBC -41.1 347.3 NVD 29 02 50 12 -28.5 46.5 13194.0 603 20937 A 28 21 42 33 118.84 638.27 7535.49 18.99 25.13 9668.9 5421.4 77.4 22.9 -43.54 68.16 OBC -48.6 347.9 NVD 29 02 52 12 -28.2 46.8 13156.8 604 20937 A 28 21 44 33 126.21 638.13 7534.15 11.69 26.23 9806.7 5555.9 78.2 23.3 -44.47 75.43 OBC -56.1 348.4 NVD 29 02 54 12 -27.9 47.2 13119.4 605 20937 A 28 21 46 33 133.59 638.50 7532.94 4.40 27.27 9935.2 5774.8 78.9 23.7 -45.35 82.73 OBC -63.5 348.7 NVD 29 02 56 12 -27.5 47.6 13081.7 606 20937 A 28 21 47 46 138.03 638.99 Eqa 7532.28 0.00 27.89 10007.9 5943.3 79.4 23.9 -45.85 251.38 OBC -68.0 348.8 NVD 29 02 57 25 -27.3 47.8 13058.9 607 20937 D 28 21 48 33 140.96 639.43 7531.87 -2.90 27.48 10053.8 6145.0 79.1 23.7 -46.17 90.07 OBC -70.8 346.6 NVD 29 02 58 12 -27.2 47.9 13043.9 608 20937 D 28 21 50 33 148.33 640.89 7530.96 -10.19 26.45 10162.1 6681.6 78.3 23.4 -46.93 97.46 OBC -77.6 336.8 NVD 29 03 00 12 -26.8 48.3 13005.8 609 20937 D 28 21 52 33 155.70 642.84 7530.22 -17.48 25.37 10259.8 7251.3 77.4 23.0 -47.62 104.89 OBC -83.2 307.6 NVD 29 03 02 12 -26.5 48.6 12967.5 610 20937 D 28 21 54 33 163.06 645.17 7529.66 -24.76 24.20 10346.8 7845.1 76.5 22.6 -48.25 112.37 OBC -83.2 243.1 NVD 29 03 04 12 -26.1 49.0 12929.0 611 20937 D 28 21 56 33 170.43 647.77 7529.30 -32.03 22.89 10422.9 8456.1 75.5 22.2 -48.80 119.90 OBC -77.7 213.6 NVD 29 03 06 12 -25.8 49.3 12890.4 612 20937 D 28 21 58 33 177.79 650.48 7529.14 -39.28 21.34 10488.2 9078.5 74.2 21.7 -49.29 127.46 OBC -70.9 204.4 NVD 29 03 08 12 -25.4 49.6 12851.5 613 20937 D 28 21 59 09 180.00 651.29 Apo 7529.13 -41.45 20.82 10505.7 9266.5 73.8 21.6 -49.42 219.06 OBC -68.8 202.9 NVD 29 03 08 48 -25.3 49.7 12839.8 614 20937 D 28 22 00 33 185.16 653.14 7529.18 -46.51 19.44 10542.8 9707.4 72.7 21.2 -49.69 135.07 OBC -63.8 200.9 NVD 29 03 10 12 -25.1 50.0 12812.4 615 20937 D 28 22 02 33 192.52 655.56 7529.42 -53.70 16.95 10586.7 10338.4 70.6 20.5 -50.03 142.71 OBC -56.6 200.1 NVD 29 03 12 12 -24.7 50.3 12773.1 616 20937 D 28 22 04 33 199.89 657.58 7529.86 -60.81 13.43 10620.1 10967.4 67.8 19.7 -50.28 150.37 OBC -49.4 201.4 NVD 29 03 14 12 -24.4 50.6 12733.7 617 20937 D 28 22 06 33 207.25 659.04 7530.49 -67.78 7.92 10643.2 11589.9 63.3 18.5 -50.46 158.06 OBC -42.2 205.1 NVD 29 03 16 12 -24.0 51.0 12694.0 618 20937 D 28 22 08 33 214.62 659.81 7531.31 -74.41 357.88 10656.1 12201.0 -55.4 16.7 -50.57 165.76 OBC -34.9 213.7 NVD 29 03 18 12 -23.7 51.3 12654.2 619 20937 D 28 22 10 33 221.99 659.81 7532.28 -80.00 335.56 10658.9 12795.0 -40.0 14.0 -50.60 173.47 OBC -27.6 234.8 NVD 29 03 20 12 -23.3 51.6 12614.2 620

Page 325: ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM …myreaders.info/00_Orbital__Mechanics__-__Model_____Simulation... · ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM-MSS)

www.m

yrea

ders

.inf

o

OM-MSS Page 325 SATELLITE PASS - GROUND TRACE [acronym - Line Of Sight (LOS), On Board Computerr (OBC), Visible Band Camera (VBC), Night Vision Devices (NVD) ] ORBIT, INPUT TIME, POSIION, SAT VELOCITY, GROUND TRACE, RANGE, DIST, PITCH/ROLL, EL/AZ, ACCESS EL/AZ, DATA SOLAR TIME EL/AZ, DIST Line 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 @ES 18 19 20 @SS 21 22 23 24 25 26 27 @ES 28 29 30 No. Node GMT Anomaly Height @ Vel Lat(SAT)Log Slant S-Sat Pitch Roll EL(SAT)AZ Control EL(SUN)AZ Acq. LMT(ES) EL(SUN)AZ S-Sun Nos D H M S deg km meter deg deg km km deg deg deg D H M S deg km 20937 D 28 22 12 33 229.36 658.99 7533.41 -81.95 288.73 10651.9 13364.8 -14.5 11.4 -50.55 181.19 OBC -20.3 280.5 NVD 29 03 22 12 -23.0 51.9 12574.0 621 20937 D 28 22 14 33 236.74 657.35 7534.67 -78.28 250.17 10635.2 13901.5 3.3 11.0 -50.44 188.89 OBC -13.0 318.0 NVD 29 03 24 12 -22.6 52.3 12533.6 622 20937 D 28 22 16 33 244.12 654.94 7536.05 -72.16 233.61 10608.8 14393.7 10.9 11.2 -50.25 196.58 OBC -5.7 333.6 NVD 29 03 26 12 -22.2 52.6 12493.1 623 20937 D 28 22 18 33 251.50 651.85 7537.51 -65.36 225.63 10572.9 14827.3 14.7 11.4 -49.99 204.26 OBC 1.6 340.6 NVD 29 03 28 12 -21.9 52.9 12452.4 624 20937 D 28 22 20 33 258.88 648.23 7539.04 -58.31 220.98 10527.7 15185.0 17.0 11.6 -49.67 211.91 OBC 8.9 344.2 VBC 29 03 30 12 -21.5 53.2 12411.5 625 20937 D 28 22 22 33 266.26 644.24 7540.60 -51.15 217.89 10473.1 15448.0 18.5 11.7 -49.27 219.53 OBC 16.2 346.3 VBC 29 03 32 12 -21.1 53.5 12370.5 626 20937 D 28 22 24 33 273.65 640.08 7542.18 -43.92 215.64 10409.4 15598.6 19.7 11.7 -48.82 227.12 OBC 23.5 347.4 VBC 29 03 34 12 -20.8 53.8 12329.3 627 20937 D 28 22 26 33 281.04 635.94 7543.75 -36.66 213.88 10336.6 15624.7 20.5 11.8 -48.30 234.67 OBC 30.8 347.9 VBC 29 03 36 12 -20.4 54.1 12287.9 628 20937 D 28 22 28 33 288.44 632.04 7545.28 -29.37 212.42 10254.8 15524.1 21.3 11.9 -47.72 242.19 OBC 38.1 347.9 VBC 29 03 38 12 -20.0 54.4 12246.4 629 20937 D 28 22 30 33 295.84 628.56 7546.74 -22.06 211.16 10164.2 15304.7 21.9 11.9 -47.08 249.67 OBC 45.4 347.4 VBC 29 03 40 12 -19.6 54.7 12204.8 630 20937 D 28 22 32 33 303.24 625.65 7548.12 -14.75 210.02 10064.9 14982.5 22.5 12.0 -46.39 257.11 OBC 52.7 346.4 VBC 29 03 42 12 -19.3 55.0 12163.0 631 20937 D 28 22 34 33 310.64 623.46 7549.38 -7.42 208.96 9957.4 14576.1 23.1 12.0 -45.64 264.52 OBC 59.9 344.5 VBC 29 03 44 12 -18.9 55.3 12121.0 632 20937 D 28 22 36 33 318.05 622.05 7550.51 -0.09 207.93 9841.7 14103.7 23.6 12.1 -44.85 271.90 OBC 67.1 341.2 VBC 29 03 46 12 -18.5 55.5 12078.9 633 20937 D 28 22 36 35 318.14 622.04 Eqa 7550.53 -0.00 207.92 9840.2 14097.4 23.6 12.1 -44.84 71.36 OBC 67.2 341.2 VBC 29 03 46 14 -18.5 55.5 12078.4 634 20937 A 28 22 38 33 325.45 621.48 7551.49 7.24 208.94 9718.6 13767.3 23.1 12.0 -44.02 279.24 OBC 73.1 329.0 VBC 29 03 48 12 -18.1 55.8 12036.7 635 20937 A 28 22 40 33 332.86 621.74 7552.30 14.57 210.00 9588.3 13376.1 22.5 12.0 -43.14 286.56 OBC 77.6 305.8 VBC 29 03 50 12 -17.7 56.1 11994.3 636 20937 A 28 22 42 33 340.27 622.77 7552.93 21.90 211.14 9451.7 12938.6 22.0 11.9 -42.24 293.87 OBC 78.4 270.7 VBC 29 03 52 12 -17.4 56.4 11951.8 637 20937 A 28 22 44 33 347.69 624.48 7553.37 29.22 212.40 9309.6 12464.5 21.3 11.9 -41.30 301.16 OBC 75.1 242.4 VBC 29 03 54 12 -17.0 56.7 11909.1 638 20937 A 28 22 46 33 355.10 626.74 7553.61 36.52 213.86 9163.0 11962.4 20.6 11.8 -40.35 308.45 OBC 69.5 227.6 VBC 29 03 56 12 -16.6 56.9 11866.3 639 20938 A 28 22 47 53 360.00 628.46 Pri 7553.65 41.34 214.98 9064.2 11618.7 20.0 11.8 -39.71 31.53 OBC 65.3 222.3 VBC 29 03 57 32 -16.3 57.1 11837.9 640 20937 A 28 22 48 33 2.51 629.39 7553.64 43.81 215.62 9013.1 11439.7 19.7 11.7 -39.38 315.75 OBC 63.0 220.4 VBC 29 03 58 12 -16.2 57.2 11823.4 641 20938 A 28 22 50 33 9.92 632.26 7553.47 51.06 217.88 8861.2 10902.8 18.6 11.7 -38.41 323.07 OBC 56.2 217.2 VBC 29 04 00 12 -15.8 57.5 11780.3 642 20938 A 28 22 52 33 17.34 635.15 7553.10 58.25 220.97 8709.0 10357.4 17.0 11.6 -37.45 330.42 OBC 49.2 216.6 VBC 29 04 02 12 -15.4 57.7 11737.1 643 20938 A 28 22 54 33 24.75 637.89 7552.53 65.33 225.62 8558.3 9808.8 14.8 11.4 -36.50 337.81 OBC 42.1 218.7 VBC 29 04 04 12 -15.0 58.0 11693.8 644 20938 A 28 22 56 33 32.16 640.32 7551.77 72.16 233.63 8411.2 9262.3 10.9 11.2 -35.58 345.25 OBC 35.0 224.9 VBC 29 04 06 12 -14.7 58.3 11650.4 645 20938 A 28 22 58 33 39.57 642.32 7550.85 78.29 250.28 8269.9 8723.1 3.3 11.0 -34.71 352.76 OBC 27.8 240.2 VBC 29 04 08 12 -14.3 58.5 11606.8 646 20938 A 28 23 00 33 46.97 643.80 7549.76 81.96 289.17 8137.0 8196.7 -14.7 11.4 -33.88 0.33 OBC 20.6 278.1 VBC 29 04 10 12 -13.9 58.8 11563.1 647 20938 A 28 23 02 33 54.38 644.70 7548.54 79.95 336.00 8014.9 7689.5 -40.3 14.0 -33.13 7.97 OBC 13.5 324.2 VBC 29 04 12 12 -13.5 59.0 11519.3 648 20938 A 28 23 04 33 61.78 645.02 7547.20 74.31 358.15 7906.5 7208.5 -55.8 16.7 -32.46 15.69 OBC 6.4 345.9 VBC 29 04 14 12 -13.1 59.3 11475.4 649 20938 A 28 23 06 33 69.18 644.81 7545.76 67.64 8.11 7814.4 6761.8 63.6 18.5 -31.89 23.48 OBC -0.7 355.7 NVD 29 04 16 12 -12.7 59.5 11431.4 650 20938 A 28 23 08 33 76.57 644.15 7544.25 60.64 13.58 7741.3 6358.9 68.1 19.7 -31.44 31.33 OBC -7.8 1.3 NVD 29 04 18 12 -12.3 59.8 11387.2 651 20938 A 28 23 10 33 83.96 643.15 7542.69 53.49 17.08 7689.6 6010.2 71.0 20.6 -31.12 39.24 OBC -14.8 5.2 NVD 29 04 20 12 -11.9 60.0 11343.0 652 20938 A 28 23 12 33 91.35 641.96 7541.11 46.28 19.55 7661.5 5727.3 73.0 21.2 -30.93 47.18 OBC -21.7 8.4 NVD 29 04 22 12 -11.5 60.3 11298.6 653 20938 A 28 23 14 33 98.74 640.72 7539.54 39.03 21.45 7658.8 5521.1 74.5 21.8 -30.90 55.14 OBC -28.6 11.4 NVD 29 04 24 12 -11.1 60.5 11254.1 654 20938 A 28 23 16 33 106.12 639.59 7538.00 31.76 22.99 7682.7 5401.1 75.7 22.3 -31.03 63.09 OBC -35.3 14.6 NVD 29 04 26 12 -10.7 60.8 11209.6 655 20938 A 28 23 18 33 113.50 638.72 7536.51 24.48 24.31 7733.7 5373.5 76.7 22.7 -31.33 71.00 OBC -41.8 18.4 NVD 29 04 28 12 -10.3 61.0 11164.9 656 20938 A 28 23 20 33 120.88 638.23 7535.11 17.18 25.48 7812.0 5439.6 77.6 23.0 -31.79 78.85 OBC -48.1 23.0 NVD 29 04 30 12 -9.9 61.2 11120.1 657 20938 A 28 23 22 33 128.26 638.20 7533.81 9.89 26.56 7916.6 5595.8 78.4 23.4 -32.41 86.61 OBC -54.0 29.0 NVD 29 04 32 12 -9.5 61.5 11075.2 658 20938 A 28 23 24 33 135.63 638.71 7532.63 2.59 27.59 8046.5 5834.3 79.2 23.8 -33.18 94.27 OBC -59.3 37.2 NVD 29 04 34 12 -9.1 61.7 11030.2 659 20938 A 28 23 25 16 138.25 639.02 Eqa 7532.25 0.00 27.96 8098.3 5936.8 79.4 23.9 -33.50 251.34 OBC -61.0 40.8 NVD 29 04 34 55 -8.9 61.8 11014.2 660 20938 D 28 23 26 33 143.00 639.77 7531.60 -4.70 27.30 8199.6 6267.9 78.9 23.7 -34.11 101.82 OBC -64.6 46.7 NVD 29 04 36 12 -8.7 61.9 10985.1 661 20938 D 28 23 28 33 150.37 641.35 7530.74 -12.00 26.26 8373.5 6814.0 78.1 23.3 -35.17 109.23 OBC -69.4 59.8 NVD 29 04 38 12 -8.3 62.2 10939.9 662 20938 D 28 23 30 33 157.74 643.40 7530.05 -19.28 25.16 8565.6 7390.7 77.3 22.9 -36.36 116.52 OBC -72.6 79.3 NVD 29 04 40 12 -7.9 62.4 10894.7 663 20938 D 28 23 32 33 165.10 645.81 7529.54 -26.56 23.96 8772.9 7989.8 76.3 22.5 -37.65 123.69 OBC -73.0 103.3 NVD 29 04 42 12 -7.5 62.6 10849.3 664

Page 326: ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM …myreaders.info/00_Orbital__Mechanics__-__Model_____Simulation... · ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM-MSS)

www.m

yrea

ders

.inf

o

OM-MSS Page 326 SATELLITE PASS - GROUND TRACE [acronym - Line Of Sight (LOS), On Board Computerr (OBC), Visible Band Camera (VBC), Night Vision Devices (NVD) ] ORBIT, INPUT TIME, POSIION, SAT VELOCITY, GROUND TRACE, RANGE, DIST, PITCH/ROLL, EL/AZ, ACCESS EL/AZ, DATA SOLAR TIME EL/AZ, DIST Line 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 @ES 18 19 20 @SS 21 22 23 24 25 26 27 @ES 28 29 30 No. Node GMT Anomaly Height @ Vel Lat(SAT)Log Slant S-Sat Pitch Roll EL(SAT)AZ Control EL(SUN)AZ Acq. LMT(ES) EL(SUN)AZ S-Sun Nos D H M S deg km meter deg deg km km deg deg deg D H M S deg km 20938 D 28 23 34 33 172.47 648.44 7529.24 -33.83 22.60 8991.9 8604.5 75.2 22.1 -39.04 130.76 OBC -70.7 125.1 NVD 29 04 44 12 -7.1 62.8 10803.8 665 20938 D 28 23 36 33 179.83 651.15 7529.13 -41.07 20.98 9219.6 9229.3 73.9 21.6 -40.51 137.72 OBC -66.4 140.9 NVD 29 04 46 12 -6.6 63.1 10758.3 666 20938 D 28 23 36 36 180.00 651.21 Apo 7529.13 -41.24 20.94 9224.8 9243.5 73.9 21.6 -40.55 219.17 OBC -66.3 141.1 NVD 29 04 46 15 -6.6 63.1 10757.3 667 20938 D 28 23 38 33 187.20 653.76 7529.23 -48.29 18.96 9452.4 9859.6 72.3 21.1 -42.04 144.63 OBC -60.9 151.9 NVD 29 04 48 12 -6.2 63.3 10712.6 668 20938 D 28 23 40 33 194.56 656.09 7529.53 -55.46 16.27 9687.1 10491.0 70.1 20.4 -43.62 151.48 OBC -54.9 160.2 NVD 29 04 50 12 -5.8 63.5 10666.9 669 20938 D 28 23 42 33 201.93 657.98 7530.02 -62.55 12.38 9920.4 11119.3 66.9 19.4 -45.22 158.33 OBC -48.6 167.7 NVD 29 04 52 12 -5.4 63.7 10621.1 670 20938 D 28 23 44 33 209.30 659.28 7530.70 -69.47 6.09 10149.2 11740.0 61.8 18.1 -46.84 165.20 OBC -42.1 176.4 NVD 29 04 54 12 -5.0 63.9 10575.2 671 20938 D 28 23 46 33 216.66 659.86 7531.56 -75.94 354.09 10370.4 12348.0 -52.6 16.1 -48.44 172.12 OBC -35.4 189.8 NVD 29 04 56 12 -4.6 64.2 10529.2 672 20938 D 28 23 48 33 224.04 659.66 7532.58 -80.99 326.32 10581.0 12937.4 -34.3 13.2 -50.01 179.14 OBC -28.8 218.4 NVD 29 04 58 12 -4.2 64.4 10483.1 673 20938 D 28 23 50 33 231.41 658.63 7533.75 -81.47 276.56 10778.5 13500.7 -8.8 11.1 -51.53 186.29 OBC -22.0 268.5 NVD 29 05 00 12 -3.8 64.6 10437.0 674 20938 D 28 23 52 33 238.78 656.78 7535.04 -76.88 244.76 10960.2 14028.4 5.8 11.1 -52.97 193.61 OBC -15.3 300.3 NVD 29 05 02 12 -3.3 64.8 10390.8 675 20938 D 28 23 54 33 246.16 654.19 7536.44 -70.52 231.21 11123.7 14508.4 12.1 11.3 -54.31 201.12 OBC -8.6 313.5 NVD 29 05 04 12 -2.9 65.0 10344.5 676 20938 D 28 23 56 33 253.54 650.95 7537.93 -63.63 224.33 11266.8 14925.9 15.4 11.5 -55.52 208.86 OBC -1.9 319.6 NVD 29 05 06 12 -2.5 65.2 10298.1 677 20938 D 28 23 58 33 260.92 647.22 7539.47 -56.55 220.17 11387.5 15263.0 17.4 11.6 -56.57 216.82 OBC 4.8 322.7 NVD 29 05 08 12 -2.1 65.4 10251.6 678 20938 D 29 00 00 33 268.31 643.17 7541.04 -49.37 217.34 11484.0 15500.7 18.8 11.7 -57.43 225.02 OBC 11.4 324.1 VBC 29 05 10 12 -1.7 65.6 10205.1 679 20938 D 29 00 02 33 275.70 639.00 7542.62 -42.13 215.23 11554.6 15622.3 19.9 11.8 -58.08 233.42 OBC 17.9 324.4 VBC 29 05 12 12 -1.3 65.8 10158.4 680 20938 D 29 00 04 33 283.09 634.91 7544.18 -34.86 213.56 11597.8 15617.6 20.7 11.8 -58.49 241.97 OBC 24.3 323.8 VBC 29 05 14 12 -0.8 66.0 10111.8 681 20938 D 29 00 06 33 290.49 631.09 7545.69 -27.56 212.16 11612.6 15486.9 21.4 11.9 -58.64 250.62 OBC 30.6 322.3 VBC 29 05 16 12 -0.4 66.2 10065.0 682 20938 D 29 00 08 33 297.89 627.74 7547.13 -20.25 210.94 11597.8 15240.7 22.0 11.9 -58.51 259.27 OBC 36.7 319.9 VBC 29 05 18 12 0.0 66.4 10018.2 683 20938 D 29 00 10 33 305.29 625.00 7548.48 -12.93 209.82 11552.6 14895.8 22.6 12.0 -58.12 267.84 OBC 42.6 316.3 VBC 29 05 20 12 0.4 66.6 9971.3 684 20938 D 29 00 12 33 312.69 623.00 7549.71 -5.61 208.77 11476.7 14471.3 23.2 12.0 -57.45 276.26 OBC 48.1 311.5 VBC 29 05 22 12 0.8 66.8 9924.3 685 20938 D 29 00 14 05 318.36 622.01 Eqa 7550.56 -0.00 207.99 11397.5 14103.9 23.6 12.1 -56.76 71.32 OBC 51.9 306.6 VBC 29 05 23 44 1.2 67.0 9888.3 686 20938 A 29 00 14 33 320.10 621.80 7550.80 1.72 208.23 11369.6 14030.9 23.5 12.1 -56.52 284.45 OBC 52.6 304.5 VBC 29 05 24 12 1.3 67.0 9877.2 687 20938 A 29 00 16 33 327.51 621.44 7551.74 9.05 209.26 11231.3 13681.3 22.9 12.0 -55.34 292.36 OBC 54.9 294.9 VBC 29 05 26 12 1.7 67.2 9830.1 688 20938 A 29 00 18 33 334.92 621.90 7552.50 16.39 210.34 11062.0 13277.2 22.4 12.0 -53.95 299.98 OBC 56.0 284.4 VBC 29 05 28 12 2.1 67.4 9783.0 689 20938 A 29 00 20 33 342.33 623.12 7553.07 23.71 211.51 10862.4 12829.2 21.8 11.9 -52.35 307.29 OBC 55.6 274.0 VBC 29 05 30 12 2.5 67.6 9735.7 690 20938 A 29 00 22 33 349.74 624.99 7553.46 31.03 212.81 10633.2 12346.9 21.1 11.9 -50.59 314.32 OBC 53.9 264.5 VBC 29 05 32 12 3.0 67.8 9688.4 691 20938 A 29 00 24 33 357.15 627.37 7553.64 38.33 214.33 10375.7 11838.5 20.3 11.8 -48.67 321.09 OBC 51.0 256.6 VBC 29 05 34 12 3.4 67.9 9641.0 692 20939 A 29 00 25 20 360.00 628.38 Pri 7553.65 41.13 215.00 10269.5 11637.8 20.0 11.8 -47.89 31.66 OBC 49.7 254.1 VBC 29 05 34 59 3.6 68.0 9622.8 693 20938 A 29 00 26 33 4.57 630.09 7553.61 45.61 216.19 10091.3 11311.1 19.4 11.7 -46.62 327.64 OBC 47.3 250.7 VBC 29 05 36 12 3.8 68.1 9593.6 694 20939 A 29 00 28 33 11.98 632.99 7553.38 52.85 218.61 9782.0 10770.9 18.2 11.6 -44.46 334.02 OBC 42.9 246.8 VBC 29 05 38 12 4.2 68.3 9546.1 695 20939 A 29 00 30 33 19.39 635.86 7552.96 60.02 222.00 9450.2 10223.6 16.5 11.5 -42.23 340.28 OBC 38.0 245.2 VBC 29 05 40 12 4.7 68.5 9498.6 696 20939 A 29 00 32 33 26.80 638.54 7552.34 67.05 227.25 9098.9 9674.4 14.0 11.4 -39.92 346.47 OBC 32.8 246.5 VBC 29 05 42 12 5.1 68.7 9451.0 697 20939 A 29 00 34 33 34.21 640.89 7551.53 73.77 236.66 8731.6 9128.6 9.5 11.2 -37.58 352.67 OBC 27.3 252.9 VBC 29 05 44 12 5.5 68.9 9403.3 698 20939 A 29 00 36 33 41.62 642.77 7550.56 79.56 257.26 8352.5 8591.3 0.1 11.0 -35.21 358.94 OBC 21.7 271.2 VBC 29 05 46 12 6.0 69.0 9355.5 699 20939 A 29 00 38 33 49.02 644.11 7549.44 82.03 302.41 7966.6 8068.4 -21.3 11.9 -32.85 5.34 OBC 16.1 314.7 VBC 29 05 48 12 6.4 69.2 9307.8 700 20939 A 29 00 40 33 56.43 644.87 7548.18 78.74 343.52 7580.1 7566.3 -45.2 14.8 -30.51 11.95 OBC 10.4 354.6 VBC 29 05 50 12 6.8 69.4 9259.9 701 20939 A 29 00 42 33 63.83 645.05 7546.81 72.71 1.37 7200.0 7092.2 58.2 17.3 -28.24 18.86 OBC 4.7 11.8 NVD 29 05 52 12 7.2 69.6 9212.0 702 20939 A 29 00 44 33 71.23 644.72 7545.35 65.93 9.81 6834.8 6654.6 65.0 18.9 -26.06 26.14 OBC -1.0 20.0 NVD 29 05 54 12 7.7 69.8 9164.1 703 20939 A 29 00 46 33 78.62 643.97 7543.82 58.88 14.65 6494.2 6263.3 69.0 20.0 -24.04 33.86 OBC -6.5 25.1 NVD 29 05 56 12 8.1 69.9 9116.1 704 20939 A 29 00 48 33 86.01 642.91 7542.25 51.71 17.83 6189.3 5929.1 71.6 20.8 -22.22 42.08 OBC -12.0 29.0 NVD 29 05 58 12 8.5 70.1 9068.0 705 20939 A 29 00 50 33 93.40 641.69 7540.67 44.49 20.13 5932.2 5663.4 73.5 21.4 -20.67 50.82 OBC -17.2 32.4 NVD 29 06 00 12 9.0 70.3 9019.9 706 20939 A 29 00 52 33 100.79 640.47 7539.11 37.23 21.93 5735.0 5477.1 74.9 21.9 -19.48 60.05 OBC -22.2 35.9 NVD 29 06 02 12 9.4 70.5 8971.7 707 20939 A 29 00 54 33 108.17 639.39 7537.58 29.96 23.40 5608.9 5379.1 76.0 22.4 -18.70 69.69 OBC -27.0 39.7 NVD 29 06 04 12 9.8 70.6 8923.5 708

Page 327: ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM …myreaders.info/00_Orbital__Mechanics__-__Model_____Simulation... · ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM-MSS)

www.m

yrea

ders

.inf

o

OM-MSS Page 327 SATELLITE PASS - GROUND TRACE [acronym - Line Of Sight (LOS), On Board Computerr (OBC), Visible Band Camera (VBC), Night Vision Devices (NVD) ] ORBIT, INPUT TIME, POSIION, SAT VELOCITY, GROUND TRACE, RANGE, DIST, PITCH/ROLL, EL/AZ, ACCESS EL/AZ, DATA SOLAR TIME EL/AZ, DIST Line 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 @ES 18 19 20 @SS 21 22 23 24 25 26 27 @ES 28 29 30 No. Node GMT Anomaly Height @ Vel Lat(SAT)Log Slant S-Sat Pitch Roll EL(SAT)AZ Control EL(SUN)AZ Acq. LMT(ES) EL(SUN)AZ S-Sun Nos D H M S deg km meter deg deg km km deg deg deg D H M S deg km 20939 A 29 00 56 33 115.55 638.60 7536.11 22.67 24.68 5562.5 5374.4 77.0 22.8 -18.41 79.55 OBC -31.4 43.8 NVD 29 06 06 12 10.3 70.8 8875.2 709 20939 A 29 00 58 33 122.93 638.21 7534.73 15.38 25.82 5599.9 5463.3 77.9 23.2 -18.62 89.43 OBC -35.3 48.5 NVD 29 06 08 12 10.7 71.0 8826.9 710 20939 A 29 01 00 33 130.30 638.31 7533.47 8.08 26.88 5720.6 5640.8 78.7 23.5 -19.33 99.09 OBC -38.7 53.9 NVD 29 06 10 12 11.1 71.1 8778.5 711 20939 A 29 01 02 33 137.67 638.95 7532.33 0.79 27.91 5919.0 5898.3 79.4 23.9 -20.51 108.34 OBC -41.4 59.8 NVD 29 06 12 12 11.6 71.3 8730.1 712 20939 A 29 01 02 46 138.47 639.05 Eqa 7532.22 0.00 28.02 5944.7 5930.4 79.5 23.9 -20.66 251.29 OBC -41.7 60.5 NVD 29 06 12 25 11.6 71.3 8724.9 713 20939 D 29 01 04 33 145.04 640.14 7531.35 -6.51 27.11 6186.1 6393.4 78.8 23.6 -22.09 117.05 OBC -45.0 65.8 NVD 29 06 14 12 12.0 71.5 8681.6 714 20939 D 29 01 06 33 152.41 641.84 7530.53 -13.80 26.06 6510.7 6948.3 78.0 23.2 -24.00 125.15 OBC -48.1 72.9 NVD 29 06 16 12 12.4 71.6 8633.1 715 20939 D 29 01 08 33 159.78 643.98 7529.89 -21.08 24.94 6880.8 7531.7 77.1 22.9 -26.19 132.65 OBC -50.3 81.2 NVD 29 06 18 12 12.9 71.8 8584.6 716 20939 D 29 01 10 33 167.14 646.45 7529.44 -28.36 23.71 7285.0 8135.6 76.1 22.5 -28.58 139.60 OBC -51.5 90.4 NVD 29 06 20 12 13.3 72.0 8536.0 717 20939 D 29 01 12 33 174.51 649.12 7529.19 -35.62 22.29 7712.8 8753.6 75.0 22.0 -31.14 146.05 OBC -51.6 100.1 NVD 29 06 22 12 13.8 72.1 8487.3 718 20939 D 29 01 14 03 180.00 651.13 Apo 7529.13 -41.02 21.06 8041.3 9220.6 74.0 21.7 -33.12 219.27 OBC -51.0 107.4 NVD 29 06 23 42 14.1 72.2 8451.0 719 20939 D 29 01 14 33 181.87 651.81 7529.14 -42.86 20.59 8154.6 9380.7 73.6 21.5 -33.81 152.10 OBC -50.6 109.9 NVD 29 06 24 12 14.2 72.3 8438.6 720 20939 D 29 01 16 33 189.24 654.36 7529.29 -50.07 18.43 8602.3 10012.1 71.9 20.9 -36.58 157.81 OBC -48.7 119.4 NVD 29 06 26 12 14.6 72.4 8389.9 721 20939 D 29 01 18 33 196.60 656.59 7529.64 -57.23 15.51 9048.5 10643.6 69.5 20.2 -39.41 163.28 OBC -45.8 128.6 NVD 29 06 28 12 15.1 72.6 8341.1 722 20939 D 29 01 20 33 203.97 658.34 7530.19 -64.28 11.19 9487.1 11271.0 65.9 19.1 -42.28 168.59 OBC -42.3 138.2 NVD 29 06 30 12 15.5 72.8 8292.3 723 20939 D 29 01 22 33 211.34 659.47 7530.92 -71.13 3.94 9912.5 11889.6 60.1 17.7 -45.17 173.81 OBC -38.3 149.6 NVD 29 06 32 12 15.9 72.9 8243.4 724 20939 D 29 01 24 33 218.71 659.86 7531.83 -77.40 349.40 10319.7 12494.3 -49.2 15.5 -48.07 179.04 OBC -33.9 167.4 NVD 29 06 34 12 16.4 73.1 8194.5 725 20939 D 29 01 26 33 226.08 659.45 7532.89 -81.69 315.19 10704.5 13078.6 -28.0 12.5 -50.95 184.36 OBC -29.2 204.1 NVD 29 06 36 12 16.8 73.2 8145.6 726 20939 D 29 01 28 33 233.45 658.21 7534.10 -80.66 266.09 11063.2 13634.8 -4.0 11.0 -53.79 189.88 OBC -24.3 254.9 NVD 29 06 38 12 17.3 73.4 8096.6 727 20939 D 29 01 30 33 240.83 656.17 7535.42 -75.39 240.42 11392.2 14152.7 7.8 11.1 -56.57 195.71 OBC -19.3 281.7 NVD 29 06 40 12 17.7 73.6 8047.6 728 20939 D 29 01 32 33 248.21 653.40 7536.85 -68.84 229.18 11688.5 14619.8 13.0 11.3 -59.25 201.99 OBC -14.2 293.5 NVD 29 06 42 12 18.1 73.7 7998.5 729 20939 D 29 01 34 33 255.59 650.03 7538.35 -61.89 223.19 11949.6 15020.1 15.9 11.5 -61.80 208.87 OBC -9.0 299.6 NVD 29 06 44 12 18.6 73.9 7949.4 730 20939 D 29 01 36 33 262.97 646.20 7539.90 -54.78 219.45 12172.9 15335.4 17.8 11.6 -64.15 216.53 OBC -3.9 302.9 NVD 29 06 46 12 19.0 74.0 7900.2 731 20939 D 29 01 38 33 270.36 642.10 7541.48 -47.58 216.83 12356.5 15546.8 19.1 11.7 -66.25 225.14 OBC 1.2 304.7 NVD 29 06 48 12 19.5 74.2 7851.1 732 20939 D 29 01 40 33 277.75 637.93 7543.05 -40.33 214.85 12498.6 15638.6 20.0 11.8 -68.00 234.85 OBC 6.3 305.4 VBC 29 06 50 12 19.9 74.3 7801.8 733 20939 D 29 01 42 33 285.14 633.89 7544.60 -33.05 213.26 12597.7 15602.9 20.9 11.8 -69.31 245.67 OBC 11.2 305.2 VBC 29 06 52 12 20.4 74.5 7752.6 734 20939 D 29 01 44 33 292.54 630.18 7546.10 -25.75 211.91 12652.4 15442.8 21.5 11.9 -70.07 257.41 OBC 16.0 304.3 VBC 29 06 54 12 20.8 74.6 7703.3 735 20939 D 29 01 46 33 299.94 626.96 7547.52 -18.44 210.72 12662.0 15170.6 22.2 11.9 -70.23 269.60 OBC 20.5 302.6 VBC 29 06 56 12 21.2 74.8 7654.0 736 20939 D 29 01 48 33 307.34 624.40 7548.83 -11.12 209.63 12625.7 14804.2 22.7 12.0 -69.74 281.63 OBC 24.8 300.3 VBC 29 06 58 12 21.7 74.9 7604.6 737 20939 D 29 01 50 33 314.74 622.59 7550.03 -3.79 208.58 12543.0 14362.6 23.3 12.0 -68.66 292.91 OBC 28.8 297.2 VBC 29 07 00 12 22.1 75.1 7555.2 738 20939 D 29 01 51 36 318.58 621.98 Eqa 7550.59 -0.00 208.06 12482.0 14110.4 23.5 12.1 -67.88 71.27 OBC 30.8 295.4 VBC 29 07 01 15 22.4 75.2 7529.6 739 20939 A 29 01 52 33 322.15 621.61 7551.08 3.54 208.55 12413.8 13956.3 23.3 12.0 -67.05 303.09 OBC 31.6 293.2 VBC 29 07 02 12 22.6 75.2 7505.8 740 20939 A 29 01 54 33 329.56 621.46 7551.96 10.87 209.59 12238.3 13591.8 22.7 12.0 -65.01 312.07 OBC 32.8 288.8 VBC 29 07 04 12 23.0 75.4 7456.3 741 20939 A 29 01 56 33 336.97 622.12 7552.68 18.20 210.69 12016.8 13175.3 22.2 11.9 -62.63 319.91 OBC 33.4 284.3 VBC 29 07 06 12 23.5 75.5 7406.8 742 20939 A 29 01 58 33 344.38 623.52 7553.20 25.52 211.88 11750.0 12717.5 21.6 11.9 -59.99 326.77 OBC 33.4 280.0 VBC 29 07 08 12 23.9 75.7 7357.3 743 20939 A 29 02 00 33 351.79 625.53 7553.53 32.84 213.23 11438.8 12227.4 20.9 11.8 -57.15 332.83 OBC 32.8 276.0 VBC 29 07 10 12 24.4 75.8 7307.7 744 20939 A 29 02 02 33 359.21 628.02 7553.65 40.14 214.82 11084.6 11713.1 20.1 11.8 -54.14 338.25 OBC 31.7 272.6 VBC 29 07 12 12 24.8 76.0 7258.1 745 20940 A 29 02 02 46 360.00 628.31 Pri 7553.65 40.92 215.01 11044.2 11656.9 20.0 11.8 -53.81 31.79 OBC 31.5 272.3 VBC 29 07 12 25 24.8 76.0 7252.8 746 20939 A 29 02 04 33 6.62 630.81 7553.57 47.41 216.80 10688.9 11181.4 19.1 11.7 -51.01 343.19 OBC 30.0 269.9 VBC 29 07 14 12 25.2 76.1 7208.5 747 20940 A 29 02 06 33 14.03 633.72 7553.29 54.63 219.40 10253.5 10638.3 17.8 11.6 -47.77 347.76 OBC 28.0 268.4 VBC 29 07 16 12 25.7 76.3 7158.8 748 20940 A 29 02 08 33 21.44 636.56 7552.80 61.78 223.14 9780.7 10089.4 16.0 11.5 -44.45 352.07 OBC 25.5 268.4 VBC 29 07 18 12 26.1 76.4 7109.1 749 20940 A 29 02 10 33 28.85 639.18 7552.13 68.76 229.11 9273.3 9540.0 13.1 11.3 -41.05 356.23 OBC 22.8 271.2 VBC 29 07 20 12 26.6 76.5 7059.4 750 20940 A 29 02 12 33 36.26 641.43 7551.28 75.34 240.31 8734.3 8995.1 7.8 11.1 -37.59 0.32 OBC 19.8 279.6 VBC 29 07 22 12 27.0 76.7 7009.7 751 20940 A 29 02 14 33 43.67 643.18 7550.26 80.64 265.96 8167.4 8460.1 -3.9 11.0 -34.07 4.44 OBC 16.7 303.0 VBC 29 07 24 12 27.5 76.8 6959.9 752 20940 A 29 02 16 33 51.08 644.38 7549.10 81.69 315.22 7577.2 7941.0 -28.1 12.5 -30.50 8.69 OBC 13.4 350.5 VBC 29 07 26 12 27.9 77.0 6910.1 753

Page 328: ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM …myreaders.info/00_Orbital__Mechanics__-__Model_____Simulation... · ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM-MSS)

www.m

yrea

ders

.inf

o

OM-MSS Page 328 SATELLITE PASS - GROUND TRACE [acronym - Line Of Sight (LOS), On Board Computerr (OBC), Visible Band Camera (VBC), Night Vision Devices (NVD) ] ORBIT, INPUT TIME, POSIION, SAT VELOCITY, GROUND TRACE, RANGE, DIST, PITCH/ROLL, EL/AZ, ACCESS EL/AZ, DATA SOLAR TIME EL/AZ, DIST Line 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 @ES 18 19 20 @SS 21 22 23 24 25 26 27 @ES 28 29 30 No. Node GMT Anomaly Height @ Vel Lat(SAT)Log Slant S-Sat Pitch Roll EL(SAT)AZ Control EL(SUN)AZ Acq. LMT(ES) EL(SUN)AZ S-Sun Nos D H M S deg km meter deg deg km km deg deg deg D H M S deg km 20940 A 29 02 18 33 58.48 645.00 7547.81 77.38 349.52 6969.1 7444.4 -49.4 15.5 -26.88 13.20 OBC 10.1 23.4 VBC 29 07 28 12 28.4 77.1 6860.2 754 20940 A 29 02 20 33 65.88 645.06 7546.41 71.07 4.06 6350.0 6977.7 60.4 17.7 -23.21 18.11 OBC 6.7 36.9 VBC 29 07 30 12 28.8 77.3 6810.4 755 20940 A 29 02 22 33 73.27 644.61 7544.93 64.20 11.30 5728.9 6549.9 66.2 19.2 -19.51 23.65 OBC 3.3 43.5 NVD 29 07 32 12 29.3 77.4 6760.5 756 20940 A 29 02 24 33 80.67 643.77 7543.39 57.11 15.61 5118.2 6170.8 69.8 20.2 -15.78 30.07 OBC 0.1 47.5 NVD 29 07 34 12 29.7 77.5 6710.6 757 20940 A 29 02 26 33 88.06 642.66 7541.82 49.93 18.53 4535.1 5851.8 72.2 21.0 -12.07 37.78 OBC -3.1 50.4 NVD 29 07 36 12 30.2 77.7 6660.6 758 20940 A 29 02 28 33 95.45 641.43 7540.24 42.70 20.68 4004.8 5604.0 73.9 21.6 -8.50 47.26 OBC -6.2 52.9 NVD 29 07 38 12 30.6 77.8 6610.7 759 20940 A 29 02 30 33 102.83 640.22 7538.68 35.44 22.38 3563.1 5438.3 75.2 22.1 -5.28 59.04 OBC -9.1 55.2 NVD 29 07 40 12 31.1 78.0 6560.7 760 20940 A 29 02 32 33 110.21 639.20 7537.16 28.16 23.80 3256.3 5362.7 76.3 22.5 -2.86 73.36 LOS -11.7 57.5 NVD 29 07 42 12 31.5 78.1 6510.6 761 20940 A 29 02 34 33 117.59 638.50 7535.72 20.87 25.04 3132.0 5381.1 77.3 22.9 -1.81 89.61 LOS -14.2 59.8 NVD 29 07 44 12 32.0 78.2 6460.6 762 20940 A 29 02 36 33 124.97 638.22 7534.37 13.57 26.16 3214.9 5492.4 78.1 23.3 -2.47 106.06 LOS -16.4 62.3 NVD 29 07 46 12 32.4 78.4 6410.5 763 20940 A 29 02 38 33 132.34 638.45 7533.14 6.28 27.21 3490.8 5690.7 78.9 23.6 -4.64 120.85 LOS -18.3 64.8 NVD 29 07 48 12 32.9 78.5 6360.4 764 20940 A 29 02 40 17 138.69 639.08 Eqa 7532.19 0.00 28.09 3849.8 5923.9 79.5 23.9 -7.28 251.25 OBC -19.6 67.0 NVD 29 07 49 56 33.2 78.6 6317.3 765 20940 D 29 02 40 33 139.72 639.22 7532.04 -1.02 27.95 3916.4 5994.1 79.4 23.9 -7.76 133.05 OBC -20.1 67.3 NVD 29 07 50 12 33.3 78.7 6310.3 766 20940 D 29 02 42 33 147.08 640.54 7531.10 -8.31 26.92 4444.2 6521.4 78.6 23.5 -11.34 142.77 OBC -23.2 70.0 NVD 29 07 52 12 33.8 78.8 6260.1 767 20940 D 29 02 44 33 154.45 642.35 7530.33 -15.60 25.86 5035.8 7084.6 77.8 23.2 -15.11 150.49 OBC -26.1 73.2 NVD 29 07 54 12 34.2 78.9 6210.0 768 20940 D 29 02 46 33 161.82 644.58 7529.74 -22.88 24.72 5663.8 7674.1 76.9 22.8 -18.95 156.73 OBC -28.5 77.0 NVD 29 07 56 12 34.7 79.1 6159.8 769 20940 D 29 02 48 33 169.18 647.11 7529.35 -30.16 23.44 6309.2 8282.4 75.9 22.4 -22.80 161.89 OBC -30.6 81.3 NVD 29 07 58 12 35.1 79.2 6109.5 770 20940 D 29 02 50 33 176.55 649.79 7529.15 -37.41 21.97 6958.3 8903.6 74.7 21.9 -26.64 166.27 OBC -32.2 86.2 NVD 29 08 00 12 35.6 79.3 6059.3 771 20940 D 29 02 51 30 180.00 651.05 Apo 7529.13 -40.81 21.18 7260.7 9197.6 74.1 21.7 -28.43 219.38 OBC -32.8 88.7 NVD 29 08 01 09 35.8 79.4 6035.7 772 20940 D 29 02 52 33 183.91 652.46 7529.16 -44.65 20.17 7601.1 9532.6 73.3 21.4 -30.47 170.08 OBC -33.3 91.7 NVD 29 08 02 12 36.0 79.5 6009.0 773 20940 D 29 02 54 33 191.28 654.94 7529.37 -51.85 17.87 8229.9 10164.9 71.4 20.8 -34.28 173.49 OBC -33.9 97.9 NVD 29 08 04 12 36.5 79.6 5958.7 774 20940 D 29 02 56 33 198.65 657.06 7529.78 -58.99 14.68 8838.5 10796.2 68.8 20.0 -38.07 176.60 OBC -34.0 105.0 NVD 29 08 06 12 36.9 79.7 5908.4 775 20940 D 29 02 58 33 206.01 658.67 7530.38 -66.00 9.83 9421.7 11422.4 64.8 18.9 -41.85 179.51 OBC -33.5 113.8 NVD 29 08 08 12 37.4 79.9 5858.1 776 20940 D 29 03 00 33 213.38 659.61 7531.16 -72.76 1.38 9975.2 12038.7 58.1 17.2 -45.61 182.30 OBC -32.6 125.9 NVD 29 08 10 12 37.8 80.0 5807.7 777 20940 D 29 03 02 33 220.75 659.81 7532.11 -78.75 343.53 10494.9 12639.6 -45.2 14.8 -49.36 185.05 OBC -31.2 147.3 NVD 29 08 12 12 38.3 80.2 5757.4 778 20940 D 29 03 04 33 228.12 659.19 7533.21 -82.03 302.58 10977.6 13218.4 -21.4 11.9 -53.09 187.84 OBC -29.4 191.3 NVD 29 08 14 12 38.7 80.3 5707.0 779 20940 D 29 03 06 33 235.49 657.74 7534.45 -79.59 257.53 11420.3 13766.9 -0.1 11.0 -56.81 190.75 OBC -27.3 239.1 NVD 29 08 16 12 39.2 80.4 5656.6 780 20940 D 29 03 08 33 242.87 655.51 7535.81 -73.84 236.89 11820.1 14274.5 9.4 11.2 -60.49 193.90 OBC -24.8 262.1 NVD 29 08 18 12 39.6 80.6 5606.1 781 20940 D 29 03 10 33 250.25 652.58 7537.26 -67.15 227.45 12174.8 14727.5 13.9 11.4 -64.14 197.47 OBC -22.0 273.5 NVD 29 08 20 12 40.1 80.7 5555.7 782 20940 D 29 03 12 33 257.63 649.07 7538.78 -60.14 222.18 12482.3 15109.6 16.4 11.5 -67.74 201.70 OBC -19.1 280.3 NVD 29 08 22 12 40.5 80.8 5505.2 783 20940 D 29 03 14 33 265.02 645.16 7540.34 -53.00 218.79 12740.6 15402.0 18.1 11.6 -71.25 207.01 OBC -16.0 284.8 NVD 29 08 24 12 41.0 81.0 5454.7 784 20940 D 29 03 16 33 272.41 641.02 7541.92 -45.79 216.36 12948.3 15586.0 19.3 11.7 -74.62 214.15 OBC -12.7 288.0 NVD 29 08 26 12 41.5 81.1 5404.2 785 20940 D 29 03 18 33 279.80 636.87 7543.49 -38.53 214.50 13104.0 15647.4 20.2 11.8 -77.73 224.48 OBC -9.4 290.2 NVD 29 08 28 12 41.9 81.2 5353.7 786 20940 D 29 03 20 33 287.19 632.89 7545.02 -31.25 212.97 13206.7 15580.9 21.0 11.8 -80.30 240.37 OBC -6.0 291.7 NVD 29 08 30 12 42.4 81.4 5303.1 787 20940 D 29 03 22 33 294.59 629.29 7546.50 -23.95 211.67 13255.5 15391.9 21.7 11.9 -81.82 264.07 OBC -2.6 292.5 NVD 29 08 32 12 42.8 81.5 5252.6 788 20940 D 29 03 24 33 301.99 626.23 7547.89 -16.63 210.51 13250.0 15094.7 22.3 11.9 -81.68 291.86 OBC 0.8 292.8 NVD 29 08 34 12 43.3 81.6 5202.0 789 20940 D 29 03 26 33 309.39 623.85 7549.18 -9.31 209.43 13189.8 14708.0 22.8 12.0 -79.94 314.34 OBC 4.1 292.7 NVD 29 08 36 12 43.7 81.8 5151.4 790 20940 D 29 03 28 33 316.80 622.24 7550.33 -1.98 208.40 13074.9 14250.3 23.4 12.0 -77.24 329.06 OBC 7.4 292.1 VBC 29 08 38 12 44.2 81.9 5100.8 791 20940 D 29 03 29 06 318.80 621.95 Eqa 7550.62 -0.00 208.12 13034.6 14116.8 23.5 12.1 -76.41 71.23 OBC 8.3 291.8 VBC 29 08 38 45 44.3 81.9 5087.1 792 20940 A 29 03 30 33 324.20 621.47 7551.34 5.35 208.87 12905.7 13877.7 23.1 12.0 -74.04 338.56 OBC 9.2 291.1 VBC 29 08 40 12 44.6 82.0 5050.1 793 20940 A 29 03 32 33 331.61 621.53 7552.18 12.68 209.92 12682.5 13498.8 22.6 12.0 -70.58 345.03 OBC 10.4 290.0 VBC 29 08 42 12 45.1 82.2 4999.5 794 20940 A 29 03 34 33 339.02 622.39 7552.84 20.01 211.04 12406.2 13070.7 22.0 11.9 -66.98 349.72 OBC 11.4 289.0 VBC 29 08 44 12 45.5 82.3 4948.8 795 20940 A 29 03 36 33 346.44 623.95 7553.31 27.34 212.26 12077.7 12603.5 21.4 11.9 -63.28 353.31 OBC 12.2 288.2 VBC 29 08 46 12 46.0 82.4 4898.1 796 20940 A 29 03 38 33 353.85 626.10 7553.58 34.65 213.66 11698.3 12106.2 20.7 11.8 -59.51 356.17 OBC 12.9 287.5 VBC 29 08 48 12 46.5 82.6 4847.4 797

Page 329: ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM …myreaders.info/00_Orbital__Mechanics__-__Model_____Simulation... · ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM-MSS)

www.m

yrea

ders

.inf

o

OM-MSS Page 329 SATELLITE PASS - GROUND TRACE [acronym - Line Of Sight (LOS), On Board Computerr (OBC), Visible Band Camera (VBC), Night Vision Devices (NVD) ] ORBIT, INPUT TIME, POSIION, SAT VELOCITY, GROUND TRACE, RANGE, DIST, PITCH/ROLL, EL/AZ, ACCESS EL/AZ, DATA SOLAR TIME EL/AZ, DIST Line 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 @ES 18 19 20 @SS 21 22 23 24 25 26 27 @ES 28 29 30 No. Node GMT Anomaly Height @ Vel Lat(SAT)Log Slant S-Sat Pitch Roll EL(SAT)AZ Control EL(SUN)AZ Acq. LMT(ES) EL(SUN)AZ S-Sun Nos D H M S deg km meter deg deg km km deg deg deg D H M S deg km 20941 A 29 03 40 13 360.00 628.23 Pri 7553.65 40.70 215.02 11345.9 11676.0 20.0 11.8 -56.34 31.93 OBC 13.3 287.1 VBC 29 08 49 52 46.8 82.7 4805.3 798 20940 A 29 03 40 33 1.26 628.69 7553.65 41.94 215.33 11269.6 11586.3 19.8 11.8 -55.69 358.54 OBC 13.4 287.1 VBC 29 08 50 12 46.9 82.7 4796.7 799 20941 A 29 03 42 33 8.67 631.53 7553.51 49.20 217.44 10793.1 11050.6 18.8 11.7 -51.82 0.56 OBC 13.8 287.2 VBC 29 08 52 12 47.4 82.8 4746.0 800 20941 A 29 03 44 33 16.09 634.45 7553.17 56.41 220.26 10271.0 10505.0 17.4 11.6 -47.90 2.33 OBC 14.1 287.9 VBC 29 08 54 12 47.8 83.0 4695.2 801 20941 A 29 03 46 33 23.50 637.26 7552.64 63.52 224.41 9705.4 9954.9 15.3 11.5 -43.94 3.91 OBC 14.2 290.1 VBC 29 08 56 12 48.3 83.1 4644.5 802 20941 A 29 03 48 33 30.91 639.80 7551.91 70.44 231.26 9098.8 9405.4 12.1 11.3 -39.92 5.36 OBC 14.2 295.0 VBC 29 08 58 12 48.7 83.2 4593.7 803 20941 A 29 03 50 33 38.32 641.94 7551.01 76.84 244.78 8453.7 8861.8 5.8 11.1 -35.84 6.71 OBC 14.1 306.6 VBC 29 09 00 12 49.2 83.4 4542.9 804 20941 A 29 03 52 33 45.72 643.57 7549.96 81.47 276.58 7773.1 8329.6 -8.8 11.2 -31.68 8.00 OBC 13.8 336.5 VBC 29 09 02 12 49.6 83.5 4492.1 805 20941 A 29 03 54 33 53.13 644.63 7548.75 80.99 326.54 7060.1 7814.7 -34.5 13.2 -27.43 9.28 OBC 13.4 24.6 VBC 29 09 04 12 50.1 83.7 4441.3 806 20941 A 29 03 56 33 60.53 645.10 7547.43 75.91 354.35 6318.0 7323.9 -52.9 16.1 -23.03 10.58 OBC 13.0 50.7 VBC 29 09 06 12 50.6 83.8 4390.5 807 20941 A 29 03 58 33 67.93 645.03 7546.01 69.40 6.35 5550.5 6865.2 62.2 18.2 -18.44 11.96 OBC 12.4 60.9 VBC 29 09 08 12 51.0 83.9 4339.6 808 20941 A 29 04 00 33 75.32 644.48 7544.51 62.46 12.62 4762.0 6447.7 67.3 19.5 -13.56 13.51 OBC 11.8 65.5 VBC 29 09 10 12 51.5 84.1 4288.8 809 20941 A 29 04 02 33 82.72 643.56 7542.96 55.34 16.50 3957.4 6081.7 70.5 20.4 -8.21 15.40 OBC 11.0 67.8 VBC 29 09 12 12 51.9 84.2 4237.9 810 20941 A 29 04 04 33 90.11 642.40 7541.38 48.14 19.18 3143.8 5778.4 72.7 21.1 -2.01 17.94 LOS 10.2 68.9 VBC 29 09 14 12 52.4 84.3 4187.0 811 Next Next Section - 7.4 Satellite Pass for Earth Stn - Prediction of Ground Trace for Satellite ISS (ZARYA)

Page 330: ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM …myreaders.info/00_Orbital__Mechanics__-__Model_____Simulation... · ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM-MSS)

www.m

yrea

ders

.inf

o

OM-MSS Page 330 OM-MSS Section - 7.4 -----------------------------------------------------------------------------------------------------60 Satellite ISS (ZARYA) : SAT PASS FOR EARTH STN - Prediction of Ground Trace Coordinates, Look Angles & more at Instantaneous Time. (d) ISS (ZARYA) 'Two-Line Elements'(TLE) downloaded on May 28, 2014, 18:13 hrs IST, Satellite launched on November 20, 1998 1 25544U 98067A 14148.25353351 .00006506 00000-0 11951-3 0 3738 2 25544 51.6471 198.4055 0003968 47.6724 33.3515 15.50569135888233 From this TLE, the data relevant for the purpose are manually interpreted & extracted : Satellite number 25544, ISS (ZARYA) , EPOCH_year = 2014 EPOCH_days_decimal_of_year = 147.2535335100 EPOCH_inclination_deg = 51.6457000000 EPOCH_right_asc_acnd_node_deg = 56.4734000000 EPOCH_eccentricity = 0.0003968000 EPOCH_argument_of_perigee_deg = 86.4957000000 EPOCH_mean_anomaly_deg = 16.4380000000 EPOCH_mean_motion_rev_per_day = 15.5027620300 EPOCH_revolution = 90394 EPOCH_node_condition = 1 Earth_stn_latitude_deg = 23.25993 Earth stn longitude_deg = 77.41261 Earth surface height_meter = 494.70000 Earth stn tower_height_meter = 15.00000 Earth stn_height_meter = 509.70000 Earth stn min EL look_angle_deg = -5.00000 Input UT Year and Days decimal of year : Convert into UT YY MM DD hh min sec & Julian day Start Time UT year = 2014, month = 5, day = 28, hr = 6, min = 5, sec = 5.29526, and julian_day = 2456805.7535335100 Sat_motion_direction = Forward Sat_motion_Time_Step_in_sec_pos_or_neg = 120.00000 seconds

Page 331: ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM …myreaders.info/00_Orbital__Mechanics__-__Model_____Simulation... · ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM-MSS)

www.m

yrea

ders

.inf

o

OM-MSS Page 331 SATELLITE PASS - GROUND TRACE [acronym - Line Of Sight (LOS), On Board Computerr (OBC), Visible Band Camera (VBC), Night Vision Devices (NVD) ] ORBIT, INPUT TIME, POSIION, SAT VELOCITY, GROUND TRACE, RANGE, DIST, PITCH/ROLL, EL/AZ, ACCESS EL/AZ, DATA SOLAR TIME EL/AZ, DIST Line 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 @ES 18 19 20 @SS 21 22 23 24 25 26 27 @ES 28 29 30 No. Node GMT Anomaly Height @ Vel Lat(SAT)Log Slant S-Sat Pitch Roll EL(SAT)AZ Control EL(SUN)AZ Acq. LMT(ES) EL(SUN)AZ S-Sun Nos D H M S deg km meter deg deg km km deg deg deg D H M S deg km 90394 A 06 12 26 30 16.45 426.33 7662.20 49.84 166.80 7359.9 8021.0 49.9 15.6 -31.25 316.32 OBC -33.5 352.6 NVD 06 17 36 09 7.6 273.7 9173.8 1 90394 A 06 12 28 30 24.21 425.46 7662.06 47.18 177.82 6722.7 8884.6 42.0 14.3 -27.60 312.45 OBC -36.3 6.6 NVD 06 17 38 09 7.1 273.9 9224.8 2 90394 A 06 12 30 30 31.97 424.29 7661.87 43.58 187.61 6081.7 9748.2 35.7 13.5 -23.96 307.95 OBC -38.1 19.9 NVD 06 17 40 09 6.7 274.1 9275.9 3 90394 A 06 12 32 30 39.72 422.89 7661.62 39.24 196.20 5448.0 10611.8 30.6 12.9 -20.38 302.60 OBC -39.0 32.3 NVD 06 17 42 09 6.2 274.3 9326.9 4 90394 A 06 12 34 30 47.48 421.39 7661.34 34.34 203.72 4836.8 11475.3 26.4 12.5 -16.87 296.07 OBC -38.9 43.7 NVD 06 17 44 09 5.8 274.5 9377.9 5 90394 A 06 12 36 30 55.24 419.90 7661.02 29.04 210.38 4269.7 12338.7 22.8 12.1 -13.52 287.93 OBC -37.8 53.8 NVD 06 17 46 09 5.3 274.7 9428.9 6 90394 A 06 12 38 30 62.99 418.56 7660.67 23.44 216.37 3777.3 13202.0 19.7 11.9 -10.48 277.68 OBC -35.8 62.5 NVD 06 17 48 09 4.8 274.8 9479.9 7 90394 A 06 12 40 30 70.75 417.48 7660.29 17.63 221.86 3401.1 14065.2 16.9 11.7 -8.03 264.95 OBC -33.0 69.8 NVD 06 17 50 09 4.4 275.0 9530.9 8 90394 A 06 12 42 30 78.50 416.75 7659.89 11.68 227.00 3188.5 14928.3 14.3 11.6 -6.57 249.95 OBC -29.5 75.7 NVD 06 17 52 09 3.9 275.2 9581.9 9 90394 A 06 12 44 30 86.25 416.44 7659.49 5.64 231.93 3174.9 15791.3 12.0 11.5 -6.47 233.89 OBC -25.5 80.2 NVD 06 17 54 09 3.5 275.4 9632.8 10 90394 A 06 12 46 21 93.45 416.57 Eqa 7659.10 0.00 236.41 3342.0 16592.7 9.8 11.4 -7.61 44.20 OBC -21.5 83.2 NVD 06 17 56 00 3.0 275.6 9680.1 11 90394 D 06 12 46 30 94.01 416.60 7659.08 -0.43 236.06 3361.4 16604.8 10.0 11.4 -7.74 218.64 OBC -21.8 83.3 NVD 06 17 56 09 3.0 275.6 9683.8 12 90394 D 06 12 48 30 101.76 417.24 7658.67 -6.51 231.22 3713.8 16669.9 12.3 11.5 -10.05 205.52 OBC -26.7 86.1 NVD 06 17 58 09 2.5 275.8 9734.7 13 90394 D 06 12 50 30 109.51 418.32 7658.27 -12.53 226.26 4184.3 16537.7 14.7 11.6 -12.97 194.83 OBC -31.3 90.1 NVD 06 18 00 09 2.1 276.0 9785.6 14 90394 D 06 12 52 30 117.26 419.79 7657.90 -18.46 221.06 4730.1 16228.8 17.3 11.7 -16.21 186.21 OBC -35.5 95.5 NVD 06 18 02 09 1.6 276.2 9836.4 15 90394 D 06 12 54 30 125.01 421.55 7657.54 -24.24 215.50 5319.4 15782.0 20.1 11.9 -19.60 179.16 OBC -39.3 102.2 NVD 06 18 04 09 1.2 276.4 9887.3 16 90394 D 06 12 56 30 132.75 423.51 7657.22 -29.80 209.42 5930.1 15236.3 23.3 12.2 -23.06 173.25 OBC -42.5 110.6 NVD 06 18 06 09 0.7 276.6 9938.1 17 90394 D 06 12 58 30 140.50 425.54 7656.94 -35.05 202.65 6546.5 14622.3 26.9 12.5 -26.55 168.13 OBC -45.0 120.7 NVD 06 18 08 09 0.3 276.8 9989.0 18 90394 D 06 13 00 30 148.25 427.49 7656.70 -39.87 194.99 7157.6 13961.5 31.3 13.0 -30.03 163.56 OBC -46.7 132.6 NVD 06 18 10 09 -0.2 277.0 10039.8 19 90394 D 06 13 02 30 156.00 429.24 7656.51 -44.12 186.24 7754.9 13268.7 36.6 13.6 -33.51 159.34 OBC -47.5 146.1 NVD 06 18 12 09 -0.6 277.2 10090.6 20 90394 D 06 13 04 30 163.74 430.67 7656.37 -47.60 176.28 8332.1 12554.0 43.1 14.5 -36.95 155.33 OBC -47.3 161.0 NVD 06 18 14 09 -1.1 277.4 10141.3 21 90394 D 06 13 06 30 171.49 431.68 7656.28 -50.11 165.11 8884.0 11824.6 51.1 15.8 -40.37 151.42 OBC -46.2 176.9 NVD 06 18 16 09 -1.6 277.6 10192.0 22 90394 D 06 13 08 30 179.24 432.20 7656.25 -51.46 153.02 9406.2 11085.8 60.9 17.6 -43.74 147.50 OBC -44.2 193.2 NVD 06 18 18 09 -2.0 277.8 10242.8 23 90394 D 06 13 08 41 180.00 432.23 Apo 7656.25 -51.52 151.79 9455.9 11012.6 61.9 17.8 -44.07 142.65 OBC -44.0 194.8 NVD 06 18 18 20 -2.1 277.8 10247.8 24 90394 D 06 13 10 30 186.98 432.20 7656.27 -51.50 140.55 9895.2 10342.0 72.1 20.2 -47.05 143.47 OBC -41.5 209.0 NVD 06 18 20 09 -2.5 278.0 10293.4 25 90394 D 06 13 12 30 194.73 431.67 7656.35 -50.25 128.40 10347.9 9596.7 83.8 23.8 -50.30 139.24 OBC -38.1 223.6 NVD 06 18 22 09 -2.9 278.2 10344.1 26 90394 D 06 13 14 30 202.47 430.65 7656.48 -47.82 117.15 10761.9 8853.4 93.5 28.5 -53.47 134.70 OBC -34.3 236.4 NVD 06 18 24 09 -3.4 278.4 10394.7 27 90394 D 06 13 16 30 210.22 429.21 7656.66 -44.40 107.10 11134.8 8115.9 97.2 34.3 -56.53 129.72 OBC -30.1 247.2 NVD 06 18 26 09 -3.8 278.6 10445.4 28 90394 D 06 13 18 30 217.97 427.44 7656.89 -40.20 98.27 11464.8 7388.6 90.3 40.9 -59.45 124.16 OBC -25.5 255.9 NVD 06 18 28 09 -4.3 278.8 10495.9 29 90394 D 06 13 20 30 225.72 425.47 7657.17 -35.42 90.53 11750.5 6677.0 69.7 47.3 -62.19 117.84 OBC -20.8 262.8 NVD 06 18 30 09 -4.7 279.0 10546.5 30 90394 D 06 13 22 30 233.46 423.42 7657.48 -30.20 83.70 11990.6 5988.7 37.7 52.0 -64.71 110.58 OBC -15.9 268.1 NVD 06 18 32 09 -5.2 279.2 10597.0 31 90394 D 06 13 24 30 241.21 421.42 7657.82 -24.66 77.57 12184.1 5334.3 1.0 53.7 -66.91 102.19 OBC -10.9 272.0 NVD 06 18 34 09 -5.7 279.4 10647.5 32 90394 D 06 13 26 30 248.96 419.62 7658.20 -18.89 71.98 12330.5 4729.4 32.9 52.4 -68.72 92.52 OBC -5.8 274.7 NVD 06 18 36 09 -6.1 279.6 10698.0 33 90394 D 06 13 28 30 256.71 418.11 7658.59 -12.97 66.76 12429.4 4196.8 59.7 49.2 -70.04 81.58 OBC -0.7 276.3 NVD 06 18 38 09 -6.6 279.8 10748.4 34 90394 D 06 13 30 30 264.46 416.98 7658.99 -6.95 61.79 12480.8 3768.2 78.3 45.3 -70.75 69.66 OBC 4.3 276.9 NVD 06 18 40 09 -7.0 280.0 10798.8 35 90394 D 06 13 32 30 272.22 416.31 7659.40 -0.88 56.94 12484.8 3483.1 89.8 41.2 -70.82 57.32 OBC 9.4 276.6 VBC 06 18 42 09 -7.5 280.2 10849.2 36 90394 D 06 13 32 47 273.33 416.26 Eqa 7659.46 -0.00 56.25 12481.4 3456.2 90.9 40.7 -70.77 224.44 OBC 10.1 276.4 VBC 06 18 42 26 -7.5 280.3 10856.5 37 90394 A 06 13 34 30 279.97 416.12 7659.81 5.20 60.37 12441.9 2718.0 82.3 44.1 -70.22 45.27 OBC 6.1 275.8 VBC 06 18 44 09 -7.9 280.4 10899.6 38 90394 A 06 13 36 30 287.72 416.40 7660.21 11.24 65.28 12352.8 1855.6 66.0 48.1 -69.04 34.09 OBC 1.4 276.2 NVD 06 18 46 09 -8.4 280.6 10949.9 39 90394 A 06 13 38 30 295.48 417.12 7660.59 17.20 70.41 12218.8 994.6 41.7 51.6 -67.36 24.08 OBC -3.3 277.7 NVD 06 18 48 09 -8.8 280.9 11000.1 40 90394 A 06 13 40 30 303.23 418.20 7660.95 23.02 75.87 12041.0 160.1 9.6 53.6 -65.30 15.27 OBC -7.9 280.4 NVD 06 18 50 09 -9.3 281.1 11050.4 41 90394 A 06 13 42 30 310.99 419.55 7661.28 28.64 81.82 11821.1 743.7 27.0 52.8 -62.95 7.54 OBC -12.4 284.4 NVD 06 18 52 09 -9.7 281.3 11100.6 42 90394 A 06 13 44 30 318.75 421.05 7661.57 33.97 88.42 11561.0 1603.7 61.4 49.0 -60.39 0.68 OBC -16.6 289.9 NVD 06 18 54 09 -10.2 281.5 11150.8 43

Page 332: ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM …myreaders.info/00_Orbital__Mechanics__-__Model_____Simulation... · ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM-MSS)

www.m

yrea

ders

.inf

o

OM-MSS Page 332 SATELLITE PASS - GROUND TRACE [acronym - Line Of Sight (LOS), On Board Computerr (OBC), Visible Band Camera (VBC), Night Vision Devices (NVD) ] ORBIT, INPUT TIME, POSIION, SAT VELOCITY, GROUND TRACE, RANGE, DIST, PITCH/ROLL, EL/AZ, ACCESS EL/AZ, DATA SOLAR TIME EL/AZ, DIST Line 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 @ES 18 19 20 @SS 21 22 23 24 25 26 27 @ES 28 29 30 No. Node GMT Anomaly Height @ Vel Lat(SAT)Log Slant S-Sat Pitch Roll EL(SAT)AZ Control EL(SUN)AZ Acq. LMT(ES) EL(SUN)AZ S-Sun Nos D H M S deg km meter deg deg km km deg deg deg D H M S deg km 90394 A 06 13 46 30 326.50 422.59 7661.82 38.90 95.88 11263.1 2466.2 85.9 42.9 -57.68 354.50 OBC -20.6 297.0 NVD 06 18 56 09 -10.6 281.7 11200.9 44 90394 A 06 13 48 30 334.26 424.04 7662.02 43.29 104.38 10929.9 3329.3 96.8 36.2 -54.87 348.83 OBC -24.1 305.9 NVD 06 18 58 09 -11.1 281.9 11251.0 45 90394 A 06 13 50 30 342.02 425.27 7662.18 46.95 114.08 10564.3 4192.6 95.7 30.1 -51.98 343.52 OBC -27.1 316.7 NVD 06 19 00 09 -11.5 282.1 11301.0 46 90394 A 06 13 52 30 349.78 426.20 7662.28 49.68 125.02 10169.8 5056.1 87.2 25.1 -49.05 338.43 OBC -29.4 329.4 NVD 06 19 02 09 -12.0 282.3 11351.0 47 90394 A 06 13 54 30 357.53 426.75 7662.32 51.28 136.96 9750.2 5919.7 75.7 21.2 -46.10 333.45 OBC -31.1 343.7 NVD 06 19 04 09 -12.4 282.6 11401.0 48 90395 A 06 13 55 08 360.00 426.84 Pri 7662.33 51.53 140.90 9612.3 6194.1 71.9 20.1 -45.16 42.40 OBC -31.5 348.4 NVD 06 19 04 47 -12.6 282.6 11416.9 49 90394 A 06 13 56 30 5.29 426.88 7662.31 51.60 149.42 9309.8 6783.3 64.1 18.3 -43.15 328.49 OBC -32.1 358.8 NVD 06 19 06 09 -12.9 282.8 11450.9 50 90395 A 06 13 58 30 13.05 426.57 7662.25 50.60 161.69 8853.7 7646.9 53.8 16.2 -40.22 323.45 OBC -32.2 13.8 NVD 06 19 08 09 -13.3 283.0 11500.8 51 90395 A 06 14 00 30 20.81 425.85 7662.13 48.39 173.15 8387.7 8510.5 45.3 14.8 -37.34 318.23 OBC -31.5 27.9 NVD 06 19 10 09 -13.8 283.2 11550.6 52 90395 A 06 14 02 30 28.57 424.79 7661.96 45.15 183.45 7918.3 9374.1 38.3 13.8 -34.52 312.76 OBC -30.0 40.5 NVD 06 19 12 09 -14.2 283.5 11600.4 53 90395 A 06 14 04 30 36.32 423.47 7661.74 41.08 192.52 7453.3 10237.6 32.8 13.1 -31.79 306.92 OBC -27.8 51.4 NVD 06 19 14 09 -14.7 283.7 11650.2 54 90395 A 06 14 06 30 44.08 422.00 7661.47 36.39 200.45 7001.8 11101.1 28.2 12.6 -29.18 300.62 OBC -24.9 60.4 NVD 06 19 16 09 -15.1 283.9 11699.9 55 90395 A 06 14 08 30 51.84 420.49 7661.17 31.24 207.44 6574.3 11964.5 24.3 12.3 -26.74 293.77 OBC -21.6 67.7 NVD 06 19 18 09 -15.6 284.1 11749.5 56 90395 A 06 14 10 30 59.59 419.07 7660.83 25.75 213.68 6182.9 12827.8 21.0 12.0 -24.53 286.26 OBC -17.8 73.5 NVD 06 19 20 09 -16.0 284.4 11799.1 57 90395 A 06 14 12 30 67.35 417.87 7660.46 20.02 219.35 5841.1 13691.0 18.1 11.8 -22.59 278.05 OBC -13.7 77.9 NVD 06 19 22 09 -16.4 284.6 11848.7 58 90395 A 06 14 14 30 75.10 416.99 7660.07 14.12 224.62 5563.2 14554.1 15.5 11.6 -21.01 269.13 OBC -9.4 81.0 NVD 06 19 24 09 -16.9 284.8 11898.2 59 90395 A 06 14 16 30 82.86 416.50 7659.67 8.11 229.62 5362.8 15417.0 13.1 11.5 -19.87 259.57 OBC -4.9 82.9 NVD 06 19 26 09 -17.3 285.1 11947.6 60 90395 A 06 14 18 30 90.61 416.47 7659.26 2.05 234.47 5250.9 16279.8 10.7 11.4 -19.23 249.54 OBC -0.3 83.7 NVD 06 19 28 09 -17.8 285.3 11997.0 61 90395 A 06 14 19 10 93.22 416.56 Eqa 7659.12 0.00 236.09 5234.4 16569.9 10.0 11.4 -19.13 44.67 OBC 1.3 83.7 NVD 06 19 28 49 -17.9 285.4 12013.6 62 90395 D 06 14 20 30 98.36 416.91 7658.85 -4.04 232.88 5233.6 16640.8 11.5 11.4 -19.13 239.31 OBC -2.0 83.8 NVD 06 19 30 09 -18.2 285.5 12046.4 63 90395 D 06 14 22 30 106.11 417.81 7658.44 -10.09 227.98 5310.5 16584.1 13.9 11.5 -19.56 229.17 OBC -7.0 84.8 NVD 06 19 32 09 -18.7 285.8 12095.6 64 90395 D 06 14 24 30 113.86 419.13 7658.06 -16.06 222.90 5475.1 16341.3 16.4 11.7 -20.49 219.40 OBC -11.9 86.8 NVD 06 19 34 09 -19.1 286.0 12144.8 65 90395 D 06 14 26 30 121.61 420.79 7657.69 -21.91 217.50 5715.8 15945.7 19.1 11.9 -21.85 210.18 OBC -16.7 89.8 NVD 06 19 36 09 -19.5 286.2 12194.0 66 90395 D 06 14 28 30 129.36 422.69 7657.36 -27.57 211.65 6018.4 15437.1 22.1 12.1 -23.56 201.59 OBC -21.3 94.0 NVD 06 19 38 09 -20.0 286.5 12243.1 67 90395 D 06 14 30 30 137.11 424.71 7657.06 -32.95 205.19 6368.4 14849.4 25.5 12.4 -25.54 193.63 OBC -25.8 99.7 NVD 06 19 40 09 -20.4 286.7 12292.2 68 90395 D 06 14 32 30 144.86 426.70 7656.80 -37.97 197.91 6751.9 14207.4 29.6 12.8 -27.71 186.25 OBC -30.1 106.9 NVD 06 19 42 09 -20.9 287.0 12341.1 69 90395 D 06 14 34 30 152.60 428.55 7656.59 -42.47 189.63 7156.9 13528.0 34.5 13.3 -30.03 179.36 OBC -34.0 115.9 NVD 06 19 44 09 -21.3 287.2 12390.0 70 90395 D 06 14 36 30 160.35 430.13 7656.42 -46.29 180.17 7573.0 12823.1 40.5 14.1 -32.44 172.86 OBC -37.4 126.9 NVD 06 19 46 09 -21.7 287.5 12438.9 71 90395 D 06 14 38 30 168.10 431.32 7656.31 -49.22 169.48 7991.5 12100.8 47.8 15.2 -34.91 166.66 OBC -40.4 140.0 NVD 06 19 48 09 -22.2 287.7 12487.7 72 90395 D 06 14 40 30 175.84 432.05 7656.26 -51.06 157.71 8405.2 11367.1 56.9 16.8 -37.40 160.66 OBC -42.8 154.9 NVD 06 19 50 09 -22.6 288.0 12536.4 73 90395 D 06 14 41 34 180.00 432.23 Apo 7656.25 -51.54 151.09 8623.1 10970.1 62.5 18.0 -38.74 142.87 OBC -43.7 163.5 NVD 06 19 51 13 -22.9 288.1 12562.5 74 90395 D 06 14 42 30 183.59 432.27 7656.25 -51.64 145.31 8807.9 10626.6 67.7 19.1 -39.89 154.78 OBC -44.4 171.1 NVD 06 19 52 09 -23.1 288.3 12585.0 75 90395 D 06 14 44 30 191.33 431.95 7656.31 -50.91 132.95 9194.7 9883.4 79.4 22.3 -42.35 148.94 OBC -45.2 187.8 NVD 06 19 54 09 -23.5 288.5 12633.6 76 90395 D 06 14 46 30 199.08 431.13 7656.41 -48.94 121.29 9561.4 9140.8 90.3 26.6 -44.77 143.05 OBC -45.1 203.8 NVD 06 19 56 09 -23.9 288.8 12682.1 77 90395 D 06 14 48 30 206.83 429.85 7656.57 -45.90 110.73 9904.6 8402.6 96.9 32.0 -47.12 137.06 OBC -44.2 218.6 NVD 06 19 58 09 -24.4 289.0 12730.5 78 90395 D 06 14 50 30 214.57 428.20 7656.78 -42.00 101.41 10221.2 7672.9 94.4 38.4 -49.38 130.88 OBC -42.4 231.5 NVD 06 20 00 09 -24.8 289.3 12778.8 79 90395 D 06 14 52 30 222.32 426.30 7657.04 -37.43 93.25 10509.0 6956.7 78.8 45.1 -51.52 124.46 OBC -40.0 242.6 NVD 06 20 02 09 -25.2 289.6 12827.1 80 90395 D 06 14 54 30 230.07 424.26 7657.34 -32.37 86.07 10766.1 6260.7 50.2 50.6 -53.51 117.74 OBC -36.9 251.8 NVD 06 20 04 09 -25.7 289.8 12875.3 81 90395 D 06 14 56 30 237.82 422.23 7657.67 -26.95 79.68 10990.8 5594.4 14.1 53.5 -55.33 110.67 OBC -33.2 259.3 NVD 06 20 06 09 -26.1 290.1 12923.4 82 90395 D 06 14 58 30 245.57 420.33 7658.03 -21.27 73.89 11182.1 4971.2 21.7 53.1 -56.95 103.22 OBC -29.2 265.3 NVD 06 20 08 09 -26.5 290.4 12971.4 83 90395 D 06 15 00 30 253.32 418.69 7658.41 -15.40 68.53 11339.1 4410.8 51.3 50.5 -58.32 95.36 OBC -24.8 269.9 NVD 06 20 10 09 -27.0 290.7 13019.3 84 90395 D 06 15 02 30 261.07 417.40 7658.82 -9.41 63.48 11461.3 3941.1 72.8 46.6 -59.44 87.13 OBC -20.2 273.3 NVD 06 20 12 09 -27.4 290.9 13067.2 85 90395 D 06 15 04 30 268.82 416.54 7659.22 -3.36 58.59 11548.5 3598.9 86.5 42.6 -60.25 78.56 OBC -15.4 275.6 NVD 06 20 14 09 -27.8 291.2 13114.9 86 90395 D 06 15 05 36 273.10 416.27 Eqa 7659.45 -0.00 55.93 11581.7 3479.1 91.4 40.4 -60.57 224.91 OBC -12.7 276.5 NVD 06 20 15 15 -28.1 291.4 13141.2 87 90395 A 06 15 06 30 276.57 416.15 7659.64 2.73 58.08 11600.8 3092.5 87.6 42.2 -60.75 69.75 OBC -14.7 277.3 NVD 06 20 16 09 -28.2 291.5 13162.6 88

Page 333: ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM …myreaders.info/00_Orbital__Mechanics__-__Model_____Simulation... · ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM-MSS)

www.m

yrea

ders

.inf

o

OM-MSS Page 333 SATELLITE PASS - GROUND TRACE [acronym - Line Of Sight (LOS), On Board Computerr (OBC), Visible Band Camera (VBC), Night Vision Devices (NVD) ] ORBIT, INPUT TIME, POSIION, SAT VELOCITY, GROUND TRACE, RANGE, DIST, PITCH/ROLL, EL/AZ, ACCESS EL/AZ, DATA SOLAR TIME EL/AZ, DIST Line 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 @ES 18 19 20 @SS 21 22 23 24 25 26 27 @ES 28 29 30 No. Node GMT Anomaly Height @ Vel Lat(SAT)Log Slant S-Sat Pitch Roll EL(SAT)AZ Control EL(SUN)AZ Acq. LMT(ES) EL(SUN)AZ S-Sun Nos D H M S deg km meter deg deg km km deg deg deg D H M S deg km 90395 A 06 15 08 30 284.33 416.24 7660.04 8.79 62.94 11618.5 2230.3 74.7 46.2 -60.93 60.80 OBC -19.1 279.9 NVD 06 20 18 09 -28.7 291.8 13210.1 89 90395 A 06 15 10 30 292.08 416.79 7660.43 14.79 67.97 11602.3 1369.2 54.2 50.1 -60.77 51.85 OBC -23.2 283.7 NVD 06 20 20 09 -29.1 292.1 13257.6 90 90395 A 06 15 12 30 299.83 417.73 7660.80 20.67 73.28 11553.0 515.1 25.4 52.9 -60.31 43.02 OBC -26.8 288.8 NVD 06 20 22 09 -29.5 292.4 13305.0 91 90395 A 06 15 14 30 307.59 418.98 7661.14 26.38 79.01 11471.8 383.0 9.9 53.6 -59.55 34.41 OBC -30.0 295.3 NVD 06 20 24 09 -29.9 292.7 13352.2 92 90395 A 06 15 16 30 315.35 420.44 7661.45 31.84 85.32 11360.0 1232.5 46.6 51.1 -58.54 26.08 OBC -32.5 303.3 NVD 06 20 26 09 -30.4 293.0 13399.4 93 90395 A 06 15 18 30 323.10 421.97 7661.72 36.95 92.40 11219.5 2093.5 76.5 45.8 -57.30 18.08 OBC -34.3 312.8 NVD 06 20 28 09 -30.8 293.3 13446.5 94 90395 A 06 15 20 30 330.86 423.47 7661.94 41.57 100.46 11052.0 2956.0 93.6 39.2 -55.88 10.40 OBC -35.3 323.8 NVD 06 20 30 09 -31.2 293.6 13493.4 95 90395 A 06 15 22 30 338.62 424.80 7662.12 45.56 109.66 10859.7 3819.1 97.4 32.7 -54.30 3.02 OBC -35.3 336.3 NVD 06 20 32 09 -31.6 293.9 13540.3 96 90395 A 06 15 24 30 346.38 425.87 7662.24 48.70 120.10 10645.1 4682.4 91.5 27.1 -52.60 355.90 OBC -34.5 349.9 NVD 06 20 34 09 -32.1 294.2 13587.0 97 90395 A 06 15 26 30 354.13 426.58 7662.31 50.78 131.68 10411.0 5545.8 80.8 22.7 -50.82 349.00 OBC -32.8 4.4 NVD 06 20 36 09 -32.5 294.5 13633.6 98 90396 A 06 15 28 00 360.00 426.84 Pri 7662.33 51.54 140.96 10222.7 6198.6 71.8 20.1 -49.43 42.39 OBC -31.0 15.6 NVD 06 20 37 39 -32.8 294.8 13668.8 99 90395 A 06 15 28 30 1.89 426.88 7662.32 51.63 144.00 10160.2 6409.3 69.0 19.4 -48.98 342.25 OBC -30.4 19.1 NVD 06 20 38 09 -32.9 294.9 13680.1 100 90396 A 06 15 30 30 9.65 426.74 7662.28 51.17 156.43 9896.0 7272.8 58.0 17.0 -47.11 335.62 OBC -27.2 33.4 NVD 06 20 40 09 -33.3 295.2 13726.5 101 90396 A 06 15 32 30 17.41 426.19 7662.19 49.43 168.29 9622.0 8136.4 48.8 15.4 -45.23 329.04 OBC -23.5 46.3 NVD 06 20 42 09 -33.7 295.5 13772.8 102 90396 A 06 15 34 30 25.17 425.26 7662.04 46.58 179.09 9342.0 8999.9 41.2 14.2 -43.36 322.47 OBC -19.3 57.4 NVD 06 20 44 09 -34.1 295.8 13818.9 103 90396 A 06 15 36 30 32.93 424.03 7661.84 42.82 188.65 9060.0 9863.4 35.1 13.4 -41.53 315.86 OBC -14.7 66.5 NVD 06 20 46 09 -34.6 296.2 13864.9 104 90396 A 06 15 38 30 40.68 422.60 7661.59 38.37 197.02 8780.6 10726.8 30.1 12.8 -39.76 309.16 OBC -9.9 73.7 NVD 06 20 48 09 -35.0 296.5 13910.7 105 90396 A 06 15 40 30 48.44 421.09 7661.30 33.39 204.37 8508.1 11590.2 26.0 12.4 -38.07 302.34 OBC -4.9 79.2 NVD 06 20 50 09 -35.4 296.9 13956.5 106 90396 A 06 15 42 30 56.20 419.62 7660.98 28.02 210.89 8247.5 12453.5 22.5 12.1 -36.48 295.37 OBC 0.3 83.0 NVD 06 20 52 09 -35.8 297.2 14002.1 107 90396 A 06 15 44 30 63.95 418.32 7660.62 22.38 216.78 8003.6 13316.7 19.4 11.9 -35.01 288.21 OBC 5.5 85.4 VBC 06 20 54 09 -36.2 297.6 14047.5 108 90396 A 06 15 46 30 71.71 417.29 7660.24 16.54 222.19 7781.2 14179.7 16.7 11.7 -33.69 280.86 OBC 10.6 86.5 VBC 06 20 56 09 -36.6 297.9 14092.8 109 90396 A 06 15 48 30 79.46 416.64 7659.84 10.57 227.29 7585.1 15042.6 14.2 11.6 -32.54 273.32 OBC 15.7 86.4 VBC 06 20 58 09 -37.0 298.3 14138.0 110 90396 A 06 15 50 30 87.21 416.41 7659.44 4.52 232.18 7419.4 15905.3 11.8 11.4 -31.57 265.58 OBC 20.6 85.0 VBC 06 21 00 09 -37.4 298.6 14183.0 111 90396 A 06 15 51 59 92.98 416.55 Eqa 7659.13 0.00 235.77 7318.1 16546.8 10.1 11.4 -30.98 45.14 OBC 24.0 83.1 VBC 06 21 01 38 -37.7 298.9 14216.4 112 90396 D 06 15 52 30 94.96 416.66 7659.02 -1.56 234.53 7287.9 16582.8 10.7 11.4 -30.81 257.67 OBC 22.7 82.5 VBC 06 21 02 09 -37.8 299.0 14227.8 113 90396 D 06 15 54 30 102.72 417.38 7658.62 -7.63 229.68 7193.3 16601.7 13.0 11.5 -30.26 249.62 OBC 17.6 80.9 VBC 06 21 04 09 -38.2 299.4 14272.5 114 90396 D 06 15 56 30 110.47 418.54 7658.22 -13.64 224.68 7137.3 16429.0 15.5 11.6 -29.93 241.48 OBC 12.2 80.3 VBC 06 21 06 09 -38.6 299.7 14317.1 115 90396 D 06 15 58 30 118.22 420.07 7657.85 -19.55 219.43 7120.4 16090.2 18.1 11.8 -29.83 233.29 OBC 6.7 80.8 VBC 06 21 08 09 -39.0 300.1 14361.4 116 90396 D 06 16 00 30 125.96 421.89 7657.50 -25.29 213.78 7142.0 15623.8 21.0 12.0 -29.95 225.10 OBC 1.2 82.5 NVD 06 21 10 09 -39.4 300.5 14405.6 117 90396 D 06 16 02 30 133.71 423.87 7657.19 -30.80 207.59 7200.0 15066.3 24.2 12.3 -30.28 216.97 OBC -4.4 85.3 NVD 06 21 12 09 -39.8 300.9 14449.6 118 90396 D 06 16 04 30 141.46 425.89 7656.91 -35.98 200.67 7291.6 14445.6 28.0 12.6 -30.81 208.93 OBC -10.0 89.4 NVD 06 21 14 09 -40.2 301.3 14493.4 119 90396 D 06 16 06 30 149.21 427.82 7656.68 -40.70 192.82 7413.0 13781.6 32.6 13.1 -31.51 201.01 OBC -15.6 95.1 NVD 06 21 16 09 -40.6 301.7 14537.1 120 90396 D 06 16 08 30 156.95 429.52 7656.49 -44.82 183.86 7560.0 13087.8 38.1 13.8 -32.36 193.23 OBC -21.1 102.5 NVD 06 21 18 09 -41.0 302.1 14580.5 121 90396 D 06 16 10 30 164.70 430.88 7656.36 -48.14 173.66 7728.0 12373.6 44.9 14.8 -33.35 185.59 OBC -26.5 111.9 NVD 06 21 20 09 -41.4 302.5 14623.8 122 90396 D 06 16 12 30 172.45 431.81 7656.27 -50.45 162.29 7912.4 11645.7 53.3 16.2 -34.43 178.09 OBC -31.7 123.1 NVD 06 21 22 09 -41.8 302.9 14666.9 123 90396 D 06 16 14 27 180.00 432.24 Apo 7656.25 -51.55 150.39 8103.9 10927.8 63.1 18.1 -35.58 143.08 OBC -36.6 135.6 NVD 06 21 24 06 -42.1 303.4 14708.6 124 90396 D 06 16 14 30 180.19 432.24 7656.25 -51.56 150.08 8108.9 10909.4 63.4 18.2 -35.61 170.71 OBC -36.7 135.9 NVD 06 21 24 09 -42.1 303.4 14709.7 125 90396 D 06 16 16 30 187.94 432.15 7656.28 -51.37 137.62 8313.1 10168.7 74.9 21.0 -36.84 163.45 OBC -41.3 150.0 NVD 06 21 26 09 -42.5 303.8 14752.4 126 90396 D 06 16 18 30 195.69 431.53 7656.36 -49.89 125.60 8521.3 9427.3 86.5 24.8 -38.11 156.27 OBC -45.5 164.8 NVD 06 21 28 09 -42.9 304.2 14794.8 127 90396 D 06 16 20 30 203.43 430.42 7656.50 -47.26 114.56 8729.9 8688.9 95.2 29.8 -39.40 149.16 OBC -49.0 179.8 NVD 06 21 30 09 -43.3 304.7 14837.0 128 90396 D 06 16 22 30 211.18 428.92 7656.69 -43.68 104.74 8935.9 7957.4 96.7 35.9 -40.70 142.09 OBC -51.8 194.9 NVD 06 21 32 09 -43.7 305.1 14879.0 129 90396 D 06 16 24 30 218.93 427.10 7656.92 -39.36 96.12 9136.3 7237.5 86.2 42.7 -41.98 135.03 OBC -53.4 209.8 NVD 06 21 34 09 -44.0 305.6 14920.8 130 90396 D 06 16 26 30 226.67 425.11 7657.20 -34.48 88.57 9329.0 6535.2 61.8 48.8 -43.24 127.97 OBC -53.9 224.2 NVD 06 21 36 09 -44.4 306.0 14962.3 131 90396 D 06 16 28 30 234.42 423.06 7657.52 -29.19 81.88 9511.9 5858.7 27.3 52.8 -44.45 120.88 OBC -53.2 237.5 NVD 06 21 38 09 -44.8 306.5 15003.6 132

Page 334: ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM …myreaders.info/00_Orbital__Mechanics__-__Model_____Simulation... · ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM-MSS)

www.m

yrea

ders

.inf

o

OM-MSS Page 334 SATELLITE PASS - GROUND TRACE [acronym - Line Of Sight (LOS), On Board Computerr (OBC), Visible Band Camera (VBC), Night Vision Devices (NVD) ] ORBIT, INPUT TIME, POSIION, SAT VELOCITY, GROUND TRACE, RANGE, DIST, PITCH/ROLL, EL/AZ, ACCESS EL/AZ, DATA SOLAR TIME EL/AZ, DIST Line 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 @ES 18 19 20 @SS 21 22 23 24 25 26 27 @ES 28 29 30 No. Node GMT Anomaly Height @ Vel Lat(SAT)Log Slant S-Sat Pitch Roll EL(SAT)AZ Control EL(SUN)AZ Acq. LMT(ES) EL(SUN)AZ S-Sun Nos D H M S deg km meter deg deg km km deg deg deg D H M S deg km 90396 D 06 16 30 30 242.17 421.09 7657.87 -23.61 75.87 9683.3 5219.9 9.6 53.6 -45.61 113.75 OBC -51.3 249.3 NVD 06 21 40 09 -45.2 307.0 15044.6 133 90396 D 06 16 32 30 249.92 419.33 7658.24 -17.81 70.35 9841.9 4635.6 41.9 51.6 -46.70 106.56 OBC -48.3 259.2 NVD 06 21 42 09 -45.5 307.4 15085.4 134 90396 D 06 16 34 30 257.67 417.89 7658.64 -11.86 65.19 9986.4 4130.5 66.3 48.0 -47.71 99.30 OBC -44.5 267.2 NVD 06 21 44 09 -45.9 307.9 15125.9 135 90396 D 06 16 36 30 265.42 416.85 7659.04 -5.83 60.25 10116.2 3737.6 82.6 44.0 -48.64 91.95 OBC -40.1 273.3 NVD 06 21 46 09 -46.2 308.4 15166.2 136 90396 D 06 16 38 25 272.86 416.28 Eqa 7659.44 -0.00 55.61 10226.3 3502.2 91.9 40.1 -49.44 225.37 OBC -35.4 277.7 NVD 06 21 48 04 -46.6 308.9 15204.5 137 90396 A 06 16 38 30 273.17 416.26 7659.46 0.25 55.80 10230.6 3467.1 91.6 40.3 -49.47 84.53 OBC -35.6 277.9 NVD 06 21 48 09 -46.6 308.9 15206.2 138 90396 A 06 16 40 30 280.93 416.16 7659.86 6.32 60.63 10329.2 2605.1 81.6 44.3 -50.19 77.02 OBC -39.7 283.6 NVD 06 21 50 09 -47.0 309.4 15245.8 139 90396 A 06 16 42 30 288.68 416.52 7660.26 12.35 65.57 10411.7 1743.9 64.8 48.3 -50.81 69.44 OBC -43.0 291.0 NVD 06 21 52 09 -47.3 309.9 15285.3 140 90396 A 06 16 44 30 296.44 417.31 7660.64 18.29 70.75 10478.2 886.7 39.9 51.8 -51.31 61.79 OBC -45.4 300.0 NVD 06 21 54 09 -47.7 310.5 15324.4 141 90396 A 06 16 46 30 304.19 418.45 7661.00 24.08 76.29 10528.7 146.4 7.0 53.6 -51.70 54.08 OBC -46.7 310.5 NVD 06 21 56 09 -48.0 311.0 15363.2 142 90396 A 06 16 48 30 311.95 419.83 7661.32 29.65 82.35 10563.5 864.6 30.1 52.6 -51.97 46.33 OBC -46.7 322.0 NVD 06 21 58 09 -48.4 311.5 15401.7 143 90396 A 06 16 50 30 319.70 421.35 7661.61 34.91 89.09 10583.0 1721.8 64.3 48.5 -52.12 38.55 OBC -45.5 334.2 NVD 06 22 00 09 -48.7 312.1 15439.9 144 90396 A 06 16 52 30 327.46 422.88 7661.85 39.76 96.73 10587.7 2583.3 87.7 42.2 -52.16 30.76 OBC -43.1 346.7 NVD 06 22 02 09 -49.0 312.6 15477.7 145 90396 A 06 16 54 30 335.22 424.29 7662.05 44.02 105.44 10578.0 3445.9 97.2 35.5 -52.08 22.98 OBC -39.7 359.3 NVD 06 22 04 09 -49.4 313.2 15515.2 146 90396 A 06 16 56 30 342.98 425.48 7662.19 47.53 115.38 10554.7 4308.8 94.9 29.4 -51.91 15.21 OBC -35.5 12.1 NVD 06 22 06 09 -49.7 313.7 15552.4 147 90396 A 06 16 58 30 350.74 426.34 7662.29 50.07 126.52 10518.5 5172.1 85.8 24.5 -51.63 7.47 OBC -30.6 25.1 NVD 06 22 08 09 -50.0 314.3 15589.2 148 90396 A 06 17 00 30 358.49 426.81 7662.32 51.44 138.61 10470.1 6035.4 74.1 20.7 -51.27 359.76 OBC -25.3 38.1 NVD 06 22 10 09 -50.4 314.9 15625.7 149 90397 A 06 17 00 53 360.00 426.85 Pri 7662.33 51.56 141.02 10459.3 6203.1 71.8 20.1 -51.18 42.37 OBC -24.2 40.6 NVD 06 22 10 32 -50.4 315.0 15632.7 150 90396 A 06 17 02 30 6.25 426.85 7662.31 51.51 151.08 10410.3 6898.8 62.6 18.0 -50.82 352.11 OBC -19.6 50.6 NVD 06 22 12 09 -50.7 315.5 15661.8 151 90397 A 06 17 04 30 14.01 426.46 7662.24 50.28 163.24 10340.0 7762.3 52.6 16.0 -50.29 344.50 OBC -13.6 62.1 NVD 06 22 14 09 -51.0 316.1 15697.5 152 90397 A 06 17 06 30 21.77 425.67 7662.11 47.86 174.51 10260.0 8625.8 44.3 14.7 -49.70 336.95 OBC -7.5 72.0 NVD 06 22 16 09 -51.3 316.7 15732.8 153 90397 A 06 17 08 30 29.53 424.55 7661.93 44.45 184.58 10171.3 9489.2 37.6 13.7 -49.06 329.44 OBC -1.2 80.0 NVD 06 22 18 09 -51.6 317.3 15767.7 154 90397 A 06 17 10 30 37.28 423.19 7661.71 40.26 193.43 10074.6 10352.6 32.2 13.1 -48.36 321.99 OBC 5.2 86.1 VBC 06 22 20 09 -52.0 317.9 15802.2 155 90397 A 06 17 12 30 45.04 421.70 7661.43 35.47 201.17 9971.0 11215.9 27.8 12.6 -47.63 314.58 OBC 11.5 90.5 VBC 06 22 22 09 -52.3 318.6 15836.3 156 90397 A 06 17 14 30 52.80 420.20 7661.12 30.25 208.00 9861.2 12079.1 24.0 12.3 -46.86 307.20 OBC 17.9 93.2 VBC 06 22 24 09 -52.6 319.2 15870.0 157 90397 A 06 17 16 30 60.55 418.81 7660.78 24.71 214.13 9746.3 12942.3 20.8 12.0 -46.06 299.86 OBC 24.1 94.2 VBC 06 22 26 09 -52.9 319.9 15903.2 158 90397 A 06 17 18 30 68.31 417.66 7660.41 18.94 219.72 9627.1 13805.3 18.0 11.8 -45.25 292.54 OBC 30.1 93.8 VBC 06 22 28 09 -53.2 320.6 15936.0 159 90397 A 06 17 20 30 76.06 416.84 7660.02 13.02 224.92 9504.6 14668.2 15.4 11.6 -44.42 285.24 OBC 35.9 91.7 VBC 06 22 30 09 -53.4 321.2 15968.3 160 90397 A 06 17 22 30 83.81 416.44 7659.61 6.99 229.89 9379.6 15530.8 12.9 11.5 -43.59 277.95 OBC 41.3 87.8 VBC 06 22 32 09 -53.7 321.9 16000.1 161 90397 A 06 17 24 30 91.57 416.49 7659.20 0.92 234.72 9253.3 16393.1 10.6 11.4 -42.76 270.66 OBC 46.0 81.9 VBC 06 22 34 09 -54.0 322.6 16031.5 162 90397 A 06 17 24 48 92.74 416.54 Eqa 7659.14 0.00 235.45 9234.1 16523.6 10.3 11.4 -42.63 45.60 OBC 46.7 80.8 VBC 06 22 34 27 -54.1 322.7 16036.2 163 90397 D 06 17 26 30 99.32 417.02 7658.80 -5.16 231.35 9126.4 16590.0 12.2 11.5 -41.93 263.37 OBC 42.1 76.7 VBC 06 22 36 09 -54.3 323.3 16062.3 164 90397 D 06 17 28 30 107.07 418.01 7658.40 -11.20 226.42 9000.1 16490.2 14.6 11.6 -41.12 256.07 OBC 36.3 73.5 VBC 06 22 38 09 -54.6 324.0 16092.7 165 90397 D 06 17 30 30 114.82 419.40 7658.01 -17.15 221.29 8875.4 16213.4 17.2 11.7 -40.33 248.74 OBC 30.2 71.8 VBC 06 22 40 09 -54.8 324.8 16122.5 166 90397 D 06 17 32 30 122.57 421.11 7657.65 -22.97 215.82 8753.3 15794.5 19.9 11.9 -39.56 241.39 OBC 24.0 71.4 VBC 06 22 42 09 -55.1 325.5 16151.8 167 90397 D 06 17 34 30 130.32 423.04 7657.32 -28.59 209.87 8634.9 15271.4 23.0 12.2 -38.82 234.01 OBC 17.6 72.4 VBC 06 22 44 09 -55.4 326.2 16180.6 168 90397 D 06 17 36 30 138.07 425.06 7657.03 -33.91 203.27 8521.6 14675.3 26.6 12.5 -38.12 226.60 OBC 11.0 74.6 VBC 06 22 46 09 -55.6 327.0 16208.8 169 90397 D 06 17 38 30 145.81 427.05 7656.77 -38.84 195.82 8414.4 14028.9 30.8 12.9 -37.46 219.14 OBC 4.4 78.3 NVD 06 22 48 09 -55.9 327.8 16236.4 170 90397 D 06 17 40 30 153.56 428.86 7656.57 -43.23 187.33 8314.6 13347.7 35.9 13.5 -36.85 211.64 OBC -2.2 83.5 NVD 06 22 50 09 -56.1 328.5 16263.5 171 90397 D 06 17 42 30 161.31 430.37 7656.41 -46.90 177.65 8223.5 12642.7 42.1 14.4 -36.30 204.10 OBC -8.9 90.3 NVD 06 22 52 09 -56.3 329.3 16289.9 172 90397 D 06 17 44 30 169.05 431.49 7656.30 -49.65 166.74 8142.4 11921.5 49.9 15.6 -35.81 196.52 OBC -15.6 98.8 NVD 06 22 54 09 -56.6 330.1 16315.8 173 90397 D 06 17 46 30 176.80 432.13 7656.25 -51.27 154.81 8072.7 11189.9 59.3 17.3 -35.39 188.89 OBC -22.2 108.7 NVD 06 22 56 09 -56.8 330.9 16341.0 174 90397 D 06 17 47 19 180.00 432.24 Apo 7656.25 -51.57 149.69 8047.5 10885.6 63.7 18.2 -35.24 143.30 OBC -25.0 113.2 NVD 06 22 56 58 -56.9 331.2 16351.2 175 90397 D 06 17 48 30 184.54 432.25 7656.26 -51.61 142.36 8015.6 10452.4 70.4 19.8 -35.05 181.23 OBC -28.9 119.7 NVD 06 22 58 09 -57.0 331.7 16365.6 176 90397 D 06 17 50 30 192.29 431.84 7656.32 -50.64 130.09 7972.2 9712.8 82.2 23.2 -34.79 173.53 OBC -35.5 131.1 NVD 06 23 00 09 -57.2 332.6 16389.5 177

Page 335: ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM …myreaders.info/00_Orbital__Mechanics__-__Model_____Simulation... · ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM-MSS)

www.m

yrea

ders

.inf

o

OM-MSS Page 335 SATELLITE PASS - GROUND TRACE [acronym - Line Of Sight (LOS), On Board Computerr (OBC), Visible Band Camera (VBC), Night Vision Devices (NVD) ] ORBIT, INPUT TIME, POSIION, SAT VELOCITY, GROUND TRACE, RANGE, DIST, PITCH/ROLL, EL/AZ, ACCESS EL/AZ, DATA SOLAR TIME EL/AZ, DIST Line 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 @ES 18 19 20 @SS 21 22 23 24 25 26 27 @ES 28 29 30 No. Node GMT Anomaly Height @ Vel Lat(SAT)Log Slant S-Sat Pitch Roll EL(SAT)AZ Control EL(SUN)AZ Acq. LMT(ES) EL(SUN)AZ S-Sun Nos D H M S deg km meter deg deg km km deg deg deg D H M S deg km 90397 D 06 17 52 30 200.04 430.93 7656.43 -48.46 118.60 7943.7 8974.8 92.5 27.8 -34.62 165.81 OBC -41.9 142.4 NVD 06 23 02 09 -57.4 333.4 16412.8 178 90397 D 06 17 54 30 207.78 429.58 7656.60 -45.24 108.27 7931.1 8242.1 97.3 33.5 -34.55 158.07 OBC -48.2 153.6 NVD 06 23 04 09 -57.6 334.2 16435.5 179 90397 D 06 17 56 30 215.53 427.88 7656.81 -41.20 99.18 7935.1 7519.3 91.7 40.2 -34.57 150.33 OBC -54.2 165.0 NVD 06 23 06 09 -57.8 335.1 16457.4 180 90397 D 06 17 58 30 223.28 425.94 7657.07 -36.53 91.21 7956.3 6811.6 72.2 46.8 -34.70 142.60 OBC -59.7 177.5 NVD 06 23 08 09 -58.0 336.0 16478.6 181 90397 D 06 18 00 30 231.03 423.90 7657.38 -31.39 84.20 7995.0 6126.5 40.4 51.7 -34.93 134.89 OBC -64.4 192.2 NVD 06 23 10 09 -58.2 336.8 16499.2 182 90397 D 06 18 02 30 238.78 421.88 7657.71 -25.91 77.93 8051.1 5474.3 3.2 53.7 -35.27 127.21 OBC -67.7 210.1 NVD 06 23 12 09 -58.4 337.7 16519.0 183 90397 D 06 18 04 30 246.52 420.03 7658.08 -20.19 72.23 8124.5 4869.6 31.5 52.5 -35.71 119.57 OBC -69.0 230.7 NVD 06 23 14 09 -58.6 338.6 16538.1 184 90397 D 06 18 06 30 254.27 418.44 7658.46 -14.30 66.94 8214.5 4333.9 58.9 49.3 -36.26 111.98 OBC -67.8 250.9 NVD 06 23 16 09 -58.7 339.5 16556.4 185 90397 D 06 18 08 30 262.03 417.23 7658.87 -8.30 61.92 8320.2 3896.6 77.9 45.4 -36.90 104.45 OBC -64.6 267.1 NVD 06 23 18 09 -58.9 340.4 16574.0 186 90397 D 06 18 10 30 269.78 416.46 7659.28 -2.23 57.06 8440.6 3594.8 89.5 41.3 -37.64 96.98 OBC -59.9 278.7 NVD 06 23 20 09 -59.0 341.3 16590.8 187 90397 D 06 18 11 14 272.62 416.29 Eqa 7659.43 -0.00 55.29 8488.2 3525.5 92.3 39.9 -37.93 225.83 OBC -58.0 281.9 NVD 06 23 20 53 -59.1 341.7 16596.8 188 90397 A 06 18 12 30 277.53 416.16 7659.69 3.85 58.34 8574.2 2979.8 87.1 42.4 -38.46 89.59 OBC -60.2 289.7 NVD 06 23 22 09 -59.2 342.3 16606.8 189 90397 A 06 18 14 30 285.28 416.33 7660.09 9.90 63.22 8719.4 2118.7 73.7 46.4 -39.37 82.25 OBC -62.2 304.6 NVD 06 23 24 09 -59.3 343.2 16622.1 190 90397 A 06 18 16 30 293.04 416.95 7660.48 15.89 68.29 8874.4 1260.2 52.6 50.3 -40.34 74.98 OBC -62.1 321.2 NVD 06 23 26 09 -59.4 344.1 16636.5 191 90397 A 06 18 18 30 300.79 417.96 7660.84 21.74 73.66 9037.2 421.2 23.1 53.1 -41.38 67.76 OBC -59.9 337.2 NVD 06 23 28 09 -59.6 345.1 16650.2 192 90397 A 06 18 20 30 308.55 419.25 7661.18 27.41 79.49 9205.7 507.1 12.9 53.5 -42.46 60.59 OBC -56.0 351.2 NVD 06 23 30 09 -59.7 346.0 16663.0 193 90397 A 06 18 22 30 316.31 420.73 7661.48 32.81 85.93 9377.9 1352.0 49.7 50.7 -43.59 53.44 OBC -50.9 3.1 NVD 06 23 32 09 -59.8 347.0 16674.9 194 90397 A 06 18 24 30 324.06 422.27 7661.75 37.84 93.18 9551.4 2211.3 78.9 45.2 -44.75 46.31 OBC -45.0 13.7 NVD 06 23 34 09 -59.9 348.0 16686.1 195 90397 A 06 18 26 30 331.82 423.74 7661.97 42.36 101.43 9724.1 3073.0 94.7 38.4 -45.92 39.18 OBC -38.5 23.8 NVD 06 23 36 09 -60.0 349.0 16696.3 196 90397 A 06 18 28 30 339.58 425.03 7662.13 46.21 110.86 9893.8 3935.6 97.1 31.9 -47.09 32.02 OBC -31.8 33.8 NVD 06 23 38 09 -60.1 349.9 16705.8 197 90397 A 06 18 30 30 347.34 426.03 7662.25 49.17 121.52 10058.1 4798.5 90.3 26.5 -48.25 24.82 OBC -24.7 44.2 NVD 06 23 40 09 -60.1 350.9 16714.3 198 90397 A 06 18 32 30 355.09 426.67 7662.31 51.03 133.28 10215.1 5661.7 79.2 22.2 -49.38 17.56 OBC -17.5 55.1 NVD 06 23 42 09 -60.2 351.9 16722.0 199 90398 A 06 18 33 45 360.00 426.85 Pri 7662.33 51.57 141.08 10309.6 6207.5 71.7 20.1 -50.07 42.36 OBC -12.9 62.0 NVD 06 23 43 24 -60.3 352.5 16726.4 200 90397 A 06 18 34 30 2.85 426.88 7662.32 51.64 145.68 10362.6 6524.9 67.4 19.1 -50.46 10.23 OBC -10.2 66.0 NVD 06 23 44 09 -60.3 352.9 16728.8 201 90398 A 06 18 36 30 10.61 426.67 7662.27 50.94 158.05 10498.6 7388.3 56.7 16.8 -51.48 2.79 OBC -2.9 76.4 NVD 06 23 46 09 -60.3 353.9 16734.8 202 90398 A 06 18 38 30 18.37 426.04 7662.17 48.98 169.73 10621.2 8251.6 47.7 15.2 -52.42 355.24 OBC 4.6 85.7 NVD 06 23 48 09 -60.4 354.9 16739.8 203 90398 A 06 18 40 30 26.13 425.04 7662.02 45.95 180.31 10728.6 9115.0 40.4 14.1 -53.25 347.58 OBC 12.0 93.5 VBC 06 23 50 09 -60.4 355.9 16744.0 204 90398 A 06 18 42 30 33.88 423.76 7661.81 42.05 189.65 10819.2 9978.3 34.5 13.3 -53.97 339.80 OBC 19.5 99.4 VBC 06 23 52 09 -60.4 356.9 16747.2 205 90398 A 06 18 44 30 41.64 422.31 7661.56 37.48 197.82 10891.4 10841.6 29.7 12.8 -54.55 331.90 OBC 26.9 103.6 VBC 06 23 54 09 -60.5 357.9 16749.6 206 90398 A 06 18 46 30 49.40 420.79 7661.27 32.42 205.00 10943.9 11704.8 25.7 12.4 -54.98 323.91 OBC 34.3 106.1 VBC 06 23 56 09 -60.5 358.9 16751.1 207 90398 A 06 18 48 30 57.15 419.35 7660.94 27.00 211.39 10975.3 12567.9 22.2 12.1 -55.23 315.86 OBC 41.6 106.8 VBC 06 23 58 09 -60.5 359.9 16751.6 208 90398 A 06 18 50 30 64.91 418.09 7660.58 21.31 217.17 10984.7 13430.8 19.2 11.9 -55.30 307.77 OBC 48.7 105.5 VBC 07 00 00 09 -60.5 0.9 16751.3 209 90398 A 06 18 52 30 72.66 417.12 7660.19 15.44 222.52 10971.1 14293.6 16.6 11.7 -55.19 299.68 OBC 55.5 101.7 VBC 07 00 02 09 -60.5 2.0 16750.1 210 90398 A 06 18 54 30 80.42 416.54 7659.79 9.46 227.57 10933.9 15156.2 14.1 11.6 -54.88 291.63 OBC 61.7 94.4 VBC 07 00 04 09 -60.5 3.0 16747.9 211 90398 A 06 18 56 30 88.17 416.40 7659.38 3.40 232.44 10872.6 16018.5 11.7 11.4 -54.38 283.68 OBC 66.9 82.0 VBC 07 00 06 09 -60.4 4.0 16744.9 212 90398 A 06 18 57 37 92.50 416.53 Eqa 7659.15 0.00 235.13 10827.7 16500.3 10.4 11.4 -54.02 46.06 OBC 69.0 72.3 VBC 07 00 07 16 -60.4 4.5 16742.8 213 90398 D 06 18 58 30 95.92 416.74 7658.97 -2.68 233.00 10786.9 16549.6 11.4 11.4 -53.69 275.84 OBC 66.3 67.7 VBC 07 00 08 09 -60.4 5.0 16741.0 214 90398 D 06 19 00 30 103.67 417.54 7658.57 -8.74 228.13 10676.7 16523.7 13.8 11.5 -52.82 268.15 OBC 59.8 61.1 VBC 07 00 10 09 -60.3 6.0 16736.2 215 90398 D 06 19 02 30 111.42 418.78 7658.18 -14.74 223.10 10542.3 16313.3 16.3 11.7 -51.78 260.63 OBC 52.9 57.7 VBC 07 00 12 09 -60.3 7.0 16730.4 216 90398 D 06 19 04 30 119.17 420.37 7657.81 -20.62 217.78 10384.1 15947.3 18.9 11.9 -50.58 253.28 OBC 45.8 56.3 VBC 07 00 14 09 -60.2 8.0 16723.9 217 90398 D 06 19 06 30 126.92 422.23 7657.46 -26.33 212.05 10203.0 15463.3 21.9 12.1 -49.25 246.09 OBC 38.7 56.5 VBC 07 00 16 09 -60.2 9.0 16716.4 218 90398 D 06 19 08 30 134.67 424.23 7657.15 -31.78 205.73 9999.9 14895.3 25.2 12.4 -47.80 239.07 OBC 31.5 58.0 VBC 07 00 18 09 -60.1 9.9 16708.0 219 90398 D 06 19 10 30 142.42 426.25 7656.88 -36.89 198.65 9776.3 14268.9 29.2 12.7 -46.24 232.18 OBC 24.2 60.9 VBC 07 00 20 09 -60.0 10.9 16698.8 220 90398 D 06 19 12 30 150.17 428.14 7656.65 -41.52 190.61 9534.0 13602.2 33.9 13.3 -44.59 225.40 OBC 16.9 65.1 VBC 07 00 22 09 -59.9 11.9 16688.8 221

Page 336: ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM …myreaders.info/00_Orbital__Mechanics__-__Model_____Simulation... · ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM-MSS)

www.m

yrea

ders

.inf

o

OM-MSS Page 336 SATELLITE PASS - GROUND TRACE [acronym - Line Of Sight (LOS), On Board Computerr (OBC), Visible Band Camera (VBC), Night Vision Devices (NVD) ]

ORBIT, INPUT TIME, POSIION, SAT VELOCITY, GROUND TRACE, RANGE, DIST, PITCH/ROLL, EL/AZ, ACCESS EL/AZ, DATA SOLAR TIME EL/AZ, DIST Line 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 @ES 18 19 20 @SS 21 22 23 24 25 26 27 @ES 28 29 30 No. Node GMT Anomaly Height @ Vel Lat(SAT)Log Slant S-Sat Pitch Roll EL(SAT)AZ Control EL(SUN)AZ Acq. LMT(ES) EL(SUN)AZ S-Sun Nos D H M S deg km meter deg deg km km deg deg deg D H M S deg km 90398 D 06 19 14 30 157.91 429.79 7656.47 -45.50 181.43 9275.1 12907.7 39.6 14.0 -42.88 218.69 OBC 9.6 70.8 VBC 07 00 24 09 -59.8 12.9 16677.9 222 90398 D 06 19 16 30 165.66 431.08 7656.34 -48.65 171.01 9002.3 12194.2 46.7 15.1 -41.12 212.02 OBC 2.2 77.9 NVD 07 00 26 09 -59.7 13.8 16666.1 223 90398 D 06 19 18 30 173.40 431.93 7656.27 -50.75 159.45 8718.8 11468.0 55.5 16.6 -39.33 205.34 OBC -5.2 86.4 NVD 07 00 28 09 -59.6 14.8 16653.5 224 90398 D 06 19 20 12 180.00 432.25 Apo 7656.25 -51.58 148.99 8471.7 10843.6 64.4 18.4 -37.80 143.52 OBC -11.4 94.4 NVD 07 00 29 51 -59.5 15.6 16642.1 225 90398 D 06 19 20 30 181.15 432.27 7656.25 -51.63 147.14 8428.2 10734.3 66.0 18.7 -37.54 198.62 OBC -12.5 95.8 NVD 07 00 30 09 -59.5 15.7 16640.1 226 90398 D 06 19 22 30 188.90 432.07 7656.28 -51.19 134.71 8135.0 9997.0 77.7 21.8 -35.76 191.79 OBC -19.9 105.4 NVD 07 00 32 09 -59.4 16.7 16625.9 227 90398 D 06 19 24 30 196.64 431.36 7656.37 -49.48 122.84 7844.1 9259.9 89.0 25.9 -34.03 184.82 OBC -27.3 114.6 NVD 07 00 34 09 -59.2 17.6 16610.8 228 90398 D 06 19 26 30 204.39 430.18 7656.52 -46.66 112.01 7561.3 8526.7 96.4 31.2 -32.37 177.66 OBC -34.7 122.7 NVD 07 00 36 09 -59.1 18.6 16595.0 229 90398 D 06 19 28 30 212.14 428.61 7656.71 -42.93 102.42 7293.0 7801.6 95.3 37.6 -30.81 170.27 OBC -42.1 129.8 NVD 07 00 38 09 -58.9 19.5 16578.4 230 90398 D 06 19 30 30 219.88 426.76 7656.95 -38.49 94.01 7046.1 7089.5 81.0 44.4 -29.40 162.61 OBC -49.5 135.8 NVD 07 00 40 09 -58.8 20.4 16561.0 231 90398 D 06 19 32 30 227.63 424.74 7657.24 -33.53 86.64 6828.3 6397.2 53.0 50.2 -28.15 154.68 OBC -56.9 141.1 NVD 07 00 42 09 -58.6 21.3 16542.8 232 90398 D 06 19 34 30 235.38 422.70 7657.56 -28.18 80.09 6647.2 5733.5 16.6 53.4 -27.13 146.46 OBC -64.3 145.9 NVD 07 00 44 09 -58.4 22.2 16523.9 233 90398 D 06 19 36 30 243.13 420.77 7657.91 -22.55 74.18 6510.1 5111.4 20.0 53.2 -26.35 137.99 OBC -71.6 151.3 NVD 07 00 46 09 -58.3 23.1 16504.3 234 90398 D 06 19 38 30 250.88 419.06 7658.29 -16.72 68.74 6423.5 4549.3 50.3 50.6 -25.86 129.33 OBC -78.9 160.0 NVD 07 00 48 09 -58.1 24.0 16484.0 235 90398 D 06 19 40 30 258.63 417.69 7658.69 -10.75 63.63 6392.2 4073.3 72.2 46.8 -25.69 120.57 OBC -85.4 190.2 NVD 07 00 50 09 -57.9 24.8 16462.9 236 90398 D 06 19 42 30 266.38 416.73 7659.10 -4.71 58.71 6418.9 3717.7 86.3 42.7 -25.84 111.79 OBC -84.6 286.7 NVD 07 00 52 09 -57.7 25.7 16441.1 237 90398 D 06 19 44 02 272.38 416.30 Eqa 7659.41 -0.00 54.97 6479.8 3549.0 92.7 39.6 -26.19 226.28 OBC -79.4 306.2 NVD 07 00 53 41 -57.5 26.3 16423.8 238 90398 A 06 19 44 30 274.13 416.23 7659.51 1.37 56.06 6504.0 3354.6 91.2 40.5 -26.33 103.12 OBC -79.4 316.0 NVD 07 00 54 09 -57.5 26.5 16418.7 239 90398 A 06 19 46 30 281.89 416.21 7659.91 7.44 60.90 6645.1 2493.5 80.9 44.5 -27.13 94.65 OBC -76.2 351.5 NVD 07 00 56 09 -57.3 27.4 16395.6 240 90398 A 06 19 48 30 289.64 416.66 7660.31 13.46 65.87 6837.8 1634.4 63.6 48.6 -28.23 86.47 OBC -70.0 10.0 NVD 07 00 58 09 -57.1 28.2 16371.8 241 90398 A 06 19 50 30 297.39 417.52 7660.69 19.38 71.11 7076.1 783.9 37.9 52.0 -29.60 78.61 OBC -62.8 20.3 NVD 07 01 00 09 -56.9 29.0 16347.3 242 90398 A 06 19 52 30 305.15 418.71 7661.04 25.13 76.73 7352.8 219.4 4.3 53.7 -31.20 71.11 OBC -55.3 27.4 NVD 07 01 02 09 -56.6 29.8 16322.3 243 90398 A 06 19 54 30 312.91 420.12 7661.36 30.65 82.90 7660.4 986.1 33.3 52.4 -32.99 63.95 OBC -47.5 33.4 NVD 07 01 04 09 -56.4 30.6 16296.6 244 90398 A 06 19 56 30 320.66 421.65 7661.64 35.85 89.79 7991.2 1840.6 67.1 47.9 -34.95 57.11 OBC -39.7 39.3 NVD 07 01 06 09 -56.2 31.4 16270.3 245 90398 A 06 19 58 30 328.42 423.16 7661.88 40.59 97.61 8338.2 2700.8 89.4 41.5 -37.03 50.55 OBC -31.8 45.6 NVD 07 01 08 09 -55.9 32.2 16243.4 246 90398 A 06 20 00 30 336.18 424.54 7662.07 44.74 106.54 8694.3 3562.6 97.5 34.7 -39.22 44.23 OBC -23.8 52.8 NVD 07 01 10 09 -55.7 32.9 16215.9 247 90398 A 06 20 02 30 343.94 425.67 7662.21 48.08 116.71 9053.3 4425.2 94.1 28.7 -41.49 38.07 OBC -15.9 61.0 NVD 07 01 12 09 -55.4 33.7 16187.8 248 90398 A 06 20 04 30 351.69 426.46 7662.29 50.42 128.06 9409.4 5288.0 84.3 23.9 -43.81 32.02 OBC -7.9 70.2 NVD 07 01 14 09 -55.2 34.5 16159.2 249 90398 A 06 20 06 30 359.45 426.85 7662.33 51.55 140.27 9757.6 6151.1 72.5 20.3 -46.15 26.02 OBC 0.1 80.1 NVD 07 01 16 09 -54.9 35.2 16130.1 250 90399 A 06 20 06 38 360.00 426.86 Pri 7662.33 51.59 141.15 9781.7 6212.0 71.6 20.1 -46.32 42.35 OBC 0.7 80.8 NVD 07 01 16 17 -54.9 35.2 16128.0 251 90398 A 06 20 08 30 7.21 426.81 7662.30 51.38 152.74 10093.0 7014.3 61.2 17.7 -48.50 19.99 OBC 8.2 90.2 VBC 07 01 18 09 -54.6 35.9 16100.4 252 90399 A 06 20 10 30 14.97 426.34 7662.22 49.92 164.77 10411.5 7877.6 51.4 15.8 -50.83 13.85 OBC 16.2 99.8 VBC 07 01 20 09 -54.4 36.6 16070.2 253 90399 A 06 20 12 30 22.73 425.48 7662.09 47.30 175.83 10709.2 8740.8 43.4 14.5 -53.10 7.53 OBC 24.2 108.2 VBC 07 01 22 09 -54.1 37.3 16039.4 254 90399 A 06 20 14 30 30.49 424.31 7661.91 43.73 185.67 10982.8 9604.1 36.9 13.6 -55.30 0.95 OBC 32.3 115.3 VBC 07 01 24 09 -53.8 38.0 16008.2 255 90399 A 06 20 16 30 38.24 422.91 7661.67 39.41 194.30 11229.2 10467.3 31.7 13.0 -57.39 354.00 OBC 40.3 120.9 VBC 07 01 26 09 -53.5 38.7 15976.5 256 90399 A 06 20 18 30 46.00 421.40 7661.40 34.54 201.86 11445.7 11330.4 27.4 12.6 -59.32 346.62 OBC 48.4 125.2 VBC 07 01 28 09 -53.2 39.4 15944.3 257 90399 A 06 20 20 30 53.76 419.91 7661.08 29.25 208.55 11629.9 12193.4 23.7 12.2 -61.05 338.72 OBC 56.4 128.2 VBC 07 01 30 09 -52.9 40.1 15911.7 258 90399 A 06 20 22 30 61.51 418.56 7660.74 23.66 214.56 11779.8 13056.4 20.6 12.0 -62.53 330.26 OBC 64.5 130.0 VBC 07 01 32 09 -52.6 40.7 15878.6 259 90399 A 06 20 24 30 69.27 417.46 7660.36 17.85 220.07 11893.5 13919.1 17.8 11.8 -63.70 321.24 OBC 72.5 130.0 VBC 07 01 34 09 -52.3 41.4 15845.0 260 90399 A 06 20 26 30 77.02 416.71 7659.97 11.91 225.22 11969.7 14781.6 15.2 11.6 -64.51 311.73 OBC 80.5 126.0 VBC 07 01 36 09 -52.0 42.0 15811.0 261 90399 A 06 20 28 30 84.77 416.39 7659.56 5.87 230.15 12007.0 15643.9 12.8 11.5 -64.91 301.90 OBC 87.7 80.9 VBC 07 01 38 09 -51.7 42.7 15776.6 262 90399 A 06 20 30 25 92.27 416.52 Eqa 7659.17 0.00 234.81 12005.3 16476.7 10.6 11.4 -64.89 46.51 OBC 83.1 335.5 VBC 07 01 40 05 -51.4 43.3 15743.0 263 90399 D 06 20 30 30 92.53 416.53 7659.15 -0.20 234.65 12004.5 16481.5 10.6 11.4 -64.88 291.95 OBC 83.0 337.2 VBC 07 01 40 09 -51.4 43.3 15741.8 264 90399 D 06 20 32 30 100.28 417.15 7658.75 -6.28 229.81 11961.6 16528.7 13.0 11.5 -64.41 282.15 OBC 77.4 7.4 VBC 07 01 42 09 -51.1 43.9 15706.6 265 90399 D 06 20 34 30 108.03 418.21 7658.35 -12.31 224.86 11878.0 16388.2 15.4 11.6 -63.51 272.73 OBC 70.5 18.4 VBC 07 01 44 09 -50.8 44.5 15671.0 266

Page 337: ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM …myreaders.info/00_Orbital__Mechanics__-__Model_____Simulation... · ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM-MSS)

www.m

yrea

ders

.inf

o

OM-MSS Page 337 SATELLITE PASS - GROUND TRACE [acronym - Line Of Sight (LOS), On Board Computerr (OBC), Visible Band Camera (VBC), Night Vision Devices (NVD) ] ORBIT, INPUT TIME, POSIION, SAT VELOCITY, GROUND TRACE, RANGE, DIST, PITCH/ROLL, EL/AZ, ACCESS EL/AZ, DATA SOLAR TIME EL/AZ, DIST Line 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 @ES 18 19 20 @SS 21 22 23 24 25 26 27 @ES 28 29 30 No. Node GMT Anomaly Height @ Vel Lat(SAT)Log Slant S-Sat Pitch Roll EL(SAT)AZ Control EL(SUN)AZ Acq. LMT(ES) EL(SUN)AZ S-Sun Nos D H M S deg km meter deg deg km km deg deg deg D H M S deg km 90399 D 06 20 36 30 115.78 419.67 7657.97 -18.24 219.67 11753.4 16080.2 18.0 11.8 -62.23 263.86 OBC 63.3 24.4 VBC 07 01 46 09 -50.5 45.1 15635.0 267 90399 D 06 20 38 30 123.53 421.44 7657.61 -24.03 214.13 11588.2 15640.3 20.8 12.0 -60.61 255.62 OBC 56.0 29.0 VBC 07 01 48 09 -50.1 45.7 15598.6 268 90399 D 06 20 40 30 131.28 423.40 7657.28 -29.60 208.07 11382.8 15104.3 24.0 12.2 -58.71 248.02 OBC 48.7 33.3 VBC 07 01 50 09 -49.8 46.3 15561.9 269 90399 D 06 20 42 30 139.02 425.42 7656.99 -34.86 201.32 11138.0 14500.8 27.7 12.6 -56.56 241.02 OBC 41.4 37.9 VBC 07 01 52 09 -49.5 46.8 15524.8 270 90399 D 06 20 44 30 146.77 427.39 7656.74 -39.70 193.70 10855.0 13850.6 32.0 13.1 -54.22 234.56 OBC 34.0 43.1 VBC 07 01 54 09 -49.1 47.4 15487.4 271 90399 D 06 20 46 30 154.52 429.15 7656.54 -43.97 185.00 10535.2 13168.0 37.3 13.7 -51.71 228.54 OBC 26.6 49.3 VBC 07 01 56 09 -48.8 47.9 15449.6 272 90399 D 06 20 48 30 162.26 430.60 7656.39 -47.49 175.08 10180.4 12463.2 43.9 14.6 -49.08 222.87 OBC 19.3 56.5 VBC 07 01 58 09 -48.4 48.5 15411.5 273 90399 D 06 20 50 30 170.01 431.64 7656.29 -50.04 163.96 9793.0 11743.4 52.0 15.9 -46.35 217.47 OBC 11.9 64.8 VBC 07 02 00 09 -48.1 49.0 15373.1 274 90399 D 06 20 52 30 177.76 432.19 7656.25 -51.43 151.89 9375.7 11014.1 61.8 17.8 -43.54 212.24 OBC 4.6 74.0 NVD 07 02 02 09 -47.8 49.5 15334.4 275 90399 D 06 20 53 04 180.00 432.25 Apo 7656.25 -51.59 148.29 9249.6 10801.7 65.0 18.5 -42.71 143.74 OBC 2.5 76.7 NVD 07 02 02 43 -47.7 49.7 15323.1 276 90399 D 06 20 54 30 185.50 432.22 7656.26 -51.53 139.42 8931.6 10279.7 73.2 20.5 -40.67 207.10 OBC -2.7 83.4 NVD 07 02 04 09 -47.4 50.1 15295.4 277 90399 D 06 20 56 30 193.25 431.72 7656.33 -50.32 127.25 8464.9 9544.0 84.9 24.2 -37.76 201.96 OBC -10.0 92.3 NVD 07 02 06 09 -47.0 50.6 15256.0 278 90399 D 06 20 58 30 201.00 430.72 7656.45 -47.93 115.96 7980.2 8810.8 94.3 29.1 -34.84 196.72 OBC -17.3 100.1 NVD 07 02 08 09 -46.7 51.1 15216.4 279 90399 D 06 21 00 30 208.74 429.30 7656.62 -44.55 105.86 7483.4 8084.1 97.0 35.2 -31.92 191.27 OBC -24.5 106.4 NVD 07 02 10 09 -46.3 51.6 15176.5 280 90399 D 06 21 02 30 216.49 427.55 7656.84 -40.37 96.99 6981.6 7368.6 87.9 42.0 -29.03 185.51 OBC -31.7 111.0 NVD 07 02 12 09 -46.0 52.1 15136.3 281 90399 D 06 21 04 30 224.24 425.58 7657.11 -35.61 89.21 6483.7 6670.1 64.5 48.3 -26.19 179.27 OBC -38.8 113.9 NVD 07 02 14 09 -45.6 52.6 15095.9 282 90399 D 06 21 06 30 231.98 423.54 7657.42 -30.40 82.35 6001.0 5996.7 30.0 52.6 -23.47 172.42 OBC -45.8 115.1 NVD 07 02 16 09 -45.2 53.1 15055.2 283 90399 D 06 21 08 30 239.73 421.54 7657.76 -24.87 76.20 5547.6 5359.6 7.5 53.6 -20.90 164.78 OBC -52.7 114.3 NVD 07 02 18 09 -44.9 53.5 15014.2 284 90399 D 06 21 10 30 247.48 419.73 7658.12 -19.11 70.59 5141.0 4774.9 40.7 51.7 -18.59 156.19 OBC -59.3 111.0 NVD 07 02 20 09 -44.5 54.0 14973.0 285 90399 D 06 21 12 30 255.23 418.21 7658.51 -13.20 65.36 4802.1 4265.4 65.6 48.2 -16.64 146.53 OBC -65.4 104.2 NVD 07 02 22 09 -44.1 54.5 14931.5 286 90399 D 06 21 14 30 262.98 417.07 7658.92 -7.18 60.38 4553.9 3862.2 82.2 44.1 -15.19 135.82 OBC -70.7 91.7 NVD 07 02 24 09 -43.8 54.9 14889.8 287 90399 D 06 21 16 30 270.74 416.39 7659.33 -1.11 55.53 4417.7 3601.9 92.0 40.1 -14.39 124.30 OBC -74.1 70.9 NVD 07 02 26 09 -43.4 55.4 14847.9 288 90399 D 06 21 16 51 272.15 416.31 Eqa 7659.40 -0.00 54.65 4406.3 3572.6 93.1 39.4 -14.32 226.73 OBC -74.4 66.2 NVD 07 02 26 30 -43.3 55.4 14840.2 289 90399 A 06 21 18 30 278.49 416.17 7659.74 4.97 58.59 4407.8 2868.3 86.6 42.6 -14.33 112.44 OBC -68.3 59.2 NVD 07 02 28 09 -43.0 55.8 14805.7 290 90399 A 06 21 20 30 286.24 416.44 7660.14 11.02 63.50 4526.7 2008.8 72.8 46.7 -15.04 100.84 OBC -60.5 55.4 NVD 07 02 30 09 -42.6 56.2 14763.4 291 90399 A 06 21 22 30 294.00 417.13 7660.52 16.98 68.62 4764.2 1154.5 51.0 50.5 -16.44 90.02 OBC -52.6 54.1 NVD 07 02 32 09 -42.2 56.7 14720.8 292 90399 A 06 21 24 30 301.75 418.20 7660.89 22.81 74.06 5101.5 346.9 20.7 53.2 -18.39 80.27 OBC -44.7 54.5 NVD 07 02 34 09 -41.9 57.1 14678.0 293 90399 A 06 21 26 30 309.51 419.53 7661.22 28.43 79.99 5516.1 631.1 16.0 53.4 -20.76 71.69 OBC -36.7 56.1 NVD 07 02 36 09 -41.5 57.5 14635.0 294 90399 A 06 21 28 30 317.26 421.03 7661.52 33.77 86.56 5986.8 1472.0 52.8 50.3 -23.43 64.18 OBC -28.7 59.0 NVD 07 02 38 09 -41.1 57.9 14591.8 295 90399 A 06 21 30 30 325.02 422.56 7661.78 38.72 93.98 6495.0 2329.5 81.2 44.5 -26.30 57.58 OBC -20.7 63.1 NVD 07 02 40 09 -40.7 58.3 14548.4 296 90399 A 06 21 32 30 332.78 424.01 7661.99 43.13 102.44 7025.6 3190.2 95.6 37.6 -29.32 51.74 OBC -12.8 68.6 NVD 07 02 42 09 -40.3 58.7 14504.8 297 90399 A 06 21 34 30 340.54 425.25 7662.15 46.83 112.10 7566.2 4052.1 96.6 31.2 -32.45 46.49 OBC -4.8 75.6 NVD 07 02 44 09 -39.9 59.1 14461.0 298 90399 A 06 21 36 30 348.29 426.18 7662.26 49.60 122.99 8106.8 4914.7 89.0 25.9 -35.64 41.68 OBC 3.1 84.1 NVD 07 02 46 09 -39.5 59.5 14417.0 299 90399 A 06 21 38 30 356.05 426.74 7662.32 51.25 134.90 8639.5 5777.5 77.7 21.7 -38.89 37.21 OBC 11.1 93.9 VBC 07 02 48 09 -39.1 59.9 14372.9 300 90400 A 06 21 39 31 360.00 426.86 Pri 7662.33 51.60 141.21 8905.1 6216.5 71.6 20.1 -40.55 42.34 OBC 15.1 99.2 VBC 07 02 49 10 -38.9 60.1 14350.4 301 90399 A 06 21 40 30 3.81 426.87 7662.32 51.61 147.35 9157.3 6640.5 65.9 18.7 -42.16 32.95 OBC 19.0 104.5 VBC 07 02 50 09 -38.7 60.3 14328.6 302 90400 A 06 21 42 30 11.57 426.58 7662.26 50.67 159.64 9654.5 7503.6 55.4 16.5 -45.45 28.81 OBC 26.8 115.2 VBC 07 02 52 09 -38.3 60.7 14284.1 303 90400 A 06 21 44 30 19.33 425.87 7662.15 48.50 171.14 10126.4 8366.7 46.7 15.0 -48.74 24.69 OBC 34.6 125.6 VBC 07 02 54 09 -37.9 61.0 14239.5 304 90400 A 06 21 46 30 27.09 424.81 7661.99 45.29 181.49 10568.6 9229.9 39.6 14.0 -52.01 20.48 OBC 42.3 135.4 VBC 07 02 56 09 -37.5 61.4 14194.7 305 90400 A 06 21 48 30 34.84 423.49 7661.78 41.25 190.60 10977.4 10093.0 33.9 13.3 -55.26 16.08 OBC 49.9 145.0 VBC 07 02 58 09 -37.1 61.8 14149.7 306 90400 A 06 21 50 30 42.60 422.01 7661.52 36.58 198.58 11349.7 10956.0 29.2 12.8 -58.45 11.35 OBC 57.3 154.9 VBC 07 03 00 09 -36.7 62.1 14104.6 307 90400 A 06 21 52 30 50.36 420.50 7661.23 31.44 205.59 11682.5 11819.0 25.3 12.4 -61.56 6.09 OBC 64.2 166.6 VBC 07 03 02 09 -36.3 62.5 14059.4 308 90400 A 06 21 54 30 58.11 419.08 7660.89 25.96 211.86 11973.4 12681.8 22.0 12.1 -64.56 0.10 OBC 70.2 182.7 VBC 07 03 04 09 -35.9 62.8 14014.0 309 90400 A 06 21 56 30 65.87 417.86 7660.53 20.24 217.55 12220.2 13544.5 19.1 11.9 -67.38 353.07 OBC 74.4 207.2 VBC 07 03 06 09 -35.5 63.2 13968.4 310

Page 338: ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM …myreaders.info/00_Orbital__Mechanics__-__Model_____Simulation... · ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM-MSS)

www.m

yrea

ders

.inf

o

OM-MSS Page 338 SATELLITE PASS - GROUND TRACE [acronym - Line Of Sight (LOS), On Board Computerr (OBC), Visible Band Camera (VBC), Night Vision Devices (NVD) ] ORBIT, INPUT TIME, POSIION, SAT VELOCITY, GROUND TRACE, RANGE, DIST, PITCH/ROLL, EL/AZ, ACCESS EL/AZ, DATA SOLAR TIME EL/AZ, DIST Line 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 @ES 18 19 20 @SS 21 22 23 24 25 26 27 @ES 28 29 30 No. Node GMT Anomaly Height @ Vel Lat(SAT)Log Slant S-Sat Pitch Roll EL(SAT)AZ Control EL(SUN)AZ Acq. LMT(ES) EL(SUN)AZ S-Sun Nos D H M S deg km meter deg deg km km deg deg deg D H M S deg km 90400 A 06 21 58 30 73.62 416.96 7660.14 14.34 222.83 12421.1 14407.0 16.4 11.7 -69.94 344.62 OBC 74.9 238.6 VBC 07 03 08 09 -35.1 63.5 13922.7 311 90400 A 06 22 00 30 81.38 416.46 7659.74 8.34 227.84 12574.6 15269.2 13.9 11.5 -72.14 334.33 OBC 71.6 264.6 VBC 07 03 10 09 -34.7 63.9 13876.9 312 90400 A 06 22 02 30 89.13 416.41 7659.33 2.27 232.69 12679.3 16130.9 11.6 11.4 -73.79 321.94 OBC 66.0 280.2 VBC 07 03 12 09 -34.2 64.2 13830.9 313 90400 A 06 22 03 14 92.03 416.51 Eqa 7659.18 0.00 234.49 12705.8 16453.0 10.7 11.4 -74.24 46.96 OBC 63.6 284.1 VBC 07 03 12 53 -34.1 64.3 13813.7 314 90400 D 06 22 04 30 96.88 416.83 7658.92 -3.81 231.47 12734.4 16505.4 12.2 11.5 -74.73 307.66 OBC 64.9 293.4 VBC 07 03 14 09 -33.8 64.5 13784.8 315 90400 D 06 22 06 30 104.63 417.72 7658.52 -9.86 226.58 12739.2 16436.6 14.5 11.6 -74.81 292.50 OBC 65.4 310.1 VBC 07 03 16 09 -33.4 64.9 13738.6 316 90400 D 06 22 08 30 112.38 419.03 7658.13 -15.84 221.50 12693.1 16191.4 17.1 11.7 -74.01 277.98 OBC 63.9 326.6 VBC 07 03 18 09 -33.0 65.2 13692.3 317 90400 D 06 22 10 30 120.13 420.68 7657.76 -21.69 216.12 12596.2 15800.7 19.8 11.9 -72.44 265.28 OBC 60.7 341.1 VBC 07 03 20 09 -32.6 65.5 13645.8 318 90400 D 06 22 12 30 127.88 422.57 7657.42 -27.36 210.29 12448.4 15300.9 22.8 12.1 -70.28 254.78 OBC 56.2 353.1 VBC 07 03 22 09 -32.2 65.8 13599.2 319 90400 D 06 22 14 30 135.63 424.59 7657.11 -32.76 203.85 12250.3 14723.6 26.3 12.5 -67.70 246.26 OBC 51.0 3.3 VBC 07 03 24 09 -31.7 66.2 13552.6 320 90400 D 06 22 16 30 143.38 426.60 7656.85 -37.79 196.61 12002.3 14092.2 30.3 12.9 -64.83 239.33 OBC 45.2 12.5 VBC 07 03 26 09 -31.3 66.5 13505.7 321 90400 D 06 22 18 30 151.12 428.46 7656.63 -42.31 188.37 11705.6 13423.2 35.2 13.4 -61.74 233.60 OBC 39.2 21.5 VBC 07 03 28 09 -30.9 66.8 13458.8 322 90400 D 06 22 20 30 158.87 430.05 7656.45 -46.16 178.96 11361.2 12728.3 41.3 14.2 -58.50 228.77 OBC 32.9 30.6 VBC 07 03 30 09 -30.5 67.1 13411.8 323 90400 D 06 22 22 30 166.62 431.27 7656.33 -49.13 168.31 10970.7 12015.8 48.7 15.4 -55.15 224.58 OBC 26.6 40.3 VBC 07 03 32 09 -30.1 67.4 13364.7 324 90400 D 06 22 24 30 174.36 432.03 7656.26 -51.01 156.57 10535.8 11291.6 57.9 17.0 -51.71 220.87 OBC 20.1 50.6 VBC 07 03 34 09 -29.6 67.7 13317.4 325 90400 D 06 22 25 57 180.00 432.26 Apo 7656.25 -51.60 147.59 10192.5 10760.0 65.6 18.6 -49.17 143.97 OBC 15.4 58.2 VBC 07 03 35 36 -29.3 67.9 13283.0 326 90400 D 06 22 26 30 182.11 432.27 7656.25 -51.65 144.19 10058.5 10560.7 68.7 19.4 -48.20 217.49 OBC 13.6 61.0 VBC 07 03 36 09 -29.2 68.0 13270.1 327 90400 D 06 22 28 30 189.85 431.98 7656.29 -50.97 131.81 9541.2 9827.0 80.5 22.7 -44.64 214.34 OBC 7.1 70.9 VBC 07 03 38 09 -28.8 68.3 13222.7 328 90400 D 06 22 30 30 197.60 431.19 7656.39 -49.04 120.11 8986.6 9094.4 91.3 27.1 -41.02 211.32 OBC 0.6 79.8 NVD 07 03 40 09 -28.4 68.6 13175.1 329 90400 D 06 22 32 30 205.35 429.93 7656.54 -46.03 109.51 8397.8 8366.7 97.1 32.8 -37.35 208.35 OBC -5.8 87.1 NVD 07 03 42 09 -27.9 68.8 13127.5 330 90400 D 06 22 34 30 213.09 428.30 7656.74 -42.16 100.14 7778.4 7648.4 92.9 39.4 -33.65 205.32 OBC -12.1 92.6 NVD 07 03 44 09 -27.5 69.1 13079.8 331 90400 D 06 22 36 30 220.84 426.41 7656.99 -37.61 91.94 7132.6 6944.8 74.7 46.2 -29.89 202.15 OBC -18.4 96.5 NVD 07 03 46 09 -27.1 69.4 13032.0 332 90400 D 06 22 38 30 228.59 424.38 7657.28 -32.57 84.73 6465.4 6263.2 43.3 51.4 -26.09 198.70 OBC -24.5 98.7 NVD 07 03 48 09 -26.6 69.7 12984.1 333 90400 D 06 22 40 30 236.34 422.35 7657.60 -27.16 78.31 5783.5 5613.2 5.6 53.6 -22.24 194.79 OBC -30.4 99.2 NVD 07 03 50 09 -26.2 70.0 12936.1 334 90400 D 06 22 42 30 244.09 420.45 7657.96 -21.48 72.50 5095.2 5009.1 29.9 52.6 -18.32 190.18 OBC -36.1 98.2 NVD 07 03 52 09 -25.8 70.2 12888.0 335 90400 D 06 22 44 30 251.84 418.80 7658.34 -15.62 67.13 4412.9 4470.7 58.0 49.5 -14.35 184.46 OBC -41.4 95.6 NVD 07 03 54 09 -25.3 70.5 12839.9 336 90400 D 06 22 46 30 259.59 417.50 7658.74 -9.64 62.07 3755.4 4025.7 77.4 45.5 -10.32 177.03 OBC -46.2 91.1 NVD 07 03 56 09 -24.9 70.8 12791.7 337 90400 D 06 22 48 30 267.34 416.62 7659.15 -3.58 57.18 3154.2 3708.8 89.3 41.4 -6.32 166.90 OBC -50.3 84.6 NVD 07 03 58 09 -24.5 71.1 12743.4 338 90400 D 06 22 49 40 271.91 416.32 Eqa 7659.39 -0.00 54.33 2846.5 3596.5 93.5 39.1 -4.08 227.18 LOS -52.4 79.8 NVD 07 03 59 19 -24.2 71.2 12714.8 339 90400 A 06 22 50 30 275.09 416.21 7659.56 2.50 56.31 2662.5 3243.1 90.8 40.7 -2.65 152.78 LOS -49.7 77.4 NVD 07 04 00 09 -24.0 71.3 12695.0 340 90400 A 06 22 52 30 282.84 416.29 7659.96 8.56 61.17 2362.0 2383.4 80.2 44.7 -0.13 133.88 LOS -43.0 73.2 NVD 07 04 02 09 -23.6 71.6 12646.5 341 90400 A 06 22 54 30 290.60 416.81 7660.36 14.56 66.18 2335.0 1527.2 62.3 48.8 0.11 112.22 LOS -36.0 70.9 NVD 07 04 04 09 -23.2 71.8 12598.0 342 90400 A 06 22 56 30 298.35 417.74 7660.73 20.45 71.47 2591.8 688.4 35.9 52.2 -2.10 92.56 LOS -28.9 70.3 NVD 07 04 06 09 -22.7 72.1 12549.4 343 90400 A 06 22 58 30 306.11 418.97 7661.08 26.17 77.19 3059.3 324.8 1.4 53.7 -5.68 77.66 OBC -21.6 71.1 NVD 07 04 08 09 -22.3 72.4 12500.7 344 90400 A 06 23 00 30 313.87 420.42 7661.39 31.64 83.48 3652.3 1107.9 36.6 52.1 -9.70 67.07 OBC -14.2 73.3 NVD 07 04 10 09 -21.9 72.6 12451.9 345 90400 A 06 23 02 30 321.62 421.95 7661.67 36.76 90.53 4312.2 1959.7 69.9 47.3 -13.79 59.49 OBC -6.9 76.9 NVD 07 04 12 09 -21.4 72.9 12403.1 346 90400 A 06 23 04 30 329.38 423.44 7661.90 41.41 98.54 5004.2 2818.5 91.0 40.7 -17.84 53.87 OBC 0.4 82.1 NVD 07 04 14 09 -21.0 73.1 12354.2 347 90400 A 06 23 06 30 337.14 424.78 7662.09 45.42 107.69 5707.3 3679.6 97.6 33.9 -21.85 49.52 OBC 7.7 89.0 VBC 07 04 16 09 -20.5 73.4 12305.3 348 90400 A 06 23 08 30 344.90 425.85 7662.22 48.60 118.09 6408.2 4541.5 93.1 28.1 -25.81 46.04 OBC 15.0 97.7 VBC 07 04 18 09 -20.1 73.6 12256.3 349 90400 A 06 23 10 30 352.65 426.56 7662.30 50.72 129.63 7097.4 5404.0 82.8 23.4 -29.74 43.16 OBC 22.1 108.2 VBC 07 04 20 09 -19.7 73.8 12207.2 350 90401 A 06 23 12 23 360.00 426.87 Pri 7662.33 51.61 141.27 7733.0 6221.0 71.5 20.1 -33.43 42.33 OBC 28.7 119.5 VBC 07 04 22 02 -19.2 74.1 12160.7 351 90400 A 06 23 12 30 0.41 426.87 7662.33 51.62 141.94 7768.0 6266.8 70.9 19.9 -33.63 40.69 OBC 29.0 120.2 VBC 07 04 22 09 -19.2 74.1 12158.1 352 90401 A 06 23 14 30 8.17 426.75 7662.30 51.21 154.38 8414.4 7129.7 59.8 17.4 -37.50 38.51 OBC 35.8 133.1 VBC 07 04 24 09 -18.8 74.3 12108.9 353 90401 A 06 23 16 30 15.93 426.20 7662.21 49.52 166.26 9031.9 7992.7 50.3 15.6 -41.35 36.53 OBC 42.1 146.7 VBC 07 04 26 09 -18.3 74.6 12059.6 354 90401 A 06 23 18 30 23.69 425.28 7662.07 46.71 177.11 9616.5 8855.7 42.5 14.4 -45.19 34.68 OBC 48.0 160.7 VBC 07 04 28 09 -17.9 74.8 12010.3 355

Page 339: ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM …myreaders.info/00_Orbital__Mechanics__-__Model_____Simulation... · ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM-MSS)

www.m

yrea

ders

.inf

o

OM-MSS Page 339 SATELLITE PASS - GROUND TRACE [acronym - Line Of Sight (LOS), On Board Computerr (OBC), Visible Band Camera (VBC), Night Vision Devices (NVD) ] ORBIT, INPUT TIME, POSIION, SAT VELOCITY, GROUND TRACE, RANGE, DIST, PITCH/ROLL, EL/AZ, ACCESS EL/AZ, DATA SOLAR TIME EL/AZ, DIST Line 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 @ES 18 19 20 @SS 21 22 23 24 25 26 27 @ES 28 29 30 No. Node GMT Anomaly Height @ Vel Lat(SAT)Log Slant S-Sat Pitch Roll EL(SAT)AZ Control EL(SUN)AZ Acq. LMT(ES) EL(SUN)AZ S-Sun Nos D H M S deg km meter deg deg km km deg deg deg D H M S deg km 90401 A 06 23 20 30 31.44 424.05 7661.88 42.98 186.72 10164.6 9718.7 36.3 13.6 -49.01 32.90 OBC 53.1 175.5 VBC 07 04 30 09 -17.4 75.0 11961.0 356 90401 A 06 23 22 30 39.20 422.62 7661.64 38.55 195.13 10673.2 10581.7 31.2 13.0 -52.82 31.12 OBC 57.2 191.4 VBC 07 04 32 09 -17.0 75.3 11911.5 357 90401 A 06 23 24 30 46.96 421.11 7661.36 33.58 202.52 11139.5 11444.6 27.0 12.5 -56.61 29.28 OBC 59.6 208.6 VBC 07 04 34 09 -16.6 75.5 11862.1 358 90401 A 06 23 26 30 54.71 419.63 7661.04 28.23 209.07 11560.9 12307.3 23.5 12.2 -60.39 27.28 OBC 60.2 226.2 VBC 07 04 36 09 -16.1 75.7 11812.6 359 90401 A 06 23 28 30 62.47 418.31 7660.69 22.60 214.97 11935.3 13169.9 20.4 12.0 -64.14 25.01 OBC 58.8 242.5 VBC 07 04 38 09 -15.7 76.0 11763.0 360 90401 A 06 23 30 30 70.22 417.27 7660.32 16.76 220.40 12260.6 14032.3 17.6 11.8 -67.87 22.27 OBC 55.6 256.1 VBC 07 04 40 09 -15.2 76.2 11713.4 361 90401 A 06 23 32 30 77.98 416.60 7659.92 10.80 225.51 12535.3 14894.4 15.1 11.6 -71.55 18.74 OBC 51.1 266.5 VBC 07 04 42 09 -14.8 76.4 11663.7 362 90401 A 06 23 34 30 85.73 416.36 7659.51 4.75 230.41 12758.0 15756.1 12.7 11.5 -75.16 13.79 OBC 45.7 274.0 VBC 07 04 44 09 -14.3 76.7 11614.0 363 90401 A 06 23 36 03 91.79 416.50 Eqa 7659.19 0.00 234.17 12895.0 16429.1 10.9 11.4 -77.89 47.40 OBC 41.1 278.2 VBC 07 04 45 42 -14.0 76.8 11575.1 364 90401 D 06 23 36 30 93.48 416.59 7659.10 -1.33 233.12 12927.4 16454.4 11.4 11.4 -78.62 6.11 OBC 41.8 279.5 VBC 07 04 46 09 -13.9 76.9 11564.2 365 90401 D 06 23 38 30 101.24 417.29 7658.70 -7.40 228.27 13042.6 16457.6 13.7 11.5 -81.75 352.61 OBC 44.7 286.3 VBC 07 04 48 09 -13.4 77.1 11514.4 366 90401 D 06 23 40 30 108.99 418.44 7658.30 -13.41 223.28 13103.1 16279.0 16.2 11.7 -84.00 326.77 OBC 46.7 294.5 VBC 07 04 50 09 -13.0 77.3 11464.5 367 90401 D 06 23 42 30 116.74 419.96 7657.92 -19.33 218.04 13108.5 15942.5 18.8 11.8 -84.23 288.47 OBC 47.8 303.9 VBC 07 04 52 09 -12.5 77.5 11414.6 368 90401 D 06 23 44 30 124.48 421.77 7657.57 -25.08 212.41 13058.5 15483.7 21.7 12.1 -82.25 259.74 OBC 47.9 314.1 VBC 07 04 54 09 -12.1 77.8 11364.7 369 90401 D 06 23 46 30 132.23 423.75 7657.24 -30.60 206.24 12953.3 14936.1 25.0 12.3 -79.21 244.71 OBC 47.0 324.8 VBC 07 04 56 09 -11.6 78.0 11314.7 370 90401 D 06 23 48 30 139.98 425.78 7656.96 -35.79 199.35 12793.3 14326.1 28.8 12.7 -75.77 236.48 OBC 45.1 335.8 VBC 07 04 58 09 -11.2 78.2 11264.7 371 90401 D 06 23 50 30 147.73 427.72 7656.72 -40.54 191.54 12579.1 13672.6 33.3 13.2 -72.16 231.44 OBC 42.5 347.0 VBC 07 05 00 09 -10.7 78.4 11214.6 372 90401 D 06 23 52 30 155.48 429.44 7656.52 -44.68 182.62 12311.5 12989.0 38.9 13.9 -68.46 228.07 OBC 39.1 358.5 VBC 07 05 02 09 -10.3 78.6 11164.5 373 90401 D 06 23 54 30 163.22 430.82 7656.38 -48.04 172.47 11991.7 12284.7 45.7 14.9 -64.71 225.65 OBC 35.3 10.3 VBC 07 05 04 09 -9.8 78.8 11114.4 374 90401 D 06 23 56 30 170.97 431.78 7656.29 -50.39 161.15 11620.9 11566.5 54.2 16.3 -60.91 223.84 OBC 31.0 22.5 VBC 07 05 06 09 -9.4 79.1 11064.2 375 90401 D 06 23 58 30 178.71 432.24 7656.25 -51.55 148.95 11200.7 10839.7 64.4 18.4 -57.09 222.42 OBC 26.5 34.9 VBC 07 05 08 09 -8.9 79.3 11014.0 376 90401 D 06 23 58 49 180.00 432.26 Apo 7656.25 -51.61 146.89 11126.2 10718.5 66.2 18.8 -56.45 144.19 OBC 25.7 36.9 VBC 07 05 08 28 -8.9 79.3 11005.7 377 90401 D 07 00 00 30 186.46 432.17 7656.27 -51.40 136.49 10732.8 10108.6 76.0 21.3 -53.24 221.29 OBC 21.7 46.8 VBC 07 05 10 09 -8.5 79.5 10963.8 378 90401 D 07 00 02 30 194.21 431.57 7656.34 -49.96 124.45 10219.3 9377.1 87.5 25.3 -49.36 220.36 OBC 16.8 57.7 VBC 07 05 12 09 -8.0 79.7 10913.5 379 90401 D 07 00 04 30 201.95 430.50 7656.47 -47.37 113.36 9662.3 8649.1 95.8 30.5 -45.45 219.58 OBC 11.8 67.1 VBC 07 05 14 09 -7.6 79.9 10863.2 380 90401 D 07 00 06 30 209.70 429.01 7656.65 -43.83 103.49 9064.2 7928.7 96.0 36.8 -41.52 218.91 OBC 6.8 74.7 VBC 07 05 16 09 -7.1 80.1 10812.8 381 90401 D 07 00 08 30 217.45 427.21 7656.87 -39.53 94.83 8427.7 7221.0 83.1 43.7 -37.54 218.33 OBC 1.7 80.5 NVD 07 05 18 09 -6.7 80.3 10762.4 382 90401 D 07 00 10 30 225.19 425.22 7657.15 -34.67 87.24 7755.3 6532.3 55.9 49.8 -33.51 217.81 OBC -3.2 84.7 NVD 07 05 20 09 -6.2 80.5 10712.0 383 90401 D 07 00 12 30 232.94 423.18 7657.46 -29.40 80.53 7050.2 5871.4 19.2 53.2 -29.42 217.33 OBC -8.2 87.5 NVD 07 05 22 09 -5.8 80.7 10661.6 384 90401 D 07 00 14 30 240.69 421.21 7657.80 -23.82 74.49 6315.4 5250.6 18.1 53.3 -25.25 216.86 OBC -12.9 88.9 NVD 07 05 24 09 -5.3 80.9 10611.1 385 90401 D 07 00 16 30 248.44 419.44 7658.17 -18.03 68.96 5554.2 4687.3 49.2 50.7 -20.94 216.38 OBC -17.5 89.1 NVD 07 05 26 09 -4.9 81.1 10560.6 386 90401 D 07 00 18 30 256.19 417.99 7658.56 -12.09 63.79 4770.2 4205.8 71.6 46.9 -16.45 215.84 OBC -21.9 88.1 NVD 07 05 28 09 -4.4 81.3 10510.1 387 90401 D 07 00 20 30 263.94 416.93 7658.97 -6.06 58.84 3967.4 3838.2 86.0 42.8 -11.65 215.17 OBC -26.0 86.1 NVD 07 05 30 09 -4.0 81.5 10459.5 388 90401 D 07 00 22 29 271.67 416.33 Eqa 7659.38 -0.00 54.01 3152.8 3620.5 93.9 38.9 -6.31 227.61 OBC -29.7 82.9 NVD 07 05 32 08 -3.5 81.7 10409.1 389 90401 A 07 00 22 30 271.69 416.33 7659.38 0.02 54.03 3150.4 3617.9 93.9 38.9 -6.30 214.21 OBC -29.7 82.9 NVD 07 05 32 09 -3.5 81.7 10409.0 390 90401 A 07 00 24 30 279.45 416.21 7659.79 6.09 58.85 2325.7 2758.0 86.0 42.8 0.21 212.62 LOS -23.6 80.5 NVD 07 05 34 09 -3.1 81.9 10358.3 391 90401 A 07 00 26 30 287.20 416.56 7660.19 12.13 63.79 1506.3 1900.8 71.7 46.9 9.72 209.19 LOS -17.2 79.5 NVD 07 05 36 09 -2.6 82.1 10307.7 392 90401 A 07 00 28 30 294.96 417.33 7660.57 18.07 68.96 747.9 1053.0 49.3 50.7 31.25 196.34 LOS -10.8 79.8 NVD 07 05 38 09 -2.1 82.4 10257.1 393 90401 A 07 00 30 30 302.71 418.45 7660.93 23.87 74.48 556.3 306.8 18.2 53.3 47.05 78.41 LOS -4.3 81.3 NVD 07 05 40 09 -1.7 82.6 10206.4 394 90401 A 07 00 32 30 310.47 419.82 7661.26 29.45 80.51 1234.4 754.7 19.2 53.3 14.62 50.46 LOS 2.2 84.2 NVD 07 05 42 09 -1.2 82.7 10155.7 395 90401 A 07 00 34 30 318.22 421.33 7661.55 34.72 87.23 2044.9 1592.3 56.0 49.8 2.88 45.69 LOS 8.7 88.5 VBC 07 05 44 09 -0.8 82.9 10104.9 396 90401 A 07 00 36 30 325.98 422.85 7661.81 39.58 94.83 2870.2 2447.9 83.4 43.8 -4.31 43.88 LOS 15.0 94.4 VBC 07 05 46 09 -0.3 83.1 10054.2 397 90401 A 07 00 38 30 333.74 424.27 7662.01 43.87 103.50 3691.0 3307.6 96.3 36.9 -9.95 43.02 OBC 21.2 102.3 VBC 07 05 48 09 0.1 83.3 10003.4 398 90401 A 07 00 40 30 341.50 425.45 7662.17 47.42 113.38 4499.6 4168.8 96.0 30.5 -14.91 42.60 OBC 27.1 112.2 VBC 07 05 50 09 0.6 83.5 9952.6 399

Page 340: ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM …myreaders.info/00_Orbital__Mechanics__-__Model_____Simulation... · ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM-MSS)

www.m

yrea

ders

.inf

o

OM-MSS Page 340 SATELLITE PASS - GROUND TRACE [acronym - Line Of Sight (LOS), On Board Computerr (OBC), Visible Band Camera (VBC), Night Vision Devices (NVD) ] ORBIT, INPUT TIME, POSIION, SAT VELOCITY, GROUND TRACE, RANGE, DIST, PITCH/ROLL, EL/AZ, ACCESS EL/AZ, DATA SOLAR TIME EL/AZ, DIST Line 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 @ES 18 19 20 @SS 21 22 23 24 25 26 27 @ES 28 29 30 No. Node GMT Anomaly Height @ Vel Lat(SAT)Log Slant S-Sat Pitch Roll EL(SAT)AZ Control EL(SUN)AZ Acq. LMT(ES) EL(SUN)AZ S-Sun Nos D H M S deg km meter deg deg km km deg deg deg D H M S deg km 90401 A 07 00 42 30 349.25 426.32 7662.27 50.00 124.49 5290.9 5030.8 87.7 25.3 -19.49 42.43 OBC 32.6 124.3 VBC 07 05 52 09 1.0 83.7 9901.8 400 90401 A 07 00 44 30 357.01 426.80 7662.32 51.41 136.55 6060.8 5893.2 76.1 21.3 -23.85 42.43 OBC 37.6 138.5 VBC 07 05 54 09 1.5 83.9 9851.0 401 90402 A 07 00 45 16 360.00 426.87 Pri 7662.33 51.62 141.34 6350.8 6225.4 71.5 20.0 -25.49 42.32 OBC 39.4 144.4 VBC 07 05 54 55 1.7 84.0 9831.4 402 90401 A 07 00 46 30 4.77 426.85 7662.32 51.54 149.02 6805.7 6755.9 64.4 18.4 -28.07 42.54 OBC 42.0 154.3 VBC 07 05 56 09 2.0 84.1 9800.1 403 90402 A 07 00 48 30 12.53 426.47 7662.25 50.35 161.20 7522.0 7618.7 54.2 16.3 -32.19 42.75 OBC 45.5 171.2 VBC 07 05 58 09 2.4 84.3 9749.3 404 90402 A 07 00 50 30 20.29 425.69 7662.14 47.97 172.51 8206.8 8481.6 45.7 14.9 -36.24 43.05 OBC 47.9 188.3 VBC 07 06 00 09 2.9 84.5 9698.4 405 90402 A 07 00 52 30 28.04 424.57 7661.97 44.60 182.63 8856.9 9344.5 38.9 13.9 -40.24 43.43 OBC 49.0 205.0 VBC 07 06 02 09 3.3 84.7 9647.5 406 90402 A 07 00 54 30 35.80 423.21 7661.75 40.43 191.52 9469.5 10207.3 33.3 13.2 -44.20 43.90 OBC 48.8 220.7 VBC 07 06 04 09 3.8 84.9 9596.6 407 90402 A 07 00 56 30 43.56 421.72 7661.49 35.66 199.30 10042.2 11070.1 28.8 12.7 -48.13 44.45 OBC 47.2 234.6 VBC 07 06 06 09 4.2 85.1 9545.6 408 90402 A 07 00 58 30 51.32 420.21 7661.19 30.45 206.17 10572.3 11932.8 25.0 12.3 -52.03 45.12 OBC 44.3 246.4 VBC 07 06 08 09 4.7 85.3 9494.7 409 90402 A 07 01 00 30 59.07 418.81 7660.85 24.92 212.31 11057.7 12795.4 21.8 12.1 -55.91 45.91 OBC 40.5 256.0 VBC 07 06 10 09 5.2 85.5 9443.7 410 90402 A 07 01 02 30 66.83 417.65 7660.48 19.16 217.92 11496.4 13657.7 18.9 11.8 -59.78 46.87 OBC 36.0 263.6 VBC 07 06 12 09 5.6 85.7 9392.8 411 90402 A 07 01 04 30 74.58 416.81 7660.10 13.24 223.14 11886.6 14519.7 16.2 11.7 -63.62 48.05 OBC 30.8 269.3 VBC 07 06 14 09 6.1 85.9 9341.8 412 90402 A 07 01 06 30 82.33 416.39 7659.69 7.22 228.11 12226.6 15381.3 13.8 11.5 -67.44 49.55 OBC 25.3 273.4 VBC 07 06 16 09 6.5 86.1 9290.8 413 90402 A 07 01 08 30 90.09 416.43 7659.28 1.15 232.95 12515.0 16242.3 11.5 11.4 -71.25 51.55 OBC 19.5 276.1 VBC 07 06 18 09 7.0 86.3 9239.8 414 90402 A 07 01 08 52 91.55 416.49 Eqa 7659.21 0.00 233.86 12563.6 16405.0 11.0 11.4 -71.96 47.83 OBC 18.4 276.5 VBC 07 06 18 31 7.1 86.3 9230.1 415 90402 D 07 01 10 30 97.84 416.94 7658.87 -4.93 229.94 12750.8 16450.8 12.9 11.5 -75.02 54.40 OBC 21.2 278.6 VBC 07 06 20 09 7.5 86.5 9188.7 416 90402 D 07 01 12 30 105.59 417.91 7658.47 -10.97 225.02 12932.9 16341.3 15.3 11.6 -78.74 58.91 OBC 24.4 282.0 VBC 07 06 22 09 7.9 86.7 9137.7 417 90402 D 07 01 14 30 113.34 419.29 7658.08 -16.93 219.90 13060.8 16063.9 17.9 11.8 -82.34 67.38 OBC 27.3 286.5 VBC 07 06 24 09 8.4 86.9 9086.7 418 90402 D 07 01 16 30 121.09 421.00 7657.72 -22.76 214.44 13133.9 15650.9 20.6 12.0 -85.54 88.50 OBC 29.8 292.0 VBC 07 06 26 09 8.8 87.1 9035.6 419 90402 D 07 01 18 30 128.84 422.92 7657.38 -28.38 208.51 13152.1 15137.0 23.8 12.2 -86.78 146.03 OBC 31.8 298.6 VBC 07 06 28 09 9.3 87.3 8984.5 420 90402 D 07 01 20 30 136.59 424.95 7657.08 -33.72 201.94 13115.4 14551.4 27.3 12.6 -84.52 189.54 OBC 33.4 306.4 VBC 07 06 30 09 9.7 87.4 8933.5 421 90402 D 07 01 22 30 144.33 426.94 7656.82 -38.66 194.53 13024.0 13915.5 31.6 13.0 -81.12 204.39 OBC 34.3 315.5 VBC 07 06 32 09 10.2 87.6 8882.4 422 90402 D 07 01 24 30 152.08 428.77 7656.60 -43.08 186.08 12878.5 13244.8 36.7 13.6 -77.48 211.18 OBC 34.7 325.8 VBC 07 06 34 09 10.7 87.8 8831.3 423 90402 D 07 01 26 30 159.83 430.30 7656.43 -46.78 176.44 12679.5 12549.8 42.9 14.5 -73.75 215.19 OBC 34.6 337.4 VBC 07 06 36 09 11.1 88.0 8780.2 424 90402 D 07 01 28 30 167.57 431.44 7656.32 -49.56 165.57 12428.2 11838.4 50.7 15.7 -69.99 217.98 OBC 33.8 350.2 VBC 07 06 38 09 11.6 88.2 8729.1 425 90402 D 07 01 30 30 175.32 432.11 7656.26 -51.23 153.68 12125.6 11116.4 60.3 17.5 -66.21 220.14 OBC 32.5 3.8 VBC 07 06 40 09 12.0 88.4 8678.0 426 90402 D 07 01 31 42 180.00 432.26 Apo 7656.25 -51.62 146.18 11918.6 10677.1 66.9 18.9 -63.92 144.42 OBC 31.5 12.2 VBC 07 06 41 21 12.3 88.5 8647.1 427 90402 D 07 01 32 30 183.07 432.26 7656.25 -51.62 141.24 11773.3 10388.6 71.5 20.1 -62.41 221.95 OBC 30.8 17.6 VBC 07 06 42 09 12.5 88.6 8626.9 428 90402 D 07 01 34 30 190.81 431.88 7656.30 -50.70 128.95 11372.8 9658.8 83.3 23.6 -58.61 223.56 OBC 28.6 30.9 VBC 07 06 44 09 13.0 88.8 8575.8 429 90402 D 07 01 36 30 198.56 430.99 7656.41 -48.56 117.42 10926.1 8931.0 93.3 28.4 -54.79 225.07 OBC 26.0 42.9 VBC 07 06 46 09 13.4 89.0 8524.7 430 90402 D 07 01 38 30 206.30 429.66 7656.56 -45.37 107.05 10435.3 8209.2 97.2 34.3 -50.96 226.53 OBC 23.1 53.3 VBC 07 06 48 09 13.9 89.2 8473.6 431 90402 D 07 01 40 30 214.05 427.98 7656.77 -41.36 97.90 9902.8 7498.1 89.6 41.2 -47.11 227.99 OBC 19.9 61.9 VBC 07 06 50 09 14.3 89.4 8422.4 432 90402 D 07 01 42 30 221.80 426.06 7657.02 -36.71 89.90 9331.1 6803.6 67.3 47.8 -43.25 229.49 OBC 16.6 68.8 VBC 07 06 52 09 14.8 89.6 8371.3 433 90402 D 07 01 44 30 229.55 424.02 7657.32 -31.59 82.85 8723.0 6133.4 32.9 52.4 -39.37 231.07 OBC 13.0 74.2 VBC 07 06 54 09 15.3 89.8 8320.2 434 90402 D 07 01 46 30 237.30 422.01 7657.65 -26.13 76.56 8081.7 5498.3 5.3 53.6 -35.45 232.77 OBC 9.4 78.3 VBC 07 06 56 09 15.7 90.0 8269.1 435 90402 D 07 01 48 30 245.04 420.14 7658.00 -20.41 70.84 7410.7 4913.4 39.3 51.8 -31.51 234.65 OBC 5.7 81.3 VBC 07 06 58 09 16.2 90.2 8217.9 436 90402 D 07 01 50 30 252.79 418.55 7658.39 -14.52 65.54 6713.8 4400.3 64.9 48.3 -27.51 236.78 OBC 1.9 83.1 NVD 07 07 00 09 16.6 90.4 8166.8 437 90402 D 07 01 52 30 260.55 417.32 7658.79 -8.52 60.52 5995.7 3987.9 81.9 44.2 -23.45 239.27 OBC -1.8 84.1 NVD 07 07 02 09 17.1 90.6 8115.7 438 90402 D 07 01 54 30 268.30 416.53 7659.20 -2.46 55.65 5261.8 3710.7 91.8 40.2 -19.29 242.27 OBC -5.5 84.1 NVD 07 07 04 09 17.6 90.8 8064.6 439 90402 D 07 01 55 18 271.43 416.35 Eqa 7659.36 -0.00 53.70 4962.0 3644.6 94.2 38.6 -17.57 228.05 OBC -7.0 83.8 NVD 07 07 04 57 17.7 90.9 8043.9 440 90402 A 07 01 56 30 276.05 416.21 7659.61 3.62 56.56 4519.5 3132.7 90.4 40.9 -14.99 246.07 OBC -3.4 83.6 NVD 07 07 06 09 18.0 91.0 8013.4 441 90402 A 07 01 58 30 283.80 416.37 7660.01 9.68 61.44 3779.3 2274.9 79.4 45.0 -10.49 251.13 OBC 2.5 84.2 NVD 07 07 08 09 18.5 91.2 7962.3 442 90402 A 07 02 00 30 291.56 416.98 7660.40 15.66 66.50 3059.2 1423.0 60.9 49.0 -5.67 258.36 OBC 8.4 85.9 VBC 07 07 10 09 18.9 91.4 7911.2 443 90402 A 07 02 02 30 299.31 417.96 7660.78 21.53 71.86 2393.9 603.5 33.7 52.4 -0.43 269.53 LOS 14.3 88.9 VBC 07 07 12 09 19.4 91.6 7860.1 444

Page 341: ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM …myreaders.info/00_Orbital__Mechanics__-__Model_____Simulation... · ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM-MSS)

www.m

yrea

ders

.inf

o

OM-MSS Page 341 SATELLITE PASS - GROUND TRACE [acronym - Line Of Sight (LOS), On Board Computerr (OBC), Visible Band Camera (VBC), Night Vision Devices (NVD) ] ORBIT, INPUT TIME, POSIION, SAT VELOCITY, GROUND TRACE, RANGE, DIST, PITCH/ROLL, EL/AZ, ACCESS EL/AZ, DATA SOLAR TIME EL/AZ, DIST Line 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 @ES 18 19 20 @SS 21 22 23 24 25 26 27 @ES 28 29 30 No. Node GMT Anomaly Height @ Vel Lat(SAT)Log Slant S-Sat Pitch Roll EL(SAT)AZ Control EL(SUN)AZ Acq. LMT(ES) EL(SUN)AZ S-Sun Nos D H M S deg km meter deg deg km km deg deg deg D H M S deg km 90402 A 07 02 04 30 307.07 419.25 7661.12 27.20 77.66 1858.9 439.6 1.6 53.7 4.95 287.95 LOS 19.9 93.3 VBC 07 07 14 09 19.8 91.8 7809.0 445 90402 A 07 02 06 30 314.82 420.71 7661.43 32.62 84.08 1602.0 1229.8 39.9 51.8 8.24 316.29 LOS 25.3 99.3 VBC 07 07 16 09 20.3 92.0 7757.9 446 90402 A 07 02 08 30 322.58 422.25 7661.70 37.66 91.29 1753.5 2079.0 72.7 46.7 6.21 346.54 LOS 30.3 107.1 VBC 07 07 18 09 20.8 92.2 7706.8 447 90402 A 07 02 10 30 330.34 423.72 7661.93 42.20 99.50 2228.8 2936.4 92.4 39.9 1.05 7.65 LOS 34.8 117.0 VBC 07 07 20 09 21.2 92.4 7655.7 448 90402 A 07 02 12 30 338.10 425.01 7662.11 46.08 108.88 2865.2 3796.6 97.5 33.2 -4.27 20.50 LOS 38.6 129.2 VBC 07 07 22 09 21.7 92.6 7604.7 449 90402 A 07 02 14 30 345.85 426.01 7662.23 49.07 119.51 3569.5 4657.9 92.0 27.4 -9.17 28.73 OBC 41.6 143.7 VBC 07 07 24 09 22.1 92.8 7553.6 450 90402 A 07 02 16 30 353.61 426.66 7662.31 50.99 131.23 4299.5 5519.9 81.2 22.9 -13.72 34.51 OBC 43.6 160.3 VBC 07 07 26 09 22.6 93.0 7502.5 451 90403 A 07 02 18 08 360.00 426.87 Pri 7662.33 51.62 141.40 4904.6 6229.9 71.4 20.0 -17.27 42.32 OBC 44.4 175.0 VBC 07 07 27 47 23.0 93.2 7460.5 452 90402 A 07 02 18 30 1.37 426.88 7662.33 51.65 143.61 5034.1 6382.3 69.3 19.5 -18.02 38.89 OBC 44.5 178.2 VBC 07 07 28 09 23.1 93.2 7451.5 453 90403 A 07 02 20 30 9.13 426.67 7662.29 50.99 156.00 5761.4 7244.9 58.4 17.1 -22.16 42.44 OBC 44.1 196.1 VBC 07 07 30 09 23.5 93.4 7400.4 454 90403 A 07 02 22 30 16.89 426.05 7662.19 49.08 167.72 6473.6 8107.6 49.2 15.4 -26.18 45.48 OBC 42.6 213.0 VBC 07 07 32 09 24.0 93.7 7349.4 455 90403 A 07 02 24 30 24.65 425.06 7662.05 46.08 178.34 7165.0 8970.3 41.7 14.3 -30.12 48.20 OBC 40.0 228.0 VBC 07 07 34 09 24.4 93.9 7298.4 456 90403 A 07 02 26 30 32.40 423.79 7661.85 42.21 187.72 7831.0 9833.0 35.7 13.5 -34.00 50.74 OBC 36.5 240.6 VBC 07 07 36 09 24.9 94.1 7247.4 457 90403 A 07 02 28 30 40.16 422.33 7661.61 37.67 195.93 8467.7 10695.7 30.7 12.9 -37.82 53.17 OBC 32.2 250.9 VBC 07 07 38 09 25.4 94.3 7196.4 458 90403 A 07 02 30 30 47.92 420.81 7661.32 32.62 203.15 9071.8 11558.3 26.7 12.5 -41.60 55.58 OBC 27.4 259.1 VBC 07 07 40 09 25.8 94.5 7145.4 459 90403 A 07 02 32 30 55.67 419.35 7661.00 27.21 209.56 9640.3 12420.8 23.2 12.2 -45.34 58.03 OBC 22.2 265.4 VBC 07 07 42 09 26.3 94.7 7094.5 460 90403 A 07 02 34 30 63.43 418.08 7660.65 21.53 215.37 10170.6 13283.0 20.2 11.9 -49.04 60.58 OBC 16.7 270.1 VBC 07 07 44 09 26.7 94.9 7043.5 461 90403 A 07 02 36 30 71.18 417.10 7660.27 15.67 220.73 10660.3 14145.0 17.4 11.8 -52.70 63.30 OBC 10.9 273.4 VBC 07 07 46 09 27.2 95.2 6992.6 462 90403 A 07 02 38 30 78.94 416.50 7659.87 9.68 225.79 11107.3 15006.6 14.9 11.6 -56.32 66.29 OBC 5.1 275.4 VBC 07 07 48 09 27.6 95.4 6941.7 463 90403 A 07 02 40 30 86.69 416.34 7659.46 3.63 230.66 11509.7 15867.5 12.6 11.5 -59.89 69.66 OBC -0.9 276.2 NVD 07 07 50 09 28.1 95.6 6890.8 464 90403 A 07 02 41 41 91.31 416.47 Eqa 7659.22 0.00 233.54 11727.8 16380.7 11.2 11.4 -61.99 48.26 OBC -4.4 276.2 NVD 07 07 51 20 28.4 95.7 6860.5 465 90403 D 07 02 42 30 94.44 416.66 7659.05 -2.45 231.59 11865.9 16416.6 12.1 11.5 -63.39 73.57 OBC -2.9 276.0 NVD 07 07 52 09 28.6 95.8 6839.9 466 90403 D 07 02 44 30 102.19 417.45 7658.65 -8.52 226.72 12174.3 16377.3 14.5 11.6 -66.81 78.27 OBC 0.8 276.3 NVD 07 07 54 09 29.0 96.0 6789.1 467 90403 D 07 02 46 30 109.94 418.67 7658.25 -14.52 221.70 12434.0 16163.1 17.0 11.7 -70.10 84.16 OBC 4.4 277.5 NVD 07 07 56 09 29.5 96.3 6738.3 468 90403 D 07 02 48 30 117.69 420.26 7657.87 -20.40 216.40 12643.8 15800.7 19.6 11.9 -73.19 91.83 OBC 8.1 279.7 VBC 07 07 58 09 29.9 96.5 6687.4 469 90403 D 07 02 50 30 125.44 422.11 7657.52 -26.12 210.68 12803.0 15324.9 22.6 12.1 -75.97 102.23 OBC 11.7 282.9 VBC 07 08 00 09 30.4 96.7 6636.7 470 90403 D 07 02 52 30 133.19 424.11 7657.21 -31.58 204.39 12911.2 14767.0 26.0 12.4 -78.21 116.62 OBC 15.2 287.3 VBC 07 08 02 09 30.8 97.0 6585.9 471 90403 D 07 02 54 30 140.94 426.14 7656.93 -36.70 197.34 12968.0 14151.2 29.9 12.8 -79.57 135.70 OBC 18.5 293.0 VBC 07 08 04 09 31.3 97.2 6535.2 472 90403 D 07 02 56 30 148.69 428.05 7656.69 -41.35 189.34 12973.4 13495.0 34.6 13.4 -79.71 157.48 OBC 21.6 300.2 VBC 07 08 06 09 31.7 97.4 6484.5 473 90403 D 07 02 58 30 156.43 429.72 7656.50 -45.37 180.20 12927.6 12810.7 40.4 14.1 -78.57 177.39 OBC 24.5 309.0 VBC 07 08 08 09 32.2 97.7 6433.8 474 90403 D 07 03 00 30 164.18 431.03 7656.36 -48.55 169.83 12830.9 12107.1 47.6 15.2 -76.49 192.76 OBC 27.2 319.6 VBC 07 08 10 09 32.7 97.9 6383.1 475 90403 D 07 03 02 30 171.93 431.90 7656.28 -50.70 158.30 12684.0 11390.7 56.4 16.7 -73.82 203.96 OBC 29.4 331.9 VBC 07 08 12 09 33.1 98.1 6332.5 476 90403 D 07 03 04 30 179.67 432.26 7656.25 -51.62 146.01 12487.8 10666.7 67.0 19.0 -70.82 212.25 OBC 31.3 345.3 VBC 07 08 14 09 33.6 98.4 6281.9 477 90403 D 07 03 04 35 180.00 432.27 Apo 7656.25 -51.63 145.48 12478.4 10635.8 67.5 19.1 -70.69 144.65 OBC 31.3 345.9 VBC 07 08 14 14 33.6 98.4 6279.8 478 90403 D 07 03 06 30 187.42 432.10 7656.27 -51.23 133.57 12243.3 9939.2 78.8 22.1 -67.61 218.64 OBC 32.6 359.2 VBC 07 08 16 09 34.0 98.6 6231.3 479 90403 D 07 03 08 30 195.16 431.41 7656.35 -49.57 121.68 11951.9 9212.2 90.0 26.4 -64.28 223.81 OBC 33.5 12.8 VBC 07 08 18 09 34.5 98.9 6180.8 480 90403 D 07 03 10 30 202.91 430.26 7656.49 -46.78 110.81 11615.0 8489.6 96.8 32.0 -60.86 228.18 OBC 33.9 25.5 VBC 07 08 20 09 34.9 99.1 6130.3 481 90403 D 07 03 12 30 210.66 428.71 7656.67 -43.08 101.16 11234.6 7776.0 94.1 38.6 -57.39 232.02 OBC 33.7 37.0 VBC 07 08 22 09 35.4 99.4 6079.9 482 90403 D 07 03 14 30 218.40 426.87 7656.91 -38.67 92.72 10812.6 7076.6 77.2 45.5 -53.88 235.52 OBC 32.9 47.1 VBC 07 08 24 09 35.8 99.6 6029.4 483 90403 D 07 03 16 30 226.15 424.86 7657.18 -33.73 85.30 10351.3 6398.5 46.3 51.1 -50.34 238.80 OBC 31.6 55.8 VBC 07 08 26 09 36.3 99.9 5979.1 484 90403 D 07 03 18 30 233.90 422.82 7657.50 -28.39 78.73 9853.4 5751.1 8.2 53.6 -46.77 241.97 OBC 29.8 63.3 VBC 07 08 28 09 36.7 100.1 5928.7 485 90403 D 07 03 20 30 241.65 420.89 7657.84 -22.76 72.80 9321.6 5147.7 28.2 52.7 -43.19 245.11 OBC 27.6 69.5 VBC 07 08 30 09 37.2 100.4 5878.4 486 90403 D 07 03 22 30 249.40 419.17 7658.22 -16.94 67.34 8759.3 4607.2 57.0 49.6 -39.60 248.30 OBC 24.9 74.7 VBC 07 08 32 09 37.6 100.7 5828.1 487 90403 D 07 03 24 30 257.15 417.78 7658.61 -10.98 62.22 8170.3 4155.4 76.9 45.6 -35.99 251.61 OBC 21.9 78.7 VBC 07 08 34 09 38.1 100.9 5777.9 488

Page 342: ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM …myreaders.info/00_Orbital__Mechanics__-__Model_____Simulation... · ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM-MSS)

www.m

yrea

ders

.inf

o

OM-MSS Page 342 SATELLITE PASS - GROUND TRACE [acronym - Line Of Sight (LOS), On Board Computerr (OBC), Visible Band Camera (VBC), Night Vision Devices (NVD) ] ORBIT, INPUT TIME, POSIION, SAT VELOCITY, GROUND TRACE, RANGE, DIST, PITCH/ROLL, EL/AZ, ACCESS EL/AZ, DATA SOLAR TIME EL/AZ, DIST Line 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 @ES 18 19 20 @SS 21 22 23 24 25 26 27 @ES 28 29 30 No. Node GMT Anomaly Height @ Vel Lat(SAT)Log Slant S-Sat Pitch Roll EL(SAT)AZ Control EL(SUN)AZ Acq. LMT(ES) EL(SUN)AZ S-Sun Nos D H M S deg km meter deg deg km km deg deg deg D H M S deg km 90403 D 07 03 26 30 264.90 416.81 7659.02 -4.94 57.30 7558.9 3824.7 89.1 41.5 -32.38 255.14 OBC 18.6 81.8 VBC 07 08 36 09 38.5 101.2 5727.7 489 90403 D 07 03 28 07 271.20 416.36 Eqa 7659.35 -0.00 53.38 7049.3 3668.9 94.5 38.4 -29.44 228.48 OBC 15.8 83.6 VBC 07 08 37 46 38.9 101.4 5687.0 490 90403 A 07 03 28 30 272.65 416.30 7659.43 1.14 54.28 6930.2 3507.4 93.6 39.1 -28.75 258.99 OBC 16.9 83.9 VBC 07 08 38 09 39.0 101.5 5677.6 491 90403 A 07 03 30 30 280.41 416.26 7659.84 7.21 59.12 6290.6 2649.2 85.4 43.0 -25.13 263.31 OBC 22.7 86.4 VBC 07 08 40 09 39.4 101.7 5627.5 492 90403 A 07 03 32 30 288.16 416.69 7660.23 13.23 64.09 5648.3 1795.1 70.6 47.2 -21.50 268.28 OBC 28.3 90.1 VBC 07 08 42 09 39.9 102.0 5577.5 493 90403 A 07 03 34 30 295.91 417.53 7660.62 19.15 69.31 5014.4 956.9 47.5 51.0 -17.89 274.18 OBC 33.5 95.4 VBC 07 08 44 09 40.3 102.3 5527.5 494 90403 A 07 03 36 30 303.67 418.70 7660.97 24.92 74.91 4404.4 313.7 15.5 53.4 -14.33 281.40 OBC 38.2 102.5 VBC 07 08 46 09 40.8 102.6 5477.6 495 90403 A 07 03 38 30 311.43 420.11 7661.30 30.45 81.06 3841.4 878.1 22.5 53.1 -10.90 290.46 OBC 42.2 111.5 VBC 07 08 48 09 41.2 102.9 5427.7 496 90403 A 07 03 40 30 319.18 421.63 7661.59 35.66 87.92 3359.8 1712.8 59.2 49.3 -7.77 302.02 OBC 45.4 122.7 VBC 07 08 50 09 41.7 103.1 5377.9 497 90403 A 07 03 42 30 326.94 423.14 7661.83 40.42 95.70 3007.7 2566.5 85.5 43.0 -5.32 316.53 OBC 47.4 136.0 VBC 07 08 52 09 42.1 103.4 5328.2 498 90403 A 07 03 44 30 334.70 424.52 7662.03 44.59 104.59 2839.4 3425.0 96.9 36.1 -4.08 333.59 LOS 48.2 151.3 VBC 07 08 54 09 42.6 103.7 5278.5 499 90403 A 07 03 46 30 342.45 425.65 7662.18 47.97 114.71 2889.2 4285.5 95.3 29.8 -4.45 351.33 LOS 47.6 167.9 VBC 07 08 56 09 43.0 104.0 5228.9 500 90403 A 07 03 48 30 350.21 426.44 7662.28 50.35 126.02 3145.5 5146.9 86.2 24.7 -6.31 7.40 OBC 45.7 185.1 VBC 07 08 58 09 43.5 104.3 5179.3 501 90403 A 07 03 50 30 357.97 426.84 7662.32 51.54 138.20 3559.9 6008.9 74.5 20.8 -9.11 20.59 OBC 42.6 202.3 VBC 07 09 00 09 43.9 104.6 5129.8 502 90404 A 07 03 51 01 360.00 426.88 Pri 7662.33 51.63 141.47 3687.4 6234.4 71.3 20.0 -9.94 42.32 OBC 41.7 206.6 VBC 07 09 00 40 44.0 104.7 5116.9 503 90403 A 07 03 52 30 5.73 426.81 7662.31 51.41 150.67 4078.5 6871.2 62.9 18.1 -12.38 31.01 OBC 38.6 218.5 VBC 07 09 02 09 44.4 105.0 5080.4 504 90404 A 07 03 54 30 13.49 426.35 7662.24 50.00 162.74 4659.7 7733.7 53.0 16.1 -15.85 39.28 OBC 33.9 233.0 VBC 07 09 04 09 44.8 105.3 5031.0 505 90404 A 07 03 56 30 21.25 425.50 7662.12 47.42 173.84 5274.6 8596.2 44.8 14.7 -19.40 46.00 OBC 28.6 245.5 VBC 07 09 06 09 45.2 105.6 4981.7 506 90404 A 07 03 58 30 29.00 424.33 7661.94 43.88 183.73 5904.3 9458.8 38.2 13.8 -22.96 51.64 OBC 23.0 255.7 VBC 07 09 08 09 45.7 105.9 4932.5 507 90404 A 07 04 00 30 36.76 422.93 7661.72 39.59 192.40 6535.7 10321.4 32.8 13.1 -26.53 56.52 OBC 17.0 263.8 VBC 07 09 10 09 46.1 106.3 4883.4 508 90404 A 07 04 02 30 44.52 421.42 7661.45 34.73 200.00 7159.3 11183.9 28.4 12.7 -30.09 60.88 OBC 10.8 270.0 VBC 07 09 12 09 46.6 106.6 4834.4 509 90404 A 07 04 04 30 52.27 419.92 7661.15 29.45 206.71 7768.2 12046.2 24.7 12.3 -33.62 64.90 OBC 4.5 274.5 NVD 07 09 14 09 47.0 106.9 4785.4 510 90404 A 07 04 06 30 60.03 418.56 7660.81 23.87 212.75 8356.7 12908.4 21.5 12.0 -37.14 68.69 OBC -1.9 277.5 NVD 07 09 16 09 47.4 107.3 4736.6 511 90404 A 07 04 08 30 67.78 417.45 7660.44 18.08 218.27 8920.4 13770.3 18.7 11.8 -40.63 72.37 OBC -8.3 279.3 NVD 07 09 18 09 47.9 107.6 4687.8 512 90404 A 07 04 10 30 75.54 416.68 7660.05 12.13 223.44 9455.5 14631.8 16.1 11.7 -44.10 76.01 OBC -14.7 279.7 NVD 07 09 20 09 48.3 108.0 4639.1 513 90404 A 07 04 12 30 83.29 416.34 7659.64 6.10 228.37 9958.7 15492.8 13.7 11.5 -47.53 79.69 OBC -21.0 279.0 NVD 07 09 22 09 48.8 108.3 4590.6 514 90404 A 07 04 14 30 91.05 416.46 7659.23 0.03 233.20 10427.1 16352.8 11.3 11.4 -50.92 83.52 OBC -27.1 276.9 NVD 07 09 24 09 49.2 108.7 4542.1 515 90404 A 07 04 14 30 91.08 416.46 Eqa 7659.23 0.00 233.22 10429.0 16356.3 11.3 11.4 -50.93 48.69 OBC -27.1 276.9 NVD 07 09 24 09 49.2 108.7 4541.9 516 90404 D 07 04 16 30 98.80 417.06 7658.82 -6.05 228.40 10858.3 16386.4 13.7 11.5 -54.26 87.57 OBC -23.4 274.1 NVD 07 09 26 09 49.6 109.1 4493.7 517 90404 D 07 04 18 30 106.55 418.11 7658.42 -12.08 223.45 11250.2 16238.4 16.1 11.7 -57.54 91.98 OBC -19.4 272.3 NVD 07 09 28 09 50.1 109.5 4445.5 518 90404 D 07 04 20 30 114.30 419.56 7658.04 -18.02 218.28 11600.9 15931.5 18.7 11.8 -60.74 96.87 OBC -15.0 271.6 NVD 07 09 30 09 50.5 109.8 4397.3 519 90404 D 07 04 22 30 122.05 421.32 7657.67 -23.81 212.75 11908.6 15498.3 21.5 12.0 -63.83 102.46 OBC -10.5 272.1 NVD 07 09 32 09 50.9 110.2 4349.3 520 90404 D 07 04 24 30 129.80 423.28 7657.34 -29.39 206.71 12172.2 14971.7 24.7 12.3 -66.77 109.00 OBC -5.9 273.7 NVD 07 09 34 09 51.4 110.6 4301.4 521 90404 D 07 04 26 30 137.54 425.31 7657.04 -34.67 200.00 12390.3 14378.7 28.4 12.7 -69.49 116.84 OBC -1.1 276.7 NVD 07 09 36 09 51.8 111.0 4253.6 522 90404 D 07 04 28 30 145.29 427.28 7656.79 -39.53 192.41 12562.1 13739.1 32.8 13.1 -71.91 126.42 OBC 3.8 281.1 NVD 07 09 38 09 52.2 111.4 4206.0 523 90404 D 07 04 30 30 153.04 429.07 7656.58 -43.82 183.75 12686.9 13066.9 38.1 13.8 -73.88 138.14 OBC 8.6 287.1 VBC 07 09 40 09 52.6 111.9 4158.5 524 90404 D 07 04 32 30 160.78 430.54 7656.42 -47.37 173.88 12764.2 12372.2 44.7 14.7 -75.22 152.15 OBC 13.5 294.9 VBC 07 09 42 09 53.1 112.3 4111.1 525 90404 D 07 04 34 30 168.53 431.60 7656.31 -49.96 162.80 12793.8 11662.2 52.9 16.1 -75.77 167.83 OBC 18.3 304.5 VBC 07 09 44 09 53.5 112.7 4063.9 526 90404 D 07 04 36 30 176.28 432.18 7656.25 -51.40 150.76 12775.5 10942.7 62.8 18.0 -75.43 183.70 OBC 22.9 315.7 VBC 07 09 46 09 53.9 113.2 4016.8 527 90404 D 07 04 37 27 180.00 432.27 Apo 7656.25 -51.63 144.78 12749.8 10594.8 68.2 19.2 -74.96 144.88 OBC 25.1 321.4 VBC 07 09 47 06 54.1 113.4 3994.2 528 90404 D 07 04 38 30 184.02 432.23 7656.26 -51.55 138.30 12709.7 10218.0 74.3 20.8 -74.26 198.19 OBC 27.4 327.8 VBC 07 09 48 09 54.3 113.6 3969.9 529 90404 D 07 04 40 30 191.77 431.76 7656.31 -50.39 126.10 12596.6 9492.4 86.0 24.6 -72.42 210.47 OBC 31.7 340.4 VBC 07 09 50 09 54.8 114.1 3923.1 530 90404 D 07 04 42 30 199.52 430.79 7656.42 -48.04 114.77 12436.8 8769.7 95.1 29.7 -70.11 220.55 OBC 35.6 352.8 VBC 07 09 52 09 55.2 114.5 3876.5 531 90404 D 07 04 44 30 207.26 429.39 7656.59 -44.69 104.63 12231.3 8054.3 96.6 36.0 -67.47 228.81 OBC 39.1 4.9 VBC 07 09 54 09 55.6 115.0 3830.1 532 90404 D 07 04 46 30 215.01 427.65 7656.80 -40.54 95.71 11981.1 7350.9 85.2 43.0 -64.60 235.69 OBC 42.0 16.4 VBC 07 09 56 09 56.0 115.5 3783.9 533

Page 343: ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM …myreaders.info/00_Orbital__Mechanics__-__Model_____Simulation... · ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM-MSS)

www.m

yrea

ders

.inf

o

OM-MSS Page 343 SATELLITE PASS - GROUND TRACE [acronym - Line Of Sight (LOS), On Board Computerr (OBC), Visible Band Camera (VBC), Night Vision Devices (NVD) ] ORBIT, INPUT TIME, POSIION, SAT VELOCITY, GROUND TRACE, RANGE, DIST, PITCH/ROLL, EL/AZ, ACCESS EL/AZ, DATA SOLAR TIME EL/AZ, DIST Line 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 @ES 18 19 20 @SS 21 22 23 24 25 26 27 @ES 28 29 30 No. Node GMT Anomaly Height @ Vel Lat(SAT)Log Slant S-Sat Pitch Roll EL(SAT)AZ Control EL(SUN)AZ Acq. LMT(ES) EL(SUN)AZ S-Sun Nos D H M S deg km meter deg deg km km deg deg deg D H M S deg km 90404 D 07 04 48 30 222.76 425.70 7657.06 -35.80 87.89 11687.4 6666.1 58.8 49.3 -61.57 241.57 OBC 44.3 27.6 VBC 07 09 58 09 56.4 116.0 3737.9 534 90404 D 07 04 50 30 230.50 423.66 7657.35 -30.60 81.00 11351.7 6008.2 22.1 53.1 -58.43 246.72 OBC 45.7 38.5 VBC 07 10 00 09 56.8 116.5 3692.0 535 90404 D 07 04 52 30 238.25 421.66 7657.69 -25.08 74.83 10975.8 5388.9 16.0 53.4 -55.21 251.36 OBC 46.2 48.8 VBC 07 10 02 09 57.2 117.0 3646.4 536 90404 D 07 04 54 30 246.00 419.85 7658.05 -19.33 69.20 10561.7 4824.7 48.0 50.9 -51.93 255.64 OBC 45.8 58.5 VBC 07 10 04 09 57.7 117.5 3601.0 537 90404 D 07 04 56 30 253.75 418.31 7658.44 -13.42 63.96 10111.6 4338.4 71.0 47.0 -48.60 259.69 OBC 44.4 67.2 VBC 07 10 06 09 58.1 118.1 3555.8 538 90404 D 07 04 58 30 261.50 417.16 7658.84 -7.41 58.97 9628.3 3960.1 85.7 42.9 -45.24 263.61 OBC 42.2 74.8 VBC 07 10 08 09 58.5 118.6 3510.8 539 90404 D 07 05 00 30 269.26 416.46 7659.25 -1.34 54.12 9114.7 3723.4 93.8 39.0 -41.86 267.48 OBC 39.2 81.0 VBC 07 10 10 09 58.9 119.2 3466.1 540 90404 D 07 05 00 56 270.96 416.37 Eqa 7659.34 -0.00 53.06 8998.1 3693.4 94.8 38.1 -41.12 228.90 OBC 38.5 82.2 VBC 07 10 10 35 59.0 119.3 3456.3 541 90404 A 07 05 02 30 277.01 416.23 7659.66 4.74 56.82 8574.1 3023.6 90.0 41.1 -38.46 271.40 OBC 43.1 86.1 VBC 07 10 12 09 59.3 119.8 3421.6 542 90404 A 07 05 04 30 284.76 416.47 7660.06 10.79 61.72 8010.6 2168.2 78.5 45.2 -35.05 275.44 OBC 48.5 93.0 VBC 07 10 14 09 59.7 120.4 3377.3 543 90404 A 07 05 06 30 292.52 417.15 7660.45 16.76 66.82 7428.8 1322.3 59.5 49.3 -31.63 279.71 OBC 53.1 102.5 VBC 07 10 16 09 60.1 121.0 3333.4 544 90404 A 07 05 08 30 300.27 418.20 7660.82 22.59 72.25 6834.5 534.0 31.4 52.5 -28.22 284.32 OBC 56.6 114.9 VBC 07 10 18 09 60.4 121.6 3289.7 545 90404 A 07 05 10 30 308.03 419.52 7661.16 28.23 78.16 6234.8 557.9 4.7 53.7 -24.82 289.42 OBC 58.4 130.1 VBC 07 10 20 09 60.8 122.2 3246.3 546 90404 A 07 05 12 30 315.78 421.01 7661.47 33.58 84.71 5639.0 1351.7 43.3 51.5 -21.46 295.21 OBC 58.5 146.9 VBC 07 10 22 09 61.2 122.9 3203.2 547 90404 A 07 05 14 30 323.54 422.54 7661.73 38.54 92.09 5059.4 2198.5 75.5 46.1 -18.16 301.95 OBC 56.6 163.9 VBC 07 10 24 09 61.6 123.5 3160.5 548 90404 A 07 05 16 30 331.30 423.98 7661.95 42.98 100.51 4513.2 3054.4 93.7 39.1 -14.99 309.98 OBC 53.1 180.2 VBC 07 10 26 09 62.0 124.2 3118.0 549 90404 A 07 05 18 30 339.05 425.23 7662.13 46.70 110.12 4024.2 3913.6 97.3 32.4 -12.04 319.69 OBC 48.4 195.4 VBC 07 10 28 09 62.4 124.9 3075.9 550 90404 A 07 05 20 30 346.81 426.17 7662.25 49.52 120.96 3625.1 4774.3 90.8 26.7 -9.53 331.46 OBC 42.9 209.9 VBC 07 10 30 09 62.7 125.6 3034.2 551 90404 A 07 05 22 30 354.57 426.73 7662.31 51.21 132.85 3355.1 5635.8 79.7 22.4 -7.75 345.34 OBC 36.8 223.9 VBC 07 10 32 09 63.1 126.3 2992.8 552 90405 A 07 05 23 53 360.00 426.88 Pri 7662.33 51.64 141.53 3263.5 6238.8 71.3 20.0 -7.13 42.31 OBC 32.3 233.3 VBC 07 10 33 33 63.4 126.8 2964.1 553 90404 A 07 05 24 30 2.33 426.87 7662.32 51.62 145.28 3251.4 6497.7 67.8 19.1 -7.05 0.69 OBC 30.3 237.2 VBC 07 10 34 09 63.5 127.1 2951.9 554 90405 A 07 05 26 30 10.09 426.58 7662.28 50.72 157.59 3331.2 7359.9 57.1 16.9 -7.59 16.15 OBC 23.6 249.5 VBC 07 10 36 09 63.8 127.8 2911.3 555 90405 A 07 05 28 30 17.85 425.89 7662.18 48.60 169.13 3581.1 8222.2 48.1 15.3 -9.25 30.28 OBC 16.6 260.2 VBC 07 10 38 09 64.2 128.6 2871.1 556 90405 A 07 05 30 30 25.60 424.83 7662.03 45.42 179.53 3965.8 9084.7 40.9 14.2 -11.68 42.33 OBC 9.5 269.0 VBC 07 10 40 09 64.6 129.4 2831.4 557 90405 A 07 05 32 30 33.36 423.51 7661.83 41.41 188.69 4445.3 9947.1 35.1 13.4 -14.58 52.29 OBC 2.3 276.1 NVD 07 10 42 09 64.9 130.2 2792.2 558 90405 A 07 05 34 30 41.12 422.03 7661.58 36.77 196.70 4986.1 10809.4 30.3 12.9 -17.74 60.51 OBC -4.9 281.4 NVD 07 10 44 09 65.3 131.1 2753.4 559 90405 A 07 05 36 30 48.88 420.51 7661.29 31.64 203.75 5563.2 11671.7 26.3 12.5 -21.03 67.39 OBC -12.2 285.1 NVD 07 10 46 09 65.6 131.9 2715.2 560 90405 A 07 05 38 30 56.63 419.08 7660.96 26.18 210.04 6158.7 12533.8 22.9 12.2 -24.39 73.27 OBC -19.4 287.4 NVD 07 10 48 09 65.9 132.8 2677.4 561 90405 A 07 05 40 30 64.39 417.85 7660.60 20.46 215.75 6759.5 13395.6 20.0 11.9 -27.79 78.43 OBC -26.6 288.3 NVD 07 10 50 09 66.3 133.7 2640.2 562 90405 A 07 05 42 30 72.14 416.93 7660.22 14.57 221.05 7356.1 14257.0 17.3 11.7 -31.21 83.08 OBC -33.7 287.7 NVD 07 10 52 09 66.6 134.7 2603.6 563 90405 A 07 05 44 30 79.90 416.41 7659.82 8.57 226.06 7941.1 15118.0 14.8 11.6 -34.63 87.36 OBC -40.6 285.7 NVD 07 10 54 09 66.9 135.6 2567.6 564 90405 A 07 05 46 30 87.65 416.34 7659.41 2.50 230.92 8508.6 15978.1 12.4 11.5 -38.06 91.39 OBC -47.2 281.7 NVD 07 10 56 09 67.3 136.6 2532.2 565 90405 A 07 05 47 19 90.84 416.45 Eqa 7659.24 0.00 232.90 8736.0 16331.8 11.5 11.4 -39.46 49.11 OBC -49.8 279.5 NVD 07 10 56 58 67.4 137.0 2517.8 566 90405 D 07 05 48 30 95.40 416.75 7659.00 -3.58 230.06 9053.7 16368.4 12.9 11.5 -41.47 95.28 OBC -47.7 275.1 NVD 07 10 58 09 67.6 137.6 2497.4 567 90405 D 07 05 50 30 103.15 417.62 7658.60 -9.63 225.17 9572.5 16288.6 15.2 11.6 -44.87 99.12 OBC -43.6 269.2 NVD 07 11 00 09 67.9 138.7 2463.3 568 90405 D 07 05 52 30 110.90 418.92 7658.20 -15.62 220.10 10061.3 16041.4 17.8 11.8 -48.24 102.98 OBC -38.9 265.2 NVD 07 11 02 09 68.2 139.7 2429.9 569 90405 D 07 05 54 30 118.65 420.56 7657.83 -21.48 214.74 10517.1 15655.4 20.5 12.0 -51.58 106.96 OBC -33.6 262.8 NVD 07 11 04 09 68.5 140.8 2397.3 570 90405 D 07 05 56 30 126.40 422.45 7657.48 -27.15 208.93 10937.3 15164.3 23.5 12.2 -54.89 111.15 OBC -28.1 262.0 NVD 07 11 06 09 68.8 141.9 2365.4 571 90405 D 07 05 58 30 134.15 424.47 7657.17 -32.56 202.51 11319.5 14597.1 27.0 12.5 -58.14 115.68 OBC -22.3 262.8 NVD 07 11 08 09 69.0 143.1 2334.3 572 90405 D 07 06 00 30 141.90 426.49 7656.90 -37.60 195.30 11661.6 13976.3 31.1 12.9 -61.31 120.69 OBC -16.3 265.1 NVD 07 11 10 09 69.3 144.2 2304.0 573 90405 D 07 06 02 30 149.64 428.37 7656.66 -42.15 187.10 11961.8 13317.9 36.0 13.5 -64.39 126.40 OBC -10.2 269.0 NVD 07 11 12 09 69.6 145.4 2274.6 574 90405 D 07 06 04 30 157.39 429.98 7656.48 -46.03 177.74 12218.5 12633.2 42.1 14.3 -67.31 133.08 OBC -3.9 274.7 NVD 07 11 14 09 69.8 146.7 2246.1 575 90405 D 07 06 06 30 165.14 431.22 7656.35 -49.03 167.14 12430.4 11930.6 49.6 15.5 -70.02 141.11 OBC 2.4 282.1 NVD 07 11 16 09 70.1 147.9 2218.5 576 90405 D 07 06 08 30 172.88 432.00 7656.27 -50.96 155.44 12596.5 11216.3 58.8 17.2 -72.42 150.95 OBC 8.7 291.1 VBC 07 11 18 09 70.3 149.2 2191.9 577

Page 344: ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM …myreaders.info/00_Orbital__Mechanics__-__Model_____Simulation... · ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM-MSS)

www.m

yrea

ders

.inf

o

OM-MSS Page 344 SATELLITE PASS - GROUND TRACE [acronym - Line Of Sight (LOS), On Board Computerr (OBC), Visible Band Camera (VBC), Night Vision Devices (NVD) ] ORBIT, INPUT TIME, POSIION, SAT VELOCITY, GROUND TRACE, RANGE, DIST, PITCH/ROLL, EL/AZ, ACCESS EL/AZ, DATA SOLAR TIME EL/AZ, DIST Line 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 @ES 18 19 20 @SS 21 22 23 24 25 26 27 @ES 28 29 30 No. Node GMT Anomaly Height @ Vel Lat(SAT)Log Slant S-Sat Pitch Roll EL(SAT)AZ Control EL(SUN)AZ Acq. LMT(ES) EL(SUN)AZ S-Sun Nos D H M S deg km meter deg deg km km deg deg deg D H M S deg km 90405 D 07 06 10 20 180.00 432.27 Apo 7656.25 -51.64 144.08 12707.8 10553.9 68.8 19.4 -74.22 145.12 OBC 14.6 300.3 VBC 07 11 19 59 70.5 150.4 2168.3 578 90405 D 07 06 10 30 180.63 432.27 7656.25 -51.65 143.06 12715.7 10495.2 69.8 19.6 -74.36 163.04 OBC 15.1 301.2 VBC 07 11 20 09 70.5 150.5 2166.2 579 90405 D 07 06 12 30 188.38 432.01 7656.28 -51.01 130.68 12787.5 9771.5 81.6 23.0 -75.65 177.52 OBC 21.4 311.8 VBC 07 11 22 09 70.8 151.9 2141.6 580 90405 D 07 06 14 30 196.12 431.24 7656.37 -49.13 118.94 12811.4 9049.3 92.2 27.6 -76.11 193.63 OBC 27.7 322.2 VBC 07 11 24 09 71.0 153.2 2118.1 581 90405 D 07 06 16 30 203.87 430.01 7656.51 -46.16 108.29 12787.1 8332.6 97.3 33.5 -75.65 209.75 OBC 33.9 332.2 VBC 07 11 26 09 71.2 154.6 2095.7 582 90405 D 07 06 18 30 211.61 428.40 7656.70 -42.31 98.88 12714.8 7626.2 91.2 40.4 -74.35 224.21 OBC 40.0 341.7 VBC 07 11 28 09 71.4 156.1 2074.4 583 90405 D 07 06 20 30 219.36 426.52 7656.94 -37.79 90.64 12594.5 6935.8 70.1 47.2 -72.40 236.29 OBC 45.7 351.1 VBC 07 11 30 09 71.5 157.5 2054.3 584 90405 D 07 06 22 30 227.11 424.50 7657.22 -32.76 83.39 12426.7 6268.9 36.0 52.1 -69.98 246.07 OBC 51.2 0.8 VBC 07 11 32 09 71.7 159.0 2035.4 585 90405 D 07 06 24 30 234.86 422.47 7657.54 -27.37 76.95 12212.1 5635.9 2.9 53.7 -67.24 254.02 OBC 56.0 11.5 VBC 07 11 34 09 71.9 160.5 2017.8 586 90405 D 07 06 26 30 242.61 420.57 7657.89 -21.70 71.12 11951.5 5051.2 37.8 52.0 -64.29 260.60 OBC 59.9 23.9 VBC 07 11 36 09 72.0 162.0 2001.4 587 90405 D 07 06 28 30 250.36 418.91 7658.27 -15.85 65.74 11646.0 4535.0 64.1 48.4 -61.18 266.18 OBC 62.6 38.2 VBC 07 11 38 09 72.2 163.6 1986.3 588 90405 D 07 06 30 30 258.11 417.59 7658.66 -9.87 60.66 11297.0 4114.4 81.5 44.3 -57.95 271.03 OBC 63.5 53.9 VBC 07 11 40 09 72.3 165.2 1972.6 589 90405 D 07 06 32 30 265.86 416.70 7659.07 -3.81 55.77 10906.1 3821.8 91.6 40.3 -54.65 275.38 OBC 62.6 69.0 VBC 07 11 42 09 72.4 166.8 1960.3 590 90405 D 07 06 33 45 270.72 416.38 Eqa 7659.33 -0.00 52.74 10640.3 3718.1 95.1 37.9 -52.54 229.32 OBC 61.1 77.4 VBC 07 11 43 24 72.5 167.8 1953.3 591 90405 A 07 06 34 30 273.61 416.28 7659.48 2.27 54.53 10475.0 3398.1 93.3 39.3 -51.28 279.36 OBC 63.4 80.9 VBC 07 11 44 09 72.5 168.4 1949.4 592 90405 A 07 06 36 30 281.36 416.33 7659.89 8.33 59.39 10005.9 2541.8 84.8 43.2 -47.86 283.09 OBC 69.0 94.8 VBC 07 11 46 09 72.6 170.0 1939.8 593 90405 A 07 06 38 30 289.12 416.84 7660.28 14.34 64.39 9501.2 1692.0 69.5 47.4 -44.40 286.68 OBC 72.7 116.9 VBC 07 11 48 09 72.6 171.7 1931.8 594 90405 A 07 06 40 30 296.87 417.74 7660.66 20.23 69.67 8963.5 868.0 45.6 51.2 -40.91 290.21 OBC 73.0 145.0 VBC 07 11 50 09 72.7 173.3 1925.1 595 90405 A 07 06 42 30 304.63 418.97 7661.01 25.96 75.37 8396.1 364.8 12.7 53.5 -37.38 293.75 OBC 69.8 169.8 VBC 07 11 52 09 72.8 175.0 1920.0 596 90405 A 07 06 44 30 312.38 420.40 7661.34 31.44 81.63 7802.6 1001.1 25.9 52.9 -33.83 297.40 OBC 64.5 187.5 VBC 07 11 54 09 72.8 176.7 1916.3 597 90405 A 07 06 46 30 320.14 421.93 7661.62 36.58 88.65 7187.4 1833.4 62.4 48.8 -30.25 301.26 OBC 57.9 200.5 VBC 07 11 56 09 72.8 178.4 1914.2 598 90405 A 07 06 48 30 327.90 423.42 7661.86 41.24 96.62 6555.7 2685.2 87.5 42.3 -26.65 305.44 OBC 50.9 211.2 VBC 07 11 58 09 72.8 180.0 1913.5 599 90405 A 07 06 50 30 335.66 424.76 7662.06 45.28 105.73 5914.3 3542.5 97.3 35.3 -23.02 310.11 OBC 43.5 221.4 VBC 07 12 00 09 72.8 181.7 1914.4 600 90405 A 07 06 52 30 343.41 425.83 7662.20 48.49 116.08 5271.9 4402.2 94.5 29.1 -19.38 315.51 OBC 35.9 231.6 VBC 07 12 02 09 72.8 183.4 1916.7 601 90405 A 07 06 54 30 351.17 426.55 7662.29 50.66 127.58 4641.1 5263.0 84.8 24.1 -15.74 321.97 OBC 28.2 242.3 VBC 07 12 04 09 72.7 185.1 1920.5 602 90405 A 07 06 56 30 358.93 426.87 7662.33 51.61 139.87 4040.2 6124.5 72.9 20.4 -12.15 329.97 OBC 20.4 253.2 VBC 07 12 06 09 72.7 186.7 1925.9 603 90406 A 07 06 56 46 360.00 426.88 Pri 7662.33 51.64 141.59 3961.1 6243.3 71.2 20.0 -11.66 42.31 OBC 19.3 254.7 VBC 07 12 06 25 72.7 187.0 1926.7 604 90405 A 07 06 58 30 6.69 426.75 7662.31 51.25 152.32 3497.2 6986.3 61.5 17.7 -8.70 340.18 OBC 12.6 264.0 VBC 07 12 08 09 72.6 188.4 1932.7 605 90406 A 07 07 00 30 14.45 426.21 7662.23 49.60 164.24 3054.8 7848.4 51.8 15.9 -5.67 353.35 OBC 4.7 273.8 NVD 07 12 10 09 72.6 190.0 1940.9 606 90406 A 07 07 02 30 22.20 425.30 7662.10 46.83 175.13 2770.9 8710.6 43.9 14.6 -3.56 9.78 LOS -3.2 282.3 NVD 07 12 12 09 72.5 191.7 1950.6 607 90406 A 07 07 04 30 29.96 424.07 7661.92 43.14 184.78 2702.0 9572.8 37.5 13.7 -3.01 28.31 LOS -11.1 289.3 NVD 07 12 14 09 72.4 193.3 1961.7 608 90406 A 07 07 06 30 37.72 422.64 7661.69 38.73 193.24 2865.3 10435.1 32.3 13.1 -4.27 46.23 LOS -19.0 294.8 NVD 07 12 16 09 72.3 194.9 1974.2 609 90406 A 07 07 08 30 45.48 421.12 7661.42 33.78 200.66 3224.3 11297.2 28.1 12.6 -6.85 61.33 OBC -26.9 298.9 NVD 07 12 18 09 72.1 196.5 1988.1 610 90406 A 07 07 10 30 53.23 419.64 7661.11 28.44 207.24 3718.6 12159.2 24.4 12.3 -10.12 73.14 OBC -34.9 301.6 NVD 07 12 20 09 72.0 198.0 2003.3 611 90406 A 07 07 12 30 60.99 418.31 7660.76 22.81 213.16 4295.8 13020.9 21.3 12.0 -13.68 82.25 OBC -42.8 303.0 NVD 07 12 22 09 71.9 199.5 2019.8 612 90406 A 07 07 14 30 68.74 417.25 7660.39 16.99 218.61 4919.7 13882.3 18.5 11.8 -17.34 89.39 OBC -50.6 303.1 NVD 07 12 24 09 71.7 201.0 2037.6 613 90406 A 07 07 16 30 76.50 416.56 7660.00 11.02 223.72 5566.7 14743.2 16.0 11.7 -21.03 95.16 OBC -58.4 301.5 NVD 07 12 26 09 71.5 202.5 2056.6 614 90406 A 07 07 18 30 84.25 416.30 7659.59 4.98 228.63 6220.9 15603.3 13.5 11.5 -24.73 99.99 OBC -66.1 297.2 NVD 07 12 28 09 71.3 204.0 2076.9 615 90406 A 07 07 20 08 90.60 416.44 Eqa 7659.26 0.00 232.58 6754.5 16307.0 11.6 11.4 -27.75 49.52 OBC -72.1 290.1 NVD 07 12 29 47 71.2 205.2 2094.4 616 90406 D 07 07 20 30 92.00 416.51 7659.18 -1.10 231.71 6871.5 16324.0 12.1 11.5 -28.42 104.14 OBC -71.7 286.1 NVD 07 12 30 09 71.1 205.4 2098.3 617 90406 D 07 07 22 30 99.75 417.20 7658.77 -7.17 226.86 7510.4 16312.7 14.4 11.6 -32.09 107.83 OBC -68.1 268.4 NVD 07 12 32 09 70.9 206.8 2120.9 618 90406 D 07 07 24 30 107.51 418.33 7658.37 -13.19 221.88 8131.3 16128.7 16.9 11.7 -35.76 111.19 OBC -62.9 257.3 NVD 07 12 34 09 70.7 208.2 2144.5 619 90406 D 07 07 26 30 115.26 419.85 7657.99 -19.11 216.65 8729.0 15794.7 19.5 11.9 -39.41 114.34 OBC -56.9 250.9 NVD 07 12 36 09 70.5 209.5 2169.3 620 90406 D 07 07 28 30 123.00 421.65 7657.63 -24.86 211.04 9299.4 15343.2 22.4 12.1 -43.05 117.35 OBC -50.4 247.8 NVD 07 12 38 09 70.3 210.8 2195.0 621 90406 D 07 07 30 30 130.75 423.64 7657.30 -30.39 204.89 9838.7 14805.3 25.7 12.4 -46.67 120.31 OBC -43.7 247.0 NVD 07 12 40 09 70.0 212.1 2221.8 622

Page 345: ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM …myreaders.info/00_Orbital__Mechanics__-__Model_____Simulation... · ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM-MSS)

www.m

yrea

ders

.inf

o

OM-MSS Page 345 SATELLITE PASS - GROUND TRACE [acronym - Line Of Sight (LOS), On Board Computerr (OBC), Visible Band Camera (VBC), Night Vision Devices (NVD) ] ORBIT, INPUT TIME, POSIION, SAT VELOCITY, GROUND TRACE, RANGE, DIST, PITCH/ROLL, EL/AZ, ACCESS EL/AZ, DATA SOLAR TIME EL/AZ, DIST Line 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 @ES 18 19 20 @SS 21 22 23 24 25 26 27 @ES 28 29 30 No. Node GMT Anomaly Height @ Vel Lat(SAT)Log Slant S-Sat Pitch Roll EL(SAT)AZ Control EL(SUN)AZ Acq. LMT(ES) EL(SUN)AZ S-Sun Nos D H M S deg km meter deg deg km km deg deg deg D H M S deg km 90406 D 07 07 32 30 138.50 425.67 7657.01 -35.60 198.03 10343.7 14205.9 29.5 12.8 -50.28 123.28 OBC -36.8 248.1 NVD 07 12 42 09 69.8 213.4 2249.5 623 90406 D 07 07 34 30 146.25 427.62 7656.76 -40.37 190.26 10811.4 13563.0 34.1 13.3 -53.87 126.35 OBC -29.7 251.0 NVD 07 12 44 09 69.5 214.6 2278.1 624 90406 D 07 07 36 30 154.00 429.36 7656.56 -44.54 181.38 11239.2 12889.8 39.7 14.0 -57.43 129.62 OBC -22.6 255.5 NVD 07 12 46 09 69.3 215.8 2307.7 625 90406 D 07 07 38 30 161.74 430.76 7656.40 -47.93 171.28 11625.0 12195.5 46.5 15.0 -60.95 133.20 OBC -15.4 261.8 NVD 07 12 48 09 69.0 217.0 2338.0 626 90406 D 07 07 40 30 169.49 431.74 7656.30 -50.32 160.00 11966.5 11487.3 55.1 16.5 -64.43 137.28 OBC -8.2 269.6 NVD 07 12 50 09 68.7 218.1 2369.2 627 90406 D 07 07 42 30 177.23 432.23 7656.25 -51.53 147.83 12262.1 10770.3 65.4 18.6 -67.84 142.13 OBC -1.0 278.5 NVD 07 12 52 09 68.4 219.2 2401.2 628 90406 D 07 07 43 12 180.00 432.27 Apo 7656.25 -51.64 143.38 12356.2 10513.1 69.5 19.6 -69.03 145.36 OBC 1.6 281.9 NVD 07 12 52 51 68.3 219.6 2412.8 629 90406 D 07 07 44 30 184.98 432.18 7656.26 -51.43 135.36 12510.2 10049.2 77.1 21.6 -71.14 148.17 OBC 6.3 288.0 VBC 07 12 54 09 68.1 220.3 2434.0 630 90406 D 07 07 46 30 192.73 431.62 7656.32 -50.04 123.29 12709.4 9328.0 88.6 25.7 -74.25 156.11 OBC 13.6 297.2 VBC 07 12 56 09 67.8 221.3 2467.5 631 90406 D 07 07 48 30 200.47 430.56 7656.44 -47.49 112.17 12858.7 8610.8 96.4 31.2 -77.06 167.09 OBC 20.9 305.7 VBC 07 12 58 09 67.5 222.4 2501.6 632 90406 D 07 07 50 30 208.22 429.10 7656.61 -43.97 102.25 12957.2 7902.0 95.1 37.8 -79.29 182.75 OBC 28.2 313.1 VBC 07 13 00 09 67.2 223.4 2536.5 633 90406 D 07 07 52 30 215.97 427.32 7656.83 -39.70 93.55 13004.3 7207.0 79.6 44.8 -80.54 203.93 OBC 35.5 319.5 VBC 07 13 02 09 66.9 224.4 2572.0 634 90406 D 07 07 54 30 223.71 425.34 7657.09 -34.86 85.92 12999.5 6532.5 49.4 50.7 -80.42 227.59 OBC 42.8 325.0 VBC 07 13 04 09 66.6 225.3 2608.1 635 90406 D 07 07 56 30 231.46 423.30 7657.39 -29.60 79.17 12942.7 5887.8 10.9 53.5 -78.95 247.87 OBC 50.0 330.1 VBC 07 13 06 09 66.2 226.2 2644.8 636 90406 D 07 07 58 30 239.21 421.33 7657.73 -24.04 73.11 12833.9 5285.4 26.3 52.9 -76.58 262.53 OBC 57.3 335.1 VBC 07 13 08 09 65.9 227.1 2682.0 637 90406 D 07 08 00 30 246.96 419.56 7658.10 -18.25 67.57 12673.5 4743.2 56.0 49.8 -73.68 272.75 OBC 64.4 340.9 VBC 07 13 10 09 65.6 228.0 2719.9 638 90406 D 07 08 02 30 254.71 418.09 7658.49 -12.32 62.38 12461.8 4285.4 76.4 45.7 -70.48 280.11 OBC 71.3 349.1 VBC 07 13 12 09 65.2 228.9 2758.2 639 90406 D 07 08 04 30 262.46 417.02 7658.89 -6.29 57.43 12199.8 3942.4 88.8 41.6 -67.11 285.66 OBC 77.6 4.5 VBC 07 13 14 09 64.9 229.7 2797.0 640 90406 D 07 08 06 30 270.21 416.40 7659.30 -0.21 52.59 11888.3 3746.7 95.3 37.8 -63.63 290.05 OBC 81.8 40.2 VBC 07 13 16 09 64.5 230.6 2836.3 641 90406 D 07 08 06 34 270.48 416.39 Eqa 7659.31 -0.00 52.42 11876.6 3742.9 95.4 37.7 -63.51 229.73 OBC 81.9 41.9 VBC 07 13 16 13 64.5 230.6 2837.7 642 90406 A 07 08 08 30 277.97 416.26 7659.71 5.87 57.08 11528.5 2915.8 89.5 41.3 -60.07 293.68 OBC 89.6 60.0 VBC 07 13 18 09 64.2 231.4 2876.1 643 90406 A 07 08 10 30 285.72 416.59 7660.11 11.90 62.01 11122.0 2063.6 77.7 45.4 -56.45 296.77 OBC 82.3 221.2 VBC 07 13 20 09 63.8 232.1 2916.3 644 90406 A 07 08 12 30 293.47 417.34 7660.50 17.85 67.16 10670.2 1226.0 58.0 49.5 -52.78 299.51 OBC 74.2 223.0 VBC 07 13 22 09 63.4 232.9 2956.9 645 90406 A 07 08 14 30 301.23 418.45 7660.86 23.65 72.67 10175.1 486.4 29.0 52.7 -49.08 301.99 OBC 66.1 225.2 VBC 07 13 24 09 63.1 233.6 2997.9 646 90406 A 07 08 16 30 308.99 419.81 7661.20 29.24 78.68 9638.8 677.6 7.9 53.6 -45.33 304.29 OBC 58.1 228.0 VBC 07 13 26 09 62.7 234.4 3039.4 647 90406 A 07 08 18 30 316.74 421.31 7661.50 34.53 85.37 9063.6 1473.5 46.8 51.1 -41.55 306.50 OBC 50.0 231.6 VBC 07 13 28 09 62.3 235.1 3081.1 648 90406 A 07 08 20 30 324.50 422.83 7661.76 39.41 92.93 8452.2 2317.9 78.1 45.4 -37.73 308.66 OBC 41.9 236.3 VBC 07 13 30 09 61.9 235.8 3123.3 649 90406 A 07 08 22 30 332.26 424.24 7661.98 43.73 101.55 7807.4 3172.5 94.8 38.3 -33.86 310.84 OBC 33.8 242.2 VBC 07 13 32 09 61.6 236.4 3165.8 650 90406 A 07 08 24 30 340.01 425.43 7662.14 47.30 111.39 7132.4 4030.7 96.9 31.6 -29.94 313.09 OBC 25.8 249.5 VBC 07 13 34 09 61.2 237.1 3208.6 651 90406 A 07 08 26 30 347.77 426.31 7662.26 49.92 122.45 6430.9 4890.6 89.5 26.1 -25.94 315.51 OBC 17.7 258.0 VBC 07 13 36 09 60.8 237.7 3251.7 652 90406 A 07 08 28 30 355.53 426.79 7662.32 51.38 134.49 5707.1 5751.5 78.1 21.9 -21.85 318.20 OBC 9.7 267.6 VBC 07 13 38 09 60.4 238.4 3295.2 653 90407 A 07 08 29 39 360.00 426.88 Pri 7662.33 51.64 141.66 5281.9 6247.7 71.2 20.0 -19.44 42.31 OBC 5.0 273.4 VBC 07 13 39 18 60.2 238.7 3320.3 654 90406 A 07 08 30 30 3.29 426.85 7662.32 51.56 146.95 4966.1 6613.0 66.3 18.8 -17.63 321.35 OBC 1.6 277.7 NVD 07 13 40 09 60.0 239.0 3338.9 655 90407 A 07 08 32 30 11.05 426.48 7662.27 50.42 159.16 4215.1 7474.7 55.8 16.6 -13.21 325.25 OBC -6.4 287.6 NVD 07 13 42 09 59.6 239.6 3382.9 656 90407 A 07 08 34 30 18.81 425.71 7662.16 48.08 170.51 3464.3 8336.7 47.1 15.1 -8.48 330.44 OBC -14.5 296.8 NVD 07 13 44 09 59.2 240.2 3427.2 657 90407 A 07 08 36 30 26.56 424.60 7662.01 44.74 180.68 2732.4 9198.7 40.1 14.1 -3.25 338.04 LOS -22.5 304.8 NVD 07 13 46 09 58.8 240.7 3471.7 658 90407 A 07 08 38 30 34.32 423.24 7661.80 40.60 189.61 2059.1 10060.8 34.5 13.3 2.73 350.50 LOS -30.5 311.7 NVD 07 13 48 09 58.4 241.3 3516.5 659 90407 A 07 08 40 30 42.08 421.74 7661.54 35.85 197.43 1542.7 10922.8 29.9 12.8 9.11 12.91 LOS -38.5 317.7 NVD 07 13 50 09 58.0 241.8 3561.5 660 90407 A 07 08 42 30 49.83 420.22 7661.25 30.66 204.33 1386.4 11784.6 26.0 12.4 11.67 47.97 LOS -46.4 323.1 NVD 07 13 52 09 57.6 242.4 3606.7 661 90407 A 07 08 44 30 57.59 418.82 7660.92 25.13 210.50 1696.2 12646.3 22.7 12.1 6.97 79.33 LOS -54.3 328.4 NVD 07 13 54 09 57.2 242.9 3652.2 662 90407 A 07 08 46 30 65.35 417.64 7660.56 19.38 216.12 2287.5 13507.6 19.8 11.9 0.54 97.43 LOS -62.1 334.3 NVD 07 13 56 09 56.8 243.4 3697.9 663 90407 A 07 08 48 30 73.10 416.78 7660.17 13.47 221.35 2992.3 14368.4 17.1 11.7 -5.18 107.62 OBC -69.6 342.5 NVD 07 13 58 09 56.4 243.9 3743.7 664 90407 A 07 08 50 30 80.85 416.34 7659.77 7.45 226.33 3739.2 15228.6 14.7 11.6 -10.23 113.99 OBC -76.5 357.6 NVD 07 14 00 09 56.0 244.4 3789.8 665 90407 A 07 08 52 30 88.61 416.36 7659.36 1.38 231.17 4498.3 16087.6 12.3 11.5 -14.86 118.38 OBC -81.2 32.7 NVD 07 14 02 09 55.5 244.9 3836.1 666

Page 346: ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM …myreaders.info/00_Orbital__Mechanics__-__Model_____Simulation... · ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM-MSS)

www.m

yrea

ders

.inf

o

OM-MSS Page 346 SATELLITE PASS - GROUND TRACE [acronym - Line Of Sight (LOS), On Board Computerr (OBC), Visible Band Camera (VBC), Night Vision Devices (NVD) ] ORBIT, INPUT TIME, POSIION, SAT VELOCITY, GROUND TRACE, RANGE, DIST, PITCH/ROLL, EL/AZ, ACCESS EL/AZ, DATA SOLAR TIME EL/AZ, DIST Line 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 @ES 18 19 20 @SS 21 22 23 24 25 26 27 @ES 28 29 30 No. Node GMT Anomaly Height @ Vel Lat(SAT)Log Slant S-Sat Pitch Roll EL(SAT)AZ Control EL(SUN)AZ Acq. LMT(ES) EL(SUN)AZ S-Sun Nos D H M S deg km meter deg deg km km deg deg deg D H M S deg km 90407 A 07 08 52 57 90.36 416.43 Eqa 7659.27 0.00 232.26 4670.4 16282.2 11.8 11.4 -15.88 49.93 OBC -81.5 44.6 NVD 07 14 02 36 55.4 245.0 3846.6 667 90407 D 07 08 54 30 96.36 416.85 7658.95 -4.70 228.53 5254.6 16310.4 13.6 11.5 -19.25 121.63 OBC -87.1 62.8 NVD 07 14 04 09 55.1 245.4 3882.5 668 90407 D 07 08 56 30 104.11 417.81 7658.55 -10.75 223.61 5999.3 16192.0 16.0 11.7 -23.47 124.19 OBC -85.0 200.7 NVD 07 14 06 09 54.7 245.9 3929.1 669 90407 D 07 08 58 30 111.86 419.18 7658.16 -16.71 218.50 6725.8 15914.3 18.6 11.8 -27.58 126.29 OBC -77.6 211.1 NVD 07 14 08 09 54.3 246.3 3975.9 670 90407 D 07 09 00 30 119.61 420.88 7657.79 -22.54 213.06 7429.2 15507.0 21.4 12.0 -31.61 128.08 OBC -70.2 215.2 NVD 07 14 10 09 53.9 246.8 4022.9 671 90407 D 07 09 02 30 127.36 422.80 7657.44 -28.17 207.15 8105.4 15002.1 24.5 12.3 -35.59 129.64 OBC -62.8 218.7 NVD 07 14 12 09 53.4 247.2 4070.0 672 90407 D 07 09 04 30 135.11 424.84 7657.13 -33.52 200.61 8750.6 14426.8 28.1 12.6 -39.54 131.05 OBC -55.3 222.6 NVD 07 14 14 09 53.0 247.6 4117.2 673 90407 D 07 09 06 30 142.85 426.84 7656.86 -38.49 193.23 9361.6 13801.6 32.3 13.1 -43.45 132.34 OBC -47.9 227.2 NVD 07 14 16 09 52.6 248.1 4164.6 674 90407 D 07 09 08 30 150.60 428.68 7656.64 -42.92 184.82 9935.3 13141.3 37.5 13.7 -47.34 133.54 OBC -40.5 232.8 NVD 07 14 18 09 52.2 248.5 4212.2 675 90407 D 07 09 10 30 158.35 430.23 7656.46 -46.65 175.23 10469.0 12456.6 43.8 14.6 -51.21 134.70 OBC -33.0 239.6 NVD 07 14 20 09 51.7 248.9 4259.9 676 90407 D 07 09 12 30 166.09 431.40 7656.34 -49.48 164.41 10960.2 11755.3 51.6 15.9 -55.07 135.84 OBC -25.6 247.6 NVD 07 14 22 09 51.3 249.3 4307.7 677 90407 D 07 09 14 30 173.84 432.09 7656.27 -51.19 152.54 11406.6 11043.2 61.3 17.7 -58.91 136.99 OBC -18.2 256.6 NVD 07 14 24 09 50.9 249.7 4355.6 678 90407 D 07 09 16 05 180.00 432.27 Apo 7656.25 -51.64 142.67 11728.2 10472.6 70.1 19.7 -61.96 145.60 OBC -12.3 264.2 NVD 07 14 25 44 50.5 250.0 4393.8 679 90407 D 07 09 16 30 181.59 432.27 7656.25 -51.63 140.11 11806.1 10325.3 72.5 20.3 -62.75 138.19 OBC -10.8 266.1 NVD 07 14 26 09 50.4 250.1 4403.7 680 90407 D 07 09 18 30 189.33 431.91 7656.29 -50.76 127.80 12156.9 9605.7 84.4 24.0 -66.58 139.51 OBC -3.4 275.4 NVD 07 14 28 09 50.0 250.5 4451.8 681 90407 D 07 09 20 30 197.08 431.05 7656.38 -48.66 116.24 12457.4 8888.6 94.2 29.0 -70.39 141.05 OBC 4.0 283.9 NVD 07 14 30 09 49.6 250.8 4500.1 682 90407 D 07 09 22 30 204.83 429.74 7656.53 -45.51 105.82 12706.1 8178.1 97.0 35.2 -74.20 143.00 OBC 11.4 291.0 VBC 07 14 32 09 49.1 251.2 4548.5 683 90407 D 07 09 24 30 212.57 428.08 7656.73 -41.52 96.63 12902.0 7479.4 87.2 42.2 -77.99 145.81 OBC 18.8 296.7 VBC 07 14 34 09 48.7 251.6 4597.0 684 90407 D 07 09 26 30 220.32 426.17 7656.97 -36.90 88.59 13043.9 6798.5 61.9 48.8 -81.74 150.68 OBC 26.1 301.0 VBC 07 14 36 09 48.3 251.9 4645.6 685 90407 D 07 09 28 30 228.07 424.14 7657.26 -31.79 81.51 13131.3 6143.7 25.1 52.9 -85.37 162.57 OBC 33.5 303.9 VBC 07 14 38 09 47.8 252.3 4694.3 686 90407 D 07 09 30 30 235.82 422.13 7657.58 -26.34 75.19 13163.8 5526.1 13.8 53.5 -87.99 217.48 OBC 40.8 305.5 VBC 07 14 40 09 47.4 252.6 4743.1 687 90407 D 07 09 32 30 243.56 420.26 7657.93 -20.63 69.46 13140.9 4961.4 46.7 51.0 -86.00 288.31 OBC 48.0 305.8 VBC 07 14 42 09 47.0 253.0 4792.0 688 90407 D 07 09 34 30 251.31 418.66 7658.31 -14.75 64.14 13062.9 4471.1 70.3 47.2 -82.42 303.18 OBC 55.1 304.6 VBC 07 14 44 09 46.5 253.3 4841.0 689 90407 D 07 09 36 30 259.07 417.42 7658.71 -8.75 59.11 12929.9 4083.0 85.4 43.0 -78.67 308.59 OBC 62.1 301.2 VBC 07 14 46 09 46.1 253.7 4890.1 690 90407 D 07 09 38 30 266.82 416.61 7659.12 -2.69 54.24 12742.4 3829.4 93.6 39.1 -74.88 311.43 OBC 68.8 294.3 VBC 07 14 48 09 45.6 254.0 4939.2 691 90407 D 07 09 39 23 270.25 416.40 Eqa 7659.30 -0.00 52.10 12642.3 3767.8 95.6 37.4 -73.19 230.14 OBC 71.6 289.4 VBC 07 14 49 02 45.4 254.1 4961.0 692 90407 A 07 09 40 30 274.57 416.27 7659.53 3.39 54.79 12501.3 3289.9 93.0 39.5 -71.05 313.22 OBC 69.5 278.2 VBC 07 14 50 09 45.2 254.3 4988.4 693 90407 A 07 09 42 30 282.32 416.41 7659.94 9.45 59.66 12207.3 2436.2 84.1 43.5 -67.22 314.46 OBC 64.2 264.3 VBC 07 14 52 09 44.7 254.6 5037.7 694 90407 A 07 09 44 30 290.08 417.00 7660.33 15.44 64.71 11861.8 1592.0 68.3 47.6 -63.36 315.39 OBC 57.9 256.4 VBC 07 14 54 09 44.3 254.9 5087.1 695 90407 A 07 09 46 30 297.83 417.97 7660.71 21.31 70.05 11466.2 788.5 43.6 51.4 -59.50 316.09 OBC 50.9 252.4 VBC 07 14 56 09 43.9 255.2 5136.6 696 90407 A 07 09 48 30 305.59 419.24 7661.06 26.99 75.84 11022.1 444.7 9.8 53.6 -55.62 316.64 OBC 43.7 251.1 VBC 07 14 58 09 43.4 255.6 5186.1 697 90407 A 07 09 50 30 313.34 420.70 7661.37 32.42 82.23 10531.5 1123.8 29.5 52.7 -51.72 317.07 OBC 36.3 251.8 VBC 07 15 00 09 43.0 255.9 5235.7 698 90407 A 07 09 52 30 321.10 422.22 7661.65 37.48 89.41 9996.3 1953.8 65.6 48.2 -47.81 317.40 OBC 28.8 254.3 VBC 07 15 02 09 42.5 256.2 5285.3 699 90407 A 07 09 54 30 328.86 423.69 7661.89 42.04 97.58 9419.0 2803.9 89.4 41.5 -43.87 317.63 OBC 21.3 258.5 VBC 07 15 04 09 42.1 256.5 5335.1 700 90407 A 07 09 56 30 336.61 424.99 7662.08 45.94 106.91 8802.0 3660.0 97.5 34.5 -39.90 317.76 OBC 13.7 264.5 VBC 07 15 06 09 41.6 256.7 5384.8 701 90407 A 07 09 58 30 344.37 426.00 7662.21 48.98 117.49 8148.0 4518.8 93.5 28.3 -35.89 317.80 OBC 6.1 272.2 VBC 07 15 08 09 41.2 257.0 5434.7 702 90407 A 07 10 00 30 352.13 426.65 7662.30 50.94 129.17 7459.9 5379.0 83.2 23.5 -31.83 317.74 OBC -1.4 281.4 NVD 07 15 10 09 40.7 257.3 5484.6 703 90407 A 07 10 02 30 359.89 426.88 7662.33 51.64 141.54 6740.9 6239.9 71.3 20.0 -27.70 317.55 OBC -8.9 291.7 NVD 07 15 12 09 40.3 257.6 5534.5 704 90408 A 07 10 02 31 360.00 426.88 Pri 7662.33 51.65 141.72 6730.4 6252.2 71.1 19.9 -27.64 42.31 OBC -9.1 291.9 NVD 07 15 12 10 40.3 257.6 5535.2 705 90407 A 07 10 04 30 7.65 426.68 7662.30 51.04 153.94 5994.2 7101.3 60.1 17.5 -23.47 317.20 OBC -16.4 302.5 NVD 07 15 14 09 39.8 257.9 5584.5 706 90408 A 07 10 06 30 15.41 426.06 7662.22 49.17 165.70 5223.6 7962.9 50.7 15.7 -19.11 316.63 OBC -23.7 313.1 NVD 07 15 16 09 39.4 258.2 5634.6 707 90408 A 07 10 08 30 23.16 425.08 7662.08 46.21 176.37 4433.2 8824.7 43.0 14.5 -14.51 315.75 OBC -30.9 323.3 NVD 07 15 18 09 38.9 258.4 5684.7 708 90408 A 07 10 10 30 30.92 423.81 7661.89 42.37 185.80 3627.7 9686.6 36.9 13.6 -9.55 314.34 OBC -37.9 333.0 NVD 07 15 20 09 38.5 258.7 5734.9 709 90408 A 07 10 12 30 38.68 422.35 7661.66 37.85 194.05 2814.1 10548.4 31.8 13.0 -3.88 311.97 LOS -44.7 342.6 NVD 07 15 22 09 38.0 259.0 5785.1 710 90408 A 07 10 14 30 46.44 420.83 7661.38 32.82 201.30 2004.4 11410.1 27.7 12.6 3.32 307.46 LOS -50.9 352.7 NVD 07 15 24 09 37.6 259.2 5835.3 711

Page 347: ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM …myreaders.info/00_Orbital__Mechanics__-__Model_____Simulation... · ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM-MSS)

www.m

yrea

ders

.inf

o

OM-MSS Page 347 SATELLITE PASS - GROUND TRACE [acronym - Line Of Sight (LOS), On Board Computerr (OBC), Visible Band Camera (VBC), Night Vision Devices (NVD) ] ORBIT, INPUT TIME, POSIION, SAT VELOCITY, GROUND TRACE, RANGE, DIST, PITCH/ROLL, EL/AZ, ACCESS EL/AZ, DATA SOLAR TIME EL/AZ, DIST Line 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 @ES 18 19 20 @SS 21 22 23 24 25 26 27 @ES 28 29 30 No. Node GMT Anomaly Height @ Vel Lat(SAT)Log Slant S-Sat Pitch Roll EL(SAT)AZ Control EL(SUN)AZ Acq. LMT(ES) EL(SUN)AZ S-Sun Nos D H M S deg km meter deg deg km km deg deg deg D H M S deg km 90408 A 07 10 16 30 54.19 419.36 7661.07 27.42 207.74 1233.6 12271.6 24.2 12.3 14.65 296.38 LOS -56.5 4.2 NVD 07 15 26 09 37.1 259.5 5885.6 712 90408 A 07 10 18 30 61.95 418.07 7660.72 21.75 213.57 688.3 13132.9 21.1 12.0 34.97 252.45 LOS -61.0 18.0 NVD 07 15 28 09 36.7 259.8 5935.9 713 90408 A 07 10 20 30 69.70 417.08 7660.34 15.89 218.94 943.5 13993.7 18.3 11.8 22.58 180.12 LOS -63.8 34.4 NVD 07 15 30 09 36.2 260.0 5986.3 714 90408 A 07 10 22 30 77.46 416.46 7659.95 9.91 224.01 1662.1 14853.9 15.8 11.7 7.46 161.21 LOS -64.4 52.3 NVD 07 15 32 09 35.8 260.3 6036.7 715 90408 A 07 10 24 30 85.21 416.28 7659.54 3.86 228.89 2461.4 15713.0 13.4 11.5 -0.99 154.69 LOS -62.7 68.9 NVD 07 15 34 09 35.3 260.5 6087.2 716 90408 A 07 10 25 46 90.13 416.42 Eqa 7659.28 0.00 231.94 2976.8 16257.2 11.9 11.5 -5.05 50.34 OBC -60.6 77.7 NVD 07 15 35 25 35.0 260.7 6119.2 717 90408 D 07 10 26 30 92.96 416.58 7659.13 -2.22 230.18 3274.1 16281.9 12.8 11.5 -7.15 151.40 OBC -62.5 81.2 NVD 07 15 36 09 34.9 260.8 6137.7 718 90408 D 07 10 28 30 100.71 417.36 7658.72 -8.29 225.31 4082.3 16230.4 15.2 11.6 -12.35 149.36 OBC -67.1 94.2 NVD 07 15 38 09 34.4 261.0 6188.2 719 90408 D 07 10 30 30 108.46 418.56 7658.32 -14.29 220.30 4877.9 16012.7 17.7 11.8 -17.07 147.92 OBC -70.1 112.7 NVD 07 15 40 09 34.0 261.3 6238.8 720 90408 D 07 10 32 30 116.21 420.14 7657.94 -20.18 215.01 5655.1 15654.0 20.3 12.0 -21.51 146.78 OBC -70.6 135.1 NVD 07 15 42 09 33.5 261.5 6289.4 721 90408 D 07 10 34 30 123.96 421.99 7657.59 -25.91 209.31 6409.8 15186.1 23.3 12.2 -25.78 145.80 OBC -68.5 156.5 NVD 07 15 44 09 33.0 261.7 6340.0 722 90408 D 07 10 36 30 131.71 424.00 7657.26 -31.38 203.04 7138.1 14638.1 26.7 12.5 -29.93 144.91 OBC -64.5 173.9 NVD 07 15 46 09 32.6 262.0 6390.6 723 90408 D 07 10 38 30 139.46 426.03 7656.98 -36.52 196.03 7836.5 14032.9 30.7 12.9 -33.99 144.05 OBC -59.3 187.5 NVD 07 15 48 09 32.1 262.2 6441.3 724 90408 D 07 10 40 30 147.21 427.95 7656.73 -41.19 188.07 8502.0 13387.3 35.4 13.5 -37.99 143.17 OBC -53.4 199.1 NVD 07 15 50 09 31.7 262.5 6492.0 725 90408 D 07 10 42 30 154.95 429.64 7656.53 -45.23 178.97 9131.4 12713.4 41.2 14.2 -41.95 142.24 OBC -47.1 209.9 NVD 07 15 52 09 31.2 262.7 6542.8 726 90408 D 07 10 44 30 162.70 430.97 7656.39 -48.45 168.64 9722.1 12019.9 48.5 15.3 -45.86 141.22 OBC -40.6 220.5 NVD 07 15 54 09 30.8 262.9 6593.6 727 90408 D 07 10 46 30 170.45 431.87 7656.29 -50.64 157.16 10271.4 11313.5 57.4 16.9 -49.74 140.09 OBC -34.0 231.5 NVD 07 15 56 09 30.3 263.1 6644.3 728 90408 D 07 10 48 30 178.19 432.26 7656.25 -51.61 144.89 10777.1 10599.5 68.1 19.2 -53.59 138.77 OBC -27.3 242.6 NVD 07 15 58 09 29.9 263.4 6695.2 729 90408 D 07 10 48 58 180.00 432.27 Apo 7656.25 -51.65 141.97 10888.6 10432.2 70.8 19.9 -54.48 145.84 OBC -25.7 245.1 NVD 07 15 58 37 29.7 263.4 6707.0 730 90408 D 07 10 50 30 185.94 432.12 7656.26 -51.27 132.44 11237.0 9882.1 79.9 22.5 -57.40 137.21 OBC -20.5 253.3 NVD 07 16 00 09 29.4 263.6 6746.0 731 90408 D 07 10 52 30 193.68 431.46 7656.33 -49.65 120.51 11649.0 9165.7 91.0 26.9 -61.19 135.31 OBC -13.7 263.1 NVD 07 16 02 09 28.9 263.8 6796.9 732 90408 D 07 10 54 30 201.43 430.33 7656.46 -46.91 109.60 12011.6 8454.3 97.1 32.7 -64.93 132.92 OBC -6.9 271.4 NVD 07 16 04 09 28.5 264.1 6847.8 733 90408 D 07 10 56 30 209.18 428.80 7656.63 -43.24 99.91 12323.1 7752.6 92.6 39.6 -68.61 129.79 OBC -0.1 278.1 NVD 07 16 06 09 28.0 264.3 6898.7 734 90408 D 07 10 58 30 216.92 426.97 7656.86 -38.85 91.42 12582.4 7066.4 72.9 46.6 -72.22 125.48 OBC 6.6 283.2 VBC 07 16 08 09 27.6 264.5 6949.6 735 90408 D 07 11 00 30 224.67 424.98 7657.13 -33.92 83.97 12788.4 6403.0 39.2 51.8 -75.68 119.19 OBC 13.3 286.7 VBC 07 16 10 09 27.1 264.7 7000.5 736 90408 D 07 11 02 30 232.42 422.94 7657.43 -28.59 77.37 12940.3 5772.4 0.3 53.7 -78.90 109.27 OBC 19.9 288.9 VBC 07 16 12 09 26.7 264.9 7051.5 737 90408 D 07 11 04 30 240.17 421.00 7657.78 -22.98 71.42 13037.6 5188.2 36.1 52.1 -81.56 92.54 OBC 26.4 289.7 VBC 07 16 14 09 26.2 265.1 7102.5 738 90408 D 07 11 06 30 247.92 419.28 7658.14 -17.16 65.95 13079.9 4669.4 63.2 48.6 -83.04 65.47 OBC 32.7 289.2 VBC 07 16 16 09 25.7 265.4 7153.5 739 90408 D 07 11 08 30 255.67 417.88 7658.54 -11.21 60.82 13067.2 4241.5 81.1 44.4 -82.58 34.37 OBC 38.8 287.2 VBC 07 16 18 09 25.3 265.6 7204.5 740 90408 D 07 11 10 30 263.42 416.89 7658.94 -5.16 55.89 12999.8 3935.0 91.4 40.4 -80.47 12.04 OBC 44.7 283.7 VBC 07 16 20 09 24.8 265.8 7255.5 741 90408 D 07 11 12 11 270.01 416.41 Eqa 7659.29 -0.00 51.78 12899.8 3792.9 95.9 37.2 -77.99 230.54 OBC 49.3 279.2 VBC 07 16 21 51 24.4 266.0 7298.9 742 90408 A 07 11 12 30 271.17 416.36 7659.35 0.91 52.51 12878.0 3664.2 95.3 37.7 -77.52 358.75 OBC 48.7 278.1 VBC 07 16 22 09 24.4 266.0 7306.5 743 90408 A 07 11 14 30 278.92 416.31 7659.76 6.99 57.34 12702.7 2809.5 89.1 41.6 -74.19 350.52 OBC 43.8 271.6 VBC 07 16 24 09 23.9 266.2 7357.6 744 90408 A 07 11 16 30 286.68 416.72 7660.16 13.01 62.30 12474.8 1961.3 76.8 45.7 -70.69 344.96 OBC 38.4 267.4 VBC 07 16 26 09 23.4 266.4 7408.7 745 90408 A 07 11 18 30 294.43 417.54 7660.54 18.93 67.51 12195.5 1135.1 56.3 49.8 -67.08 340.87 OBC 32.5 265.0 VBC 07 16 28 09 23.0 266.6 7459.7 746 90408 A 07 11 20 30 302.19 418.70 7660.91 24.70 73.10 11866.4 467.1 26.5 52.9 -63.42 337.65 OBC 26.3 264.3 VBC 07 16 30 09 22.5 266.8 7510.8 747 90408 A 07 11 22 30 309.94 420.10 7661.24 30.24 79.22 11489.2 797.9 11.3 53.6 -59.72 334.94 OBC 20.0 265.2 VBC 07 16 32 09 22.1 267.0 7561.9 748 90408 A 07 11 24 30 317.70 421.61 7661.53 35.47 86.06 11066.0 1595.0 50.3 50.6 -55.99 332.54 OBC 13.5 267.8 VBC 07 16 34 09 21.6 267.3 7613.0 749 90408 A 07 11 26 30 325.46 423.12 7661.79 40.25 93.80 10599.1 2437.4 80.7 44.6 -52.24 330.33 OBC 7.0 272.0 VBC 07 16 36 09 21.1 267.5 7664.1 750 90408 A 07 11 28 30 333.22 424.49 7662.00 44.45 102.64 10091.1 3290.5 95.7 37.5 -48.48 328.20 OBC 0.5 278.0 NVD 07 16 38 09 20.7 267.7 7715.3 751 90408 A 07 11 30 30 340.97 425.63 7662.16 47.86 112.71 9545.0 4147.7 96.4 30.9 -44.71 326.06 OBC -6.0 285.8 NVD 07 16 40 09 20.2 267.9 7766.4 752 90408 A 07 11 32 30 348.73 426.43 7662.27 50.28 123.98 8964.2 5006.8 88.1 25.5 -40.92 323.86 OBC -12.4 295.5 NVD 07 16 42 09 19.8 268.1 7817.5 753 90408 A 07 11 34 30 356.49 426.84 7662.32 51.51 136.14 8352.5 5867.1 76.5 21.4 -37.13 321.52 OBC -18.6 306.8 NVD 07 16 44 09 19.3 268.3 7868.7 754 90409 A 07 11 35 24 360.00 426.88 Pri 7662.33 51.65 141.79 8066.7 6256.6 71.0 19.9 -35.40 42.32 OBC -21.3 312.3 NVD 07 16 45 03 19.1 268.4 7891.8 755 90408 A 07 11 36 30 4.25 426.81 7662.32 51.44 148.61 7714.2 6728.0 64.8 18.4 -33.32 318.95 OBC -24.5 319.1 NVD 07 16 46 09 18.9 268.5 7919.8 756

Page 348: ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM …myreaders.info/00_Orbital__Mechanics__-__Model_____Simulation... · ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM-MSS)

www.m

yrea

ders

.inf

o

OM-MSS Page 348 SATELLITE PASS - GROUND TRACE [acronym - Line Of Sight (LOS), On Board Computerr (OBC), Visible Band Camera (VBC), Night Vision Devices (NVD) ] ORBIT, INPUT TIME, POSIION, SAT VELOCITY, GROUND TRACE, RANGE, DIST, PITCH/ROLL, EL/AZ, ACCESS EL/AZ, DATA SOLAR TIME EL/AZ, DIST Line 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 @ES 18 19 20 @SS 21 22 23 24 25 26 27 @ES 28 29 30 No. Node GMT Anomaly Height @ Vel Lat(SAT)Log Slant S-Sat Pitch Roll EL(SAT)AZ Control EL(SUN)AZ Acq. LMT(ES) EL(SUN)AZ S-Sun Nos D H M S deg km meter deg deg km km deg deg deg D H M S deg km 90409 A 07 11 38 30 12.01 426.36 7662.26 50.07 160.70 7054.5 7589.3 54.6 16.4 -29.49 316.06 OBC -30.1 331.9 NVD 07 16 48 09 18.4 268.7 7971.0 757 90409 A 07 11 40 30 19.76 425.52 7662.15 47.54 171.85 6379.7 8450.9 46.2 15.0 -25.65 312.70 OBC -35.3 344.7 NVD 07 16 50 09 17.9 268.9 8022.1 758 90409 A 07 11 42 30 27.52 424.35 7661.98 44.03 181.78 5697.7 9312.5 39.4 14.0 -21.80 308.69 OBC -39.9 357.3 NVD 07 16 52 09 17.5 269.1 8073.3 759 90409 A 07 11 44 30 35.28 422.95 7661.77 39.76 190.50 5019.5 10174.1 34.0 13.3 -17.93 303.74 OBC -43.8 9.8 NVD 07 16 54 09 17.0 269.3 8124.5 760 90409 A 07 11 46 30 43.04 421.44 7661.51 34.92 198.13 4360.3 11035.7 29.5 12.8 -14.07 297.42 OBC -46.6 22.4 NVD 07 16 56 09 16.6 269.5 8175.6 761 90409 A 07 11 48 30 50.79 419.93 7661.21 29.66 204.88 3744.0 11897.1 25.7 12.4 -10.28 289.10 OBC -48.3 34.9 NVD 07 16 58 09 16.1 269.7 8226.8 762 90409 A 07 11 50 30 58.55 418.56 7660.87 24.09 210.94 3207.7 12758.2 22.5 12.1 -6.72 277.91 OBC -48.7 47.0 NVD 07 17 00 09 15.6 269.9 8278.0 763 90409 A 07 11 52 30 66.30 417.43 7660.51 18.30 216.48 2807.9 13619.0 19.6 11.9 -3.81 263.06 LOS -47.7 58.2 NVD 07 17 02 09 15.2 270.1 8329.1 764 90409 A 07 11 54 30 74.06 416.65 7660.12 12.36 221.65 2614.9 14479.1 17.0 11.7 -2.28 244.79 LOS -45.5 67.9 NVD 07 17 04 09 14.7 270.3 8380.3 765 90409 A 07 11 56 30 81.81 416.29 7659.72 6.33 226.60 2675.6 15338.4 14.5 11.6 -2.76 225.61 LOS -42.3 76.0 NVD 07 17 06 09 14.3 270.5 8431.5 766 90409 A 07 11 58 30 89.56 416.39 7659.31 0.25 231.42 2972.3 16196.1 12.2 11.5 -5.02 208.75 OBC -38.2 82.2 NVD 07 17 08 09 13.8 270.7 8482.6 767 90409 A 07 11 58 35 89.89 416.41 Eqa 7659.29 0.00 231.62 2988.9 16232.0 12.1 11.5 -5.14 50.74 OBC -38.0 82.4 NVD 07 17 08 14 13.8 270.7 8484.8 768 90409 D 07 12 00 30 97.32 416.98 7658.90 -5.82 226.99 3439.2 16243.0 14.3 11.6 -8.26 195.60 OBC -42.7 87.2 NVD 07 17 10 09 13.3 270.8 8533.8 769 90409 D 07 12 02 30 105.07 418.01 7658.50 -11.86 222.05 4010.0 16088.3 16.8 11.7 -11.91 185.69 OBC -47.0 93.9 NVD 07 17 12 09 12.9 271.0 8585.0 770 90409 D 07 12 04 30 112.82 419.45 7658.11 -17.80 216.89 4637.9 15782.6 19.4 11.9 -15.67 178.13 OBC -50.6 102.6 NVD 07 17 14 09 12.4 271.2 8636.1 771 90409 D 07 12 06 30 120.57 421.20 7657.74 -23.60 211.37 5293.1 15355.9 22.2 12.1 -19.45 172.14 OBC -53.3 113.3 NVD 07 17 16 09 12.0 271.4 8687.3 772 90409 D 07 12 08 30 128.32 423.16 7657.40 -29.19 205.36 5956.8 14838.6 25.5 12.4 -23.22 167.20 OBC -54.9 125.9 NVD 07 17 18 09 11.5 271.6 8738.4 773 90409 D 07 12 10 30 136.06 425.20 7657.10 -34.48 198.67 6616.2 14256.0 29.2 12.7 -26.94 162.96 OBC -55.1 139.8 NVD 07 17 20 09 11.0 271.8 8789.6 774 90409 D 07 12 12 30 143.81 427.18 7656.83 -39.35 191.12 7262.4 13627.0 33.6 13.2 -30.64 159.18 OBC -54.1 154.5 NVD 07 17 22 09 10.6 272.0 8840.7 775 90409 D 07 12 14 30 151.56 428.98 7656.61 -43.67 182.51 7888.6 12965.4 38.9 13.9 -34.30 155.67 OBC -51.9 169.3 NVD 07 17 24 09 10.1 272.2 8891.9 776 90409 D 07 12 16 30 159.31 430.47 7656.44 -47.25 172.68 8489.5 12280.9 45.6 14.9 -37.91 152.32 OBC -48.7 184.1 NVD 07 17 26 09 9.7 272.4 8943.0 777 90409 D 07 12 18 30 167.05 431.56 7656.32 -49.88 161.64 9060.6 11581.1 53.8 16.2 -41.49 149.01 OBC -44.7 198.7 NVD 07 17 28 09 9.2 272.6 8994.1 778 90409 D 07 12 20 30 174.80 432.16 7656.26 -51.37 149.63 9598.2 10871.5 63.8 18.2 -45.02 145.65 OBC -40.2 213.0 NVD 07 17 30 09 8.7 272.8 9045.2 779 90409 D 07 12 21 50 180.00 432.27 Apo 7656.25 -51.65 141.27 9939.0 10392.0 71.4 20.0 -47.36 146.08 OBC -36.9 222.3 NVD 07 17 31 29 8.4 272.9 9079.6 780 90409 D 07 12 22 30 182.54 432.24 7656.25 -51.56 137.17 10099.3 10157.0 75.3 21.1 -48.50 142.15 OBC -35.3 226.7 NVD 07 17 32 09 8.3 273.0 9096.3 781 90409 D 07 12 24 30 190.29 431.79 7656.30 -50.46 124.95 10561.0 9441.9 87.1 25.1 -51.91 138.41 OBC -30.0 239.3 NVD 07 17 34 09 7.8 273.2 9147.4 782 90409 D 07 12 26 30 198.04 430.85 7656.40 -48.15 113.59 10981.1 8730.1 95.7 30.4 -55.24 134.31 OBC -24.6 250.1 NVD 07 17 36 09 7.4 273.4 9198.5 783 90409 D 07 12 28 30 205.78 429.47 7656.55 -44.83 103.39 11357.4 8026.3 95.9 36.9 -58.47 129.72 OBC -19.0 259.2 NVD 07 17 38 09 6.9 273.6 9249.6 784 90409 D 07 12 30 30 213.53 427.75 7656.75 -40.71 94.43 11688.3 7335.8 82.1 44.1 -61.57 124.45 OBC -13.4 266.4 NVD 07 17 40 09 6.4 273.8 9300.7 785 90409 D 07 12 32 30 221.28 425.81 7657.00 -35.98 86.58 11972.3 6665.1 52.7 50.3 -64.50 118.28 OBC -7.7 271.8 NVD 07 17 42 09 6.0 274.0 9351.7 786 90409 D 07 12 34 30 229.03 423.78 7657.29 -30.80 79.65 12208.3 6023.2 13.9 53.5 -67.20 110.94 OBC -2.0 275.8 NVD 07 17 44 09 5.5 274.1 9402.8 787 90409 D 07 12 36 30 236.77 421.78 7657.62 -25.30 73.46 12395.5 5422.1 24.3 53.0 -69.57 102.12 OBC 3.7 278.4 NVD 07 17 46 09 5.1 274.3 9453.8 788 90409 D 07 12 38 30 244.52 419.96 7657.98 -19.55 67.81 12533.1 4878.7 54.8 50.0 -71.49 91.55 OBC 9.3 279.8 VBC 07 17 48 09 4.6 274.5 9504.8 789 90409 D 07 12 40 30 252.27 418.42 7658.36 -13.65 62.56 12621.0 4415.6 75.8 45.9 -72.83 79.20 OBC 14.8 280.1 VBC 07 17 50 09 4.2 274.7 9555.8 790 90409 D 07 12 42 30 260.02 417.26 7658.76 -7.63 57.56 12659.0 4061.5 88.6 41.7 -73.45 65.54 OBC 20.2 279.3 VBC 07 17 52 09 3.7 274.9 9606.8 791 90409 D 07 12 44 30 267.78 416.53 7659.17 -1.57 52.71 12647.5 3847.3 95.1 37.9 -73.27 51.56 OBC 25.3 277.4 VBC 07 17 54 09 3.2 275.1 9657.8 792 90409 D 07 12 45 00 269.77 416.42 Eqa 7659.28 -0.00 51.46 12636.5 3818.1 96.1 36.9 -73.09 230.94 OBC 26.6 276.7 VBC 07 17 54 39 3.1 275.2 9670.9 793 90409 A 07 12 46 30 275.53 416.28 7659.58 4.52 55.04 12586.7 3183.1 92.7 39.7 -72.32 38.38 OBC 23.1 274.6 VBC 07 17 56 09 2.8 275.3 9708.7 794 90409 A 07 12 48 30 283.28 416.51 7659.99 10.56 59.94 12477.7 2332.5 83.4 43.7 -70.72 26.76 OBC 18.2 272.9 VBC 07 17 58 09 2.3 275.5 9759.7 795 90409 A 07 12 50 30 291.03 417.17 7660.38 16.53 65.03 12321.3 1495.5 67.0 47.9 -68.63 16.85 OBC 13.0 272.5 VBC 07 18 00 09 1.9 275.7 9810.6 796 90409 A 07 12 52 30 298.79 418.20 7660.75 22.37 70.45 12119.0 721.3 41.5 51.6 -66.18 8.50 OBC 7.7 273.3 VBC 07 18 02 09 1.4 275.9 9861.5 797 90409 A 07 12 54 30 306.55 419.52 7661.10 28.02 76.33 11872.4 540.6 6.7 53.6 -63.48 1.39 OBC 2.4 275.5 NVD 07 18 04 09 1.0 276.1 9912.4 798 90409 A 07 12 56 30 314.30 420.99 7661.41 33.38 82.85 11583.4 1246.1 33.1 52.4 -60.60 355.22 OBC -2.9 279.1 NVD 07 18 06 09 0.5 276.3 9963.3 799 90409 A 07 12 58 30 322.06 422.52 7661.68 38.36 90.20 11254.3 2074.2 68.7 47.6 -57.61 349.74 OBC -8.1 284.3 NVD 07 18 08 09 0.0 276.5 10014.1 800

Page 349: ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM …myreaders.info/00_Orbital__Mechanics__-__Model_____Simulation... · ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM-MSS)

www.m

yrea

ders

.inf

o

OM-MSS Page 349 SATELLITE PASS - GROUND TRACE [acronym - Line Of Sight (LOS), On Board Computerr (OBC), Visible Band Camera (VBC), Night Vision Devices (NVD) ] ORBIT, INPUT TIME, POSIION, SAT VELOCITY, GROUND TRACE, RANGE, DIST, PITCH/ROLL, EL/AZ, ACCESS EL/AZ, DATA SOLAR TIME EL/AZ, DIST Line 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 @ES 18 19 20 @SS 21 22 23 24 25 26 27 @ES 28 29 30 No. Node GMT Anomaly Height @ Vel Lat(SAT)Log Slant S-Sat Pitch Roll EL(SAT)AZ Control EL(SUN)AZ Acq. LMT(ES) EL(SUN)AZ S-Sun Nos D H M S deg km meter deg deg km km deg deg deg D H M S deg km 90409 A 07 13 00 30 329.82 423.96 7661.91 42.82 98.57 10887.7 2922.5 91.0 40.7 -54.52 344.74 OBC -13.2 291.3 NVD 07 18 10 09 -0.4 276.7 10065.0 801 90409 A 07 13 02 30 337.57 425.20 7662.10 46.58 108.14 10486.6 3777.4 97.6 33.6 -51.39 340.05 OBC -18.0 300.2 NVD 07 18 12 09 -0.9 276.9 10115.8 802 90409 A 07 13 04 30 345.33 426.15 7662.23 49.43 118.94 10054.3 4635.3 92.4 27.7 -48.22 335.55 OBC -22.5 311.1 NVD 07 18 14 09 -1.3 277.1 10166.6 803 90409 A 07 13 06 30 353.09 426.72 7662.30 51.16 130.79 9594.8 5494.8 81.7 23.0 -45.04 331.13 OBC -26.6 323.8 NVD 07 18 16 09 -1.8 277.3 10217.3 804 90410 A 07 13 08 16 360.00 426.88 Pri 7662.33 51.64 141.85 9166.0 6261.0 71.0 19.9 -42.22 42.32 OBC -29.8 336.3 NVD 07 18 17 55 -2.2 277.5 10262.5 805 90409 A 07 13 08 30 0.85 426.88 7662.33 51.63 143.22 9112.3 6355.1 69.7 19.6 -41.87 326.68 OBC -30.1 337.8 NVD 07 18 18 09 -2.2 277.5 10268.1 806 90410 A 07 13 10 30 8.61 426.59 7662.29 50.78 155.54 8612.2 7216.0 58.8 17.2 -38.72 322.10 OBC -33.0 352.5 NVD 07 18 20 09 -2.7 277.7 10318.8 807 90410 A 07 13 12 30 16.36 425.90 7662.20 48.70 167.12 8100.3 8077.2 49.6 15.5 -35.60 317.30 OBC -35.1 7.0 NVD 07 18 22 09 -3.2 277.9 10369.5 808 90410 A 07 13 14 30 24.12 424.86 7662.06 45.56 177.57 7583.7 8938.5 42.2 14.4 -32.55 312.17 OBC -36.4 20.8 NVD 07 18 24 09 -3.6 278.1 10420.2 809 90410 A 07 13 16 30 31.88 423.54 7661.87 41.58 186.77 7070.7 9800.0 36.3 13.6 -29.58 306.60 OBC -36.7 33.5 NVD 07 18 26 09 -4.1 278.3 10470.8 810 90410 A 07 13 18 30 39.64 422.06 7661.63 36.95 194.82 6571.4 10661.4 31.4 13.0 -26.73 300.45 OBC -36.1 44.8 NVD 07 18 28 09 -4.5 278.5 10521.5 811 90410 A 07 13 20 30 47.39 420.53 7661.34 31.84 201.91 6098.2 11522.6 27.4 12.6 -24.05 293.60 OBC -34.6 54.8 NVD 07 18 30 09 -5.0 278.7 10572.1 812 90410 A 07 13 22 30 55.15 419.09 7661.02 26.39 208.22 5665.6 12383.6 23.9 12.2 -21.60 285.89 OBC -32.3 63.2 NVD 07 18 32 09 -5.4 278.9 10622.6 813 90410 A 07 13 24 30 62.91 417.84 7660.67 20.68 213.95 5290.8 13244.3 20.9 12.0 -19.47 277.24 OBC -29.3 70.2 NVD 07 18 34 09 -5.9 279.1 10673.2 814 Next Next Section - 7.5 Satellite Pass for Earth Stn - Prediction of Ground Trace for Satellite GSAT-14

Page 350: ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM …myreaders.info/00_Orbital__Mechanics__-__Model_____Simulation... · ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM-MSS)

www.m

yrea

ders

.inf

o

OM-MSS Page 350 OM-MSS Section - 7.5 -----------------------------------------------------------------------------------------------------61 Satellite GSAT-14 : SAT PASS FOR EARTH STN - Prediction of Ground Trace Coordinates, Look Angles & more at Instantaneous Time. (e) GSAT-14 'Two-Line Elements'(TLE) downloaded on May 28, 2014, 18:14 hrs IST, Satellite launched on January 05, 2014 1 39498U 14001A 14146.03167358 -.00000092 00000-0 00000+0 0 1238 2 39498 0.0049 223.9821 0002051 110.2671 354.6468 1.00272265 1407 From this TLE, the data relevant for the purpose are manually interpreted & extracted : Satellite number 39498, GSAT-14 , EPOCH_year = 2014 EPOCH_days_decimal_of_year = 145.0316735800 EPOCH_inclination_deg = 0.0049000000 EPOCH_right_asc_acnd_node_deg = 223.9821000000 EPOCH_eccentricity = 0.0002051000 EPOCH_argument_of_perigee_deg = 110.2671000000 EPOCH_mean_anomaly_deg = 354.6468000000 EPOCH_mean_motion_rev_per_day = 1.0027226500 EPOCH_revolution = 140 EPOCH_node_condition = 1 Earth_stn_latitude_deg = 23.25993 Earth stn longitude_deg = 77.41261 Earth surface height_meter = 494.70000 Earth stn tower_height_meter = 15.00000 Earth stn_height_meter = 509.70000 Earth stn min EL look_angle_deg = -5.00000 Input UT Year and Days decimal of year : Convert into UT YY MM DD hh min sec & Julian day Start Time UT year = 2014, month = 5, day = 26, hr = 0, min = 45, sec = 36.59731, and julian_day = 2456803.5316735799 Sat_motion_direction = Forward Sat_motion_Time_Step_in_sec_pos_or_neg = 120.00000 seconds

Page 351: ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM …myreaders.info/00_Orbital__Mechanics__-__Model_____Simulation... · ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM-MSS)

www.m

yrea

ders

.inf

o

OM-MSS Page 351 SATELLITE PASS - GROUND TRACE [acronym - Line Of Sight (LOS), On Board Computerr (OBC), Visible Band Camera (VBC), Night Vision Devices (NVD) ] ORBIT, INPUT TIME, POSIION, SAT VELOCITY, GROUND TRACE, RANGE, DIST, PITCH/ROLL, EL/AZ, ACCESS EL/AZ, DATA SOLAR TIME EL/AZ, DIST Line 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 @ES 18 19 20 @SS 21 22 23 24 25 26 27 @ES 28 29 30 No. Node GMT Anomaly Height @ Vel Lat(SAT)Log Slant S-Sat Pitch Roll EL(SAT)AZ Control EL(SUN)AZ Acq. LMT(ES) EL(SUN)AZ S-Sun Nos D H M S deg km meter deg deg km km deg deg deg D H M S deg km 00140 A 26 00 45 36 354.64 35778.89 3075.23 0.00 328.89 36399.1 11907.1 -7.2 3.2 62.50 188.66 LOS -61.9 319.9 NVD 26 05 55 15 7.8 70.3 9151.2 1 00140 A 26 00 47 36 355.15 35778.88 3075.23 0.00 329.40 36399.0 11856.3 -7.3 3.2 62.50 188.65 LOS -62.6 321.4 NVD 26 05 57 15 8.2 70.5 9103.0 2 00140 A 26 00 49 36 355.65 35778.87 3075.24 0.00 329.90 36399.0 11805.4 -7.3 3.3 62.50 188.65 LOS -63.2 322.9 NVD 26 05 59 15 8.7 70.7 9054.8 3 00140 A 26 00 51 36 356.15 35778.87 3075.24 0.00 330.40 36399.0 11754.5 -7.3 3.3 62.50 188.65 LOS -63.8 324.5 NVD 26 06 01 15 9.1 70.9 9006.5 4 00140 A 26 00 53 36 356.65 35778.86 3075.24 0.00 330.90 36399.0 11703.5 -7.3 3.3 62.50 188.65 LOS -64.4 326.2 NVD 26 06 03 15 9.5 71.0 8958.2 5 00140 A 26 00 55 36 357.15 35778.86 3075.24 0.00 331.40 36399.0 11652.6 -7.4 3.3 62.50 188.65 LOS -64.9 328.0 NVD 26 06 05 15 10.0 71.2 8909.8 6 00140 A 26 00 57 36 357.65 35778.85 3075.24 0.00 331.90 36399.0 11601.6 -7.4 3.3 62.50 188.65 LOS -65.4 329.9 NVD 26 06 07 15 10.4 71.4 8861.3 7 00140 A 26 00 59 36 358.16 35778.85 3075.24 0.00 332.41 36399.0 11550.6 -7.4 3.3 62.50 188.65 LOS -65.9 331.8 NVD 26 06 09 15 10.8 71.6 8812.8 8 00140 A 26 01 01 36 358.66 35778.85 3075.24 0.00 332.91 36399.0 11499.6 -7.4 3.3 62.50 188.65 LOS -66.4 333.8 NVD 26 06 11 15 11.3 71.7 8764.3 9 00140 A 26 01 03 36 359.16 35778.85 3075.24 0.00 333.41 36399.0 11448.5 -7.5 3.3 62.50 188.65 LOS -66.8 335.9 NVD 26 06 13 15 11.7 71.9 8715.7 10 00140 A 26 01 05 36 359.66 35778.85 3075.24 0.00 333.91 36399.0 11397.5 -7.5 3.3 62.50 188.65 LOS -67.2 338.1 NVD 26 06 15 15 12.1 72.1 8667.1 11 00141 A 26 01 06 57 360.00 35778.85 Pri 3075.24 0.00 334.25 36399.0 11362.9 -7.5 3.3 62.50 275.28 LOS -67.4 339.6 NVD 26 06 16 36 12.4 72.2 8634.1 12 00140 A 26 01 07 36 0.16 35778.85 3075.24 0.00 334.41 36399.0 11346.4 -7.5 3.3 62.50 188.65 LOS -67.5 340.3 NVD 26 06 17 15 12.6 72.2 8618.4 13 00141 A 26 01 09 36 0.66 35778.85 3075.24 0.00 334.91 36399.0 11295.3 -7.5 3.3 62.50 188.65 LOS -67.9 342.6 NVD 26 06 19 15 13.0 72.4 8569.7 14 00141 A 26 01 11 36 1.17 35778.85 3075.24 0.00 335.41 36399.0 11244.2 -7.6 3.3 62.50 188.65 LOS -68.1 345.0 NVD 26 06 21 15 13.5 72.6 8520.9 15 00141 A 26 01 13 36 1.67 35778.85 3075.24 0.00 335.92 36399.0 11193.0 -7.6 3.3 62.50 188.65 LOS -68.4 347.4 NVD 26 06 23 15 13.9 72.7 8472.1 16 00141 A 26 01 15 36 2.17 35778.85 3075.24 0.00 336.42 36399.0 11141.9 -7.6 3.3 62.50 188.65 LOS -68.6 349.9 NVD 26 06 25 15 14.3 72.9 8423.2 17 00141 A 26 01 17 36 2.67 35778.86 3075.24 0.00 336.92 36399.0 11090.7 -7.6 3.3 62.50 188.65 LOS -68.7 352.5 NVD 26 06 27 15 14.8 73.0 8374.3 18 00141 A 26 01 19 36 3.17 35778.86 3075.24 0.00 337.42 36399.0 11039.6 -7.7 3.3 62.50 188.65 LOS -68.8 355.0 NVD 26 06 29 15 15.2 73.2 8325.4 19 00141 A 26 01 21 36 3.67 35778.87 3075.24 0.00 337.92 36399.0 10988.4 -7.7 3.3 62.50 188.64 LOS -68.9 357.6 NVD 26 06 31 15 15.6 73.4 8276.4 20 00141 A 26 01 23 36 4.17 35778.87 3075.24 0.00 338.42 36399.0 10937.2 -7.7 3.3 62.50 188.64 LOS -68.9 0.2 NVD 26 06 33 15 16.1 73.5 8227.4 21 00141 A 26 01 25 36 4.68 35778.88 3075.24 0.00 338.93 36399.0 10886.0 -7.7 3.3 62.50 188.64 LOS -68.9 2.8 NVD 26 06 35 15 16.5 73.7 8178.3 22 00141 A 26 01 27 36 5.18 35778.88 3075.23 0.00 339.43 36399.0 10834.8 -7.7 3.3 62.50 188.64 LOS -68.8 5.4 NVD 26 06 37 15 17.0 73.8 8129.2 23 00141 A 26 01 29 36 5.68 35778.89 3075.23 0.00 339.93 36399.0 10783.6 -7.8 3.3 62.50 188.64 LOS -68.7 7.9 NVD 26 06 39 15 17.4 74.0 8080.1 24 00141 A 26 01 31 36 6.18 35778.90 3075.23 0.00 340.43 36399.0 10732.3 -7.8 3.3 62.50 188.64 LOS -68.5 10.5 NVD 26 06 41 15 17.9 74.2 8030.9 25 00141 A 26 01 33 36 6.68 35778.91 3075.23 0.00 340.93 36399.1 10681.1 -7.8 3.3 62.50 188.64 LOS -68.3 12.9 NVD 26 06 43 15 18.3 74.3 7981.7 26 00141 A 26 01 35 36 7.18 35778.92 3075.23 0.00 341.43 36399.1 10629.8 -7.8 3.3 62.50 188.64 LOS -68.1 15.4 NVD 26 06 45 15 18.7 74.5 7932.4 27 00141 A 26 01 37 36 7.69 35778.93 3075.23 0.00 341.94 36399.1 10578.6 -7.8 3.3 62.50 188.64 LOS -67.8 17.7 NVD 26 06 47 15 19.2 74.6 7883.1 28 00141 A 26 01 39 36 8.19 35778.94 3075.23 0.00 342.44 36399.1 10527.3 -7.8 3.3 62.50 188.64 LOS -67.5 20.1 NVD 26 06 49 15 19.6 74.8 7833.8 29 00141 A 26 01 41 36 8.69 35778.95 3075.23 0.00 342.94 36399.1 10476.0 -7.9 3.3 62.50 188.64 LOS -67.1 22.3 NVD 26 06 51 15 20.1 74.9 7784.4 30 00141 A 26 01 43 36 9.19 35778.96 3075.23 0.00 343.44 36399.1 10424.8 -7.9 3.4 62.50 188.64 LOS -66.7 24.4 NVD 26 06 53 15 20.5 75.1 7735.0 31 00141 A 26 01 45 36 9.69 35778.97 3075.23 0.00 343.94 36399.1 10373.5 -7.9 3.4 62.50 188.64 LOS -66.3 26.5 NVD 26 06 55 15 21.0 75.2 7685.6 32 00141 A 26 01 47 36 10.19 35778.98 3075.23 0.00 344.44 36399.1 10322.2 -7.9 3.4 62.50 188.64 LOS -65.8 28.5 NVD 26 06 57 15 21.4 75.4 7636.1 33 00141 A 26 01 49 36 10.70 35779.00 3075.23 0.00 344.95 36399.1 10270.9 -7.9 3.4 62.50 188.64 LOS -65.3 30.4 NVD 26 06 59 15 21.8 75.5 7586.6 34 00141 A 26 01 51 36 11.20 35779.01 3075.23 0.00 345.45 36399.2 10219.6 -7.9 3.4 62.50 188.64 LOS -64.8 32.3 NVD 26 07 01 15 22.3 75.7 7537.1 35 00141 A 26 01 53 36 11.70 35779.03 3075.22 0.00 345.95 36399.2 10168.3 -7.9 3.4 62.50 188.64 LOS -64.3 34.0 NVD 26 07 03 15 22.7 75.8 7487.5 36 00141 A 26 01 55 36 12.20 35779.04 3075.22 0.00 346.45 36399.2 10117.0 -7.9 3.4 62.50 188.63 LOS -63.7 35.7 NVD 26 07 05 15 23.2 76.0 7437.9 37 00141 A 26 01 57 36 12.70 35779.06 3075.22 0.00 346.95 36399.2 10065.7 -8.0 3.4 62.50 188.63 LOS -63.1 37.3 NVD 26 07 07 15 23.6 76.1 7388.3 38 00141 A 26 01 59 36 13.20 35779.08 3075.22 0.00 347.45 36399.2 10014.4 -8.0 3.4 62.50 188.63 LOS -62.5 38.9 NVD 26 07 09 15 24.1 76.3 7338.6 39 00141 A 26 02 01 36 13.70 35779.09 3075.22 0.00 347.95 36399.2 9963.1 -8.0 3.4 62.50 188.63 LOS -61.8 40.3 NVD 26 07 11 15 24.5 76.4 7288.9 40 00141 A 26 02 03 36 14.21 35779.11 3075.22 0.00 348.46 36399.2 9911.8 -8.0 3.4 62.50 188.63 LOS -61.2 41.7 NVD 26 07 13 15 25.0 76.6 7239.2 41

Page 352: ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM …myreaders.info/00_Orbital__Mechanics__-__Model_____Simulation... · ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM-MSS)

www.m

yrea

ders

.inf

o

OM-MSS Page 352 SATELLITE PASS - GROUND TRACE [acronym - Line Of Sight (LOS), On Board Computerr (OBC), Visible Band Camera (VBC), Night Vision Devices (NVD) ] ORBIT, INPUT TIME, POSIION, SAT VELOCITY, GROUND TRACE, RANGE, DIST, PITCH/ROLL, EL/AZ, ACCESS EL/AZ, DATA SOLAR TIME EL/AZ, DIST Line 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 @ES 18 19 20 @SS 21 22 23 24 25 26 27 @ES 28 29 30 No. Node GMT Anomaly Height @ Vel Lat(SAT)Log Slant S-Sat Pitch Roll EL(SAT)AZ Control EL(SUN)AZ Acq. LMT(ES) EL(SUN)AZ S-Sun Nos D H M S deg km meter deg deg km km deg deg deg D H M S deg km 00141 A 26 02 05 36 14.71 35779.13 3075.22 0.00 348.96 36399.3 9860.5 -8.0 3.4 62.50 188.63 LOS -60.5 43.0 NVD 26 07 15 15 25.4 76.7 7189.4 42 00141 A 26 02 07 36 15.21 35779.15 3075.22 0.00 349.46 36399.3 9809.2 -8.0 3.4 62.50 188.63 LOS -59.8 44.3 NVD 26 07 17 15 25.9 76.9 7139.6 43 00141 A 26 02 09 36 15.71 35779.17 3075.21 0.00 349.96 36399.3 9757.9 -8.0 3.4 62.50 188.63 LOS -59.1 45.5 NVD 26 07 19 15 26.3 77.0 7089.8 44 00141 A 26 02 11 36 16.21 35779.19 3075.21 0.00 350.46 36399.3 9706.7 -8.0 3.4 62.50 188.63 LOS -58.4 46.6 NVD 26 07 21 15 26.8 77.2 7040.0 45 00141 A 26 02 13 36 16.71 35779.21 3075.21 0.00 350.96 36399.3 9655.4 -8.0 3.4 62.50 188.63 LOS -57.6 47.7 NVD 26 07 23 15 27.2 77.3 6990.1 46 00141 A 26 02 15 36 17.22 35779.23 3075.21 0.00 351.47 36399.4 9604.1 -8.0 3.4 62.50 188.63 LOS -56.9 48.8 NVD 26 07 25 15 27.7 77.5 6940.2 47 00141 A 26 02 17 36 17.72 35779.26 3075.21 0.00 351.97 36399.4 9552.8 -8.0 3.4 62.50 188.63 LOS -56.1 49.8 NVD 26 07 27 15 28.1 77.6 6890.2 48 00141 A 26 02 19 36 18.22 35779.28 3075.21 0.00 352.47 36399.4 9501.5 -8.0 3.4 62.50 188.63 LOS -55.4 50.7 NVD 26 07 29 15 28.6 77.8 6840.3 49 00141 A 26 02 21 36 18.72 35779.30 3075.20 0.00 352.97 36399.4 9450.3 -8.0 3.4 62.50 188.63 LOS -54.6 51.6 NVD 26 07 31 15 29.0 77.9 6790.3 50 00141 A 26 02 23 36 19.22 35779.33 3075.20 0.00 353.47 36399.5 9399.0 -8.0 3.4 62.50 188.63 LOS -53.8 52.5 NVD 26 07 33 15 29.4 78.0 6740.3 51 00141 A 26 02 25 36 19.72 35779.35 3075.20 0.00 353.97 36399.5 9347.8 -8.0 3.4 62.50 188.63 LOS -53.0 53.3 NVD 26 07 35 15 29.9 78.2 6690.2 52 00141 A 26 02 27 36 20.23 35779.38 3075.20 0.00 354.48 36399.5 9296.5 -8.0 3.4 62.50 188.63 LOS -52.2 54.0 NVD 26 07 37 15 30.3 78.3 6640.2 53 00141 A 26 02 29 36 20.73 35779.41 3075.20 0.00 354.98 36399.5 9245.3 -8.0 3.4 62.50 188.63 LOS -51.4 54.8 NVD 26 07 39 15 30.8 78.5 6590.1 54 00141 A 26 02 31 36 21.23 35779.43 3075.19 0.00 355.48 36399.6 9194.1 -8.0 3.4 62.50 188.62 LOS -50.6 55.5 NVD 26 07 41 15 31.2 78.6 6539.9 55 00141 A 26 02 33 36 21.73 35779.46 3075.19 0.00 355.98 36399.6 9142.9 -8.0 3.5 62.50 188.62 LOS -49.7 56.2 NVD 26 07 43 15 31.7 78.8 6489.8 56 00141 A 26 02 35 36 22.23 35779.49 3075.19 0.00 356.48 36399.6 9091.7 -8.0 3.5 62.50 188.62 LOS -48.9 56.8 NVD 26 07 45 15 32.1 78.9 6439.6 57 00141 A 26 02 37 36 22.73 35779.52 3075.19 0.00 356.98 36399.7 9040.5 -8.0 3.5 62.50 188.62 LOS -48.1 57.4 NVD 26 07 47 15 32.6 79.0 6389.4 58 00141 A 26 02 39 36 23.23 35779.55 3075.19 0.00 357.48 36399.7 8989.3 -8.0 3.5 62.50 188.62 LOS -47.2 58.0 NVD 26 07 49 15 33.1 79.2 6339.2 59 00141 A 26 02 41 36 23.74 35779.58 3075.18 0.00 357.99 36399.7 8938.1 -8.0 3.5 62.50 188.62 LOS -46.4 58.6 NVD 26 07 51 15 33.5 79.3 6289.0 60 00141 A 26 02 43 36 24.24 35779.61 3075.18 0.00 358.49 36399.7 8887.0 -8.0 3.5 62.50 188.62 LOS -45.5 59.1 NVD 26 07 53 15 34.0 79.5 6238.7 61 00141 A 26 02 45 36 24.74 35779.64 3075.18 0.00 358.99 36399.8 8835.8 -8.0 3.5 62.50 188.62 LOS -44.6 59.6 NVD 26 07 55 15 34.4 79.6 6188.4 62 00141 A 26 02 47 36 25.24 35779.67 3075.18 0.00 359.49 36399.8 8784.7 -8.0 3.5 62.50 188.62 LOS -43.8 60.1 NVD 26 07 57 15 34.9 79.7 6138.1 63 00141 A 26 02 49 36 25.74 35779.71 3075.17 0.00 359.99 36399.8 8733.6 -8.0 3.5 62.50 188.62 LOS -42.9 60.6 NVD 26 07 59 15 35.3 79.9 6087.8 64 00141 A 26 02 51 36 26.24 35779.74 3075.17 0.00 0.49 36399.9 8682.5 8.0 3.5 62.50 188.62 LOS -42.0 61.0 NVD 26 08 01 15 35.8 80.0 6037.4 65 00141 A 26 02 53 36 26.75 35779.77 3075.17 0.00 1.00 36399.9 8631.5 8.0 3.5 62.50 188.62 LOS -41.1 61.4 NVD 26 08 03 15 36.2 80.2 5987.0 66 00141 A 26 02 55 36 27.25 35779.81 3075.17 0.00 1.50 36399.9 8580.4 8.0 3.5 62.50 188.62 LOS -40.3 61.9 NVD 26 08 05 15 36.7 80.3 5936.6 67 00141 A 26 02 57 36 27.75 35779.84 3075.16 0.00 2.00 36400.0 8529.4 8.0 3.5 62.50 188.62 LOS -39.4 62.2 NVD 26 08 07 15 37.1 80.4 5886.2 68 00141 A 26 02 59 36 28.25 35779.88 3075.16 0.00 2.50 36400.0 8478.3 8.0 3.5 62.50 188.62 LOS -38.5 62.6 NVD 26 08 09 15 37.6 80.6 5835.8 69 00141 A 26 03 01 36 28.75 35779.91 3075.16 0.00 3.00 36400.0 8427.3 8.0 3.5 62.50 188.62 LOS -37.6 63.0 NVD 26 08 11 15 38.0 80.7 5785.3 70 00141 A 26 03 03 36 29.25 35779.95 3075.16 0.00 3.50 36400.1 8376.4 8.0 3.5 62.50 188.62 LOS -36.7 63.3 NVD 26 08 13 15 38.5 80.9 5734.8 71 00141 A 26 03 05 36 29.76 35779.99 3075.15 0.00 4.01 36400.1 8325.4 7.9 3.5 62.50 188.62 LOS -35.8 63.6 NVD 26 08 15 15 38.9 81.0 5684.4 72 00141 A 26 03 07 36 30.26 35780.02 3075.15 0.00 4.51 36400.2 8274.5 7.9 3.5 62.50 188.61 LOS -34.9 64.0 NVD 26 08 17 15 39.4 81.1 5633.8 73 00141 A 26 03 09 36 30.76 35780.06 3075.15 0.00 5.01 36400.2 8223.6 7.9 3.5 62.50 188.61 LOS -34.0 64.3 NVD 26 08 19 15 39.8 81.3 5583.3 74 00141 A 26 03 11 36 31.26 35780.10 3075.15 0.00 5.51 36400.2 8172.7 7.9 3.5 62.50 188.61 LOS -33.1 64.5 NVD 26 08 21 15 40.3 81.4 5532.7 75 00141 A 26 03 13 36 31.76 35780.14 3075.14 0.00 6.01 36400.3 8121.8 7.9 3.5 62.50 188.61 LOS -32.2 64.8 NVD 26 08 23 15 40.8 81.6 5482.2 76 00141 A 26 03 15 36 32.26 35780.18 3075.14 0.00 6.51 36400.3 8071.0 7.9 3.5 62.50 188.61 LOS -31.3 65.1 NVD 26 08 25 15 41.2 81.7 5431.6 77 00141 A 26 03 17 36 32.76 35780.22 3075.14 0.00 7.02 36400.4 8020.2 7.9 3.5 62.50 188.61 LOS -30.4 65.3 NVD 26 08 27 15 41.7 81.8 5381.0 78 00141 A 26 03 19 36 33.27 35780.26 3075.13 0.00 7.52 36400.4 7969.4 7.8 3.6 62.50 188.61 LOS -29.5 65.6 NVD 26 08 29 15 42.1 82.0 5330.3 79 00141 A 26 03 21 36 33.77 35780.31 3075.13 0.00 8.02 36400.4 7918.6 7.8 3.6 62.50 188.61 LOS -28.6 65.8 NVD 26 08 31 15 42.6 82.1 5279.7 80 00141 A 26 03 23 36 34.27 35780.35 3075.13 0.00 8.52 36400.5 7867.9 7.8 3.6 62.50 188.61 LOS -27.6 66.0 NVD 26 08 33 15 43.0 82.3 5229.0 81 00141 A 26 03 25 36 34.77 35780.39 3075.12 0.00 9.02 36400.5 7817.2 7.8 3.6 62.50 188.61 LOS -26.7 66.2 NVD 26 08 35 15 43.5 82.4 5178.3 82

Page 353: ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM …myreaders.info/00_Orbital__Mechanics__-__Model_____Simulation... · ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM-MSS)

www.m

yrea

ders

.inf

o

OM-MSS Page 353 SATELLITE PASS - GROUND TRACE [acronym - Line Of Sight (LOS), On Board Computerr (OBC), Visible Band Camera (VBC), Night Vision Devices (NVD) ] ORBIT, INPUT TIME, POSIION, SAT VELOCITY, GROUND TRACE, RANGE, DIST, PITCH/ROLL, EL/AZ, ACCESS EL/AZ, DATA SOLAR TIME EL/AZ, DIST Line 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 @ES 18 19 20 @SS 21 22 23 24 25 26 27 @ES 28 29 30 No. Node GMT Anomaly Height @ Vel Lat(SAT)Log Slant S-Sat Pitch Roll EL(SAT)AZ Control EL(SUN)AZ Acq. LMT(ES) EL(SUN)AZ S-Sun Nos D H M S deg km meter deg deg km km deg deg deg D H M S deg km 00141 A 26 03 27 36 35.27 35780.43 3075.12 0.00 9.52 36400.6 7766.6 7.8 3.6 62.50 188.61 LOS -25.8 66.4 NVD 26 08 37 15 43.9 82.5 5127.6 83 00141 A 26 03 29 36 35.77 35780.48 3075.12 0.00 10.02 36400.6 7715.9 7.8 3.6 62.50 188.61 LOS -24.9 66.6 NVD 26 08 39 15 44.4 82.7 5076.9 84 00141 A 26 03 31 36 36.28 35780.52 3075.11 0.00 10.53 36400.7 7665.3 7.7 3.6 62.50 188.61 LOS -24.0 66.8 NVD 26 08 41 15 44.8 82.8 5026.2 85 00141 A 26 03 33 36 36.78 35780.57 3075.11 0.00 11.03 36400.7 7614.8 7.7 3.6 62.50 188.61 LOS -23.1 67.0 NVD 26 08 43 15 45.3 83.0 4975.5 86 00141 A 26 03 35 36 37.28 35780.61 3075.11 0.00 11.53 36400.7 7564.2 7.7 3.6 62.50 188.61 LOS -22.1 67.1 NVD 26 08 45 15 45.8 83.1 4924.7 87 00141 A 26 03 37 36 37.78 35780.66 3075.11 0.00 12.03 36400.8 7513.8 7.7 3.6 62.50 188.61 LOS -21.2 67.3 NVD 26 08 47 15 46.2 83.2 4873.9 88 00141 A 26 03 39 36 38.28 35780.71 3075.10 0.00 12.53 36400.8 7463.3 7.7 3.6 62.50 188.61 LOS -20.3 67.4 NVD 26 08 49 15 46.7 83.4 4823.1 89 00141 A 26 03 41 36 38.78 35780.75 3075.10 0.00 13.03 36400.9 7412.9 7.6 3.6 62.50 188.61 LOS -19.4 67.6 NVD 26 08 51 15 47.1 83.5 4772.3 90 00141 A 26 03 43 36 39.28 35780.80 3075.09 0.00 13.54 36400.9 7362.5 7.6 3.6 62.50 188.61 LOS -18.4 67.7 NVD 26 08 53 15 47.6 83.7 4721.5 91 00141 A 26 03 45 36 39.79 35780.85 3075.09 0.00 14.04 36401.0 7312.2 7.6 3.6 62.50 188.61 LOS -17.5 67.8 NVD 26 08 55 15 48.0 83.8 4670.7 92 00141 A 26 03 47 36 40.29 35780.90 3075.09 0.00 14.54 36401.0 7261.9 7.6 3.6 62.50 188.60 LOS -16.6 67.9 NVD 26 08 57 15 48.5 83.9 4619.8 93 00141 A 26 03 49 36 40.79 35780.95 3075.08 0.00 15.04 36401.1 7211.6 7.5 3.6 62.50 188.60 LOS -15.7 68.0 NVD 26 08 59 15 49.0 84.1 4569.0 94 00141 A 26 03 51 36 41.29 35781.00 3075.08 0.00 15.54 36401.1 7161.4 7.5 3.6 62.50 188.60 LOS -14.7 68.1 NVD 26 09 01 15 49.4 84.2 4518.1 95 00141 A 26 03 53 36 41.79 35781.05 3075.08 0.00 16.04 36401.2 7111.2 7.5 3.6 62.50 188.60 LOS -13.8 68.2 NVD 26 09 03 15 49.9 84.4 4467.2 96 00141 A 26 03 55 36 42.29 35781.10 3075.07 0.00 16.54 36401.2 7061.1 7.5 3.6 62.50 188.60 LOS -12.9 68.3 NVD 26 09 05 15 50.3 84.5 4416.3 97 00141 A 26 03 57 36 42.80 35781.15 3075.07 0.00 17.05 36401.3 7011.1 7.4 3.6 62.50 188.60 LOS -11.9 68.4 NVD 26 09 07 15 50.8 84.7 4365.4 98 00141 A 26 03 59 36 43.30 35781.20 3075.07 0.00 17.55 36401.3 6961.0 7.4 3.6 62.50 188.60 LOS -11.0 68.5 NVD 26 09 09 15 51.2 84.8 4314.5 99 00141 A 26 04 01 36 43.80 35781.25 3075.06 0.00 18.05 36401.4 6911.1 7.4 3.6 62.50 188.60 LOS -10.1 68.5 NVD 26 09 11 15 51.7 84.9 4263.6 100 00141 A 26 04 03 36 44.30 35781.31 3075.06 0.00 18.55 36401.4 6861.1 7.3 3.6 62.50 188.60 LOS -9.1 68.6 NVD 26 09 13 15 52.2 85.1 4212.6 101 00141 A 26 04 05 36 44.80 35781.36 3075.05 0.00 19.05 36401.5 6811.3 7.3 3.7 62.50 188.60 LOS -8.2 68.7 NVD 26 09 15 15 52.6 85.2 4161.7 102 00141 A 26 04 07 36 45.30 35781.41 3075.05 0.00 19.55 36401.6 6761.5 7.3 3.7 62.50 188.60 LOS -7.3 68.7 NVD 26 09 17 15 53.1 85.4 4110.7 103 00141 A 26 04 09 36 45.80 35781.47 3075.05 0.00 20.06 36401.6 6711.7 7.2 3.7 62.50 188.60 LOS -6.3 68.8 NVD 26 09 19 15 53.5 85.5 4059.7 104 00141 A 26 04 11 36 46.31 35781.52 3075.04 0.00 20.56 36401.7 6662.0 7.2 3.7 62.50 188.60 LOS -5.4 68.8 NVD 26 09 21 15 54.0 85.7 4008.7 105 00141 A 26 04 13 36 46.81 35781.58 3075.04 0.00 21.06 36401.7 6612.4 7.2 3.7 62.50 188.60 LOS -4.5 68.8 NVD 26 09 23 15 54.4 85.8 3957.7 106 00141 A 26 04 15 36 47.31 35781.63 3075.03 0.00 21.56 36401.8 6562.8 7.1 3.7 62.50 188.60 LOS -3.5 68.9 NVD 26 09 25 15 54.9 86.0 3906.7 107 00141 A 26 04 17 36 47.81 35781.69 3075.03 0.00 22.06 36401.8 6513.3 7.1 3.7 62.50 188.60 LOS -2.6 68.9 NVD 26 09 27 15 55.4 86.1 3855.7 108 00141 A 26 04 19 36 48.31 35781.74 3075.03 0.00 22.56 36401.9 6463.8 7.1 3.7 62.50 188.60 LOS -1.7 68.9 NVD 26 09 29 15 55.8 86.3 3804.7 109 00141 A 26 04 21 36 48.81 35781.80 3075.02 0.00 23.06 36401.9 6414.5 7.0 3.7 62.50 188.60 LOS -0.7 68.9 NVD 26 09 31 15 56.3 86.4 3753.7 110 00141 A 26 04 23 36 49.32 35781.86 3075.02 0.00 23.57 36402.0 6365.1 7.0 3.7 62.50 188.60 LOS 0.2 68.9 NVD 26 09 33 15 56.7 86.6 3702.6 111 00141 A 26 04 25 36 49.82 35781.91 3075.01 0.00 24.07 36402.1 6315.9 7.0 3.7 62.50 188.60 LOS 1.1 68.9 NVD 26 09 35 15 57.2 86.8 3651.6 112 00141 A 26 04 27 36 50.32 35781.97 3075.01 0.00 24.57 36402.1 6266.7 6.9 3.7 62.50 188.60 LOS 2.1 68.9 NVD 26 09 37 15 57.7 86.9 3600.5 113 00141 A 26 04 29 36 50.82 35782.03 3075.01 0.00 25.07 36402.2 6217.6 6.9 3.7 62.50 188.60 LOS 3.0 68.9 NVD 26 09 39 15 58.1 87.1 3549.4 114 00141 A 26 04 31 36 51.32 35782.09 3075.00 0.00 25.57 36402.2 6168.6 6.8 3.7 62.50 188.59 LOS 3.9 68.8 NVD 26 09 41 15 58.6 87.2 3498.4 115 00141 A 26 04 33 36 51.82 35782.15 3075.00 0.00 26.07 36402.3 6119.7 6.8 3.7 62.50 188.59 LOS 4.9 68.8 NVD 26 09 43 15 59.0 87.4 3447.3 116 00141 A 26 04 35 36 52.32 35782.21 3074.99 0.00 26.58 36402.4 6070.8 6.8 3.7 62.50 188.59 LOS 5.8 68.8 VBC 26 09 45 15 59.5 87.6 3396.2 117 00141 A 26 04 37 36 52.83 35782.27 3074.99 0.00 27.08 36402.4 6022.0 6.7 3.7 62.50 188.59 LOS 6.7 68.7 VBC 26 09 47 15 59.9 87.7 3345.1 118 00141 A 26 04 39 36 53.33 35782.33 3074.98 0.00 27.58 36402.5 5973.3 6.7 3.7 62.50 188.59 LOS 7.7 68.7 VBC 26 09 49 15 60.4 87.9 3294.0 119 00141 A 26 04 41 36 53.83 35782.39 3074.98 0.00 28.08 36402.5 5924.7 6.6 3.7 62.50 188.59 LOS 8.6 68.6 VBC 26 09 51 15 60.9 88.1 3242.9 120 00141 A 26 04 43 36 54.33 35782.45 3074.97 0.00 28.58 36402.6 5876.2 6.6 3.7 62.50 188.59 LOS 9.5 68.6 VBC 26 09 53 15 61.3 88.2 3191.8 121 00141 A 26 04 45 36 54.83 35782.51 3074.97 0.00 29.08 36402.7 5827.7 6.6 3.7 62.50 188.59 LOS 10.5 68.5 VBC 26 09 55 15 61.8 88.4 3140.7 122 00141 A 26 04 47 36 55.33 35782.58 3074.97 0.00 29.58 36402.7 5779.4 6.5 3.7 62.50 188.59 LOS 11.4 68.4 VBC 26 09 57 15 62.2 88.6 3089.6 123

Page 354: ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM …myreaders.info/00_Orbital__Mechanics__-__Model_____Simulation... · ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM-MSS)

www.m

yrea

ders

.inf

o

OM-MSS Page 354 SATELLITE PASS - GROUND TRACE [acronym - Line Of Sight (LOS), On Board Computerr (OBC), Visible Band Camera (VBC), Night Vision Devices (NVD) ] ORBIT, INPUT TIME, POSIION, SAT VELOCITY, GROUND TRACE, RANGE, DIST, PITCH/ROLL, EL/AZ, ACCESS EL/AZ, DATA SOLAR TIME EL/AZ, DIST Line 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 @ES 18 19 20 @SS 21 22 23 24 25 26 27 @ES 28 29 30 No. Node GMT Anomaly Height @ Vel Lat(SAT)Log Slant S-Sat Pitch Roll EL(SAT)AZ Control EL(SUN)AZ Acq. LMT(ES) EL(SUN)AZ S-Sun Nos D H M S deg km meter deg deg km km deg deg deg D H M S deg km 00141 A 26 04 49 36 55.83 35782.64 3074.96 0.00 30.09 36402.8 5731.1 6.5 3.7 62.50 188.59 LOS 12.3 68.4 VBC 26 09 59 15 62.7 88.7 3038.4 124 00141 A 26 04 51 36 56.34 35782.70 3074.96 0.00 30.59 36402.9 5683.0 6.4 3.7 62.50 188.59 LOS 13.3 68.3 VBC 26 10 01 15 63.2 88.9 2987.3 125 00141 A 26 04 53 36 56.84 35782.76 3074.95 0.00 31.09 36402.9 5635.0 6.4 3.8 62.50 188.59 LOS 14.2 68.2 VBC 26 10 03 15 63.6 89.1 2936.2 126 00141 A 26 04 55 36 57.34 35782.83 3074.95 0.00 31.59 36403.0 5587.0 6.3 3.8 62.50 188.59 LOS 15.1 68.1 VBC 26 10 05 15 64.1 89.3 2885.1 127 00141 A 26 04 57 36 57.84 35782.89 3074.94 0.00 32.09 36403.1 5539.2 6.3 3.8 62.50 188.59 LOS 16.1 68.0 VBC 26 10 07 15 64.5 89.5 2833.9 128 00141 A 26 04 59 36 58.34 35782.96 3074.94 0.00 32.59 36403.1 5491.5 6.2 3.8 62.50 188.59 LOS 17.0 67.9 VBC 26 10 09 15 65.0 89.7 2782.8 129 00141 A 26 05 01 36 58.84 35783.02 3074.93 0.00 33.10 36403.2 5443.9 6.2 3.8 62.50 188.59 LOS 17.9 67.8 VBC 26 10 11 15 65.5 89.9 2731.6 130 00141 A 26 05 03 36 59.35 35783.08 3074.93 0.00 33.60 36403.3 5396.4 6.1 3.8 62.50 188.59 LOS 18.8 67.6 VBC 26 10 13 15 65.9 90.1 2680.5 131 00141 A 26 05 05 36 59.85 35783.15 3074.92 0.00 34.10 36403.3 5349.0 6.1 3.8 62.50 188.59 LOS 19.8 67.5 VBC 26 10 15 15 66.4 90.3 2629.4 132 00141 A 26 05 07 36 60.35 35783.22 3074.92 0.00 34.60 36403.4 5301.8 6.0 3.8 62.50 188.59 LOS 20.7 67.4 VBC 26 10 17 15 66.8 90.5 2578.2 133 00141 A 26 05 09 36 60.85 35783.28 3074.91 0.00 35.10 36403.5 5254.7 6.0 3.8 62.50 188.59 LOS 21.6 67.2 VBC 26 10 19 15 67.3 90.7 2527.1 134 00141 A 26 05 11 36 61.35 35783.35 3074.91 0.00 35.60 36403.5 5207.7 5.9 3.8 62.50 188.59 LOS 22.5 67.0 VBC 26 10 21 15 67.8 90.9 2476.0 135 00141 A 26 05 13 36 61.85 35783.41 3074.90 0.00 36.10 36403.6 5160.8 5.9 3.8 62.50 188.59 LOS 23.5 66.9 VBC 26 10 23 15 68.2 91.1 2424.8 136 00141 A 26 05 15 36 62.35 35783.48 3074.90 0.00 36.61 36403.7 5114.1 5.8 3.8 62.50 188.59 LOS 24.4 66.7 VBC 26 10 25 15 68.7 91.3 2373.7 137 00141 A 26 05 17 36 62.86 35783.55 3074.89 0.00 37.11 36403.7 5067.5 5.8 3.8 62.50 188.59 LOS 25.3 66.5 VBC 26 10 27 15 69.1 91.5 2322.6 138 00141 A 26 05 19 36 63.36 35783.62 3074.89 0.00 37.61 36403.8 5021.1 5.7 3.8 62.50 188.59 LOS 26.2 66.3 VBC 26 10 29 15 69.6 91.8 2271.5 139 00141 A 26 05 21 36 63.86 35783.68 3074.88 0.00 38.11 36403.9 4974.9 5.6 3.8 62.50 188.59 LOS 27.1 66.1 VBC 26 10 31 15 70.1 92.0 2220.4 140 00141 A 26 05 23 36 64.36 35783.75 3074.88 0.00 38.61 36403.9 4928.7 5.6 3.8 62.50 188.59 LOS 28.0 65.9 VBC 26 10 33 15 70.5 92.3 2169.3 141 00141 A 26 05 25 36 64.86 35783.82 3074.87 0.00 39.11 36404.0 4882.8 5.5 3.8 62.50 188.59 LOS 29.0 65.7 VBC 26 10 35 15 71.0 92.5 2118.2 142 00141 A 26 05 27 36 65.36 35783.89 3074.87 0.00 39.61 36404.1 4837.0 5.5 3.8 62.50 188.58 LOS 29.9 65.5 VBC 26 10 37 15 71.4 92.8 2067.1 143 00141 A 26 05 29 36 65.86 35783.96 3074.86 0.00 40.12 36404.1 4791.4 5.4 3.8 62.50 188.58 LOS 30.8 65.2 VBC 26 10 39 15 71.9 93.0 2016.0 144 00141 A 26 05 31 36 66.37 35784.03 3074.86 0.00 40.62 36404.2 4746.0 5.4 3.8 62.50 188.58 LOS 31.7 65.0 VBC 26 10 41 15 72.3 93.3 1965.0 145 00141 A 26 05 33 36 66.87 35784.10 3074.85 0.00 41.12 36404.3 4700.7 5.3 3.8 62.50 188.58 LOS 32.6 64.7 VBC 26 10 43 15 72.8 93.6 1913.9 146 00141 A 26 05 35 36 67.37 35784.17 3074.85 0.00 41.62 36404.4 4655.6 5.2 3.8 62.50 188.58 LOS 33.5 64.4 VBC 26 10 45 15 73.3 93.9 1862.9 147 00141 A 26 05 37 36 67.87 35784.24 3074.84 0.00 42.12 36404.4 4610.7 5.2 3.8 62.50 188.58 LOS 34.4 64.1 VBC 26 10 47 15 73.7 94.2 1811.9 148 00141 A 26 05 39 36 68.37 35784.31 3074.84 0.00 42.62 36404.5 4566.1 5.1 3.8 62.50 188.58 LOS 35.3 63.8 VBC 26 10 49 15 74.2 94.5 1760.9 149 00141 A 26 05 41 36 68.87 35784.38 3074.83 0.00 43.12 36404.6 4521.6 5.1 3.8 62.50 188.58 LOS 36.2 63.5 VBC 26 10 51 15 74.6 94.8 1709.9 150 00141 A 26 05 43 36 69.37 35784.45 3074.83 0.00 43.63 36404.6 4477.3 5.0 3.8 62.50 188.58 LOS 37.1 63.2 VBC 26 10 53 15 75.1 95.2 1659.0 151 00141 A 26 05 45 01 69.73 35784.50 Eqa 3074.83 0.00 43.98 36404.7 4446.3 5.0 3.8 62.50 239.11 LOS 37.7 62.9 VBC 26 10 54 40 75.4 95.4 1623.1 152 00141 D 26 05 45 36 69.88 35784.52 3074.82 -0.00 43.83 36404.7 4459.3 5.0 3.8 62.50 188.58 LOS 37.7 62.9 VBC 26 10 55 15 75.6 95.5 1608.1 153 00141 D 26 05 47 36 70.38 35784.59 3074.82 -0.00 43.33 36404.8 4503.5 5.0 3.8 62.50 188.58 LOS 37.7 62.9 VBC 26 10 57 15 76.0 95.9 1557.2 154 00141 D 26 05 49 36 70.88 35784.66 3074.81 -0.00 42.83 36404.9 4547.9 5.1 3.8 62.50 188.58 LOS 37.7 62.9 VBC 26 10 59 15 76.5 96.3 1506.3 155 00141 D 26 05 51 36 71.38 35784.73 3074.81 -0.00 42.33 36404.9 4592.5 5.2 3.8 62.50 188.58 LOS 37.7 62.9 VBC 26 11 01 15 76.9 96.7 1455.5 156 00141 D 26 05 53 36 71.88 35784.80 3074.80 -0.00 41.82 36405.0 4637.3 5.2 3.8 62.50 188.58 LOS 37.7 62.9 VBC 26 11 03 15 77.4 97.2 1404.8 157 00141 D 26 05 55 36 72.38 35784.88 3074.80 -0.00 41.32 36405.1 4682.3 5.3 3.8 62.50 188.58 LOS 37.7 62.9 VBC 26 11 05 15 77.8 97.6 1354.1 158 00141 D 26 05 57 36 72.88 35784.95 3074.79 -0.00 40.82 36405.1 4727.5 5.3 3.8 62.50 188.58 LOS 37.7 62.9 VBC 26 11 07 15 78.3 98.1 1303.4 159 00141 D 26 05 59 36 73.39 35785.02 3074.79 -0.00 40.32 36405.2 4772.9 5.4 3.8 62.50 188.58 LOS 37.7 62.9 VBC 26 11 09 15 78.7 98.7 1252.8 160 00141 D 26 06 01 36 73.89 35785.09 3074.78 -0.00 39.82 36405.3 4818.5 5.5 3.8 62.50 188.58 LOS 37.7 62.9 VBC 26 11 11 15 79.2 99.2 1202.3 161 00141 D 26 06 03 36 74.39 35785.17 3074.78 -0.00 39.32 36405.4 4864.2 5.5 3.8 62.50 188.58 LOS 37.7 62.9 VBC 26 11 13 15 79.7 99.8 1151.9 162 00141 D 26 06 05 36 74.89 35785.24 3074.77 -0.00 38.82 36405.4 4910.1 5.6 3.8 62.50 188.58 LOS 37.7 62.9 VBC 26 11 15 15 80.1 100.5 1101.5 163 00141 D 26 06 07 36 75.39 35785.31 3074.77 -0.00 38.31 36405.5 4956.1 5.6 3.8 62.50 188.58 LOS 37.7 62.9 VBC 26 11 17 15 80.6 101.2 1051.3 164 00141 D 26 06 09 36 75.89 35785.39 3074.76 -0.00 37.81 36405.6 5002.3 5.7 3.8 62.50 188.58 LOS 37.7 62.9 VBC 26 11 19 15 81.0 101.9 1001.2 165

Page 355: ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM …myreaders.info/00_Orbital__Mechanics__-__Model_____Simulation... · ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM-MSS)

www.m

yrea

ders

.inf

o

OM-MSS Page 355 SATELLITE PASS - GROUND TRACE [acronym - Line Of Sight (LOS), On Board Computerr (OBC), Visible Band Camera (VBC), Night Vision Devices (NVD) ] ORBIT, INPUT TIME, POSIION, SAT VELOCITY, GROUND TRACE, RANGE, DIST, PITCH/ROLL, EL/AZ, ACCESS EL/AZ, DATA SOLAR TIME EL/AZ, DIST Line 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 @ES 18 19 20 @SS 21 22 23 24 25 26 27 @ES 28 29 30 No. Node GMT Anomaly Height @ Vel Lat(SAT)Log Slant S-Sat Pitch Roll EL(SAT)AZ Control EL(SUN)AZ Acq. LMT(ES) EL(SUN)AZ S-Sun Nos D H M S deg km meter deg deg km km deg deg deg D H M S deg km 00141 D 26 06 11 36 76.39 35785.46 3074.75 -0.00 37.31 36405.7 5048.7 5.7 3.8 62.50 188.58 LOS 37.7 62.9 VBC 26 11 21 15 81.5 102.8 951.2 166 00141 D 26 06 13 36 76.90 35785.53 3074.75 -0.00 36.81 36405.7 5095.2 5.8 3.8 62.50 188.58 LOS 37.7 62.9 VBC 26 11 23 15 81.9 103.7 901.5 167 00141 D 26 06 15 36 77.40 35785.61 3074.74 -0.00 36.31 36405.8 5141.9 5.8 3.8 62.50 188.58 LOS 37.7 62.9 VBC 26 11 25 15 82.3 104.7 851.9 168 00141 D 26 06 17 36 77.90 35785.68 3074.74 -0.00 35.81 36405.9 5188.7 5.9 3.8 62.50 188.58 LOS 37.7 62.9 VBC 26 11 27 15 82.8 105.8 802.5 169 00141 D 26 06 19 36 78.40 35785.75 3074.73 -0.00 35.31 36406.0 5235.6 5.9 3.8 62.50 188.58 LOS 37.7 62.9 VBC 26 11 29 15 83.2 107.1 753.5 170 00141 D 26 06 21 36 78.90 35785.83 3074.73 -0.00 34.80 36406.0 5282.7 6.0 3.8 62.50 188.58 LOS 37.7 62.9 VBC 26 11 31 15 83.7 108.5 704.8 171 00141 D 26 06 23 36 79.40 35785.90 3074.72 -0.00 34.30 36406.1 5329.8 6.1 3.8 62.50 188.58 LOS 37.7 62.9 VBC 26 11 33 15 84.1 110.1 656.5 172 00141 D 26 06 25 36 79.90 35785.98 3074.72 -0.00 33.80 36406.2 5377.2 6.1 3.8 62.50 188.58 LOS 37.7 62.9 VBC 26 11 35 15 84.5 112.0 608.8 173 00141 D 26 06 27 36 80.41 35786.05 3074.71 -0.00 33.30 36406.3 5424.6 6.2 3.8 62.50 188.58 LOS 37.7 62.9 VBC 26 11 37 15 85.0 114.1 561.7 174 00141 D 26 06 29 36 80.91 35786.13 3074.71 -0.00 32.80 36406.4 5472.2 6.2 3.8 62.50 188.58 LOS 37.7 62.9 VBC 26 11 39 15 85.4 116.6 515.5 175 00141 D 26 06 31 36 81.41 35786.20 3074.70 -0.00 32.30 36406.4 5519.8 6.3 3.8 62.50 188.58 LOS 37.7 62.9 VBC 26 11 41 15 85.8 119.6 470.4 176 00141 D 26 06 33 36 81.91 35786.28 3074.70 -0.00 31.80 36406.5 5567.6 6.3 3.8 62.50 188.58 LOS 37.7 62.9 VBC 26 11 43 15 86.2 123.2 426.7 177 00141 D 26 06 35 36 82.41 35786.35 3074.69 -0.00 31.29 36406.6 5615.5 6.3 3.8 62.50 188.58 LOS 37.7 62.9 VBC 26 11 45 15 86.5 127.6 385.0 178 00141 D 26 06 37 36 82.91 35786.43 3074.68 -0.00 30.79 36406.7 5663.5 6.4 3.8 62.50 188.58 LOS 37.7 62.9 VBC 26 11 47 15 86.9 133.0 345.9 179 00141 D 26 06 39 36 83.41 35786.50 3074.68 -0.00 30.29 36406.7 5711.6 6.4 3.7 62.50 188.58 LOS 37.7 62.9 VBC 26 11 49 15 87.2 139.6 310.5 180 00141 D 26 06 41 36 83.92 35786.58 3074.67 -0.00 29.79 36406.8 5759.8 6.5 3.7 62.50 188.58 LOS 37.7 62.9 VBC 26 11 51 15 87.5 147.8 280.2 181 00141 D 26 06 43 36 84.42 35786.65 3074.67 -0.00 29.29 36406.9 5808.1 6.5 3.7 62.50 188.58 LOS 37.7 62.9 VBC 26 11 53 15 87.7 157.7 256.6 182 00141 D 26 06 45 36 84.92 35786.73 3074.66 -0.00 28.79 36407.0 5856.5 6.6 3.7 62.50 188.58 LOS 37.7 62.9 VBC 26 11 55 15 87.8 169.2 242.0 183 00141 D 26 06 47 36 85.42 35786.80 3074.66 -0.00 28.28 36407.0 5905.0 6.6 3.7 62.50 188.58 LOS 37.7 62.9 VBC 26 11 57 15 87.9 181.6 237.8 184 00141 D 26 06 49 36 85.92 35786.88 3074.65 -0.00 27.78 36407.1 5953.6 6.7 3.7 62.50 188.58 LOS 37.7 62.9 VBC 26 11 59 15 87.8 193.8 244.6 185 00141 D 26 06 51 36 86.42 35786.95 3074.65 -0.00 27.28 36407.2 6002.2 6.7 3.7 62.50 188.58 LOS 37.7 62.9 VBC 26 12 01 15 87.6 204.9 261.7 186 00141 D 26 06 53 36 86.92 35787.03 3074.64 -0.00 26.78 36407.3 6051.0 6.7 3.7 62.50 188.58 LOS 37.7 62.9 VBC 26 12 03 15 87.4 214.4 287.0 187 00141 D 26 06 55 36 87.43 35787.11 3074.63 -0.00 26.28 36407.3 6099.8 6.8 3.7 62.50 188.58 LOS 37.7 62.9 VBC 26 12 05 15 87.1 222.2 318.8 188 00141 D 26 06 57 36 87.93 35787.18 3074.63 -0.00 25.78 36407.4 6148.7 6.8 3.7 62.50 188.58 LOS 37.7 62.9 VBC 26 12 07 15 86.8 228.5 355.2 189 00141 D 26 06 59 36 88.43 35787.26 3074.62 -0.00 25.28 36407.5 6197.7 6.9 3.7 62.50 188.58 LOS 37.7 62.9 VBC 26 12 09 15 86.5 233.6 395.0 190 00141 D 26 07 01 36 88.93 35787.33 3074.62 -0.00 24.77 36407.6 6246.8 6.9 3.7 62.50 188.58 LOS 37.7 62.9 VBC 26 12 11 15 86.1 237.8 437.3 191 00141 D 26 07 03 36 89.43 35787.41 3074.61 -0.00 24.27 36407.7 6295.9 6.9 3.7 62.50 188.58 LOS 37.7 62.9 VBC 26 12 13 15 85.7 241.2 481.3 192 00141 D 26 07 05 36 89.93 35787.48 3074.61 -0.00 23.77 36407.7 6345.1 7.0 3.7 62.50 188.58 LOS 37.7 62.9 VBC 26 12 15 15 85.3 244.1 526.7 193 00141 D 26 07 07 36 90.43 35787.56 3074.60 -0.00 23.27 36407.8 6394.4 7.0 3.7 62.50 188.58 LOS 37.7 62.9 VBC 26 12 17 15 84.9 246.5 573.2 194 00141 D 26 07 09 36 90.94 35787.63 3074.60 -0.00 22.77 36407.9 6443.7 7.1 3.7 62.50 188.58 LOS 37.7 62.9 VBC 26 12 19 15 84.4 248.6 620.4 195 00141 D 26 07 11 36 91.44 35787.71 3074.59 -0.00 22.27 36408.0 6493.2 7.1 3.7 62.50 188.58 LOS 37.7 62.9 VBC 26 12 21 15 84.0 250.4 668.3 196 00141 D 26 07 13 36 91.94 35787.79 3074.59 -0.00 21.77 36408.0 6542.6 7.1 3.7 62.50 188.57 LOS 37.7 62.9 VBC 26 12 23 15 83.6 251.9 716.7 197 00141 D 26 07 15 36 92.44 35787.86 3074.58 -0.00 21.26 36408.1 6592.2 7.2 3.7 62.50 188.57 LOS 37.7 62.9 VBC 26 12 25 15 83.1 253.3 765.5 198 00141 D 26 07 17 36 92.94 35787.94 3074.57 -0.00 20.76 36408.2 6641.8 7.2 3.7 62.50 188.57 LOS 37.7 62.9 VBC 26 12 27 15 82.7 254.5 814.6 199 00141 D 26 07 19 36 93.44 35788.01 3074.57 -0.00 20.26 36408.3 6691.5 7.2 3.7 62.50 188.57 LOS 37.6 62.9 VBC 26 12 29 15 82.2 255.6 864.0 200 00141 D 26 07 21 36 93.94 35788.09 3074.56 -0.00 19.76 36408.4 6741.2 7.3 3.7 62.50 188.57 LOS 37.6 62.9 VBC 26 12 31 15 81.8 256.6 913.6 201 00141 D 26 07 23 36 94.44 35788.16 3074.56 -0.00 19.26 36408.4 6791.0 7.3 3.7 62.50 188.57 LOS 37.6 62.9 VBC 26 12 33 15 81.3 257.5 963.5 202 00141 D 26 07 25 36 94.95 35788.24 3074.55 -0.00 18.76 36408.5 6840.8 7.3 3.6 62.50 188.57 LOS 37.6 62.9 VBC 26 12 35 15 80.9 258.3 1013.4 203 00141 D 26 07 27 36 95.45 35788.31 3074.55 -0.00 18.26 36408.6 6890.7 7.4 3.6 62.50 188.57 LOS 37.6 62.9 VBC 26 12 37 15 80.4 259.1 1063.6 204 00141 D 26 07 29 36 95.95 35788.39 3074.54 -0.00 17.75 36408.7 6940.6 7.4 3.6 62.50 188.57 LOS 37.6 62.9 VBC 26 12 39 15 80.0 259.7 1113.8 205 00141 D 26 07 31 36 96.45 35788.47 3074.54 -0.00 17.25 36408.7 6990.6 7.4 3.6 62.50 188.57 LOS 37.6 62.9 VBC 26 12 41 15 79.5 260.4 1164.2 206

Page 356: ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM …myreaders.info/00_Orbital__Mechanics__-__Model_____Simulation... · ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM-MSS)

www.m

yrea

ders

.inf

o

OM-MSS Page 356 SATELLITE PASS - GROUND TRACE [acronym - Line Of Sight (LOS), On Board Computerr (OBC), Visible Band Camera (VBC), Night Vision Devices (NVD) ] ORBIT, INPUT TIME, POSIION, SAT VELOCITY, GROUND TRACE, RANGE, DIST, PITCH/ROLL, EL/AZ, ACCESS EL/AZ, DATA SOLAR TIME EL/AZ, DIST Line 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 @ES 18 19 20 @SS 21 22 23 24 25 26 27 @ES 28 29 30 No. Node GMT Anomaly Height @ Vel Lat(SAT)Log Slant S-Sat Pitch Roll EL(SAT)AZ Control EL(SUN)AZ Acq. LMT(ES) EL(SUN)AZ S-Sun Nos D H M S deg km meter deg deg km km deg deg deg D H M S deg km 00141 D 26 07 33 36 96.95 35788.54 3074.53 -0.00 16.75 36408.8 7040.6 7.4 3.6 62.50 188.57 LOS 37.6 62.9 VBC 26 12 43 15 79.1 261.0 1214.6 207 00141 D 26 07 35 36 97.45 35788.62 3074.52 -0.00 16.25 36408.9 7090.7 7.5 3.6 62.50 188.57 LOS 37.6 62.9 VBC 26 12 45 15 78.6 261.5 1265.2 208 00141 D 26 07 37 36 97.95 35788.69 3074.52 -0.00 15.75 36409.0 7140.9 7.5 3.6 62.50 188.57 LOS 37.6 62.9 VBC 26 12 47 15 78.2 262.0 1315.8 209 00141 D 26 07 39 36 98.46 35788.77 3074.51 -0.00 15.25 36409.0 7191.0 7.5 3.6 62.50 188.57 LOS 37.6 62.9 VBC 26 12 49 15 77.7 262.5 1366.4 210 00141 D 26 07 41 36 98.96 35788.84 3074.51 -0.00 14.75 36409.1 7241.3 7.6 3.6 62.50 188.57 LOS 37.6 62.9 VBC 26 12 51 15 77.3 263.0 1417.2 211 00141 D 26 07 43 36 99.46 35788.91 3074.50 -0.00 14.24 36409.2 7291.5 7.6 3.6 62.50 188.57 LOS 37.6 62.9 VBC 26 12 53 15 76.8 263.4 1467.9 212 00141 D 26 07 45 36 99.96 35788.99 3074.50 -0.00 13.74 36409.3 7341.8 7.6 3.6 62.50 188.57 LOS 37.6 62.9 VBC 26 12 55 15 76.4 263.8 1518.7 213 00141 D 26 07 47 36 100.46 35789.06 3074.49 -0.00 13.24 36409.4 7392.2 7.6 3.6 62.50 188.57 LOS 37.6 62.9 VBC 26 12 57 15 75.9 264.2 1569.6 214 00141 D 26 07 49 36 100.96 35789.14 3074.49 -0.00 12.74 36409.4 7442.6 7.6 3.6 62.50 188.57 LOS 37.6 62.9 VBC 26 12 59 15 75.4 264.6 1620.5 215 00141 D 26 07 51 36 101.46 35789.21 3074.48 -0.00 12.24 36409.5 7493.0 7.7 3.6 62.50 188.57 LOS 37.6 62.9 VBC 26 13 01 15 75.0 265.0 1671.4 216 00141 D 26 07 53 36 101.97 35789.29 3074.48 -0.00 11.74 36409.6 7543.5 7.7 3.6 62.50 188.57 LOS 37.6 62.9 VBC 26 13 03 15 74.5 265.3 1722.3 217 00141 D 26 07 55 36 102.47 35789.36 3074.47 -0.00 11.24 36409.7 7594.0 7.7 3.6 62.50 188.57 LOS 37.6 62.9 VBC 26 13 05 15 74.1 265.6 1773.3 218 00141 D 26 07 57 36 102.97 35789.43 3074.47 -0.00 10.74 36409.7 7644.5 7.7 3.6 62.50 188.57 LOS 37.6 62.9 VBC 26 13 07 15 73.6 265.9 1824.3 219 00141 D 26 07 59 36 103.47 35789.51 3074.46 -0.00 10.23 36409.8 7695.1 7.8 3.6 62.50 188.57 LOS 37.6 62.9 VBC 26 13 09 15 73.2 266.2 1875.3 220 00141 D 26 08 01 36 103.97 35789.58 3074.45 -0.00 9.73 36409.9 7745.7 7.8 3.6 62.50 188.57 LOS 37.6 62.9 VBC 26 13 11 15 72.7 266.5 1926.3 221 00141 D 26 08 03 36 104.47 35789.66 3074.45 -0.00 9.23 36410.0 7796.3 7.8 3.6 62.50 188.57 LOS 37.6 62.9 VBC 26 13 13 15 72.2 266.8 1977.4 222 00141 D 26 08 05 36 104.97 35789.73 3074.44 -0.00 8.73 36410.0 7847.0 7.8 3.6 62.50 188.57 LOS 37.6 62.9 VBC 26 13 15 15 71.8 267.1 2028.4 223 00141 D 26 08 07 36 105.47 35789.80 3074.44 -0.00 8.23 36410.1 7897.7 7.8 3.6 62.50 188.57 LOS 37.6 62.9 VBC 26 13 17 15 71.3 267.4 2079.5 224 00141 D 26 08 09 36 105.98 35789.87 3074.43 -0.00 7.73 36410.2 7948.4 7.8 3.6 62.50 188.57 LOS 37.6 62.9 VBC 26 13 19 15 70.9 267.6 2130.6 225 00141 D 26 08 11 36 106.48 35789.95 3074.43 -0.00 7.23 36410.3 7999.1 7.9 3.5 62.50 188.57 LOS 37.6 62.9 VBC 26 13 21 15 70.4 267.9 2181.6 226 00141 D 26 08 13 36 106.98 35790.02 3074.42 -0.00 6.72 36410.3 8049.9 7.9 3.5 62.50 188.57 LOS 37.6 62.9 VBC 26 13 23 15 69.9 268.1 2232.7 227 00141 D 26 08 15 36 107.48 35790.09 3074.42 -0.00 6.22 36410.4 8100.7 7.9 3.5 62.50 188.57 LOS 37.6 62.9 VBC 26 13 25 15 69.5 268.3 2283.8 228 00141 D 26 08 17 36 107.98 35790.16 3074.41 -0.00 5.72 36410.5 8151.6 7.9 3.5 62.50 188.58 LOS 37.6 62.9 VBC 26 13 27 15 69.0 268.6 2335.0 229 00141 D 26 08 19 36 108.48 35790.24 3074.41 -0.00 5.22 36410.6 8202.4 7.9 3.5 62.50 188.58 LOS 37.6 62.9 VBC 26 13 29 15 68.6 268.8 2386.1 230 00141 D 26 08 21 36 108.98 35790.31 3074.40 -0.00 4.72 36410.6 8253.3 7.9 3.5 62.50 188.58 LOS 37.6 62.9 VBC 26 13 31 15 68.1 269.0 2437.2 231 00141 D 26 08 23 36 109.48 35790.38 3074.40 -0.00 4.22 36410.7 8304.2 7.9 3.5 62.50 188.58 LOS 37.6 62.9 VBC 26 13 33 15 67.6 269.2 2488.3 232 00141 D 26 08 25 36 109.99 35790.45 3074.39 -0.00 3.72 36410.8 8355.1 7.9 3.5 62.50 188.58 LOS 37.6 62.9 VBC 26 13 35 15 67.2 269.4 2539.4 233 00141 D 26 08 27 36 110.49 35790.52 3074.39 -0.00 3.21 36410.8 8406.1 8.0 3.5 62.50 188.58 LOS 37.6 62.9 VBC 26 13 37 15 66.7 269.7 2590.6 234 00141 D 26 08 29 36 110.99 35790.59 3074.38 -0.00 2.71 36410.9 8457.0 8.0 3.5 62.50 188.58 LOS 37.6 62.9 VBC 26 13 39 15 66.3 269.9 2641.7 235 00141 D 26 08 31 36 111.49 35790.66 3074.38 -0.00 2.21 36411.0 8508.0 8.0 3.5 62.50 188.58 LOS 37.6 62.9 VBC 26 13 41 15 65.8 270.1 2692.8 236 00141 D 26 08 33 36 111.99 35790.73 3074.37 -0.00 1.71 36411.1 8559.0 8.0 3.5 62.50 188.58 LOS 37.6 62.9 VBC 26 13 43 15 65.3 270.3 2743.9 237 00141 D 26 08 35 36 112.49 35790.80 3074.37 -0.00 1.21 36411.1 8610.1 8.0 3.5 62.50 188.58 LOS 37.6 62.9 VBC 26 13 45 15 64.9 270.4 2795.1 238 00141 D 26 08 37 36 112.99 35790.87 3074.36 -0.00 0.71 36411.2 8661.1 8.0 3.5 62.50 188.58 LOS 37.6 62.9 VBC 26 13 47 15 64.4 270.6 2846.2 239 00141 D 26 08 39 36 113.50 35790.94 3074.36 -0.00 0.21 36411.3 8712.2 8.0 3.5 62.50 188.58 LOS 37.6 62.9 VBC 26 13 49 15 64.0 270.8 2897.3 240 00141 D 26 08 41 36 114.00 35791.01 3074.35 -0.00 359.71 36411.3 8763.3 -8.0 3.5 62.50 188.58 LOS 37.6 62.9 VBC 26 13 51 15 63.5 271.0 2948.4 241 00141 D 26 08 43 36 114.50 35791.08 3074.35 -0.00 359.20 36411.4 8814.4 -8.0 3.5 62.50 188.58 LOS 37.6 62.9 VBC 26 13 53 15 63.1 271.2 2999.6 242 00141 D 26 08 45 36 115.00 35791.15 3074.34 -0.00 358.70 36411.5 8865.5 -8.0 3.5 62.50 188.58 LOS 37.6 62.9 VBC 26 13 55 15 62.6 271.4 3050.7 243 00141 D 26 08 47 36 115.50 35791.22 3074.34 -0.00 358.20 36411.6 8916.6 -8.0 3.5 62.50 188.58 LOS 37.6 62.9 VBC 26 13 57 15 62.1 271.5 3101.8 244 00141 D 26 08 49 36 116.00 35791.29 3074.33 -0.00 357.70 36411.6 8967.7 -8.0 3.5 62.50 188.58 LOS 37.6 62.9 VBC 26 13 59 15 61.7 271.7 3152.9 245 00141 D 26 08 51 36 116.50 35791.35 3074.33 -0.00 357.20 36411.7 9018.9 -8.0 3.5 62.50 188.58 LOS 37.6 62.9 VBC 26 14 01 15 61.2 271.9 3204.0 246 00141 D 26 08 53 36 117.00 35791.42 3074.32 -0.00 356.70 36411.8 9070.0 -8.0 3.5 62.50 188.58 LOS 37.6 62.9 VBC 26 14 03 15 60.8 272.1 3255.1 247

Page 357: ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM …myreaders.info/00_Orbital__Mechanics__-__Model_____Simulation... · ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM-MSS)

www.m

yrea

ders

.inf

o

OM-MSS Page 357 SATELLITE PASS - GROUND TRACE [acronym - Line Of Sight (LOS), On Board Computerr (OBC), Visible Band Camera (VBC), Night Vision Devices (NVD) ] ORBIT, INPUT TIME, POSIION, SAT VELOCITY, GROUND TRACE, RANGE, DIST, PITCH/ROLL, EL/AZ, ACCESS EL/AZ, DATA SOLAR TIME EL/AZ, DIST Line 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 @ES 18 19 20 @SS 21 22 23 24 25 26 27 @ES 28 29 30 No. Node GMT Anomaly Height @ Vel Lat(SAT)Log Slant S-Sat Pitch Roll EL(SAT)AZ Control EL(SUN)AZ Acq. LMT(ES) EL(SUN)AZ S-Sun Nos D H M S deg km meter deg deg km km deg deg deg D H M S deg km 00141 D 26 08 55 36 117.51 35791.49 3074.32 -0.00 356.20 36411.8 9121.2 -8.0 3.5 62.50 188.58 LOS 37.6 62.9 VBC 26 14 05 15 60.3 272.2 3306.2 248 00141 D 26 08 57 36 118.01 35791.56 3074.31 -0.00 355.69 36411.9 9172.4 -8.0 3.5 62.50 188.58 LOS 37.6 62.9 VBC 26 14 07 15 59.8 272.4 3357.3 249 00141 D 26 08 59 36 118.51 35791.62 3074.31 -0.00 355.19 36412.0 9223.6 -8.0 3.4 62.50 188.58 LOS 37.6 62.9 VBC 26 14 09 15 59.4 272.5 3408.3 250 00141 D 26 09 01 36 119.01 35791.69 3074.30 -0.00 354.69 36412.0 9274.8 -8.0 3.4 62.50 188.58 LOS 37.6 62.9 VBC 26 14 11 15 58.9 272.7 3459.4 251 00141 D 26 09 03 36 119.51 35791.75 3074.30 -0.00 354.19 36412.1 9326.0 -8.0 3.4 62.50 188.58 LOS 37.6 62.9 VBC 26 14 13 15 58.5 272.9 3510.5 252 00141 D 26 09 05 36 120.01 35791.82 3074.29 -0.00 353.69 36412.2 9377.2 -8.0 3.4 62.50 188.58 LOS 37.6 62.9 VBC 26 14 15 15 58.0 273.0 3561.5 253 00141 D 26 09 07 36 120.51 35791.89 3074.29 -0.00 353.19 36412.2 9428.4 -8.0 3.4 62.50 188.58 LOS 37.6 62.9 VBC 26 14 17 15 57.5 273.2 3612.6 254 00141 D 26 09 09 36 121.01 35791.95 3074.28 -0.00 352.69 36412.3 9479.7 -8.0 3.4 62.50 188.58 LOS 37.6 62.9 VBC 26 14 19 15 57.1 273.3 3663.6 255 00141 D 26 09 11 36 121.52 35792.01 3074.28 -0.00 352.18 36412.4 9530.9 -8.0 3.4 62.50 188.58 LOS 37.6 62.9 VBC 26 14 21 15 56.6 273.5 3714.7 256 00141 D 26 09 13 36 122.02 35792.08 3074.27 -0.00 351.68 36412.4 9582.2 -8.0 3.4 62.50 188.58 LOS 37.6 62.9 VBC 26 14 23 15 56.2 273.7 3765.7 257 00141 D 26 09 15 36 122.52 35792.14 3074.27 -0.00 351.18 36412.5 9633.4 -8.0 3.4 62.50 188.58 LOS 37.6 62.9 VBC 26 14 25 15 55.7 273.8 3816.7 258 00141 D 26 09 17 36 123.02 35792.21 3074.26 -0.00 350.68 36412.6 9684.7 -8.0 3.4 62.50 188.58 LOS 37.6 62.9 VBC 26 14 27 15 55.3 274.0 3867.7 259 00141 D 26 09 19 36 123.52 35792.27 3074.26 -0.00 350.18 36412.6 9735.9 -8.0 3.4 62.50 188.58 LOS 37.6 62.9 VBC 26 14 29 15 54.8 274.1 3918.7 260 00141 D 26 09 21 36 124.02 35792.33 3074.25 -0.00 349.68 36412.7 9787.2 -8.0 3.4 62.50 188.58 LOS 37.6 62.9 VBC 26 14 31 15 54.3 274.3 3969.7 261 00141 D 26 09 23 36 124.52 35792.40 3074.25 -0.00 349.18 36412.8 9838.5 -8.0 3.4 62.50 188.58 LOS 37.6 62.9 VBC 26 14 33 15 53.9 274.4 4020.7 262 00141 D 26 09 25 36 125.02 35792.46 3074.24 -0.00 348.68 36412.8 9889.7 -8.0 3.4 62.50 188.58 LOS 37.6 62.9 VBC 26 14 35 15 53.4 274.6 4071.7 263 00141 D 26 09 27 36 125.53 35792.52 3074.24 -0.00 348.17 36412.9 9941.0 -8.0 3.4 62.50 188.58 LOS 37.6 62.9 VBC 26 14 37 15 53.0 274.7 4122.6 264 00141 D 26 09 29 36 126.03 35792.58 3074.24 -0.00 347.67 36413.0 9992.3 -8.0 3.4 62.50 188.58 LOS 37.6 62.9 VBC 26 14 39 15 52.5 274.9 4173.6 265 00141 D 26 09 31 36 126.53 35792.64 3074.23 -0.00 347.17 36413.0 10043.6 -8.0 3.4 62.50 188.58 LOS 37.6 62.9 VBC 26 14 41 15 52.0 275.0 4224.5 266 00141 D 26 09 33 36 127.03 35792.70 3074.23 -0.00 346.67 36413.1 10094.8 -7.9 3.4 62.50 188.58 LOS 37.6 62.9 VBC 26 14 43 15 51.6 275.2 4275.4 267 00141 D 26 09 35 36 127.53 35792.76 3074.22 -0.00 346.17 36413.1 10146.1 -7.9 3.4 62.50 188.58 LOS 37.6 62.9 VBC 26 14 45 15 51.1 275.3 4326.4 268 00141 D 26 09 37 36 128.03 35792.82 3074.22 -0.00 345.67 36413.2 10197.4 -7.9 3.4 62.50 188.58 LOS 37.6 62.9 VBC 26 14 47 15 50.7 275.4 4377.3 269 00141 D 26 09 39 36 128.53 35792.88 3074.21 -0.00 345.17 36413.3 10248.6 -7.9 3.4 62.50 188.58 LOS 37.6 62.9 VBC 26 14 49 15 50.2 275.6 4428.1 270 00141 D 26 09 41 36 129.03 35792.94 3074.21 -0.00 344.67 36413.3 10299.9 -7.9 3.4 62.50 188.58 LOS 37.6 62.9 VBC 26 14 51 15 49.8 275.7 4479.0 271 00141 D 26 09 43 36 129.54 35793.00 3074.21 -0.00 344.16 36413.4 10351.2 -7.9 3.4 62.50 188.58 LOS 37.6 62.9 VBC 26 14 53 15 49.3 275.9 4529.9 272 00141 D 26 09 45 36 130.04 35793.06 3074.20 -0.00 343.66 36413.4 10402.4 -7.9 3.4 62.50 188.58 LOS 37.6 62.9 VBC 26 14 55 15 48.8 276.0 4580.7 273 00141 D 26 09 47 36 130.54 35793.12 3074.20 -0.00 343.16 36413.5 10453.7 -7.9 3.3 62.50 188.58 LOS 37.6 62.9 VBC 26 14 57 15 48.4 276.2 4631.6 274 00141 D 26 09 49 36 131.04 35793.17 3074.19 -0.00 342.66 36413.6 10504.9 -7.8 3.3 62.50 188.58 LOS 37.5 62.9 VBC 26 14 59 15 47.9 276.3 4682.4 275 00141 D 26 09 51 36 131.54 35793.23 3074.19 -0.00 342.16 36413.6 10556.1 -7.8 3.3 62.50 188.58 LOS 37.5 62.9 VBC 26 15 01 15 47.5 276.4 4733.2 276 00141 D 26 09 53 36 132.04 35793.29 3074.18 -0.00 341.66 36413.7 10607.4 -7.8 3.3 62.50 188.58 LOS 37.5 62.9 VBC 26 15 03 15 47.0 276.6 4784.0 277 00141 D 26 09 55 36 132.54 35793.34 3074.18 -0.00 341.16 36413.7 10658.6 -7.8 3.3 62.50 188.58 LOS 37.5 62.9 VBC 26 15 05 15 46.6 276.7 4834.8 278 00141 D 26 09 57 36 133.04 35793.40 3074.18 -0.00 340.65 36413.8 10709.8 -7.8 3.3 62.50 188.58 LOS 37.5 62.9 VBC 26 15 07 15 46.1 276.9 4885.6 279 00141 D 26 09 59 36 133.55 35793.45 3074.17 -0.00 340.15 36413.9 10761.0 -7.8 3.3 62.50 188.58 LOS 37.5 62.9 VBC 26 15 09 15 45.7 277.0 4936.3 280 00141 D 26 10 01 36 134.05 35793.51 3074.17 -0.00 339.65 36413.9 10812.2 -7.7 3.3 62.50 188.58 LOS 37.5 62.9 VBC 26 15 11 15 45.2 277.1 4987.0 281 00141 D 26 10 03 36 134.55 35793.56 3074.16 -0.00 339.15 36414.0 10863.4 -7.7 3.3 62.50 188.58 LOS 37.5 62.9 VBC 26 15 13 15 44.7 277.3 5037.8 282 00141 D 26 10 05 36 135.05 35793.62 3074.16 -0.00 338.65 36414.0 10914.6 -7.7 3.3 62.50 188.58 LOS 37.5 62.9 VBC 26 15 15 15 44.3 277.4 5088.5 283 00141 D 26 10 07 36 135.55 35793.67 3074.16 -0.00 338.15 36414.1 10965.8 -7.7 3.3 62.50 188.59 LOS 37.5 62.9 VBC 26 15 17 15 43.8 277.6 5139.2 284 00141 D 26 10 09 36 136.05 35793.72 3074.15 -0.00 337.65 36414.1 11016.9 -7.7 3.3 62.50 188.59 LOS 37.5 62.9 VBC 26 15 19 15 43.4 277.7 5189.8 285 00141 D 26 10 11 36 136.55 35793.77 3074.15 -0.00 337.15 36414.2 11068.1 -7.6 3.3 62.50 188.59 LOS 37.5 62.9 VBC 26 15 21 15 42.9 277.8 5240.5 286 00141 D 26 10 13 36 137.05 35793.83 3074.14 -0.00 336.64 36414.2 11119.2 -7.6 3.3 62.50 188.59 LOS 37.5 62.9 VBC 26 15 23 15 42.5 278.0 5291.1 287 00141 D 26 10 15 36 137.56 35793.88 3074.14 -0.00 336.14 36414.3 11170.3 -7.6 3.3 62.50 188.59 LOS 37.5 62.9 VBC 26 15 25 15 42.0 278.1 5341.7 288

Page 358: ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM …myreaders.info/00_Orbital__Mechanics__-__Model_____Simulation... · ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM-MSS)

www.m

yrea

ders

.inf

o

OM-MSS Page 358 SATELLITE PASS - GROUND TRACE [acronym - Line Of Sight (LOS), On Board Computerr (OBC), Visible Band Camera (VBC), Night Vision Devices (NVD) ] ORBIT, INPUT TIME, POSIION, SAT VELOCITY, GROUND TRACE, RANGE, DIST, PITCH/ROLL, EL/AZ, ACCESS EL/AZ, DATA SOLAR TIME EL/AZ, DIST Line 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 @ES 18 19 20 @SS 21 22 23 24 25 26 27 @ES 28 29 30 No. Node GMT Anomaly Height @ Vel Lat(SAT)Log Slant S-Sat Pitch Roll EL(SAT)AZ Control EL(SUN)AZ Acq. LMT(ES) EL(SUN)AZ S-Sun Nos D H M S deg km meter deg deg km km deg deg deg D H M S deg km 00141 D 26 10 17 36 138.06 35793.93 3074.14 -0.00 335.64 36414.3 11221.4 -7.6 3.3 62.50 188.59 LOS 37.5 62.9 VBC 26 15 27 15 41.6 278.3 5392.4 289 00141 D 26 10 19 36 138.56 35793.98 3074.13 -0.00 335.14 36414.4 11272.5 -7.6 3.3 62.50 188.59 LOS 37.5 62.9 VBC 26 15 29 15 41.1 278.4 5442.9 290 00141 D 26 10 21 36 139.06 35794.03 3074.13 -0.00 334.64 36414.4 11323.6 -7.5 3.3 62.50 188.59 LOS 37.5 62.9 VBC 26 15 31 15 40.6 278.5 5493.5 291 00141 D 26 10 23 36 139.56 35794.08 3074.13 -0.00 334.14 36414.5 11374.6 -7.5 3.3 62.50 188.59 LOS 37.5 62.9 VBC 26 15 33 15 40.2 278.7 5544.1 292 00141 D 26 10 25 36 140.06 35794.13 3074.12 -0.00 333.64 36414.5 11425.7 -7.5 3.3 62.50 188.59 LOS 37.5 62.9 VBC 26 15 35 15 39.7 278.8 5594.6 293 00141 D 26 10 27 36 140.56 35794.17 3074.12 -0.00 333.14 36414.6 11476.7 -7.5 3.3 62.50 188.59 LOS 37.5 62.9 VBC 26 15 37 15 39.3 279.0 5645.1 294 00141 D 26 10 29 36 141.06 35794.22 3074.12 -0.00 332.63 36414.6 11527.7 -7.4 3.3 62.50 188.59 LOS 37.5 62.9 VBC 26 15 39 15 38.8 279.1 5695.6 295 00141 D 26 10 31 36 141.57 35794.27 3074.11 -0.00 332.13 36414.7 11578.7 -7.4 3.3 62.50 188.59 LOS 37.5 62.9 VBC 26 15 41 15 38.4 279.2 5746.1 296 00141 D 26 10 33 36 142.07 35794.32 3074.11 -0.00 331.63 36414.7 11629.6 -7.4 3.3 62.50 188.59 LOS 37.5 62.9 VBC 26 15 43 15 37.9 279.4 5796.5 297 00141 D 26 10 35 36 142.57 35794.36 3074.11 -0.00 331.13 36414.8 11680.6 -7.4 3.3 62.50 188.59 LOS 37.5 62.9 VBC 26 15 45 15 37.5 279.5 5846.9 298 00141 D 26 10 37 36 143.07 35794.41 3074.10 -0.00 330.63 36414.8 11731.5 -7.3 3.3 62.50 188.59 LOS 37.5 62.9 VBC 26 15 47 15 37.0 279.7 5897.4 299 00141 D 26 10 39 36 143.57 35794.45 3074.10 -0.00 330.13 36414.9 11782.4 -7.3 3.3 62.50 188.59 LOS 37.5 62.9 VBC 26 15 49 15 36.6 279.8 5947.7 300 00141 D 26 10 41 36 144.07 35794.50 3074.10 -0.00 329.63 36414.9 11833.3 -7.3 3.2 62.50 188.59 LOS 37.5 62.9 VBC 26 15 51 15 36.1 279.9 5998.1 301 00141 D 26 10 43 36 144.57 35794.54 3074.09 -0.00 329.13 36415.0 11884.1 -7.2 3.2 62.50 188.59 LOS 37.5 62.9 VBC 26 15 53 15 35.7 280.1 6048.5 302 00141 D 26 10 45 36 145.07 35794.59 3074.09 -0.00 328.62 36415.0 11934.9 -7.2 3.2 62.50 188.59 LOS 37.5 62.9 VBC 26 15 55 15 35.2 280.2 6098.8 303 00141 D 26 10 47 36 145.58 35794.63 3074.09 -0.00 328.12 36415.1 11985.7 -7.2 3.2 62.50 188.59 LOS 37.5 62.9 VBC 26 15 57 15 34.8 280.4 6149.1 304 00141 D 26 10 49 36 146.08 35794.67 3074.08 -0.00 327.62 36415.1 12036.5 -7.2 3.2 62.50 188.59 LOS 37.5 62.9 VBC 26 15 59 15 34.3 280.5 6199.4 305 00141 D 26 10 51 36 146.58 35794.71 3074.08 -0.00 327.12 36415.2 12087.2 -7.1 3.2 62.50 188.59 LOS 37.5 62.9 VBC 26 16 01 15 33.9 280.6 6249.6 306 00141 D 26 10 53 36 147.08 35794.75 3074.08 -0.00 326.62 36415.2 12138.0 -7.1 3.2 62.50 188.59 LOS 37.5 62.9 VBC 26 16 03 15 33.4 280.8 6299.9 307 00141 D 26 10 55 36 147.58 35794.80 3074.07 -0.00 326.12 36415.2 12188.6 -7.1 3.2 62.50 188.59 LOS 37.5 62.9 VBC 26 16 05 15 33.0 280.9 6350.1 308 00141 D 26 10 57 36 148.08 35794.84 3074.07 -0.00 325.62 36415.3 12239.3 -7.0 3.2 62.50 188.59 LOS 37.5 62.9 VBC 26 16 07 15 32.5 281.1 6400.3 309 00141 D 26 10 59 36 148.58 35794.88 3074.07 -0.00 325.12 36415.3 12289.9 -7.0 3.2 62.50 188.59 LOS 37.5 62.9 VBC 26 16 09 15 32.1 281.2 6450.4 310 00141 D 26 11 01 36 149.08 35794.91 3074.07 -0.00 324.61 36415.4 12340.5 -7.0 3.2 62.50 188.59 LOS 37.5 62.9 VBC 26 16 11 15 31.6 281.3 6500.6 311 00141 D 26 11 03 36 149.59 35794.95 3074.06 -0.00 324.11 36415.4 12391.1 -6.9 3.2 62.50 188.59 LOS 37.5 62.9 VBC 26 16 13 15 31.2 281.5 6550.7 312 00141 D 26 11 05 36 150.09 35794.99 3074.06 -0.00 323.61 36415.4 12441.6 -6.9 3.2 62.50 188.59 LOS 37.5 62.9 VBC 26 16 15 15 30.7 281.6 6600.8 313 00141 D 26 11 07 36 150.59 35795.03 3074.06 -0.00 323.11 36415.5 12492.1 -6.9 3.2 62.50 188.60 LOS 37.5 62.9 VBC 26 16 17 15 30.3 281.8 6650.8 314 00141 D 26 11 09 36 151.09 35795.07 3074.05 -0.00 322.61 36415.5 12542.5 -6.8 3.2 62.50 188.60 LOS 37.5 62.9 VBC 26 16 19 15 29.8 281.9 6700.9 315 00141 D 26 11 11 36 151.59 35795.10 3074.05 -0.00 322.11 36415.6 12592.9 -6.8 3.2 62.50 188.60 LOS 37.5 62.9 VBC 26 16 21 15 29.4 282.1 6750.9 316 00141 D 26 11 13 36 152.09 35795.14 3074.05 -0.00 321.61 36415.6 12643.3 -6.8 3.2 62.50 188.60 LOS 37.5 62.9 VBC 26 16 23 15 28.9 282.2 6800.9 317 00141 D 26 11 15 36 152.59 35795.17 3074.05 -0.00 321.11 36415.6 12693.6 -6.7 3.2 62.50 188.60 LOS 37.5 62.9 VBC 26 16 25 15 28.5 282.3 6850.8 318 00141 D 26 11 17 36 153.09 35795.21 3074.04 -0.00 320.60 36415.7 12743.9 -6.7 3.2 62.50 188.60 LOS 37.5 62.9 VBC 26 16 27 15 28.0 282.5 6900.7 319 00141 D 26 11 19 36 153.59 35795.24 3074.04 -0.00 320.10 36415.7 12794.2 -6.6 3.2 62.50 188.60 LOS 37.5 62.9 VBC 26 16 29 15 27.6 282.6 6950.6 320 00141 D 26 11 21 36 154.10 35795.27 3074.04 -0.00 319.60 36415.7 12844.4 -6.6 3.2 62.50 188.60 LOS 37.5 62.9 VBC 26 16 31 15 27.1 282.8 7000.5 321 00141 D 26 11 23 36 154.60 35795.31 3074.04 -0.00 319.10 36415.8 12894.6 -6.6 3.2 62.50 188.60 LOS 37.5 62.9 VBC 26 16 33 15 26.7 282.9 7050.4 322 00141 D 26 11 25 36 155.10 35795.34 3074.03 -0.00 318.60 36415.8 12944.7 -6.5 3.2 62.50 188.60 LOS 37.5 62.9 VBC 26 16 35 15 26.2 283.1 7100.2 323 00141 D 26 11 27 36 155.60 35795.37 3074.03 -0.00 318.10 36415.8 12994.8 -6.5 3.2 62.50 188.60 LOS 37.5 62.9 VBC 26 16 37 15 25.8 283.2 7149.9 324 00141 D 26 11 29 36 156.10 35795.40 3074.03 -0.00 317.60 36415.9 13044.8 -6.5 3.2 62.50 188.60 LOS 37.5 62.9 VBC 26 16 39 15 25.3 283.4 7199.7 325 00141 D 26 11 31 36 156.60 35795.43 3074.03 -0.00 317.10 36415.9 13094.8 -6.4 3.2 62.50 188.60 LOS 37.5 62.9 VBC 26 16 41 15 24.9 283.5 7249.4 326 00141 D 26 11 33 36 157.10 35795.46 3074.03 -0.00 316.59 36415.9 13144.7 -6.4 3.2 62.50 188.60 LOS 37.5 62.9 VBC 26 16 43 15 24.4 283.7 7299.1 327 00141 D 26 11 35 36 157.60 35795.49 3074.02 -0.00 316.09 36416.0 13194.6 -6.3 3.2 62.50 188.60 LOS 37.5 62.9 VBC 26 16 45 15 24.0 283.8 7348.8 328 00141 D 26 11 37 36 158.11 35795.52 3074.02 -0.00 315.59 36416.0 13244.4 -6.3 3.2 62.50 188.60 LOS 37.5 62.9 VBC 26 16 47 15 23.5 284.0 7398.4 329

Page 359: ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM …myreaders.info/00_Orbital__Mechanics__-__Model_____Simulation... · ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM-MSS)

www.m

yrea

ders

.inf

o

OM-MSS Page 359 SATELLITE PASS - GROUND TRACE [acronym - Line Of Sight (LOS), On Board Computerr (OBC), Visible Band Camera (VBC), Night Vision Devices (NVD) ] ORBIT, INPUT TIME, POSIION, SAT VELOCITY, GROUND TRACE, RANGE, DIST, PITCH/ROLL, EL/AZ, ACCESS EL/AZ, DATA SOLAR TIME EL/AZ, DIST Line 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 @ES 18 19 20 @SS 21 22 23 24 25 26 27 @ES 28 29 30 No. Node GMT Anomaly Height @ Vel Lat(SAT)Log Slant S-Sat Pitch Roll EL(SAT)AZ Control EL(SUN)AZ Acq. LMT(ES) EL(SUN)AZ S-Sun Nos D H M S deg km meter deg deg km km deg deg deg D H M S deg km 00141 D 26 11 39 36 158.61 35795.55 3074.02 -0.00 315.09 36416.0 13294.1 -6.3 3.2 62.50 188.60 LOS 37.5 62.9 VBC 26 16 49 15 23.1 284.1 7448.0 330 00141 D 26 11 41 36 159.11 35795.57 3074.02 -0.00 314.59 36416.0 13343.8 -6.2 3.2 62.50 188.60 LOS 37.5 62.9 VBC 26 16 51 15 22.6 284.3 7497.6 331 00141 D 26 11 43 36 159.61 35795.60 3074.02 -0.00 314.09 36416.1 13393.5 -6.2 3.2 62.50 188.60 LOS 37.5 62.9 VBC 26 16 53 15 22.2 284.4 7547.1 332 00141 D 26 11 45 36 160.11 35795.63 3074.01 -0.00 313.59 36416.1 13443.1 -6.1 3.2 62.50 188.60 LOS 37.5 62.9 VBC 26 16 55 15 21.8 284.6 7596.6 333 00141 D 26 11 47 36 160.61 35795.65 3074.01 -0.00 313.09 36416.1 13492.6 -6.1 3.1 62.50 188.60 LOS 37.5 62.9 VBC 26 16 57 15 21.3 284.7 7646.1 334 00141 D 26 11 49 36 161.11 35795.68 3074.01 -0.00 312.58 36416.2 13542.1 -6.1 3.1 62.50 188.60 LOS 37.5 62.9 VBC 26 16 59 15 20.9 284.9 7695.5 335 00141 D 26 11 51 36 161.61 35795.70 3074.01 -0.00 312.08 36416.2 13591.5 -6.0 3.1 62.50 188.60 LOS 37.5 62.9 VBC 26 17 01 15 20.4 285.0 7744.9 336 00141 D 26 11 53 36 162.11 35795.73 3074.01 -0.00 311.58 36416.2 13640.8 -6.0 3.1 62.50 188.60 LOS 37.5 62.9 VBC 26 17 03 15 20.0 285.2 7794.2 337 00141 D 26 11 55 36 162.62 35795.75 3074.00 -0.00 311.08 36416.2 13690.1 -5.9 3.1 62.50 188.60 LOS 37.5 62.9 VBC 26 17 05 15 19.5 285.3 7843.6 338 00141 D 26 11 57 36 163.12 35795.77 3074.00 -0.00 310.58 36416.3 13739.3 -5.9 3.1 62.50 188.60 LOS 37.5 62.9 VBC 26 17 07 15 19.1 285.5 7892.8 339 00141 D 26 11 59 36 163.62 35795.79 3074.00 -0.00 310.08 36416.3 13788.4 -5.8 3.1 62.50 188.61 LOS 37.5 62.9 VBC 26 17 09 15 18.7 285.6 7942.1 340 00141 D 26 12 01 36 164.12 35795.81 3074.00 -0.00 309.58 36416.3 13837.4 -5.8 3.1 62.50 188.61 LOS 37.5 62.9 VBC 26 17 11 15 18.2 285.8 7991.3 341 00141 D 26 12 03 36 164.62 35795.83 3074.00 -0.00 309.08 36416.3 13886.4 -5.7 3.1 62.50 188.61 LOS 37.5 62.9 VBC 26 17 13 15 17.8 286.0 8040.5 342 00141 D 26 12 05 36 165.12 35795.85 3074.00 -0.00 308.57 36416.3 13935.3 -5.7 3.1 62.50 188.61 LOS 37.5 62.9 VBC 26 17 15 15 17.3 286.1 8089.6 343 00141 D 26 12 07 36 165.62 35795.87 3074.00 -0.00 308.07 36416.4 13984.1 -5.7 3.1 62.50 188.61 LOS 37.5 62.9 VBC 26 17 17 15 16.9 286.3 8138.7 344 00141 D 26 12 09 36 166.12 35795.89 3073.99 -0.00 307.57 36416.4 14032.8 -5.6 3.1 62.50 188.61 LOS 37.5 62.9 VBC 26 17 19 15 16.4 286.4 8187.8 345 00141 D 26 12 11 36 166.63 35795.91 3073.99 -0.00 307.07 36416.4 14081.5 -5.6 3.1 62.50 188.61 LOS 37.5 62.9 VBC 26 17 21 15 16.0 286.6 8236.8 346 00141 D 26 12 13 36 167.13 35795.93 3073.99 -0.00 306.57 36416.4 14130.0 -5.5 3.1 62.50 188.61 LOS 37.5 62.9 VBC 26 17 23 15 15.6 286.7 8285.8 347 00141 D 26 12 15 36 167.63 35795.94 3073.99 -0.00 306.07 36416.4 14178.5 -5.5 3.1 62.50 188.61 LOS 37.5 62.9 VBC 26 17 25 15 15.1 286.9 8334.7 348 00141 D 26 12 17 36 168.13 35795.96 3073.99 -0.00 305.57 36416.4 14226.9 -5.4 3.1 62.50 188.61 LOS 37.5 62.9 VBC 26 17 27 15 14.7 287.1 8383.6 349 00141 D 26 12 19 36 168.63 35795.97 3073.99 -0.00 305.07 36416.5 14275.2 -5.4 3.1 62.50 188.61 LOS 37.5 62.9 VBC 26 17 29 15 14.2 287.2 8432.4 350 00141 D 26 12 21 36 169.13 35795.99 3073.99 -0.00 304.56 36416.5 14323.4 -5.3 3.1 62.50 188.61 LOS 37.5 62.9 VBC 26 17 31 15 13.8 287.4 8481.2 351 00141 D 26 12 23 36 169.63 35796.00 3073.99 -0.00 304.06 36416.5 14371.4 -5.3 3.1 62.50 188.61 LOS 37.5 62.9 VBC 26 17 33 15 13.4 287.6 8530.0 352 00141 D 26 12 25 36 170.13 35796.02 3073.99 -0.00 303.56 36416.5 14419.4 -5.2 3.1 62.50 188.61 LOS 37.5 62.9 VBC 26 17 35 15 12.9 287.7 8578.7 353 00141 D 26 12 27 36 170.63 35796.03 3073.98 -0.00 303.06 36416.5 14467.3 -5.2 3.1 62.50 188.61 LOS 37.5 62.9 VBC 26 17 37 15 12.5 287.9 8627.4 354 00141 D 26 12 29 36 171.14 35796.04 3073.98 -0.00 302.56 36416.5 14515.1 -5.1 3.1 62.50 188.61 LOS 37.5 62.9 VBC 26 17 39 15 12.1 288.1 8676.0 355 00141 D 26 12 31 36 171.64 35796.05 3073.98 -0.00 302.06 36416.5 14562.7 -5.1 3.1 62.50 188.61 LOS 37.4 62.9 VBC 26 17 41 15 11.6 288.2 8724.6 356 00141 D 26 12 33 36 172.14 35796.06 3073.98 -0.00 301.56 36416.6 14610.3 -5.0 3.1 62.50 188.61 LOS 37.4 62.9 VBC 26 17 43 15 11.2 288.4 8773.1 357 00141 D 26 12 35 36 172.64 35796.07 3073.98 -0.00 301.06 36416.6 14657.7 -5.0 3.1 62.50 188.61 LOS 37.4 62.9 VBC 26 17 45 15 10.8 288.6 8821.6 358 00141 D 26 12 37 36 173.14 35796.08 3073.98 -0.00 300.55 36416.6 14705.0 -4.9 3.1 62.50 188.61 LOS 37.4 62.9 VBC 26 17 47 15 10.3 288.7 8870.0 359 00141 D 26 12 39 36 173.64 35796.09 3073.98 -0.00 300.05 36416.6 14752.2 -4.9 3.1 62.50 188.61 LOS 37.4 62.9 VBC 26 17 49 15 9.9 288.9 8918.4 360 00141 D 26 12 41 36 174.14 35796.10 3073.98 -0.00 299.55 36416.6 14799.2 -4.8 3.1 62.50 188.61 LOS 37.4 62.9 VBC 26 17 51 15 9.4 289.1 8966.8 361 00141 D 26 12 43 36 174.64 35796.11 3073.98 -0.00 299.05 36416.6 14846.1 -4.8 3.1 62.50 188.61 LOS 37.4 62.9 VBC 26 17 53 15 9.0 289.3 9015.1 362 00141 D 26 12 45 36 175.15 35796.11 3073.98 -0.00 298.55 36416.6 14892.9 -4.7 3.1 62.50 188.62 LOS 37.4 62.9 VBC 26 17 55 15 8.6 289.4 9063.3 363 00141 D 26 12 47 36 175.65 35796.12 3073.98 -0.00 298.05 36416.6 14939.6 -4.7 3.1 62.50 188.62 LOS 37.4 62.9 VBC 26 17 57 15 8.1 289.6 9111.5 364 00141 D 26 12 49 36 176.15 35796.12 3073.98 -0.00 297.55 36416.6 14986.1 -4.6 3.1 62.50 188.62 LOS 37.4 62.9 VBC 26 17 59 15 7.7 289.8 9159.6 365 00141 D 26 12 51 36 176.65 35796.13 3073.98 -0.00 297.05 36416.6 15032.4 -4.6 3.1 62.50 188.62 LOS 37.4 62.9 VBC 26 18 01 15 7.3 290.0 9207.7 366 00141 D 26 12 53 36 177.15 35796.13 3073.98 -0.00 296.54 36416.6 15078.6 -4.5 3.1 62.50 188.62 LOS 37.4 62.9 VBC 26 18 03 15 6.9 290.1 9255.7 367 00141 D 26 12 55 36 177.65 35796.14 3073.98 -0.00 296.04 36416.6 15124.6 -4.5 3.1 62.50 188.62 LOS 37.4 62.9 VBC 26 18 05 15 6.4 290.3 9303.7 368 00141 D 26 12 57 36 178.15 35796.14 3073.98 -0.00 295.54 36416.6 15170.5 -4.4 3.1 62.50 188.62 LOS 37.4 62.9 VBC 26 18 07 15 6.0 290.5 9351.6 369 00141 D 26 12 59 36 178.65 35796.14 3073.98 -0.00 295.04 36416.6 15216.2 -4.4 3.1 62.50 188.62 LOS 37.4 62.9 VBC 26 18 09 15 5.6 290.7 9399.5 370

Page 360: ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM …myreaders.info/00_Orbital__Mechanics__-__Model_____Simulation... · ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM-MSS)

www.m

yrea

ders

.inf

o

OM-MSS Page 360 SATELLITE PASS - GROUND TRACE [acronym - Line Of Sight (LOS), On Board Computerr (OBC), Visible Band Camera (VBC), Night Vision Devices (NVD) ] ORBIT, INPUT TIME, POSIION, SAT VELOCITY, GROUND TRACE, RANGE, DIST, PITCH/ROLL, EL/AZ, ACCESS EL/AZ, DATA SOLAR TIME EL/AZ, DIST Line 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 @ES 18 19 20 @SS 21 22 23 24 25 26 27 @ES 28 29 30 No. Node GMT Anomaly Height @ Vel Lat(SAT)Log Slant S-Sat Pitch Roll EL(SAT)AZ Control EL(SUN)AZ Acq. LMT(ES) EL(SUN)AZ S-Sun Nos D H M S deg km meter deg deg km km deg deg deg D H M S deg km 00141 D 26 13 01 36 179.15 35796.14 3073.98 -0.00 294.54 36416.6 15261.8 -4.3 3.1 62.50 188.62 LOS 37.4 62.9 VBC 26 18 11 15 5.1 290.9 9447.3 371 00141 D 26 13 03 36 179.66 35796.14 3073.98 -0.00 294.04 36416.7 15307.1 -4.3 3.1 62.50 188.62 LOS 37.4 62.9 VBC 26 18 13 15 4.7 291.0 9495.0 372 00141 D 26 13 04 58 180.00 35796.14 Apo 3073.98 -0.00 293.69 36416.7 15338.1 -4.2 3.1 62.50 298.27 LOS 37.4 62.9 VBC 26 18 14 37 4.4 291.2 9527.7 373 00141 D 26 13 05 36 180.16 35796.14 3073.98 -0.00 293.54 36416.7 15352.3 -4.2 3.1 62.50 188.62 LOS 37.4 62.9 VBC 26 18 15 15 4.3 291.2 9542.7 374 00141 D 26 13 07 36 180.66 35796.14 3073.98 -0.00 293.04 36416.7 15397.3 -4.2 3.1 62.50 188.62 LOS 37.4 62.9 VBC 26 18 17 15 3.8 291.4 9590.3 375 00141 D 26 13 09 36 181.16 35796.14 3073.98 -0.00 292.53 36416.7 15442.1 -4.1 3.1 62.50 188.62 LOS 37.4 62.9 VBC 26 18 19 15 3.4 291.6 9637.9 376 00141 D 26 13 11 36 181.66 35796.14 3073.98 -0.00 292.03 36416.6 15486.7 -4.1 3.1 62.50 188.62 LOS 37.4 62.9 VBC 26 18 21 15 3.0 291.8 9685.4 377 00141 D 26 13 13 36 182.16 35796.14 3073.98 -0.00 291.53 36416.6 15531.1 -4.0 3.1 62.50 188.62 LOS 37.4 62.9 VBC 26 18 23 15 2.6 292.0 9732.8 378 00141 D 26 13 15 36 182.66 35796.13 3073.98 -0.00 291.03 36416.6 15575.3 -3.9 3.1 62.50 188.62 LOS 37.4 62.9 VBC 26 18 25 15 2.1 292.2 9780.2 379 00141 D 26 13 17 36 183.16 35796.13 3073.98 -0.00 290.53 36416.6 15619.2 -3.9 3.1 62.50 188.62 LOS 37.4 62.9 VBC 26 18 27 15 1.7 292.4 9827.5 380 00141 D 26 13 19 36 183.67 35796.13 3073.98 -0.00 290.03 36416.6 15663.0 -3.8 3.1 62.50 188.62 LOS 37.4 62.9 VBC 26 18 29 15 1.3 292.6 9874.7 381 00141 D 26 13 21 36 184.17 35796.12 3073.98 -0.00 289.53 36416.6 15706.5 -3.8 3.0 62.50 188.62 LOS 37.4 62.9 VBC 26 18 31 15 0.9 292.7 9921.9 382 00141 D 26 13 23 36 184.67 35796.12 3073.98 -0.00 289.03 36416.6 15749.8 -3.7 3.0 62.50 188.62 LOS 37.4 62.9 VBC 26 18 33 15 0.4 292.9 9969.0 383 00141 D 26 13 25 36 185.17 35796.11 3073.98 -0.00 288.52 36416.6 15792.8 -3.7 3.0 62.50 188.62 LOS 37.4 62.9 VBC 26 18 35 15 0.0 293.1 10016.1 384 00141 D 26 13 27 36 185.67 35796.10 3073.98 -0.00 288.02 36416.6 15835.5 -3.6 3.0 62.50 188.62 LOS 37.4 62.9 VBC 26 18 37 15 -0.4 293.3 10063.0 385 00141 D 26 13 29 36 186.17 35796.09 3073.98 -0.00 287.52 36416.6 15878.0 -3.6 3.0 62.50 188.62 LOS 37.4 62.9 VBC 26 18 39 15 -0.8 293.5 10109.9 386 00141 D 26 13 31 36 186.67 35796.09 3073.98 -0.00 287.02 36416.6 15920.3 -3.5 3.0 62.50 188.63 LOS 37.4 62.9 VBC 26 18 41 15 -1.2 293.7 10156.8 387 00141 D 26 13 33 36 187.17 35796.08 3073.98 -0.00 286.52 36416.6 15962.2 -3.5 3.0 62.50 188.63 LOS 37.4 62.9 VBC 26 18 43 15 -1.7 293.9 10203.5 388 00141 D 26 13 35 36 187.67 35796.07 3073.98 -0.00 286.02 36416.6 16003.9 -3.4 3.0 62.50 188.63 LOS 37.4 62.9 VBC 26 18 45 15 -2.1 294.1 10250.2 389 00141 D 26 13 37 36 188.18 35796.06 3073.98 -0.00 285.52 36416.6 16045.3 -3.3 3.0 62.50 188.63 LOS 37.4 62.9 VBC 26 18 47 15 -2.5 294.3 10296.8 390 00141 D 26 13 39 36 188.68 35796.04 3073.98 -0.00 285.02 36416.6 16086.3 -3.3 3.0 62.50 188.63 LOS 37.4 62.9 VBC 26 18 49 15 -2.9 294.6 10343.4 391 00141 D 26 13 41 36 189.18 35796.03 3073.98 -0.00 284.51 36416.5 16127.1 -3.2 3.0 62.50 188.63 LOS 37.4 62.9 VBC 26 18 51 15 -3.3 294.8 10389.8 392 00141 D 26 13 43 36 189.68 35796.02 3073.98 -0.00 284.01 36416.5 16167.5 -3.2 3.0 62.50 188.63 LOS 37.4 62.9 VBC 26 18 53 15 -3.8 295.0 10436.2 393 00141 D 26 13 45 36 190.18 35796.01 3073.99 -0.00 283.51 36416.5 16207.6 -3.1 3.0 62.50 188.63 LOS 37.4 62.9 VBC 26 18 55 15 -4.2 295.2 10482.5 394 00141 D 26 13 47 36 190.68 35795.99 3073.99 -0.00 283.01 36416.5 16247.3 -3.1 3.0 62.50 188.63 LOS 37.4 62.9 VBC 26 18 57 15 -4.6 295.4 10528.7 395 00141 D 26 13 49 36 191.18 35795.98 3073.99 -0.00 282.51 36416.5 16286.7 -3.0 3.0 62.50 188.63 LOS 37.4 62.9 VBC 26 18 59 15 -5.0 295.6 10574.8 396 00141 D 26 13 51 36 191.68 35795.96 3073.99 -0.00 282.01 36416.5 16325.7 -2.9 3.0 62.50 188.63 LOS 37.4 62.9 VBC 26 19 01 15 -5.4 295.8 10620.9 397 00141 D 26 13 53 36 192.19 35795.95 3073.99 -0.00 281.51 36416.5 16364.3 -2.9 3.0 62.50 188.63 LOS 37.4 62.9 VBC 26 19 03 15 -5.8 296.0 10666.9 398 00141 D 26 13 55 36 192.69 35795.93 3073.99 -0.00 281.01 36416.4 16402.6 -2.8 3.0 62.50 188.63 LOS 37.4 62.9 VBC 26 19 05 15 -6.2 296.3 10712.8 399 00141 D 26 13 57 36 193.19 35795.92 3073.99 -0.00 280.51 36416.4 16440.4 -2.8 3.0 62.50 188.63 LOS 37.4 62.9 VBC 26 19 07 15 -6.6 296.5 10758.6 400 00141 D 26 13 59 36 193.69 35795.90 3073.99 -0.00 280.00 36416.4 16477.8 -2.7 3.0 62.50 188.63 LOS 37.4 62.9 VBC 26 19 09 15 -7.1 296.7 10804.3 401 00141 D 26 14 01 36 194.19 35795.88 3074.00 -0.00 279.50 36416.4 16514.7 -2.7 3.0 62.50 188.63 LOS 37.4 62.9 VBC 26 19 11 15 -7.5 296.9 10849.9 402 00141 D 26 14 03 36 194.69 35795.86 3074.00 -0.00 279.00 36416.4 16551.3 -2.6 3.0 62.50 188.63 LOS 37.4 62.9 VBC 26 19 13 15 -7.9 297.2 10895.4 403 00141 D 26 14 05 36 195.19 35795.84 3074.00 -0.00 278.50 36416.4 16587.3 -2.5 3.0 62.50 188.63 LOS 37.4 63.0 VBC 26 19 15 15 -8.3 297.4 10940.9 404 00141 D 26 14 07 36 195.69 35795.82 3074.00 -0.00 278.00 36416.3 16622.9 -2.5 3.0 62.50 188.63 LOS 37.4 63.0 VBC 26 19 17 15 -8.7 297.6 10986.2 405 00141 D 26 14 09 36 196.19 35795.80 3074.00 -0.00 277.50 36416.3 16658.0 -2.4 3.0 62.50 188.63 LOS 37.4 63.0 VBC 26 19 19 15 -9.1 297.8 11031.4 406 00141 D 26 14 11 36 196.70 35795.78 3074.00 -0.00 277.00 36416.3 16692.5 -2.4 3.0 62.50 188.63 LOS 37.4 63.0 VBC 26 19 21 15 -9.5 298.1 11076.6 407 00141 D 26 14 13 36 197.20 35795.76 3074.00 -0.00 276.50 36416.3 16726.6 -2.3 3.0 62.50 188.63 LOS 37.4 63.0 VBC 26 19 23 15 -9.9 298.3 11121.6 408 00141 D 26 14 15 36 197.70 35795.73 3074.01 -0.00 275.99 36416.2 16760.1 -2.2 3.0 62.50 188.63 LOS 37.4 63.0 VBC 26 19 25 15 -10.3 298.5 11166.6 409 00141 D 26 14 17 36 198.20 35795.71 3074.01 -0.00 275.49 36416.2 16793.0 -2.2 3.0 62.50 188.64 LOS 37.4 63.0 VBC 26 19 27 15 -10.7 298.8 11211.4 410 00141 D 26 14 19 36 198.70 35795.69 3074.01 -0.00 274.99 36416.2 16825.4 -2.1 3.0 62.50 188.64 LOS 37.4 63.0 VBC 26 19 29 15 -11.1 299.0 11256.2 411 00141 D 26 14 21 36 199.20 35795.66 3074.01 -0.00 274.49 36416.2 16857.2 -2.1 3.0 62.50 188.64 LOS 37.4 63.0 VBC 26 19 31 15 -11.5 299.3 11300.8 412

Page 361: ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM …myreaders.info/00_Orbital__Mechanics__-__Model_____Simulation... · ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM-MSS)

www.m

yrea

ders

.inf

o

OM-MSS Page 361 SATELLITE PASS - GROUND TRACE [acronym - Line Of Sight (LOS), On Board Computerr (OBC), Visible Band Camera (VBC), Night Vision Devices (NVD) ] ORBIT, INPUT TIME, POSIION, SAT VELOCITY, GROUND TRACE, RANGE, DIST, PITCH/ROLL, EL/AZ, ACCESS EL/AZ, DATA SOLAR TIME EL/AZ, DIST Line 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 @ES 18 19 20 @SS 21 22 23 24 25 26 27 @ES 28 29 30 No. Node GMT Anomaly Height @ Vel Lat(SAT)Log Slant S-Sat Pitch Roll EL(SAT)AZ Control EL(SUN)AZ Acq. LMT(ES) EL(SUN)AZ S-Sun Nos D H M S deg km meter deg deg km km deg deg deg D H M S deg km 00141 D 26 14 23 36 199.70 35795.64 3074.01 -0.00 273.99 36416.2 16888.4 -2.0 3.0 62.50 188.64 LOS 37.4 63.0 VBC 26 19 33 15 -11.9 299.5 11345.4 413 00141 D 26 14 25 36 200.20 35795.61 3074.01 -0.00 273.49 36416.1 16918.9 -1.9 3.0 62.50 188.64 LOS 37.4 63.0 VBC 26 19 35 15 -12.3 299.8 11389.8 414 00141 D 26 14 27 36 200.71 35795.58 3074.02 -0.00 272.99 36416.1 16948.8 -1.9 3.0 62.50 188.64 LOS 37.4 63.0 VBC 26 19 37 15 -12.7 300.0 11434.1 415 00141 D 26 14 29 36 201.21 35795.56 3074.02 -0.00 272.49 36416.1 16978.0 -1.8 3.0 62.50 188.64 LOS 37.4 63.0 VBC 26 19 39 15 -13.1 300.3 11478.3 416 00141 D 26 14 31 36 201.71 35795.53 3074.02 -0.00 271.98 36416.0 17006.5 -1.8 3.0 62.50 188.64 LOS 37.4 63.0 VBC 26 19 41 15 -13.5 300.5 11522.4 417 00141 D 26 14 33 36 202.21 35795.50 3074.02 -0.00 271.48 36416.0 17034.4 -1.7 3.0 62.50 188.64 LOS 37.4 63.0 VBC 26 19 43 15 -13.9 300.8 11566.4 418 00141 D 26 14 35 36 202.71 35795.47 3074.02 -0.00 270.98 36416.0 17061.5 -1.6 3.0 62.50 188.64 LOS 37.4 63.0 VBC 26 19 45 15 -14.3 301.0 11610.3 419 00141 D 26 14 37 36 203.21 35795.44 3074.03 -0.00 270.48 36416.0 17087.8 -1.6 3.0 62.50 188.64 LOS 37.4 63.0 VBC 26 19 47 15 -14.7 301.3 11654.0 420 00141 D 26 14 39 36 203.71 35795.41 3074.03 -0.00 269.98 36415.9 17113.4 -1.5 3.0 62.50 188.64 LOS 37.4 63.0 VBC 26 19 49 15 -15.1 301.5 11697.6 421 00141 D 26 14 41 36 204.21 35795.38 3074.03 -0.00 269.48 36415.9 17138.2 -1.5 3.0 62.50 188.64 LOS 37.4 63.0 VBC 26 19 51 15 -15.5 301.8 11741.1 422 00141 D 26 14 43 36 204.72 35795.35 3074.03 -0.00 268.98 36415.9 17162.2 -1.4 3.0 62.50 188.64 LOS 37.4 63.0 VBC 26 19 53 15 -15.9 302.1 11784.5 423 00141 D 26 14 45 36 205.22 35795.32 3074.04 -0.00 268.48 36415.8 17185.4 -1.3 3.0 62.50 188.64 LOS 37.4 63.0 VBC 26 19 55 15 -16.3 302.3 11827.8 424 00141 D 26 14 47 36 205.72 35795.29 3074.04 -0.00 267.97 36415.8 17207.7 -1.3 3.0 62.50 188.64 LOS 37.4 63.0 VBC 26 19 57 15 -16.6 302.6 11870.9 425 00141 D 26 14 49 36 206.22 35795.25 3074.04 -0.00 267.47 36415.8 17229.1 -1.2 3.0 62.50 188.64 LOS 37.4 63.0 VBC 26 19 59 15 -17.0 302.9 11913.9 426 00141 D 26 14 51 36 206.72 35795.22 3074.04 -0.00 266.97 36415.7 17249.7 -1.2 3.0 62.50 188.64 LOS 37.4 63.0 VBC 26 20 01 15 -17.4 303.2 11956.7 427 00141 D 26 14 53 36 207.22 35795.19 3074.05 -0.00 266.47 36415.7 17269.4 -1.1 3.0 62.50 188.64 LOS 37.4 63.0 VBC 26 20 03 15 -17.8 303.4 11999.5 428 00141 D 26 14 55 36 207.72 35795.15 3074.05 -0.00 265.97 36415.7 17288.1 -1.0 3.0 62.50 188.64 LOS 37.4 63.0 VBC 26 20 05 15 -18.2 303.7 12042.0 429 00141 D 26 14 57 36 208.22 35795.12 3074.05 -0.00 265.47 36415.6 17305.8 -1.0 3.0 62.50 188.64 LOS 37.4 63.0 VBC 26 20 07 15 -18.6 304.0 12084.5 430 00141 D 26 14 59 36 208.72 35795.08 3074.05 -0.00 264.97 36415.6 17322.7 -0.9 3.0 62.50 188.64 LOS 37.4 63.0 VBC 26 20 09 15 -18.9 304.3 12126.8 431 00141 D 26 15 01 36 209.23 35795.04 3074.06 -0.00 264.47 36415.5 17338.5 -0.9 3.0 62.50 188.64 LOS 37.4 63.0 VBC 26 20 11 15 -19.3 304.6 12169.0 432 00141 D 26 15 03 36 209.73 35795.01 3074.06 -0.00 263.96 36415.5 17353.3 -0.8 3.0 62.50 188.64 LOS 37.4 63.0 VBC 26 20 13 15 -19.7 304.9 12211.0 433 00141 D 26 15 05 36 210.23 35794.97 3074.06 -0.00 263.46 36415.5 17367.1 -0.7 3.0 62.50 188.64 LOS 37.4 63.0 VBC 26 20 15 15 -20.1 305.2 12252.8 434 00141 D 26 15 07 36 210.73 35794.93 3074.06 -0.00 262.96 36415.4 17379.9 -0.7 3.0 62.50 188.65 LOS 37.4 63.0 VBC 26 20 17 15 -20.4 305.5 12294.5 435 00141 D 26 15 09 36 211.23 35794.89 3074.07 -0.00 262.46 36415.4 17391.6 -0.6 3.0 62.50 188.65 LOS 37.4 63.0 VBC 26 20 19 15 -20.8 305.7 12336.1 436 00141 D 26 15 11 36 211.73 35794.85 3074.07 -0.00 261.96 36415.4 17402.2 -0.6 3.0 62.50 188.65 LOS 37.4 63.0 VBC 26 20 21 15 -21.2 306.1 12377.5 437 00141 D 26 15 13 36 212.23 35794.81 3074.07 -0.00 261.46 36415.3 17411.8 -0.5 3.0 62.50 188.65 LOS 37.4 63.0 VBC 26 20 23 15 -21.6 306.4 12418.7 438 00141 D 26 15 15 36 212.73 35794.77 3074.08 -0.00 260.96 36415.3 17420.3 -0.4 3.0 62.50 188.65 LOS 37.4 63.0 VBC 26 20 25 15 -21.9 306.7 12459.8 439 00141 D 26 15 17 36 213.24 35794.73 3074.08 -0.00 260.46 36415.2 17427.7 -0.4 3.0 62.50 188.65 LOS 37.4 63.0 VBC 26 20 27 15 -22.3 307.0 12500.7 440 00141 D 26 15 19 36 213.74 35794.69 3074.08 -0.00 259.95 36415.2 17434.0 -0.3 3.0 62.50 188.65 LOS 37.3 63.0 VBC 26 20 29 15 -22.7 307.3 12541.5 441 00141 D 26 15 21 36 214.24 35794.64 3074.09 -0.00 259.45 36415.1 17439.1 -0.2 3.0 62.50 188.65 LOS 37.3 63.0 VBC 26 20 31 15 -23.0 307.6 12582.1 442 00141 D 26 15 23 36 214.74 35794.60 3074.09 -0.00 258.95 36415.1 17443.2 -0.2 3.0 62.50 188.65 LOS 37.3 63.0 VBC 26 20 33 15 -23.4 307.9 12622.5 443 00141 D 26 15 25 36 215.24 35794.56 3074.09 -0.00 258.45 36415.1 17446.1 -0.1 3.0 62.50 188.65 LOS 37.3 63.0 VBC 26 20 35 15 -23.8 308.2 12662.7 444 00141 D 26 15 27 36 215.74 35794.51 3074.09 -0.00 257.95 36415.0 17447.9 -0.1 3.0 62.50 188.65 LOS 37.3 63.0 VBC 26 20 37 15 -24.1 308.6 12702.8 445 00141 D 26 15 29 36 216.24 35794.47 3074.10 -0.00 257.45 36415.0 17448.5 -0.0 3.0 62.50 188.65 LOS 37.3 63.0 VBC 26 20 39 15 -24.5 308.9 12742.7 446 00141 D 26 15 31 36 216.74 35794.42 3074.10 -0.00 256.95 36414.9 17448.0 0.1 3.0 62.50 188.65 LOS 37.3 63.0 VBC 26 20 41 15 -24.8 309.2 12782.3 447 00141 D 26 15 33 36 217.25 35794.38 3074.10 -0.00 256.44 36414.9 17446.4 0.1 3.0 62.50 188.65 LOS 37.3 63.0 VBC 26 20 43 15 -25.2 309.6 12821.8 448 00141 D 26 15 35 36 217.75 35794.33 3074.11 -0.00 255.94 36414.8 17443.6 0.2 3.0 62.50 188.65 LOS 37.3 63.0 VBC 26 20 45 15 -25.5 309.9 12861.2 449 00141 D 26 15 37 36 218.25 35794.29 3074.11 -0.00 255.44 36414.8 17439.7 0.2 3.0 62.50 188.65 LOS 37.3 63.0 VBC 26 20 47 15 -25.9 310.2 12900.3 450 00141 D 26 15 39 36 218.75 35794.24 3074.11 -0.00 254.94 36414.7 17434.7 0.3 3.0 62.50 188.65 LOS 37.3 63.0 VBC 26 20 49 15 -26.2 310.6 12939.2 451 00141 D 26 15 41 36 219.25 35794.19 3074.12 -0.00 254.44 36414.7 17428.6 0.4 3.0 62.50 188.65 LOS 37.3 63.0 VBC 26 20 51 15 -26.6 310.9 12977.9 452 00141 D 26 15 43 36 219.75 35794.14 3074.12 -0.00 253.94 36414.6 17421.3 0.4 3.0 62.50 188.65 LOS 37.3 63.0 VBC 26 20 53 15 -26.9 311.3 13016.4 453

Page 362: ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM …myreaders.info/00_Orbital__Mechanics__-__Model_____Simulation... · ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM-MSS)

www.m

yrea

ders

.inf

o

OM-MSS Page 362 SATELLITE PASS - GROUND TRACE [acronym - Line Of Sight (LOS), On Board Computerr (OBC), Visible Band Camera (VBC), Night Vision Devices (NVD) ] ORBIT, INPUT TIME, POSIION, SAT VELOCITY, GROUND TRACE, RANGE, DIST, PITCH/ROLL, EL/AZ, ACCESS EL/AZ, DATA SOLAR TIME EL/AZ, DIST Line 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 @ES 18 19 20 @SS 21 22 23 24 25 26 27 @ES 28 29 30 No. Node GMT Anomaly Height @ Vel Lat(SAT)Log Slant S-Sat Pitch Roll EL(SAT)AZ Control EL(SUN)AZ Acq. LMT(ES) EL(SUN)AZ S-Sun Nos D H M S deg km meter deg deg km km deg deg deg D H M S deg km 00141 D 26 15 45 36 220.25 35794.10 3074.13 -0.00 253.44 36414.6 17413.0 0.5 3.0 62.50 188.65 LOS 37.3 63.0 VBC 26 20 55 15 -27.3 311.6 13054.7 454 00141 D 26 15 47 36 220.75 35794.05 3074.13 -0.00 252.94 36414.5 17403.6 0.5 3.0 62.50 188.65 LOS 37.3 63.0 VBC 26 20 57 15 -27.6 312.0 13092.8 455 00141 D 26 15 49 36 221.26 35794.00 3074.13 -0.00 252.43 36414.5 17393.1 0.6 3.0 62.50 188.65 LOS 37.3 63.0 VBC 26 20 59 15 -28.0 312.3 13130.7 456 00141 D 26 15 51 36 221.76 35793.95 3074.14 -0.00 251.93 36414.4 17381.5 0.7 3.0 62.50 188.65 LOS 37.3 63.0 VBC 26 21 01 15 -28.3 312.7 13168.4 457 00141 D 26 15 53 36 222.26 35793.90 3074.14 -0.00 251.43 36414.4 17368.8 0.7 3.0 62.50 188.65 LOS 37.3 63.0 VBC 26 21 03 15 -28.6 313.1 13205.8 458 00141 D 26 15 55 36 222.76 35793.84 3074.14 -0.00 250.93 36414.3 17355.2 0.8 3.0 62.50 188.65 LOS 37.3 63.0 VBC 26 21 05 15 -29.0 313.4 13243.1 459 00141 D 26 15 57 36 223.26 35793.79 3074.15 -0.00 250.43 36414.3 17340.5 0.9 3.0 62.50 188.65 LOS 37.3 63.0 VBC 26 21 07 15 -29.3 313.8 13280.1 460 00141 D 26 15 59 36 223.76 35793.74 3074.15 -0.00 249.93 36414.2 17324.8 0.9 3.0 62.50 188.65 LOS 37.3 63.0 VBC 26 21 09 15 -29.6 314.2 13316.8 461 00141 D 26 16 01 36 224.26 35793.69 3074.15 -0.00 249.43 36414.2 17308.1 1.0 3.0 62.50 188.65 LOS 37.3 63.0 VBC 26 21 11 15 -30.0 314.6 13353.3 462 00141 D 26 16 03 36 224.76 35793.64 3074.16 -0.00 248.93 36414.1 17290.5 1.0 3.0 62.50 188.65 LOS 37.3 63.0 VBC 26 21 13 15 -30.3 315.0 13389.6 463 00141 D 26 16 05 36 225.26 35793.58 3074.16 -0.00 248.42 36414.1 17271.9 1.1 3.0 62.50 188.66 LOS 37.3 63.0 VBC 26 21 15 15 -30.6 315.3 13425.7 464 00141 D 26 16 07 36 225.77 35793.53 3074.17 -0.00 247.92 36414.0 17252.3 1.2 3.0 62.50 188.66 LOS 37.3 63.0 VBC 26 21 17 15 -30.9 315.7 13461.4 465 00141 D 26 16 09 36 226.27 35793.47 3074.17 -0.00 247.42 36414.0 17231.9 1.2 3.0 62.50 188.66 LOS 37.3 63.0 VBC 26 21 19 15 -31.2 316.1 13497.0 466 00141 D 26 16 11 36 226.77 35793.42 3074.17 -0.00 246.92 36413.9 17210.6 1.3 3.0 62.50 188.66 LOS 37.3 63.0 VBC 26 21 21 15 -31.6 316.5 13532.3 467 00141 D 26 16 13 36 227.27 35793.36 3074.18 -0.00 246.42 36413.8 17188.4 1.3 3.0 62.50 188.66 LOS 37.3 63.0 VBC 26 21 23 15 -31.9 316.9 13567.3 468 00141 D 26 16 15 36 227.77 35793.31 3074.18 -0.00 245.92 36413.8 17165.3 1.4 3.0 62.50 188.66 LOS 37.3 63.0 VBC 26 21 25 15 -32.2 317.4 13602.0 469 00141 D 26 16 17 36 228.27 35793.25 3074.19 -0.00 245.42 36413.7 17141.4 1.5 3.0 62.50 188.66 LOS 37.3 63.0 VBC 26 21 27 15 -32.5 317.8 13636.5 470 00141 D 26 16 19 36 228.77 35793.19 3074.19 -0.00 244.92 36413.7 17116.7 1.5 3.0 62.50 188.66 LOS 37.3 63.0 VBC 26 21 29 15 -32.8 318.2 13670.7 471 00141 D 26 16 21 36 229.27 35793.14 3074.20 -0.00 244.41 36413.6 17091.2 1.6 3.0 62.50 188.66 LOS 37.3 63.0 VBC 26 21 31 15 -33.1 318.6 13704.7 472 00141 D 26 16 23 36 229.78 35793.08 3074.20 -0.00 243.91 36413.6 17065.0 1.6 3.0 62.50 188.66 LOS 37.3 63.0 VBC 26 21 33 15 -33.4 319.0 13738.3 473 00141 D 26 16 25 36 230.28 35793.02 3074.20 -0.00 243.41 36413.5 17038.0 1.7 3.0 62.50 188.66 LOS 37.3 63.0 VBC 26 21 35 15 -33.7 319.5 13771.7 474 00141 D 26 16 27 36 230.78 35792.96 3074.21 -0.00 242.91 36413.4 17010.2 1.8 3.0 62.50 188.66 LOS 37.3 63.0 VBC 26 21 37 15 -34.0 319.9 13804.8 475 00141 D 26 16 29 36 231.28 35792.90 3074.21 -0.00 242.41 36413.4 16981.8 1.8 3.0 62.50 188.66 LOS 37.3 63.0 VBC 26 21 39 15 -34.3 320.3 13837.5 476 00141 D 26 16 31 36 231.78 35792.84 3074.22 -0.00 241.91 36413.3 16952.6 1.9 3.0 62.50 188.66 LOS 37.3 63.0 VBC 26 21 41 15 -34.6 320.8 13870.0 477 00141 D 26 16 33 36 232.28 35792.79 3074.22 -0.00 241.41 36413.3 16922.8 1.9 3.0 62.50 188.66 LOS 37.3 63.0 VBC 26 21 43 15 -34.9 321.2 13902.2 478 00141 D 26 16 35 36 232.78 35792.73 3074.23 -0.00 240.90 36413.2 16892.4 2.0 3.0 62.50 188.66 LOS 37.3 63.0 VBC 26 21 45 15 -35.2 321.7 13934.0 479 00141 D 26 16 37 36 233.28 35792.66 3074.23 -0.00 240.40 36413.1 16861.3 2.1 3.0 62.50 188.66 LOS 37.3 63.0 VBC 26 21 47 15 -35.5 322.1 13965.6 480 00141 D 26 16 39 36 233.79 35792.60 3074.23 -0.00 239.90 36413.1 16829.6 2.1 3.0 62.50 188.66 LOS 37.3 63.0 VBC 26 21 49 15 -35.7 322.6 13996.8 481 00141 D 26 16 41 36 234.29 35792.54 3074.24 -0.00 239.40 36413.0 16797.3 2.2 3.0 62.50 188.66 LOS 37.3 63.0 VBC 26 21 51 15 -36.0 323.0 14027.7 482 00141 D 26 16 43 36 234.79 35792.48 3074.24 -0.00 238.90 36412.9 16764.4 2.2 3.0 62.50 188.66 LOS 37.3 63.0 VBC 26 21 53 15 -36.3 323.5 14058.3 483 00141 D 26 16 45 36 235.29 35792.42 3074.25 -0.00 238.40 36412.9 16730.9 2.3 3.0 62.50 188.66 LOS 37.3 63.0 VBC 26 21 55 15 -36.6 324.0 14088.5 484 00141 D 26 16 47 36 235.79 35792.36 3074.25 -0.00 237.90 36412.8 16697.0 2.4 3.0 62.50 188.66 LOS 37.3 63.0 VBC 26 21 57 15 -36.8 324.4 14118.4 485 00141 D 26 16 49 36 236.29 35792.29 3074.26 -0.00 237.40 36412.7 16662.4 2.4 3.0 62.50 188.66 LOS 37.3 63.0 VBC 26 21 59 15 -37.1 324.9 14147.9 486 00141 D 26 16 51 36 236.79 35792.23 3074.26 -0.00 236.89 36412.7 16627.4 2.5 3.0 62.50 188.66 LOS 37.3 63.0 VBC 26 22 01 15 -37.4 325.4 14177.1 487 00141 D 26 16 53 36 237.29 35792.17 3074.27 -0.00 236.39 36412.6 16591.9 2.5 3.0 62.50 188.66 LOS 37.3 63.0 VBC 26 22 03 15 -37.6 325.9 14205.9 488 00141 D 26 16 55 36 237.80 35792.10 3074.27 -0.00 235.89 36412.6 16555.9 2.6 3.0 62.50 188.66 LOS 37.3 63.0 VBC 26 22 05 15 -37.9 326.4 14234.4 489 00141 D 26 16 57 36 238.30 35792.04 3074.28 -0.00 235.39 36412.5 16519.4 2.6 3.0 62.50 188.66 LOS 37.3 63.0 VBC 26 22 07 15 -38.1 326.9 14262.5 490 00141 D 26 16 59 36 238.80 35791.97 3074.28 -0.00 234.89 36412.4 16482.5 2.7 3.0 62.50 188.66 LOS 37.3 63.0 VBC 26 22 09 15 -38.4 327.4 14290.2 491 00141 D 26 17 01 36 239.30 35791.91 3074.28 -0.00 234.39 36412.4 16445.2 2.8 3.0 62.50 188.66 LOS 37.3 63.0 VBC 26 22 11 15 -38.6 327.9 14317.5 492 00141 D 26 17 03 36 239.80 35791.84 3074.29 -0.00 233.89 36412.3 16407.4 2.8 3.0 62.50 188.66 LOS 37.3 63.0 VBC 26 22 13 15 -38.9 328.4 14344.5 493 00141 D 26 17 05 36 240.30 35791.78 3074.29 -0.00 233.39 36412.2 16369.2 2.9 3.0 62.50 188.66 LOS 37.3 63.0 VBC 26 22 15 15 -39.1 328.9 14371.1 494

Page 363: ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM …myreaders.info/00_Orbital__Mechanics__-__Model_____Simulation... · ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM-MSS)

www.m

yrea

ders

.inf

o

OM-MSS Page 363 SATELLITE PASS - GROUND TRACE [acronym - Line Of Sight (LOS), On Board Computerr (OBC), Visible Band Camera (VBC), Night Vision Devices (NVD) ] ORBIT, INPUT TIME, POSIION, SAT VELOCITY, GROUND TRACE, RANGE, DIST, PITCH/ROLL, EL/AZ, ACCESS EL/AZ, DATA SOLAR TIME EL/AZ, DIST Line 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 @ES 18 19 20 @SS 21 22 23 24 25 26 27 @ES 28 29 30 No. Node GMT Anomaly Height @ Vel Lat(SAT)Log Slant S-Sat Pitch Roll EL(SAT)AZ Control EL(SUN)AZ Acq. LMT(ES) EL(SUN)AZ S-Sun Nos D H M S deg km meter deg deg km km deg deg deg D H M S deg km 00141 D 26 17 07 36 240.80 35791.71 3074.30 -0.00 232.88 36412.2 16330.6 2.9 3.0 62.50 188.66 LOS 37.3 63.0 VBC 26 22 17 15 -39.3 329.4 14397.2 495 00141 D 26 17 09 36 241.31 35791.65 3074.30 -0.00 232.38 36412.1 16291.7 3.0 3.0 62.50 188.66 LOS 37.3 63.0 VBC 26 22 19 15 -39.6 330.0 14423.0 496 00141 D 26 17 11 36 241.81 35791.58 3074.31 -0.00 231.88 36412.0 16252.3 3.0 3.0 62.50 188.66 LOS 37.3 63.0 VBC 26 22 21 15 -39.8 330.5 14448.4 497 00141 D 26 17 13 36 242.31 35791.51 3074.31 -0.00 231.38 36412.0 16212.6 3.1 3.0 62.50 188.66 LOS 37.3 63.0 VBC 26 22 23 15 -40.0 331.0 14473.3 498 00141 D 26 17 15 36 242.81 35791.45 3074.32 -0.00 230.88 36411.9 16172.6 3.2 3.0 62.50 188.66 LOS 37.3 63.0 VBC 26 22 25 15 -40.2 331.6 14497.9 499 00141 D 26 17 17 36 243.31 35791.38 3074.32 -0.00 230.38 36411.8 16132.2 3.2 3.0 62.50 188.66 LOS 37.3 63.0 VBC 26 22 27 15 -40.5 332.1 14522.0 500 00141 D 26 17 19 36 243.81 35791.31 3074.33 -0.00 229.88 36411.7 16091.5 3.3 3.0 62.50 188.66 LOS 37.3 63.0 VBC 26 22 29 15 -40.7 332.6 14545.7 501 00141 D 26 17 21 36 244.31 35791.24 3074.33 -0.00 229.37 36411.7 16050.5 3.3 3.0 62.50 188.66 LOS 37.3 63.0 VBC 26 22 31 15 -40.9 333.2 14568.9 502 00141 D 26 17 23 36 244.81 35791.17 3074.34 -0.00 228.87 36411.6 16009.1 3.4 3.0 62.50 188.66 LOS 37.3 63.0 VBC 26 22 33 15 -41.1 333.8 14591.7 503 00141 D 26 17 25 36 245.32 35791.11 3074.34 -0.00 228.37 36411.5 15967.5 3.4 3.0 62.50 188.66 LOS 37.3 63.0 VBC 26 22 35 15 -41.3 334.3 14614.1 504 00141 D 26 17 27 36 245.82 35791.04 3074.35 -0.00 227.87 36411.5 15925.5 3.5 3.0 62.50 188.66 LOS 37.3 63.0 VBC 26 22 37 15 -41.5 334.9 14636.0 505 00141 D 26 17 29 36 246.32 35790.97 3074.35 -0.00 227.37 36411.4 15883.3 3.6 3.0 62.50 188.66 LOS 37.3 63.0 VBC 26 22 39 15 -41.7 335.4 14657.5 506 00141 D 26 17 31 36 246.82 35790.90 3074.36 -0.00 226.87 36411.3 15840.9 3.6 3.0 62.50 188.66 LOS 37.3 63.0 VBC 26 22 41 15 -41.9 336.0 14678.5 507 00141 D 26 17 33 36 247.32 35790.83 3074.36 -0.00 226.37 36411.3 15798.1 3.7 3.0 62.50 188.67 LOS 37.3 63.0 VBC 26 22 43 15 -42.0 336.6 14699.0 508 00141 D 26 17 35 36 247.82 35790.76 3074.37 -0.00 225.86 36411.2 15755.1 3.7 3.0 62.50 188.67 LOS 37.3 63.0 VBC 26 22 45 15 -42.2 337.2 14719.0 509 00141 D 26 17 37 36 248.32 35790.69 3074.37 -0.00 225.36 36411.1 15711.9 3.8 3.0 62.50 188.67 LOS 37.3 63.0 VBC 26 22 47 15 -42.4 337.8 14738.6 510 00141 D 26 17 39 36 248.82 35790.62 3074.38 -0.00 224.86 36411.0 15668.4 3.8 3.1 62.50 188.67 LOS 37.3 63.0 VBC 26 22 49 15 -42.6 338.3 14757.7 511 00141 D 26 17 41 36 249.33 35790.55 3074.38 -0.00 224.36 36411.0 15624.6 3.9 3.1 62.50 188.67 LOS 37.3 63.0 VBC 26 22 51 15 -42.7 338.9 14776.3 512 00141 D 26 17 43 09 249.71 35790.49 Eqa 3074.39 -0.00 223.97 36410.9 15590.6 3.9 3.1 62.50 59.12 LOS 37.3 63.0 VBC 26 22 52 48 -42.9 339.4 14790.4 513 00141 A 26 17 43 36 249.83 35790.48 3074.39 0.00 224.09 36410.9 15600.6 3.9 3.1 62.50 188.67 LOS 37.5 62.9 VBC 26 22 53 15 -42.9 339.5 14794.4 514 00141 A 26 17 45 36 250.33 35790.41 3074.39 0.00 224.59 36410.8 15644.4 3.9 3.1 62.50 188.67 LOS 38.4 62.5 VBC 26 22 55 15 -43.1 340.1 14812.0 515 00141 A 26 17 47 36 250.83 35790.33 3074.40 0.00 225.09 36410.7 15688.0 3.8 3.1 62.50 188.67 LOS 39.2 62.2 VBC 26 22 57 15 -43.2 340.7 14829.1 516 00141 A 26 17 49 36 251.33 35790.26 3074.40 0.00 225.59 36410.7 15731.4 3.8 3.0 62.50 188.67 LOS 40.1 61.8 VBC 26 22 59 15 -43.4 341.3 14845.7 517 00141 A 26 17 51 36 251.83 35790.19 3074.41 0.00 226.09 36410.6 15774.5 3.7 3.0 62.50 188.67 LOS 41.0 61.4 VBC 26 23 01 15 -43.5 341.9 14861.8 518 00141 A 26 17 53 36 252.33 35790.12 3074.42 0.00 226.59 36410.5 15817.4 3.6 3.0 62.50 188.67 LOS 41.9 60.9 VBC 26 23 03 15 -43.6 342.6 14877.4 519 00141 A 26 17 55 36 252.83 35790.05 3074.42 0.00 227.09 36410.4 15860.0 3.6 3.0 62.50 188.67 LOS 42.8 60.5 VBC 26 23 05 15 -43.8 343.2 14892.4 520 00141 A 26 17 57 36 253.34 35789.97 3074.43 0.00 227.60 36410.4 15902.4 3.5 3.0 62.50 188.67 LOS 43.6 60.0 VBC 26 23 07 15 -43.9 343.8 14906.9 521 00141 A 26 17 59 36 253.84 35789.90 3074.43 0.00 228.10 36410.3 15944.4 3.5 3.0 62.50 188.67 LOS 44.5 59.5 VBC 26 23 09 15 -44.0 344.4 14920.9 522 00141 A 26 18 01 36 254.34 35789.83 3074.44 0.00 228.60 36410.2 15986.2 3.4 3.0 62.50 188.67 LOS 45.3 59.0 VBC 26 23 11 15 -44.2 345.1 14934.3 523 00141 A 26 18 03 36 254.84 35789.76 3074.44 0.00 229.10 36410.2 16027.7 3.4 3.0 62.50 188.67 LOS 46.2 58.5 VBC 26 23 13 15 -44.3 345.7 14947.2 524 00141 A 26 18 05 36 255.34 35789.68 3074.45 0.00 229.60 36410.1 16068.9 3.3 3.0 62.50 188.67 LOS 47.1 57.9 VBC 26 23 15 15 -44.4 346.3 14959.6 525 00141 A 26 18 07 36 255.84 35789.61 3074.45 0.00 230.10 36410.0 16109.8 3.3 3.0 62.50 188.67 LOS 47.9 57.3 VBC 26 23 17 15 -44.5 346.9 14971.4 526 00141 A 26 18 09 36 256.34 35789.54 3074.46 0.00 230.60 36409.9 16150.4 3.2 3.0 62.50 188.67 LOS 48.7 56.7 VBC 26 23 19 15 -44.6 347.6 14982.6 527 00141 A 26 18 11 36 256.85 35789.46 3074.46 0.00 231.10 36409.9 16190.6 3.1 3.0 62.50 188.67 LOS 49.6 56.1 VBC 26 23 21 15 -44.7 348.2 14993.3 528 00141 A 26 18 13 36 257.35 35789.39 3074.47 0.00 231.61 36409.8 16230.5 3.1 3.0 62.50 188.67 LOS 50.4 55.4 VBC 26 23 23 15 -44.8 348.9 15003.4 529 00141 A 26 18 15 36 257.85 35789.31 3074.47 0.00 232.11 36409.7 16270.0 3.0 3.0 62.50 188.67 LOS 51.2 54.7 VBC 26 23 25 15 -44.9 349.5 15013.0 530 00141 A 26 18 17 36 258.35 35789.24 3074.48 0.00 232.61 36409.6 16309.2 3.0 3.0 62.50 188.67 LOS 52.0 54.0 VBC 26 23 27 15 -44.9 350.2 15022.0 531 00141 A 26 18 19 36 258.85 35789.17 3074.48 0.00 233.11 36409.5 16348.0 2.9 3.0 62.50 188.67 LOS 52.8 53.2 VBC 26 23 29 15 -45.0 350.8 15030.4 532 00141 A 26 18 21 36 259.35 35789.09 3074.49 0.00 233.61 36409.5 16386.4 2.8 3.0 62.50 188.67 LOS 53.6 52.4 VBC 26 23 31 15 -45.1 351.5 15038.2 533 00141 A 26 18 23 36 259.85 35789.02 3074.50 0.00 234.11 36409.4 16424.4 2.8 3.0 62.50 188.67 LOS 54.4 51.5 VBC 26 23 33 15 -45.2 352.1 15045.5 534 00141 A 26 18 25 36 260.35 35788.94 3074.50 0.00 234.61 36409.3 16461.9 2.7 3.0 62.50 188.67 LOS 55.2 50.7 VBC 26 23 35 15 -45.2 352.8 15052.2 535 00141 A 26 18 27 36 260.86 35788.87 3074.51 0.00 235.12 36409.2 16499.1 2.7 3.0 62.50 188.67 LOS 56.0 49.7 VBC 26 23 37 15 -45.3 353.4 15058.3 536

Page 364: ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM …myreaders.info/00_Orbital__Mechanics__-__Model_____Simulation... · ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM-MSS)

www.m

yrea

ders

.inf

o

OM-MSS Page 364 SATELLITE PASS - GROUND TRACE [acronym - Line Of Sight (LOS), On Board Computerr (OBC), Visible Band Camera (VBC), Night Vision Devices (NVD) ] ORBIT, INPUT TIME, POSIION, SAT VELOCITY, GROUND TRACE, RANGE, DIST, PITCH/ROLL, EL/AZ, ACCESS EL/AZ, DATA SOLAR TIME EL/AZ, DIST Line 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 @ES 18 19 20 @SS 21 22 23 24 25 26 27 @ES 28 29 30 No. Node GMT Anomaly Height @ Vel Lat(SAT)Log Slant S-Sat Pitch Roll EL(SAT)AZ Control EL(SUN)AZ Acq. LMT(ES) EL(SUN)AZ S-Sun Nos D H M S deg km meter deg deg km km deg deg deg D H M S deg km 00141 A 26 18 29 36 261.36 35788.79 3074.51 0.00 235.62 36409.2 16535.8 2.6 3.0 62.50 188.67 LOS 56.7 48.7 VBC 26 23 39 15 -45.3 354.1 15063.8 537 00141 A 26 18 31 36 261.86 35788.72 3074.52 0.00 236.12 36409.1 16572.0 2.6 3.0 62.50 188.67 LOS 57.5 47.7 VBC 26 23 41 15 -45.4 354.8 15068.8 538 00141 A 26 18 33 36 262.36 35788.64 3074.52 0.00 236.62 36409.0 16607.8 2.5 3.0 62.50 188.67 LOS 58.2 46.6 VBC 26 23 43 15 -45.4 355.4 15073.1 539 00141 A 26 18 35 36 262.86 35788.57 3074.53 0.00 237.12 36408.9 16643.1 2.4 3.0 62.50 188.67 LOS 58.9 45.5 VBC 26 23 45 15 -45.4 356.1 15076.9 540 00141 A 26 18 37 36 263.36 35788.49 3074.53 0.00 237.62 36408.9 16677.9 2.4 3.0 62.50 188.67 LOS 59.6 44.3 VBC 26 23 47 15 -45.5 356.7 15080.1 541 00141 A 26 18 39 36 263.86 35788.42 3074.54 0.00 238.12 36408.8 16712.2 2.3 3.0 62.50 188.67 LOS 60.3 43.0 VBC 26 23 49 15 -45.5 357.4 15082.7 542 00141 A 26 18 41 36 264.37 35788.34 3074.54 0.00 238.63 36408.7 16745.9 2.3 3.0 62.50 188.67 LOS 61.0 41.7 VBC 26 23 51 15 -45.5 358.1 15084.6 543 00141 A 26 18 43 36 264.87 35788.27 3074.55 0.00 239.13 36408.6 16779.1 2.2 3.0 62.50 188.67 LOS 61.7 40.3 VBC 26 23 53 15 -45.5 358.7 15086.0 544 00141 A 26 18 45 36 265.37 35788.19 3074.56 0.00 239.63 36408.5 16811.7 2.1 3.0 62.50 188.67 LOS 62.3 38.9 VBC 26 23 55 15 -45.5 359.4 15086.8 545 00141 A 26 18 47 36 265.87 35788.12 3074.56 0.00 240.13 36408.5 16843.7 2.1 3.0 62.50 188.67 LOS 62.9 37.4 VBC 26 23 57 15 -45.5 0.1 15087.1 546 00141 A 26 18 49 36 266.37 35788.04 3074.57 0.00 240.63 36408.4 16875.2 2.0 3.0 62.50 188.67 LOS 63.5 35.8 VBC 26 23 59 15 -45.5 0.7 15086.7 547 00141 A 26 18 51 36 266.87 35787.97 3074.57 0.00 241.13 36408.3 16906.0 2.0 3.0 62.50 188.67 LOS 64.1 34.1 VBC 27 00 01 15 -45.5 1.4 15085.7 548 00141 A 26 18 53 36 267.37 35787.89 3074.58 0.00 241.63 36408.2 16936.1 1.9 3.0 62.50 188.67 LOS 64.6 32.4 VBC 27 00 03 15 -45.5 2.1 15084.1 549 00141 A 26 18 55 36 267.88 35787.81 3074.58 0.00 242.13 36408.2 16965.6 1.8 3.0 62.50 188.67 LOS 65.2 30.5 VBC 27 00 05 15 -45.5 2.7 15082.0 550 00141 A 26 18 57 36 268.38 35787.74 3074.59 0.00 242.64 36408.1 16994.4 1.8 3.0 62.50 188.67 LOS 65.7 28.6 VBC 27 00 07 15 -45.5 3.4 15079.2 551 00141 A 26 18 59 36 268.88 35787.66 3074.59 0.00 243.14 36408.0 17022.6 1.7 3.0 62.50 188.67 LOS 66.1 26.6 VBC 27 00 09 15 -45.4 4.1 15075.9 552 00141 A 26 19 01 36 269.38 35787.59 3074.60 0.00 243.64 36407.9 17050.0 1.7 3.0 62.50 188.67 LOS 66.6 24.6 VBC 27 00 11 15 -45.4 4.7 15071.9 553 00141 A 26 19 03 36 269.88 35787.51 3074.61 0.00 244.14 36407.8 17076.6 1.6 3.0 62.50 188.67 LOS 67.0 22.4 VBC 27 00 13 15 -45.4 5.4 15067.4 554 00141 A 26 19 05 36 270.38 35787.44 3074.61 0.00 244.64 36407.8 17102.5 1.5 3.0 62.50 188.67 LOS 67.3 20.2 VBC 27 00 15 15 -45.3 6.0 15062.3 555 00141 A 26 19 07 36 270.88 35787.36 3074.62 0.00 245.14 36407.7 17127.7 1.5 3.0 62.50 188.67 LOS 67.6 17.9 VBC 27 00 17 15 -45.3 6.7 15056.6 556 00141 A 26 19 09 36 271.39 35787.28 3074.62 0.00 245.64 36407.6 17152.0 1.4 3.0 62.50 188.67 LOS 67.9 15.6 VBC 27 00 19 15 -45.2 7.3 15050.4 557 00141 A 26 19 11 36 271.89 35787.21 3074.63 0.00 246.15 36407.5 17175.5 1.4 3.0 62.50 188.67 LOS 68.2 13.2 VBC 27 00 21 15 -45.1 8.0 15043.5 558 00141 A 26 19 13 36 272.39 35787.13 3074.63 0.00 246.65 36407.5 17198.2 1.3 3.0 62.50 188.67 LOS 68.4 10.7 VBC 27 00 23 15 -45.1 8.7 15036.1 559 00141 A 26 19 15 36 272.89 35787.06 3074.64 0.00 247.15 36407.4 17220.0 1.2 3.0 62.50 188.67 LOS 68.6 8.2 VBC 27 00 25 15 -45.0 9.3 15028.0 560 00141 A 26 19 17 36 273.39 35786.98 3074.64 0.00 247.65 36407.3 17240.9 1.2 3.0 62.50 188.67 LOS 68.7 5.7 VBC 27 00 27 15 -44.9 10.0 15019.5 561 00141 A 26 19 19 36 273.89 35786.91 3074.65 0.00 248.15 36407.2 17260.9 1.1 3.0 62.50 188.67 LOS 68.8 3.1 VBC 27 00 29 15 -44.8 10.6 15010.3 562 00141 A 26 19 21 36 274.39 35786.83 3074.65 0.00 248.65 36407.1 17280.0 1.1 3.0 62.50 188.67 LOS 68.8 0.5 VBC 27 00 31 15 -44.8 11.3 15000.6 563 00141 A 26 19 23 36 274.89 35786.76 3074.66 0.00 249.15 36407.1 17298.2 1.0 3.0 62.50 188.67 LOS 68.8 358.0 VBC 27 00 33 15 -44.7 11.9 14990.3 564 00141 A 26 19 25 36 275.40 35786.68 3074.67 0.00 249.66 36407.0 17315.4 0.9 3.0 62.50 188.67 LOS 68.7 355.4 VBC 27 00 35 15 -44.6 12.5 14979.5 565 00141 A 26 19 27 36 275.90 35786.61 3074.67 0.00 250.16 36406.9 17331.6 0.9 3.0 62.50 188.67 LOS 68.6 352.8 VBC 27 00 37 15 -44.5 13.2 14968.1 566 00141 A 26 19 29 36 276.40 35786.53 3074.68 0.00 250.66 36406.8 17346.9 0.8 3.0 62.50 188.67 LOS 68.5 350.3 VBC 27 00 39 15 -44.4 13.8 14956.1 567 00141 A 26 19 31 36 276.90 35786.45 3074.68 0.00 251.16 36406.8 17361.1 0.8 3.0 62.50 188.67 LOS 68.3 347.8 VBC 27 00 41 15 -44.2 14.4 14943.6 568 00141 A 26 19 33 36 277.40 35786.38 3074.69 0.00 251.66 36406.7 17374.3 0.7 3.0 62.50 188.67 LOS 68.0 345.4 VBC 27 00 43 15 -44.1 15.1 14930.6 569 00141 A 26 19 35 36 277.90 35786.30 3074.69 0.00 252.16 36406.6 17386.4 0.6 3.0 62.50 188.67 LOS 67.8 343.0 VBC 27 00 45 15 -44.0 15.7 14917.0 570 00141 A 26 19 37 36 278.40 35786.23 3074.70 0.00 252.66 36406.5 17397.5 0.6 3.0 62.50 188.67 LOS 67.5 340.7 VBC 27 00 47 15 -43.9 16.3 14902.8 571 00141 A 26 19 39 36 278.91 35786.15 3074.70 0.00 253.17 36406.5 17407.5 0.5 3.0 62.50 188.67 LOS 67.1 338.5 VBC 27 00 49 15 -43.7 16.9 14888.2 572 00141 A 26 19 41 36 279.41 35786.08 3074.71 0.00 253.67 36406.4 17416.4 0.5 3.0 62.50 188.66 LOS 66.7 336.3 VBC 27 00 51 15 -43.6 17.6 14873.0 573 00141 A 26 19 43 36 279.91 35786.01 3074.72 0.00 254.17 36406.3 17424.3 0.4 3.0 62.50 188.66 LOS 66.3 334.2 VBC 27 00 53 15 -43.5 18.2 14857.3 574 00141 A 26 19 45 36 280.41 35785.93 3074.72 0.00 254.67 36406.2 17431.0 0.3 3.0 62.50 188.66 LOS 65.9 332.2 VBC 27 00 55 15 -43.3 18.8 14841.1 575 00141 A 26 19 47 36 280.91 35785.86 3074.73 0.00 255.17 36406.1 17436.6 0.3 3.0 62.50 188.66 LOS 65.4 330.3 VBC 27 00 57 15 -43.2 19.4 14824.3 576 00141 A 26 19 49 36 281.41 35785.78 3074.73 0.00 255.67 36406.1 17441.1 0.2 3.0 62.50 188.66 LOS 64.9 328.4 VBC 27 00 59 15 -43.0 20.0 14807.1 577

Page 365: ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM …myreaders.info/00_Orbital__Mechanics__-__Model_____Simulation... · ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM-MSS)

www.m

yrea

ders

.inf

o

OM-MSS Page 365 SATELLITE PASS - GROUND TRACE [acronym - Line Of Sight (LOS), On Board Computerr (OBC), Visible Band Camera (VBC), Night Vision Devices (NVD) ] ORBIT, INPUT TIME, POSIION, SAT VELOCITY, GROUND TRACE, RANGE, DIST, PITCH/ROLL, EL/AZ, ACCESS EL/AZ, DATA SOLAR TIME EL/AZ, DIST Line 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 @ES 18 19 20 @SS 21 22 23 24 25 26 27 @ES 28 29 30 No. Node GMT Anomaly Height @ Vel Lat(SAT)Log Slant S-Sat Pitch Roll EL(SAT)AZ Control EL(SUN)AZ Acq. LMT(ES) EL(SUN)AZ S-Sun Nos D H M S deg km meter deg deg km km deg deg deg D H M S deg km 00141 A 26 19 51 36 281.91 35785.71 3074.74 0.00 256.17 36406.0 17444.4 0.2 3.0 62.50 188.66 LOS 64.3 326.6 VBC 27 01 01 15 -42.9 20.6 14789.3 578 00141 A 26 19 53 36 282.42 35785.63 3074.74 0.00 256.68 36405.9 17446.7 0.1 3.0 62.50 188.66 LOS 63.8 324.9 VBC 27 01 03 15 -42.7 21.2 14771.1 579 00141 A 26 19 55 36 282.92 35785.56 3074.75 0.00 257.18 36405.8 17447.8 0.0 3.0 62.50 188.66 LOS 63.2 323.3 VBC 27 01 05 15 -42.5 21.8 14752.4 580 00141 A 26 19 57 36 283.42 35785.49 3074.75 0.00 257.68 36405.8 17447.7 -0.0 3.0 62.50 188.66 LOS 62.6 321.8 VBC 27 01 07 15 -42.4 22.4 14733.1 581 00141 A 26 19 59 36 283.92 35785.41 3074.76 0.00 258.18 36405.7 17446.6 -0.1 3.0 62.50 188.66 LOS 61.9 320.3 VBC 27 01 09 15 -42.2 22.9 14713.4 582 00141 A 26 20 01 36 284.42 35785.34 3074.76 0.00 258.68 36405.6 17444.3 -0.2 3.0 62.50 188.66 LOS 61.3 318.9 VBC 27 01 11 15 -42.0 23.5 14693.2 583 00141 A 26 20 03 36 284.92 35785.27 3074.77 0.00 259.18 36405.5 17440.8 -0.2 3.0 62.50 188.66 LOS 60.6 317.5 VBC 27 01 13 15 -41.8 24.1 14672.6 584 00141 A 26 20 05 36 285.42 35785.19 3074.77 0.00 259.68 36405.5 17436.2 -0.3 3.0 62.50 188.66 LOS 59.9 316.2 VBC 27 01 15 15 -41.6 24.7 14651.4 585 00141 A 26 20 07 36 285.93 35785.12 3074.78 0.00 260.19 36405.4 17430.6 -0.3 3.0 62.50 188.66 LOS 59.2 315.0 VBC 27 01 17 15 -41.4 25.2 14629.9 586 00141 A 26 20 09 36 286.43 35785.05 3074.78 0.00 260.69 36405.3 17423.8 -0.4 3.0 62.50 188.66 LOS 58.5 313.9 VBC 27 01 19 15 -41.2 25.8 14607.8 587 00141 A 26 20 11 36 286.93 35784.98 3074.79 0.00 261.19 36405.2 17415.8 -0.5 3.0 62.50 188.66 LOS 57.8 312.8 VBC 27 01 21 15 -41.0 26.3 14585.3 588 00141 A 26 20 13 36 287.43 35784.90 3074.80 0.00 261.69 36405.2 17406.8 -0.5 3.0 62.50 188.66 LOS 57.0 311.7 VBC 27 01 23 15 -40.8 26.9 14562.4 589 00141 A 26 20 15 36 287.93 35784.83 3074.80 0.00 262.19 36405.1 17396.8 -0.6 3.0 62.50 188.66 LOS 56.3 310.7 VBC 27 01 25 15 -40.6 27.4 14539.0 590 00141 A 26 20 17 36 288.43 35784.76 3074.81 0.00 262.69 36405.0 17385.6 -0.6 3.0 62.50 188.66 LOS 55.5 309.8 VBC 27 01 27 15 -40.4 28.0 14515.2 591 00141 A 26 20 19 36 288.93 35784.69 3074.81 0.00 263.19 36404.9 17373.4 -0.7 3.0 62.50 188.66 LOS 54.8 308.8 VBC 27 01 29 15 -40.2 28.5 14491.0 592 00141 A 26 20 21 36 289.44 35784.62 3074.82 0.00 263.70 36404.9 17360.1 -0.8 3.0 62.50 188.66 LOS 54.0 308.0 VBC 27 01 31 15 -40.0 29.1 14466.3 593 00141 A 26 20 23 36 289.94 35784.54 3074.82 0.00 264.20 36404.8 17345.8 -0.8 3.0 62.50 188.66 LOS 53.2 307.1 VBC 27 01 33 15 -39.7 29.6 14441.3 594 00141 A 26 20 25 36 290.44 35784.47 3074.83 0.00 264.70 36404.7 17330.5 -0.9 3.0 62.50 188.66 LOS 52.4 306.4 VBC 27 01 35 15 -39.5 30.1 14415.8 595 00141 A 26 20 27 36 290.94 35784.40 3074.83 0.00 265.20 36404.7 17314.2 -0.9 3.0 62.50 188.66 LOS 51.6 305.6 VBC 27 01 37 15 -39.3 30.6 14389.9 596 00141 A 26 20 29 36 291.44 35784.33 3074.84 0.00 265.70 36404.6 17297.0 -1.0 3.0 62.50 188.66 LOS 50.7 304.9 VBC 27 01 39 15 -39.0 31.2 14363.6 597 00141 A 26 20 31 36 291.94 35784.26 3074.84 0.00 266.20 36404.5 17278.7 -1.1 3.0 62.50 188.66 LOS 49.9 304.2 VBC 27 01 41 15 -38.8 31.7 14336.9 598 00141 A 26 20 33 36 292.44 35784.19 3074.85 0.00 266.70 36404.4 17259.6 -1.1 3.0 62.50 188.66 LOS 49.1 303.6 VBC 27 01 43 15 -38.5 32.2 14309.9 599 00141 A 26 20 35 36 292.95 35784.12 3074.85 0.00 267.21 36404.4 17239.5 -1.2 3.0 62.50 188.66 LOS 48.2 302.9 VBC 27 01 45 15 -38.3 32.7 14282.4 600 00141 A 26 20 37 36 293.45 35784.05 3074.86 0.00 267.71 36404.3 17218.5 -1.3 3.0 62.50 188.66 LOS 47.4 302.3 VBC 27 01 47 15 -38.1 33.2 14254.6 601 00141 A 26 20 39 36 293.95 35783.98 3074.86 0.00 268.21 36404.2 17196.6 -1.3 3.0 62.50 188.66 LOS 46.6 301.8 VBC 27 01 49 15 -37.8 33.7 14226.4 602 00141 A 26 20 41 36 294.45 35783.91 3074.87 0.00 268.71 36404.1 17173.9 -1.4 3.0 62.50 188.66 LOS 45.7 301.2 VBC 27 01 51 15 -37.5 34.2 14197.8 603 00141 A 26 20 43 36 294.95 35783.85 3074.87 0.00 269.21 36404.1 17150.3 -1.4 3.0 62.50 188.66 LOS 44.8 300.7 VBC 27 01 53 15 -37.3 34.7 14168.9 604 00141 A 26 20 45 36 295.45 35783.78 3074.88 0.00 269.71 36404.0 17125.9 -1.5 3.0 62.50 188.66 LOS 44.0 300.2 VBC 27 01 55 15 -37.0 35.2 14139.6 605 00141 A 26 20 47 36 295.95 35783.71 3074.88 0.00 270.22 36403.9 17100.7 -1.6 3.0 62.50 188.66 LOS 43.1 299.7 VBC 27 01 57 15 -36.8 35.6 14110.0 606 00141 A 26 20 49 36 296.46 35783.64 3074.89 0.00 270.72 36403.9 17074.8 -1.6 3.0 62.50 188.66 LOS 42.2 299.3 VBC 27 01 59 15 -36.5 36.1 14080.0 607 00141 A 26 20 51 36 296.96 35783.57 3074.89 0.00 271.22 36403.8 17048.1 -1.7 3.0 62.50 188.66 LOS 41.4 298.8 VBC 27 02 01 15 -36.2 36.6 14049.7 608 00141 A 26 20 53 36 297.46 35783.51 3074.90 0.00 271.72 36403.7 17020.6 -1.7 3.0 62.50 188.66 LOS 40.5 298.4 VBC 27 02 03 15 -35.9 37.0 14019.0 609 00141 A 26 20 55 36 297.96 35783.44 3074.90 0.00 272.22 36403.7 16992.4 -1.8 3.0 62.50 188.66 LOS 39.6 298.0 VBC 27 02 05 15 -35.7 37.5 13988.0 610 00141 A 26 20 57 36 298.46 35783.37 3074.91 0.00 272.72 36403.6 16963.5 -1.9 3.0 62.50 188.66 LOS 38.7 297.6 VBC 27 02 07 15 -35.4 38.0 13956.7 611 00141 A 26 20 59 36 298.96 35783.31 3074.91 0.00 273.22 36403.5 16934.0 -1.9 3.0 62.50 188.66 LOS 37.8 297.3 VBC 27 02 09 15 -35.1 38.4 13925.1 612 00141 A 26 21 01 36 299.47 35783.24 3074.92 0.00 273.73 36403.4 16903.8 -2.0 3.0 62.50 188.66 LOS 36.9 296.9 VBC 27 02 11 15 -34.8 38.9 13893.2 613 00141 A 26 21 03 36 299.97 35783.17 3074.92 0.00 274.23 36403.4 16872.9 -2.0 3.0 62.50 188.66 LOS 36.0 296.6 VBC 27 02 13 15 -34.5 39.3 13860.9 614 00141 A 26 21 05 36 300.47 35783.11 3074.93 0.00 274.73 36403.3 16841.4 -2.1 3.0 62.50 188.66 LOS 35.1 296.3 VBC 27 02 15 15 -34.2 39.7 13828.4 615 00141 A 26 21 07 36 300.97 35783.04 3074.93 0.00 275.23 36403.2 16809.4 -2.2 3.0 62.50 188.65 LOS 34.2 296.0 VBC 27 02 17 15 -33.9 40.2 13795.5 616 00141 A 26 21 09 36 301.47 35782.98 3074.94 0.00 275.73 36403.2 16776.7 -2.2 3.0 62.50 188.65 LOS 33.3 295.7 VBC 27 02 19 15 -33.6 40.6 13762.3 617 00141 A 26 21 11 36 301.97 35782.91 3074.94 0.00 276.23 36403.1 16743.5 -2.3 3.0 62.50 188.65 LOS 32.4 295.4 VBC 27 02 21 15 -33.3 41.0 13728.9 618

Page 366: ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM …myreaders.info/00_Orbital__Mechanics__-__Model_____Simulation... · ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM-MSS)

www.m

yrea

ders

.inf

o

OM-MSS Page 366 SATELLITE PASS - GROUND TRACE [acronym - Line Of Sight (LOS), On Board Computerr (OBC), Visible Band Camera (VBC), Night Vision Devices (NVD) ] ORBIT, INPUT TIME, POSIION, SAT VELOCITY, GROUND TRACE, RANGE, DIST, PITCH/ROLL, EL/AZ, ACCESS EL/AZ, DATA SOLAR TIME EL/AZ, DIST Line 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 @ES 18 19 20 @SS 21 22 23 24 25 26 27 @ES 28 29 30 No. Node GMT Anomaly Height @ Vel Lat(SAT)Log Slant S-Sat Pitch Roll EL(SAT)AZ Control EL(SUN)AZ Acq. LMT(ES) EL(SUN)AZ S-Sun Nos D H M S deg km meter deg deg km km deg deg deg D H M S deg km 00141 A 26 21 13 36 302.47 35782.85 3074.95 0.00 276.73 36403.0 16709.7 -2.3 3.0 62.50 188.65 LOS 31.5 295.1 VBC 27 02 23 15 -33.0 41.5 13695.2 619 00141 A 26 21 15 36 302.98 35782.79 3074.95 0.00 277.24 36403.0 16675.4 -2.4 3.0 62.50 188.65 LOS 30.6 294.9 VBC 27 02 25 15 -32.7 41.9 13661.2 620 00141 A 26 21 17 36 303.48 35782.72 3074.95 0.00 277.74 36402.9 16640.5 -2.4 3.0 62.50 188.65 LOS 29.7 294.6 VBC 27 02 27 15 -32.4 42.3 13626.9 621 00141 A 26 21 19 36 303.98 35782.66 3074.96 0.00 278.24 36402.9 16605.2 -2.5 3.0 62.50 188.65 LOS 28.8 294.4 VBC 27 02 29 15 -32.1 42.7 13592.3 622 00141 A 26 21 21 36 304.48 35782.60 3074.96 0.00 278.74 36402.8 16569.4 -2.6 3.0 62.50 188.65 LOS 27.9 294.2 VBC 27 02 31 15 -31.8 43.1 13557.5 623 00141 A 26 21 23 36 304.98 35782.54 3074.97 0.00 279.24 36402.7 16533.1 -2.6 3.0 62.50 188.65 LOS 27.0 294.0 VBC 27 02 33 15 -31.5 43.5 13522.4 624 00141 A 26 21 25 36 305.48 35782.47 3074.97 0.00 279.74 36402.7 16496.3 -2.7 3.0 62.50 188.65 LOS 26.1 293.8 VBC 27 02 35 15 -31.2 43.9 13487.0 625 00141 A 26 21 27 36 305.98 35782.41 3074.98 0.00 280.25 36402.6 16459.1 -2.7 3.0 62.50 188.65 LOS 25.1 293.6 VBC 27 02 37 15 -30.8 44.3 13451.4 626 00141 A 26 21 29 36 306.49 35782.35 3074.98 0.00 280.75 36402.5 16421.5 -2.8 3.0 62.50 188.65 LOS 24.2 293.4 VBC 27 02 39 15 -30.5 44.7 13415.6 627 00141 A 26 21 31 36 306.99 35782.29 3074.99 0.00 281.25 36402.5 16383.5 -2.9 3.0 62.50 188.65 LOS 23.3 293.2 VBC 27 02 41 15 -30.2 45.1 13379.5 628 00141 A 26 21 33 36 307.49 35782.23 3074.99 0.00 281.75 36402.4 16345.0 -2.9 3.0 62.50 188.65 LOS 22.4 293.1 VBC 27 02 43 15 -29.9 45.5 13343.1 629 00141 A 26 21 35 36 307.99 35782.17 3074.99 0.00 282.25 36402.3 16306.2 -3.0 3.0 62.50 188.65 LOS 21.5 292.9 VBC 27 02 45 15 -29.5 45.8 13306.5 630 00141 A 26 21 37 36 308.49 35782.11 3075.00 0.00 282.75 36402.3 16267.0 -3.0 3.0 62.50 188.65 LOS 20.5 292.7 VBC 27 02 47 15 -29.2 46.2 13269.7 631 00141 A 26 21 39 36 308.99 35782.05 3075.00 0.00 283.25 36402.2 16227.4 -3.1 3.0 62.50 188.65 LOS 19.6 292.6 VBC 27 02 49 15 -28.9 46.6 13232.7 632 00141 A 26 21 41 36 309.50 35781.99 3075.01 0.00 283.76 36402.2 16187.5 -3.1 3.0 62.50 188.65 LOS 18.7 292.5 VBC 27 02 51 15 -28.5 47.0 13195.4 633 00141 A 26 21 43 36 310.00 35781.94 3075.01 0.00 284.26 36402.1 16147.2 -3.2 3.0 62.50 188.65 LOS 17.8 292.3 VBC 27 02 53 15 -28.2 47.3 13157.9 634 00141 A 26 21 45 36 310.50 35781.88 3075.02 0.00 284.76 36402.0 16106.6 -3.3 3.0 62.50 188.65 LOS 16.8 292.2 VBC 27 02 55 15 -27.9 47.7 13120.1 635 00141 A 26 21 47 36 311.00 35781.82 3075.02 0.00 285.26 36402.0 16065.7 -3.3 3.0 62.50 188.65 LOS 15.9 292.1 VBC 27 02 57 15 -27.5 48.1 13082.2 636 00141 A 26 21 49 36 311.50 35781.76 3075.02 0.00 285.76 36401.9 16024.5 -3.4 3.0 62.50 188.65 LOS 15.0 292.0 VBC 27 02 59 15 -27.2 48.4 13044.0 637 00141 A 26 21 51 36 312.00 35781.71 3075.03 0.00 286.26 36401.9 15982.9 -3.4 3.0 62.50 188.65 LOS 14.1 291.9 VBC 27 03 01 15 -26.8 48.8 13005.7 638 00141 A 26 21 53 36 312.50 35781.65 3075.03 0.00 286.77 36401.8 15941.1 -3.5 3.0 62.50 188.65 LOS 13.1 291.8 VBC 27 03 03 15 -26.5 49.1 12967.1 639 00141 A 26 21 55 36 313.01 35781.60 3075.04 0.00 287.27 36401.7 15899.0 -3.5 3.0 62.50 188.65 LOS 12.2 291.7 VBC 27 03 05 15 -26.1 49.5 12928.3 640 00141 A 26 21 57 36 313.51 35781.54 3075.04 0.00 287.77 36401.7 15856.6 -3.6 3.0 62.50 188.65 LOS 11.3 291.7 VBC 27 03 07 15 -25.8 49.8 12889.4 641 00141 A 26 21 59 36 314.01 35781.49 3075.04 0.00 288.27 36401.6 15813.9 -3.6 3.0 62.50 188.64 LOS 10.3 291.6 VBC 27 03 09 15 -25.4 50.1 12850.2 642 00141 A 26 22 01 36 314.51 35781.43 3075.05 0.00 288.77 36401.6 15771.0 -3.7 3.0 62.50 188.64 LOS 9.4 291.5 VBC 27 03 11 15 -25.1 50.5 12810.8 643 00141 A 26 22 03 36 315.01 35781.38 3075.05 0.00 289.27 36401.5 15727.8 -3.8 3.0 62.50 188.64 LOS 8.5 291.5 VBC 27 03 13 15 -24.7 50.8 12771.3 644 00141 A 26 22 05 36 315.51 35781.32 3075.06 0.00 289.77 36401.5 15684.4 -3.8 3.1 62.50 188.64 LOS 7.5 291.4 VBC 27 03 15 15 -24.4 51.1 12731.5 645 00141 A 26 22 07 36 316.02 35781.27 3075.06 0.00 290.28 36401.4 15640.8 -3.9 3.1 62.50 188.64 LOS 6.6 291.4 VBC 27 03 17 15 -24.0 51.5 12691.6 646 00141 A 26 22 09 36 316.52 35781.22 3075.06 0.00 290.78 36401.4 15596.9 -3.9 3.1 62.50 188.64 LOS 5.7 291.3 VBC 27 03 19 15 -23.7 51.8 12651.5 647 00141 A 26 22 11 36 317.02 35781.17 3075.07 0.00 291.28 36401.3 15552.8 -4.0 3.1 62.50 188.64 LOS 4.7 291.3 NVD 27 03 21 15 -23.3 52.1 12611.2 648 00141 A 26 22 13 36 317.52 35781.12 3075.07 0.00 291.78 36401.3 15508.5 -4.0 3.1 62.50 188.64 LOS 3.8 291.3 NVD 27 03 23 15 -22.9 52.4 12570.8 649 00141 A 26 22 15 36 318.02 35781.07 3075.08 0.00 292.28 36401.2 15464.0 -4.1 3.1 62.50 188.64 LOS 2.9 291.3 NVD 27 03 25 15 -22.6 52.7 12530.2 650 00141 A 26 22 17 36 318.52 35781.02 3075.08 0.00 292.78 36401.1 15419.2 -4.1 3.1 62.50 188.64 LOS 1.9 291.2 NVD 27 03 27 15 -22.2 53.0 12489.4 651 00141 A 26 22 19 36 319.02 35780.97 3075.08 0.00 293.29 36401.1 15374.3 -4.2 3.1 62.50 188.64 LOS 1.0 291.2 NVD 27 03 29 15 -21.8 53.4 12448.4 652 00141 A 26 22 21 36 319.53 35780.92 3075.09 0.00 293.79 36401.0 15329.2 -4.2 3.1 62.50 188.64 LOS 0.1 291.2 NVD 27 03 31 15 -21.5 53.7 12407.3 653 00141 A 26 22 23 36 320.03 35780.87 3075.09 0.00 294.29 36401.0 15283.9 -4.3 3.1 62.50 188.64 LOS -0.9 291.2 NVD 27 03 33 15 -21.1 54.0 12366.0 654 00141 A 26 22 25 36 320.53 35780.82 3075.09 0.00 294.79 36400.9 15238.4 -4.4 3.1 62.50 188.64 LOS -1.8 291.2 NVD 27 03 35 15 -20.7 54.3 12324.6 655 00141 A 26 22 27 36 321.03 35780.77 3075.10 0.00 295.29 36400.9 15192.8 -4.4 3.1 62.50 188.64 LOS -2.7 291.3 NVD 27 03 37 15 -20.3 54.6 12283.0 656 00141 A 26 22 29 36 321.53 35780.72 3075.10 0.00 295.79 36400.8 15147.0 -4.5 3.1 62.50 188.64 LOS -3.7 291.3 NVD 27 03 39 15 -20.0 54.9 12241.2 657 00141 A 26 22 31 36 322.03 35780.68 3075.10 0.00 296.29 36400.8 15101.0 -4.5 3.1 62.50 188.64 LOS -4.6 291.3 NVD 27 03 41 15 -19.6 55.1 12199.3 658 00141 A 26 22 33 36 322.53 35780.63 3075.11 0.00 296.80 36400.7 15054.8 -4.6 3.1 62.50 188.64 LOS -5.5 291.3 NVD 27 03 43 15 -19.2 55.4 12157.3 659

Page 367: ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM …myreaders.info/00_Orbital__Mechanics__-__Model_____Simulation... · ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM-MSS)

www.m

yrea

ders

.inf

o

OM-MSS Page 367 SATELLITE PASS - GROUND TRACE [acronym - Line Of Sight (LOS), On Board Computerr (OBC), Visible Band Camera (VBC), Night Vision Devices (NVD) ] ORBIT, INPUT TIME, POSIION, SAT VELOCITY, GROUND TRACE, RANGE, DIST, PITCH/ROLL, EL/AZ, ACCESS EL/AZ, DATA SOLAR TIME EL/AZ, DIST Line 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 @ES 18 19 20 @SS 21 22 23 24 25 26 27 @ES 28 29 30 No. Node GMT Anomaly Height @ Vel Lat(SAT)Log Slant S-Sat Pitch Roll EL(SAT)AZ Control EL(SUN)AZ Acq. LMT(ES) EL(SUN)AZ S-Sun Nos D H M S deg km meter deg deg km km deg deg deg D H M S deg km 00141 A 26 22 35 36 323.04 35780.58 3075.11 0.00 297.30 36400.7 15008.5 -4.6 3.1 62.50 188.64 LOS -6.5 291.4 NVD 27 03 45 15 -18.8 55.7 12115.1 660 00141 A 26 22 37 36 323.54 35780.54 3075.11 0.00 297.80 36400.7 14962.1 -4.7 3.1 62.50 188.64 LOS -7.4 291.4 NVD 27 03 47 15 -18.5 56.0 12072.7 661 00141 A 26 22 39 36 324.04 35780.49 3075.12 0.00 298.30 36400.6 14915.5 -4.7 3.1 62.50 188.64 LOS -8.3 291.5 NVD 27 03 49 15 -18.1 56.3 12030.2 662 00141 A 26 22 41 36 324.54 35780.45 3075.12 0.00 298.80 36400.6 14868.7 -4.8 3.1 62.50 188.64 LOS -9.3 291.5 NVD 27 03 51 15 -17.7 56.6 11987.6 663 00141 A 26 22 43 36 325.04 35780.41 3075.12 0.00 299.30 36400.5 14821.9 -4.8 3.1 62.50 188.63 LOS -10.2 291.6 NVD 27 03 53 15 -17.3 56.8 11944.9 664 00141 A 26 22 45 36 325.54 35780.36 3075.13 0.00 299.81 36400.5 14774.8 -4.9 3.1 62.50 188.63 LOS -11.1 291.7 NVD 27 03 55 15 -16.9 57.1 11902.0 665 00141 A 26 22 47 36 326.05 35780.32 3075.13 0.00 300.31 36400.4 14727.7 -4.9 3.1 62.50 188.63 LOS -12.0 291.7 NVD 27 03 57 15 -16.5 57.4 11859.0 666 00141 A 26 22 49 36 326.55 35780.28 3075.13 0.00 300.81 36400.4 14680.4 -5.0 3.1 62.50 188.63 LOS -13.0 291.8 NVD 27 03 59 15 -16.1 57.7 11815.8 667 00141 A 26 22 51 36 327.05 35780.24 3075.14 0.00 301.31 36400.3 14633.0 -5.0 3.1 62.50 188.63 LOS -13.9 291.9 NVD 27 04 01 15 -15.8 57.9 11772.5 668 00141 A 26 22 53 36 327.55 35780.20 3075.14 0.00 301.81 36400.3 14585.5 -5.1 3.1 62.50 188.63 LOS -14.8 292.0 NVD 27 04 03 15 -15.4 58.2 11729.1 669 00141 A 26 22 55 36 328.05 35780.16 3075.14 0.00 302.31 36400.3 14537.9 -5.1 3.1 62.50 188.63 LOS -15.8 292.1 NVD 27 04 05 15 -15.0 58.5 11685.6 670 00141 A 26 22 57 36 328.55 35780.12 3075.14 0.00 302.82 36400.2 14490.1 -5.2 3.1 62.50 188.63 LOS -16.7 292.2 NVD 27 04 07 15 -14.6 58.7 11641.9 671 00141 A 26 22 59 36 329.06 35780.08 3075.15 0.00 303.32 36400.2 14442.3 -5.2 3.1 62.50 188.63 LOS -17.6 292.3 NVD 27 04 09 15 -14.2 59.0 11598.2 672 00141 A 26 23 01 36 329.56 35780.04 3075.15 0.00 303.82 36400.1 14394.3 -5.3 3.1 62.50 188.63 LOS -18.5 292.5 NVD 27 04 11 15 -13.8 59.2 11554.3 673 00141 A 26 23 03 36 330.06 35780.00 3075.15 0.00 304.32 36400.1 14346.3 -5.3 3.1 62.50 188.63 LOS -19.5 292.6 NVD 27 04 13 15 -13.4 59.5 11510.3 674 00141 A 26 23 05 36 330.56 35779.96 3075.16 0.00 304.82 36400.0 14298.1 -5.4 3.1 62.50 188.63 LOS -20.4 292.7 NVD 27 04 15 15 -13.0 59.7 11466.2 675 00141 A 26 23 07 36 331.06 35779.93 3075.16 0.00 305.32 36400.0 14249.8 -5.4 3.1 62.50 188.63 LOS -21.3 292.9 NVD 27 04 17 15 -12.6 60.0 11421.9 676 00141 A 26 23 09 36 331.56 35779.89 3075.16 0.00 305.82 36400.0 14201.5 -5.5 3.1 62.50 188.63 LOS -22.2 293.0 NVD 27 04 19 15 -12.2 60.2 11377.6 677 00141 A 26 23 11 36 332.06 35779.85 3075.16 0.00 306.33 36399.9 14153.0 -5.5 3.1 62.50 188.63 LOS -23.2 293.2 NVD 27 04 21 15 -11.8 60.5 11333.1 678 00141 A 26 23 13 36 332.57 35779.82 3075.17 0.00 306.83 36399.9 14104.5 -5.5 3.1 62.50 188.63 LOS -24.1 293.4 NVD 27 04 23 15 -11.4 60.7 11288.6 679 00141 A 26 23 15 36 333.07 35779.78 3075.17 0.00 307.33 36399.9 14055.8 -5.6 3.1 62.50 188.63 LOS -25.0 293.6 NVD 27 04 25 15 -11.0 61.0 11243.9 680 00141 A 26 23 17 36 333.57 35779.75 3075.17 0.00 307.83 36399.8 14007.1 -5.6 3.1 62.50 188.63 LOS -25.9 293.8 NVD 27 04 27 15 -10.6 61.2 11199.1 681 00141 A 26 23 19 36 334.07 35779.72 3075.17 0.00 308.33 36399.8 13958.3 -5.7 3.1 62.50 188.63 LOS -26.8 294.0 NVD 27 04 29 15 -10.2 61.4 11154.3 682 00141 A 26 23 21 36 334.57 35779.68 3075.18 0.00 308.83 36399.8 13909.4 -5.7 3.1 62.50 188.63 LOS -27.7 294.2 NVD 27 04 31 15 -9.8 61.7 11109.3 683 00141 A 26 23 23 36 335.07 35779.65 3075.18 0.00 309.34 36399.7 13860.5 -5.8 3.1 62.50 188.62 LOS -28.7 294.4 NVD 27 04 33 15 -9.4 61.9 11064.2 684 00141 A 26 23 25 36 335.58 35779.62 3075.18 0.00 309.84 36399.7 13811.4 -5.8 3.1 62.50 188.62 LOS -29.6 294.6 NVD 27 04 35 15 -9.0 62.1 11019.0 685 00141 A 26 23 27 36 336.08 35779.59 3075.18 0.00 310.34 36399.7 13762.3 -5.9 3.1 62.50 188.62 LOS -30.5 294.9 NVD 27 04 37 15 -8.6 62.4 10973.8 686 00141 A 26 23 29 36 336.58 35779.56 3075.19 0.00 310.84 36399.6 13713.1 -5.9 3.1 62.50 188.62 LOS -31.4 295.1 NVD 27 04 39 15 -8.2 62.6 10928.4 687 00141 A 26 23 31 36 337.08 35779.53 3075.19 0.00 311.34 36399.6 13663.8 -5.9 3.1 62.50 188.62 LOS -32.3 295.4 NVD 27 04 41 15 -7.8 62.8 10883.0 688 00141 A 26 23 33 36 337.58 35779.50 3075.19 0.00 311.84 36399.6 13614.5 -6.0 3.1 62.50 188.62 LOS -33.2 295.7 NVD 27 04 43 15 -7.4 63.1 10837.4 689 00141 A 26 23 35 36 338.08 35779.47 3075.19 0.00 312.35 36399.5 13565.1 -6.0 3.1 62.50 188.62 LOS -34.1 296.0 NVD 27 04 45 15 -6.9 63.3 10791.8 690 00141 A 26 23 37 36 338.58 35779.44 3075.19 0.00 312.85 36399.5 13515.6 -6.1 3.1 62.50 188.62 LOS -35.0 296.3 NVD 27 04 47 15 -6.5 63.5 10746.0 691 00141 A 26 23 39 36 339.09 35779.42 3075.20 0.00 313.35 36399.5 13466.1 -6.1 3.2 62.50 188.62 LOS -35.9 296.6 NVD 27 04 49 15 -6.1 63.7 10700.2 692 00141 A 26 23 41 36 339.59 35779.39 3075.20 0.00 313.85 36399.4 13416.5 -6.2 3.2 62.50 188.62 LOS -36.8 296.9 NVD 27 04 51 15 -5.7 63.9 10654.3 693 00141 A 26 23 43 36 340.09 35779.36 3075.20 0.00 314.35 36399.4 13366.9 -6.2 3.2 62.50 188.62 LOS -37.7 297.3 NVD 27 04 53 15 -5.3 64.2 10608.3 694 00141 A 26 23 45 36 340.59 35779.34 3075.20 0.00 314.85 36399.4 13317.2 -6.2 3.2 62.50 188.62 LOS -38.6 297.6 NVD 27 04 55 15 -4.9 64.4 10562.3 695 00141 A 26 23 47 36 341.09 35779.31 3075.20 0.00 315.35 36399.4 13267.4 -6.3 3.2 62.50 188.62 LOS -39.5 298.0 NVD 27 04 57 15 -4.5 64.6 10516.1 696 00141 A 26 23 49 36 341.59 35779.29 3075.20 0.00 315.86 36399.3 13217.6 -6.3 3.2 62.50 188.62 LOS -40.3 298.4 NVD 27 04 59 15 -4.1 64.8 10469.9 697 00141 A 26 23 51 36 342.10 35779.27 3075.21 0.00 316.36 36399.3 13167.7 -6.4 3.2 62.50 188.62 LOS -41.2 298.8 NVD 27 05 01 15 -3.6 65.0 10423.6 698 00141 A 26 23 53 36 342.60 35779.24 3075.21 0.00 316.86 36399.3 13117.7 -6.4 3.2 62.50 188.62 LOS -42.1 299.2 NVD 27 05 03 15 -3.2 65.2 10377.2 699 00141 A 26 23 55 36 343.10 35779.22 3075.21 0.00 317.36 36399.3 13067.8 -6.4 3.2 62.50 188.62 LOS -43.0 299.7 NVD 27 05 05 15 -2.8 65.4 10330.7 700

Page 368: ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM …myreaders.info/00_Orbital__Mechanics__-__Model_____Simulation... · ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM-MSS)

www.m

yrea

ders

.inf

o

OM-MSS Page 368 SATELLITE PASS - GROUND TRACE [acronym - Line Of Sight (LOS), On Board Computerr (OBC), Visible Band Camera (VBC), Night Vision Devices (NVD) ] ORBIT, INPUT TIME, POSIION, SAT VELOCITY, GROUND TRACE, RANGE, DIST, PITCH/ROLL, EL/AZ, ACCESS EL/AZ, DATA SOLAR TIME EL/AZ, DIST Line 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 @ES 18 19 20 @SS 21 22 23 24 25 26 27 @ES 28 29 30 No. Node GMT Anomaly Height @ Vel Lat(SAT)Log Slant S-Sat Pitch Roll EL(SAT)AZ Control EL(SUN)AZ Acq. LMT(ES) EL(SUN)AZ S-Sun Nos D H M S deg km meter deg deg km km deg deg deg D H M S deg km 00141 A 26 23 57 36 343.60 35779.20 3075.21 0.00 317.86 36399.2 13017.7 -6.5 3.2 62.50 188.62 LOS -43.8 300.2 NVD 27 05 07 15 -2.4 65.6 10284.1 701 00141 A 26 23 59 36 344.10 35779.18 3075.21 0.00 318.36 36399.2 12967.6 -6.5 3.2 62.50 188.61 LOS -44.7 300.7 NVD 27 05 09 15 -2.0 65.8 10237.5 702 00141 A 27 00 01 36 344.60 35779.16 3075.21 0.00 318.87 36399.2 12917.5 -6.6 3.2 62.50 188.61 LOS -45.6 301.2 NVD 27 05 11 15 -1.5 66.0 10190.8 703 00141 A 27 00 03 36 345.11 35779.14 3075.22 0.00 319.37 36399.2 12867.3 -6.6 3.2 62.50 188.61 LOS -46.4 301.7 NVD 27 05 13 15 -1.1 66.2 10144.1 704 00141 A 27 00 05 36 345.61 35779.12 3075.22 0.00 319.87 36399.2 12817.1 -6.6 3.2 62.50 188.61 LOS -47.3 302.3 NVD 27 05 15 15 -0.7 66.4 10097.2 705 00141 A 27 00 07 36 346.11 35779.10 3075.22 0.00 320.37 36399.1 12766.9 -6.7 3.2 62.50 188.61 LOS -48.1 302.9 NVD 27 05 17 15 -0.3 66.6 10050.3 706 00141 A 27 00 09 36 346.61 35779.08 3075.22 0.00 320.87 36399.1 12716.5 -6.7 3.2 62.50 188.61 LOS -48.9 303.5 NVD 27 05 19 15 0.1 66.8 10003.3 707 00141 A 27 00 11 36 347.11 35779.07 3075.22 0.00 321.37 36399.1 12666.2 -6.7 3.2 62.50 188.61 LOS -49.8 304.1 NVD 27 05 21 15 0.6 67.0 9956.3 708 00141 A 27 00 13 36 347.61 35779.05 3075.22 0.00 321.88 36399.1 12615.8 -6.8 3.2 62.50 188.61 LOS -50.6 304.8 NVD 27 05 23 15 1.0 67.2 9909.1 709 00141 A 27 00 15 36 348.11 35779.03 3075.22 0.00 322.38 36399.1 12565.4 -6.8 3.2 62.50 188.61 LOS -51.4 305.5 NVD 27 05 25 15 1.4 67.4 9861.9 710 00141 A 27 00 17 36 348.62 35779.02 3075.22 0.00 322.88 36399.0 12514.9 -6.8 3.2 62.50 188.61 LOS -52.2 306.3 NVD 27 05 27 15 1.8 67.6 9814.7 711 00141 A 27 00 19 36 349.12 35779.00 3075.23 0.00 323.38 36399.0 12464.4 -6.9 3.2 62.50 188.61 LOS -53.0 307.1 NVD 27 05 29 15 2.3 67.8 9767.4 712 00141 A 27 00 21 36 349.62 35778.99 3075.23 0.00 323.88 36399.0 12413.9 -6.9 3.2 62.51 188.61 LOS -53.8 307.9 NVD 27 05 31 15 2.7 68.0 9720.0 713 00141 A 27 00 23 36 350.12 35778.98 3075.23 0.00 324.38 36399.0 12363.3 -6.9 3.2 62.51 188.61 LOS -54.6 308.8 NVD 27 05 33 15 3.1 68.2 9672.5 714 00141 A 27 00 25 36 350.62 35778.96 3075.23 0.00 324.89 36399.0 12312.7 -7.0 3.2 62.51 188.61 LOS -55.4 309.7 NVD 27 05 35 15 3.5 68.4 9625.0 715 00141 A 27 00 27 36 351.12 35778.95 3075.23 0.00 325.39 36399.0 12262.0 -7.0 3.2 62.51 188.61 LOS -56.2 310.6 NVD 27 05 37 15 4.0 68.6 9577.5 716 00141 A 27 00 29 36 351.63 35778.94 3075.23 0.00 325.89 36399.0 12211.4 -7.0 3.2 62.51 188.61 LOS -56.9 311.6 NVD 27 05 39 15 4.4 68.7 9529.8 717 00141 A 27 00 31 36 352.13 35778.93 3075.23 0.00 326.39 36399.0 12160.7 -7.1 3.2 62.51 188.61 LOS -57.6 312.6 NVD 27 05 41 15 4.8 68.9 9482.1 718 00141 A 27 00 33 36 352.63 35778.92 3075.23 0.00 326.89 36398.9 12109.9 -7.1 3.2 62.51 188.60 LOS -58.4 313.7 NVD 27 05 43 15 5.2 69.1 9434.4 719 00141 A 27 00 35 36 353.13 35778.91 3075.23 0.00 327.39 36398.9 12059.2 -7.1 3.2 62.51 188.60 LOS -59.1 314.9 NVD 27 05 45 15 5.7 69.3 9386.6 720 00141 A 27 00 37 36 353.63 35778.90 3075.23 0.00 327.89 36398.9 12008.4 -7.2 3.2 62.51 188.60 LOS -59.8 316.1 NVD 27 05 47 15 6.1 69.5 9338.7 721 00141 A 27 00 39 36 354.13 35778.89 3075.23 0.00 328.40 36398.9 11957.6 -7.2 3.2 62.51 188.60 LOS -60.5 317.4 NVD 27 05 49 15 6.5 69.6 9290.8 722 00141 A 27 00 41 36 354.64 35778.89 3075.23 0.00 328.90 36398.9 11906.7 -7.2 3.2 62.51 188.60 LOS -61.2 318.7 NVD 27 05 51 15 7.0 69.8 9242.8 723 00141 A 27 00 43 36 355.14 35778.88 3075.23 0.00 329.40 36398.9 11855.9 -7.3 3.2 62.51 188.60 LOS -61.8 320.1 NVD 27 05 53 15 7.4 70.0 9194.8 724 00141 A 27 00 45 36 355.64 35778.87 3075.24 0.00 329.90 36398.9 11805.0 -7.3 3.3 62.51 188.60 LOS -62.4 321.6 NVD 27 05 55 15 7.8 70.2 9146.7 725 00141 A 27 00 47 36 356.14 35778.87 3075.24 0.00 330.40 36398.9 11754.1 -7.3 3.3 62.51 188.60 LOS -63.0 323.1 NVD 27 05 57 15 8.3 70.4 9098.6 726 00141 A 27 00 49 36 356.64 35778.86 3075.24 0.00 330.90 36398.9 11703.1 -7.3 3.3 62.51 188.60 LOS -63.6 324.7 NVD 27 05 59 15 8.7 70.5 9050.4 727 00141 A 27 00 51 36 357.14 35778.86 3075.24 0.00 331.41 36398.9 11652.1 -7.4 3.3 62.51 188.60 LOS -64.2 326.4 NVD 27 06 01 15 9.1 70.7 9002.1 728 00141 A 27 00 53 36 357.64 35778.85 3075.24 0.00 331.91 36398.9 11601.2 -7.4 3.3 62.51 188.60 LOS -64.7 328.2 NVD 27 06 03 15 9.6 70.9 8953.8 729 00141 A 27 00 55 36 358.15 35778.85 3075.24 0.00 332.41 36398.9 11550.2 -7.4 3.3 62.51 188.60 LOS -65.3 330.0 NVD 27 06 05 15 10.0 71.0 8905.5 730 00141 A 27 00 57 36 358.65 35778.85 3075.24 0.00 332.91 36398.9 11499.1 -7.4 3.3 62.51 188.60 LOS -65.7 332.0 NVD 27 06 07 15 10.4 71.2 8857.1 731 00141 A 27 00 59 36 359.15 35778.85 3075.24 0.00 333.41 36398.9 11448.1 -7.5 3.3 62.51 188.60 LOS -66.2 334.0 NVD 27 06 09 15 10.9 71.4 8808.7 732 00141 A 27 01 01 36 359.65 35778.85 3075.24 0.00 333.91 36398.9 11397.0 -7.5 3.3 62.51 188.60 LOS -66.6 336.0 NVD 27 06 11 15 11.3 71.6 8760.2 733 00142 A 27 01 03 00 360.00 35778.85 Pri 3075.24 0.00 334.26 36398.9 11361.5 -7.5 3.3 62.51 275.28 LOS -66.9 337.5 NVD 27 06 12 39 11.6 71.7 8726.4 734 00141 A 27 01 03 36 0.15 35778.85 3075.24 0.00 334.42 36398.9 11346.0 -7.5 3.3 62.51 188.60 LOS -67.0 338.2 NVD 27 06 13 15 11.7 71.7 8711.6 735 00142 A 27 01 05 36 0.65 35778.85 3075.24 0.00 334.92 36398.9 11294.9 -7.5 3.3 62.51 188.60 LOS -67.4 340.4 NVD 27 06 15 15 12.2 71.9 8663.1 736 00142 A 27 01 07 36 1.16 35778.85 3075.24 0.00 335.42 36398.9 11243.7 -7.6 3.3 62.51 188.59 LOS -67.7 342.7 NVD 27 06 17 15 12.6 72.1 8614.4 737 00142 A 27 01 09 36 1.66 35778.85 3075.24 0.00 335.92 36398.9 11192.6 -7.6 3.3 62.51 188.59 LOS -68.0 345.1 NVD 27 06 19 15 13.0 72.2 8565.8 738 00142 A 27 01 11 36 2.16 35778.85 3075.24 0.00 336.42 36398.9 11141.5 -7.6 3.3 62.51 188.59 LOS -68.2 347.5 NVD 27 06 21 15 13.5 72.4 8517.0 739 00142 A 27 01 13 36 2.66 35778.86 3075.24 0.00 336.92 36398.9 11090.3 -7.6 3.3 62.51 188.59 LOS -68.4 350.0 NVD 27 06 23 15 13.9 72.5 8468.3 740 00142 A 27 01 15 36 3.16 35778.86 3075.24 0.00 337.43 36398.9 11039.2 -7.7 3.3 62.51 188.59 LOS -68.5 352.5 NVD 27 06 25 15 14.4 72.7 8419.5 741 00142 A 27 01 17 36 3.66 35778.87 3075.24 0.00 337.93 36398.9 10988.0 -7.7 3.3 62.51 188.59 LOS -68.7 355.0 NVD 27 06 27 15 14.8 72.9 8370.6 742

Page 369: ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM …myreaders.info/00_Orbital__Mechanics__-__Model_____Simulation... · ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM-MSS)

www.m

yrea

ders

.inf

o

OM-MSS Page 369 SATELLITE PASS - GROUND TRACE [acronym - Line Of Sight (LOS), On Board Computerr (OBC), Visible Band Camera (VBC), Night Vision Devices (NVD) ] ORBIT, INPUT TIME, POSIION, SAT VELOCITY, GROUND TRACE, RANGE, DIST, PITCH/ROLL, EL/AZ, ACCESS EL/AZ, DATA SOLAR TIME EL/AZ, DIST Line 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 @ES 18 19 20 @SS 21 22 23 24 25 26 27 @ES 28 29 30 No. Node GMT Anomaly Height @ Vel Lat(SAT)Log Slant S-Sat Pitch Roll EL(SAT)AZ Control EL(SUN)AZ Acq. LMT(ES) EL(SUN)AZ S-Sun Nos D H M S deg km meter deg deg km km deg deg deg D H M S deg km 00142 A 27 01 19 36 4.17 35778.87 3075.24 0.00 338.43 36398.9 10936.8 -7.7 3.3 62.51 188.59 LOS -68.7 357.6 NVD 27 06 29 15 15.2 73.0 8321.7 743 00142 A 27 01 21 36 4.67 35778.88 3075.24 0.00 338.93 36398.9 10885.6 -7.7 3.3 62.51 188.59 LOS -68.7 0.2 NVD 27 06 31 15 15.7 73.2 8272.8 744 00142 A 27 01 23 36 5.17 35778.88 3075.23 0.00 339.43 36398.9 10834.4 -7.7 3.3 62.51 188.59 LOS -68.7 2.7 NVD 27 06 33 15 16.1 73.4 8223.8 745 00142 A 27 01 25 36 5.67 35778.89 3075.23 0.00 339.93 36398.9 10783.1 -7.8 3.3 62.51 188.59 LOS -68.6 5.3 NVD 27 06 35 15 16.6 73.5 8174.8 746 00142 A 27 01 27 36 6.17 35778.90 3075.23 0.00 340.43 36398.9 10731.9 -7.8 3.3 62.51 188.59 LOS -68.5 7.8 NVD 27 06 37 15 17.0 73.7 8125.7 747 00142 A 27 01 29 36 6.67 35778.91 3075.23 0.00 340.94 36398.9 10680.7 -7.8 3.3 62.51 188.59 LOS -68.4 10.3 NVD 27 06 39 15 17.4 73.8 8076.6 748 00142 A 27 01 31 36 7.18 35778.92 3075.23 0.00 341.44 36398.9 10629.4 -7.8 3.3 62.51 188.59 LOS -68.2 12.8 NVD 27 06 41 15 17.9 74.0 8027.5 749 00142 A 27 01 33 36 7.68 35778.92 3075.23 0.00 341.94 36398.9 10578.1 -7.8 3.3 62.51 188.59 LOS -67.9 15.2 NVD 27 06 43 15 18.3 74.1 7978.3 750 00142 A 27 01 35 36 8.18 35778.94 3075.23 0.00 342.44 36398.9 10526.9 -7.8 3.3 62.51 188.59 LOS -67.6 17.6 NVD 27 06 45 15 18.8 74.3 7929.1 751 00142 A 27 01 37 36 8.68 35778.95 3075.23 0.00 342.94 36398.9 10475.6 -7.9 3.3 62.51 188.59 LOS -67.3 19.8 NVD 27 06 47 15 19.2 74.4 7879.9 752 00142 A 27 01 39 36 9.18 35778.96 3075.23 0.00 343.44 36399.0 10424.3 -7.9 3.4 62.51 188.59 LOS -67.0 22.1 NVD 27 06 49 15 19.7 74.6 7830.6 753 00142 A 27 01 41 36 9.68 35778.97 3075.23 0.00 343.95 36399.0 10373.1 -7.9 3.4 62.51 188.58 LOS -66.6 24.2 NVD 27 06 51 15 20.1 74.8 7781.3 754 00142 A 27 01 43 36 10.18 35778.98 3075.23 0.00 344.45 36399.0 10321.8 -7.9 3.4 62.51 188.58 LOS -66.1 26.3 NVD 27 06 53 15 20.5 74.9 7731.9 755 Next Next Section - 7.6 Satellite Pass for Earth Stn - Prediction of Ground Trace for Satellite MOON

Page 370: ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM …myreaders.info/00_Orbital__Mechanics__-__Model_____Simulation... · ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM-MSS)

www.m

yrea

ders

.inf

o

OM-MSS Page 370 OM-MSS Section - 7.6 ---------------------------------------------------------------------------------------------------62 Satellite MOON : SAT PASS FOR EARTH STN - Prediction of Ground Trace Coordinates, Look Angles & more at Instantaneous Time. (f) MOON 'Two-Line Elements'(TLE) downloaded on Jun 14, 2014, 16:14 hrs IST, Natural Satellite 1 00000U 00000A 14143.16621081 .00000000 00000-0 00000-0 0 3574 2 00000 18.7965 352.4777 0512000 316.1136 40.2074 00.036600996 0006 From this TLE, the data relevant for the purpose are manually interpreted & extracted : Satellite number 00000, MOON , EPOCH_year = 2014 EPOCH_days_decimal_of_year = 142.1662108168 EPOCH_inclination_deg = 18.7965000000 EPOCH_right_asc_acnd_node_deg = 352.4777000000 EPOCH_eccentricity = 0.0512000000 EPOCH_argument_of_perigee_deg = 316.1136000000 EPOCH_mean_anomaly_deg = 40.2074000000 EPOCH_mean_motion_rev_per_day = 0.0366009960 EPOCH_revolution = 0 EPOCH_node_condition = 1 Earth_stn_latitude_deg = 23.25993 Earth stn longitude_deg = 77.41261 Earth surface height_meter = 494.70000 Earth stn tower_height_meter = 15.00000 Earth stn_height_meter = 509.70000 Earth stn min EL look_angle_deg = -5.00000 Input UT Year and Days decimal of year : Convert into UT YY MM DD hh min sec & Julian day Start Time UT year = 2014, month = 5, day = 23, hr = 3, min = 59, sec = 20.61457, and julian_day = 2456800.6662108167 Sat_motion_direction = Forward Sat_motion_Time_Step_in_sec_pos_or_neg = 3600.00000 seconds

Page 371: ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM …myreaders.info/00_Orbital__Mechanics__-__Model_____Simulation... · ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM-MSS)

www.m

yrea

ders

.inf

o

OM-MSS Page 371 SATELLITE PASS - GROUND TRACE [acronym - Line Of Sight (LOS), On Board Computerr (OBC), Visible Band Camera (VBC), Night Vision Devices (NVD) ] ORBIT, INPUT TIME, POSIION, SAT VELOCITY, GROUND TRACE, RANGE, DIST, PITCH/ROLL, EL/AZ, ACCESS EL/AZ, DATA SOLAR TIME EL/AZ, DIST Line 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 @ES 18 19 20 @SS 21 22 23 24 25 26 27 @ES 28 29 30 No. Node GMT Anomaly Height @ Vel Lat(SAT)Log Slant S-Sat Pitch Roll EL(SAT)AZ Control EL(SUN)AZ Acq. LMT(ES) EL(SUN)AZ S-Sun Nos D H M S deg km meter deg deg km km deg deg deg D H M S deg km 00000 A 23 03 59 20 44.19 362266.14 1059.38 0.10 352.76 363356.7 9467.6 -0.9 0.4 55.76 230.09 LOS -33.9 64.9 NVD 23 09 08 59 51.1 85.7 4326.4 1 00000 A 23 04 59 20 44.78 362398.03 1059.02 0.29 353.32 364282.3 9401.9 -0.9 0.4 44.47 244.87 LOS -19.5 68.0 NVD 23 10 08 59 64.9 90.9 2793.5 2 00000 A 23 05 59 20 45.37 362531.31 1058.65 0.48 353.88 365496.9 9336.2 -0.9 0.4 31.94 254.57 LOS -4.9 69.3 NVD 23 11 08 59 78.6 101.4 1267.6 3 00000 A 23 06 59 20 45.96 362665.95 1058.27 0.67 354.44 366929.0 9270.6 -0.9 0.4 18.91 261.86 LOS 9.7 69.2 VBC 23 12 08 59 86.1 227.3 435.2 4 00000 A 23 07 59 20 46.55 362801.95 1057.90 0.86 355.00 368493.7 9205.0 -0.9 0.4 5.69 268.06 LOS 24.2 67.7 VBC 23 13 08 59 73.0 264.4 1888.0 5 00000 A 23 08 59 20 47.14 362939.27 1057.52 1.05 355.56 370098.7 9139.5 -0.9 0.4 -7.53 273.98 OBC 38.5 64.2 VBC 23 14 08 59 59.3 271.5 3420.2 6 00000 A 23 09 59 20 47.73 363077.92 1057.14 1.24 356.12 371650.3 9074.0 -0.9 0.4 -20.59 280.29 OBC 52.2 56.9 VBC 23 15 08 59 45.5 276.2 4949.9 7 00000 A 23 10 59 20 48.32 363217.87 1056.75 1.43 356.68 373059.2 9008.6 -0.9 0.4 -33.31 287.81 OBC 64.2 40.8 VBC 23 16 08 59 31.9 280.6 6466.8 8 00000 A 23 11 59 20 48.91 363359.11 1056.36 1.62 357.24 374246.0 8943.2 -0.9 0.4 -45.35 297.90 OBC 70.9 6.1 VBC 23 17 08 59 18.5 285.1 7961.9 9 00000 A 23 12 59 20 49.50 363501.62 1055.97 1.81 357.79 375145.8 8877.9 -0.9 0.4 -55.97 313.14 OBC 67.1 326.1 VBC 23 18 08 59 5.3 290.2 9423.5 10 00000 A 23 13 59 20 50.09 363645.39 1055.57 1.99 358.35 375711.8 8812.7 -0.9 0.4 -63.38 337.58 OBC 56.1 305.5 VBC 23 19 08 59 -7.3 296.2 10833.5 11 00000 A 23 14 59 20 50.68 363790.40 1055.17 2.18 358.91 375917.8 8747.4 -0.9 0.4 -64.61 10.34 OBC 42.8 296.5 VBC 23 20 08 59 -19.3 303.8 12162.3 12 00000 A 23 15 59 20 51.26 363936.63 1054.77 2.37 359.47 375759.7 8682.3 -0.9 0.4 -58.91 38.31 OBC 28.7 292.3 VBC 23 21 08 59 -30.0 313.8 13359.8 13 00000 A 23 16 59 20 51.85 364084.07 1054.36 2.56 0.02 375255.5 8617.2 0.9 0.4 -49.07 56.09 OBC 14.3 290.7 VBC 23 22 08 59 -38.8 327.0 14341.4 14 00000 A 23 17 59 20 52.44 364232.70 1053.95 2.75 0.58 374444.5 8552.1 0.9 0.4 -37.36 67.43 OBC -0.2 290.7 NVD 23 23 08 59 -44.6 344.2 14978.9 15 00000 A 23 18 59 20 53.02 364382.50 1053.54 2.93 1.13 373385.1 8487.1 0.9 0.4 -24.76 75.46 OBC -14.6 292.2 NVD 24 00 08 59 -46.0 4.1 15135.6 16 00000 A 23 19 59 20 53.61 364533.46 1053.12 3.12 1.69 372151.9 8422.1 0.9 0.4 -11.70 81.85 OBC -28.7 295.7 NVD 24 01 08 59 -42.7 23.2 14768.3 17 00000 A 23 20 59 20 54.19 364685.56 1052.70 3.30 2.25 370830.8 8357.2 0.9 0.4 1.60 87.51 LOS -42.3 302.0 NVD 24 02 08 59 -35.5 38.8 13971.7 18 00000 A 23 21 59 20 54.78 364838.79 1052.28 3.49 2.80 369514.6 8292.4 0.9 0.4 15.01 93.10 LOS -54.5 314.0 NVD 24 03 08 59 -25.8 50.6 12888.4 19 00000 A 23 22 59 20 55.36 364993.12 1051.86 3.68 3.36 368296.9 8227.6 0.9 0.4 28.40 99.26 LOS -63.3 336.6 NVD 24 04 08 59 -14.5 59.4 11629.2 20 00000 A 23 23 59 20 55.94 365148.55 1051.43 3.86 3.91 367265.7 8162.9 0.9 0.4 41.57 106.99 LOS -65.0 10.1 NVD 24 05 08 59 -2.2 66.3 10262.6 21 00000 A 24 00 59 20 56.53 365305.05 1051.00 4.04 4.46 366498.2 8098.2 0.9 0.4 54.13 118.32 LOS -58.3 37.8 NVD 24 06 08 59 10.7 71.9 8829.0 22 00000 A 24 01 59 20 57.11 365462.60 1050.57 4.23 5.02 366054.6 8033.6 0.9 0.4 64.96 138.19 LOS -47.0 53.1 NVD 24 07 08 59 24.0 76.7 7352.1 23 00000 A 24 02 59 20 57.69 365621.19 1050.14 4.41 5.57 365974.2 7969.0 0.9 0.4 70.76 174.81 LOS -33.8 61.4 NVD 24 08 08 59 37.5 81.0 5847.2 24 00000 A 24 03 59 20 58.27 365780.81 1049.70 4.59 6.13 366272.1 7904.5 0.9 0.4 67.23 215.44 LOS -19.8 66.0 NVD 24 09 08 59 51.2 85.4 4324.2 25 00000 A 24 04 59 20 58.85 365941.43 1049.26 4.77 6.68 366938.3 7840.1 0.9 0.4 57.30 239.11 LOS -5.5 68.6 NVD 24 10 08 59 64.9 90.5 2791.7 26 00000 A 24 05 59 20 59.44 366103.04 1048.81 4.95 7.23 367938.7 7775.7 0.9 0.4 45.09 252.13 LOS 9.1 69.7 VBC 24 11 08 59 78.6 100.4 1264.2 27 00000 A 24 06 59 20 60.02 366265.61 1048.37 5.14 7.79 369217.2 7711.3 0.8 0.4 32.09 260.66 LOS 23.7 69.6 VBC 24 12 08 59 86.2 229.1 419.2 28 00000 A 24 07 59 20 60.59 366429.14 1047.92 5.32 8.34 370699.8 7647.1 0.8 0.4 18.84 267.29 LOS 38.2 67.7 VBC 24 13 08 59 73.1 265.0 1881.4 29 00000 A 24 08 59 20 61.17 366593.61 1047.47 5.49 8.89 372300.5 7582.8 0.8 0.4 5.55 273.19 LOS 52.4 62.7 VBC 24 14 08 59 59.3 271.9 3414.0 30 00000 A 24 09 59 20 61.75 366758.99 1047.02 5.67 9.45 373926.5 7518.7 0.8 0.4 -7.60 279.11 OBC 65.5 50.1 VBC 24 15 08 59 45.6 276.5 4943.1 31 00000 A 24 10 59 20 62.33 366925.27 1046.56 5.85 10.00 375484.6 7454.6 0.8 0.4 -20.47 285.69 OBC 74.5 15.4 VBC 24 16 08 59 32.0 280.8 6459.1 32 00000 A 24 11 59 20 62.91 367092.43 1046.11 6.03 10.55 376887.0 7390.5 0.8 0.4 -32.82 293.79 OBC 71.7 324.8 VBC 24 17 08 59 18.6 285.3 7953.1 33 00000 A 24 12 59 20 63.48 367260.46 1045.65 6.20 11.10 378056.7 7326.5 0.8 0.4 -44.22 304.78 OBC 60.3 302.0 VBC 24 18 08 59 5.4 290.3 9413.3 34 00000 A 24 13 59 20 64.06 367429.33 1045.19 6.38 11.66 378931.5 7262.6 0.8 0.4 -53.78 320.95 OBC 46.6 293.7 VBC 24 19 08 59 -7.2 296.4 10821.6 35 00000 A 24 14 59 20 64.64 367599.03 1044.73 6.56 12.21 379468.1 7198.8 0.8 0.4 -59.71 344.67 OBC 32.3 290.5 VBC 24 20 08 59 -19.1 304.0 12148.4 36 00000 A 24 15 59 20 65.21 367769.54 1044.26 6.73 12.76 379643.9 7135.0 0.8 0.4 -59.80 13.04 OBC 17.9 289.8 VBC 24 21 08 59 -29.9 313.9 13343.6 37 00000 A 24 16 59 20 65.79 367940.84 1043.79 6.90 13.31 379458.2 7071.2 0.8 0.4 -54.01 36.96 OBC 3.4 290.6 NVD 24 22 08 59 -38.7 327.1 14322.7 38 00000 A 24 17 59 20 66.36 368112.92 1043.32 7.08 13.86 378932.5 7007.5 0.8 0.4 -44.51 53.26 OBC -10.8 292.9 NVD 24 23 08 59 -44.4 344.3 14958.4 39 00000 A 24 18 59 20 66.93 368285.76 1042.85 7.25 14.42 378109.3 6943.9 0.8 0.4 -33.12 64.26 OBC -24.8 297.0 NVD 25 00 08 59 -45.8 4.1 15115.1 40

Page 372: ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM …myreaders.info/00_Orbital__Mechanics__-__Model_____Simulation... · ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM-MSS)

www.m

yrea

ders

.inf

o

OM-MSS Page 372 SATELLITE PASS - GROUND TRACE [acronym - Line Of Sight (LOS), On Board Computerr (OBC), Visible Band Camera (VBC), Night Vision Devices (NVD) ] ORBIT, INPUT TIME, POSIION, SAT VELOCITY, GROUND TRACE, RANGE, DIST, PITCH/ROLL, EL/AZ, ACCESS EL/AZ, DATA SOLAR TIME EL/AZ, DIST Line 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 @ES 18 19 20 @SS 21 22 23 24 25 26 27 @ES 28 29 30 No. Node GMT Anomaly Height @ Vel Lat(SAT)Log Slant S-Sat Pitch Roll EL(SAT)AZ Control EL(SUN)AZ Acq. LMT(ES) EL(SUN)AZ S-Sun Nos D H M S deg km meter deg deg km km deg deg deg D H M S deg km 00000 A 24 19 59 20 67.51 368459.33 1042.38 7.42 14.97 377049.5 6880.4 0.8 0.4 -20.76 72.27 OBC -38.0 303.9 NVD 25 01 08 59 -42.5 23.1 14750.2 41 00000 A 24 20 59 20 68.08 368633.62 1041.91 7.59 15.52 375829.5 6816.9 0.8 0.4 -7.85 78.65 OBC -49.8 315.6 NVD 25 02 08 59 -35.4 38.7 13956.9 42 00000 A 24 21 59 20 68.65 368808.62 1041.43 7.76 16.07 374536.1 6753.4 0.8 0.4 5.37 84.26 LOS -58.5 335.7 NVD 25 03 08 59 -25.7 50.4 12876.8 43 00000 A 24 22 59 20 69.22 368984.30 1040.95 7.93 16.62 373262.2 6690.1 0.8 0.4 18.77 89.68 LOS -61.1 4.3 NVD 25 04 08 59 -14.4 59.3 11620.3 44 00000 A 24 23 59 20 69.80 369160.64 1040.47 8.09 17.17 372100.2 6626.7 0.8 0.4 32.22 95.56 LOS -56.1 30.8 NVD 25 05 08 59 -2.1 66.1 10255.9 45 00000 A 25 00 59 20 70.37 369337.64 1039.99 8.26 17.73 371136.1 6563.5 0.8 0.4 45.57 102.88 LOS -46.1 47.8 NVD 25 06 08 59 10.7 71.7 8823.9 46 00000 A 25 01 59 20 70.94 369515.26 1039.51 8.43 18.28 370444.2 6500.3 0.8 0.4 58.47 113.91 LOS -33.7 57.8 NVD 25 07 08 59 24.0 76.5 7348.5 47 00000 A 25 02 59 20 71.51 369693.50 1039.03 8.59 18.83 370080.9 6437.2 0.8 0.4 69.82 135.39 LOS -20.2 63.9 NVD 25 08 08 59 37.5 80.8 5844.6 48 00000 A 25 03 59 20 72.07 369872.33 1038.54 8.75 19.38 370081.6 6374.1 0.8 0.4 75.24 182.11 LOS -6.1 67.7 NVD 25 09 08 59 51.2 85.1 4322.6 49 00000 A 25 04 59 20 72.64 370051.73 1038.06 8.92 19.93 370457.2 6311.1 0.8 0.4 69.34 227.54 LOS 8.3 70.0 VBC 25 10 08 59 64.9 90.1 2790.4 50 00000 A 25 05 59 20 73.21 370231.69 1037.57 9.08 20.48 371193.8 6248.2 0.8 0.4 57.89 248.22 LOS 22.8 71.0 VBC 25 11 08 59 78.7 99.5 1261.6 51 00000 A 25 06 59 20 73.78 370412.19 1037.08 9.24 21.03 372253.9 6185.3 0.7 0.4 45.01 259.04 LOS 37.4 70.6 VBC 25 12 08 59 86.4 231.0 404.0 52 00000 A 25 07 59 20 74.35 370593.21 1036.59 9.40 21.58 373578.5 6122.5 0.7 0.4 31.73 266.36 LOS 51.8 67.9 VBC 25 13 08 59 73.2 265.6 1874.9 53 00000 A 25 08 59 20 74.91 370774.74 1036.10 9.56 22.13 375092.3 6059.8 0.7 0.4 18.39 272.35 LOS 65.7 59.4 VBC 25 14 08 59 59.4 272.2 3407.7 54 00000 A 25 09 59 20 75.48 370956.74 1035.61 9.72 22.69 376708.3 5997.1 0.7 0.4 5.15 277.97 LOS 77.0 29.1 VBC 25 15 08 59 45.7 276.8 4936.3 55 00000 A 25 10 59 20 76.04 371139.22 1035.11 9.87 23.24 378334.2 5934.5 0.7 0.4 -7.85 283.88 OBC 76.0 323.6 VBC 25 16 08 59 32.0 281.0 6451.4 56 00000 A 25 11 59 20 76.61 371322.14 1034.62 10.03 23.79 379878.1 5872.0 0.7 0.4 -20.43 290.71 OBC 64.1 298.0 VBC 25 17 08 59 18.6 285.5 7944.3 57 00000 A 25 12 59 20 77.17 371505.49 1034.13 10.19 24.34 381254.4 5809.5 0.7 0.4 -32.33 299.30 OBC 50.2 290.7 VBC 25 18 08 59 5.5 290.5 9403.2 58 00000 A 25 13 59 20 77.73 371689.25 1033.63 10.34 24.89 382388.9 5747.1 0.7 0.4 -43.04 310.98 OBC 35.8 288.5 VBC 25 19 08 59 -7.1 296.5 10809.8 59 00000 A 25 14 59 20 78.30 371873.41 1033.13 10.49 25.44 383222.8 5684.7 0.7 0.4 -51.55 327.61 OBC 21.3 288.6 VBC 25 20 08 59 -19.0 304.1 12134.7 60 00000 A 25 15 59 20 78.86 372057.94 1032.64 10.64 25.99 383716.3 5622.5 0.7 0.4 -56.20 350.24 OBC 6.9 290.2 VBC 25 21 08 59 -29.7 314.0 13327.6 61 00000 A 25 16 59 20 79.42 372242.82 1032.14 10.79 26.54 383850.5 5560.2 0.7 0.4 -55.40 15.32 OBC -7.2 293.1 NVD 25 22 08 59 -38.5 327.2 14304.4 62 00000 A 25 17 59 20 79.98 372428.05 1031.64 10.94 27.09 383628.3 5498.1 0.7 0.4 -49.47 36.32 OBC -21.0 297.7 NVD 25 23 08 59 -44.2 344.3 14938.4 63 00000 A 25 18 59 20 80.54 372613.60 1031.14 11.09 27.64 383074.6 5436.0 0.7 0.4 -40.20 51.31 OBC -33.9 305.0 NVD 26 00 08 59 -45.6 4.0 15095.4 64 00000 A 25 19 59 20 81.10 372799.45 1030.64 11.24 28.19 382234.5 5374.0 0.7 0.4 -29.08 61.86 OBC -45.5 316.4 NVD 26 01 08 59 -42.3 23.0 14732.8 65 00000 A 25 20 59 20 81.66 372985.58 1030.14 11.38 28.75 381171.1 5312.0 0.7 0.4 -16.94 69.70 OBC -54.1 334.6 NVD 26 02 08 59 -35.3 38.5 13942.8 66 00000 A 25 21 59 20 82.22 373171.98 1029.64 11.53 29.30 379962.0 5250.2 0.7 0.4 -4.19 75.99 LOS -57.4 359.8 NVD 26 03 08 59 -25.6 50.3 12865.8 67 00000 A 25 22 59 20 82.78 373358.63 1029.14 11.67 29.85 378694.4 5188.3 0.7 0.4 8.93 81.45 LOS -53.9 24.9 NVD 26 04 08 59 -14.3 59.1 11611.9 68 00000 A 25 23 59 20 83.34 373545.51 1028.63 11.81 30.40 377460.4 5126.6 0.7 0.4 22.27 86.65 LOS -45.2 43.0 NVD 26 05 08 59 -2.1 66.0 10249.6 69 00000 A 26 00 59 20 83.90 373732.60 1028.13 11.96 30.95 376350.8 5064.9 0.6 0.4 35.74 92.16 LOS -33.6 54.4 NVD 26 06 08 59 10.8 71.5 8819.3 70 00000 A 26 01 59 20 84.45 373919.89 1027.63 12.10 31.50 375449.1 5003.3 0.6 0.4 49.19 98.94 LOS -20.6 61.7 NVD 26 07 08 59 24.0 76.3 7345.2 71 00000 A 26 02 59 20 85.01 374107.36 1027.13 12.23 32.05 374826.1 4941.8 0.6 0.4 62.34 109.36 LOS -6.8 66.6 NVD 26 08 08 59 37.5 80.6 5842.5 72 00000 A 26 03 59 20 85.57 374294.98 1026.62 12.37 32.60 374534.4 4880.3 0.6 0.4 74.18 132.39 LOS 7.3 69.9 VBC 26 09 08 59 51.2 84.8 4321.3 73 00000 A 26 04 59 20 86.12 374482.74 1026.12 12.51 33.15 374605.2 4818.9 0.6 0.4 78.74 194.30 LOS 21.8 72.0 VBC 26 10 08 59 64.9 89.6 2789.6 74 00000 A 26 05 59 20 86.68 374670.63 1025.62 12.64 33.71 375045.4 4757.5 0.6 0.4 70.14 240.07 LOS 36.3 72.9 VBC 26 11 08 59 78.7 98.6 1259.6 75 00000 A 26 06 59 20 87.23 374858.62 1025.12 12.78 34.26 375837.5 4696.3 0.6 0.4 57.60 256.39 LOS 50.8 72.1 VBC 26 12 08 59 86.5 233.0 389.6 76 00000 A 26 07 59 20 87.78 375046.70 1024.61 12.91 34.81 376940.7 4635.1 0.6 0.4 44.34 265.06 LOS 65.1 67.4 VBC 26 13 08 59 73.2 266.2 1868.5 77 00000 A 26 08 59 20 88.34 375234.86 1024.11 13.04 35.36 378294.0 4573.9 0.6 0.4 30.95 271.30 LOS 78.2 45.7 VBC 26 14 08 59 59.4 272.5 3401.5 78 00000 A 26 09 59 20 88.89 375423.06 1023.61 13.17 35.91 379821.0 4512.9 0.6 0.4 17.63 276.74 LOS 79.9 323.0 VBC 26 15 08 59 45.7 277.0 4929.5 79 00000 A 26 10 59 20 89.44 375611.30 1023.10 13.30 36.46 381434.5 4451.9 0.6 0.4 4.51 282.15 LOS 67.6 293.5 VBC 26 16 08 59 32.1 281.2 6443.7 80 00000 A 26 11 59 20 89.99 375799.55 1022.60 13.43 37.01 383043.0 4391.0 0.6 0.4 -8.28 288.07 OBC 53.4 287.5 VBC 26 17 08 59 18.7 285.6 7935.5 81

Page 373: ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM …myreaders.info/00_Orbital__Mechanics__-__Model_____Simulation... · ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM-MSS)

www.m

yrea

ders

.inf

o

OM-MSS Page 373 SATELLITE PASS - GROUND TRACE [acronym - Line Of Sight (LOS), On Board Computerr (OBC), Visible Band Camera (VBC), Night Vision Devices (NVD) ] ORBIT, INPUT TIME, POSIION, SAT VELOCITY, GROUND TRACE, RANGE, DIST, PITCH/ROLL, EL/AZ, ACCESS EL/AZ, DATA SOLAR TIME EL/AZ, DIST Line 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 @ES 18 19 20 @SS 21 22 23 24 25 26 27 @ES 28 29 30 No. Node GMT Anomaly Height @ Vel Lat(SAT)Log Slant S-Sat Pitch Roll EL(SAT)AZ Control EL(SUN)AZ Acq. LMT(ES) EL(SUN)AZ S-Sun Nos D H M S deg km meter deg deg km km deg deg deg D H M S deg km 00000 A 26 12 59 20 90.54 375987.81 1022.10 13.55 37.57 384556.4 4330.1 0.6 0.4 -20.55 295.11 OBC 38.9 286.4 VBC 26 18 08 59 5.6 290.7 9393.1 82 00000 A 26 13 59 20 91.09 376176.05 1021.60 13.68 38.12 385891.5 4269.4 0.6 0.4 -31.98 304.11 OBC 24.5 287.3 VBC 26 19 08 59 -7.0 296.7 10798.2 83 00000 A 26 14 59 20 91.64 376364.26 1021.10 13.80 38.67 386977.3 4208.7 0.6 0.4 -41.99 316.30 OBC 10.2 289.5 VBC 26 20 08 59 -18.9 304.2 12121.2 84 00000 A 26 15 59 20 92.19 376552.41 1020.60 13.92 39.22 387758.3 4148.0 0.5 0.4 -49.55 333.11 OBC -3.8 292.9 NVD 26 21 08 59 -29.6 314.1 13311.9 85 00000 A 26 16 59 20 92.74 376740.49 1020.09 14.04 39.77 388198.3 4087.5 0.5 0.4 -53.13 354.67 OBC -17.4 298.0 NVD 26 22 08 59 -38.3 327.3 14286.5 86 00000 A 26 17 59 20 93.29 376928.49 1019.59 14.16 40.32 388282.1 4027.0 0.5 0.4 -51.61 17.34 OBC -30.2 305.4 NVD 26 23 08 59 -44.0 344.3 14919.0 87 00000 A 26 18 59 20 93.84 377116.39 1019.09 14.28 40.88 388015.9 3966.6 0.5 0.4 -45.52 36.26 OBC -41.6 316.5 NVD 27 00 08 59 -45.4 4.0 15076.4 88 00000 A 26 19 59 20 94.39 377304.16 1018.60 14.40 41.43 387427.5 3906.2 0.5 0.4 -36.37 50.16 OBC -50.2 333.2 NVD 27 01 08 59 -42.2 22.9 14716.1 89 00000 A 26 20 59 20 94.93 377491.80 1018.10 14.51 41.98 386564.5 3846.0 0.5 0.4 -25.44 60.23 OBC -54.2 356.1 NVD 27 02 08 59 -35.1 38.3 13929.3 90 00000 A 26 21 59 20 95.48 377679.28 1017.60 14.62 42.53 385491.8 3785.8 0.5 0.4 -13.48 67.84 OBC -51.9 20.0 NVD 27 03 08 59 -25.5 50.1 12855.4 91 00000 A 26 22 59 20 96.02 377866.59 1017.10 14.74 43.08 384287.6 3725.7 0.5 0.4 -0.87 73.96 LOS -44.3 38.7 NVD 27 04 08 59 -14.2 58.9 11604.0 92 00000 A 26 23 59 20 96.57 378053.71 1016.60 14.85 43.64 383039.4 3665.6 0.5 0.4 12.14 79.25 LOS -33.6 51.2 NVD 27 05 08 59 -2.0 65.8 10243.7 93 00000 A 27 00 59 20 97.11 378240.63 1016.11 14.96 44.19 381838.1 3605.7 0.5 0.4 25.42 84.20 LOS -21.1 59.6 NVD 27 06 08 59 10.8 71.4 8815.1 94 00000 A 27 01 59 20 97.66 378427.33 1015.61 15.06 44.74 380772.6 3545.8 0.5 0.4 38.85 89.33 LOS -7.7 65.5 NVD 27 07 08 59 24.0 76.1 7342.4 95 00000 A 27 02 59 20 98.20 378613.79 1015.12 15.17 45.29 379923.7 3486.0 0.5 0.4 52.34 95.53 LOS 6.2 69.6 VBC 27 08 08 59 37.5 80.3 5840.8 96 00000 A 27 03 59 20 98.74 378799.99 1014.63 15.28 45.84 379358.8 3426.3 0.5 0.4 65.67 105.15 LOS 20.5 72.6 VBC 27 09 08 59 51.2 84.5 4320.4 97 00000 A 27 04 59 20 99.29 378985.92 1014.13 15.38 46.40 379126.7 3366.6 0.5 0.4 77.89 129.75 LOS 34.9 74.5 VBC 27 10 08 59 64.9 89.2 2789.2 98 00000 A 27 05 59 20 99.83 379171.57 1013.64 15.48 46.95 379254.5 3307.1 0.4 0.4 80.74 212.20 LOS 49.4 75.2 VBC 27 11 08 59 78.7 97.7 1258.2 99 00000 A 27 06 59 20 100.37 379356.91 1013.15 15.58 47.50 379745.4 3247.6 0.4 0.4 69.76 250.84 LOS 63.8 73.3 VBC 27 12 08 59 86.6 235.0 375.8 100 00000 A 27 07 59 20 100.91 379541.93 1012.66 15.68 48.05 380578.5 3188.2 0.4 0.4 56.63 262.92 LOS 77.8 60.8 VBC 27 13 08 59 73.3 266.8 1862.2 101 00000 A 27 08 59 20 101.45 379726.61 1012.18 15.78 48.60 381710.4 3128.9 0.4 0.4 43.21 269.84 LOS 83.2 325.2 VBC 27 14 08 59 59.5 272.8 3395.4 102 00000 A 27 09 59 20 101.99 379910.94 1011.69 15.88 49.16 383078.3 3069.7 0.4 0.4 29.81 275.25 LOS 70.6 289.3 VBC 27 15 08 59 45.8 277.2 4922.8 103 00000 A 27 10 59 20 102.53 380094.91 1011.20 15.97 49.71 384604.6 3010.5 0.4 0.4 16.57 280.29 LOS 56.2 284.6 VBC 27 16 08 59 32.2 281.4 6436.1 104 00000 A 27 11 59 20 103.07 380278.49 1010.72 16.06 50.26 386202.5 2951.5 0.4 0.4 3.60 285.55 LOS 41.8 284.5 VBC 27 17 08 59 18.8 285.8 7926.8 105 00000 A 27 12 59 20 103.61 380461.67 1010.24 16.16 50.81 387781.4 2892.5 0.4 0.4 -8.97 291.51 OBC 27.4 286.1 VBC 27 18 08 59 5.7 290.8 9383.1 106 00000 A 27 13 59 20 104.14 380644.43 1009.76 16.25 51.36 389253.1 2833.7 0.4 0.4 -20.94 298.76 OBC 13.2 288.7 VBC 27 19 08 59 -6.9 296.8 10786.7 107 00000 A 27 14 59 20 104.68 380826.76 1009.27 16.33 51.92 390536.8 2774.9 0.4 0.4 -31.93 308.11 OBC -0.8 292.5 NVD 27 20 08 59 -18.8 304.4 12107.9 108 00000 A 27 15 59 20 105.22 381008.65 1008.80 16.42 52.47 391564.3 2716.2 0.4 0.4 -41.31 320.70 OBC -14.3 297.8 NVD 27 21 08 59 -29.4 314.3 13296.6 109 00000 A 27 16 59 20 105.75 381190.07 1008.32 16.51 53.02 392283.7 2657.7 0.4 0.4 -48.04 337.60 OBC -26.9 305.2 NVD 27 22 08 59 -38.2 327.4 14269.1 110 00000 A 27 17 59 20 106.29 381371.01 1007.84 16.59 53.57 392662.0 2599.2 0.4 0.4 -50.73 358.34 OBC -38.2 316.0 NVD 27 23 08 59 -43.9 344.4 14900.3 111 00000 A 27 18 59 20 106.82 381551.46 1007.37 16.67 54.12 392687.3 2540.9 0.3 0.4 -48.60 19.34 OBC -47.0 331.6 NVD 28 00 08 59 -45.3 3.9 15058.0 112 00000 A 27 19 59 20 107.36 381731.40 1006.89 16.76 54.68 392369.1 2482.6 0.3 0.4 -42.29 36.76 OBC -51.6 352.8 NVD 28 01 08 59 -42.1 22.7 14700.1 113 00000 A 27 20 59 20 107.89 381910.82 1006.42 16.84 55.23 391737.8 2424.5 0.3 0.4 -33.16 49.78 OBC -50.3 15.8 NVD 28 02 08 59 -35.0 38.2 13916.5 114 00000 A 27 21 59 20 108.43 382089.69 1005.95 16.91 55.78 390843.4 2366.5 0.3 0.4 -22.33 59.39 OBC -43.8 34.9 NVD 28 03 08 59 -25.4 49.9 12845.6 115 00000 A 27 22 59 20 108.96 382268.02 1005.49 16.99 56.33 389752.2 2308.6 0.3 0.4 -10.47 66.75 OBC -33.8 48.4 NVD 28 04 08 59 -14.2 58.8 11596.7 116 00000 A 27 23 59 20 109.49 382445.77 1005.02 17.06 56.88 388543.2 2250.8 0.3 0.4 2.04 72.69 LOS -21.9 57.7 NVD 28 05 08 59 -2.0 65.6 10238.4 117 00000 A 28 00 59 20 110.03 382622.94 1004.55 17.14 57.43 387303.9 2193.1 0.3 0.4 14.97 77.81 LOS -8.8 64.2 NVD 28 06 08 59 10.8 71.2 8811.4 118 00000 A 28 01 59 20 110.56 382799.51 1004.09 17.21 57.99 386124.1 2135.6 0.3 0.4 28.18 82.54 LOS 4.9 69.1 NVD 28 07 08 59 24.1 75.9 7340.0 119 00000 A 28 02 59 20 111.09 382975.47 1003.63 17.28 58.54 385091.0 2078.3 0.3 0.4 41.59 87.36 LOS 18.9 72.7 VBC 28 08 08 59 37.5 80.1 5839.5 120 00000 A 28 03 59 20 111.62 383150.80 1003.17 17.35 59.09 384282.7 2021.0 0.3 0.4 55.08 93.06 LOS 33.2 75.3 VBC 28 09 08 59 51.2 84.2 4319.9 121 00000 A 28 04 59 20 112.15 383325.48 1002.71 17.42 59.64 383763.5 1964.0 0.3 0.4 68.49 102.00 LOS 47.7 77.0 VBC 28 10 08 59 64.9 88.8 2789.2 122

Page 374: ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM …myreaders.info/00_Orbital__Mechanics__-__Model_____Simulation... · ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM-MSS)

www.m

yrea

ders

.inf

o

OM-MSS Page 374 SATELLITE PASS - GROUND TRACE [acronym - Line Of Sight (LOS), On Board Computerr (OBC), Visible Band Camera (VBC), Night Vision Devices (NVD) ] ORBIT, INPUT TIME, POSIION, SAT VELOCITY, GROUND TRACE, RANGE, DIST, PITCH/ROLL, EL/AZ, ACCESS EL/AZ, DATA SOLAR TIME EL/AZ, DIST Line 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 @ES 18 19 20 @SS 21 22 23 24 25 26 27 @ES 28 29 30 No. Node GMT Anomaly Height @ Vel Lat(SAT)Log Slant S-Sat Pitch Roll EL(SAT)AZ Control EL(SUN)AZ Acq. LMT(ES) EL(SUN)AZ S-Sun Nos D H M S deg km meter deg deg km km deg deg deg D H M S deg km 00000 A 28 05 59 20 112.68 383499.51 1002.26 17.48 60.19 383578.6 1907.1 0.3 0.4 80.94 129.11 LOS 62.1 77.0 VBC 28 11 08 59 78.7 96.9 1257.5 123 00000 A 28 06 59 20 113.21 383672.87 1001.81 17.54 60.74 383751.4 1850.4 0.3 0.4 80.98 231.26 LOS 76.5 70.9 VBC 28 12 08 59 86.7 237.0 362.8 124 00000 A 28 07 59 20 113.74 383845.55 1001.35 17.61 61.29 384281.4 1793.9 0.2 0.4 68.54 258.52 LOS 85.8 336.4 VBC 28 13 08 59 73.3 267.3 1856.1 125 00000 A 28 08 59 20 114.27 384017.52 1000.90 17.67 61.84 385144.7 1737.6 0.2 0.4 55.15 267.49 LOS 73.2 285.9 VBC 28 14 08 59 59.6 273.2 3389.2 126 00000 A 28 09 59 20 114.79 384188.78 1000.46 17.73 62.39 386295.1 1681.5 0.2 0.4 41.70 273.23 LOS 58.8 282.4 VBC 28 15 08 59 45.8 277.4 4916.0 127 00000 A 28 10 59 20 115.32 384359.31 1000.01 17.78 62.94 387668.2 1625.6 0.2 0.4 28.35 278.10 LOS 44.4 283.0 VBC 28 16 08 59 32.3 281.5 6428.4 128 00000 A 28 11 59 20 115.85 384529.10 999.57 17.84 63.50 389185.6 1570.0 0.2 0.4 15.20 282.89 LOS 30.0 285.0 VBC 28 17 08 59 18.9 285.9 7918.1 129 00000 A 28 12 59 20 116.38 384698.14 999.13 17.90 64.05 390760.2 1514.6 0.2 0.4 2.36 288.08 LOS 15.8 288.0 VBC 28 18 08 59 5.8 290.9 9373.2 130 00000 A 28 13 59 20 116.90 384866.41 998.69 17.95 64.60 392302.4 1459.6 0.2 0.4 -10.03 294.12 OBC 2.0 292.0 NVD 28 19 08 59 -6.8 296.9 10775.3 131 00000 A 28 14 59 20 117.43 385033.89 998.25 18.00 65.15 393725.4 1404.9 0.2 0.4 -21.73 301.58 OBC -11.5 297.3 NVD 28 20 08 59 -18.7 304.5 12094.8 132 00000 A 28 15 59 20 117.95 385200.58 997.82 18.05 65.70 394950.8 1350.5 0.2 0.4 -32.35 311.28 OBC -24.1 304.7 NVD 28 21 08 59 -29.3 314.4 13281.6 133 00000 A 28 16 59 20 118.48 385366.46 997.39 18.10 66.25 395913.1 1296.6 0.2 0.4 -41.21 324.28 OBC -35.5 315.0 NVD 28 22 08 59 -38.0 327.5 14252.2 134 00000 A 28 17 59 20 119.00 385531.52 996.96 18.14 66.80 396563.4 1243.0 0.2 0.4 -47.23 341.38 OBC -44.5 329.8 NVD 28 23 08 59 -43.7 344.4 14882.1 135 00000 A 28 18 59 20 119.53 385695.75 996.53 18.19 67.34 396871.8 1190.0 0.2 0.4 -49.15 1.64 OBC -49.7 349.7 NVD 29 00 08 59 -45.1 3.9 15040.3 136 00000 A 28 19 59 20 120.05 385859.12 996.10 18.23 67.89 396829.7 1137.6 0.1 0.4 -46.43 21.53 OBC -49.4 12.0 NVD 29 01 08 59 -41.9 22.6 14684.7 137 00000 A 28 20 59 20 120.57 386021.64 995.68 18.27 68.44 396449.7 1085.7 0.1 0.4 -39.82 37.89 OBC -43.8 31.5 NVD 29 02 08 59 -34.9 38.0 13904.3 138 00000 A 28 21 59 20 121.10 386183.28 995.26 18.31 68.99 395764.9 1034.6 0.1 0.4 -30.59 50.20 OBC -34.5 45.8 NVD 29 03 08 59 -25.3 49.8 12836.3 139 00000 A 28 22 59 20 121.62 386344.03 994.84 18.35 69.54 394827.5 984.3 0.1 0.4 -19.74 59.40 OBC -23.0 55.9 NVD 29 04 08 59 -14.1 58.6 11589.8 140 00000 A 28 23 59 20 122.14 386503.89 994.43 18.39 70.09 393705.5 935.0 0.1 0.4 -7.90 66.51 OBC -10.2 63.0 NVD 29 05 08 59 -1.9 65.5 10233.5 141 00000 A 29 00 59 20 122.66 386662.83 994.02 18.42 70.64 392479.1 886.7 0.1 0.4 4.57 72.29 LOS 3.3 68.3 NVD 29 06 08 59 10.9 71.0 8808.1 142 00000 A 29 01 59 20 123.18 386820.85 993.61 18.46 71.18 391235.6 839.7 0.1 0.4 17.47 77.26 LOS 17.2 72.4 VBC 29 07 08 59 24.1 75.7 7338.0 143 00000 A 29 02 59 20 123.70 386977.93 993.20 18.49 71.73 390064.5 794.2 0.1 0.4 30.66 81.86 LOS 31.3 75.5 VBC 29 08 08 59 37.5 79.9 5838.5 144 00000 A 29 03 59 20 124.22 387134.06 992.79 18.52 72.28 389051.1 750.4 0.1 0.4 44.04 86.50 LOS 45.7 77.7 VBC 29 09 08 59 51.2 84.0 4319.9 145 00000 A 29 04 59 20 124.74 387289.23 992.39 18.55 72.83 388271.7 708.7 0.1 0.4 57.53 91.99 LOS 60.1 78.7 VBC 29 10 08 59 64.9 88.5 2789.7 146 00000 A 29 05 59 20 125.26 387443.43 991.99 18.58 73.37 387787.2 669.3 0.1 0.4 70.97 100.83 LOS 74.6 76.0 VBC 29 11 08 59 78.7 96.0 1257.3 147 00000 A 29 06 59 20 125.78 387596.64 991.59 18.60 73.92 387639.7 632.9 0.1 0.4 83.34 134.35 LOS 86.9 10.2 VBC 29 12 08 59 86.9 239.1 350.4 148 00000 A 29 07 59 20 126.30 387748.86 991.20 18.63 74.47 387848.9 599.8 0.0 0.4 79.79 244.32 LOS 75.6 284.6 VBC 29 13 08 59 73.4 267.8 1850.0 149 00000 A 29 08 59 20 126.82 387900.07 990.81 18.65 75.01 388410.9 570.7 0.0 0.4 66.74 262.92 LOS 61.2 281.2 VBC 29 14 08 59 59.6 273.5 3383.0 150 00000 A 29 09 59 20 127.33 388050.26 990.42 18.67 75.56 389298.4 546.1 0.0 0.4 53.27 270.14 LOS 46.8 282.0 VBC 29 15 08 59 45.9 277.7 4909.2 151 00000 A 29 10 59 20 127.85 388199.42 990.03 18.69 76.11 390462.6 526.7 0.0 0.4 39.82 275.24 LOS 32.5 284.3 VBC 29 16 08 59 32.3 281.7 6420.8 152 00000 A 29 11 59 20 128.37 388347.53 989.65 18.71 76.65 391837.0 513.1 0.0 0.4 26.51 279.83 LOS 18.3 287.3 VBC 29 17 08 59 18.9 286.1 7909.5 153 00000 A 29 12 59 20 128.88 388494.59 989.27 18.72 77.20 393341.8 505.6 0.0 0.4 13.42 284.53 LOS 4.4 291.4 NVD 29 18 08 59 5.9 291.1 9363.4 154 00000 A 29 13 59 20 129.40 388640.59 988.89 18.74 77.74 394889.7 504.7 0.0 0.4 0.68 289.74 LOS -9.0 296.6 NVD 29 19 08 59 -6.7 297.1 10764.1 155 00000 A 29 14 59 20 129.92 388785.50 988.52 18.75 78.29 396391.4 510.2 0.0 0.4 -11.58 295.91 OBC -21.7 303.7 NVD 29 20 08 59 -18.5 304.6 12082.0 156 00000 A 29 15 59 20 130.43 388929.34 988.15 18.76 78.83 397761.4 522.0 0.0 0.4 -23.08 303.64 OBC -33.3 313.6 NVD 29 21 08 59 -29.2 314.5 13267.0 157 00000 A 29 16 59 20 130.95 389072.07 987.78 18.77 79.37 398923.2 539.6 0.0 0.4 -33.42 313.74 OBC -42.7 327.5 NVD 29 22 08 59 -37.9 327.6 14235.8 158 00000 A 29 17 59 20 131.46 389213.69 987.41 18.78 79.92 399813.7 562.6 0.0 0.4 -41.84 327.25 OBC -48.5 346.5 NVD 29 23 08 59 -43.5 344.4 14864.6 159 00000 A 29 18 59 20 131.98 389354.20 987.05 18.79 80.46 400386.8 590.1 0.0 0.4 -47.23 344.77 OBC -49.1 8.4 NVD 30 00 08 59 -45.0 3.8 15023.4 160 00000 A 29 19 59 20 132.49 389493.58 986.69 18.79 81.00 400616.0 621.7 0.1 0.4 -48.42 4.95 OBC -44.4 28.4 NVD 30 01 08 59 -41.8 22.5 14670.1 161 00000 A 29 20 59 20 133.00 389631.81 986.34 18.79 81.55 400495.7 656.8 0.1 0.4 -45.07 24.19 OBC -35.7 43.5 NVD 30 02 08 59 -34.8 37.9 13892.7 162 00000 A 29 21 59 20 133.52 389768.90 985.98 18.80 82.09 400041.8 694.7 0.1 0.4 -38.04 39.77 OBC -24.6 54.2 NVD 30 03 08 59 -25.2 49.6 12827.6 163

Page 375: ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM …myreaders.info/00_Orbital__Mechanics__-__Model_____Simulation... · ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM-MSS)

www.m

yrea

ders

.inf

o

OM-MSS Page 375 SATELLITE PASS - GROUND TRACE [acronym - Line Of Sight (LOS), On Board Computerr (OBC), Visible Band Camera (VBC), Night Vision Devices (NVD) ] ORBIT, INPUT TIME, POSIION, SAT VELOCITY, GROUND TRACE, RANGE, DIST, PITCH/ROLL, EL/AZ, ACCESS EL/AZ, DATA SOLAR TIME EL/AZ, DIST Line 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 @ES 18 19 20 @SS 21 22 23 24 25 26 27 @ES 28 29 30 No. Node GMT Anomaly Height @ Vel Lat(SAT)Log Slant S-Sat Pitch Roll EL(SAT)AZ Control EL(SUN)AZ Acq. LMT(ES) EL(SUN)AZ S-Sun Nos D H M S deg km meter deg deg km km deg deg deg D H M S deg km 00000 A 29 22 59 20 134.03 389904.82 985.63 18.80 82.63 399290.4 735.1 0.1 0.4 -28.57 51.49 OBC -12.1 61.8 NVD 30 04 08 59 -14.1 58.5 11583.5 164 00000 A 29 23 59 20 134.54 390039.57 985.29 18.80 83.17 398296.3 777.6 0.1 0.4 -17.60 60.31 OBC 1.2 67.4 NVD 30 05 08 59 -1.9 65.3 10229.1 165 00000 A 30 00 59 20 135.05 390173.14 984.94 18.79 83.71 397129.6 821.8 0.1 0.4 -5.68 67.19 OBC 15.0 71.7 VBC 30 06 08 59 10.9 70.9 8805.2 166 00000 A 30 01 59 20 135.57 390305.52 984.60 18.79 84.25 395871.9 867.4 0.1 0.4 6.84 72.83 LOS 29.1 75.0 VBC 30 07 08 59 24.1 75.6 7336.4 167 00000 A 30 02 59 20 136.08 390436.71 984.26 18.78 84.79 394611.1 914.3 0.1 0.4 19.77 77.72 LOS 43.4 77.5 VBC 30 08 08 59 37.6 79.7 5838.0 168 00000 A 30 03 59 20 136.59 390566.68 983.93 18.77 85.33 393436.4 962.2 0.1 0.4 32.98 82.29 LOS 57.8 78.8 VBC 30 09 08 59 51.2 83.7 4320.1 169 00000 A 30 04 59 20 137.10 390695.43 983.60 18.77 85.87 392432.3 1011.0 0.1 0.4 46.37 86.99 LOS 72.2 77.1 VBC 30 10 08 59 64.9 88.1 2790.5 170 00000 A 30 05 59 20 137.61 390822.95 983.27 18.76 86.41 391672.6 1060.6 0.1 0.4 59.86 92.72 LOS 85.8 43.8 VBC 30 11 08 59 78.7 95.3 1257.7 171 00000 A 30 06 59 20 138.12 390949.23 982.95 18.74 86.95 391215.7 1110.8 0.1 0.4 73.26 102.72 LOS 78.0 286.7 VBC 30 12 08 59 87.0 241.2 338.7 172 00000 A 30 07 59 20 138.63 391074.26 982.63 18.73 87.49 391100.4 1161.6 0.1 0.4 84.83 152.47 LOS 63.6 281.4 VBC 30 13 08 59 73.4 268.4 1843.9 173 00000 A 30 08 59 20 139.14 391198.04 982.31 18.71 88.02 391342.7 1212.9 0.2 0.4 77.70 250.20 LOS 49.2 282.0 VBC 30 14 08 59 59.7 273.7 3376.8 174 00000 A 30 09 59 20 139.65 391320.55 981.99 18.70 88.56 391934.8 1264.6 0.2 0.4 64.46 264.58 LOS 34.9 284.0 VBC 30 15 08 59 46.0 277.9 4902.4 175 00000 A 30 10 59 20 140.16 391441.79 981.68 18.68 89.10 392845.8 1316.7 0.2 0.4 50.96 271.11 LOS 20.7 286.9 VBC 30 16 08 59 32.4 281.9 6413.2 176 00000 A 30 11 59 20 140.67 391561.75 981.37 18.66 89.64 394023.7 1369.1 0.2 0.4 37.51 276.01 LOS 6.7 290.8 VBC 30 17 08 59 19.0 286.2 7900.9 177 00000 A 30 12 59 20 141.17 391680.41 981.07 18.64 90.17 395399.4 1421.8 0.2 0.4 24.21 280.55 LOS -6.8 295.8 NVD 30 18 08 59 6.0 291.2 9353.7 178 00000 A 30 13 59 20 141.68 391797.77 980.77 18.62 90.71 396891.4 1474.8 0.2 0.4 11.15 285.28 LOS -19.7 302.5 NVD 30 19 08 59 -6.6 297.2 10753.1 179 00000 A 30 14 59 20 142.19 391913.82 980.47 18.59 91.24 398411.5 1527.9 0.2 0.4 -1.55 290.60 LOS -31.5 311.7 NVD 30 20 08 59 -18.4 304.7 12069.4 180 00000 A 30 15 59 20 142.70 392028.55 980.18 18.57 91.78 399870.4 1581.3 0.2 0.4 -13.74 296.97 OBC -41.3 324.8 NVD 30 21 08 59 -29.1 314.6 13252.7 181 00000 A 30 16 59 20 143.20 392141.96 979.89 18.54 92.31 401183.4 1634.8 0.2 0.4 -25.13 305.02 OBC -47.9 342.9 NVD 30 22 08 59 -37.7 327.6 14219.8 182 00000 A 30 17 59 20 143.71 392254.04 979.60 18.51 92.84 402275.7 1688.5 0.2 0.4 -35.25 315.63 OBC -49.5 4.7 NVD 30 23 08 59 -43.4 344.4 14847.7 183 00000 A 30 18 59 20 144.22 392364.77 979.32 18.48 93.38 403086.6 1742.4 0.2 0.4 -43.31 329.86 OBC -45.7 25.4 NVD 31 00 08 59 -44.8 3.7 15007.1 184 00000 A 30 19 59 20 144.72 392474.15 979.04 18.45 93.91 403572.8 1796.3 0.2 0.4 -48.10 348.15 OBC -37.5 41.3 NVD 31 01 08 59 -41.7 22.4 14656.2 185 00000 A 30 20 59 20 145.23 392582.18 978.76 18.42 94.44 403711.2 1850.4 0.2 0.4 -48.51 8.65 OBC -26.7 52.6 NVD 31 02 08 59 -34.7 37.8 13881.8 186 00000 A 30 21 59 20 145.73 392688.84 978.49 18.38 94.97 403499.9 1904.6 0.3 0.4 -44.41 27.54 OBC -14.4 60.6 NVD 31 03 08 59 -25.2 49.5 12819.5 187 00000 A 30 22 59 20 146.24 392794.12 978.22 18.35 95.50 402958.2 1958.8 0.3 0.4 -36.82 42.51 OBC -1.2 66.4 NVD 31 04 08 59 -14.0 58.3 11577.7 188 00000 A 30 23 59 20 146.75 392898.03 977.95 18.31 96.04 402125.8 2013.1 0.3 0.4 -26.98 53.69 OBC 12.5 70.8 VBC 31 05 08 59 -1.9 65.2 10225.2 189 00000 A 31 00 59 20 147.25 393000.55 977.69 18.27 96.57 401060.7 2067.5 0.3 0.4 -15.76 62.14 OBC 26.5 74.1 VBC 31 06 08 59 10.9 70.7 8802.8 190 00000 A 31 01 59 20 147.75 393101.67 977.43 18.23 97.09 399835.7 2122.0 0.3 0.4 -3.67 68.80 LOS 40.8 76.5 VBC 31 07 08 59 24.1 75.4 7335.2 191 00000 A 31 02 59 20 148.26 393201.40 977.18 18.19 97.62 398534.2 2176.5 0.3 0.4 8.97 74.33 LOS 55.2 77.6 VBC 31 08 08 59 37.6 79.5 5837.8 192 00000 A 31 03 59 20 148.76 393299.71 976.93 18.14 98.15 397245.3 2231.1 0.3 0.4 21.99 79.23 LOS 69.5 75.9 VBC 31 09 08 59 51.2 83.5 4320.8 193 00000 A 31 04 59 20 149.27 393396.61 976.68 18.10 98.68 396058.4 2285.7 0.3 0.4 35.26 83.94 LOS 83.3 54.5 VBC 31 10 08 59 64.9 87.7 2791.7 194 00000 A 31 05 59 20 149.77 393492.08 976.43 18.05 99.21 395056.9 2340.4 0.3 0.4 48.69 88.99 LOS 80.2 294.7 VBC 31 11 08 59 78.7 94.5 1258.6 195 00000 A 31 06 59 20 150.27 393586.12 976.19 18.01 99.74 394312.9 2395.0 0.3 0.4 62.18 95.63 LOS 66.1 283.6 VBC 31 12 08 59 87.1 243.4 327.7 196 00000 A 31 07 59 20 150.78 393678.73 975.96 17.96 100.26 393881.9 2449.8 0.3 0.4 75.41 109.02 LOS 51.7 282.9 VBC 31 13 08 59 73.5 268.8 1838.0 197 00000 A 31 08 59 20 151.28 393769.90 975.73 17.91 100.79 393799.0 2504.5 0.3 0.4 84.56 182.50 LOS 37.3 284.3 VBC 31 14 08 59 59.7 274.0 3370.7 198 00000 A 31 09 59 20 151.78 393859.61 975.50 17.86 101.31 394076.1 2559.3 0.3 0.4 74.93 251.36 LOS 23.0 286.8 VBC 31 15 08 59 46.0 278.1 4895.6 199 00000 A 31 10 59 20 152.29 393947.88 975.27 17.80 101.84 394701.2 2614.1 0.4 0.4 61.66 264.23 LOS 9.0 290.3 VBC 31 16 08 59 32.5 282.0 6405.6 200 00000 A 31 11 59 20 152.79 394034.68 975.05 17.75 102.36 395639.0 2668.9 0.4 0.4 48.15 270.74 LOS -4.7 294.8 NVD 31 17 08 59 19.1 286.4 7892.4 201 00000 A 31 12 59 20 153.29 394120.01 974.83 17.69 102.89 396833.8 2723.8 0.4 0.4 34.69 275.75 LOS -17.8 301.0 NVD 31 18 08 59 6.1 291.3 9344.1 202 00000 A 31 13 59 20 153.79 394203.87 974.62 17.64 103.41 398213.1 2778.6 0.4 0.4 21.37 280.41 LOS -29.9 309.5 NVD 31 19 08 59 -6.5 297.3 10742.3 203 00000 A 31 14 59 20 154.29 394286.25 974.41 17.58 103.93 399693.3 2833.5 0.4 0.4 8.29 285.27 LOS -40.4 321.6 NVD 31 20 08 59 -18.3 304.8 12057.1 204

Page 376: ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM …myreaders.info/00_Orbital__Mechanics__-__Model_____Simulation... · ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM-MSS)

www.m

yrea

ders

.inf

o

OM-MSS Page 376 SATELLITE PASS - GROUND TRACE [acronym - Line Of Sight (LOS), On Board Computerr (OBC), Visible Band Camera (VBC), Night Vision Devices (NVD) ] ORBIT, INPUT TIME, POSIION, SAT VELOCITY, GROUND TRACE, RANGE, DIST, PITCH/ROLL, EL/AZ, ACCESS EL/AZ, DATA SOLAR TIME EL/AZ, DIST Line 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 @ES 18 19 20 @SS 21 22 23 24 25 26 27 @ES 28 29 30 No. Node GMT Anomaly Height @ Vel Lat(SAT)Log Slant S-Sat Pitch Roll EL(SAT)AZ Control EL(SUN)AZ Acq. LMT(ES) EL(SUN)AZ S-Sun Nos D H M S deg km meter deg deg km km deg deg deg D H M S deg km 00000 A 31 15 59 20 154.79 394367.14 974.20 17.52 104.45 401184.6 2888.4 0.4 0.4 -4.42 290.77 LOS -47.8 338.9 NVD 31 21 08 59 -28.9 314.6 13238.8 205 00000 A 31 16 59 20 155.30 394446.55 974.00 17.46 104.98 402597.4 2943.3 0.4 0.4 -16.60 297.40 OBC -50.6 0.6 NVD 31 22 08 59 -37.6 327.7 14204.4 206 00000 A 31 17 59 20 155.80 394524.46 973.80 17.39 105.50 403847.9 2998.2 0.4 0.4 -27.94 305.86 OBC -47.7 22.2 NVD 31 23 08 59 -43.2 344.4 14831.4 207 00000 A 31 18 59 20 156.30 394600.87 973.61 17.33 106.02 404862.9 3053.1 0.4 0.4 -37.91 317.15 OBC -40.1 39.2 NVD 01 00 08 59 -44.7 3.7 14991.6 208 00000 A 31 19 59 20 156.80 394675.77 973.42 17.26 106.54 405584.1 3108.0 0.4 0.4 -45.62 332.42 OBC -29.6 51.2 NVD 01 01 08 59 -41.5 22.3 14643.0 209 00000 A 31 20 59 20 157.30 394749.16 973.23 17.20 107.06 405971.6 3162.9 0.4 0.4 -49.77 351.90 OBC -17.4 59.5 NVD 01 02 08 59 -34.6 37.6 13871.5 210 00000 A 31 21 59 20 157.80 394821.03 973.05 17.13 107.58 406006.1 3217.8 0.4 0.4 -49.26 13.07 OBC -4.3 65.4 NVD 01 03 08 59 -25.1 49.3 12812.0 211 00000 A 31 22 59 20 158.30 394891.39 972.87 17.06 108.09 405689.7 3272.8 0.4 0.4 -44.24 31.78 OBC 9.4 69.7 VBC 01 04 08 59 -14.0 58.2 11572.4 212 00000 A 31 23 59 20 158.80 394960.21 972.69 16.99 108.61 405046.1 3327.7 0.4 0.4 -35.95 46.16 OBC 23.5 72.9 VBC 01 05 08 59 -1.8 65.0 10221.7 213 00000 A 01 00 59 20 159.30 395027.51 972.52 16.92 109.13 404119.0 3382.6 0.4 0.4 -25.62 56.80 OBC 37.7 74.9 VBC 01 06 08 59 10.9 70.6 8800.8 214 00000 A 01 01 59 20 159.80 395093.26 972.35 16.85 109.64 402970.3 3437.6 0.5 0.4 -14.06 64.88 OBC 52.1 75.6 VBC 01 07 08 59 24.1 75.2 7334.4 215 00000 A 01 02 59 20 160.30 395157.48 972.19 16.77 110.16 401676.0 3492.5 0.5 0.4 -1.73 71.32 LOS 66.4 73.2 VBC 01 08 08 59 37.6 79.4 5838.0 216 00000 A 01 03 59 20 160.80 395220.16 972.03 16.70 110.68 400321.9 3547.5 0.5 0.4 11.09 76.79 LOS 80.0 56.2 VBC 01 09 08 59 51.2 83.3 4321.8 217 00000 A 01 04 59 20 161.30 395281.28 971.88 16.62 111.19 398998.8 3602.4 0.5 0.4 24.23 81.80 LOS 81.8 312.2 VBC 01 10 08 59 64.9 87.4 2793.3 218 00000 A 01 05 59 20 161.79 395340.85 971.72 16.54 111.70 397796.1 3657.3 0.5 0.4 37.59 86.83 LOS 68.5 288.3 VBC 01 11 08 59 78.7 93.8 1260.0 219 00000 A 01 06 59 20 162.29 395398.87 971.58 16.46 112.22 396796.4 3712.3 0.5 0.4 51.06 92.63 LOS 54.2 285.0 VBC 01 12 08 59 87.1 245.5 317.4 220 00000 A 01 07 59 20 162.79 395455.32 971.43 16.38 112.73 396069.7 3767.2 0.5 0.4 64.47 101.14 LOS 39.8 285.3 VBC 01 13 08 59 73.5 269.3 1832.1 221 00000 A 01 08 59 20 163.29 395510.21 971.29 16.30 113.24 395668.3 3822.2 0.5 0.4 77.16 121.36 LOS 25.4 287.1 VBC 01 14 08 59 59.8 274.3 3364.5 222 00000 A 01 09 59 20 163.79 395563.53 971.16 16.22 113.76 395623.0 3877.1 0.5 0.4 82.18 204.41 LOS 11.3 289.9 VBC 01 15 08 59 46.1 278.2 4888.8 223 00000 A 01 10 59 20 164.29 395615.28 971.03 16.14 114.27 395941.0 3932.0 0.5 0.4 71.49 250.22 LOS -2.6 293.9 NVD 01 16 08 59 32.5 282.2 6398.1 224 00000 A 01 11 59 20 164.79 395665.45 970.90 16.05 114.78 396605.2 3987.0 0.5 0.4 58.28 262.63 LOS -15.9 299.3 NVD 01 17 08 59 19.2 286.5 7884.0 225 00000 A 01 12 59 20 165.28 395714.04 970.78 15.96 115.29 397575.2 4041.9 0.5 0.4 44.77 269.45 LOS -28.5 306.9 NVD 01 18 08 59 6.1 291.4 9334.6 226 00000 A 01 13 59 20 165.78 395761.05 970.66 15.88 115.80 398790.9 4096.9 0.5 0.4 31.28 274.71 LOS -39.6 318.0 NVD 01 19 08 59 -6.4 297.4 10731.6 227 00000 A 01 14 59 20 166.28 395806.48 970.54 15.79 116.31 400176.0 4151.8 0.5 0.4 17.92 279.59 LOS -48.1 334.2 NVD 01 20 08 59 -18.2 304.9 12045.1 228 00000 A 01 15 59 20 166.78 395850.31 970.43 15.70 116.82 401644.1 4206.7 0.5 0.4 4.79 284.66 LOS -52.1 355.8 NVD 01 21 08 59 -28.8 314.7 13225.2 229 00000 A 01 16 59 20 167.27 395892.56 970.32 15.61 117.32 403103.8 4261.7 0.5 0.4 -7.97 290.39 OBC -50.3 18.6 NVD 01 22 08 59 -37.5 327.7 14189.4 230 00000 A 01 17 59 20 167.77 395933.21 970.22 15.51 117.83 404465.1 4316.6 0.5 0.4 -20.18 297.34 OBC -43.3 37.0 NVD 01 23 08 59 -43.1 344.4 14815.8 231 00000 A 01 18 59 20 168.27 395972.26 970.12 15.42 118.34 405645.1 4371.5 0.6 0.4 -31.52 306.33 OBC -33.1 49.8 NVD 02 00 08 59 -44.5 3.6 14976.7 232 00000 A 01 19 59 20 168.77 396009.72 970.02 15.33 118.84 406572.5 4426.4 0.6 0.4 -41.38 318.52 OBC -21.0 58.5 NVD 02 01 08 59 -41.4 22.2 14630.4 233 00000 A 01 20 59 20 169.26 396045.57 969.93 15.23 119.35 407192.2 4481.4 0.6 0.4 -48.73 335.24 OBC -7.9 64.4 NVD 02 02 08 59 -34.5 37.5 13861.9 234 00000 A 01 21 59 20 169.76 396079.81 969.85 15.13 119.86 407467.9 4536.3 0.6 0.4 -52.10 356.42 OBC 5.8 68.6 VBC 02 03 08 59 -25.0 49.2 12805.0 235 00000 A 01 22 59 20 170.26 396112.45 969.76 15.04 120.36 407384.9 4591.2 0.6 0.4 -50.45 18.52 OBC 19.9 71.5 VBC 02 04 08 59 -13.9 58.1 11567.7 236 00000 A 01 23 59 20 170.75 396143.48 969.69 14.94 120.86 406950.0 4646.1 0.6 0.4 -44.34 37.00 OBC 34.1 73.1 VBC 02 05 08 59 -1.8 64.9 10218.7 237 00000 A 02 00 59 20 171.25 396172.90 969.61 14.84 121.37 406191.9 4701.1 0.6 0.4 -35.21 50.71 OBC 48.5 73.2 VBC 02 06 08 59 11.0 70.4 8799.2 238 00000 A 02 01 59 20 171.75 396200.71 969.54 14.74 121.87 405159.4 4756.0 0.6 0.4 -24.30 60.75 OBC 62.7 70.1 VBC 02 07 08 59 24.1 75.1 7333.9 239 00000 A 02 02 59 20 172.24 396226.90 969.47 14.63 122.37 403918.4 4810.9 0.6 0.4 -12.34 68.42 OBC 76.1 55.3 VBC 02 08 08 59 37.5 79.2 5838.5 240 00000 A 02 03 59 20 172.74 396251.47 969.41 14.53 122.88 402548.7 4865.8 0.6 0.4 0.26 74.67 LOS 81.8 338.6 VBC 02 09 08 59 51.2 83.0 4323.1 241 00000 A 02 04 59 20 173.24 396274.43 969.35 14.43 123.38 401139.0 4920.7 0.6 0.4 13.28 80.14 LOS 70.6 296.3 VBC 02 10 08 59 64.9 87.1 2795.2 242 00000 A 02 05 59 20 173.73 396295.76 969.30 14.32 123.88 399781.3 4975.7 0.6 0.4 26.56 85.37 LOS 56.6 288.7 VBC 02 11 08 59 78.7 93.1 1261.9 243 00000 A 02 06 59 20 174.23 396315.47 969.25 14.22 124.38 398565.5 5030.6 0.6 0.4 39.99 90.98 LOS 42.3 287.2 VBC 02 12 08 59 87.2 247.7 307.6 244 00000 A 02 07 59 20 174.73 396333.56 969.20 14.11 124.88 397572.7 5085.5 0.6 0.4 53.42 98.04 LOS 27.9 287.9 VBC 02 13 08 59 73.6 269.8 1826.2 245

Page 377: ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM …myreaders.info/00_Orbital__Mechanics__-__Model_____Simulation... · ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM-MSS)

www.m

yrea

ders

.inf

o

OM-MSS Page 377 SATELLITE PASS - GROUND TRACE [acronym - Line Of Sight (LOS), On Board Computerr (OBC), Visible Band Camera (VBC), Night Vision Devices (NVD) ] ORBIT, INPUT TIME, POSIION, SAT VELOCITY, GROUND TRACE, RANGE, DIST, PITCH/ROLL, EL/AZ, ACCESS EL/AZ, DATA SOLAR TIME EL/AZ, DIST Line 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 @ES 18 19 20 @SS 21 22 23 24 25 26 27 @ES 28 29 30 No. Node GMT Anomaly Height @ Vel Lat(SAT)Log Slant S-Sat Pitch Roll EL(SAT)AZ Control EL(SUN)AZ Acq. LMT(ES) EL(SUN)AZ S-Sun Nos D H M S deg km meter deg deg km km deg deg deg D H M S deg km 00000 A 02 08 59 20 175.22 396350.03 969.16 14.00 125.38 396870.4 5140.4 0.6 0.4 66.55 109.68 LOS 13.7 289.9 VBC 02 14 08 59 59.8 274.5 3358.3 246 00000 A 02 09 59 20 175.72 396364.87 969.12 13.89 125.88 396506.7 5195.3 0.6 0.4 77.86 140.28 LOS -0.4 293.0 NVD 02 15 08 59 46.1 278.4 4882.0 247 00000 A 02 10 59 20 176.22 396378.09 969.09 13.78 126.37 396507.7 5250.3 0.6 0.4 78.41 215.01 LOS -14.0 297.5 NVD 02 16 08 59 32.6 282.3 6390.6 248 00000 A 02 11 59 20 176.71 396389.67 969.06 13.67 126.87 396874.9 5305.2 0.6 0.4 67.36 248.25 LOS -27.0 304.1 NVD 02 17 08 59 19.2 286.6 7875.6 249 00000 A 02 12 59 20 177.21 396399.63 969.04 13.56 127.37 397585.2 5360.1 0.6 0.4 54.25 260.42 LOS -38.9 313.9 NVD 02 18 08 59 6.2 291.5 9325.3 250 00000 A 02 13 59 20 177.71 396407.97 969.01 13.44 127.87 398592.7 5415.1 0.6 0.4 40.77 267.59 LOS -48.4 328.8 NVD 02 19 08 59 -6.3 297.5 10721.1 251 00000 A 02 14 59 20 178.20 396414.67 969.00 13.33 128.36 399832.1 5470.0 0.7 0.4 27.26 273.17 LOS -53.9 350.1 NVD 02 20 08 59 -18.1 305.0 12033.4 252 00000 A 02 15 59 20 178.70 396419.74 968.98 13.21 128.86 401223.0 5524.9 0.7 0.4 13.85 278.29 LOS -53.4 14.4 NVD 02 21 08 59 -28.7 314.8 13212.1 253 00000 A 02 16 59 20 179.19 396423.19 968.98 13.10 129.35 402676.0 5579.9 0.7 0.4 0.66 283.59 LOS -47.2 34.7 NVD 02 22 08 59 -37.3 327.8 14175.0 254 00000 A 02 17 59 20 179.69 396425.00 968.97 12.98 129.85 404098.3 5634.8 0.7 0.4 -12.17 289.58 OBC -37.2 48.5 NVD 02 23 08 59 -43.0 344.4 14800.8 255 00000 A 02 18 36 48 180.00 396425.30 Apo 968.97 12.91 130.16 404930.5 5669.1 0.7 0.4 -19.93 92.05 OBC -29.8 54.6 NVD 02 23 46 27 -44.4 356.2 14961.8 256 00000 A 02 18 59 20 180.19 396425.18 968.97 12.86 130.34 405399.9 5689.8 0.7 0.4 -24.46 296.91 OBC -25.1 57.6 NVD 03 00 08 59 -44.4 3.6 14962.6 257 00000 A 02 19 59 20 180.68 396423.74 968.97 12.74 130.84 406498.9 5744.7 0.7 0.4 -35.82 306.54 OBC -12.0 63.6 NVD 03 01 08 59 -41.3 22.1 14618.6 258 00000 A 02 20 59 20 181.18 396420.66 968.98 12.62 131.33 407326.9 5799.7 0.7 0.4 -45.58 319.92 OBC 1.7 67.6 NVD 03 02 08 59 -34.4 37.4 13853.0 259 00000 A 02 21 59 20 181.67 396415.95 968.99 12.50 131.82 407832.2 5854.6 0.7 0.4 -52.50 338.65 OBC 15.8 70.1 VBC 03 03 08 59 -25.0 49.1 12798.6 260 00000 A 02 22 59 20 182.17 396409.62 969.01 12.38 132.32 407983.5 5909.6 0.7 0.4 -54.86 2.12 OBC 30.0 71.3 VBC 03 04 08 59 -13.9 57.9 11563.4 261 00000 A 02 23 59 20 182.67 396401.65 969.03 12.26 132.81 407770.9 5964.6 0.7 0.4 -51.82 25.18 OBC 44.3 70.7 VBC 03 05 08 59 -1.8 64.8 10216.1 262 00000 A 03 00 59 20 183.16 396392.06 969.05 12.13 133.30 407207.0 6019.6 0.7 0.4 -44.44 43.20 OBC 58.4 67.0 VBC 03 06 08 59 11.0 70.3 8798.0 263 00000 A 03 01 59 20 183.66 396380.84 969.08 12.01 133.79 406326.1 6074.5 0.7 0.4 -34.41 56.06 OBC 71.7 53.8 VBC 03 07 08 59 24.1 74.9 7333.9 264 00000 A 03 02 59 20 184.16 396367.99 969.11 11.88 134.28 405182.2 6129.5 0.7 0.4 -22.89 65.42 OBC 79.6 2.1 VBC 03 08 08 59 37.5 79.0 5839.3 265 00000 A 03 03 59 20 184.65 396353.51 969.15 11.76 134.77 403846.1 6184.5 0.7 0.4 -10.52 72.67 OBC 72.2 308.2 VBC 03 09 08 59 51.1 82.8 4324.7 266 00000 A 03 04 59 20 185.15 396337.41 969.19 11.63 135.26 402401.4 6239.5 0.7 0.4 2.36 78.74 LOS 58.9 294.2 VBC 03 10 08 59 64.9 86.8 2797.4 267 00000 A 03 05 59 20 185.65 396319.69 969.24 11.50 135.75 400939.3 6294.5 0.7 0.4 15.57 84.29 LOS 44.8 290.1 VBC 03 11 08 59 78.6 92.4 1264.2 268 00000 A 03 06 59 20 186.14 396300.34 969.29 11.38 136.24 399553.3 6349.6 0.7 0.4 28.95 89.90 LOS 30.5 289.3 VBC 03 12 08 59 87.3 249.8 298.4 269 00000 A 03 07 59 20 186.64 396279.37 969.34 11.25 136.73 398332.8 6404.6 0.7 0.4 42.37 96.37 LOS 16.1 290.2 VBC 03 13 08 59 73.6 270.2 1820.4 270 00000 A 03 08 59 20 187.13 396256.78 969.40 11.12 137.22 397357.2 6459.6 0.7 0.4 55.61 105.29 LOS 1.9 292.4 NVD 03 14 08 59 59.9 274.8 3352.2 271 00000 A 03 09 59 20 187.63 396232.58 969.46 10.98 137.71 396690.1 6514.7 0.7 0.4 68.04 121.44 LOS -12.0 295.9 NVD 03 15 08 59 46.2 278.6 4875.3 272 00000 A 03 10 59 20 188.13 396206.75 969.52 10.85 138.20 396375.2 6569.7 0.7 0.4 76.78 161.73 LOS -25.5 301.3 NVD 03 16 08 59 32.7 282.5 6383.1 273 00000 A 03 11 59 20 188.63 396179.31 969.59 10.72 138.68 396432.5 6624.8 0.7 0.4 73.74 220.17 LOS -38.0 309.7 NVD 03 17 08 59 19.3 286.7 7867.3 274 00000 A 03 12 59 20 189.12 396150.25 969.67 10.59 139.17 396857.0 6679.9 0.7 0.4 62.60 246.21 LOS -48.6 322.9 NVD 03 18 08 59 6.3 291.6 9316.1 275 00000 A 03 13 59 20 189.62 396119.59 969.74 10.45 139.66 397619.2 6734.9 0.7 0.4 49.62 258.02 LOS -55.8 343.3 NVD 03 19 08 59 -6.2 297.6 10710.9 276 00000 A 03 14 59 20 190.12 396087.31 969.83 10.32 140.14 398667.0 6790.0 0.7 0.4 36.20 265.46 LOS -56.9 9.2 NVD 03 20 08 59 -18.0 305.1 12021.9 277 00000 A 03 15 59 20 190.61 396053.43 969.91 10.18 140.63 399929.7 6845.2 0.7 0.4 22.68 271.31 LOS -51.5 32.1 NVD 03 21 08 59 -28.6 314.9 13199.3 278 00000 A 03 16 59 20 191.11 396017.94 970.00 10.05 141.11 401322.9 6900.3 0.8 0.4 9.24 276.66 LOS -41.8 47.4 NVD 03 22 08 59 -37.2 327.8 14161.1 279 00000 A 03 17 59 20 191.61 395980.85 970.10 9.91 141.60 402754.5 6955.4 0.8 0.4 -4.02 282.18 LOS -29.8 57.0 NVD 03 23 08 59 -42.8 344.4 14786.4 280 00000 A 03 18 59 20 192.10 395942.16 970.19 9.77 142.08 404130.7 7010.5 0.8 0.4 -16.94 288.42 OBC -16.6 63.0 NVD 04 00 08 59 -44.3 3.5 14949.2 281 00000 A 03 19 59 20 192.60 395901.87 970.30 9.63 142.57 405361.9 7065.7 0.8 0.4 -29.31 296.16 OBC -2.9 66.7 NVD 04 01 08 59 -41.2 21.9 14607.6 282 00000 A 03 20 59 20 193.10 395859.99 970.40 9.49 143.05 406368.3 7120.9 0.8 0.4 -40.73 306.56 OBC 11.2 68.9 VBC 04 02 08 59 -34.4 37.2 13844.7 283 00000 A 03 21 59 20 193.60 395816.51 970.51 9.35 143.54 407084.8 7176.1 0.8 0.4 -50.39 321.52 OBC 25.5 69.6 VBC 04 03 08 59 -24.9 48.9 12792.8 284 00000 A 03 22 59 20 194.09 395771.45 970.63 9.21 144.02 407464.5 7231.2 0.8 0.4 -56.73 343.03 OBC 39.7 68.5 VBC 04 04 08 59 -13.8 57.8 11559.7 285 00000 A 03 23 59 20 194.59 395724.80 970.75 9.07 144.50 407481.1 7286.5 0.8 0.4 -57.77 9.35 OBC 53.7 64.2 VBC 04 05 08 59 -1.8 64.7 10214.0 286 00000 A 04 00 59 20 195.09 395676.57 970.87 8.93 144.99 407130.9 7341.7 0.8 0.4 -53.05 33.09 OBC 66.8 52.3 VBC 04 06 08 59 11.0 70.2 8797.2 287

Page 378: ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM …myreaders.info/00_Orbital__Mechanics__-__Model_____Simulation... · ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM-MSS)

www.m

yrea

ders

.inf

o

OM-MSS Page 378 SATELLITE PASS - GROUND TRACE [acronym - Line Of Sight (LOS), On Board Computerr (OBC), Visible Band Camera (VBC), Night Vision Devices (NVD) ] ORBIT, INPUT TIME, POSIION, SAT VELOCITY, GROUND TRACE, RANGE, DIST, PITCH/ROLL, EL/AZ, ACCESS EL/AZ, DATA SOLAR TIME EL/AZ, DIST Line 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 @ES 18 19 20 @SS 21 22 23 24 25 26 27 @ES 28 29 30 No. Node GMT Anomaly Height @ Vel Lat(SAT)Log Slant S-Sat Pitch Roll EL(SAT)AZ Control EL(SUN)AZ Acq. LMT(ES) EL(SUN)AZ S-Sun Nos D H M S deg km meter deg deg km km deg deg deg D H M S deg km 00000 A 04 01 59 20 195.59 395626.75 970.99 8.79 145.47 406432.5 7396.9 0.8 0.4 -44.32 50.20 OBC 75.8 16.2 VBC 04 07 08 59 24.1 74.8 7334.1 288 00000 A 04 02 59 20 196.09 395575.36 971.13 8.64 145.95 405426.4 7452.2 0.8 0.4 -33.39 62.00 OBC 72.5 323.2 VBC 04 08 08 59 37.5 78.9 5840.5 289 00000 A 04 03 59 20 196.59 395522.40 971.26 8.50 146.44 404171.9 7507.5 0.8 0.4 -21.30 70.61 OBC 60.8 301.6 VBC 04 09 08 59 51.1 82.6 4326.7 290 00000 A 04 04 59 20 197.08 395467.87 971.40 8.35 146.92 402744.8 7562.7 0.8 0.4 -8.56 77.45 OBC 47.1 294.1 VBC 04 10 08 59 64.8 86.5 2800.0 291 00000 A 04 05 59 20 197.58 395411.77 971.54 8.21 147.40 401232.2 7618.0 0.8 0.4 4.56 83.40 LOS 32.9 291.5 VBC 04 11 08 59 78.6 91.8 1266.9 292 00000 A 04 06 59 20 198.08 395354.12 971.69 8.06 147.88 399727.7 7673.4 0.8 0.4 17.89 89.12 LOS 18.6 291.0 VBC 04 12 08 59 87.4 252.0 289.8 293 00000 A 04 07 59 20 198.58 395294.90 971.84 7.92 148.36 398325.2 7728.7 0.8 0.4 31.28 95.30 LOS 4.3 292.1 NVD 04 13 08 59 73.7 270.6 1814.5 294 00000 A 04 08 59 20 199.08 395234.13 971.99 7.77 148.85 397113.2 7784.1 0.8 0.4 44.56 102.95 LOS -9.9 294.5 NVD 04 14 08 59 59.9 275.0 3346.0 295 00000 A 04 09 59 20 199.58 395171.81 972.15 7.62 149.33 396168.0 7839.4 0.8 0.4 57.33 114.34 LOS -23.7 298.6 NVD 04 15 08 59 46.3 278.7 4868.6 296 00000 A 04 10 59 20 200.08 395107.95 972.31 7.47 149.81 395549.0 7894.8 0.8 0.4 68.46 135.75 LOS -36.8 305.4 NVD 04 16 08 59 32.7 282.6 6375.7 297 00000 A 04 11 59 20 200.58 395042.54 972.48 7.32 150.29 395293.9 7950.2 0.8 0.4 73.81 179.32 LOS -48.5 316.7 NVD 04 17 08 59 19.4 286.8 7859.1 298 00000 A 04 12 59 20 201.08 394975.60 972.65 7.18 150.77 395416.2 8005.7 0.8 0.4 68.47 222.92 LOS -57.4 335.6 NVD 04 18 08 59 6.4 291.7 9307.0 299 00000 A 04 13 59 20 201.58 394907.13 972.82 7.03 151.25 395903.9 8061.1 0.8 0.4 57.32 244.34 LOS -60.5 2.8 NVD 04 19 08 59 -6.1 297.7 10700.8 300 00000 A 04 14 59 20 202.08 394837.13 973.00 6.88 151.73 396720.4 8116.6 0.8 0.4 44.50 255.68 LOS -56.3 29.1 NVD 04 20 08 59 -17.9 305.2 12010.7 301 00000 A 04 15 59 20 202.58 394765.60 973.18 6.72 152.21 397807.5 8172.1 0.8 0.4 31.16 263.24 LOS -46.9 46.5 NVD 04 21 08 59 -28.5 314.9 13187.0 302 00000 A 04 16 59 20 203.08 394692.56 973.37 6.57 152.69 399089.3 8227.6 0.8 0.4 17.67 269.27 LOS -34.8 56.7 NVD 04 22 08 59 -37.1 327.9 14147.7 303 00000 A 04 17 59 20 203.58 394618.01 973.56 6.42 153.17 400477.8 8283.1 0.8 0.4 4.21 274.80 LOS -21.6 62.7 NVD 04 23 08 59 -42.7 344.4 14772.7 304 00000 A 04 18 59 20 204.08 394541.95 973.75 6.27 153.65 401878.7 8338.7 0.8 0.4 -9.10 280.49 OBC -7.8 66.2 NVD 05 00 08 59 -44.2 3.4 14936.5 305 00000 A 04 19 59 20 204.58 394464.39 973.95 6.12 154.13 403198.0 8394.3 0.8 0.4 -22.11 286.96 OBC 6.4 68.0 VBC 05 01 08 59 -41.1 21.8 14597.2 306 00000 A 04 20 59 20 205.08 394385.33 974.15 5.96 154.61 404347.4 8449.9 0.8 0.4 -34.58 295.10 OBC 20.6 68.2 VBC 05 02 08 59 -34.3 37.1 13837.0 307 00000 A 04 21 59 20 205.58 394304.78 974.36 5.81 155.09 405250.3 8505.5 0.8 0.4 -46.08 306.41 OBC 34.8 66.6 VBC 05 03 08 59 -24.9 48.8 12787.6 308 00000 A 04 22 59 20 206.08 394222.74 974.57 5.65 155.57 405845.6 8561.2 0.8 0.4 -55.61 323.46 OBC 48.6 62.0 VBC 05 04 08 59 -13.8 57.7 11556.4 309 00000 A 04 23 59 20 206.59 394139.23 974.78 5.50 156.05 406091.7 8616.8 0.8 0.4 -61.19 348.83 OBC 61.5 51.1 VBC 05 05 08 59 -1.7 64.5 10212.3 310 00000 A 05 00 59 20 207.09 394054.23 975.00 5.34 156.53 405968.5 8672.5 0.8 0.4 -60.50 18.39 OBC 71.1 24.1 VBC 05 06 08 59 11.0 70.0 8796.8 311 00000 A 05 01 59 20 207.59 393967.78 975.22 5.19 157.01 405478.6 8728.2 0.8 0.4 -53.89 42.05 OBC 71.3 338.7 VBC 05 07 08 59 24.1 74.7 7334.8 312 00000 A 05 02 59 20 208.09 393879.86 975.44 5.03 157.49 404647.2 8784.0 0.8 0.4 -43.84 57.71 OBC 61.9 310.7 VBC 05 08 08 59 37.5 78.7 5842.0 313 00000 A 05 03 59 20 208.59 393790.48 975.67 4.87 157.97 403520.6 8839.8 0.8 0.4 -32.11 68.29 OBC 49.1 299.3 VBC 05 09 08 59 51.1 82.4 4328.9 314 00000 A 05 04 59 20 209.10 393699.65 975.90 4.72 158.45 402163.8 8895.6 0.8 0.4 -19.53 76.13 OBC 35.2 294.4 VBC 05 10 08 59 64.8 86.2 2802.8 315 00000 A 05 05 59 20 209.60 393607.38 976.14 4.56 158.93 400656.8 8951.4 0.8 0.4 -6.50 82.59 OBC 21.0 292.4 VBC 05 11 08 59 78.6 91.2 1269.9 316 00000 A 05 06 59 20 210.10 393513.67 976.37 4.40 159.40 399089.9 9007.2 0.8 0.4 6.77 88.49 LOS 6.6 292.2 VBC 05 12 08 59 87.5 254.1 281.7 317 00000 A 05 07 59 20 210.61 393418.54 976.62 4.24 159.88 397558.1 9063.1 0.8 0.4 20.13 94.51 LOS -7.7 293.5 NVD 05 13 08 59 73.8 271.0 1808.8 318 00000 A 05 08 59 20 211.11 393321.97 976.86 4.09 160.36 396155.0 9119.0 0.8 0.4 33.40 101.42 LOS -21.7 296.3 NVD 05 14 08 59 60.0 275.2 3339.9 319 00000 A 05 09 59 20 211.62 393223.99 977.11 3.93 160.84 394966.9 9174.9 0.8 0.4 46.32 110.55 LOS -35.4 301.4 NVD 05 15 08 59 46.3 278.9 4861.8 320 00000 A 05 10 59 20 212.12 393124.61 977.37 3.77 161.32 394066.3 9230.9 0.8 0.4 58.27 124.78 LOS -48.0 310.4 NVD 05 16 08 59 32.8 282.7 6368.3 321 00000 A 05 11 59 20 212.62 393023.81 977.63 3.61 161.80 393507.3 9286.9 0.8 0.4 67.43 150.60 LOS -58.5 327.0 NVD 05 17 08 59 19.5 286.9 7851.0 322 00000 A 05 12 59 20 213.13 392921.62 977.89 3.45 162.28 393321.0 9342.9 0.8 0.4 69.52 191.20 LOS -63.9 354.7 NVD 05 18 08 59 6.5 291.8 9298.1 323 00000 A 05 13 59 20 213.63 392818.05 978.15 3.29 162.76 393513.8 9399.0 0.8 0.4 62.83 224.44 LOS -61.2 25.5 NVD 05 19 08 59 -6.0 297.8 10691.0 324 00000 A 05 14 59 20 214.14 392713.09 978.42 3.13 163.24 394066.3 9455.0 0.8 0.4 51.73 242.68 LOS -52.2 45.8 NVD 05 20 08 59 -17.8 305.2 11999.9 325 00000 A 05 15 59 20 214.64 392606.75 978.69 2.97 163.72 394935.3 9511.1 0.8 0.4 39.08 253.46 LOS -40.1 56.9 NVD 05 21 08 59 -28.4 315.0 13175.1 326 00000 A 05 16 59 20 215.15 392499.05 978.97 2.80 164.20 396056.4 9567.3 0.8 0.4 25.85 261.01 LOS -26.8 62.9 NVD 05 22 08 59 -37.0 327.9 14134.9 327 00000 A 05 17 59 20 215.66 392390.00 979.25 2.64 164.68 397349.4 9623.4 0.8 0.4 12.41 267.13 LOS -12.9 66.1 NVD 05 23 08 59 -42.6 344.4 14759.7 328

Page 379: ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM …myreaders.info/00_Orbital__Mechanics__-__Model_____Simulation... · ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM-MSS)

www.m

yrea

ders

.inf

o

OM-MSS Page 379 SATELLITE PASS - GROUND TRACE [acronym - Line Of Sight (LOS), On Board Computerr (OBC), Visible Band Camera (VBC), Night Vision Devices (NVD) ] ORBIT, INPUT TIME, POSIION, SAT VELOCITY, GROUND TRACE, RANGE, DIST, PITCH/ROLL, EL/AZ, ACCESS EL/AZ, DATA SOLAR TIME EL/AZ, DIST Line 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 @ES 18 19 20 @SS 21 22 23 24 25 26 27 @ES 28 29 30 No. Node GMT Anomaly Height @ Vel Lat(SAT)Log Slant S-Sat Pitch Roll EL(SAT)AZ Control EL(SUN)AZ Acq. LMT(ES) EL(SUN)AZ S-Sun Nos D H M S deg km meter deg deg km km deg deg deg D H M S deg km 00000 A 05 18 59 20 216.16 392279.59 979.53 2.48 165.16 398723.2 9679.6 0.8 0.4 -1.05 272.76 LOS 1.3 67.4 NVD 06 00 08 59 -44.1 3.4 14924.6 329 00000 A 05 19 59 20 216.67 392167.83 979.82 2.32 165.64 400082.6 9735.9 0.8 0.4 -14.39 278.54 OBC 15.5 67.2 VBC 06 01 08 59 -41.0 21.7 14587.5 330 00000 A 05 20 59 20 217.18 392054.74 980.11 2.16 166.12 401334.2 9792.1 0.8 0.4 -27.48 285.17 OBC 29.6 65.1 VBC 06 02 08 59 -34.2 37.0 13830.0 331 00000 A 05 21 59 20 217.68 391940.33 980.40 1.99 166.60 402392.2 9848.4 0.8 0.4 -40.07 293.68 OBC 43.3 60.3 VBC 06 03 08 59 -24.8 48.7 12783.0 332 00000 A 05 22 59 20 218.19 391824.59 980.70 1.83 167.09 403183.7 9904.7 0.8 0.4 -51.66 306.01 OBC 56.0 50.2 VBC 06 04 08 59 -13.8 57.6 11553.7 333 00000 A 05 23 59 20 218.70 391707.55 981.00 1.67 167.57 403652.6 9961.1 0.8 0.4 -61.05 325.87 OBC 65.9 28.7 VBC 06 05 08 59 -1.7 64.4 10211.1 334 00000 A 06 00 59 20 219.21 391589.20 981.30 1.51 168.05 403763.3 10017.5 0.8 0.4 -65.57 356.59 OBC 68.6 351.8 VBC 06 06 08 59 11.0 69.9 8796.8 335 00000 A 06 01 59 20 219.72 391469.56 981.61 1.34 168.53 403502.1 10073.9 0.8 0.4 -62.70 29.22 OBC 62.0 320.9 VBC 06 07 08 59 24.1 74.5 7335.8 336 00000 A 06 02 59 20 220.23 391348.63 981.92 1.18 169.01 402878.0 10130.4 0.8 0.4 -54.17 51.58 OBC 50.5 305.4 VBC 06 08 08 59 37.5 78.6 5843.9 337 00000 A 06 03 59 20 220.73 391226.43 982.23 1.02 169.49 401922.7 10186.9 0.8 0.4 -42.97 65.34 OBC 37.2 298.0 VBC 06 09 08 59 51.1 82.3 4331.5 338 00000 A 06 04 59 20 221.24 391102.96 982.55 0.85 169.98 400688.1 10243.4 0.8 0.4 -30.60 74.64 OBC 23.2 294.4 VBC 06 10 08 59 64.8 85.9 2806.0 339 00000 A 06 05 59 20 221.75 390978.23 982.87 0.69 170.46 399244.3 10300.0 0.8 0.4 -17.66 81.76 OBC 8.9 292.8 VBC 06 11 08 59 78.6 90.6 1273.3 340 00000 A 06 06 59 20 222.26 390852.26 983.19 0.52 170.94 397674.7 10356.6 0.8 0.4 -4.45 87.91 LOS -5.4 292.8 NVD 06 12 08 59 87.5 256.2 274.0 341 00000 A 06 07 59 20 222.77 390725.04 983.52 0.36 171.42 396071.8 10413.2 0.8 0.4 8.86 93.85 LOS -19.7 294.3 NVD 06 13 08 59 73.8 271.3 1803.0 342 00000 A 06 08 59 20 223.28 390596.59 983.85 0.19 171.91 394531.0 10469.9 0.8 0.4 22.11 100.26 LOS -33.7 297.7 NVD 06 14 08 59 60.1 275.4 3333.7 343 00000 A 06 09 59 20 223.80 390466.92 984.18 0.03 172.39 393144.6 10526.6 0.8 0.4 35.10 108.06 LOS -47.1 304.5 NVD 06 15 08 59 46.4 279.0 4855.2 344 00000 A 06 10 09 59 223.89 390443.78 Eqa 984.24 0.00 172.48 392921.1 10536.6 0.8 0.4 37.36 88.00 LOS -49.4 306.3 NVD 06 15 19 38 44.0 279.7 5123.8 345 00000 D 06 10 59 20 224.31 390336.04 984.52 -0.14 172.08 391995.6 10501.9 0.8 0.4 47.43 118.82 LOS -58.4 317.1 NVD 06 16 08 59 32.9 282.8 6361.0 346 00000 D 06 11 59 20 224.82 390203.96 984.86 -0.30 171.60 391152.0 10459.7 0.8 0.4 58.16 135.75 LOS -66.2 340.9 NVD 06 17 08 59 19.5 287.0 7843.1 347 00000 D 06 12 59 20 225.33 390070.68 985.20 -0.47 171.11 390661.7 10417.3 0.8 0.4 65.00 163.65 LOS -67.0 14.9 NVD 06 18 08 59 6.5 291.9 9289.3 348 00000 D 06 13 59 20 225.84 389936.22 985.55 -0.63 170.63 390549.1 10375.0 0.8 0.4 64.53 198.73 LOS -60.1 41.0 NVD 06 19 08 59 -6.0 297.8 10681.4 349 00000 D 06 14 59 20 226.36 389800.59 985.90 -0.80 170.14 390813.1 10332.6 0.8 0.4 57.06 225.21 LOS -49.3 54.9 NVD 06 20 08 59 -17.7 305.3 11989.3 350 00000 D 06 15 59 20 226.87 389663.79 986.25 -0.96 169.65 391427.4 10290.2 0.8 0.4 46.05 241.15 LOS -37.0 61.9 NVD 06 21 08 59 -28.3 315.0 13163.6 351 00000 D 06 16 59 20 227.38 389525.85 986.60 -1.13 169.17 392342.3 10247.7 0.8 0.4 33.58 251.36 LOS -24.0 65.6 NVD 06 22 08 59 -36.9 327.9 14122.7 352 00000 D 06 17 59 20 227.90 389386.76 986.96 -1.29 168.68 393488.6 10205.2 0.8 0.4 20.49 258.79 LOS -10.8 67.1 NVD 06 23 08 59 -42.5 344.4 14747.4 353 00000 D 06 18 59 20 228.41 389246.54 987.32 -1.46 168.19 394782.4 10162.6 0.8 0.4 7.13 264.91 LOS 2.5 67.2 NVD 07 00 08 59 -44.0 3.3 14913.4 354 00000 D 06 19 59 20 228.92 389105.19 987.69 -1.62 167.71 396130.9 10120.1 0.8 0.4 -6.29 270.54 OBC 15.8 65.8 VBC 07 01 08 59 -41.0 21.6 14578.6 355 00000 D 06 20 59 20 229.44 388962.74 988.06 -1.79 167.22 397438.9 10077.4 0.8 0.4 -19.65 276.33 OBC 28.8 62.7 VBC 07 02 08 59 -34.2 36.9 13823.6 356 00000 D 06 21 59 20 229.95 388819.19 988.43 -1.95 166.73 398614.7 10034.8 0.8 0.4 -32.80 283.01 OBC 41.3 57.0 VBC 07 03 08 59 -24.8 48.6 12778.9 357 00000 D 06 22 59 20 230.47 388674.54 988.80 -2.12 166.24 399575.8 9992.1 0.8 0.4 -45.51 291.78 OBC 52.6 46.7 VBC 07 04 08 59 -13.8 57.4 11551.4 358 00000 D 06 23 59 20 230.99 388528.82 989.18 -2.28 165.75 400253.7 9949.4 0.8 0.4 -57.25 305.21 OBC 61.5 28.1 VBC 07 05 08 59 -1.7 64.3 10210.3 359 00000 D 07 00 59 20 231.50 388382.03 989.56 -2.45 165.26 400598.0 9906.7 0.8 0.4 -66.49 328.88 OBC 64.8 359.1 VBC 07 06 08 59 11.0 69.8 8797.1 360 00000 D 07 01 59 20 232.02 388234.19 989.94 -2.61 164.77 400579.1 9863.9 0.9 0.4 -69.54 6.95 OBC 60.8 330.9 VBC 07 07 08 59 24.1 74.4 7337.1 361 00000 D 07 02 59 20 232.54 388085.30 990.32 -2.78 164.28 400189.6 9821.1 0.9 0.4 -64.12 41.30 OBC 51.6 313.2 VBC 07 08 08 59 37.5 78.4 5846.0 362 00000 D 07 03 59 20 233.05 387935.38 990.71 -2.94 163.79 399445.0 9778.3 0.9 0.4 -53.87 61.07 OBC 40.1 303.3 VBC 07 09 08 59 51.1 82.1 4334.3 363 00000 D 07 04 59 20 233.57 387784.43 991.10 -3.11 163.30 398382.5 9735.4 0.9 0.4 -41.79 72.74 OBC 27.5 297.7 VBC 07 10 08 59 64.8 85.7 2809.3 364 00000 D 07 05 59 20 234.09 387632.48 991.50 -3.27 162.81 397059.3 9692.6 0.8 0.4 -28.97 80.81 OBC 14.4 294.5 VBC 07 11 08 59 78.5 90.1 1277.0 365 00000 D 07 06 59 20 234.61 387479.52 991.89 -3.44 162.31 395549.1 9649.7 0.8 0.4 -15.83 87.30 OBC 1.0 292.9 NVD 07 12 08 59 87.6 258.3 266.8 366 00000 D 07 07 59 20 235.13 387325.58 992.29 -3.60 161.82 393938.2 9606.8 0.8 0.4 -2.57 93.21 LOS -12.4 292.5 NVD 07 13 08 59 73.9 271.7 1797.2 367 00000 D 07 08 59 20 235.65 387170.67 992.69 -3.77 161.33 392319.9 9563.9 0.8 0.4 10.66 99.26 LOS -25.8 293.5 NVD 07 14 08 59 60.1 275.6 3327.6 368 00000 D 07 09 59 20 236.17 387014.79 993.10 -3.93 160.83 390788.9 9520.9 0.8 0.4 23.68 106.15 LOS -39.0 296.3 NVD 07 15 08 59 46.4 279.2 4848.5 369 00000 D 07 10 59 20 236.69 386857.96 993.50 -4.09 160.34 389435.2 9478.0 0.8 0.4 36.22 114.89 LOS -51.7 302.4 NVD 07 16 08 59 32.9 282.9 6353.8 370

Page 380: ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM …myreaders.info/00_Orbital__Mechanics__-__Model_____Simulation... · ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM-MSS)

www.m

yrea

ders

.inf

o

OM-MSS Page 380 SATELLITE PASS - GROUND TRACE [acronym - Line Of Sight (LOS), On Board Computerr (OBC), Visible Band Camera (VBC), Night Vision Devices (NVD) ] ORBIT, INPUT TIME, POSIION, SAT VELOCITY, GROUND TRACE, RANGE, DIST, PITCH/ROLL, EL/AZ, ACCESS EL/AZ, DATA SOLAR TIME EL/AZ, DIST Line 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 @ES 18 19 20 @SS 21 22 23 24 25 26 27 @ES 28 29 30 No. Node GMT Anomaly Height @ Vel Lat(SAT)Log Slant S-Sat Pitch Roll EL(SAT)AZ Control EL(SUN)AZ Acq. LMT(ES) EL(SUN)AZ S-Sun Nos D H M S deg km meter deg deg km km deg deg deg D H M S deg km 00000 D 07 11 59 20 237.21 386700.19 993.91 -4.26 159.84 388338.0 9435.0 0.8 0.4 47.72 127.21 LOS -63.2 315.5 NVD 07 17 08 59 19.6 287.1 7835.2 371 00000 D 07 12 59 20 237.73 386541.49 994.33 -4.42 159.34 387559.8 9392.0 0.8 0.4 56.96 146.09 LOS -70.9 344.2 NVD 07 18 08 59 6.6 292.0 9280.8 372 00000 D 07 13 59 20 238.25 386381.88 994.74 -4.59 158.85 387142.2 9349.0 0.8 0.4 61.56 173.68 LOS -69.8 24.6 NVD 07 19 08 59 -5.9 297.9 10672.0 373 00000 D 07 14 59 20 238.77 386221.37 995.16 -4.75 158.35 387102.7 9306.0 0.8 0.4 59.32 203.42 LOS -61.0 49.3 NVD 07 20 08 59 -17.6 305.4 11979.1 374 00000 D 07 15 59 20 239.30 386059.96 995.58 -4.91 157.85 387433.6 9263.0 0.8 0.4 51.43 225.44 LOS -49.2 60.3 NVD 07 21 08 59 -28.2 315.1 13152.5 375 00000 D 07 16 59 20 239.82 385897.68 996.00 -5.07 157.35 388102.1 9220.0 0.8 0.4 40.54 239.67 LOS -36.4 65.3 NVD 07 22 08 59 -36.8 327.9 14111.0 376 00000 D 07 17 59 20 240.34 385734.54 996.42 -5.24 156.85 389053.5 9176.9 0.8 0.4 28.26 249.34 LOS -23.2 67.4 NVD 07 23 08 59 -42.4 344.4 14735.7 377 00000 D 07 18 59 20 240.87 385570.55 996.85 -5.40 156.35 390214.4 9133.9 0.8 0.4 15.33 256.60 LOS -9.9 67.8 NVD 08 00 08 59 -43.9 3.2 14902.9 378 00000 D 07 19 59 20 241.39 385405.72 997.28 -5.56 155.85 391498.6 9090.9 0.8 0.4 2.10 262.62 LOS 3.3 66.7 NVD 08 01 08 59 -40.9 21.5 14570.4 379 00000 D 07 20 59 20 241.92 385240.06 997.71 -5.72 155.35 392812.9 9047.8 0.8 0.4 -11.26 268.17 OBC 16.4 64.2 VBC 08 02 08 59 -34.1 36.8 13817.9 380 00000 D 07 21 59 20 242.44 385073.59 998.14 -5.89 154.85 394063.0 9004.8 0.8 0.4 -24.60 273.86 OBC 29.0 59.8 VBC 08 03 08 59 -24.8 48.5 12775.4 381 00000 D 07 22 59 20 242.97 384906.33 998.58 -6.05 154.35 395160.0 8961.8 0.8 0.4 -37.81 280.43 OBC 41.0 52.5 VBC 08 04 08 59 -13.8 57.3 11549.7 382 00000 D 07 23 59 20 243.49 384738.28 999.02 -6.21 153.84 396025.1 8918.8 0.8 0.4 -50.65 289.27 OBC 51.4 40.4 VBC 08 05 08 59 -1.7 64.2 10210.0 383 00000 D 08 00 59 20 244.02 384569.46 999.46 -6.37 153.34 396594.9 8875.7 0.8 0.4 -62.57 303.70 OBC 58.7 20.8 VBC 08 06 08 59 11.0 69.7 8797.9 384 00000 D 08 01 59 20 244.55 384399.88 999.90 -6.53 152.83 396824.6 8832.7 0.8 0.4 -71.67 332.65 OBC 60.5 354.5 VBC 08 07 08 59 24.1 74.3 7338.8 385 00000 D 08 02 59 20 245.07 384229.55 1000.35 -6.69 152.33 396690.2 8789.7 0.8 0.4 -72.72 20.27 OBC 55.9 330.5 VBC 08 08 08 59 37.5 78.3 5848.4 386 00000 D 08 03 59 20 245.60 384058.50 1000.79 -6.85 151.82 396190.5 8746.7 0.8 0.4 -64.70 53.57 OBC 46.9 314.5 VBC 08 09 08 59 51.0 81.9 4337.4 387 00000 D 08 04 59 20 246.13 383886.73 1001.24 -7.01 151.31 395346.3 8703.8 0.8 0.4 -53.13 69.93 OBC 35.7 304.7 VBC 08 10 08 59 64.7 85.5 2813.0 388 00000 D 08 05 59 20 246.66 383714.26 1001.69 -7.16 150.80 394199.7 8660.8 0.8 0.4 -40.47 79.57 OBC 23.4 298.7 VBC 08 11 08 59 78.5 89.6 1280.9 389 00000 D 08 06 59 20 247.19 383541.10 1002.15 -7.32 150.29 392811.9 8617.9 0.8 0.4 -27.40 86.57 OBC 10.4 294.9 VBC 08 12 08 59 87.7 260.3 259.9 390 00000 D 08 07 59 20 247.72 383367.26 1002.60 -7.48 149.78 391259.3 8574.9 0.8 0.4 -14.19 92.53 OBC -2.8 292.7 NVD 08 13 08 59 73.9 272.0 1791.5 391 00000 D 08 08 59 20 248.25 383192.76 1003.06 -7.64 149.27 389629.5 8532.0 0.8 0.4 -1.00 98.29 LOS -16.1 291.7 NVD 08 14 08 59 60.2 275.8 3321.5 392 00000 D 08 09 59 20 248.78 383017.62 1003.52 -7.79 148.76 388015.9 8489.1 0.8 0.4 12.04 104.50 LOS -29.5 291.9 NVD 08 15 08 59 46.5 279.3 4841.9 393 00000 D 08 10 59 20 249.31 382841.85 1003.98 -7.95 148.25 386511.4 8446.3 0.8 0.4 24.71 111.87 LOS -42.8 293.9 NVD 08 16 08 59 33.0 283.0 6346.6 394 00000 D 08 11 59 20 249.84 382665.46 1004.44 -8.11 147.74 385202.9 8403.5 0.8 0.4 36.66 121.47 LOS -55.8 299.2 NVD 08 17 08 59 19.7 287.2 7827.4 395 00000 D 08 12 59 20 250.37 382488.47 1004.90 -8.26 147.22 384165.2 8360.7 0.8 0.4 47.19 135.03 LOS -67.6 312.7 NVD 08 18 08 59 6.7 292.0 9272.4 396 00000 D 08 13 59 20 250.91 382310.89 1005.37 -8.42 146.71 383455.3 8317.9 0.8 0.4 54.90 154.81 LOS -75.2 348.3 NVD 08 19 08 59 -5.8 298.0 10662.9 397 00000 D 08 14 59 20 251.44 382132.74 1005.84 -8.57 146.19 383108.8 8275.2 0.8 0.4 57.66 180.75 LOS -72.1 35.8 NVD 08 20 08 59 -17.5 305.4 11969.3 398 00000 D 08 15 59 20 251.97 381954.04 1006.31 -8.73 145.67 383137.1 8232.5 0.8 0.4 54.29 206.24 LOS -61.6 57.1 NVD 08 21 08 59 -28.1 315.1 13141.9 399 00000 D 08 16 59 20 252.51 381774.79 1006.78 -8.88 145.16 383526.5 8189.8 0.8 0.4 46.19 225.25 LOS -49.0 65.1 NVD 08 22 08 59 -36.7 327.9 14099.8 400 00000 D 08 17 59 20 253.04 381595.01 1007.25 -9.03 144.64 384239.1 8147.2 0.8 0.4 35.46 238.21 LOS -35.9 68.2 NVD 08 23 08 59 -42.3 344.3 14724.7 401 00000 D 08 18 59 20 253.58 381414.72 1007.72 -9.18 144.12 385216.2 8104.6 0.8 0.4 23.40 247.40 LOS -22.7 68.9 NVD 09 00 08 59 -43.8 3.2 14893.2 402 00000 D 08 19 59 20 254.11 381233.93 1008.20 -9.34 143.60 386381.8 8062.1 0.8 0.4 10.66 254.43 LOS -9.4 68.1 NVD 09 01 08 59 -40.8 21.4 14562.9 403 00000 D 08 20 59 20 254.65 381052.66 1008.68 -9.49 143.08 387648.8 8019.6 0.8 0.4 -2.44 260.31 LOS 3.7 66.0 NVD 09 02 08 59 -34.1 36.7 13812.9 404 00000 D 08 21 59 20 255.19 380870.93 1009.16 -9.64 142.55 388924.4 7977.1 0.8 0.4 -15.69 265.70 OBC 16.5 62.5 VBC 09 03 08 59 -24.7 48.4 12772.5 405 00000 D 08 22 59 20 255.72 380688.74 1009.64 -9.79 142.03 390116.3 7934.7 0.8 0.4 -28.99 271.16 OBC 28.8 57.0 VBC 09 04 08 59 -13.7 57.2 11548.5 406 00000 D 08 23 59 20 256.26 380506.12 1010.12 -9.93 141.51 391138.6 7892.4 0.8 0.4 -42.22 277.45 OBC 40.1 48.4 VBC 09 05 08 59 -1.7 64.1 10210.0 407 00000 D 09 00 59 20 256.80 380323.08 1010.60 -10.08 140.98 391917.0 7850.1 0.8 0.4 -55.18 286.05 OBC 49.5 35.2 VBC 09 06 08 59 11.0 69.6 8799.0 408 00000 D 09 01 59 20 257.34 380139.64 1011.08 -10.23 140.45 392392.6 7807.9 0.8 0.4 -67.34 301.15 OBC 55.6 15.6 VBC 09 07 08 59 24.1 74.2 7340.8 409 00000 D 09 02 59 20 257.88 379955.81 1011.57 -10.38 139.93 392525.8 7765.8 0.8 0.4 -76.36 337.41 OBC 56.3 351.7 VBC 09 08 08 59 37.4 78.2 5851.1 410 00000 D 09 03 59 20 258.42 379771.60 1012.06 -10.52 139.40 392298.0 7723.7 0.8 0.4 -74.81 35.93 OBC 51.5 330.5 VBC 09 09 08 59 51.0 81.8 4340.7 411

Page 381: ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM …myreaders.info/00_Orbital__Mechanics__-__Model_____Simulation... · ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM-MSS)

www.m

yrea

ders

.inf

o

OM-MSS Page 381 SATELLITE PASS - GROUND TRACE [acronym - Line Of Sight (LOS), On Board Computerr (OBC), Visible Band Camera (VBC), Night Vision Devices (NVD) ] ORBIT, INPUT TIME, POSIION, SAT VELOCITY, GROUND TRACE, RANGE, DIST, PITCH/ROLL, EL/AZ, ACCESS EL/AZ, DATA SOLAR TIME EL/AZ, DIST Line 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 @ES 18 19 20 @SS 21 22 23 24 25 26 27 @ES 28 29 30 No. Node GMT Anomaly Height @ Vel Lat(SAT)Log Slant S-Sat Pitch Roll EL(SAT)AZ Control EL(SUN)AZ Acq. LMT(ES) EL(SUN)AZ S-Sun Nos D H M S deg km meter deg deg km km deg deg deg D H M S deg km 00000 D 09 04 59 20 258.96 379587.04 1012.54 -10.67 138.87 391712.7 7681.7 0.8 0.4 -64.58 64.82 OBC 42.8 315.6 VBC 09 10 08 59 64.7 85.3 2816.8 412 00000 D 09 05 59 20 259.50 379402.14 1013.03 -10.81 138.34 390795.3 7639.7 0.8 0.4 -52.17 77.68 OBC 31.9 305.8 VBC 09 11 08 59 78.5 89.2 1285.1 413 00000 D 09 06 59 20 260.04 379216.92 1013.52 -10.96 137.81 389591.5 7597.8 0.8 0.4 -39.19 85.57 OBC 19.8 299.4 VBC 09 12 08 59 87.7 262.2 253.4 414 00000 D 09 07 59 20 260.58 379031.39 1014.01 -11.10 137.28 388165.1 7556.1 0.8 0.4 -26.04 91.69 OBC 7.1 295.1 VBC 09 13 08 59 74.0 272.3 1785.8 415 00000 D 09 08 59 20 261.12 378845.56 1014.50 -11.24 136.74 386594.2 7514.3 0.8 0.4 -12.88 97.23 OBC -6.0 292.3 NVD 09 14 08 59 60.2 275.9 3315.3 416 00000 D 09 09 59 20 261.66 378659.47 1015.00 -11.38 136.21 384966.6 7472.7 0.8 0.4 0.16 102.90 LOS -19.2 290.5 NVD 09 15 08 59 46.6 279.4 4835.3 417 00000 D 09 10 59 20 262.21 378473.11 1015.49 -11.52 135.67 383374.4 7431.2 0.7 0.4 12.92 109.27 LOS -32.6 290.0 NVD 09 16 08 59 33.0 283.1 6339.5 418 00000 D 09 11 59 20 262.75 378286.51 1015.99 -11.66 135.14 381908.6 7389.7 0.7 0.4 25.17 117.06 LOS -45.9 291.0 NVD 09 17 08 59 19.8 287.3 7819.8 419 00000 D 09 12 59 20 263.30 378099.69 1016.48 -11.80 134.60 380652.4 7348.4 0.7 0.4 36.48 127.33 LOS -59.0 295.2 NVD 09 18 08 59 6.8 292.1 9264.2 420 00000 D 09 13 59 20 263.84 377912.66 1016.98 -11.94 134.06 379676.2 7307.1 0.7 0.4 46.03 141.65 LOS -71.3 308.1 NVD 09 19 08 59 -5.7 298.0 10654.1 421 00000 D 09 14 59 20 264.39 377725.43 1017.47 -12.08 133.52 379032.2 7265.9 0.7 0.4 52.40 161.47 LOS -79.0 352.9 NVD 09 20 08 59 -17.4 305.5 11959.7 422 00000 D 09 15 59 20 264.93 377538.03 1017.97 -12.22 132.98 378750.6 7224.9 0.7 0.4 53.82 185.40 LOS -73.6 47.2 NVD 09 21 08 59 -28.0 315.2 13131.7 423 00000 D 09 16 59 20 265.48 377350.47 1018.47 -12.35 132.44 378837.7 7183.9 0.7 0.4 49.78 207.79 LOS -61.8 64.1 NVD 09 22 08 59 -36.6 328.0 14089.3 424 00000 D 09 17 59 20 266.03 377162.77 1018.97 -12.48 131.90 379275.1 7143.1 0.7 0.4 41.63 224.76 LOS -48.9 69.3 NVD 09 23 08 59 -42.2 344.3 14714.4 425 00000 D 09 18 59 20 266.57 376974.95 1019.47 -12.62 131.35 380021.4 7102.4 0.7 0.4 31.09 236.79 LOS -35.7 70.6 NVD 10 00 08 59 -43.7 3.1 14884.3 426 00000 D 09 19 59 20 267.12 376787.02 1019.97 -12.75 130.81 381015.2 7061.8 0.7 0.4 19.25 245.57 LOS -22.4 70.1 NVD 10 01 08 59 -40.8 21.3 14556.1 427 00000 D 09 20 59 20 267.67 376599.00 1020.47 -12.88 130.26 382179.4 7021.3 0.7 0.4 6.70 252.39 LOS -9.3 68.4 NVD 10 02 08 59 -34.0 36.6 13808.5 428 00000 D 09 21 59 20 268.22 376410.90 1020.97 -13.01 129.71 383426.8 6981.0 0.7 0.4 -6.23 258.09 OBC 3.6 65.4 NVD 10 03 08 59 -24.7 48.3 12770.1 429 00000 D 09 22 59 20 268.77 376222.75 1021.47 -13.14 129.16 384665.9 6940.7 0.7 0.4 -19.36 263.26 OBC 16.2 61.0 VBC 10 04 08 59 -13.7 57.1 11547.7 430 00000 D 09 23 59 20 269.32 376034.56 1021.98 -13.27 128.61 385806.9 6900.7 0.7 0.4 -32.58 268.42 OBC 28.0 54.6 VBC 10 05 08 59 -1.7 64.0 10210.5 431 00000 D 10 00 59 20 269.87 375846.35 1022.48 -13.40 128.06 386767.2 6860.7 0.7 0.4 -45.79 274.26 OBC 38.7 45.1 VBC 10 06 08 59 10.9 69.5 8800.5 432 00000 D 10 01 59 20 270.42 375658.13 1022.98 -13.52 127.51 387476.1 6820.9 0.7 0.4 -58.83 282.24 OBC 47.4 31.3 VBC 10 07 08 59 24.0 74.1 7343.0 433 00000 D 10 02 59 20 270.97 375469.93 1023.48 -13.65 126.96 387879.2 6781.3 0.7 0.4 -71.27 297.28 OBC 52.5 12.2 VBC 10 08 08 59 37.4 78.1 5854.1 434 00000 D 10 03 59 20 271.53 375281.76 1023.99 -13.77 126.40 387941.3 6741.8 0.7 0.4 -80.29 343.54 OBC 52.7 350.3 VBC 10 09 08 59 51.0 81.7 4344.3 435 00000 D 10 04 59 20 272.08 375093.63 1024.49 -13.90 125.85 387647.7 6702.4 0.7 0.4 -75.79 51.62 OBC 47.8 330.8 VBC 10 10 08 59 64.7 85.1 2820.9 436 00000 D 10 05 59 20 272.63 374905.58 1024.99 -14.02 125.29 387005.7 6663.3 0.7 0.4 -64.07 74.11 OBC 39.4 316.6 VBC 10 11 08 59 78.4 88.8 1289.6 437 00000 D 10 06 59 20 273.19 374717.60 1025.49 -14.14 124.74 386043.9 6624.3 0.7 0.4 -51.23 83.99 OBC 28.8 306.8 VBC 10 12 08 59 87.8 264.0 247.2 438 00000 D 10 07 59 20 273.74 374529.73 1026.00 -14.26 124.18 384810.3 6585.4 0.6 0.4 -38.13 90.51 OBC 17.0 300.0 VBC 10 13 08 59 74.0 272.6 1780.0 439 00000 D 10 08 59 20 274.30 374341.98 1026.50 -14.38 123.62 383370.3 6546.8 0.6 0.4 -25.01 95.94 OBC 4.5 295.2 NVD 10 14 08 59 60.3 276.1 3309.2 440 00000 D 10 09 59 20 274.85 374154.36 1027.00 -14.49 123.06 381802.2 6508.3 0.6 0.4 -11.97 101.17 OBC -8.3 291.7 NVD 10 15 08 59 46.6 279.5 4828.8 441 00000 D 10 10 59 20 275.41 373966.90 1027.51 -14.61 122.49 380193.3 6470.0 0.6 0.4 0.87 106.76 LOS -21.5 289.4 NVD 10 16 08 59 33.1 283.2 6332.5 442 00000 D 10 11 59 20 275.96 373779.61 1028.01 -14.72 121.93 378634.3 6432.0 0.6 0.4 13.34 113.26 LOS -34.7 288.1 NVD 10 17 08 59 19.8 287.3 7812.3 443 00000 D 10 12 59 20 276.52 373592.50 1028.51 -14.84 121.37 377213.5 6394.1 0.6 0.4 25.17 121.35 LOS -48.1 288.1 NVD 10 18 08 59 6.8 292.2 9256.1 444 00000 D 10 13 59 20 277.08 373405.61 1029.01 -14.95 120.80 376010.9 6356.4 0.6 0.4 35.88 132.06 LOS -61.3 290.8 NVD 10 19 08 59 -5.6 298.1 10645.5 445 00000 D 10 14 59 20 277.64 373218.95 1029.51 -15.06 120.23 375093.2 6318.9 0.6 0.4 44.59 146.70 LOS -73.9 302.0 NVD 10 20 08 59 -17.4 305.5 11950.6 446 00000 D 10 15 59 20 278.20 373032.52 1030.01 -15.17 119.67 374508.3 6281.7 0.6 0.4 49.93 166.08 LOS -82.1 357.5 NVD 10 21 08 59 -27.9 315.2 13122.0 447 00000 D 10 16 59 20 278.76 372846.36 1030.52 -15.28 119.10 374282.5 6244.6 0.6 0.4 50.49 188.25 LOS -74.6 57.5 NVD 10 22 08 59 -36.5 328.0 14079.3 448 00000 D 10 17 59 20 279.32 372660.48 1031.02 -15.39 118.53 374418.3 6207.8 0.6 0.4 46.09 208.52 LOS -62.1 69.6 NVD 10 23 08 59 -42.1 344.3 14704.8 449 00000 D 10 18 59 20 279.88 372474.90 1031.51 -15.49 117.96 374894.2 6171.3 0.6 0.4 37.99 224.13 LOS -48.9 72.5 NVD 11 00 08 59 -43.6 3.0 14876.0 450 00000 D 10 19 59 20 280.44 372289.63 1032.01 -15.60 117.38 375666.7 6135.0 0.6 0.4 27.64 235.51 LOS -35.7 72.5 NVD 11 01 08 59 -40.7 21.2 14550.1 451 00000 D 10 20 59 20 281.00 372104.70 1032.51 -15.70 116.81 376672.8 6098.9 0.6 0.4 16.01 243.97 LOS -22.5 71.1 NVD 11 02 08 59 -34.0 36.5 13804.7 452

Page 382: ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM …myreaders.info/00_Orbital__Mechanics__-__Model_____Simulation... · ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM-MSS)

www.m

yrea

ders

.inf

o

OM-MSS Page 382 SATELLITE PASS - GROUND TRACE [acronym - Line Of Sight (LOS), On Board Computerr (OBC), Visible Band Camera (VBC), Night Vision Devices (NVD) ] ORBIT, INPUT TIME, POSIION, SAT VELOCITY, GROUND TRACE, RANGE, DIST, PITCH/ROLL, EL/AZ, ACCESS EL/AZ, DATA SOLAR TIME EL/AZ, DIST Line 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 @ES 18 19 20 @SS 21 22 23 24 25 26 27 @ES 28 29 30 No. Node GMT Anomaly Height @ Vel Lat(SAT)Log Slant S-Sat Pitch Roll EL(SAT)AZ Control EL(SUN)AZ Acq. LMT(ES) EL(SUN)AZ S-Sun Nos D H M S deg km meter deg deg km km deg deg deg D H M S deg km 00000 D 10 21 59 20 281.56 371920.12 1033.01 -15.80 116.24 377835.4 6063.1 0.6 0.4 3.67 250.60 LOS -9.5 68.6 NVD 11 03 08 59 -24.7 48.2 12768.3 453 00000 D 10 22 59 20 282.13 371735.91 1033.51 -15.90 115.66 379068.0 6027.5 0.6 0.4 -9.10 256.13 OBC 3.2 64.9 NVD 11 04 08 59 -13.7 57.0 11547.4 454 00000 D 10 23 59 20 282.69 371552.08 1034.00 -16.00 115.08 380280.7 5992.2 0.5 0.4 -22.10 261.08 OBC 15.4 59.9 VBC 11 05 08 59 -1.7 63.9 10211.4 455 00000 D 11 00 59 20 283.25 371368.67 1034.50 -16.10 114.51 381386.0 5957.2 0.5 0.4 -35.22 265.92 OBC 26.9 52.8 VBC 11 06 08 59 10.9 69.4 8802.4 456 00000 D 11 01 59 20 283.82 371185.68 1034.99 -16.19 113.93 382304.2 5922.5 0.5 0.4 -48.38 271.24 OBC 37.2 42.9 VBC 11 07 08 59 24.0 74.0 7345.7 457 00000 D 11 02 59 20 284.38 371003.13 1035.49 -16.29 113.35 382968.0 5888.1 0.5 0.4 -61.46 278.39 OBC 45.3 28.9 VBC 11 08 08 59 37.4 78.0 5857.4 458 00000 D 11 03 59 20 284.95 370821.04 1035.98 -16.38 112.76 383326.1 5853.9 0.5 0.4 -74.14 292.44 OBC 49.9 10.4 VBC 11 09 08 59 50.9 81.5 4348.0 459 00000 D 11 04 59 20 285.51 370639.43 1036.47 -16.47 112.18 383346.3 5820.1 0.5 0.4 -83.25 351.45 OBC 49.8 349.8 VBC 11 10 08 59 64.6 84.9 2825.1 460 00000 D 11 05 59 20 286.08 370458.32 1036.96 -16.56 111.60 383017.0 5786.6 0.5 0.4 -75.98 64.40 OBC 45.1 331.4 VBC 11 11 08 59 78.4 88.4 1294.2 461 00000 D 11 06 59 20 286.65 370277.73 1037.45 -16.65 111.01 382347.9 5753.4 0.5 0.4 -63.48 80.95 OBC 37.0 317.5 VBC 11 12 08 59 87.8 265.8 241.2 462 00000 D 11 07 59 20 287.22 370097.67 1037.94 -16.73 110.43 381369.3 5720.5 0.5 0.4 -50.47 88.65 OBC 26.7 307.5 VBC 11 13 08 59 74.1 272.8 1774.3 463 00000 D 11 08 59 20 287.78 369918.16 1038.42 -16.82 109.84 380130.6 5687.9 0.5 0.4 -37.38 94.19 OBC 15.2 300.4 VBC 11 14 08 59 60.3 276.2 3303.1 464 00000 D 11 09 59 20 288.35 369739.22 1038.91 -16.90 109.25 378697.4 5655.7 0.5 0.4 -24.33 99.12 OBC 2.9 295.2 NVD 11 15 08 59 46.7 279.6 4822.3 465 00000 D 11 10 59 20 288.92 369560.87 1039.39 -16.98 108.66 377148.0 5623.9 0.5 0.4 -11.42 104.12 OBC -9.8 291.3 NVD 11 16 08 59 33.2 283.2 6325.6 466 00000 D 11 11 59 20 289.49 369383.13 1039.87 -17.06 108.07 375568.6 5592.4 0.5 0.4 1.23 109.64 LOS -22.8 288.4 NVD 11 17 08 59 19.9 287.4 7805.0 467 00000 D 11 12 59 20 290.06 369206.01 1040.36 -17.14 107.48 374048.4 5561.3 0.5 0.4 13.45 116.20 LOS -35.9 286.5 NVD 11 18 08 59 6.9 292.2 9248.3 468 00000 D 11 13 59 20 290.63 369029.54 1040.83 -17.22 106.89 372673.3 5530.5 0.4 0.4 24.94 124.47 LOS -49.2 285.6 NVD 11 19 08 59 -5.6 298.1 10637.2 469 00000 D 11 14 59 20 291.20 368853.72 1041.31 -17.29 106.30 371520.9 5500.2 0.4 0.4 35.18 135.38 LOS -62.4 287.0 NVD 11 20 08 59 -17.3 305.5 11941.8 470 00000 D 11 15 59 20 291.78 368678.59 1041.79 -17.37 105.70 370655.0 5470.2 0.4 0.4 43.29 150.07 LOS -75.3 295.4 NVD 11 21 08 59 -27.8 315.2 13112.8 471 00000 D 11 16 59 20 292.35 368504.15 1042.26 -17.44 105.11 370120.7 5440.7 0.4 0.4 47.97 168.93 LOS -84.3 0.2 NVD 11 22 08 59 -36.4 328.0 14069.9 472 00000 D 11 17 59 20 292.92 368330.43 1042.74 -17.51 104.51 369941.6 5411.5 0.4 0.4 48.04 189.85 LOS -75.4 65.1 NVD 11 23 08 59 -42.0 344.2 14695.9 473 00000 D 11 18 59 20 293.50 368157.44 1043.21 -17.58 103.91 370118.1 5382.8 0.4 0.4 43.48 208.80 LOS -62.5 73.5 NVD 12 00 08 59 -43.6 2.9 14868.6 474 00000 D 11 19 59 20 294.07 367985.20 1043.68 -17.65 103.32 370626.8 5354.5 0.4 0.4 35.46 223.58 LOS -49.3 74.8 NVD 12 01 08 59 -40.7 21.2 14544.7 475 00000 D 11 20 59 20 294.64 367813.73 1044.14 -17.71 102.72 371423.1 5326.6 0.4 0.4 25.28 234.54 LOS -36.1 73.9 NVD 12 02 08 59 -34.0 36.4 13801.6 476 00000 D 11 21 59 20 295.22 367643.05 1044.61 -17.77 102.12 372443.7 5299.2 0.4 0.4 13.83 242.80 LOS -23.0 71.8 NVD 12 03 08 59 -24.7 48.1 12767.0 477 00000 D 11 22 59 20 295.80 367473.17 1045.07 -17.84 101.52 373611.8 5272.3 0.4 0.4 1.65 249.30 LOS -10.1 68.8 NVD 12 04 08 59 -13.7 57.0 11547.6 478 00000 D 11 23 59 20 296.37 367304.12 1045.53 -17.89 100.91 374841.7 5245.8 0.4 0.4 -10.98 254.71 OBC 2.5 64.7 NVD 12 05 08 59 -1.7 63.8 10212.7 479 00000 D 12 00 59 20 296.95 367135.91 1045.99 -17.95 100.31 376045.2 5219.8 0.4 0.4 -23.86 259.50 OBC 14.6 59.3 VBC 12 06 08 59 10.9 69.3 8804.5 480 00000 D 12 01 59 20 297.53 366968.56 1046.45 -18.01 99.71 377136.6 5194.2 0.3 0.4 -36.89 264.09 OBC 25.8 51.9 VBC 12 07 08 59 24.0 73.9 7348.5 481 00000 D 12 02 59 20 298.10 366802.08 1046.91 -18.06 99.10 378038.2 5169.2 0.3 0.4 -49.98 269.00 OBC 35.8 41.8 VBC 12 08 08 59 37.3 77.9 5860.8 482 00000 D 12 03 59 20 298.68 366636.50 1047.36 -18.12 98.49 378684.8 5144.7 0.3 0.4 -63.06 275.39 OBC 43.7 27.9 VBC 12 09 08 59 50.9 81.4 4352.0 483 00000 D 12 04 59 20 299.26 366471.83 1047.81 -18.17 97.89 379027.2 5120.6 0.3 0.4 -75.87 288.09 OBC 48.1 10.0 VBC 12 10 08 59 64.6 84.7 2829.6 484 00000 D 12 05 59 20 299.84 366308.09 1048.26 -18.21 97.28 379035.2 5097.1 0.3 0.4 -85.04 0.68 OBC 48.0 350.1 VBC 12 11 08 59 78.3 88.0 1299.0 485 00000 D 12 06 59 20 300.42 366145.29 1048.70 -18.26 96.67 378698.7 5074.2 0.3 0.4 -75.80 72.44 OBC 43.5 332.2 VBC 12 12 08 59 87.9 267.5 235.4 486 00000 D 12 07 59 20 301.00 365983.47 1049.15 -18.31 96.06 378028.7 5051.8 0.3 0.4 -63.00 85.07 OBC 35.7 318.4 VBC 12 13 08 59 74.1 273.0 1768.6 487 00000 D 12 08 59 20 301.58 365822.62 1049.59 -18.35 95.45 377056.2 5029.9 0.3 0.4 -49.95 91.47 OBC 25.7 308.3 VBC 12 14 08 59 60.4 276.3 3297.1 488 00000 D 12 09 59 20 302.16 365662.77 1050.03 -18.39 94.84 375831.1 5008.6 0.3 0.4 -36.89 96.40 OBC 14.4 300.9 VBC 12 15 08 59 46.7 279.7 4815.8 489 00000 D 12 10 59 20 302.75 365503.94 1050.46 -18.43 94.23 374419.0 4987.9 0.3 0.4 -23.92 101.03 OBC 2.3 295.4 NVD 12 16 08 59 33.2 283.3 6318.8 490 00000 D 12 11 59 20 303.33 365346.15 1050.90 -18.47 93.62 372897.5 4967.7 0.3 0.4 -11.11 105.86 OBC -10.2 291.2 NVD 12 17 08 59 19.9 287.4 7797.8 491 00000 D 12 12 59 20 303.91 365189.40 1051.33 -18.50 93.00 371352.2 4948.1 0.2 0.4 1.42 111.33 LOS -23.1 288.0 NVD 12 18 08 59 7.0 292.3 9240.7 492 00000 D 12 13 59 20 304.49 365033.73 1051.75 -18.54 92.39 369870.8 4929.1 0.2 0.4 13.49 117.91 LOS -36.2 285.6 NVD 12 19 08 59 -5.5 298.1 10629.2 493

Page 383: ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM …myreaders.info/00_Orbital__Mechanics__-__Model_____Simulation... · ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM-MSS)

www.m

yrea

ders

.inf

o

OM-MSS Page 383 SATELLITE PASS - GROUND TRACE [acronym - Line Of Sight (LOS), On Board Computerr (OBC), Visible Band Camera (VBC), Night Vision Devices (NVD) ] ORBIT, INPUT TIME, POSIION, SAT VELOCITY, GROUND TRACE, RANGE, DIST, PITCH/ROLL, EL/AZ, ACCESS EL/AZ, DATA SOLAR TIME EL/AZ, DIST Line 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 @ES 18 19 20 @SS 21 22 23 24 25 26 27 @ES 28 29 30 No. Node GMT Anomaly Height @ Vel Lat(SAT)Log Slant S-Sat Pitch Roll EL(SAT)AZ Control EL(SUN)AZ Acq. LMT(ES) EL(SUN)AZ S-Sun Nos D H M S deg km meter deg deg km km deg deg deg D H M S deg km 00000 D 12 14 59 20 305.08 364879.13 1052.18 -18.57 91.77 368538.1 4910.8 0.2 0.4 24.78 126.24 LOS -49.4 284.2 NVD 12 20 08 59 -17.2 305.5 11933.3 494 00000 D 12 15 59 20 305.66 364725.65 1052.60 -18.60 91.16 367430.0 4893.0 0.2 0.4 34.76 137.23 LOS -62.6 284.7 NVD 12 21 08 59 -27.7 315.2 13104.1 495 00000 D 12 16 59 20 306.25 364573.28 1053.02 -18.62 90.54 366608.7 4875.9 0.2 0.4 42.55 151.89 LOS -75.6 291.0 NVD 12 22 08 59 -36.3 327.9 14061.2 496 00000 D 12 17 59 20 306.83 364422.04 1053.44 -18.65 89.92 366117.7 4859.4 0.2 0.4 46.90 170.43 LOS -85.5 357.5 NVD 12 23 08 59 -41.9 344.2 14687.7 497 00000 D 12 18 59 20 307.42 364271.96 1053.85 -18.67 89.31 365979.6 4843.6 0.2 0.4 46.74 190.70 LOS -76.0 68.7 NVD 13 00 08 59 -43.5 2.9 14861.8 498 00000 D 12 19 59 20 308.00 364123.05 1054.26 -18.69 88.69 366193.3 4828.4 0.2 0.4 42.12 209.01 LOS -63.0 75.4 NVD 13 01 08 59 -40.6 21.1 14540.1 499 00000 D 12 20 59 20 308.59 363975.33 1054.67 -18.71 88.07 366735.0 4813.8 0.2 0.4 34.15 223.39 LOS -49.8 75.9 NVD 13 02 08 59 -34.0 36.3 13799.1 500 00000 D 12 21 59 20 309.18 363828.80 1055.07 -18.73 87.45 367559.5 4800.0 0.2 0.4 24.06 234.15 LOS -36.6 74.6 NVD 13 03 08 59 -24.7 48.0 12766.3 501 00000 D 12 22 59 20 309.77 363683.50 1055.47 -18.75 86.83 368603.8 4786.8 0.2 0.4 12.72 242.31 LOS -23.6 72.2 NVD 13 04 08 59 -13.7 56.9 11548.3 502 00000 D 12 23 59 20 310.35 363539.43 1055.87 -18.76 86.21 369791.2 4774.2 0.1 0.4 0.62 248.76 LOS -10.8 69.0 NVD 13 05 08 59 -1.8 63.8 10214.5 503 00000 D 13 00 59 20 310.94 363396.61 1056.26 -18.77 85.59 371036.8 4762.4 0.1 0.4 -11.92 254.12 OBC 1.8 64.7 NVD 13 06 08 59 10.9 69.3 8807.1 504 00000 D 13 01 59 20 311.53 363255.06 1056.65 -18.78 84.96 372253.0 4751.3 0.1 0.4 -24.73 258.86 OBC 13.8 59.2 VBC 13 07 08 59 24.0 73.8 7351.7 505 00000 D 13 02 59 20 312.12 363114.79 1057.04 -18.79 84.34 373355.4 4740.9 0.1 0.4 -37.70 263.37 OBC 25.0 51.8 VBC 13 08 08 59 37.3 77.8 5864.6 506 00000 D 13 03 59 20 312.71 362975.82 1057.42 -18.79 83.72 374267.0 4731.1 0.1 0.4 -50.75 268.15 OBC 35.0 41.8 VBC 13 09 08 59 50.9 81.3 4356.2 507 00000 D 13 04 59 20 313.30 362838.17 1057.80 -18.80 83.10 374923.9 4722.1 0.1 0.4 -63.80 274.29 OBC 42.8 28.1 VBC 13 10 08 59 64.5 84.6 2834.2 508 00000 D 13 05 59 20 313.89 362701.85 1058.18 -18.80 82.47 375277.6 4713.9 0.1 0.4 -76.64 286.59 OBC 47.3 10.5 VBC 13 11 08 59 78.3 87.7 1304.0 509 00000 D 13 06 59 20 314.48 362566.87 1058.55 -18.80 81.85 375298.8 4706.3 0.1 0.4 -85.57 7.93 OBC 47.5 350.9 VBC 13 12 08 59 87.9 269.1 229.8 510 00000 D 13 07 59 20 315.07 362433.25 1058.92 -18.79 81.22 374977.9 4699.5 0.1 0.4 -75.50 75.20 OBC 43.2 333.1 VBC 13 13 08 59 74.2 273.3 1762.8 511 00000 D 13 08 59 20 315.67 362301.01 1059.29 -18.79 80.60 374326.4 4693.4 0.1 0.4 -62.62 86.37 OBC 35.6 319.1 VBC 13 14 08 59 60.4 276.4 3291.0 512 00000 D 13 09 59 20 316.26 362170.16 1059.65 -18.78 79.97 373375.6 4688.1 0.0 0.4 -49.57 92.30 OBC 25.8 308.8 VBC 13 15 08 59 46.8 279.7 4809.5 513 00000 D 13 10 59 20 316.85 362040.71 1060.01 -18.77 79.34 372175.4 4683.5 0.0 0.4 -36.52 97.02 OBC 14.6 301.3 VBC 13 16 08 59 33.3 283.4 6312.2 514 00000 D 13 11 59 20 317.45 361912.69 1060.37 -18.76 78.72 370791.2 4679.7 0.0 0.4 -23.57 101.53 OBC 2.6 295.6 NVD 13 17 08 59 20.0 287.5 7790.8 515 00000 D 13 12 59 20 318.04 361786.11 1060.72 -18.75 78.09 369300.7 4676.6 0.0 0.4 -10.77 106.30 OBC -9.8 291.3 NVD 13 18 08 59 7.1 292.3 9233.4 516 00000 D 13 13 59 20 318.63 361660.97 1061.06 -18.73 77.46 367788.8 4674.3 0.0 0.4 1.73 111.74 LOS -22.7 288.0 NVD 13 19 08 59 -5.4 298.2 10621.5 517 00000 D 13 14 59 20 319.23 361537.30 1061.41 -18.71 76.84 366343.2 4672.7 0.0 0.4 13.77 118.30 LOS -35.7 285.6 NVD 13 20 08 59 -17.1 305.6 11925.3 518 00000 D 13 15 59 20 319.82 361415.11 1061.75 -18.69 76.21 365047.9 4671.9 0.0 0.4 25.03 126.65 LOS -48.8 284.2 NVD 13 21 08 59 -27.6 315.2 13095.8 519 00000 D 13 16 59 20 320.42 361294.41 1062.08 -18.67 75.58 363978.7 4671.9 0.0 0.4 34.98 137.68 LOS -62.0 284.6 NVD 13 22 08 59 -36.2 327.9 14053.0 520 00000 D 13 17 59 20 321.01 361175.22 1062.41 -18.65 74.95 363197.1 4672.6 0.0 0.4 42.71 152.41 LOS -75.1 290.5 NVD 13 23 08 59 -41.9 344.2 14680.3 521 00000 D 13 18 59 20 321.61 361057.55 1062.74 -18.62 74.32 362746.5 4674.1 0.1 0.4 46.98 171.01 LOS -85.3 350.2 NVD 14 00 08 59 -43.5 2.8 14855.9 522 00000 D 13 19 59 20 322.21 360941.42 1063.06 -18.59 73.70 362648.7 4676.3 0.1 0.4 46.74 191.30 LOS -76.6 67.4 NVD 14 01 08 59 -40.6 21.0 14536.3 523 00000 D 13 20 59 20 322.80 360826.83 1063.38 -18.56 73.07 362902.7 4679.4 0.1 0.4 42.04 209.56 LOS -63.6 74.9 NVD 14 02 08 59 -33.9 36.2 13797.3 524 00000 D 13 21 59 20 323.40 360713.81 1063.69 -18.53 72.44 363484.2 4683.2 0.1 0.4 34.03 223.88 LOS -50.4 75.6 NVD 14 03 08 59 -24.7 47.9 12766.2 525 00000 D 13 22 59 20 324.00 360602.36 1064.00 -18.49 71.81 364348.0 4687.8 0.1 0.4 23.91 234.60 LOS -37.2 74.4 NVD 14 04 08 59 -13.8 56.8 11549.4 526 00000 D 13 23 59 20 324.60 360492.50 1064.31 -18.46 71.18 365430.6 4693.1 0.1 0.4 12.55 242.76 LOS -24.1 72.2 NVD 14 05 08 59 -1.8 63.7 10216.6 527 00000 D 14 00 59 20 325.19 360384.24 1064.61 -18.42 70.55 366655.5 4699.2 0.1 0.4 0.44 249.22 LOS -11.3 69.0 NVD 14 06 08 59 10.9 69.2 8809.9 528 00000 D 14 01 59 20 325.79 360277.60 1064.91 -18.38 69.92 367937.6 4706.1 0.1 0.4 -12.11 254.62 OBC 1.3 64.9 NVD 14 07 08 59 23.9 73.8 7355.2 529 00000 D 14 02 59 20 326.39 360172.58 1065.20 -18.33 69.29 369189.4 4713.7 0.1 0.4 -24.92 259.44 OBC 13.4 59.6 VBC 14 08 08 59 37.3 77.7 5868.5 530 00000 D 14 03 59 20 326.99 360069.20 1065.49 -18.29 68.66 370326.2 4722.1 0.1 0.4 -37.89 264.08 OBC 24.7 52.4 VBC 14 09 08 59 50.8 81.2 4360.6 531 00000 D 14 04 59 20 327.59 359967.47 1065.77 -18.24 68.03 371271.3 4731.2 0.2 0.4 -50.93 269.10 OBC 34.9 42.6 VBC 14 10 08 59 64.5 84.4 2838.9 532 00000 D 14 05 59 20 328.19 359867.41 1066.05 -18.19 67.40 371960.5 4741.1 0.2 0.4 -63.95 275.78 OBC 42.9 29.1 VBC 14 11 08 59 78.2 87.5 1309.1 533 00000 D 14 06 59 20 328.79 359769.02 1066.32 -18.14 66.77 372345.7 4751.8 0.2 0.4 -76.67 289.68 OBC 47.8 11.6 VBC 14 12 08 59 88.0 270.5 224.3 534

Page 384: ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM …myreaders.info/00_Orbital__Mechanics__-__Model_____Simulation... · ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM-MSS)

www.m

yrea

ders

.inf

o

OM-MSS Page 384 SATELLITE PASS - GROUND TRACE [acronym - Line Of Sight (LOS), On Board Computerr (OBC), Visible Band Camera (VBC), Night Vision Devices (NVD) ] ORBIT, INPUT TIME, POSIION, SAT VELOCITY, GROUND TRACE, RANGE, DIST, PITCH/ROLL, EL/AZ, ACCESS EL/AZ, DATA SOLAR TIME EL/AZ, DIST Line 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 @ES 18 19 20 @SS 21 22 23 24 25 26 27 @ES 28 29 30 No. Node GMT Anomaly Height @ Vel Lat(SAT)Log Slant S-Sat Pitch Roll EL(SAT)AZ Control EL(SUN)AZ Acq. LMT(ES) EL(SUN)AZ S-Sun Nos D H M S deg km meter deg deg km km deg deg deg D H M S deg km 00000 D 14 07 59 20 329.39 359672.32 1066.59 -18.09 66.14 372397.4 4763.1 0.2 0.4 -84.84 10.22 OBC 48.2 351.8 VBC 14 13 08 59 74.2 273.4 1757.1 535 00000 D 14 08 59 20 329.99 359577.32 1066.86 -18.03 65.51 372106.3 4775.3 0.2 0.4 -74.95 72.90 OBC 44.2 333.6 VBC 14 14 08 59 60.5 276.5 3285.0 536 00000 D 14 09 59 20 330.59 359484.02 1067.12 -17.98 64.88 371483.9 4788.1 0.2 0.4 -62.13 84.87 OBC 36.6 319.4 VBC 14 15 08 59 46.9 279.8 4803.2 537 00000 D 14 10 59 20 331.20 359392.45 1067.37 -17.92 64.26 370561.7 4801.7 0.2 0.4 -49.07 91.15 OBC 26.8 309.0 VBC 14 16 08 59 33.4 283.4 6305.6 538 00000 D 14 11 59 20 331.80 359302.61 1067.63 -17.85 63.63 369389.9 4816.0 0.2 0.4 -36.00 96.04 OBC 15.7 301.4 VBC 14 17 08 59 20.1 287.5 7783.9 539 00000 D 14 12 59 20 332.40 359214.51 1067.87 -17.79 63.00 368034.3 4831.1 0.2 0.4 -23.00 100.63 OBC 3.7 295.9 NVD 14 18 08 59 7.1 292.3 9226.2 540 00000 D 14 13 59 20 333.00 359128.17 1068.11 -17.72 62.37 366573.0 4846.8 0.2 0.4 -10.14 105.45 OBC -8.8 291.7 NVD 14 19 08 59 -5.4 298.2 10614.0 541 00000 D 14 14 59 20 333.61 359043.59 1068.35 -17.66 61.74 365091.6 4863.3 0.3 0.4 2.45 110.90 LOS -21.6 288.7 NVD 14 20 08 59 -17.1 305.6 11917.7 542 00000 D 14 15 59 20 334.21 358960.78 1068.58 -17.59 61.11 363677.9 4880.5 0.3 0.4 14.60 117.46 LOS -34.7 286.6 NVD 14 21 08 59 -27.6 315.2 13088.1 543 00000 D 14 16 59 20 334.81 358879.76 1068.81 -17.52 60.48 362416.8 4898.3 0.3 0.4 25.99 125.83 LOS -47.8 285.6 NVD 14 22 08 59 -36.2 327.9 14045.4 544 00000 D 14 17 59 20 335.42 358800.53 1069.03 -17.44 59.85 361384.4 4916.9 0.3 0.4 36.10 136.95 LOS -61.0 286.7 NVD 14 23 08 59 -41.8 344.1 14673.5 545 00000 D 14 18 59 20 336.02 358723.10 1069.24 -17.37 59.23 360642.6 4936.1 0.3 0.4 43.99 151.96 LOS -73.9 294.2 NVD 15 00 08 59 -43.4 2.7 14850.7 546 00000 D 14 19 59 20 336.62 358647.49 1069.46 -17.29 58.60 360235.0 4956.0 0.3 0.4 48.36 171.14 LOS -83.8 345.8 NVD 15 01 08 59 -40.6 20.9 14533.1 547 00000 D 14 20 59 20 337.23 358573.69 1069.66 -17.21 57.97 360183.6 4976.5 0.3 0.4 48.05 192.13 LOS -76.6 60.9 NVD 15 02 08 59 -33.9 36.1 13796.1 548 00000 D 14 21 59 20 337.83 358501.73 1069.86 -17.13 57.35 360486.9 4997.7 0.3 0.4 43.17 210.86 LOS -63.9 71.9 NVD 15 03 08 59 -24.7 47.8 12766.6 549 00000 D 14 22 59 20 338.44 358431.61 1070.06 -17.04 56.72 361120.6 5019.6 0.3 0.4 34.93 225.38 LOS -50.7 73.8 NVD 15 04 08 59 -13.8 56.7 11551.0 550 00000 D 14 23 59 20 339.04 358363.34 1070.25 -16.96 56.09 362038.5 5042.1 0.3 0.4 24.61 236.15 LOS -37.5 73.3 NVD 15 05 08 59 -1.8 63.6 10219.1 551 00000 D 15 00 59 20 339.65 358296.92 1070.44 -16.87 55.47 363176.7 5065.2 0.3 0.4 13.09 244.32 LOS -24.4 71.6 NVD 15 06 08 59 10.8 69.1 8813.1 552 00000 D 15 01 59 20 340.25 358232.37 1070.62 -16.78 54.84 364457.6 5089.0 0.4 0.4 0.86 250.83 LOS -11.4 68.9 NVD 15 07 08 59 23.9 73.7 7358.9 553 00000 D 15 02 59 20 340.86 358169.69 1070.79 -16.69 54.22 365795.2 5113.4 0.4 0.4 -11.79 256.34 OBC 1.3 65.2 NVD 15 08 08 59 37.2 77.6 5872.7 554 00000 D 15 03 59 20 341.46 358108.89 1070.96 -16.59 53.59 367101.1 5138.4 0.4 0.4 -24.68 261.35 OBC 13.6 60.2 VBC 15 09 08 59 50.8 81.1 4365.2 555 00000 D 15 04 59 20 342.07 358049.97 1071.13 -16.50 52.97 368289.8 5163.9 0.4 0.4 -37.70 266.34 OBC 25.2 53.4 VBC 15 10 08 59 64.5 84.3 2843.8 556 00000 D 15 05 59 20 342.68 357992.95 1071.29 -16.40 52.34 369283.9 5190.1 0.4 0.4 -50.75 272.01 OBC 35.7 44.0 VBC 15 11 08 59 78.2 87.2 1314.3 557 00000 D 15 06 59 20 343.28 357937.83 1071.44 -16.30 51.72 370018.6 5216.8 0.4 0.4 -63.70 280.02 OBC 44.2 30.8 VBC 15 12 08 59 88.0 271.8 218.9 558 00000 D 15 07 59 20 343.89 357884.63 1071.59 -16.20 51.10 370445.4 5244.2 0.4 0.4 -76.06 297.47 OBC 49.5 13.0 VBC 15 13 08 59 74.3 273.6 1751.4 559 00000 D 15 08 59 20 344.50 357833.33 1071.74 -16.10 50.47 370534.8 5272.0 0.4 0.4 -82.86 10.19 OBC 50.3 352.5 VBC 15 14 08 59 60.5 276.6 3279.1 560 00000 D 15 09 59 20 345.10 357783.96 1071.87 -16.00 49.85 370277.6 5300.5 0.4 0.4 -73.78 66.74 OBC 46.3 333.6 VBC 15 15 08 59 46.9 279.9 4797.0 561 00000 D 15 10 59 20 345.71 357736.51 1072.01 -15.89 49.23 369685.6 5329.4 0.4 0.4 -61.18 80.97 OBC 38.6 319.0 VBC 15 16 08 59 33.4 283.4 6299.1 562 00000 D 15 11 59 20 346.32 357691.00 1072.13 -15.78 48.61 368791.1 5358.9 0.5 0.4 -48.14 88.24 OBC 28.7 308.6 VBC 15 17 08 59 20.1 287.5 7777.3 563 00000 D 15 12 59 20 346.93 357647.42 1072.26 -15.67 47.99 367645.2 5389.0 0.5 0.4 -35.02 93.63 OBC 17.4 301.2 VBC 15 18 08 59 7.2 292.3 9219.3 564 00000 D 15 13 59 20 347.53 357605.79 1072.37 -15.56 47.37 366314.8 5419.5 0.5 0.4 -21.92 98.50 OBC 5.3 296.0 VBC 15 19 08 59 -5.3 298.2 10606.9 565 00000 D 15 14 59 20 348.14 357566.11 1072.48 -15.45 46.75 364879.0 5450.6 0.5 0.4 -8.94 103.45 OBC -7.4 292.2 NVD 15 20 08 59 -17.0 305.6 11910.4 566 00000 D 15 15 59 20 348.75 357528.38 1072.59 -15.33 46.13 363424.9 5482.1 0.5 0.4 3.82 108.97 LOS -20.3 289.7 NVD 15 21 08 59 -27.5 315.2 13080.8 567 00000 D 15 16 59 20 349.36 357492.61 1072.69 -15.21 45.51 362041.6 5514.2 0.5 0.4 16.18 115.56 LOS -33.4 288.2 NVD 15 22 08 59 -36.1 327.9 14038.5 568 00000 D 15 17 59 20 349.97 357458.81 1072.79 -15.09 44.89 360815.1 5546.7 0.5 0.4 27.83 123.97 LOS -46.5 288.2 NVD 15 23 08 59 -41.8 344.1 14667.4 569 00000 D 15 18 59 20 350.57 357426.97 1072.87 -14.97 44.27 359822.5 5579.7 0.5 0.4 38.25 135.28 LOS -59.6 290.7 NVD 16 00 08 59 -43.4 2.7 14846.2 570 00000 D 15 19 59 20 351.18 357397.10 1072.96 -14.85 43.66 359126.2 5613.1 0.5 0.4 46.46 150.87 LOS -72.2 300.9 NVD 16 01 08 59 -40.5 20.8 14530.7 571 00000 D 15 20 59 20 351.79 357369.21 1073.04 -14.73 43.04 358770.2 5647.0 0.5 0.4 50.99 171.25 LOS -81.1 346.4 NVD 16 02 08 59 -33.9 36.0 13795.6 572 00000 D 15 21 59 20 352.40 357343.30 1073.11 -14.60 42.43 358776.2 5681.4 0.5 0.4 50.53 193.69 LOS -75.6 50.9 NVD 16 03 08 59 -24.7 47.8 12767.5 573 00000 D 15 22 59 20 353.01 357319.37 1073.18 -14.48 41.81 359142.2 5716.1 0.5 0.4 45.23 213.34 LOS -63.5 66.5 NVD 16 04 08 59 -13.8 56.7 11553.0 574 00000 D 15 23 59 20 353.62 357297.42 1073.24 -14.35 41.20 359842.6 5751.4 0.6 0.4 36.54 228.14 LOS -50.4 70.6 NVD 16 05 08 59 -1.8 63.6 10221.9 575

Page 385: ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM …myreaders.info/00_Orbital__Mechanics__-__Model_____Simulation... · ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM-MSS)

www.m

yrea

ders

.inf

o

OM-MSS Page 385 SATELLITE PASS - GROUND TRACE [acronym - Line Of Sight (LOS), On Board Computerr (OBC), Visible Band Camera (VBC), Night Vision Devices (NVD) ] ORBIT, INPUT TIME, POSIION, SAT VELOCITY, GROUND TRACE, RANGE, DIST, PITCH/ROLL, EL/AZ, ACCESS EL/AZ, DATA SOLAR TIME EL/AZ, DIST Line 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 @ES 18 19 20 @SS 21 22 23 24 25 26 27 @ES 28 29 30 No. Node GMT Anomaly Height @ Vel Lat(SAT)Log Slant S-Sat Pitch Roll EL(SAT)AZ Control EL(SUN)AZ Acq. LMT(ES) EL(SUN)AZ S-Sun Nos D H M S deg km meter deg deg km km deg deg deg D H M S deg km 00000 D 16 00 59 20 354.22 357277.46 1073.29 -14.22 40.58 360830.1 5787.0 0.6 0.4 25.84 238.94 LOS -37.2 71.3 NVD 16 06 08 59 10.8 69.1 8816.6 576 00000 D 16 01 59 20 354.83 357259.49 1073.34 -14.09 39.97 362039.0 5823.0 0.6 0.4 14.02 247.08 LOS -24.0 70.4 NVD 16 07 08 59 23.9 73.7 7362.9 577 00000 D 16 02 59 20 355.44 357243.51 1073.39 -13.95 39.36 363390.1 5859.5 0.6 0.4 1.57 253.62 LOS -10.8 68.4 NVD 16 08 08 59 37.2 77.6 5877.1 578 00000 D 16 03 59 20 356.05 357229.52 1073.43 -13.82 38.75 364795.9 5896.3 0.6 0.4 -11.24 259.26 OBC 2.1 65.3 NVD 16 09 08 59 50.7 81.0 4369.9 579 00000 D 16 04 59 20 356.66 357217.54 1073.46 -13.68 38.14 366166.3 5933.5 0.6 0.4 -24.25 264.55 OBC 14.6 61.0 VBC 16 10 08 59 64.4 84.2 2848.9 580 00000 D 16 05 59 20 357.27 357207.54 1073.49 -13.54 37.53 367414.6 5971.1 0.6 0.4 -37.32 270.07 OBC 26.5 54.8 VBC 16 11 08 59 78.1 87.0 1319.6 581 00000 D 16 06 59 20 357.88 357199.55 1073.51 -13.40 36.92 368462.5 6009.0 0.6 0.4 -50.35 276.71 OBC 37.4 45.9 VBC 16 12 08 59 88.1 273.0 213.6 582 00000 D 16 07 59 20 358.49 357193.56 1073.53 -13.26 36.31 369244.5 6047.4 0.6 0.4 -63.10 286.70 OBC 46.5 32.9 VBC 16 13 08 59 74.3 273.7 1745.7 583 00000 D 16 08 59 20 359.10 357189.56 1073.54 -13.12 35.70 369712.1 6086.0 0.6 0.4 -74.70 308.49 OBC 52.3 14.6 VBC 16 14 08 59 60.6 276.7 3273.1 584 00000 D 16 09 59 20 359.71 357187.57 1073.55 -12.98 35.09 369836.0 6125.0 0.6 0.4 -79.73 10.70 OBC 53.4 352.7 VBC 16 15 08 59 47.0 279.9 4790.9 585 00001 D 16 10 28 23 360.00 357187.33 Pri 1073.55 -12.91 34.80 369769.1 6144.0 0.6 0.4 -76.83 233.49 OBC 52.0 342.4 VBC 16 15 38 02 40.4 281.6 5520.4 586 00000 D 16 10 59 20 0.31 357187.58 1073.55 -12.83 34.48 369607.6 6164.4 0.6 0.4 -71.58 59.04 OBC 49.2 332.5 VBC 16 16 08 59 33.5 283.5 6292.8 587 00001 D 16 11 59 20 0.92 357189.59 1073.54 -12.69 33.88 369040.0 6204.1 0.6 0.4 -59.40 75.54 OBC 41.3 317.6 VBC 16 17 08 59 20.2 287.6 7770.8 588 00001 D 16 12 59 20 1.53 357193.60 1073.53 -12.54 33.27 368166.8 6244.1 0.7 0.4 -46.48 84.09 OBC 31.0 307.4 VBC 16 18 08 59 7.2 292.4 9212.7 589 00001 D 16 13 59 20 2.14 357199.61 1073.51 -12.39 32.67 367040.7 6284.4 0.7 0.4 -33.33 90.18 OBC 19.4 300.5 VBC 16 19 08 59 -5.2 298.2 10600.2 590 00001 D 16 14 59 20 2.75 357207.62 1073.49 -12.24 32.06 365730.6 6325.0 0.7 0.4 -20.14 95.43 OBC 7.0 295.8 VBC 16 20 08 59 -16.9 305.6 11903.6 591 00001 D 16 15 59 20 3.36 357217.63 1073.46 -12.09 31.46 364317.4 6365.9 0.7 0.4 -7.01 100.60 OBC -5.8 292.7 NVD 16 21 08 59 -27.4 315.2 13074.1 592 00001 D 16 16 59 20 3.97 357229.63 1073.43 -11.93 30.86 362890.1 6407.1 0.7 0.4 5.96 106.21 LOS -18.8 290.9 NVD 16 22 08 59 -36.1 327.9 14032.1 593 00001 D 16 17 59 20 4.58 357243.63 1073.39 -11.78 30.26 361539.4 6448.6 0.7 0.4 18.58 112.84 LOS -31.9 290.3 NVD 16 23 08 59 -41.7 344.0 14662.1 594 00001 D 16 18 59 20 5.19 357259.63 1073.34 -11.62 29.66 360352.7 6490.4 0.7 0.4 30.57 121.32 LOS -45.1 291.5 NVD 17 00 08 59 -43.3 2.6 14842.5 595 00001 D 16 19 59 20 5.79 357277.62 1073.29 -11.47 29.05 359407.8 6532.4 0.7 0.4 41.40 132.91 LOS -57.9 296.0 NVD 17 01 08 59 -40.5 20.7 14529.0 596 00001 D 16 20 59 20 6.40 357297.60 1073.24 -11.31 28.46 358767.5 6574.7 0.7 0.4 50.01 149.42 LOS -69.9 309.1 NVD 17 02 08 59 -33.9 36.0 13795.6 597 00001 D 16 21 59 20 7.01 357319.56 1073.17 -11.15 27.86 358475.3 6617.3 0.7 0.4 54.70 171.78 LOS -77.5 349.3 NVD 17 03 08 59 -24.7 47.7 12769.0 598 00001 D 16 22 59 20 7.62 357343.51 1073.11 -10.99 27.26 358552.0 6660.1 0.7 0.4 53.87 196.50 LOS -73.2 40.9 NVD 17 04 08 59 -13.8 56.6 11555.5 599 00001 D 16 23 59 20 8.23 357369.44 1073.03 -10.83 26.66 358994.1 6703.1 0.7 0.4 47.86 217.32 LOS -62.0 60.0 NVD 17 05 08 59 -1.9 63.5 10225.2 600 00001 D 17 00 59 20 8.84 357397.35 1072.96 -10.66 26.06 359774.1 6746.4 0.7 0.4 38.47 232.31 LOS -49.2 66.4 NVD 17 06 08 59 10.8 69.0 8820.4 601 00001 D 17 01 59 20 9.45 357427.24 1072.87 -10.50 25.47 360842.5 6790.0 0.7 0.4 27.24 242.95 LOS -36.1 68.6 NVD 17 07 08 59 23.8 73.6 7367.2 602 00001 D 17 02 59 20 10.05 357459.09 1072.78 -10.33 24.87 362131.3 6833.7 0.7 0.4 15.03 250.95 LOS -22.8 68.8 NVD 17 08 08 59 37.2 77.5 5881.7 603 00001 D 17 03 59 20 10.66 357492.92 1072.69 -10.17 24.28 363558.9 6877.7 0.7 0.4 2.30 257.45 LOS -9.6 67.8 NVD 17 09 08 59 50.7 81.0 4374.8 604 00001 D 17 04 59 20 11.27 357528.71 1072.59 -10.00 23.68 365035.9 6921.9 0.8 0.4 -10.70 263.21 OBC 3.5 65.5 NVD 17 10 08 59 64.4 84.1 2854.0 605 00001 D 17 05 59 20 11.88 357566.45 1072.48 -9.83 23.09 366470.6 6966.3 0.8 0.4 -23.81 268.84 OBC 16.3 61.9 VBC 17 11 08 59 78.1 86.9 1325.0 606 00001 D 17 06 59 20 12.49 357606.15 1072.37 -9.66 22.50 367775.0 7010.9 0.8 0.4 -36.89 275.00 OBC 28.6 56.5 VBC 17 12 08 59 88.1 274.1 208.2 607 00001 D 17 07 59 20 13.09 357647.80 1072.25 -9.49 21.91 368870.1 7055.7 0.8 0.4 -49.78 282.85 OBC 40.0 48.2 VBC 17 13 08 59 74.4 273.8 1740.0 608 00001 D 17 08 59 20 13.70 357691.40 1072.13 -9.32 21.32 369690.7 7100.6 0.8 0.4 -62.09 295.13 OBC 49.7 35.4 VBC 17 14 08 59 60.6 276.7 3267.3 609 00001 D 17 09 59 20 14.31 357736.93 1072.00 -9.15 20.73 370188.7 7145.8 0.8 0.4 -72.47 320.43 OBC 56.1 16.0 VBC 17 15 08 59 47.0 279.9 4784.9 610 00001 D 17 10 59 20 14.92 357784.40 1071.87 -8.98 20.14 370335.6 7191.1 0.8 0.4 -75.67 12.07 OBC 57.3 351.9 VBC 17 16 08 59 33.5 283.5 6286.7 611 00001 D 17 11 59 20 15.52 357833.79 1071.73 -8.80 19.55 370124.7 7236.7 0.8 0.4 -68.24 52.08 OBC 52.8 330.2 VBC 17 17 08 59 20.2 287.6 7764.5 612 00001 D 17 12 59 20 16.13 357885.11 1071.59 -8.63 18.96 369570.8 7282.4 0.8 0.4 -56.64 69.72 OBC 44.1 315.0 VBC 17 18 08 59 7.3 292.4 9206.3 613 00001 D 17 13 59 20 16.74 357938.34 1071.44 -8.45 18.37 368709.9 7328.2 0.8 0.4 -43.93 79.39 OBC 33.3 305.3 VBC 17 19 08 59 -5.2 298.2 10593.7 614 00001 D 17 14 59 20 17.34 357993.48 1071.28 -8.28 17.79 367597.0 7374.2 0.8 0.4 -30.83 86.16 OBC 21.3 299.2 VBC 17 20 08 59 -16.9 305.6 11897.1 615 00001 D 17 15 59 20 17.95 358050.52 1071.12 -8.10 17.20 366303.3 7420.4 0.8 0.4 -17.58 91.82 OBC 8.7 295.3 VBC 17 21 08 59 -27.4 315.2 13067.8 616 00001 D 17 16 59 20 18.55 358109.45 1070.96 -7.92 16.62 364912.2 7466.7 0.8 0.4 -4.32 97.20 LOS -4.2 293.1 NVD 17 22 08 59 -36.0 327.8 14026.5 617

Page 386: ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM …myreaders.info/00_Orbital__Mechanics__-__Model_____Simulation... · ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM-MSS)

www.m

yrea

ders

.inf

o

OM-MSS Page 386 SATELLITE PASS - GROUND TRACE [acronym - Line Of Sight (LOS), On Board Computerr (OBC), Visible Band Camera (VBC), Night Vision Devices (NVD) ] ORBIT, INPUT TIME, POSIION, SAT VELOCITY, GROUND TRACE, RANGE, DIST, PITCH/ROLL, EL/AZ, ACCESS EL/AZ, DATA SOLAR TIME EL/AZ, DIST Line 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 @ES 18 19 20 @SS 21 22 23 24 25 26 27 @ES 28 29 30 No. Node GMT Anomaly Height @ Vel Lat(SAT)Log Slant S-Sat Pitch Roll EL(SAT)AZ Control EL(SUN)AZ Acq. LMT(ES) EL(SUN)AZ S-Sun Nos D H M S deg km meter deg deg km km deg deg deg D H M S deg km 00001 D 17 17 59 20 19.16 358170.28 1070.79 -7.75 16.03 363514.5 7513.2 0.8 0.4 8.83 102.90 LOS -17.4 292.2 NVD 17 23 08 59 -41.7 344.0 14657.5 618 00001 D 17 18 59 20 19.77 358232.98 1070.61 -7.57 15.45 362202.5 7559.8 0.8 0.4 21.73 109.56 LOS -30.5 292.7 NVD 18 00 08 59 -43.3 2.5 14839.6 619 00001 D 17 19 59 20 20.37 358297.56 1070.43 -7.39 14.86 361064.3 7606.5 0.8 0.4 34.08 118.08 LOS -43.5 295.4 NVD 18 01 08 59 -40.5 20.7 14528.0 620 00001 D 17 20 59 20 20.98 358364.00 1070.24 -7.21 14.28 360178.0 7653.3 0.8 0.4 45.36 130.01 LOS -56.0 301.9 NVD 18 02 08 59 -33.9 35.9 13796.4 621 00001 D 17 21 59 20 21.58 358432.30 1070.05 -7.02 13.70 359605.8 7700.3 0.8 0.4 54.43 147.80 LOS -67.1 317.4 NVD 18 03 08 59 -24.7 47.6 12771.0 622 00001 D 17 22 59 20 22.19 358502.45 1069.86 -6.84 13.12 359389.8 7747.4 0.8 0.4 59.19 173.15 LOS -73.3 352.6 NVD 18 04 08 59 -13.8 56.6 11558.5 623 00001 D 17 23 59 20 22.79 358574.43 1069.66 -6.66 12.54 359549.0 7794.7 0.8 0.4 57.68 201.06 LOS -69.6 33.6 NVD 18 05 08 59 -1.9 63.5 10228.8 624 00001 D 18 00 59 20 23.40 358648.25 1069.45 -6.48 11.96 360077.2 7842.0 0.8 0.4 50.60 223.00 LOS -59.4 53.6 NVD 18 06 08 59 10.7 69.0 8824.5 625 00001 D 18 01 59 20 24.00 358723.89 1069.24 -6.29 11.38 360944.2 7889.4 0.8 0.4 40.32 237.79 LOS -47.1 62.1 NVD 18 07 08 59 23.8 73.6 7371.7 626 00001 D 18 02 59 20 24.60 358801.34 1069.02 -6.11 10.80 362097.5 7937.0 0.8 0.4 28.47 248.00 LOS -34.1 65.8 NVD 18 08 08 59 37.1 77.5 5886.5 627 00001 D 18 03 59 20 25.21 358880.60 1068.80 -5.92 10.22 363466.4 7984.6 0.9 0.4 15.84 255.69 LOS -20.9 67.2 NVD 18 09 08 59 50.7 80.9 4379.9 628 00001 D 18 04 59 20 25.81 358961.65 1068.57 -5.74 9.65 364967.0 8032.4 0.9 0.4 2.85 262.07 LOS -7.6 67.1 NVD 18 10 08 59 64.3 84.0 2859.3 629 00001 D 18 05 59 20 26.41 359044.49 1068.34 -5.55 9.07 366507.9 8080.2 0.9 0.4 -10.29 267.92 OBC 5.7 65.8 VBC 18 11 08 59 78.0 86.7 1330.4 630 00001 D 18 06 59 20 27.02 359129.09 1068.10 -5.37 8.50 367996.0 8128.1 0.9 0.4 -23.44 273.90 OBC 18.7 63.1 VBC 18 12 08 59 88.2 275.0 202.9 631 00001 D 18 07 59 20 27.62 359215.47 1067.86 -5.18 7.92 369343.0 8176.1 0.9 0.4 -36.43 280.79 OBC 31.4 58.5 VBC 18 13 08 59 74.4 273.9 1734.3 632 00001 D 18 08 59 20 28.22 359303.60 1067.62 -4.99 7.35 370470.0 8224.2 0.9 0.4 -49.01 289.93 OBC 43.2 51.0 VBC 18 14 08 59 60.7 276.8 3261.5 633 00001 D 18 09 59 20 28.82 359393.47 1067.37 -4.80 6.77 371312.5 8272.3 0.9 0.4 -60.60 304.40 OBC 53.5 38.3 VBC 18 15 08 59 47.1 280.0 4778.9 634 00001 D 18 10 59 20 29.42 359485.07 1067.11 -4.62 6.20 371823.9 8320.6 0.9 0.4 -69.40 331.36 OBC 60.6 17.5 VBC 18 16 08 59 33.6 283.5 6280.7 635 00001 D 18 11 59 20 30.03 359578.39 1066.85 -4.43 5.63 371977.9 8368.9 0.9 0.4 -70.98 13.87 OBC 61.7 349.9 VBC 18 17 08 59 20.3 287.6 7758.4 636 00001 D 18 12 59 20 30.63 359673.43 1066.59 -4.24 5.05 371770.1 8417.2 0.9 0.4 -63.98 46.90 OBC 56.4 326.2 VBC 18 18 08 59 7.4 292.4 9200.2 637 00001 D 18 13 59 20 31.23 359770.16 1066.32 -4.05 4.48 371218.0 8465.6 0.9 0.4 -52.98 64.42 OBC 46.9 311.2 VBC 18 19 08 59 -5.1 298.2 10587.6 638 00001 D 18 14 59 20 31.83 359868.58 1066.04 -3.86 3.91 370360.6 8514.1 0.9 0.4 -40.57 74.76 OBC 35.5 302.5 VBC 18 20 08 59 -16.8 305.6 11891.1 639 00001 D 18 15 59 20 32.43 359968.68 1065.76 -3.67 3.34 369255.6 8562.6 0.9 0.4 -27.59 82.05 OBC 23.1 297.4 VBC 18 21 08 59 -27.3 315.2 13062.1 640 00001 D 18 16 59 20 33.03 360070.44 1065.48 -3.48 2.77 367976.9 8611.2 0.9 0.4 -14.35 88.03 OBC 10.2 294.5 VBC 18 22 08 59 -36.0 327.8 14021.4 641 00001 D 18 17 59 20 33.63 360173.85 1065.19 -3.29 2.20 366610.0 8659.8 0.9 0.4 -1.02 93.57 LOS -2.9 293.3 NVD 18 23 08 59 -41.6 343.9 14653.6 642 00001 D 18 18 59 20 34.23 360278.91 1064.90 -3.10 1.63 365247.3 8708.5 0.9 0.4 12.29 99.31 LOS -16.1 293.5 NVD 19 00 08 59 -43.3 2.5 14837.4 643 00001 D 18 19 59 20 34.82 360385.58 1064.60 -2.91 1.06 363982.0 8757.2 0.9 0.4 25.42 105.92 LOS -29.1 295.3 NVD 19 01 08 59 -40.5 20.6 14527.7 644 00001 D 18 20 59 20 35.42 360493.88 1064.30 -2.72 0.50 362902.2 8806.0 0.9 0.4 38.12 114.41 LOS -41.9 299.5 NVD 19 02 08 59 -33.9 35.8 13797.7 645 00001 D 18 21 59 20 36.02 360603.77 1063.99 -2.53 359.93 362085.2 8854.7 -0.9 0.4 49.86 126.65 LOS -53.8 307.8 NVD 19 03 08 59 -24.7 47.6 12773.6 646 00001 D 18 22 59 20 36.62 360715.26 1063.68 -2.34 359.36 361591.5 8903.5 -0.9 0.4 59.40 146.12 LOS -63.8 324.8 NVD 19 04 08 59 -13.9 56.5 11561.9 647 00001 D 18 23 59 20 37.22 360828.32 1063.37 -2.14 358.80 361460.8 8952.4 -0.9 0.4 64.10 175.89 LOS -68.7 355.8 NVD 19 05 08 59 -1.9 63.4 10232.8 648 00001 D 19 00 59 20 37.81 360942.94 1063.05 -1.95 358.23 361708.9 9001.2 -0.9 0.4 61.44 207.83 LOS -65.2 28.9 NVD 19 06 08 59 10.7 69.0 8828.9 649 00001 D 19 01 59 20 38.41 361059.11 1062.73 -1.76 357.66 362326.6 9050.1 -0.9 0.4 52.99 230.28 LOS -55.9 48.4 NVD 19 07 08 59 23.7 73.5 7376.4 650 00001 D 19 02 59 20 39.00 361176.82 1062.40 -1.57 357.10 363280.0 9099.0 -0.9 0.4 41.74 244.28 LOS -44.2 58.2 NVD 19 08 08 59 37.1 77.4 5891.5 651 00001 D 19 03 59 20 39.60 361296.05 1062.07 -1.38 356.54 364513.6 9147.9 -0.9 0.4 29.29 253.74 LOS -31.5 63.2 NVD 19 09 08 59 50.6 80.9 4385.0 652 00001 D 19 04 59 20 40.20 361416.79 1061.73 -1.19 355.97 365953.9 9196.8 -0.9 0.4 16.31 260.96 LOS -18.3 65.7 NVD 19 10 08 59 64.3 84.0 2864.6 653 00001 D 19 05 59 20 40.79 361539.02 1061.40 -1.00 355.41 367514.7 9245.7 -0.9 0.4 3.12 267.14 LOS -5.1 66.6 NVD 19 11 08 59 78.0 86.6 1335.9 654 00001 D 19 06 59 20 41.39 361662.73 1061.05 -0.81 354.85 369103.4 9294.7 -0.9 0.4 -10.08 273.06 OBC 8.3 66.2 VBC 19 12 08 59 88.2 275.7 197.5 655 00001 D 19 07 59 20 41.98 361787.91 1060.71 -0.61 354.28 370626.5 9343.6 -0.9 0.4 -23.16 279.39 OBC 21.5 64.4 VBC 19 13 08 59 74.5 274.0 1728.7 656 00001 D 19 08 59 20 42.57 361914.54 1060.35 -0.42 353.72 371995.9 9392.5 -0.9 0.4 -35.91 287.00 OBC 34.4 60.9 VBC 19 14 08 59 60.8 276.8 3255.7 657 00001 D 19 09 59 20 43.17 362042.60 1060.00 -0.23 353.16 373133.9 9441.5 -0.9 0.4 -48.00 297.38 OBC 46.7 54.3 VBC 19 15 08 59 47.1 280.0 4773.1 658

Page 387: ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM …myreaders.info/00_Orbital__Mechanics__-__Model_____Simulation... · ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM-MSS)

www.m

yrea

ders

.inf

o

OM-MSS Page 387 SATELLITE PASS - GROUND TRACE [acronym - Line Of Sight (LOS), On Board Computerr (OBC), Visible Band Camera (VBC), Night Vision Devices (NVD) ] ORBIT, INPUT TIME, POSIION, SAT VELOCITY, GROUND TRACE, RANGE, DIST, PITCH/ROLL, EL/AZ, ACCESS EL/AZ, DATA SOLAR TIME EL/AZ, DIST Line 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 @ES 18 19 20 @SS 21 22 23 24 25 26 27 @ES 28 29 30 No. Node GMT Anomaly Height @ Vel Lat(SAT)Log Slant S-Sat Pitch Roll EL(SAT)AZ Control EL(SUN)AZ Acq. LMT(ES) EL(SUN)AZ S-Sun Nos D H M S deg km meter deg deg km km deg deg deg D H M S deg km 00001 D 19 10 59 20 43.76 362172.09 1059.64 -0.04 352.60 373977.9 9490.4 -0.9 0.4 -58.62 313.56 OBC 57.7 41.9 VBC 19 16 08 59 33.6 283.5 6274.8 659 00001 D 19 11 12 09 43.89 362199.93 Eqa 1059.56 -0.00 352.48 374115.5 9500.8 -0.9 0.4 -60.54 268.00 OBC 59.7 38.0 VBC 19 16 21 48 30.8 284.3 6592.8 660 00001 A 19 11 59 20 44.35 362302.98 1059.28 0.15 352.92 374483.6 9449.1 -0.9 0.4 -65.73 340.44 OBC 65.6 17.0 VBC 19 17 08 59 20.4 287.6 7752.5 661 00001 A 19 12 59 20 44.94 362435.26 1058.91 0.34 353.48 374627.7 9383.4 -0.9 0.4 -65.98 15.76 OBC 65.6 342.0 VBC 19 18 08 59 7.4 292.4 9194.3 662 00001 A 19 13 59 20 45.54 362568.93 1058.54 0.53 354.04 374409.0 9317.8 -0.9 0.4 -59.20 43.42 OBC 57.7 316.8 VBC 19 19 08 59 -5.1 298.2 10581.8 663 00001 A 19 14 59 20 46.13 362703.95 1058.17 0.72 354.60 373848.2 9252.2 -0.9 0.4 -48.71 60.08 OBC 45.8 303.9 VBC 19 20 08 59 -16.8 305.6 11885.6 664 00001 A 19 15 59 20 46.72 362840.32 1057.79 0.91 355.16 372987.3 9186.6 -0.9 0.4 -36.64 70.62 OBC 32.5 297.5 VBC 19 21 08 59 -27.3 315.1 13057.0 665 00001 A 19 16 59 20 47.31 362978.02 1057.41 1.10 355.72 371887.1 9121.1 -0.9 0.4 -23.84 78.19 OBC 18.6 294.4 VBC 19 22 08 59 -35.9 327.8 14017.0 666 00001 A 19 17 59 20 47.90 363117.03 1057.03 1.29 356.28 370623.7 9055.7 -0.9 0.4 -10.68 84.35 OBC 4.4 293.4 NVD 19 23 08 59 -41.6 343.9 14650.4 667 00001 A 19 18 59 20 48.49 363257.35 1056.64 1.48 356.83 369284.4 8990.3 -0.9 0.4 2.66 89.96 LOS -9.8 294.1 NVD 20 00 08 59 -43.3 2.4 14836.0 668 00001 A 19 19 59 20 49.08 363398.94 1056.25 1.67 357.39 367962.5 8924.9 -0.9 0.4 16.06 95.64 LOS -23.8 296.6 NVD 20 01 08 59 -40.5 20.5 14528.1 669 00001 A 19 20 59 20 49.66 363541.81 1055.85 1.86 357.95 366751.2 8859.6 -0.9 0.4 29.37 102.10 LOS -37.3 301.7 NVD 20 02 08 59 -34.0 35.8 13799.7 670 00001 A 19 21 59 20 50.25 363685.92 1055.46 2.05 358.51 365737.7 8794.3 -0.9 0.4 42.37 110.42 LOS -49.8 311.2 NVD 20 03 08 59 -24.8 47.5 12776.6 671 00001 A 19 22 59 20 50.84 363831.28 1055.06 2.24 359.06 364997.1 8729.1 -0.9 0.4 54.55 122.85 LOS -59.7 328.9 NVD 20 04 08 59 -13.9 56.5 11565.7 672 00001 A 19 23 59 20 51.43 363977.85 1054.65 2.42 359.62 364587.4 8664.0 -0.9 0.4 64.59 144.41 LOS -64.1 358.1 NVD 20 05 08 59 -2.0 63.4 10237.1 673 00001 A 20 00 59 20 52.01 364125.62 1054.25 2.61 0.18 364544.9 8598.9 0.9 0.4 69.00 180.68 LOS -60.3 27.9 NVD 20 06 08 59 10.6 68.9 8833.6 674 00001 A 20 01 59 20 52.60 364274.58 1053.84 2.80 0.73 364881.6 8533.9 0.9 0.4 64.64 217.02 LOS -50.6 46.6 NVD 20 07 08 59 23.7 73.5 7381.3 675 00001 A 20 02 59 20 53.19 364424.71 1053.42 2.98 1.29 365584.3 8468.9 0.9 0.4 54.65 238.69 LOS -38.2 56.8 NVD 20 08 08 59 37.0 77.4 5896.6 676 00001 A 20 03 59 20 53.77 364575.99 1053.01 3.17 1.85 366615.8 8403.9 0.9 0.4 42.52 251.24 LOS -24.7 62.4 NVD 20 09 08 59 50.6 80.9 4390.3 677 00001 A 20 04 59 20 54.36 364728.41 1052.59 3.36 2.40 367917.3 8339.0 0.9 0.4 29.59 259.71 LOS -10.7 65.4 NVD 20 10 08 59 64.2 84.0 2870.0 678 00001 A 20 05 59 20 54.94 364881.95 1052.16 3.54 2.96 369412.9 8274.2 0.9 0.4 16.37 266.36 LOS 3.6 66.7 NVD 20 11 08 59 77.9 86.6 1341.4 679 00001 A 20 06 59 20 55.52 365036.59 1051.74 3.73 3.51 371015.1 8209.4 0.9 0.4 3.10 272.31 LOS 18.0 66.6 VBC 20 12 08 59 88.3 276.2 192.1 680 00001 A 20 07 59 20 56.11 365192.32 1051.31 3.91 4.07 372630.7 8144.7 0.9 0.4 -10.06 278.28 OBC 32.2 64.7 VBC 20 13 08 59 74.5 274.0 1723.1 681 00001 A 20 08 59 20 56.69 365349.12 1050.88 4.10 4.62 374166.6 8080.1 0.9 0.4 -22.95 284.95 OBC 46.0 60.0 VBC 20 14 08 59 60.8 276.8 3250.1 682 00001 A 20 09 59 20 57.27 365506.96 1050.45 4.28 5.17 375535.9 8015.5 0.9 0.4 -35.34 293.23 OBC 58.9 49.6 VBC 20 15 08 59 47.2 280.0 4767.4 683 00001 A 20 10 59 20 57.86 365665.85 1050.01 4.46 5.73 376663.2 7950.9 0.9 0.4 -46.77 304.66 OBC 68.8 25.6 VBC 20 16 08 59 33.7 283.5 6269.1 684 00001 A 20 11 59 20 58.44 365825.74 1049.57 4.64 6.28 377488.3 7886.4 0.9 0.4 -56.26 321.89 OBC 70.4 344.1 VBC 20 17 08 59 20.4 287.6 7746.9 685 00001 A 20 12 59 20 59.02 365986.64 1049.13 4.82 6.84 377970.5 7822.0 0.9 0.4 -61.79 347.62 OBC 62.3 314.3 VBC 20 18 08 59 7.5 292.4 9188.8 686 00001 A 20 13 59 20 59.60 366148.52 1048.69 5.01 7.39 378089.6 7757.6 0.9 0.4 -61.00 17.54 OBC 50.0 301.1 VBC 20 19 08 59 -5.0 298.2 10576.4 687 00001 A 20 14 59 20 60.18 366311.37 1048.24 5.19 7.94 377848.1 7693.3 0.8 0.4 -54.30 41.23 OBC 36.4 295.4 VBC 20 20 08 59 -16.7 305.5 11880.5 688 00001 A 20 15 59 20 60.76 366475.16 1047.80 5.37 8.50 377270.2 7629.0 0.8 0.4 -44.21 56.75 OBC 22.4 293.2 VBC 20 21 08 59 -27.3 315.1 13052.3 689 00001 A 20 16 59 20 61.34 366639.89 1047.34 5.54 9.05 376400.8 7564.8 0.8 0.4 -32.46 67.15 OBC 8.2 292.9 VBC 20 22 08 59 -35.9 327.7 14013.2 690 00001 A 20 17 59 20 61.91 366805.52 1046.89 5.72 9.60 375303.5 7500.7 0.8 0.4 -19.88 74.78 OBC -6.0 294.4 NVD 20 23 08 59 -41.6 343.8 14647.9 691 00001 A 20 18 59 20 62.49 366972.05 1046.44 5.90 10.15 374056.1 7436.6 0.8 0.4 -6.84 80.98 OBC -19.8 297.5 NVD 21 00 08 59 -43.3 2.3 14835.3 692 00001 A 20 19 59 20 63.07 367139.46 1045.98 6.08 10.71 372747.2 7372.6 0.8 0.4 6.45 86.55 LOS -33.1 303.1 NVD 21 01 08 59 -40.5 20.5 14529.3 693 00001 A 20 20 59 20 63.65 367307.72 1045.52 6.25 11.26 371469.8 7308.6 0.8 0.4 19.88 92.09 LOS -45.2 312.7 NVD 21 02 08 59 -34.0 35.7 13802.3 694 00001 A 20 21 59 20 64.22 367476.83 1045.06 6.43 11.81 370316.4 7244.7 0.8 0.4 33.30 98.28 LOS -55.0 329.1 NVD 21 03 08 59 -24.8 47.5 12780.2 695 00001 A 20 22 59 20 64.80 367646.76 1044.60 6.60 12.36 369372.2 7180.8 0.8 0.4 46.53 106.26 LOS -59.8 354.1 NVD 21 04 08 59 -13.9 56.4 11569.9 696 00001 A 20 23 59 20 65.37 367817.49 1044.13 6.78 12.92 368709.6 7117.1 0.8 0.4 59.12 118.63 LOS -57.5 21.4 NVD 21 05 08 59 -2.0 63.4 10241.7 697 00001 A 21 00 59 20 65.95 367989.01 1043.66 6.95 13.47 368382.9 7053.3 0.8 0.4 69.65 142.68 LOS -49.2 41.0 NVD 21 06 08 59 10.6 68.9 8838.6 698 00001 A 21 01 59 20 66.52 368161.31 1043.19 7.12 14.02 368424.5 6989.7 0.8 0.4 73.42 188.60 LOS -37.7 52.9 NVD 21 07 08 59 23.6 73.5 7386.5 699 00001 A 21 02 59 20 67.10 368334.35 1042.72 7.30 14.57 368842.3 6926.1 0.8 0.4 66.84 228.19 LOS -24.7 60.0 NVD 21 08 08 59 37.0 77.4 5901.9 700

Page 388: ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM …myreaders.info/00_Orbital__Mechanics__-__Model_____Simulation... · ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM-MSS)

www.m

yrea

ders

.inf

o

OM-MSS Page 388 SATELLITE PASS - GROUND TRACE [acronym - Line Of Sight (LOS), On Board Computerr (OBC), Visible Band Camera (VBC), Night Vision Devices (NVD) ] ORBIT, INPUT TIME, POSIION, SAT VELOCITY, GROUND TRACE, RANGE, DIST, PITCH/ROLL, EL/AZ, ACCESS EL/AZ, DATA SOLAR TIME EL/AZ, DIST Line 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 @ES 18 19 20 @SS 21 22 23 24 25 26 27 @ES 28 29 30 No. Node GMT Anomaly Height @ Vel Lat(SAT)Log Slant S-Sat Pitch Roll EL(SAT)AZ Control EL(SUN)AZ Acq. LMT(ES) EL(SUN)AZ S-Sun Nos D H M S deg km meter deg deg km km deg deg deg D H M S deg km 00001 A 21 03 59 20 67.67 368508.13 1042.25 7.47 15.12 369619.2 6862.5 0.8 0.4 55.42 247.42 LOS -11.0 64.3 NVD 21 09 08 59 50.5 80.8 4395.7 701 00001 A 21 04 59 20 68.24 368682.62 1041.77 7.64 15.67 370714.4 6799.1 0.8 0.4 42.62 258.07 LOS 3.1 66.8 NVD 21 10 08 59 64.2 83.9 2875.5 702 00001 A 21 05 59 20 68.81 368857.81 1041.30 7.80 16.23 372066.6 6735.6 0.8 0.4 29.38 265.45 LOS 17.4 67.8 VBC 21 11 08 59 77.9 86.5 1346.9 703 00001 A 21 06 59 20 69.38 369033.68 1040.82 7.97 16.78 373598.1 6672.3 0.8 0.4 16.06 271.52 LOS 31.7 67.3 VBC 21 12 08 59 88.3 276.5 186.6 704 00001 A 21 07 59 20 69.96 369210.21 1040.34 8.14 17.33 375220.8 6609.0 0.8 0.4 2.82 277.24 LOS 45.9 64.6 VBC 21 13 08 59 74.6 274.0 1717.5 705 00001 A 21 08 59 20 70.53 369387.38 1039.86 8.31 17.88 376841.4 6545.8 0.8 0.4 -10.20 283.25 OBC 59.4 57.1 VBC 21 14 08 59 60.9 276.8 3244.5 706 00001 A 21 09 59 20 71.10 369565.18 1039.38 8.47 18.43 378368.3 6482.6 0.8 0.4 -22.81 290.23 OBC 71.0 36.5 VBC 21 15 08 59 47.2 280.0 4761.9 707 00001 A 21 10 59 20 71.67 369743.58 1038.89 8.64 18.98 379716.8 6419.5 0.8 0.4 -34.73 299.09 OBC 74.8 348.1 VBC 21 16 08 59 33.7 283.5 6263.6 708 00001 A 21 11 59 20 72.23 369922.57 1038.41 8.80 19.53 380814.0 6356.4 0.8 0.4 -45.41 311.32 OBC 66.7 311.2 VBC 21 17 08 59 20.5 287.6 7741.5 709 00001 A 21 12 59 20 72.80 370102.13 1037.92 8.96 20.08 381603.2 6293.5 0.8 0.4 -53.76 329.03 OBC 54.0 297.9 VBC 21 18 08 59 7.5 292.3 9183.5 710 00001 A 21 13 59 20 73.37 370282.25 1037.43 9.12 20.64 382047.0 6230.6 0.8 0.4 -57.93 353.21 OBC 40.2 293.1 VBC 21 19 08 59 -5.0 298.2 10571.4 711 00001 A 21 14 59 20 73.94 370462.90 1036.94 9.29 21.19 382129.3 6167.7 0.7 0.4 -56.32 19.18 OBC 26.0 291.6 VBC 21 20 08 59 -16.7 305.5 11875.8 712 00001 A 21 15 59 20 74.50 370644.06 1036.45 9.45 21.74 381855.8 6104.9 0.7 0.4 -49.62 39.95 OBC 11.8 292.2 VBC 21 21 08 59 -27.2 315.1 13048.3 713 00001 A 21 16 59 20 75.07 370825.72 1035.96 9.60 22.29 381254.1 6042.2 0.7 0.4 -39.82 54.34 OBC -2.2 294.2 NVD 21 22 08 59 -35.9 327.7 14010.0 714 00001 A 21 17 59 20 75.64 371007.86 1035.47 9.76 22.84 380372.1 5979.5 0.7 0.4 -28.36 64.41 OBC -15.9 298.0 NVD 21 23 08 59 -41.6 343.7 14646.2 715 00001 A 21 18 59 20 76.20 371190.46 1034.98 9.92 23.39 379275.3 5917.0 0.7 0.4 -16.00 71.95 OBC -29.0 304.0 NVD 22 00 08 59 -43.3 2.3 14835.4 716 00001 A 21 19 59 20 76.77 371373.51 1034.48 10.07 23.94 378043.0 5854.4 0.7 0.4 -3.11 78.08 LOS -40.9 313.5 NVD 22 01 08 59 -40.5 20.4 14531.1 717 00001 A 21 20 59 20 77.33 371556.97 1033.99 10.23 24.49 376763.9 5792.0 0.7 0.4 10.10 83.51 LOS -50.5 328.7 NVD 22 02 08 59 -34.0 35.7 13805.5 718 00001 A 21 21 59 20 77.89 371740.85 1033.49 10.38 25.04 375530.6 5729.6 0.7 0.4 23.50 88.83 LOS -55.7 350.9 NVD 22 03 08 59 -24.8 47.5 12784.3 719 00001 A 21 22 59 20 78.46 371925.11 1032.99 10.53 25.59 374433.9 5667.2 0.7 0.4 36.97 94.65 LOS -54.7 15.9 NVD 22 04 08 59 -14.0 56.4 11574.5 720 00001 A 21 23 59 20 79.02 372109.74 1032.50 10.69 26.15 373556.2 5605.0 0.7 0.4 50.35 102.11 LOS -47.7 36.0 NVD 22 05 08 59 -2.1 63.3 10246.7 721 00001 A 22 00 59 20 79.58 372294.73 1032.00 10.84 26.70 372966.8 5542.8 0.7 0.4 63.28 114.09 LOS -37.2 49.2 NVD 22 06 08 59 10.6 68.9 8843.8 722 00001 A 22 01 59 20 80.14 372480.04 1031.50 10.98 27.25 372715.9 5480.7 0.7 0.4 74.30 141.03 LOS -24.8 57.6 NVD 22 07 08 59 23.6 73.5 7391.8 723 00001 A 22 02 59 20 80.70 372665.68 1031.00 11.13 27.80 372831.8 5418.6 0.7 0.4 76.86 200.95 LOS -11.5 63.0 NVD 22 08 08 59 36.9 77.4 5907.4 724 00001 A 22 03 59 20 81.26 372851.61 1030.50 11.28 28.35 373318.3 5356.6 0.7 0.4 67.81 239.96 LOS 2.4 66.6 NVD 22 09 08 59 50.5 80.8 4401.2 725 00001 A 22 04 59 20 81.82 373037.82 1030.00 11.42 28.90 374154.5 5294.7 0.7 0.4 55.33 255.52 LOS 16.6 68.7 VBC 22 10 08 59 64.1 83.9 2881.0 726 00001 A 22 05 59 20 82.38 373224.29 1029.50 11.57 29.45 375296.8 5232.8 0.7 0.4 42.11 264.22 LOS 30.9 69.5 VBC 22 11 08 59 77.8 86.5 1352.5 727 00001 A 22 06 59 20 82.94 373411.01 1029.00 11.71 30.00 376681.5 5171.0 0.7 0.4 28.74 270.58 LOS 45.1 68.4 VBC 22 12 08 59 88.4 276.6 181.1 728 00001 A 22 07 59 20 83.50 373597.95 1028.49 11.85 30.55 378229.9 5109.3 0.7 0.4 15.42 276.14 LOS 59.2 63.8 VBC 22 13 08 59 74.6 274.0 1712.0 729 00001 A 22 08 59 20 84.05 373785.10 1027.99 12.00 31.10 379853.6 5047.6 0.6 0.4 2.30 281.66 LOS 72.1 48.4 VBC 22 14 08 59 60.9 276.8 3239.0 730 00001 A 22 09 59 20 84.61 373972.44 1027.49 12.13 31.66 381460.4 4986.0 0.6 0.4 -10.51 287.72 OBC 78.7 355.3 VBC 22 15 08 59 47.3 279.9 4756.5 731 00001 A 22 10 59 20 85.17 374159.95 1026.99 12.27 32.21 382960.4 4924.5 0.6 0.4 -22.78 294.97 OBC 70.7 307.7 VBC 22 16 08 59 33.8 283.5 6258.3 732 00001 A 22 11 59 20 85.72 374347.61 1026.48 12.41 32.76 384271.2 4863.0 0.6 0.4 -34.19 304.31 OBC 57.6 294.4 VBC 22 17 08 59 20.5 287.5 7736.3 733 00001 A 22 12 59 20 86.28 374535.41 1025.98 12.55 33.31 385323.3 4801.7 0.6 0.4 -44.12 317.10 OBC 43.6 290.5 VBC 22 18 08 59 7.5 292.3 9178.5 734 00001 A 22 13 59 20 86.83 374723.33 1025.48 12.68 33.86 386063.4 4740.3 0.6 0.4 -51.42 334.91 OBC 29.4 289.9 VBC 22 19 08 59 -4.9 298.1 10566.7 735 00001 A 22 14 59 20 87.39 374911.35 1024.97 12.81 34.41 386457.8 4679.1 0.6 0.4 -54.45 357.60 OBC 15.2 291.1 VBC 22 20 08 59 -16.6 305.5 11871.6 736 00001 A 22 15 59 20 87.94 375099.45 1024.47 12.95 34.96 386493.8 4617.9 0.6 0.4 -52.20 20.74 OBC 1.3 293.8 NVD 22 21 08 59 -27.2 315.0 13044.7 737 00001 A 22 16 59 20 88.49 375287.62 1023.97 13.08 35.51 386180.8 4556.8 0.6 0.4 -45.44 39.36 OBC -12.3 297.9 NVD 22 22 08 59 -35.8 327.6 14007.6 738 00001 A 22 17 59 20 89.04 375475.84 1023.47 13.21 36.07 385549.3 4495.8 0.6 0.4 -35.82 52.75 OBC -25.2 304.2 NVD 22 23 08 59 -41.6 343.7 14645.3 739 00001 A 22 18 59 20 89.60 375664.08 1022.96 13.33 36.62 384649.5 4434.8 0.6 0.4 -24.59 62.42 OBC -37.0 313.6 NVD 23 00 08 59 -43.3 2.2 14836.3 740 00001 A 22 19 59 20 90.15 375852.34 1022.46 13.46 37.17 383548.7 4373.9 0.6 0.4 -12.41 69.77 OBC -46.5 327.9 NVD 23 01 08 59 -40.6 20.3 14533.7 741

Page 389: ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM …myreaders.info/00_Orbital__Mechanics__-__Model_____Simulation... · ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM-MSS)

www.m

yrea

ders

.inf

o

OM-MSS Page 389 SATELLITE PASS - GROUND TRACE [acronym - Line Of Sight (LOS), On Board Computerr (OBC), Visible Band Camera (VBC), Night Vision Devices (NVD) ] ORBIT, INPUT TIME, POSIION, SAT VELOCITY, GROUND TRACE, RANGE, DIST, PITCH/ROLL, EL/AZ, ACCESS EL/AZ, DATA SOLAR TIME EL/AZ, DIST Line 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 @ES 18 19 20 @SS 21 22 23 24 25 26 27 @ES 28 29 30 No. Node GMT Anomaly Height @ Vel Lat(SAT)Log Slant S-Sat Pitch Roll EL(SAT)AZ Control EL(SUN)AZ Acq. LMT(ES) EL(SUN)AZ S-Sun Nos D H M S deg km meter deg deg km km deg deg deg D H M S deg km 00001 A 22 20 59 20 90.70 376040.59 1021.96 13.59 37.72 382327.0 4313.1 0.6 0.4 0.34 75.75 LOS -52.2 348.0 NVD 23 02 08 59 -34.1 35.6 13809.3 742 00001 A 22 21 59 20 91.25 376228.83 1021.46 13.71 38.27 381073.1 4252.3 0.6 0.4 13.45 81.01 LOS -52.1 11.4 NVD 23 03 08 59 -24.9 47.4 12788.9 743 00001 A 22 22 59 20 91.80 376417.02 1020.96 13.83 38.82 379878.4 4191.6 0.6 0.4 26.79 86.06 LOS -46.4 31.5 NVD 23 04 08 59 -14.0 56.4 11579.6 744 00001 A 22 23 59 20 92.35 376605.15 1020.45 13.96 39.38 378831.5 4131.0 0.5 0.4 40.25 91.47 LOS -36.8 45.8 NVD 23 05 08 59 -2.1 63.3 10252.0 745 00001 A 23 00 59 20 92.90 376793.22 1019.95 14.08 39.93 378012.3 4070.5 0.5 0.4 53.72 98.30 LOS -25.1 55.3 NVD 23 06 08 59 10.5 68.9 8849.2 746 00001 A 23 01 59 20 93.44 376981.19 1019.45 14.19 40.48 377486.2 4010.0 0.5 0.4 66.89 109.58 LOS -12.1 61.7 NVD 23 07 08 59 23.5 73.5 7397.4 747 00001 A 23 02 59 20 93.99 377169.05 1018.95 14.31 41.03 377299.8 3949.6 0.5 0.4 78.35 139.99 LOS 1.5 66.2 NVD 23 08 08 59 36.9 77.4 5913.0 748 00001 A 23 03 59 20 94.54 377356.79 1018.46 14.43 41.58 377477.1 3889.3 0.5 0.4 78.83 217.72 LOS 15.5 69.2 VBC 23 09 08 59 50.4 80.8 4406.9 749 00001 A 23 04 59 20 95.09 377544.38 1017.96 14.54 42.13 378018.1 3829.1 0.5 0.4 67.63 250.49 LOS 29.7 71.0 VBC 23 10 08 59 64.1 83.9 2886.6 750 00001 A 23 05 59 20 95.63 377731.82 1017.46 14.66 42.69 378898.6 3768.9 0.5 0.4 54.53 262.26 LOS 44.0 71.4 VBC 23 11 08 59 77.8 86.6 1358.1 751 00001 A 23 06 59 20 96.18 377919.08 1016.96 14.77 43.24 380072.2 3708.8 0.5 0.4 41.13 269.28 LOS 58.2 69.2 VBC 23 12 08 59 88.4 276.4 175.5 752 00001 A 23 07 59 20 96.72 378106.14 1016.47 14.88 43.79 381473.6 3648.8 0.5 0.4 27.74 274.82 LOS 71.9 59.3 VBC 23 13 08 59 74.7 273.9 1706.5 753 00001 A 23 08 59 20 97.27 378293.00 1015.97 14.99 44.34 383023.3 3588.9 0.5 0.4 14.51 279.99 LOS 81.5 8.5 VBC 23 14 08 59 61.0 276.7 3233.6 754 Next End of Computing Six Satellites Passes for Earth Stn - Prediction of Ground Trace Coordinates, Look Angles & more at Instantaneous Time. A Summary of Computing Satellites Passes for Six Satellites are presented next. Next Section - 7.7 Concluding Satellites Passes - Prediction of Ground Trace of Six Satellites

Page 390: ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM …myreaders.info/00_Orbital__Mechanics__-__Model_____Simulation... · ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM-MSS)

www.m

yrea

ders

.inf

o

OM-MSS Page 390 OM-MSS Section - 7.7 -----------------------------------------------------------------------------------------------------63 Concluding Satellites Passes - Prediction of Ground Trace Coordinates, Look Angles & more at Instantaneous Time. In previous Sections (7.1 to 7.6), Six Satellites, LANDSAT 8, SPOT 6, CARTOSAT-2B, ISS (ZARYA), GSAT-14, and Moon, Passes - Prediction of Ground Trace, Look Angles & more for the Earth Station. A Summary of those Six Satellites Passes - Prediction of Ground Trace, Look Angles & more for the Earth Stn, are presented below : (a) The Satellites considered were four LEO, one GEO and one natural satellite repectively around earth considering earth oblateness. (b) Input NASA/NORAD 'TWO-LINE ELEMENTS' of respective Satellite, and Earth stn Latitude & Longitude in deg and Height in meter. The Satellites Passed passed through a Time_Step of 2 minutes (120 sec). For Moon the Time_Step was of 1 hr (3600 sec). The Output is the predictions of Ground Trace, Look Angles & more for Earth Stn at each Time_Step put on computer screen. (C) The Satellite Pass, the Prediction of Ground Trace parameters included : Sat Orbit no, Sat pass Input time TEL GMT, Sat Position True Anomaly in deg, Sat Height in km from earth surface, Sat at Perigee or Equator or Apogee cross over, Sat Velocity in meters, Sat Ground trace Latitude & Longitude in deg at sub-satellite point on earth surface, Sat Slant Range in km from earth stn, Sat Distance in km of sub-satellite point from earth stn, Sat Pitch & Roll angles in deg, Sat Elevation & Azimuh angles in deg at earth stn, Access to Sat through On Board Computer or Direct Line Of Sight based on elevaion angle at ES, Sun Elevation & Azimuh angles in deg at sub-Satellite point on earth surface, Sat Data Acquisition using Visible Band Camera or Night Vision Devices as per illumination over observed surface , Local Mean Time at earth stn, Sun Elevation & Azimuh angles in deg at earth stn, Distance of sub-Sun point on earth surface from earth stn, and Sat pass Time Line number. End of Computing Six Satellites Passes for Earth Stn - Prediction of Ground Trace Coordinates, Look Angles & more at the Earth station. Next Section - 8 Concluding Orbital Mechanics - Model & Simulation Software (OM-MSS).

Page 391: ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM …myreaders.info/00_Orbital__Mechanics__-__Model_____Simulation... · ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM-MSS)

www.m

yrea

ders

.inf

o

OM-MSS Page 391 OM-MSS Section - 8 -------------------------------------------------------------------------------------------------------64 CONCLUSION : ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM-MSS). The 'ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM-MSS)', to the Simulate Motion of Sun, Earth, Moon and Satellites were presented. This Software is written in 'C' Language, the Compiler used is Dev C++ and the Platform is a Windows 7, 64 bit Laptop. The Source Code around 30,000 Lines is Compiled. The 'OM-MSS.EXE' File generated is of Size 1.5 KB. The Executable File, < OM-MSS.EXE >, is RUN Step-by-Step for a Set of Inputs. The Outputs on Computer Screen were put in a File, Which in effect became 'A Monograph of Orbital Mechanics with Examples, Problems and Software Driven Solutions'. The same was presented in Seven Sections. Section 1. [ 1.1 to 1.7 ] Astronomical Time Standards And Time Conversion Utilities. Section 2. [ 2.1 to 2.11] Positional Astronomy : Earth Orbit around Sun, Anomalies & Astronomical Events - Equinoxes, Solstices, Years & Seasons. Section 3. [ 3.1 to 3.8 ] Position Of Sun On Celestial Sphere At Input Universal Time (Ut). Section 4. [ 4.1 to 4.8 ] Position Of Earth On Celestial Sphere At Input Universal Time (Ut). Section 5. [ 5.1 to 5.4 ] Satellites In Orbit Around Earth : Ephemeris Data Set. Section 6. [ 6.1 to 6.7 ] Satellites Motion Around Earth : Orbital & Positional Parameters At Epoch. Section 7. [ 7.1 to 7.7 ] Satellite Pass For Earth Stn - Prediction Of Ground Trace Coordinates, Look Angles, Ut & Local Time. The readers, who are beginners, who have little to no knowledge about Positional Astronomy of Earth, Sun, Moon, and Satellites Motion in Orbit, will have no difficulty in understanding. Each section starts first with a tutorial to understand the repective topics under consideration and then presented the computed values of the parameters.

Page 392: ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM …myreaders.info/00_Orbital__Mechanics__-__Model_____Simulation... · ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM-MSS)

www.m

yrea

ders

.inf

o

OM-MSS Page 392 OM-MSS Section - 9 -------------------------------------------------------------------------------------------------------65 REFERENCES : TEXT BOOKS & INTERNET WEB LINKS. Books 1. Dennis Roddy, 'Satellite Communication', Third Edition, McGraw Hill, chap. 2 - 3, pp 21-86, Jan 2001. 2. Gerard Maral, Michel Bousquet, 'Satellite Communications Systems', Fifth Edition, John Wiley & Sons, chap. 2, pp 19-97, 2002. 3. Hannu Karttunen, Pekka Kroger, et al, 'Fundamental Astronomy', Springer, 5th Edition, pp 1 - 491, 2007. 4. Vladimir A. Chobotov,'Orbital mechanics', American Institute of Aeronautics and Astronautics, pp 1 - 447, 1996. 5. Howard Curtis, 'Orbital Mechanics: For Engineering Students', Aerospace Engineering, Butterworth-Heinemann, , pp 1 - 704, 2004. 6. Howard D. Curtis, 'Orbital Mechanics For Engineering Students, Solutions Manual', Embry-Riddle Aeronautical University, Florida. Internet Weblinks Ref. Sec 1 Astronomical Time 1. Ephemeris.com, 'solar system', URL http://www.ephemeris.com/solar-system.html 2. Ephemeris.com, 'Space and Time', URL http://www.ephemeris.com/space-time.html 3. Wikipedia, 'Time standard', URL http://en.wikipedia.org/wiki/Time_standard 4. Digplanet, 'Time standard', URL http://www.digplanet.com/wiki/Time_standard 5. Yost, Daunt, 'Timekeeping', URL http://csep10.phys.utk.edu/astr161/lect/time/timekeeping.html 6. Eric Weisstein's World of Astronomy, 'Time standard', URL http://scienceworld.wolfram.com/astronomy/topics/TimeStandards.html 7. J. Richard Fisher, 'Astronomical Times', National Radio Astronomy Observatory, URL http://www.cv.nrao.edu/~rfisher/Ephemerides/times.html 8. Kaye and Laby, 'Astronomical and atomic time systems', National Physical Laboratory, URL http://www.kayelaby.npl.co.uk/general_physics/2_7/2_7_1.html 9. Kaye and Laby, 'Astronomical units and constants', National Physical Laboratory, URL http://www.kayelaby.npl.co.uk/general_physics/2_7/2_7_2.html 10. Kaye and Laby, 'The Solar System', National Physical Laboratory, URL http://www.kayelaby.npl.co.uk/general_physics/2_7/2_7_3.html

Page 393: ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM …myreaders.info/00_Orbital__Mechanics__-__Model_____Simulation... · ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM-MSS)

www.m

yrea

ders

.inf

o

OM-MSS Page 393 Ref. Sec 2 Positional Astronomy 1. Fiona Vincent, 'Positional Astronomy', University of St.Andrews, Revised and updated November 2003, URL http://star-www.st-and.ac.uk/~fv/webnotes/index.html 2. Robert A. Braeunig, 'ORBITAL MECHANICS', Rocket and Space Technology, Basics of Space Flight Part III, URL http://www.braeunig.us/space/orbmech.htm 3. James B. Calvert, 'Celestial Mechanics', Physics, Mechanics and Thermodynamics, University of Denver, URL http://mysite.du.edu/~jcalvert/phys/orbits.htm 4. Vladislav Pustonski, 'Orbital Elements & Types of orbits', Introduction to Astronautics, Tallinn University of Technology, 2009-2010, URL http://www.aai.ee/~vladislav/Astronautics_Lecture4.pps 5. PhysicalGeography.net, 'Earth-Sun Geometry', Fundamentals Of Physical Geography, 2nd Edition, Energy and Matter, chap. 6, URL http://www.physicalgeography.net/fundamentals/6h.html 6. Wikipedia, the free encyclopedia, 'Orbital elements', Last Modified on January 24, 2015, URL http://en.wikipedia.org/wiki/Orbital_element 7. Keith Burnett, 'Approximate Astronomical Positions', Last Modified on January 12, 2000, URL http://www.stargazing.net/kepler/ 8. The Physics Classroom, 'Kepler's Three Laws', Circular Motion and Satellite Motion - Lesson 4 - Planetary and Satellite Motion, URL http://www.physicsclassroom.com/Class/circles/U6L4a.cfm 9. Wikipedia, the free encyclopedia, 'celestial coordinate system', Last Edited on MAY 19, 2015, URL http://en.m.wikipedia.org/wiki/Celestial_coordinate_system 10. Denny Sissom, 'Understanding Orbital Mechanics', Elmco INC, pp 1-27, on May 2003, URL http://www.agi.com/downloads/support/productsupport/literature/pdfs/casestudies/at_051303_0830_orbital_mechanics_viasbirs.pdf 11. Athropolis, 'Guide to the Equinoxes and Solstices', Athropolis Productions Limited (Canada), accessed on May, 2015, URL http://www.athropolis.com/sunrise/def-sol2.htm 12. Wikipedia, the free encyclopedia, 'Season', last modified on May 20, 2015, URL http://en.wikipedia.org/wiki/Season 13. Paul Schlyter, 'How to compute planetary positions', Introductory Astronomy : The Celestial Sphere URL http://astro.wsu.edu/worthey/astro/html/lec-celestial-sph.html

Page 394: ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM …myreaders.info/00_Orbital__Mechanics__-__Model_____Simulation... · ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM-MSS)

www.m

yrea

ders

.inf

o

OM-MSS Page 394 Ref. Sec 3 Position Of Sun On Celestial Sphere 1. Wikipedia, the free encyclopedia, 'Position of the Sun', last modified on April 28, 2015, URL http://en.wikipedia.org/wiki/Position_of_the_Sun 2. William B. Stine and Michael Geyer, 'The Sun’s Position', Power From The Sun, Chap 3, URL http://www.powerfromthesun.net/Book/chapter03/chapter03.html 3. Paul Schlyter, 'How The Sun's position', URL http://www.stjarnhimlen.se/comp/tutorial.html#5 4. Paul Schlyter, 'How to compute rise/set times and altitude above horizon', URL http://www.stjarnhimlen.se/comp/riset.html 5. Ed Williams, 'Sunrise/Sunset Algorithm', Aviation Formulary V1.46, accessed on March 2002, URL http://williams.best.vwh.net/sunrise_sunset_algorithm.htm 6. Wikipedia, the free encyclopedia, 'Sunrise equation', Last Modified on May 8, 2015, URL http://en.m.wikipedia.org/wiki/Sunrise_equation Ref. Sec 4 Position Of Earth On Celestial Sphere 1. David R. Williams, 'Earth Fact Sheet', NASA Goddard Space Flight Center, last updated on March 2, 2015, URL http://nssdc.gsfc.nasa.gov/planetary/factsheet/earthfact.html 2. Wikipedia, the free encyclopedia, 'Earth's orbit', last modified on 20 May 2015, URL http://en.wikipedia.org/wiki/Earth%27s_orbit 3. Keith Burnett, 'Converting RA and DEC to ALT and AZ', Approximate Astronomical Positions, Last Modified May 27, 1998, URL http://www.stargazing.net/kepler/altaz.html 4. Tom Chester, 'How To Calculate Distances, Azimuths and Elevation Angles Of Peaks', last updated on August 22, 2006, URL http://tchester.org/sgm/analysis/peaks/how_to_get_view_params.html 5. W. D. Komhyr, 'Introduction To Principles Of Astronomy', Operations Handbook, Appendix H, pp 116-121, on June, 1980, URL http://www.esrl.noaa.gov/gmd/ozwv/dobson/papers/report6/apph.html 6. Hartmut Frommert, 'General Coordinate Systems', Index of /spider/ScholarX, spider.seds.org/spider, URL http://spider.seds.org/spider/ScholarX/coord_bas.html

Page 395: ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM …myreaders.info/00_Orbital__Mechanics__-__Model_____Simulation... · ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM-MSS)

www.m

yrea

ders

.inf

o

OM-MSS Page 395 Ref. Sec 5 Satellites In Orbit Around Earth : Ephemeris Data Set. 1. Roman Starkov, 'Orbital elements', OrbiterWiki, Last modified on October 22, 2008 URL http://www.orbiterwiki.org/wiki/Orbital_elements 2. Amiko Kauderer, NASA, 'Definition of Two-line Element Set Coordinate System', Last updated on September 23, 2011, URL http://spaceflight.nasa.gov/realdata/sightings/SSapplications/Post/JavaSSOP/SSOP_Help/tle_def.html 3 T.S. Kelso, 'NORAD Two-Line Element Sets Current Data', Center for Space Standards & Innovation (CSSI), Last updated on May 21, 2015, URL http://celestrak.com/NORAD/elements/ 4. [email protected], 'Brief Introduction To TLEs And Satellite IDs', Visual Satellite Observation, Description of an orbital element set, URL http://www.satobs.org/element.html 5. Keith Burnett, 'Moon Ephemeris', Last modified on February 22, 2000, URL http://www.lunar-occultations.com/rlo/ephemeris.htm 6. Webmaster, 'Date/Epoch Converter', E.S.Q. Software, URL http://www.esqsoft.com/javascript_examples/date-to-epoch.htm Ref. Sec 6 Satellites Motion Around Earth 1. Kimberly Strong, 'Section 2 - Satellite Orbits', Phy 499S - Course Notes, Atmospheric Physics Group, Last updated on April 20, 2005, URL http://www.atmosp.physics.utoronto.ca/people/strong/phy499/section2_05.pdf 2. Ian Poole, 'Satellite Orbit Types & Definitions', Satellite Orbits Tutorial, accessed on May 22, 2015, URL http://www.radio-electronics.com/info/satellite/satellite-orbits/satellites-orbit-definitions.php 3. Michael E Brink. HND, 'An overview of celestial mechanics as applied to the process of satellite tracking', Space Week 2007, URL http://www.parc.org.za/attachments/satnews/Celestial.pdf 4. Vardan Semerjyan, 'Kepler’s equation Solver', Small Satellites, accessed on January 17, 2013, URL http://smallsats.org/2013/01/17/ 5. Christopher D. Hall, 'Orbits', Satellite Attitude Dynamics, Appendix A , accessed on January 12, 2003, URL http://www.aoe.vt.edu/~cdhall/courses/aoe4140/a_orbits.pdf 6. RPC Telecommunications, 'Introduction', Satcom Online, Lecture 2, Space Segment, Submitted on June 06, 2001, URL http://www.satcom.co.uk/print.asp?article=29 7. RPC Telecommunications, 'Kepler And Satellite Ephemeris Formulae', Lecture 2, Space Segment, Submitted on June 06, 2002, URL http://www.satcom.co.uk/article.asp?article=29&section=2 8. RPC Telecommunications, 'Satellite Orbits', Satellite School / Satellite Orbits, Submitted on November 11, 2002, URL http://www.satcom.co.uk/article.asp?article=11 9. 'Section 4: The Basics of Satellite Orbits', accessed on May 22, 2015, URL http://www.amacad.org/publications/Section_4.pdf

Page 396: ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM …myreaders.info/00_Orbital__Mechanics__-__Model_____Simulation... · ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM-MSS)

www.m

yrea

ders

.inf

o

OM-MSS Page 396 Ref. Sec 7 Satellite Pass For Earth Stn - Prediction Of Ground Trace 1. Patrick Minnis, NASA Official, 'NASA LaRC Satellite Overpass Predictor', Last Updated on Jan 16, 2007, URL http://cloudsgate2.larc.nasa.gov/cgi-bin/predict/predict.cgi 2. Sebastian Stoff, 'Orbitron - Satellite Tracking System orbitron 3.71', Orbitron website, 2007, URL http://www.stoff.pl/ 3. 'Satellite Pass Predictions', Hudson Valley Satellite Net, accessed on May 22, 2015, URL http://hvsatcom.org/ 4. Earth Orbit Objects, 'EOO_VER700_SETUP.exe', Last Updated on Aug 11, 2014, URL http://www3.telus.net/public/boucherd/eoo.html 5. T.S. Kelso, 'Orbital Coordinate Systems, Part I', Last updated on May 17, 2014, URL http://www.celestrak.com/columns/v02n01/ 6. T.S. Kelso, 'Orbital Coordinate Systems, Part II', Last updated May 17, 2014, URL http://www.celestrak.com/columns/v02n02/ 7. T.S. Kelso, 'Orbital Coordinate Systems, Part III', Last updated May 17, 2014, URL http://celestrak.com/columns/v02n03/ Ref. Calculators for Astronomical Time Conversions and Computing Position of Earth, Sun, Moon, and Satellites Motion in Orbit. 1. 'Coordinates-DMS-to-Decimal-To-DMS', www.coolconversion.com, URL http://coolconversion.com/Coordinates-Degree-minute-second-DMS-to-Decimal-To-DMS 2. 'Degrees, Minutes, Seconds to/from Decimal Degrees', www.transition.fcc.gov, URL http://transition.fcc.gov/mb/audio/bickel/DDDMMSS-decimal.html 3. 'Convert epoch to human readable date and vice versa', www.epochconverter.com, Epoch & Unix Timestamp Conversion Tools, URL http://www.epochconverter.com/ 4. 'Converting Addresses to/from Latitude/Longitude/Altitude', www.stevemorse.org, Stephen P. Morse, URL http://stevemorse.org/jcal/latlon.php 5. 'Distance and Azimuths Between Two Sets of Coordinates', www.fcc.gov, URL http://www.fcc.gov/encyclopedia/distance-and-azimuths-between-two-sets-coordinates 6. 'Distance Calculator', www.geodatasource.com, GeoDataSource, URL http://www.geodatasource.com/distance-calculator 7. 'Compute the Sun & Moon position and eclipse irradiance reduction from time and location', www.nrel.gov, MIDC SAMPA Calculator, URL http://www.nrel.gov/midc/solpos/sampa.html

Page 397: ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM …myreaders.info/00_Orbital__Mechanics__-__Model_____Simulation... · ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM-MSS)

www.m

yrea

ders

.inf

o

OM-MSS Page 397 8. 'Sun's Position to High Accuracy' Sun elevation Azimuth angle, www.pveducation.org, URL http://www.pveducation.org/pvcdrom/properties-of-sunlight/sun-position-high-accuracy 9. 'Find Sunrise, Sunset, Solar Noon and Solar Position for Any Place on Earth', www.esrl.noaa.gov, NOAA Solar Calculator, http://www.esrl.noaa.gov/gmd/grad/solcalc/ 10. 'Sun and Moon Positions, Rise and Set Times', www.largeformatphotography.info, The Sun/Moon Calculator, Jeff Conrad, URL http://www.largeformatphotography.info/sunmooncalc/ 11. 'Compute Sun and Moon Azimuth & Elevation', www.ga.gov.au, Geoscience Australia, Astronomical Information, URL http://www.ga.gov.au/geodesy/astro/smpos.jsp 12. 'Sun & Moon Position Calculator', www.satellite-calculations.com, Jens T. Satre, URL http://www.satellite-calculations.com/Satellite/suncalc.htm 13. 'Calculating the Moon's Position', www.internationalastrologers.com, LukeS, URL http://www.internationalastrologers.com/calculating_moon_position.htm 14. 'Sun & Moon Positions', sky.ccny.cuny.edu, Calculation Tools, http://sky.ccny.cuny.edu/mn/pub/sunmooncalculator2.php 15. 'Sunrise Sunset Times by Longitude-Latitude and UTC', www.calculatorsoup.com, URL http://www.calculatorsoup.com/calculators/time/sunrise_sunset.php 16. 'Calculate eccentric anomaly & true anomaly', www.jgiesen.de, Solving Kepler's Equation of Elliptical Motion, URL http://www.jgiesen.de/kepler/kepler.html 17. 'Orbit calculations', www.calsky.com, Cal Sky, Sun, Moon, Satellites, URL http://www.calsky.com/cs.cgi/Intro?obs=19155525889164 18. 'NASA LaRC Satellite Overpass Predictor', www-angler.larc.nasa.gov, NASA.gov, URL http://cloudsgate2.larc.nasa.gov/cgi-bin/predict/predict.cgi 19. 'Satellite tracker based on two line elements', www.satellite-calculations.com, Jens T. Satre, URL http://www.satellite-calculations.com/Satellite/SatTracker/sattracker.php?25544?http://www.celestrak.com/NORAD/elements/stations.txt 20. 'Satellite Look Angle Calculator', www.satellite-calculations.com, Jens T. Satre, URL http://www.satellite-calculations.com/Satellite/lookangles.htm 21. 'Satcom Calculators', www.satcom.co.uk, Satcom Online, Calculate Azimuth And Elevation Angles, URL http://www.satcom.co.uk/article.asp?article=1 22. 'AMSAT Online Satellite Pass Predictions', www.amsat.org, The Radio Amateur Satellite Corporation, URL http://www.amsat.org/amsat-new/tools/predict/ 23. 'Satellite Azimuth And Elevation Position Calculator', www.csgnetwork.com, URL http://www.csgnetwork.com/antennasatelazposcalc.html

Page 398: ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM …myreaders.info/00_Orbital__Mechanics__-__Model_____Simulation... · ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM-MSS)

www.m

yrea

ders

.inf

o

OM-MSS Page 398 24. 'Celestial to Horizon Co-ordinates Calculator', www.convertalot.com, URL http://convertalot.com/celestial_horizon_co-ordinates_calculator.html 25. 'Calculates the orbital radius and period, and flight velocity from the orbital altitude', keisan.casio.com, Keisan Online Calculator, URL http://keisan.casio.com/exec/system/1224665242 26. 'Latitude, Longitude, Height to/from ECEF (X,Y,Z)', www.oc.nps.edu, U.S. Navy website, URL http://www.oc.nps.edu/oc2902w/coord/llhxyz.htm 27. 'Converting Velocity and Position Vectors to Longitude and Latitude', stackoverflow.com , URL http://stackoverflow.com/questions/11677565/converting-velocity-and-position-vectors-to-longitude-and-latitude End of execution of 'Orbital Mechanics - Model & Simulation Software (OM-MSS)', illustrated its Scope, Capability, Accuracy, and Usage. Next Section - 10 ANNEXURE : A Collection of few related Diagrams / Help , appended offline.

Page 399: ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM …myreaders.info/00_Orbital__Mechanics__-__Model_____Simulation... · ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM-MSS)

www.m

yrea

ders

.inf

o

OM-MSS Page 399 OM-MSS Section - 10 -------------------------------------------------------------------------------------------------------66 ANNEXURE : A Collection of few OM-MSS related Diagrams / Help.

Fig-1. Solar System

A collection of celestial bodies composed of a star called the Sun and

eight known planets in elliptical orbits bound by the force of gravity.

Source Ref. http://diagramreview.com/solar-system-diagram/

Fig-2. Elliptial Orbits of Moon & Earth

The Orbits of Earth around Sun and Moon around Earth.

Source Ref. http://oceanservice.noaa.gov/education/ kits/tides/media/supp_tide06b.html

Page 400: ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM …myreaders.info/00_Orbital__Mechanics__-__Model_____Simulation... · ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM-MSS)

www.m

yrea

ders

.inf

o

OM-MSS Page 400

Fig-3. Orbit of Earth Around Sun

Earth rotates around sun with a period of approximately 365.25 days following an Ellipse of Eccentricity 0.01673 and Semi-major axis

149597870 km, which defines the Astronomical unit of distance (AU). Around 2 January, Earth is nearest from sun called Perihelion

while around 5 July it is farthest from Sun called Aphelion (around 152100000 km). The other events point are Vernal equinox around 21 March,

Autumnal equinox around 23 September, Summer solstice around 21 June and Winter solstic around 21 December. The plane of the orbit is called the plane

of the Ecliptic that makes an angle 23.44 deg (the Obliquity of the Ecliptic) with the mean Equatorial plane.

Source Book by Gerard Maral, Michel Bousquet, 'Satellite Communications Systems', Fifth Edition, John Wiley & Sons, chap. 2, Pg 29, 2002.

Page 401: ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM …myreaders.info/00_Orbital__Mechanics__-__Model_____Simulation... · ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM-MSS)

www.m

yrea

ders

.inf

o

OM-MSS Page 401

Fig- 4 & 5 Positioning of Orbit in Space

Orbit Position in Space at Epoch is defined by the Values of Kepler Orbit elements : (definations apply to both planets & Satellits) 1. Inclination 'i' of the orbit of a planet, is angle between the plane of planet's orbit and the plane containing Earth's orbital path (ecliptic).

2. Right ascension ' ' of the ascending node is the angle taken positively from 0 to 360 deg in the forward direction, between the reference direction and the

ascending node of the orbit (the intersection of the orbit with the plane of the equator crossing this plane from south to north).

3. Argument of Perigee ' ', specify angle between orbit's perigee and orbit's ascending node, measured in orbital plane and direction of motion.

4. Eccentricity 'e' of an orbit shows how much the shape of an object's orbit is different from a circle;

5. Mean Anomaly 'v' relates the position and time for a body moving in a Kepler orbit. The mean anomaly of an orbiting body is the angle through which the body

would have traveled about the center of the orbit's auxiliary circle. 'M' grows linearly with time.

A knowledge of above five parameters completely defines the trajectory of an object or satellite in space. However, the Nodal angular elongation 'u' can also be used

to define the position of the satellite in its orbit. This is the angle taken positively in the direction of motion from 0 to 360 deg between the direction of the

ascending node and the direction of the satellite (u = + v ).

Source Book by Gerard Maral, Michel Bousquet, 'Satellite Communications Systems', Fifth Edition, John Wiley & Sons, chap. 2, Pg 29, 2002. & http://www.britannica.com/EBchecked/topic/101285/celestial-mechanics/images-videos/2285/orbital-element-keplers-laws-of-planetary-motion

Page 402: ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM …myreaders.info/00_Orbital__Mechanics__-__Model_____Simulation... · ORBITAL MECHANICS - MODEL & SIMULATION SOFTWARE (OM-MSS)

www.m

yrea

ders

.inf

o

OM-MSS Page 402

Fig-5. Three Successive Satellite Passes/Orbits Around Earth

The satellites move around the Earth, taking about 95 minutes to complete an orbit.

A satellite at 300 (km) altitude has orbital period about 90 (min). In 90 (min), the earth at equator rotates about 2500 (km).

Thus, the satellite after one time period, passes over equator a point/place 2500 (km) west of the point/place it passed over in

its previous orbit. To a person on the earth directly under the orbit, a satellite appears above horizon on one side of sky,

crosses the sky, and disappears beyond the opposite horizon in about 10 (min). It reappears after 80 (min), but not over same

spot, since the earth has rotated during that time.

Source Ref. http://earthobservatory.nasa.gov/Features/OrbitsCatalog/