orejas de izaje asme-din

61
03/29/2022, 17:24:59 1 de 61 Memoria de Calculo de Orejas de Izaje de Tanques: según DIN 28086 Equipo: Orejas de izaje de trunnion OT2013-2644 Oreja DIN 28086 - 3 - 17100 - 17100 Tamaño Oreja 2 Tabla 1: de 1 a 5 Figura 4 Figura Seleccionada de 2 a 5 A-36 Material base de orejas A-36 Material base de placa de refuerzo A-36 Material base del tanque F (Kg) 4000 Carga g 1.6 Factor de Seguridad a (°) 45 Angulo de la eslinga hacia la vertical b (°) 60 Angulo entre eslinga y el eje vertical de la o R (mm) 3600 Radio exterior del tanque cercano a los puntos Se (mm) 20 Espesor actual de el casco c1 (mm) 1 Reduccion en caso el espesor de casco menor qu c2 (mm) 1 Reduccion por uso Table 0: Seleccon de Materiales Base Material Numero DIN EN ksi A-572 Gr.36 235 10037 St 37-2 10025 33000 265 A-36 275 17100 St 44-2 36000 A-572 Gr.50 295 10050 St 50-2 10025 50000 Tabla 1: Dimensiones de Oreja Tamaño 1 2 3 4 5 b (mm) 90 110 160 200 240 d (mm) 38 38 50 62 74 h (mm) 55 60 75 95 115 l (mm) 170 220 320 390 470 r1 (mm) 55 71 105 130 155 r2 (mm) 20 30 40 50 60 Material L Material V Material B Ku (N/mm2)

Upload: luis-enrique-aguilar-montoya

Post on 01-Jan-2016

4.478 views

Category:

Documents


451 download

TRANSCRIPT

04/19/2023, 21:35:47

1 de 40

Memoria de Calculo de Orejas de Izaje de Tanques: según DIN 28086

Equipo: Orejas de izaje de trunnion OT2013-2644

Oreja DIN 28086 - 3 - 17100 - 17100Tamaño Oreja 2 Tabla 1: de 1 a 5

Figura 4 Figura Seleccionada de 2 a 5A-36 Material base de orejasA-36 Material base de placa de refuerzoA-36 Material base del tanque

F (Kg) 4000 Carga

g 1.6 Factor de Seguridad

a (°) 45 Angulo de la eslinga hacia la vertical

b (°) 60 Angulo entre eslinga y el eje vertical de la orejaR (mm) 3600 Radio exterior del tanque cercano a los puntos de cargaSe (mm) 20 Espesor actual de el cascoc1 (mm) 1 Reduccion en caso el espesor de casco menor que el disc2 (mm) 1 Reduccion por uso

Table 0: Seleccon de Materiales BaseMaterial Numero DIN EN ksi

A-572 Gr.36 235 10037 St 37-2 10025 33000265

A-36 275 17100 St 44-2 36000A-572 Gr.50 295 10050 St 50-2 10025 50000

Tabla 1: Dimensiones de OrejaTamaño 1 2 3 4 5b (mm) 90 110 160 200 240d (mm) 38 38 50 62 74h (mm) 55 60 75 95 115l (mm) 170 220 320 390 470

r1 (mm) 55 71 105 130 155r2 (mm) 20 30 40 50 60s1 (mm) 10 15 15 20 25 Elaborado por: Luis Enrique Aguilar Montoya

Material LMaterial VMaterial B

Ku (N/mm2)

04/19/2023, 21:35:47

2 de 40

s2 (mm) A ser calculado como se especifica en subclase 5.4 Inspector QA/QC FLSmidth

Simbolo Valor Cantidadn 2 Numero de orejas uniformemente cargadas

a1 (mm) #ADDIN? Espesor de garganta entre la oreja y la placa de refuerzoa2 (mm) #ADDIN? Espesor de garganta entre el casco y la placa de refuerzoS1 (mm) 15 Espesor de la orejaS2 (mm) #ADDIN? Espesor de la plancha de refuerzoSo (mm) #ADDIN? Espesor del casco con reducciones (So=Se-C1-C2)

275 Parametro de esfuerzo de placa de refuerzo275 Parametro de esfuerzo de tanque

A 76 Valor intermediof #ADDIN? Factor de correccion de cargaU #ADDIN? Valor intermedioW 1 Factor de incremento de carga

tamaño de oreja 1 2 3 4 5tamaño de grillete 5 5 10 16 25

50000 50000 100000 160000 250000

Tamaño nominal de orejas

1 2 3 4 5fig. 2 19000 77000 131000 218000 332000fig. 3 38000 154000 262000 436000 664000

0 to 15 ° 36000 149000 254000 422000 642000Over 15 ° up to 30 ° 33000 133000 227000 379000 576000Over 30 ° up to 45 ° 27000 108000 185000 310000 470000Over 45 up to 60 ° 19000 77000 131000 218000 332000

0 to 15 ° 55000 223000 380000 633000 962000Over 15 ° up to 30 ° 50000 199000 341000 567000 863000Over 30 up to 45 ° 40000 163000 278000 464000 704000Over 45 up to 60 ° 29000 115000 197000 328000 499000

cf. Figura Cant.Orejas Orden de las orejas2 1 Oreja Simple (cf. figura 2)3 2 Dos orejas con las cabezas cruzadas (cf. figura 3)

Tabla 2: Cantidades, simbolos y unidades

KVu (N/mm2)KBu (N/mm2)

Tabla 3: Maxima carga de trabajo segura de grilletes, F, de acuerdo con DIN 82016 o DIN 82101

FS, en NTabla 4: Maxima carga segura de trabajo, FG para diferentes orden de las orejas

Angulo a Maxima carga segura de trabajo, en N, a 20°C con KL=240N/mm2

04/19/2023, 21:35:47

3 de 40

4 2 Dos orejas sin cabezas cruzadas (cf. figura 4)5 3 Tres orejas (cf. figura 5)

1 Calculos2 5.2 Maxima carga de trabajo segura de grilletes3 (1) FSe = FLe = N 282844 FGe Carga efectiva N 400005 Tamaño de grillete 56 FS Maxima carga segura de trabajo N 500007 (2) FSe<= FS table 3 Cumple

8 5.3 Maxima carga de trabajo segura de orejas9

10 (4) FLe= FSe11 N 7700012 (5) FGe<= Cumple13 5.4 Espesor de plancha de refuerzo y espesores de garganta de soldaduras14 Tabla 5: Factor de incremento de carga15 b <=60° >60°16 W 1 217 W 118 (6) S2= mm 6.419 Se<= S2<=1.5*Se mm #ADDIN?20 Espesor de garganta de soldadura a121 S1 mm 15.022 S2 mm #ADDIN?23 (7) a1 >= 0.7*S1min mm #ADDIN?24 a1 mm #ADDIN?25 Espesor de garganta de soldadura a226 (8) a2 >= 0.7*S2min mm #ADDIN?27 a2 mm #ADDIN?28 5.5 Capacidad de carga del tanque29 Tabla 6: Valor Intermedio A30 Tamano de oreja 1 2 3 4 531 A 59 76 113 139 16732 A 7633 (9) U= A/((R*So)^(1/2)) #ADDIN?

FGe/(n*cosa)

(3) FGu= FG*KLu/240

FGuFGu tabla 4

0.5*(FLe*W*g/KVu)^(1/2)

04/19/2023, 21:35:47

4 de 40

34 f #ADDIN?35 (10) FB= N #ADDIN?36 (11) FLe<= FB/W #ADDIN?

f*So^2*KBu/g

0.00 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60 1.80 2.001.00

10.00

100.00

U - factor de correccion de carga

U

f

04/19/2023, 21:35:47

5 de 40

Memoria de Calculo de Oreja de Izaje: según ASME BTH-1

Equipo: Atril de Armado de contraejes Fuller6,000 Carga (Kg)

3.6 Nd (2-2.1 o 2-2.2)2 Numero de orejas

A36 Material (A36 o A572)50 Dh [mm] Diametro de agujero50 be [mm] Ancho de oreja20 t [mm] Espesor de oreja75 R [mm] Radio exterior8 Soldadura Filete [in] Altura de pierna

E71T-1 E7018/E71T-1 Material de aporteY Y(si) o N(no) Terminacion redondeada

40 Dp [mm] Diametro de grillete50 a [mm] Altura de oreja

115 H [mm] Material base a eje

Cumple Esfuerzo de TraccionCumple Resistencia al corte a través del agujeroCumple Esfuerzo cortante en SoldaduraCumple Garganta de Filete mínima 3-3.4.3

Nd factor de Diseño (para. 3-1.3)

2-2.1 Categoría de Diseño A: cuando la magnitud y la variación de las cargas aplicadas son predecibles, donde la carga y condiciones ambientales se definen con precisión o no grave.

2-2.2

Elaborado por: Luis Enrique Aguilar Montoya

2.00 para los estados límite de fluencia o pandeo,

2.40 para los estados límite de fractura y para el diseño de conexión.

Categoría de Diseño B: cuando la magnitud y la variación de las cargas aplicadas no son predecibles, las condiciones de carga y del medio ambiente son graves, o no se define con precisión.

3.00 para los estados límite de fluencia o pandeo,

3.60 para los estados límite de fractura y para el diseño de conexión.

04/19/2023, 21:35:47

6 de 40

Inspector QA/QC FLSmidth1 Oreja con conexión para grillete: ASME BTH-12 Descripcion: Atril de Armado de contraejes Fuller3 13,228 W [lb] Peso de la carga4 3.6 Nd Design factor5 Material:6 A36 Material Material A36 A572 A516 E7018/E71T-1

7 36,000 Fy [psi] Limite elastico Fy [psi] 36,000 50,000 16,000 58,0008 58,000 Fu [psi] Resistencia a la traccion Fu [psi] 58,000 65,000 30,000 70,0009 29,000,000 E [psi] Modulo de Elesticidad E [psi] 29,000,000 29,000,000 9,800,000

10 Dimensiones:11 1.97 Dh [in] Diametro de agujero12 5.91 w [in] Ancho de oreja13 0.79 t [in] Espesor de oreja14 2.95 R [in] Radio Exterior de oreja15 0.31 Leg [in] Altura de filete de soldadura16 Esfuerzo de Traccion:17 Ft [psi] = Fy/Nd Esfuerzo de traccion admisible (eq 3-1) psi 10,00018 A [in^2] = t*(w-Dh) Area en tension in^2 3.1019 St [psi] = W/A Esfuerzo de traccion psi 4,26720 CheckSt = St < Ft Cumple21 Resistencia al Corte a travez del agujero:22 Av [in^2] = 2*(R-(Dh/2)*cos(radians(45)))*t 23 Area total de dos planos de corte (eq 3-50) in^2 3.55424 Pv [lb] = 0.7*Fu/(1.2*Nd)*Av Doble plano de resistencia al corte (eq 3-49)25 lb 33,40126 CheckPv = W < Pv Cumple27 Esfuerzo Cortante en la Soldadura:28 Exx [psi] = Fu si Fu<Exx Resistencia a la tracción de la soldadura del metal de aporte psi 58,00029 Fv [psi] = 0.6*Exx/(1.2*Nd) Esfuerzo cortante de soldadura admisible(eq 3-53) psi 8,05630 Aw [in^2] = (2*w+2*t) * (0.707*Leg) Área de la soldadura in^2 2.98131 Fw [lb] = Fv*Aw Carga de soldadura admisible lb 24,01132 CheckFw = W < Fw Cumple33 Garganta de Soldadura minima: 3-3.4.334 garganta_3-3 [in] = IF(K14<=0.25,0.125,IF(K14<=0.5,0.188,(IF(K14<=0.75,0.25,(IF(K14<1.5,0.313))))))

04/19/2023, 21:35:47

7 de 40

35 in 0.18836 check_garganta = Pierna filete*0.707 >=garganta_3-3 Cumple

04/19/2023, 21:35:47

8 de 40

Memoria de Calculo de Oreja de Izaje: según ASME BTH-1

Equipo: Atril de Armado de contraejes Fuller5,000 Carga (Kg)

3.6 Nd (2-2.1 o 2-2.2)4 Numero de orejas

A36 Material (A36 o A572)55 Dh [mm] Diametro de agujero50 be [mm] Ancho de oreja20 t [mm] Espesor de oreja77 R [mm] Radio exterior6 Soldadura Filete [in] Altura de pierna

E71T-1 E7018/E71T-1 Material de aporteY Y(si) o N(no) Terminacion redondeada

40 Dp [mm] Diametro de grillete50 a [mm] Altura de oreja

115 H [mm] Material base a eje

Cumple Esfuerzo de TraccionCumple Resistencia al corte a través del agujeroCumple Esfuerzo cortante en SoldaduraCumple Garganta de Filete mínima 3-3.4.3

Nd factor de Diseño (para. 3-1.3)

2-2.1 Categoría de Diseño A: cuando la magnitud y la variación de las cargas aplicadas son predecibles, donde la carga y condiciones ambientales se definen con precisión o no grave.

2-2.2

Elaborado por: Luis Enrique Aguilar Montoya

2.00 para los estados límite de fluencia o pandeo,

2.40 para los estados límite de fractura y para el diseño de conexión.

Categoría de Diseño B: cuando la magnitud y la variación de las cargas aplicadas no son predecibles, las condiciones de carga y del medio ambiente son graves, o no se define con precisión.

3.00 para los estados límite de fluencia o pandeo,

3.60 para los estados límite de fractura y para el diseño de conexión.

04/19/2023, 21:35:47

9 de 40

Inspector QA/QC FLSmidth1 Oreja con conexión para grillete: ASME BTH-12 Descripcion: Atril de Armado de contraejes Fuller3 11,023 W [lb] Peso de la carga4 3.6 Nd Design factor5 Material:6 A36 Material Material A36 A572 A516 E7018/E71T-1

7 36,000 Fy [psi] Limite elastico Fy [psi] 36,000 50,000 16,000 58,0008 58,000 Fu [psi] Resistencia a la traccion Fu [psi] 58,000 65,000 30,000 70,0009 29,000,000 E [psi] Modulo de Elesticidad E [psi] 29,000,000 29,000,000 9,800,000

10 Dimensiones:11 2.17 Dh [in] Diametro de agujero12 6.10 w [in] Ancho de oreja13 0.79 t [in] Espesor de oreja14 3.03 R [in] Radio Exterior de oreja15 0.24 Leg [in] Altura de filete de soldadura16 Esfuerzo de Traccion:17 Ft [psi] = Fy/Nd Esfuerzo de traccion admisible (eq 3-1) psi 10,00018 A [in^2] = t*(w-Dh) Area en tension in^2 3.1019 St [psi] = W/A Esfuerzo de traccion psi 3,55620 CheckSt = St < Ft Cumple21 Resistencia al Corte a travez del agujero:22 Av [in^2] = 2*(R-(Dh/2)*cos(radians(45)))*t 23 Area total de dos planos de corte (eq 3-50) in^2 3.56824 Pv [lb] = 0.7*Fu/(1.2*Nd)*Av Doble plano de resistencia al corte (eq 3-49)25 lb 33,53626 CheckPv = W < Pv Cumple27 Esfuerzo Cortante en la Soldadura:28 Exx [psi] = Fu si Fu<Exx Resistencia a la tracción de la soldadura del metal de aporte psi 58,00029 Fv [psi] = 0.6*Exx/(1.2*Nd) Esfuerzo cortante de soldadura admisible(eq 3-53) psi 8,05630 Aw [in^2] = (2*w+2*t) * (0.707*Leg) Área de la soldadura in^2 2.30131 Fw [lb] = Fv*Aw Carga de soldadura admisible lb 18,53832 CheckFw = W < Fw Cumple33 Garganta de Soldadura minima: 3-3.4.334 garganta_3-3 [in] = IF(K14<=0.25,0.125,IF(K14<=0.5,0.188,(IF(K14<=0.75,0.25,(IF(K14<1.5,0.313))))))

04/19/2023, 21:35:47

10 de 40

35 in 0.12536 check_garganta = Pierna filete*0.707 >=garganta_3-3 Cumple

Sample CalculationThickness of Lug (t) = 20 mmWidth of Lug (W) = 200 mmRadius of Circular Section (R) = 100 mm

= 60 mm

= 57 mmDistance from centre of hole to Welding (h)= 100 mm

Area of Cross Section = 20 x 200 = 4000Length of Crack ( a ) = 4.5 mm

Temperature (T) = 15

= (60 + 0.2 T) Mpa. Sqrt(m)For -140 < T < 150

= 63

Check For Geometry

= 100 - 60/ 2 = 70 mm

= 100 - 60/ 2 = 70 mm

= 100 - 60/ 2 = 70 mm

By Yeild TheoryYeild Strength of Plate = 345 MPaEffective width of plate = 200 - 60- 2 x4.5 = 131Tensile Load capacity = 0.9 x 345 x 131 x 20/1000 =

By Fracture Theory

=

=

Where, d =d = 4.5 / (60/ 2 + 4.5) = 0.13

= 0.5 x (3 -0.13) [ 1 + 1.243 x (1 -0.13)^3 ]= 2.61

s = Load (P) = P / 4000 = 0.0003Area

=63 = 2.61 x 0.00025P x sqrt(3.1416 x 0.0045)

1              Lifting Lug Load Capacity Vs Crack length Calculation

Diameter of Hole ( Dh)

Diameter of Pin ( Dp)

Distance from centre of hole to edge of crack = (Dh / 2 + a) =oC

Fracture Toughness ( k1c)

K1c oC

We =R- Dh/2

We =R- Dh/2

We =R- Dh/2

K1c Fd . s. Sqrt( p. a)

Fd 0.5 x (3 - d) [ 1 + 1.243 x (1 - d)3 ]

a / (Dh / 2 + a)

Fd

K1c Fd . s. Sqrt( p. a)

Load ( P) = 812 kN

Temp = 30 Degree Celcius Fracture Theory

1 31 30 66 0.032 3.157 1492

1.5 31.5 30 66 0.048 3.059 1257

2 32 30 66 0.063 2.97 1121

2.5 32.5 30 66 0.077 2.89 1031

3 33 30 66 0.091 2.812 967

3.5 33.5 30 66 0.104 2.743 918

4 34 30 66 0.118 2.67 882

5 35 30 66 0.143 2.546 827

5.8 35.8 30 66 0.162 2.457 7967 37 30 66 0.189 2.337 7628 38 30 66 0.211 2.246 7419 39 30 66 0.231 2.167 725

10 40 30 66 0.25 2.096 711

Temp = 15 Degree Celcius Fracture Theory

1 31 15 63 0.032 3.157 1424

1.5 31.5 15 63 0.048 3.059 1200

2 32 15 63 0.063 2.97 1070

2.5 32.5 15 63 0.077 2.89 984

3 33 15 63 0.091 2.812 923

3.5 33.5 15 63 0.104 2.743 876

4 34 15 63 0.118 2.67 842

4.5 34.5 15 63 0.13 2.61 8126 36 15 63 0.167 2.434 7547 37 15 63 0.189 2.337 7278 38 15 63 0.211 2.246 7089 39 15 63 0.231 2.167 692

10 40 15 63 0.25 2.096 678

Length of Crack ( a )

(mm) (Dh / 2 + a)Temperature (T) oC

Fracture Toughness

( k1c) d = a / (Dh / 2 + a) Fd

Load (P) (kN) -

Fracture Theory

Length of Crack ( a )

(mm) (Dh / 2 + a)Temperature (T) oC

Fracture Toughness

( k1c) d = a / (Dh / 2 + a) Fd

Load (P) (kN) -

Fracture Theory

Temp = Zero Degree Celcius Fracture Theory

1 31 0 60 0.032 3.157 1356

1.5 31.5 0 60 0.048 3.059 1143

2 32 0 60 0.063 2.97 1019

2.5 32.5 0 60 0.077 2.89 937

3 33 0 60 0.091 2.812 879

3.5 33.5 0 60 0.104 2.743 834

3.7 33.7 0 60 0.11 2.711 8215 35 0 60 0.143 2.546 7526 36 0 60 0.167 2.434 7187 37 0 60 0.189 2.337 6938 38 0 60 0.211 2.246 6749 39 0 60 0.231 2.167 659

10 40 0 60 0.25 2.096 646

Temp = -15 Degree Celcius Fracture Theory

1 31 -15 57 0.032 3.157 1289

1.5 31.5 -15 57 0.048 3.059 1086

2 32 -15 57 0.063 2.97 968

2.5 32.5 -15 57 0.077 2.89 890

3 33 -15 57 0.091 2.812 835

3.1 33.1 -15 57 0.094 2.796 8264 34 -15 57 0.118 2.67 7625 35 -15 57 0.143 2.546 7156 36 -15 57 0.167 2.434 6827 37 -15 57 0.189 2.337 6588 38 -15 57 0.211 2.246 6409 39 -15 57 0.231 2.167 626

10 40 -15 57 0.25 2.096 614

Temp = -30 Degree Celcius Fracture Theory

Length of Crack ( a )

(mm) (Dh / 2 + a)Temperature (T) oC

Fracture Toughness

( k1c) d = a / (Dh / 2 + a) Fd

Load (P) (kN) -

Fracture Theory

Length of Crack ( a )

(mm) (Dh / 2 + a)Temperature (T) oC

Fracture Toughness

( k1c) d = a / (Dh / 2 + a) Fd

Load (P) (kN) -

Fracture Theory

1 31 -30 54 0.032 3.157 1221

1.5 31.5 -30 54 0.048 3.059 1029

2 32 -30 54 0.063 2.97 918

2.5 32.5 -30 54 0.077 2.89 843

2.6 32.6 -30 54 0.08 2.873 8323.5 33.5 -30 54 0.104 2.743 7514 34 -30 54 0.118 2.67 7225 35 -30 54 0.143 2.546 6776 36 -30 54 0.167 2.434 6467 37 -30 54 0.189 2.337 6238 38 -30 54 0.211 2.246 6079 39 -30 54 0.231 2.167 593

10 40 -30 54 0.25 2.096 581

Temp = -45 Degree Celcius Fracture Theory

1 31 -45 51 0.032 3.157 1153

1.5 31.5 -45 51 0.048 3.059 971

2 32 -45 51 0.063 2.97 867

2.15 32.15 -45 51 0.067 2.947 8423 33 -45 51 0.091 2.812 747

3.5 33.5 -45 51 0.104 2.743 7094 34 -45 51 0.118 2.67 6825 35 -45 51 0.143 2.546 6396 36 -45 51 0.167 2.434 6107 37 -45 51 0.189 2.337 5898 38 -45 51 0.211 2.246 5739 39 -45 51 0.231 2.167 560

10 40 -45 51 0.25 2.096 549

Length of Crack ( a )

(mm) (Dh / 2 + a)Temperature (T) oC

Fracture Toughness

( k1c) d = a / (Dh / 2 + a) Fd

Load (P) (kN) -

Fracture Theory

Length of Crack ( a )

(mm) (Dh / 2 + a)Temperature (T) oC

Fracture Toughness

( k1c) d = a / (Dh / 2 + a) Fd

Load (P) (kN) -

Fracture Theory

Kawish Shaikh P.Eng. UofC

> Dh/4 ; Hence OK

> 1.5xDh ; Hence OK

Both side of Hole

35 mm

Mpa. Sqrt(m) (60 for Steel WT Caterary 4)

> Dh/2 ; Hence OK

< 5t ; Hence OK

> 2t ; Hence OK

mm814 kN

P

Crack Lenth (a) Vs Tensile Load (P)

mm2

LOAD (P)

100

mm

200 mm

100

mm

60 mm Dia. hole

Crack Length (a)

Fracture Theory

601 138 857 345 Net Section will Yeild before Fracture

510 137 851 345 Net Section will Yeild before Fracture

458 136 845 345 Net Section will Yeild before Fracture

424 135 838 345 Net Section will Yeild before Fracture

401 134 832 345 Net Section will Yeild before Fracture

383 133 826 345 Net Section will Yeild before Fracture

371 132 820 345 Net Section will Yeild before Fracture

354 130 807 345 Net Section will Yeild before Fracture

344 128.4 797 345 Net Section will Fracture

336 126 782 345 Net Section will Fracture332 124 770 345 Net Section will Fracture330 122 758 345 Net Section will Fracture329 120 745 345 Net Section will Fracture

Fracture Theory

573 138 857 345 Net Section will Yeild before Fracture

487 137 851 345 Net Section will Yeild before Fracture

437 136 845 345 Net Section will Yeild before Fracture

405 135 838 345 Net Section will Yeild before Fracture

383 134 832 345 Net Section will Yeild before Fracture

366 133 826 345 Net Section will Yeild before Fracture

354 132 820 345 Net Section will Yeild before Fracture

344 131 814 345 Net Section will Fracture

327 128 795 345 Net Section will Fracture

321 126 782 345 Net Section will Fracture

317 124 770 345 Net Section will Fracture

315 122 758 345 Net Section will Fracture

314 120 745 345 Net Section will Fracture

Yeild Theory

Stress in the Net Section

Effective width of

Plate (mm)

Load (P) (kN) -Yeild

TheoryYeild Stress (s)

Yeild Theory

Stress in the Net Section

Effective width of

Plate (mm)

Load (P) (kN) -Yeild

TheoryYeild Stress (s)

0 2 4 6 8 10 120

200

400

600

800

1000

1200

1400

1600Crack Length (a) VS Lug Capacity (kN) for 30 oC

Load (P) (kN) - Fracture Theory

Load (P) (kN) -Yeild Theory

a (mm)

Load

(kN

)

0 2 4 6 8 10 120

200

400

600

800

1000

1200

1400

1600Crack Length (a) VS Lug Capacity (kN) for 15 oC

Load (P) (kN) - Fracture Theory

Load (P) (kN) -Yeild Theory

a (mm)

Load

(kN

)

Fracture Theory

546 138 857 345 Net Section will Yeild before Fracture

463 137 851 345 Net Section will Yeild before Fracture

416 136 845 345 Net Section will Yeild before Fracture

386 135 838 345 Net Section will Yeild before Fracture

364 134 832 345 Net Section will Yeild before Fracture

349 133 826 345 Net Section will Yeild before Fracture

344 132.6 823 345 Net Section will Fracture

321 130 807 345 Net Section will Fracture

312 128 795 345 Net Section will Fracture

305 126 782 345 Net Section will Fracture

302 124 770 345 Net Section will Fracture

300 122 758 345 Net Section will Fracture

299 120 745 345 Net Section will Fracture

Fracture Theory

519 138 857 345 Net Section will Yeild before Fracture

440 137 851 345 Net Section will Yeild before Fracture

396 136 845 345 Net Section will Yeild before Fracture

366 135 838 345 Net Section will Yeild before Fracture

346 134 832 345 Net Section will Yeild before Fracture

343 133.8 831 345 Net Section will Fracture

321 132 820 345 Net Section will Fracture

305 130 807 345 Net Section will Fracture

296 128 795 345 Net Section will Fracture

290 126 782 345 Net Section will Fracture

287 124 770 345 Net Section will Fracture

285 122 758 345 Net Section will Fracture

284 120 745 345 Net Section will Fracture

Fracture Theory

Yeild Theory

Stress in the Net Section

Effective width of

Plate (mm)

Load (P) (kN) -Yeild

TheoryYeild Stress (s)

Yeild Theory

Stress in the Net Section

Effective width of

Plate (mm)

Load (P) (kN) -Yeild

TheoryYeild Stress (s)

Yeild Theory

0 2 4 6 8 10 120

200

400

600

800

1000

1200

1400

1600Crack Length (a) VS Lug Capacity (kN) for 0 oC

Load (P) (kN) - Fracture Theory

Load (P) (kN) -Yeild Theory

a (mm)

Load

(kN

)

0 2 4 6 8 10 120

200

400

600

800

1000

1200

1400Crack Length (a) VS Lug Capacity (kN) for -15 oC

Load (P) (kN) - Fracture Theory

Load (P) (kN) -Yeild Theory

a (mm)

Load

(kN

)

0 2 4 6 8 10 120

200

400

600

800

1000

1200

1400Crack Length (a) VS Lug Capacity (kN) for -30 oC

Load (P) (kN) - Fracture Theory

Load (P) (kN) -Yeild Theory

a (mm)

Load

(kN

)

491 138 857 345 Net Section will Yeild before Fracture

417 137 851 345 Net Section will Yeild before Fracture

375 136 845 345 Net Section will Yeild before Fracture

347 135 838 345 Net Section will Yeild before Fracture

343 134.8 837 345 Net Section will Fracture

314 133 826 345 Net Section will Fracture

304 132 820 345 Net Section will Fracture

289 130 807 345 Net Section will Fracture

281 128 795 345 Net Section will Fracture

275 126 782 345 Net Section will Fracture

272 124 770 345 Net Section will Fracture

270 122 758 345 Net Section will Fracture

269 120 745 345 Net Section will Fracture

Fracture Theory

464 138 857 345 Net Section will Yeild before Fracture

394 137 851 345 Net Section will Yeild before Fracture

354 136 845 345 Net Section will Yeild before Fracture

345 135.7 843 345 Net Section will Fracture

310 134 832 345 Net Section will Fracture

296 133 826 345 Net Section will Fracture

287 132 820 345 Net Section will Fracture

273 130 807 345 Net Section will Fracture

265 128 795 345 Net Section will Fracture

260 126 782 345 Net Section will Fracture

257 124 770 345 Net Section will Fracture

255 122 758 345 Net Section will Fracture

254 120 745 345 Net Section will Fracture

Stress in the Net Section

Effective width of

Plate (mm)

Load (P) (kN) -Yeild

TheoryYeild Stress (s)

Yeild Theory

Stress in the Net Section

Effective width of

Plate (mm)

Load (P) (kN) -Yeild

TheoryYeild Stress (s)

0 2 4 6 8 10 120

200

400

600

800

1000

1200

1400Crack Length (a) VS Lug Capacity (kN) for -30 oC

Load (P) (kN) - Fracture Theory

Load (P) (kN) -Yeild Theory

a (mm)

Load

(kN

)

0 2 4 6 8 10 120

200

400

600

800

1000

1200

1400Crack Length (a) VS Lug Capacity (kN) for -45 oC

Load (P) (kN) - Fracture Theory

Load (P) (kN) -Yeild Theory

a (mm)

Load

(kN

)

0 2 4 6 8 10 120

200

400

600

800

1000

1200

1400

1600Crack Length (a) VS Lug Capacity (kN) for 30 oC

Load (P) (kN) - Fracture Theory

Load (P) (kN) -Yeild Theory

a (mm)

Load

(kN

)

0 2 4 6 8 10 120

200

400

600

800

1000

1200

1400

1600Crack Length (a) VS Lug Capacity (kN)

Temp = 30 Degree Celcius

Temp = 15 Degree Celcius

Temp = Zero Degree Celcius

Temp = -15 Degree Celcius

Temp = -45 Degree Celcius

Load (P) (kN) -Yeild Theory

a (mm)

Load

(kN

)

0 2 4 6 8 10 120

200

400

600

800

1000

1200

1400

1600Crack Length (a) VS Lug Capacity (kN) for 15 oC

Load (P) (kN) - Fracture Theory

Load (P) (kN) -Yeild Theory

a (mm)

Load

(kN

)

0 2 4 6 8 10 120

200

400

600

800

1000

1200

1400

1600Crack Length (a) VS Lug Capacity (kN)

Temp = 30 Degree Celcius

Temp = 15 Degree Celcius

Temp = Zero Degree Celcius

Temp = -15 Degree Celcius

Temp = -45 Degree Celcius

Load (P) (kN) -Yeild Theory

a (mm)

Load

(kN

)

0 2 4 6 8 10 120

200

400

600

800

1000

1200

1400

1600Crack Length (a) VS Lug Capacity (kN) for 0 oC

Load (P) (kN) - Fracture Theory

Load (P) (kN) -Yeild Theory

a (mm)

Load

(kN

)

0 2 4 6 8 10 120

200

400

600

800

1000

1200

1400Crack Length (a) VS Lug Capacity (kN) for -15 oC

Load (P) (kN) - Fracture Theory

Load (P) (kN) -Yeild Theory

a (mm)

Load

(kN

)

0 2 4 6 8 10 120

200

400

600

800

1000

1200

1400Crack Length (a) VS Lug Capacity (kN) for -30 oC

Load (P) (kN) - Fracture Theory

Load (P) (kN) -Yeild Theory

a (mm)

Load

(kN

)

0 2 4 6 8 10 120

200

400

600

800

1000

1200

1400Crack Length (a) VS Lug Capacity (kN) for -30 oC

Load (P) (kN) - Fracture Theory

Load (P) (kN) -Yeild Theory

a (mm)

Load

(kN

)

0 2 4 6 8 10 120

200

400

600

800

1000

1200

1400Crack Length (a) VS Lug Capacity (kN) for -45 oC

Load (P) (kN) - Fracture Theory

Load (P) (kN) -Yeild Theory

a (mm)

Load

(kN

)

0 2 4 6 8 10 120

200

400

600

800

1000

1200

1400

1600Crack Length (a) VS Lug Capacity (kN)

Temp = 30 Degree Celcius

Temp = 15 Degree Celcius

Temp = Zero Degree Celcius

Temp = -15 Degree Celcius

Temp = -45 Degree Celcius

Load (P) (kN) -Yeild Theory

a (mm)

Load

(kN

)

0 2 4 6 8 10 120

200

400

600

800

1000

1200

1400

1600Crack Length (a) VS Lug Capacity (kN)

Temp = 30 Degree Celcius

Temp = 15 Degree Celcius

Temp = Zero Degree Celcius

Temp = -15 Degree Celcius

Temp = -45 Degree Celcius

Load (P) (kN) -Yeild Theory

a (mm) Lo

ad (k

N)

Sample CalculationThickness of Lug (t) = 20 mmWidth of Lug (W) = 200 mmRadius of Circular Section (R) = 100 mm

= 60 mm

= 57 mmDistance from centre of hole to Welding (h)= 100 mm

Area of Cross Section = 20 x 200 = 4000Length of Crack ( a ) = 4.5 mm

Temperature (T) = 15

= (40 + 0.2 T) Mpa. Sqrt(m)For -140 < T < 150

= 43

Check For Geometry

= 100 - 60/ 2 = 70 mm

= 100 - 60/ 2 = 70 mm

= 100 - 60/ 2 = 70 mm

By Yeild TheoryYeild Strength of Plate = 345 MPaEffective width of plate = 200 - 60- 2 x4.5 = 131Tensile Load capacity = 0.9 x 345 x 131 x 20/1000 =

By Fracture Theory

=

=

Where, d =d = 4.5 / (60/ 2 + 4.5) = 0.13

= 0.5 x (3 -0.13) [ 1 + 1.243 x (1 -0.13)^3 ]= 2.61

s = Load (P) = P / 4000 = 0.0003Area

=43 = 2.61 x 0.00025P x sqrt(3.1416 x 0.0045)

1              Lifting Lug Load Capacity Vs Crack length Calculation

Diameter of Hole ( Dh)

Diameter of Pin ( Dp)

Distance from centre of hole to edge of crack = (Dh / 2 + a) =oC

Fracture Toughness ( k1c)

K1c oC

We =R- Dh/2

We =R- Dh/2

We =R- Dh/2

K1c Fd . s. Sqrt( p. a)

Fd 0.5 x (3 - d) [ 1 + 1.243 x (1 - d)3 ]

a / (Dh / 2 + a)

Fd

K1c Fd . s. Sqrt( p. a)

Load ( P) = 554 kN

Temp = 30 Degree Celcius Fracture Theory

1 31 30 46 0.032 3.157 1040

1.5 31.5 30 46 0.048 3.059 876

2 32 30 46 0.063 2.97 7822.5 32.5 30 46 0.077 2.89 7183 33 30 46 0.091 2.812 674

3.5 33.5 30 46 0.104 2.743 6404 34 30 46 0.118 2.67 6155 35 30 46 0.143 2.546 577

5.8 35.8 30 46 0.162 2.457 5557 37 30 46 0.189 2.337 5318 38 30 46 0.211 2.246 5179 39 30 46 0.231 2.167 505

10 40 30 46 0.25 2.096 495

Temp = 15 Degree Celcius Fracture Theory

1 31 15 43 0.032 3.157 972

1.5 31.5 15 43 0.048 3.059 8192 32 15 43 0.063 2.97 731

2.5 32.5 15 43 0.077 2.89 6723 33 15 43 0.091 2.812 630

3.5 33.5 15 43 0.104 2.743 5984 34 15 43 0.118 2.67 575

4.5 34.5 15 43 0.13 2.61 5546 36 15 43 0.167 2.434 5157 37 15 43 0.189 2.337 4968 38 15 43 0.211 2.246 4839 39 15 43 0.231 2.167 472

10 40 15 43 0.25 2.096 463

Length of Crack ( a )

(mm) (Dh / 2 + a)Temperature (T) oC

Fracture Toughness

( k1c) d = a / (Dh / 2 + a) Fd

Load (P) (kN) -

Fracture Theory

Length of Crack ( a )

(mm) (Dh / 2 + a)Temperature (T) oC

Fracture Toughness

( k1c) d = a / (Dh / 2 + a) Fd

Load (P) (kN) -

Fracture Theory

Temp = Zero Degree Celcius Fracture Theory

1 31 0 40 0.032 3.157 904

1.5 31.5 0 40 0.048 3.059 7622 32 0 40 0.063 2.97 680

2.5 32.5 0 40 0.077 2.89 6253 33 0 40 0.091 2.812 586

3.5 33.5 0 40 0.104 2.743 5563.7 33.7 0 40 0.11 2.711 5475 35 0 40 0.143 2.546 5016 36 0 40 0.167 2.434 4797 37 0 40 0.189 2.337 4628 38 0 40 0.211 2.246 4499 39 0 40 0.231 2.167 439

10 40 0 40 0.25 2.096 431

Temp = -15 Degree Celcius Fracture Theory

1 31 -15 37 0.032 3.157 8361.5 31.5 -15 37 0.048 3.059 7052 32 -15 37 0.063 2.97 629

2.5 32.5 -15 37 0.077 2.89 5783 33 -15 37 0.091 2.812 542

3.1 33.1 -15 37 0.094 2.796 5364 34 -15 37 0.118 2.67 4945 35 -15 37 0.143 2.546 4646 36 -15 37 0.167 2.434 4437 37 -15 37 0.189 2.337 4278 38 -15 37 0.211 2.246 4169 39 -15 37 0.231 2.167 406

10 40 -15 37 0.25 2.096 398

Temp = -30 Degree Celcius Fracture Theory

Length of Crack ( a )

(mm) (Dh / 2 + a)Temperature (T) oC

Fracture Toughness

( k1c) d = a / (Dh / 2 + a) Fd

Load (P) (kN) -

Fracture Theory

Length of Crack ( a )

(mm) (Dh / 2 + a)Temperature (T) oC

Fracture Toughness

( k1c) d = a / (Dh / 2 + a) Fd

Load (P) (kN) -

Fracture Theory

1 31 -30 34 0.032 3.157 7691.5 31.5 -30 34 0.048 3.059 6482 32 -30 34 0.063 2.97 578

2.5 32.5 -30 34 0.077 2.89 5312.6 32.6 -30 34 0.08 2.873 5243.5 33.5 -30 34 0.104 2.743 4734 34 -30 34 0.118 2.67 4545 35 -30 34 0.143 2.546 4266 36 -30 34 0.167 2.434 4077 37 -30 34 0.189 2.337 3928 38 -30 34 0.211 2.246 3829 39 -30 34 0.231 2.167 373

10 40 -30 34 0.25 2.096 366

Temp = -45 Degree Celcius Fracture Theory

1 31 -45 31 0.032 3.157 7011.5 31.5 -45 31 0.048 3.059 5912 32 -45 31 0.063 2.97 527

2.15 32.15 -45 31 0.067 2.947 5123 33 -45 31 0.091 2.812 454

3.5 33.5 -45 31 0.104 2.743 4314 34 -45 31 0.118 2.67 4145 35 -45 31 0.143 2.546 3896 36 -45 31 0.167 2.434 3717 37 -45 31 0.189 2.337 3588 38 -45 31 0.211 2.246 3489 39 -45 31 0.231 2.167 340

10 40 -45 31 0.25 2.096 334

Length of Crack ( a )

(mm) (Dh / 2 + a)Temperature (T) oC

Fracture Toughness

( k1c) d = a / (Dh / 2 + a) Fd

Load (P) (kN) -

Fracture Theory

Length of Crack ( a )

(mm) (Dh / 2 + a)Temperature (T) oC

Fracture Toughness

( k1c) d = a / (Dh / 2 + a) Fd

Load (P) (kN) -

Fracture Theory

Kawish Shaikh P.Eng. UofC

> Dh/4 ; Hence OK

> 1.5xDh ; Hence OK

Both side of Hole

35 mm

Mpa. Sqrt(m) (40 for Steel W 350)

> Dh/2 ; Hence OK

< 5t ; Hence OK

> 2t ; Hence OK

mm814 kN

P

Crack Lenth (a) Vs Tensile Load (P)

mm2

LOAD (P)

100

mm

200 mm

100

mm

60 mm Dia. hole

Crack Length (a)

Fracture Theory

419 138 857 345 Net Section will Yeild before Fracture

355 137 851 345 Net Section will Yeild before Fracture

319 136 845 345 Net Section will Fracture

296 135 838 345 Net Section will Fracture

279 134 832 345 Net Section will Fracture

267 133 826 345 Net Section will Fracture

259 132 820 345 Net Section will Fracture

246 130 807 345 Net Section will Fracture

240 128.4 797 345 Net Section will Fracture

234 126 782 345 Net Section will Fracture232 124 770 345 Net Section will Fracture230 122 758 345 Net Section will Fracture229 120 745 345 Net Section will Fracture

Fracture Theory

391 138 857 345 Net Section will Yeild before Fracture

332 137 851 345 Net Section will Fracture

298 136 845 345 Net Section will Fracture

276 135 838 345 Net Section will Fracture

261 134 832 345 Net Section will Fracture

250 133 826 345 Net Section will Fracture

242 132 820 345 Net Section will Fracture

235 131 814 345 Net Section will Fracture

223 128 795 345 Net Section will Fracture

219 126 782 345 Net Section will Fracture

216 124 770 345 Net Section will Fracture

215 122 758 345 Net Section will Fracture

214 120 745 345 Net Section will Fracture

Yeild Theory

Stress in the Net Section

Effective width of

Plate (mm)

Load (P) (kN) -Yeild

TheoryYeild Stress (s)

Yeild Theory

Stress in the Net Section

Effective width of

Plate (mm)

Load (P) (kN) -Yeild

TheoryYeild Stress (s)

0 2 4 6 8 10 120

200

400

600

800

1000

1200Crack Length (a) VS Lug Capacity (kN) for 30 oC

Load (P) (kN) - Fracture Theory

Load (P) (kN) -Yeild Theory

a (mm)

Load

(kN

)

0 2 4 6 8 10 120

200

400

600

800

1000

1200Crack Length (a) VS Lug Capacity (kN) for 15 oC

Load (P) (kN) - Fracture Theory

Load (P) (kN) -Yeild Theory

a (mm)

Load

(kN

)

Fracture Theory

364 138 857 345 Net Section will Yeild before Fracture

309 137 851 345 Net Section will Fracture

278 136 845 345 Net Section will Fracture

257 135 838 345 Net Section will Fracture

243 134 832 345 Net Section will Fracture

232 133 826 345 Net Section will Fracture

229 132.6 823 345 Net Section will Fracture

214 130 807 345 Net Section will Fracture

208 128 795 345 Net Section will Fracture

204 126 782 345 Net Section will Fracture

201 124 770 345 Net Section will Fracture

200 122 758 345 Net Section will Fracture

199 120 745 345 Net Section will Fracture

Fracture Theory

337 138 857 345 Net Section will Fracture

286 137 851 345 Net Section will Fracture

257 136 845 345 Net Section will Fracture

238 135 838 345 Net Section will Fracture

225 134 832 345 Net Section will Fracture

223 133.8 831 345 Net Section will Fracture

208 132 820 345 Net Section will Fracture

198 130 807 345 Net Section will Fracture

192 128 795 345 Net Section will Fracture

188 126 782 345 Net Section will Fracture

186 124 770 345 Net Section will Fracture

185 122 758 345 Net Section will Fracture

184 120 745 345 Net Section will Fracture

Fracture Theory

Yeild Theory

Stress in the Net Section

Effective width of

Plate (mm)

Load (P) (kN) -Yeild

TheoryYeild Stress (s)

Yeild Theory

Stress in the Net Section

Effective width of

Plate (mm)

Load (P) (kN) -Yeild

TheoryYeild Stress (s)

Yeild Theory

0 2 4 6 8 10 120

100

200

300

400

500

600

700

800

900

1000Crack Length (a) VS Lug Capacity (kN) for 0 oC

Load (P) (kN) - Fracture Theory

Load (P) (kN) -Yeild Theory

a (mm)

Load

(kN

)

0 2 4 6 8 10 120

100

200

300

400

500

600

700

800

900Crack Length (a) VS Lug Capacity (kN) for -15 oC

Load (P) (kN) - Fracture Theory

Load (P) (kN) -Yeild Theory

a (mm)

Load

(kN

)

0 2 4 6 8 10 120

100

200

300

400

500

600

700

800

900Crack Length (a) VS Lug Capacity (kN) for -30 oC

Load (P) (kN) - Fracture Theory

Load (P) (kN) -Yeild Theory

a (mm)

Load

(kN

)

309 138 857 345 Net Section will Fracture

263 137 851 345 Net Section will Fracture

236 136 845 345 Net Section will Fracture

219 135 838 345 Net Section will Fracture

216 134.8 837 345 Net Section will Fracture

198 133 826 345 Net Section will Fracture

191 132 820 345 Net Section will Fracture

182 130 807 345 Net Section will Fracture

177 128 795 345 Net Section will Fracture

173 126 782 345 Net Section will Fracture

171 124 770 345 Net Section will Fracture

170 122 758 345 Net Section will Fracture

169 120 745 345 Net Section will Fracture

Fracture Theory

282 138 857 345 Net Section will Fracture

239 137 851 345 Net Section will Fracture

215 136 845 345 Net Section will Fracture

210 135.7 843 345 Net Section will Fracture

188 134 832 345 Net Section will Fracture

180 133 826 345 Net Section will Fracture

174 132 820 345 Net Section will Fracture

166 130 807 345 Net Section will Fracture

161 128 795 345 Net Section will Fracture

158 126 782 345 Net Section will Fracture

156 124 770 345 Net Section will Fracture

155 122 758 345 Net Section will Fracture

155 120 745 345 Net Section will Fracture

Stress in the Net Section

Effective width of

Plate (mm)

Load (P) (kN) -Yeild

TheoryYeild Stress (s)

Yeild Theory

Stress in the Net Section

Effective width of

Plate (mm)

Load (P) (kN) -Yeild

TheoryYeild Stress (s)

0 2 4 6 8 10 120

100

200

300

400

500

600

700

800

900Crack Length (a) VS Lug Capacity (kN) for -30 oC

Load (P) (kN) - Fracture Theory

Load (P) (kN) -Yeild Theory

a (mm)

Load

(kN

)

0 2 4 6 8 10 120

100

200

300

400

500

600

700

800

900Crack Length (a) VS Lug Capacity (kN) for -45 oC

Load (P) (kN) - Fracture Theory

Load (P) (kN) -Yeild Theory

a (mm)

Load

(kN

)

0 2 4 6 8 10 120

200

400

600

800

1000

1200Crack Length (a) VS Lug Capacity (kN) for 30 oC

Load (P) (kN) - Fracture Theory

Load (P) (kN) -Yeild Theory

a (mm)

Load

(kN

)

0 2 4 6 8 10 120

200

400

600

800

1000

1200Crack Length (a) VS Lug Capacity (kN)

Temp = 30 Degree Celcius

Temp = 15 Degree Celcius

Temp = Zero Degree Celcius

Temp = -15 Degree Celcius

Temp = -45 Degree Celcius

Load (P) (kN) -Yeild Theory

a (mm)

Load

(kN

)

0 2 4 6 8 10 120

200

400

600

800

1000

1200Crack Length (a) VS Lug Capacity (kN) for 15 oC

Load (P) (kN) - Fracture Theory

Load (P) (kN) -Yeild Theory

a (mm)

Load

(kN

)

0 2 4 6 8 10 120

200

400

600

800

1000

1200Crack Length (a) VS Lug Capacity (kN)

Temp = 30 Degree Celcius

Temp = 15 Degree Celcius

Temp = Zero Degree Celcius

Temp = -15 Degree Celcius

Temp = -45 Degree Celcius

Load (P) (kN) -Yeild Theory

a (mm)

Load

(kN

)

0 2 4 6 8 10 120

100

200

300

400

500

600

700

800

900

1000Crack Length (a) VS Lug Capacity (kN) for 0 oC

Load (P) (kN) - Fracture Theory

Load (P) (kN) -Yeild Theory

a (mm)

Load

(kN

)

0 2 4 6 8 10 120

100

200

300

400

500

600

700

800

900Crack Length (a) VS Lug Capacity (kN) for -15 oC

Load (P) (kN) - Fracture Theory

Load (P) (kN) -Yeild Theory

a (mm)

Load

(kN

)

0 2 4 6 8 10 120

100

200

300

400

500

600

700

800

900Crack Length (a) VS Lug Capacity (kN) for -30 oC

Load (P) (kN) - Fracture Theory

Load (P) (kN) -Yeild Theory

a (mm)

Load

(kN

)

0 2 4 6 8 10 120

100

200

300

400

500

600

700

800

900Crack Length (a) VS Lug Capacity (kN) for -30 oC

Load (P) (kN) - Fracture Theory

Load (P) (kN) -Yeild Theory

a (mm)

Load

(kN

)

0 2 4 6 8 10 120

100

200

300

400

500

600

700

800

900Crack Length (a) VS Lug Capacity (kN) for -45 oC

Load (P) (kN) - Fracture Theory

Load (P) (kN) -Yeild Theory

a (mm)

Load

(kN

)

0 2 4 6 8 10 120

200

400

600

800

1000

1200Crack Length (a) VS Lug Capacity (kN)

Temp = 30 Degree Celcius

Temp = 15 Degree Celcius

Temp = Zero Degree Celcius

Temp = -15 Degree Celcius

Temp = -45 Degree Celcius

Load (P) (kN) -Yeild Theory

a (mm)

Load

(kN

)

0 2 4 6 8 10 120

200

400

600

800

1000

1200Crack Length (a) VS Lug Capacity (kN)

Temp = 30 Degree Celcius

Temp = 15 Degree Celcius

Temp = Zero Degree Celcius

Temp = -15 Degree Celcius

Temp = -45 Degree Celcius

Load (P) (kN) -Yeild Theory

a (mm) Lo

ad (k

N)

Tabla 8.4 Especificaciones para pernos métricos de acero.ClaseIntervalo de tamaños (inclusive)(mm)Resistencia límite mínima a la tracciónSp (MPa)Resistencia de fluencia mínima a la tracciónSy (MPa)Resistencia última mínima a la tracción Su (MPa)Característica

4.6 M5-M36 225 240 400 Medio o bajo carbono4.8 M1.6-M16 310 340 420 Medio o bajo carbono5.8 M5-M24 380 420 520 Medio o bajo carbono8.8 M16-M36 600 660 830 Medio o bajo carbono, templado y revenido9.8 M1.6-M16 650 720 900 Medio o bajo carbono, templado y revenido10.9 M5-M36 830 940 1040 Martensítico de bajo carbono, templado y revenido12.9 M1.6-M36 970 1100 1220 De aleación, templado y revenido

Tabla 8.3 Especificaciones SAE para pernos UNS de acero.Grado SAEIntervalo de tamaños (inclusive)(in)Resistencia límite mínima a la tracciónSp (ksi)Resistencia de fluencia mínima a la tracciónSy (ksi)Resistencia

última mínima a la tracciónSu (ksi)Características del acero

1 ¼ a 1½ 33 36 60 Medio o bajo carbono2

¼ a ¾ 55 57 74 Medio o bajo carbono 7/8 a 1½ 33 36 604 ¼ a 1½ 65 100 115 Medio carbono estirado en frío

5¼ a 1 85 92 120 Medio carbono templado y 1 1/8 a 1½ 74 81 105 revenido5.2 ¼ a 1 85 92 120 Martensítico de bajo carbono, templado y revenido7 ¼ a 1½ 105 115 133 Aleado de medio carbono, templado y revenido8 ¼ a 1½ 120 130 150 Aleado de medio carbono, templado y revenido8.2 ¼ a 1 120 130 150 Martensítico de bajo carbono, templado y revenido

Tabla 8.2 Dimensiones de roscas métricas ISO, series de pasos bastos y finosDiámetro mayor (nominal)d (mm)ROSCA BASTA ROSCA FINAPaso p (mm)Diámetro menordr (mm)Área de esfuerzo a tracciónAt (mm2)Paso p (mm)Diámetro menordr (mm)Área de esfuerzo a tracciónAt (mm2)

3.0 0.50 2.39 5.03

3.5 0.60 2.76 6.784.0 0.70 3.14 8.785.0 0.80 4.02 14.186.0 1.00 4.77 20.127.0 1.00 5.77 28.868.0 1.25 6.47 36.61 1.00 6.77 39.1710.0 1.50 8.16 57.99 1.25 8.47 61.2012.0 1.75 9.85 84.27 1.25 10.47 92.0714.0 2.00 11.55 115.4 1.50 12.16 124.5516.0 2.00 13.55 156.7 1.50 14.16 167.2518.0 2.50 14.93 192.5 1.50 16.16 216.2320.0 2.50 16.93 244.8 1.50 18.16 271.5022.0 2.50 18.93 303.4 1.50 20.16 333.5024.0 3.00 20.32 352.5 2.00 21.55 384.4227.0 3.00 23.32 459.4 2.00 24.55 495.7430.0 3.50 25.71 560.6 2.00 27.55 621.2033.0 3.50 28.71 693.6 2.00 30.55 760.8036.0 4.00 31.09 816.7 3.00 32.32 864.9439.0 4.00 34.09 975.8 3.00 35.32 1028.4

Tabla 8.1 Dimensiones de roscas unificadas (UNS), serie de roscas bastas (UNC) y finas (UNF).TamañoDiámetro mayor (nominal)d (in)ROSCA BASTA (UNC) ROSCA FINA (UNF) Ancho aproximado entre carasAT (in)Número de hilos por pulgadaDiámetro menordr (in)Área de esfuerzo a tracciónAt (in2)Número de hilos por pulgadaDiámetro menordr (in)Área de esfuerzo a

tracciónAt (in2) Cabeza Tuerc

0 0.0600 - - - 80 0.0438 0.00181 0.0730 64 0.0527 0.0026 72 0.0550 0.00282 0.0860 56 0.0628 0.0037 64 0.0657 0.00393 0.0990 48 0.0719 0.0049 56 0.0758 0.00524 0.1120 40 0.0795 0.0060 48 0.0849 0.00665 0.1250 40 0.0925 0.0080 44 0.0955 0.00836 0.1380 32 0.0974 0.0091 40 0.1055 0.01018 0.1640 32 0.1234 0.0140 36 0.1279 0.014710 0.1900 24 0.1359 0.0175 32 0.1494 0.020012 0.2160 24 0.1619 0.0242 28 0.1696 0.0258¼ 0.2500 20 0.1850 0.0318 28 0.2036 0.0364 7/16 7/165/16 0.3125 18 0.2403 0.0524 24 0.2584 0.0581 ½ ½3/8 0.3750 16 0.2938 0.0775 24 0.3209 0.0878 9/16 9/167/16 0.4375 14 0.3447 0.1063 20 0.3725 0.1187 5/8 11/16½ 0.5000 13 0.4001 0.1419 20 0.4350 0.1600 ¾ ¾9/16 0.5625 12 0.4542 0.1819 18 0.4903 0.2030 13/16 7/85/8 0.6250 11 0.5069 0.2260 18 0.5528 0.2560 15/16 15/16¾ 0.7500 10 0.6201 0.3345 16 0.6688 0.3730 1 1/8 1 1/87/8 0.8750 9 0.7307 0.4617 14 0.7822 0.5095 1 5/16 1 5/161 1.0000 8 0.8376 0.6057 12 0.8917 0.6630 1 ½ 1 ½1 1/8 1.1250 7 0.9394 0.7633 12 1.0167 0.8557 1 11/16 1 11/161 ¼ 1.2500 7 1.0644 0.9691 12 1.1417 1.0729 1 7/8 1 7/81 3/8 1.3750 6 1.1585 1.1549 12 1.2667 1.3147 2 1/16 2 1/161 ½ 1.5000 6 1.2835 1.4053 12 1.3917 1.5810 2 ¼ 2 ¼1 ¾ 1.7500 5 1.4902 1.8995 2 5/8 2 5/82 2.0000 4.5 1.7113 2.4982 3 32 ¼ 2.2500 4.5 1.9613 3.2477 3 3/8 3 3/82 ½ 2.5000 4 2.1752 3.9988 3 ¾ 3 ¾2 ¾ 2.7500 4 2.4252 4.9340 4 1/8 4 1/83 3.0000 4 2.6752 5.9674 4 ½ 4 ½3 ¼ 3.2500 4 2.9252 7.0989 4 7/83 ½ 3.5000 4 3.1752 8.3286 5 ¼3 ¾ 3.7500 4 3.4252 9.6565 5 5/84 4.0000 4 3.6752 11.083 6