orgenesis investor corporate presentation

34
OTCQB:ORGS Corporate Presenta4on May 2014 A science-based organization dedicated to curing disease through the development and manufacture of cell-based therapeutics and regenerative medicine

Upload: nbt-equity-group-nbt-equities-research

Post on 14-Jul-2015

457 views

Category:

Economy & Finance


2 download

TRANSCRIPT

OTCQB:ORGS  

Corporate  Presenta4on                                                                May  2014  

A science-based organization dedicated to curing disease through the development and manufacture of cell-based therapeutics and regenerative medicine

Forward  Looking  Statements  

Forward  Looking  Statements/  Offer  of  Securi4es      This  presenta,on  does  not  cons,tute  an  offer  for  the  purchase  or  sale  of  any  securi,es  of  Orgenesis.  You  should  not  make  any  investment  decisions  based  on  this  presenta,on.  The  informa,on  in  this  presenta,on  is  not  a  subs,tute  for  independent  professional  advice  before  making  any  investment  decisions.  No  securi,es  regulatory  authority  has  in  any  way  passed  on  any  of  the  informa,on  contained  in  the  presenta,on.    Much  of  this  presenta,on  includes  projec,ons  and  plans.  Our  stated  plans  are  subject  to  known  and  unknown  risks,  uncertain,es  and  other  factors  that  may  cause  the  actual  results  of  Orgenesis  to  be  materially  different  from  those  expressed  or  implied  in  this  presenta,on.  Our  products  may  never  develop  into  useful  products  and  even  if  they  do,  they  may  not  be  approved  for  sale  to  the  public;  we  have  substan,al  hurdles  to  face  in  proving  our  technology,  showing  it  can  be  safe  for  medical  use  and  obtaining  regulatory  approval  in  each  country  in  which  our  technology  may  be  sold.  We  may  not  be  able  to  fund  our  plans  or  keep  key  employees.  We  may  not  be  able  to  protect  our  intellectual  property.  Sales  projec,ons  may  not  come  to  frui,on,  and  our  compe,tors  may  provide  beFer  or  cheaper  products  or  services.      Addi,onal  informa,on  about  these  and  other  assump,ons,  risks  and  uncertain,es  are  set  out  in  the  "Risk  Factors"  sec,on  in  Orgenesis'  most  recent  10-­‐K  filed  on  EDGAR  with  the  Securi,es  and  Exchange  Commission.  Bernard  

(OTCQB:ORGS)  

§  Company  Overview  §  Business  Model  §  Product  Development  Plan  §  Recent  Corporate  Developments  

Orgenesis  Inc.  is  a  biotechnology  company  dedicated  to  curing  Type  1  diabetes  through  a  novel  technology,  cellular  trans-­‐differen0a0on,  that  combines  cellular  therapy  and  regenera4ve  medicine.  

§   Cellular  trans-­‐differen,a,on  is  a  proven  technology  that  converts  autologous  liver  cells  into  fully  func,onal  and  physiologically  glucose-­‐sensi,ve  insulin-­‐producing  cells.    §     Phase  1  ready  with  “Fast-­‐to-­‐Market”  clinical  development  strategy  focusing  on  Ultra-­‐Orphan  indica,on  –  leading  to  accelerated  approval    §   Technology  supported  with  strong  IP,  and  broad  patent  estate    §   Recent  acquisi,on  of  MaSTherCell  forms  a  ver,cally  integrated,  revenue-­‐genera,ng  business  model  with  focus  on  rapidly  growing  cell-­‐based  therapeu,cs  market  

Company  Snapshot:  Symbol:   OTCQB:OGRS  Headquarters:   Gaithersburg,  MD  Industry:   Biotechnology  

Market  cap.:   $38.5M  Share  Price:   $0.70  52  wk  High  /Low:   $1.00  /  $0.34  

Shares  Out./Float:   55.2M  /  23.5M  Insider  Holdings:   ~40%  Ins,tu,onal  Holdings:   <10%  

Financings  YTD:   ~$7.5M  Available  Funds:   ~$3.5M  September  16th  ,  2014  

Company  Overview   (OTCQB:ORGS)  

(OTCQB:ORGS)  

A  Science-­‐based,  Innova4ve  and  Ver4cally  Integrated  Business  Model  

Pioneer  and  leader  in  the  emerging  fields  of  cell-­‐based  therapy,  regenera,ve  medicine  and  cGMP  capabili,es  to  support  each.    A  science-­‐based  and  innova,ve  company  with  a  ver,cally  integrated  business  model:  

1.   Clinical  development  of  proprietary  technology  planorm  (cellular  ‘trans-­‐differen,a,on’)  –  ini,ally  targe,ng  insulin-­‐dependent  disorders    

2.   Revenue  genera,on  through  innova,ve  cell-­‐based  manufacturing  capabili,es  –  cost-­‐efficient  clinical  development  of  Orgenesis  technology  while  independently  posi,oned  as  CDMO  industry  partner  of  choice  

Over  next  18-­‐24  months,  main  goal  is  to  ensure  rapid  increase  in  value  by  establishing  clinical  PoC  with  P1b  clinical  results  in  key  indica,ons,  and  securing  long-­‐term  manufacturing  service  agreements  with  targeted  biotech  companies  

Orgenesis  has  performed  pre-­‐clinical  safety  and  efficacy  studies  and  is  moving  to:  

§   Ini,ate  regulatory  ac,vi,es  in  Asia,  Europe  and  U.S.  

§   Finalize  GMP  and  complete  product  scale-­‐up  (MaSTherCell  –  Belgium)    

§   Transfer  technology  to  US  affiliate  (Maryland)  

§   Move  to  clinical  trials  and  collaborate  with  clinical  centers.    

Product  Development  Overview  

Product  Development  Timeline  2011   2012   2013   2014   2015  

Proof  of  Principle   Pre-­‐clinical  studies  Phase  1b  

Trials  

Regulatory  Plan  (Paul  Erlich  Ins,tute  and  FDA  Engagement)  

Develop  Produc,on  Process   Produc,on  Scale  up  Under  cGMP  

(OTCQB:ORGS)  

Recent  Corporate  Developments  

§  Orgenesis  acquires  MaSTherCell,  crea,ng  a  ver,cally  integrated  business  focusing  on  the  research,  development  and  manufacture  of  cell-­‐based  therapeu,cs  

Nov  2014  

§  ScoF  Carmer  joins  as  CEO  of  Orgenesis  North  America  —  led  the  U.S  Specialty  Care  Division  of  AstraZeneca  PLC  (LSE:AZN)  Jul  2014  

§  Awarded  Maryland  Stem  Cell  Research  Fund  Grant  to  help  fund  pre-­‐clinical  work  in  prepara,on  for  Phase  I  &  II  clinical  trials  in  the  U.S.  May  2014  

(OTCQB:ORGS)  

Over  last  12  months,  ORGS  has  had  very  exci4ng  developments.  §  Funding  /  Awards  &  Recogni,on    §  New  Corporate  Partnerships  /  Key  Personnel  Moves  

§  Awarded  $3.9M  grant  from  Belgium’s  DG06  to  complete  commercial  scale  cGMP  facility    Nov  2014  

§  T1D  Market  Opportunity  §  Compe,,ve  Landscape  §  Pre-­‐clinical  data    §  Differen,a,ng  liver-­‐derived  from  stem-­‐cell  derived  IPCs  §  AIP  cells  §  GMP  –  Using  Advanced  Technology  &  Systems  

T1D  Market  Opportunity  

Life-­‐threatening  and  life-­‐long  disease  .  §  Es,mated  1.5M  –  3.0M  people  with  T1D  (US)(1);    §  ~30,000+  new  diagnosis  per  year  (US)(2)     Significant  economic  burden  to  society.  §  Accounts  for  $14.9  billion  in  healthcare  costs  in  the  U.S.  each  year.(3)  

 

US  insulin  market  ~$8.9B  in  2013,    with  forecast  6  Yr.  CAGR  of  12.4%(4)      Daily  management  includes  mul4ple  insulin  injec4ons,  strict  blood  glucose  monitoring,  “carb  coun4ng”  and  significant  impact  on  QoL.        Despite  recent  ‘advances’,  significant  clinical  risks  remain:  §  Hypoglycemic  episodes:    Hypoglycemic  unawareness,  Diabe,c  coma.  

§  Hyperglycemic  consequences:    Ketoacidosis,  diabe,c  re,nopathy,  diabe,c  nephropathy,  stroke,  CV  disease.  

Currently,  no  approved  therapy  for  a  “Prac4cal  Cure”.  

(OTCQB:ORGS)  

(1)  Type  1  Diabetes,  2010:  Prime  Group  for  JDRF,  Mar  2011  (2)  NIDDK:  diabetes.niddk.nih.gov/dm/pubs/sta,s,cs/index.htm#i_youngpeople  (3)  The  United  States  of  Diabetes:  Challenges  and  Opportuni,es  in  the  Decade  Ahead,  2010:  United  Health  Group  (4)  Grand  View  Research,  2014    

Paucity  of  R&D  investment  dedicated  to  “Cure”.    

Compe44ve  Landscape  

Disease  Management  

§  Increase  effec,veness  of  glucose  control  

— Improved  insulin    — Ar,ficial  pancreas    

Disease  Progression  

§ Maintain  beta  cell  func,on  /  insulin  produc,on  

— Autoimmune  tolerance  

— T-­‐cell  abla,on    

Clinical  Cure  

§  Long  term  insulin  independence  

— Islet  cell  transplanta,on  

   

Prac4cal  Cure  

§  Long  term  insulin  independence  /  no  concomitant  immunosuppression  /  normal  quality  of  life  

— Encapsula,on  of  insulin  producing  cells  (Directed  Differen,a,on)  

— Autologous  Insulin  Producing  Cells  (Cellular  Trans-­‐differen4a4on)  

(OTCQB:ORGS)  

A  unique,  proprietary  technology  that  transforms  a  pa4ent’s  liver  cells  into  glucose-­‐responsive  and  func4onally  mature  Autologous  Insulin  Producing  cells  (AIPc).  

 

Cellular  Trans-­‐Differen4a4on  –  A  Prac4cal  Cure   (OTCQB:ORGS)  

Liver  and  Pancreas:    1).  Derived  from  same  embryonic  lineage  (endoderm)  2.  Share  a  common  progenitor  and  many  transcrip,on  factors    3).  Both  have  a  built-­‐in  glucose-­‐sensing  system    .  .  .  Developmentally  

related  cells  show  a  higher  suscep,bility  to  trans-­‐differen,a,on  

Pre-­‐Clinical  Proof-­‐of-­‐Principal   (OTCQB:ORGS)  

ORGENESIS  -­‐  CONFIDENTIAL  5/9/2014  

Ectopic  PDX-­‐1  expression  ac,vates  insulin  produc,on  in  mice  in-­‐vivo    (Ferber  et  al  Nature  Med)  

Ectopic  PDX-­‐1  -­‐  short  term  trigger  to  an  irreversible  reprogramming  process  (Ber  et  al  JBC)  

PDX-­‐1  treatment  in-­‐vivo  induces  an  immune  modula,on,  and  ameliorates  hyperglycemia  in  diabe,c  NOD  mice  (Shternhall-­‐Ron  et  al  JAI)  

Induc,on  of    pancrea,c  lineage  in  human  liver  cells  in-­‐vitro,  fetal  and  adult  and  the  promo,ng  effects  of  soluble  factors  (Sapir  et  al  PNAS)    

The  role  of  hepa,c  dedifferen,a,on  in  the  ac,va,on  of  the  alternate  pancrea,c  repertoire  (Meivar-­‐Levy  et  al  Hepatology)  

The  role  of  Exndin-­‐4  in  prolifera,on  and  transdifferen,a,on  process        (Aviv  et  al  JBC)  

NKX6.1  ac,vates  PDX-­‐1-­‐Induced  Liver  to  Pancrea,c  Reprogramming                                                                                      (Gefen-­‐Halevi  et  al  Cellular  Reprograming)  

Characteriza,on  of  adult  liver  cells  reprogramming  towards  the  pancrea,c  lineage  (Meivar-­‐Levy  et  al  J.  Transplanta,on)  

       Methods  of  human  liver  cell  reprogramming      (Meivar-­‐Levy  et  al  Methods  Mol  Biol)  

2000  

2003  

2005  

2007  

2007  

2009  

2010  

2010  

2011  

The  temporal  and  hierarchical  control  of  transcrip,on  factors-­‐induced  liver  to  pancreas  transdifferen,a,on  (Berneman-­‐Zeitouni  D,  et  al    PlosOne)  2014  

The  pre-­‐clinical  proof-­‐of-­‐principal    has  been  well  established  and  externally  validated.  

PDX-­‐1  ac4vates  a  func4onal  β-­‐cell  lineage  in  liver,  in-­‐vivo.  

First  Valida4on  of  Trans-­‐Differen4a4on  Hypothesis   (OTCQB:ORGS)  

Ad-CMV-PDX-1

Ectopic  PDX-­‐1  expression  ac,vates  insulin  produc,on  in  mice  in-­‐vivo    (Ferber  et  al  Nature  Med)  

In  Pre-­‐clinical  model  of  T1D,  PDX-­‐1  cells  drive  ship  from  from  Th1  to  Th2  immune  response  .  .  .  Resul4ng  in  a  state  of  “tolerance”  vs  “aqack”  

Blun4ng  the  Auto-­‐Immune  Response   (OTCQB:ORGS)  

 1   Spleens  removed  

2   S,mulated  with  T1D  an,gens    3   Studied  for  cytokine  secre,on  

Ø  Th1  -­‐  IFNg  (a)    Ø  Th2  –  IL-­‐10  (d)    

Shternhall  Ron  K  et  al,  Ectopic  PDX-­‐1  expression  in  liver  meliorates  T1D;  Journal  of  AutoImmunity  (2007)  doi:  10.1016  

groups did not show significant differences in their prolifera-tive responses to Con A.

3.4. Reversal of CAD is associated with a Th1 to Th2shift of the autoimmune T-cell cytokine response

The T cells that mediate the destruction of the insulin-pro-ducing pancreatic b-cells in CAD secrete Th1 cytokines, suchas IFNg [33]. Moreover, immunomodulatory therapies thatarrest the diabetogenic autoimmune process usually lead to

a Th2 shift in the autoimmune T-cell response, marked bythe increased production of IL-10 [27]. To further characterizethe autoimmune response in mice treated with Ad-CMV-PDX-1, we studied IFNg and IL-10 secretion by splenocytes stimu-lated with insulin, GAD, p34, p35, HSP60, p12 or p277. Thesplenocytes taken from the different experimental groups didnot differ in the amounts of IFNg or IL-10 released upon ac-tivation with Con A, and were not stimulated with the controlantigen GST. However, mice that manifested a reversal of hy-perglycemia showed a significant decrease in IFNg secretion

250

200

150

100

50

0

600

1200

1800

GST ConA

0

100

200

300

400

500

600

700

Insulin HSP60 p12 p34 p35

INF

(p

g/m

l)

INF

(p

g/m

l)

INF

(p

g/m

l)

0

200

400

600

800

GAD

b

d

e f

c

a

Untreated

Ad-RIP-b-gal

Ad-CMV-PDX-1

0

100

200

300

400

500

600

700

Insulin HSP60 p277 p12 p34 p35

0

200

400

600

800

1000

GAD

IL-1

0 (p

g/m

l)IL

-10

(pg/

ml)

GST ConA

IL-1

0 (p

g/m

l)

p277

* * * * * *

*

*

*

*

*

*

Fig. 4. Reversal of CAD is associated with a Th1 to Th2 shift of the autoimmune T-cell cytokine response. Twenty to forty days after treatment by recombinantadenoviruses, spleens were removed and studied for the secretion of IFNg (aec) and IL-10 (def) upon stimulation with (a,d) insulin, HSP60, p277, p12, p34, p35,(b,e) GAD, (c,f) GST or Con A. The data are presented as means ! SE for 4e6 individual samples per group (*p < 0.05 compared to the untreated group).

6 K. Shternhall-Ron et al. / Journal of Autoimmunity xx (2007) 1e9

+ MODEL

ARTICLE IN PRESS

Please cite this article in press as: Shternhall-Ron K et al., Ectopic PDX-1 expression in liver ameliorates type 1 diabetes, Journal of Autoimmunity (2007),doi:10.1016/j.jaut.2007.02.010

groups did not show significant differences in their prolifera-tive responses to Con A.

3.4. Reversal of CAD is associated with a Th1 to Th2shift of the autoimmune T-cell cytokine response

The T cells that mediate the destruction of the insulin-pro-ducing pancreatic b-cells in CAD secrete Th1 cytokines, suchas IFNg [33]. Moreover, immunomodulatory therapies thatarrest the diabetogenic autoimmune process usually lead to

a Th2 shift in the autoimmune T-cell response, marked bythe increased production of IL-10 [27]. To further characterizethe autoimmune response in mice treated with Ad-CMV-PDX-1, we studied IFNg and IL-10 secretion by splenocytes stimu-lated with insulin, GAD, p34, p35, HSP60, p12 or p277. Thesplenocytes taken from the different experimental groups didnot differ in the amounts of IFNg or IL-10 released upon ac-tivation with Con A, and were not stimulated with the controlantigen GST. However, mice that manifested a reversal of hy-perglycemia showed a significant decrease in IFNg secretion

250

200

150

100

50

0

600

1200

1800

GST ConA

0

100

200

300

400

500

600

700

Insulin HSP60 p12 p34 p35

INF

(p

g/m

l)

INF

(p

g/m

l)

INF

(p

g/m

l)

0

200

400

600

800

GAD

b

d

e f

c

a

Untreated

Ad-RIP-b-gal

Ad-CMV-PDX-1

0

100

200

300

400

500

600

700

Insulin HSP60 p277 p12 p34 p35

0

200

400

600

800

1000

GAD

IL-1

0 (p

g/m

l)IL

-10

(pg/

ml)

GST ConA

IL-1

0 (p

g/m

l)

p277

* * * * * *

*

*

*

*

*

*

Fig. 4. Reversal of CAD is associated with a Th1 to Th2 shift of the autoimmune T-cell cytokine response. Twenty to forty days after treatment by recombinantadenoviruses, spleens were removed and studied for the secretion of IFNg (aec) and IL-10 (def) upon stimulation with (a,d) insulin, HSP60, p277, p12, p34, p35,(b,e) GAD, (c,f) GST or Con A. The data are presented as means ! SE for 4e6 individual samples per group (*p < 0.05 compared to the untreated group).

6 K. Shternhall-Ron et al. / Journal of Autoimmunity xx (2007) 1e9

+ MODEL

ARTICLE IN PRESS

Please cite this article in press as: Shternhall-Ron K et al., Ectopic PDX-1 expression in liver ameliorates type 1 diabetes, Journal of Autoimmunity (2007),doi:10.1016/j.jaut.2007.02.010

A   B  

Insulin  /  Pdx-­‐1  /  DAPI  

C  Insulin production and storage in PDX-1 treated liver cells-EM, immuno-

gold IMC

Glucose metabolism is needed for regulated C-peptide

secretion

PDX-1 is delivered using recombinant adenovirus

Sapir  et  al  PNAS  2005  &  Berneman-­‐Zeituni,  PlosOne  2014  

AIP  cells  are  “physiologically”  glucose-­‐sensi4ve:  They  produce,  store    and    secrete  processed  insulin  in  response  to  elevated  glucose  concentra4ons  

15

C-p

epep

tide

secr

etio

n ng

/m

3  pTFs  results  in  40%-­‐60%  increased  insulin  produc4on  per  IPC,  sequen4al  administra4on  of  3pTFs  induces  matura4on  of  the  generated  IPC  cells.  

Sequen4al  Gene  Transduc4on  is  Cri4cal  to  Process  

The  Temporal  and  Hierarchical  Control  of  Transcrip4on  Factors-­‐Induced  Liver  to  Pancreas  Transdifferen4a4on        Berneman-­‐Zeitouni  et  al.  PLOS  One  9(2):  e87812.  doi:10.1371/journal.pone.0087812  

Insulin  (and  or  pro-­‐insulin)  secre,on  was  measured  by  sta,c  incuba,on  of  the  cells  for  15  min  at  2  and  17.5  mM  glucose  in  KRB.  n  >12  in  5  independent  experiments  preformed  in  cells  isolated  from  different  donors,  *p  <  0.05  comparing  between  triple  infec,on  and  all  other  treatments.      

(OTCQB:ORGS)  

0

5

10

15

20

25

30

35 2mM glucose17.5mM glucose

C-p

eptid

e se

cret

ion

ng/

mg/

h

**

ES  and  iPS  cells  giver  rise  to  fetal  islets  that  are  not  glucose-­‐responsive.  

Stem  Cell-­‐Driven  Differen4a4on   (OTCQB:ORGS)  

Differen,ated  human  stem  cells  resemble  fetal,  not  adult,  β  cells    Hrva,n  et  al.  PNAS  online  www.pnas.org/cgi/doi/10.1073/pnas.1400709111  

*hPSC  refers  to  human  pluripotent  stem  cells  derived  from  embryonic  stem  cell  or  reprogrammed  (iPS)  cells    

11/17/14 Confidential Internal Document

18  

insulin secretion in vitro, fail to express appropriate b cell markerssuch as NKX6-1 or PDX1, abnormally coexpress other hormoneslike glucagon (GCG), fail to function after transplantation in vivo,or display a combination of these abnormal features (D’Amouret al., 2006; Cheng et al., 2012; Hrvatin et al., 2014; Narayananet al., 2014; Xie et al., 2013; Nostro et al., 2011).Herein, we report the discovery of a strategy for large-scale

production of functional human b cells from hPSC in vitro. Byusing sequential modulation of multiple signaling pathways in athree-dimensional cell culture system, without any transgenesor genetic modification, we generate glucose-responsive,monohormonal insulin-producing cells that show key featuresof a bona fide b cell, including coexpression of key b cell markersand b cell ultrastructure. Furthermore, these cells mimic thefunction of human islets both in vitro and in vivo. Finally, wedemonstrate the potential utility of these cells for in vivo trans-plantation therapy for diabetes.

RESULTS

Generation of Glucose-Sensing Insulin-Secretingb Cells In VitroOur strategy to generate functional b cells from hPSC in vitro isoutlined in Figure 1A. To produce large numbers, we used a scal-

able suspension-based culture system that can generate >108

hPSCs and later differentiated cell types (modified from Schulzet al., 2012). Clusters of cells (!100–200 mm in diameter, eachcluster containing several hundred cells) from a human embry-onic stem cell (hESC) line (HUES8) or two human-induced plurip-otent stem cell (hiPSC) lines (hiPSC-1 and hiPSC-2) wereinduced into definitive endoderm (>95% SOX17+ cells, DE cellsin Figure 1A) and subsequently early pancreatic progenitors(>85% PDX1+ cells, PP1 cells in Figure 1A).Transplantation of pancreatic progenitors expressing PDX1+/

NKX6-1+ (PP2 in Figure 1A) into mice gives rise to functional bcells in vivo after 3–4 months (Kroon et al., 2008; Rezania et al.,2012). And previous studies had shown that these PDX1+/NKX6-1+ pancreatic progenitors (PP2) could be further differen-tiated in vitro into some INS+ cells along with INS+/GCG+ orINS+/SST+ polyhormonal (PH) cells (Nostro et al., 2011; Rezaniaet al., 2012; Thowfeequ et al., 2007; Aguayo-Mazzucato et al.,2013; D’Amour et al., 2006; Hrvatin et al., 2014). We use thenomenclature PH (polyhormonal, Figure 1A) to refer to this cellpopulation of in-vitro-differentiated hPSCs. Transcriptional anal-ysis of in-vitro-differentiated PH cells showed that these cellsresemble human fetal and not adult b cells (Hrvatin et al.,2014). Because these PH cells show neither glucose-stimulatedinsulin secretion (GSIS) nor other key properties of bona fide b

Figure 1. SC-b Cells Generated In VitroSecrete Insulin in Response to MultipleSequential High-Glucose Challenges likePrimary Human b Cells(A) Schematic of directed differentiation from

hPSC into INS+ cells via new or previously pub-

lished control differentiations.

(B–D) Representative ELISA measurements of

secreted human insulin from HUES8 SC-b cells

(B), PH cells (C), and primary b (1"b) cells (D)

challenged sequentially with 2, 20, 2, 20, 2, and

20 mM glucose, with a 30 min incubation for each

concentration (see Experimental Procedures). Af-

ter sequential low/high-glucose challenges, cells

were depolarized with 30 mM KCl.

(E–G) Box and whisker plots of secreted human

insulin from different biological batches of HUES8

(open circles) and hiPSC SC-b (black circles) cells

(E; n = 12), biological batches of PH cells (F; n = 5),

and primary b cells (G; n = 4). Each circle is the

average value for all sequential challenges with

2 mM or 20 mM glucose in a batch. Insulin

secretion at 20 mM ranged 0.23–2.7 mIU/103 cells

for SC-b cells and 1.5–4.5 mIU/103 cells for human

islets, and the stimulation index ranged 0.4–4.1 for

SC-b cells and 0.6–4.8 for primary adult. The thick

horizontal line indicates the median.

SeealsoFiguresS1andS2AandTableS1. *p<0.05

when comparing insulin secretion at 20 mM versus

2 mM with paired t test. Act A, activin A; CHIR,

CHIR99021, aGSK3a/b inhibitor; KGF, keratinocyte

growth factor or FGF family member 7; RA, retinoic

acid; SANT1, sonic hedgehog pathway antagonist;

LDN, LDN193189, a BMP type 1 receptor inhibitor;

PdbU, Phorbol 12,13-dibutyrate, a protein kinase C

activator; Alk5i, Alk5 receptor inhibitor II; T3, triio-

dothyronine, a thyroid hormone; XXI, g-secretase

inhibitor; Betacellulin, EGF family member.

Cell 159, 428–439, October 9, 2014 ª2014 Elsevier Inc. 429

insulin secretion in vitro, fail to express appropriate b cell markerssuch as NKX6-1 or PDX1, abnormally coexpress other hormoneslike glucagon (GCG), fail to function after transplantation in vivo,or display a combination of these abnormal features (D’Amouret al., 2006; Cheng et al., 2012; Hrvatin et al., 2014; Narayananet al., 2014; Xie et al., 2013; Nostro et al., 2011).Herein, we report the discovery of a strategy for large-scale

production of functional human b cells from hPSC in vitro. Byusing sequential modulation of multiple signaling pathways in athree-dimensional cell culture system, without any transgenesor genetic modification, we generate glucose-responsive,monohormonal insulin-producing cells that show key featuresof a bona fide b cell, including coexpression of key b cell markersand b cell ultrastructure. Furthermore, these cells mimic thefunction of human islets both in vitro and in vivo. Finally, wedemonstrate the potential utility of these cells for in vivo trans-plantation therapy for diabetes.

RESULTS

Generation of Glucose-Sensing Insulin-Secretingb Cells In VitroOur strategy to generate functional b cells from hPSC in vitro isoutlined in Figure 1A. To produce large numbers, we used a scal-

able suspension-based culture system that can generate >108

hPSCs and later differentiated cell types (modified from Schulzet al., 2012). Clusters of cells (!100–200 mm in diameter, eachcluster containing several hundred cells) from a human embry-onic stem cell (hESC) line (HUES8) or two human-induced plurip-otent stem cell (hiPSC) lines (hiPSC-1 and hiPSC-2) wereinduced into definitive endoderm (>95% SOX17+ cells, DE cellsin Figure 1A) and subsequently early pancreatic progenitors(>85% PDX1+ cells, PP1 cells in Figure 1A).Transplantation of pancreatic progenitors expressing PDX1+/

NKX6-1+ (PP2 in Figure 1A) into mice gives rise to functional bcells in vivo after 3–4 months (Kroon et al., 2008; Rezania et al.,2012). And previous studies had shown that these PDX1+/NKX6-1+ pancreatic progenitors (PP2) could be further differen-tiated in vitro into some INS+ cells along with INS+/GCG+ orINS+/SST+ polyhormonal (PH) cells (Nostro et al., 2011; Rezaniaet al., 2012; Thowfeequ et al., 2007; Aguayo-Mazzucato et al.,2013; D’Amour et al., 2006; Hrvatin et al., 2014). We use thenomenclature PH (polyhormonal, Figure 1A) to refer to this cellpopulation of in-vitro-differentiated hPSCs. Transcriptional anal-ysis of in-vitro-differentiated PH cells showed that these cellsresemble human fetal and not adult b cells (Hrvatin et al.,2014). Because these PH cells show neither glucose-stimulatedinsulin secretion (GSIS) nor other key properties of bona fide b

Figure 1. SC-b Cells Generated In VitroSecrete Insulin in Response to MultipleSequential High-Glucose Challenges likePrimary Human b Cells(A) Schematic of directed differentiation from

hPSC into INS+ cells via new or previously pub-

lished control differentiations.

(B–D) Representative ELISA measurements of

secreted human insulin from HUES8 SC-b cells

(B), PH cells (C), and primary b (1"b) cells (D)

challenged sequentially with 2, 20, 2, 20, 2, and

20 mM glucose, with a 30 min incubation for each

concentration (see Experimental Procedures). Af-

ter sequential low/high-glucose challenges, cells

were depolarized with 30 mM KCl.

(E–G) Box and whisker plots of secreted human

insulin from different biological batches of HUES8

(open circles) and hiPSC SC-b (black circles) cells

(E; n = 12), biological batches of PH cells (F; n = 5),

and primary b cells (G; n = 4). Each circle is the

average value for all sequential challenges with

2 mM or 20 mM glucose in a batch. Insulin

secretion at 20 mM ranged 0.23–2.7 mIU/103 cells

for SC-b cells and 1.5–4.5 mIU/103 cells for human

islets, and the stimulation index ranged 0.4–4.1 for

SC-b cells and 0.6–4.8 for primary adult. The thick

horizontal line indicates the median.

SeealsoFiguresS1andS2AandTableS1. *p<0.05

when comparing insulin secretion at 20 mM versus

2 mM with paired t test. Act A, activin A; CHIR,

CHIR99021, aGSK3a/b inhibitor; KGF, keratinocyte

growth factor or FGF family member 7; RA, retinoic

acid; SANT1, sonic hedgehog pathway antagonist;

LDN, LDN193189, a BMP type 1 receptor inhibitor;

PdbU, Phorbol 12,13-dibutyrate, a protein kinase C

activator; Alk5i, Alk5 receptor inhibitor II; T3, triio-

dothyronine, a thyroid hormone; XXI, g-secretase

inhibitor; Betacellulin, EGF family member.

Cell 159, 428–439, October 9, 2014 ª2014 Elsevier Inc. 429

Resource

Generation of Functional HumanPancreatic b Cells In VitroFelicia W. Pagliuca,1,3 Jeffrey R. Millman,1,3 Mads Gurtler,1,3 Michael Segel,1 Alana Van Dervort,1 Jennifer Hyoje Ryu,1

Quinn P. Peterson,1 Dale Greiner,2 and Douglas A. Melton1,*1Department of Stem Cell and Regenerative Biology, Harvard Stem Cell Institute, Harvard University, 7 Divinity Avenue, Cambridge,MA 02138, USA2Diabetes Center of Excellence, University of Massachusetts Medical School, 368 Plantation Street, AS7-2051, Worcester, MA 01605, USA3Co-first author*Correspondence: [email protected]://dx.doi.org/10.1016/j.cell.2014.09.040

SUMMARY

The generation of insulin-producing pancreatic bcells from stem cells in vitro would provide an un-precedented cell source for drug discovery and celltransplantation therapy in diabetes. However, insu-lin-producing cells previously generated from humanpluripotent stem cells (hPSC) lack many functionalcharacteristics of bona fide b cells. Here, we reporta scalable differentiation protocol that can generatehundreds of millions of glucose-responsive b cellsfrom hPSC in vitro. These stem-cell-derived b cells(SC-b) express markers found in mature b cells, fluxCa2+ in response to glucose, package insulin intosecretory granules, and secrete quantities of insulincomparable to adult b cells in response to multiplesequential glucose challenges in vitro. Furthermore,these cells secrete human insulin into the serum ofmice shortly after transplantation in a glucose-regu-latedmanner, and transplantation of these cells ame-liorates hyperglycemia in diabetic mice.

INTRODUCTION

The discovery of human pluripotent stem cells (hPSC) openedthe possibility of generating replacement cells and tissuesin the laboratory that could be used for disease treatment anddrug screening. Recent research has moved the stem cell fieldcloser to that goal through development of strategies to generatecells that would otherwise be difficult to obtain, like neurons orcardiomyocytes (Kriks et al., 2011; Shiba et al., 2012; Sonet al., 2011). These cells have also been transplanted into animalmodels, in some caseswith a beneficial effect like suppression ofarrhythmias with stem-cell-derived cardiomyocytes (Shiba et al.,2012), restoration of locomotion after spinal injury with oligoden-drocyte progenitors (Keirstead et al., 2005), or improved visionafter transplantation of retinal epithelial cells into rodent modelsof blindness (Lu et al., 2009).

One of the rapidly growing diseases that may be treatable bystem-cell-derived tissues is diabetes, affecting >300 million peo-ple worldwide, according to the International Diabetes Federa-

tion. Type 1 diabetes results from autoimmune destruction of bcells in the pancreatic islet, whereas themore common type 2 dia-betes results from peripheral tissue insulin resistance and b celldysfunction. Diabetic patients, particularly those suffering fromtype 1 diabetes, could potentially be cured through transplanta-tion of new b cells. Patients transplantedwith cadaveric human is-lets can be made insulin independent for 5 years or longer via thisstrategy, but this approach is limited because of the scarcity andquality of donor islets (Bellin et al., 2012). The generation of anunlimited supply of human b cells from stem cells could extendthis therapy to millions of new patients and could be an importanttest case for translating stem cell biology into the clinic. This isbecause only a single cell type, the b cell, likely needs to be gener-ated, and the mode of delivery is understood: transplantation to avascularized location within the body with immunoprotection.Pharmaceutical screening to identify new drugs that improve b

cell function, survival, or proliferation is also hindered by limitedsupplies of islets and high variability due to differential causesof death, donor genetic background, and other factors in theirisolation. A consistent, uniform supply of stem-cell-derived b cellswould provide a unique and valuable drug discovery platform fordiabetes. Additionally, genetically diverse stem-cell-derived bcells could be used for disease modeling in vitro or in vivo.Studies on pancreatic development in model organisms

(Gamer and Wright, 1995; Henry and Melton, 1998; Ninomiyaet al., 1999; Apelqvist et al., 1999; Kim et al., 2000; Hebroket al., 2000; Murtaugh et al., 2003) identified genes and signalsimportant for the pancreatic lineage, and these have been effec-tively used to form cells in the b cell lineage in vitro from hPSC.Definitive endoderm and subsequent pancreatic progenitorscan now be differentiated with high efficiencies (Kroon et al.,2008; D’Amour et al., 2005, 2006; Rezania et al., 2012). Thesecells can differentiate into functional b cells within 3–4 monthsfollowing transplantation into rodents (Kroon et al., 2008; Rezaniaet al., 2012), indicating that some cells in the preparation containthe developmental potential to develop into b cells if providedenough time and appropriate cues. Unfortunately, the months-long process the cells undergo in vivo is not understood, and itis unclear whether this process of in vivo differentiation wouldalso occur in human patients. Attempts to date at generatinginsulin-producing (INS+) cells from human pancreatic progeni-tors in vitro have generated cells with immature or abnormalphenotypes. These cells either fail to perform glucose-stimulated

428 Cell 159, 428–439, October 9, 2014 ª2014 Elsevier Inc.

Resource

Generation of Functional HumanPancreatic b Cells In VitroFelicia W. Pagliuca,1,3 Jeffrey R. Millman,1,3 Mads Gurtler,1,3 Michael Segel,1 Alana Van Dervort,1 Jennifer Hyoje Ryu,1

Quinn P. Peterson,1 Dale Greiner,2 and Douglas A. Melton1,*1Department of Stem Cell and Regenerative Biology, Harvard Stem Cell Institute, Harvard University, 7 Divinity Avenue, Cambridge,MA 02138, USA2Diabetes Center of Excellence, University of Massachusetts Medical School, 368 Plantation Street, AS7-2051, Worcester, MA 01605, USA3Co-first author*Correspondence: [email protected]://dx.doi.org/10.1016/j.cell.2014.09.040

SUMMARY

The generation of insulin-producing pancreatic bcells from stem cells in vitro would provide an un-precedented cell source for drug discovery and celltransplantation therapy in diabetes. However, insu-lin-producing cells previously generated from humanpluripotent stem cells (hPSC) lack many functionalcharacteristics of bona fide b cells. Here, we reporta scalable differentiation protocol that can generatehundreds of millions of glucose-responsive b cellsfrom hPSC in vitro. These stem-cell-derived b cells(SC-b) express markers found in mature b cells, fluxCa2+ in response to glucose, package insulin intosecretory granules, and secrete quantities of insulincomparable to adult b cells in response to multiplesequential glucose challenges in vitro. Furthermore,these cells secrete human insulin into the serum ofmice shortly after transplantation in a glucose-regu-latedmanner, and transplantation of these cells ame-liorates hyperglycemia in diabetic mice.

INTRODUCTION

The discovery of human pluripotent stem cells (hPSC) openedthe possibility of generating replacement cells and tissuesin the laboratory that could be used for disease treatment anddrug screening. Recent research has moved the stem cell fieldcloser to that goal through development of strategies to generatecells that would otherwise be difficult to obtain, like neurons orcardiomyocytes (Kriks et al., 2011; Shiba et al., 2012; Sonet al., 2011). These cells have also been transplanted into animalmodels, in some caseswith a beneficial effect like suppression ofarrhythmias with stem-cell-derived cardiomyocytes (Shiba et al.,2012), restoration of locomotion after spinal injury with oligoden-drocyte progenitors (Keirstead et al., 2005), or improved visionafter transplantation of retinal epithelial cells into rodent modelsof blindness (Lu et al., 2009).

One of the rapidly growing diseases that may be treatable bystem-cell-derived tissues is diabetes, affecting >300 million peo-ple worldwide, according to the International Diabetes Federa-

tion. Type 1 diabetes results from autoimmune destruction of bcells in the pancreatic islet, whereas themore common type 2 dia-betes results from peripheral tissue insulin resistance and b celldysfunction. Diabetic patients, particularly those suffering fromtype 1 diabetes, could potentially be cured through transplanta-tion of new b cells. Patients transplantedwith cadaveric human is-lets can be made insulin independent for 5 years or longer via thisstrategy, but this approach is limited because of the scarcity andquality of donor islets (Bellin et al., 2012). The generation of anunlimited supply of human b cells from stem cells could extendthis therapy to millions of new patients and could be an importanttest case for translating stem cell biology into the clinic. This isbecause only a single cell type, the b cell, likely needs to be gener-ated, and the mode of delivery is understood: transplantation to avascularized location within the body with immunoprotection.Pharmaceutical screening to identify new drugs that improve b

cell function, survival, or proliferation is also hindered by limitedsupplies of islets and high variability due to differential causesof death, donor genetic background, and other factors in theirisolation. A consistent, uniform supply of stem-cell-derived b cellswould provide a unique and valuable drug discovery platform fordiabetes. Additionally, genetically diverse stem-cell-derived bcells could be used for disease modeling in vitro or in vivo.Studies on pancreatic development in model organisms

(Gamer and Wright, 1995; Henry and Melton, 1998; Ninomiyaet al., 1999; Apelqvist et al., 1999; Kim et al., 2000; Hebroket al., 2000; Murtaugh et al., 2003) identified genes and signalsimportant for the pancreatic lineage, and these have been effec-tively used to form cells in the b cell lineage in vitro from hPSC.Definitive endoderm and subsequent pancreatic progenitorscan now be differentiated with high efficiencies (Kroon et al.,2008; D’Amour et al., 2005, 2006; Rezania et al., 2012). Thesecells can differentiate into functional b cells within 3–4 monthsfollowing transplantation into rodents (Kroon et al., 2008; Rezaniaet al., 2012), indicating that some cells in the preparation containthe developmental potential to develop into b cells if providedenough time and appropriate cues. Unfortunately, the months-long process the cells undergo in vivo is not understood, and itis unclear whether this process of in vivo differentiation wouldalso occur in human patients. Attempts to date at generatinginsulin-producing (INS+) cells from human pancreatic progeni-tors in vitro have generated cells with immature or abnormalphenotypes. These cells either fail to perform glucose-stimulated

428 Cell 159, 428–439, October 9, 2014 ª2014 Elsevier Inc.

Resource

Generation of Functional HumanPancreatic b Cells In VitroFelicia W. Pagliuca,1,3 Jeffrey R. Millman,1,3 Mads Gurtler,1,3 Michael Segel,1 Alana Van Dervort,1 Jennifer Hyoje Ryu,1

Quinn P. Peterson,1 Dale Greiner,2 and Douglas A. Melton1,*1Department of Stem Cell and Regenerative Biology, Harvard Stem Cell Institute, Harvard University, 7 Divinity Avenue, Cambridge,MA 02138, USA2Diabetes Center of Excellence, University of Massachusetts Medical School, 368 Plantation Street, AS7-2051, Worcester, MA 01605, USA3Co-first author*Correspondence: [email protected]://dx.doi.org/10.1016/j.cell.2014.09.040

SUMMARY

The generation of insulin-producing pancreatic bcells from stem cells in vitro would provide an un-precedented cell source for drug discovery and celltransplantation therapy in diabetes. However, insu-lin-producing cells previously generated from humanpluripotent stem cells (hPSC) lack many functionalcharacteristics of bona fide b cells. Here, we reporta scalable differentiation protocol that can generatehundreds of millions of glucose-responsive b cellsfrom hPSC in vitro. These stem-cell-derived b cells(SC-b) express markers found in mature b cells, fluxCa2+ in response to glucose, package insulin intosecretory granules, and secrete quantities of insulincomparable to adult b cells in response to multiplesequential glucose challenges in vitro. Furthermore,these cells secrete human insulin into the serum ofmice shortly after transplantation in a glucose-regu-latedmanner, and transplantation of these cells ame-liorates hyperglycemia in diabetic mice.

INTRODUCTION

The discovery of human pluripotent stem cells (hPSC) openedthe possibility of generating replacement cells and tissuesin the laboratory that could be used for disease treatment anddrug screening. Recent research has moved the stem cell fieldcloser to that goal through development of strategies to generatecells that would otherwise be difficult to obtain, like neurons orcardiomyocytes (Kriks et al., 2011; Shiba et al., 2012; Sonet al., 2011). These cells have also been transplanted into animalmodels, in some caseswith a beneficial effect like suppression ofarrhythmias with stem-cell-derived cardiomyocytes (Shiba et al.,2012), restoration of locomotion after spinal injury with oligoden-drocyte progenitors (Keirstead et al., 2005), or improved visionafter transplantation of retinal epithelial cells into rodent modelsof blindness (Lu et al., 2009).

One of the rapidly growing diseases that may be treatable bystem-cell-derived tissues is diabetes, affecting >300 million peo-ple worldwide, according to the International Diabetes Federa-

tion. Type 1 diabetes results from autoimmune destruction of bcells in the pancreatic islet, whereas themore common type 2 dia-betes results from peripheral tissue insulin resistance and b celldysfunction. Diabetic patients, particularly those suffering fromtype 1 diabetes, could potentially be cured through transplanta-tion of new b cells. Patients transplantedwith cadaveric human is-lets can be made insulin independent for 5 years or longer via thisstrategy, but this approach is limited because of the scarcity andquality of donor islets (Bellin et al., 2012). The generation of anunlimited supply of human b cells from stem cells could extendthis therapy to millions of new patients and could be an importanttest case for translating stem cell biology into the clinic. This isbecause only a single cell type, the b cell, likely needs to be gener-ated, and the mode of delivery is understood: transplantation to avascularized location within the body with immunoprotection.Pharmaceutical screening to identify new drugs that improve b

cell function, survival, or proliferation is also hindered by limitedsupplies of islets and high variability due to differential causesof death, donor genetic background, and other factors in theirisolation. A consistent, uniform supply of stem-cell-derived b cellswould provide a unique and valuable drug discovery platform fordiabetes. Additionally, genetically diverse stem-cell-derived bcells could be used for disease modeling in vitro or in vivo.Studies on pancreatic development in model organisms

(Gamer and Wright, 1995; Henry and Melton, 1998; Ninomiyaet al., 1999; Apelqvist et al., 1999; Kim et al., 2000; Hebroket al., 2000; Murtaugh et al., 2003) identified genes and signalsimportant for the pancreatic lineage, and these have been effec-tively used to form cells in the b cell lineage in vitro from hPSC.Definitive endoderm and subsequent pancreatic progenitorscan now be differentiated with high efficiencies (Kroon et al.,2008; D’Amour et al., 2005, 2006; Rezania et al., 2012). Thesecells can differentiate into functional b cells within 3–4 monthsfollowing transplantation into rodents (Kroon et al., 2008; Rezaniaet al., 2012), indicating that some cells in the preparation containthe developmental potential to develop into b cells if providedenough time and appropriate cues. Unfortunately, the months-long process the cells undergo in vivo is not understood, and itis unclear whether this process of in vivo differentiation wouldalso occur in human patients. Attempts to date at generatinginsulin-producing (INS+) cells from human pancreatic progeni-tors in vitro have generated cells with immature or abnormalphenotypes. These cells either fail to perform glucose-stimulated

428 Cell 159, 428–439, October 9, 2014 ª2014 Elsevier Inc.

AIP  cells  are  meaningfully  differen4ated  from  any  other  current  (or  future)  compe4tor.  

AIP  Cells   (OTCQB:ORGS)  

Insulin  Independence  

Therapy  &  Quality  of  Life  

Tissue  Availability  

Quality  Control  

Ini4a4ng  clinical  trials  within  12  –  15  months    

§  Glucose-­‐responsive  insulin  produc,on  within  one  week  of  AIP  cell  transplanta,on  

§  Insulin-­‐independence  within  one  month  

§  Single  course  of  therapy  (5-­‐10  years  insulin  independence)  §  No  need  for  concomitant  immunosuppressive  therapy  §  Return  to  (near)  normal  quality  of  life  for  pa,ents  

§  Single  liver  biopsy  supplies  unlimited  source  of  therapeu,c  ,ssue  (bio-­‐banking  of  ,ssue  for  future  use  if  needed)  

 

§  Highly  controlled  and  ,ghtly  closed  GMP  systems  §  QC  of  final  product  upon  release  and  distribu,on  

Orgenesis’  GMP  systems  improve  quality  and  speed  while  decreasing  costs.  

GMP  –  Using  Advanced  Technology  &  Systems  

Cell  Culturing Propaga4on Packaging Trans-­‐differen4a4on

Liver  Biopsy  Mechanic  &  enzyma,c  Isola,on    

Transplanta4on Liver  biopsy  

Cell  expansion  –  Single  use  bioreactors

Trans  -­‐differen,a,on  via  

pTFs

Washing,  QA/QC,  Packaging,  Release  and  distribu,on

AIP  cells  transplanted  into  liver  via  infusion

(OTCQB:ORGS)  

5-6 weeks

§  Cell  Therapy  Market  §  Cell  Therapy  CDMO  Market  §  Business  and  Expansion  Strategies  §  Ra,onale  suppor,ng  acquisi,on  

MaSTherCell  .  .  .  The  Perfect  Fit  

The  Cell  Therapy  Market  –  Clinical  Trials  

10  Source:  Culme-­‐Seymour  EJ,  Davie  NL,  Brindley  DA,  Edwards-­‐Parton  S,  Mason  C:  A  decade  of  cell  therapy  clinical  trials  (2000-­‐2010).  Regenera4ve  medicine  7,4  (2012);  ClinicalTrials.gov  (www.clinicaltrials.gov)  

•  22,500+ Clinical Trials

•  2800 “new” Cell Therapies

•  560 in PIII/Pivotal Trials

•  Most therapies developped in US & EU

Global  Cell  Therapy  Market    -­‐  Value  &  Forecasts  

•  Cell  therapy  products  market  set  to  grow  to  nearly  32B$  by  2018.  

•  Global  cell  therapy  market  expected  to  grow  exponen,ally  

•  Organ  replacement/transplant  is  playing  an  increasingly  large  role1  

•  Key  Market  Drivers:  BeFer  treatment  outcomes  and  reduc,on  of  the  direct  costs  associated  with  chronic  diseases  (by  ~250B$  annually  in  the  U.S.)²  

1)  MedMarket  Diligence,  Oct.  2012  2)  Alliance  for  Regenera4ve  Medicine  Annual  Report  2012-­‐2013   11  

2.5X  

CDMO  Market  -­‐  Manufacturing  

With  revenue  from  commercial  products  and  clinical  trials  combined  –  total  available  market  value  (TAM)  reaches  $900M  in  2018.  

Note:  Assuming  30%  of  the  sales  in  the  cell  therapy  industry  is  linked  with  the  produc4on  costs  and  thus  the  CMO.  

$0M  

$100M  

$200M  

$300M  

$400M  

$500M  

$600M  

$700M  

$800M  

$900M  

$1,000M  

2014   2015   2016   2017   2018  

TAM  Clinical  Trial  ($M)   TAM  Produc4on  Lot  ($M)  

15  

Tech  transfert  

Process  development  

CoGs  /  Batch  

Total  out  of  the  pocket  expense  for  customer  

R&D   Phase  I   Phase  II   Phase  III   Commercial  

Year  1   Year  2   Year  3   Year  4   Year  5  

Customer  acquired  in  R&D  /  phase  I  

Customer  acquired  in  phase  II/III  

AFract  customers  during  early  stage  •  to  minimize  tech  transfer  costs    •  to  enable  process  development…    •  to  provide  cost  efficient  

manufacturing…  •  throughout  en,re  product  lifecylce                    

Process  development  tools  &  exper,se  are  key  

 

Business  Strategy:    Lock  IN  Early  

34  

Total  out  of  pocket  customer  expense  

Development Manufacturing

•  Rental  of  exis,ng  US  cost-­‐efficient  clean  room  and  high  quality  infrastructure  o  Hospital  o  Cluster  o  Local  incubators  /  cell  therapy  ecosystem    

 •  Deploy  qualified  work  force  in  strategic  

area(s)  o  Washington,  DC  o  Boston  

•  Final  stage  nego,a,ons  with  MAJOR  US  Cancer  Center  –  JV  partnership  o  Late  stage  research  thru  P2  clnical  trials  o  Companies  exit  to  MaSTherCell  for  P3  

and  Commercial  scale  manufacture  o  Leverage  JV  and  Brand  for  EU  expansion  /  

compe,,ve  advantage  

Expansion  Strategy  –  US  Market  Entry  

36  

(OTCQB:ORGS)  Strategic  and  Financial  Ra4onale  for  Merger  

Complimentary  management  teams  combine  to  strengthen  overall  company  leadership  

Leverages  exis,ng  collabora,ons  (Orgenesis,  MaSTerCell,  ATMI)  to  realize  $25M  -­‐    $50M  in  opera,onal  synergies:  

•  Revenue  cycle  management  

•  Overhead  efficiencies    

•  Supply  chain  management  

•  3rd  party  collabora,on  /  partnerships          

Increase    scale,    expand  geographic    footprint,    and  enhance  technology  planorm  

COGs  efficiencies  to  Orgenesis  make  acquisi,on  accre,ve  in  Yr  1  of  product  launch  

Orgenesis  revenue  genera,on  expedites  MaSTherCell  ,me  to  profitability  by  2  years  

Individual  Corporate  Brands  retained  to  drive  diversified    business  strategy,  while  maximizing  technical  support  and  P&L  efficiencies  

§  Future  Growth  Drivers  /  Next  Steps  

Future  Growth  Drivers  /  Next  Steps  

Opera4ons  §  Complete  European  GMP  manufacturing  of  clinical  grade  cells  §  Expand  U.S.  opera,ons  (clinical,  manufacturing,  commercial)  §  Submit  IND  §  Ini,ate  Phase  1b  trials  in  U.S.  and  EU    Complete  near-­‐term  financing  §  Complete  $10M  financing  of  current  opera,ng  plan  -­‐  $3.5M  already  raised  

Execute  medium-­‐term  Capital  Markets  plan  §  Ini,ate  roadshow  with  US  investment  bank  consor,um  to  raise  capital  for  P1  expansion  §  File  S-­‐1  §  Up-­‐list  to  NASDAQ  

(OTCQB:ORGS)  

Management  Team  

Vered  Caplan  –  Chairman  and  Interim  Chief  Execu4ve  Officer,  Orgenesis  Ltd  § Formerly  served  as  CEO  of  GammaCan,  a  company  focused  on  the  use  of  immunoglobulins  for  the  treatment  of  cancer.  § Serves  as  director  of  various  companies  including:  Op,cul  Ltd.,  a  company  involved  with  op,c  based  bacteria  classifica,on;  Inmo,on  Ltd.,  a  company  focused  on  self-­‐propelled  disposable  colonoscopies;  Nehora  Photonics  Ltd.,  a  company  involved  with  a  non-­‐invasive  blood  monitoring;  Ocure  Ltd.,  a  company  focused  with  wound  management;  Eve  Medical  Ltd.,  a  company  involved  with  hormone  therapy  for  Menopause  and  PMS;  and  Biotech  Investment  Corp.,  a  company  focused  on  prostate  cancer  diagnos,cs.    Scoq  Carmer  –  Chief  Execu4ve  Officer  (Orgenesis  Inc,  North  America)  § Led  the  U.S  Specialty  Care  Division  of  AstraZeneca  PLC  (LSE:AZN),  a  $93  billion  pharmaceu,cals  company;  responsible  for  the  company’s  pornolio  of  specialty  care  biopharmaceu,cal  products.  § Former  EVP,  Commercial  Opera,ons  of  MedImmune  -­‐  acquired  by  AstaZeneca  (LSE:AZN)  for  ~$16  billion.  § Served  as  VP,  Immunology  for  Genentech,  Inc.;  responsible  for  the  U.S.  launches  of  Rituxan  and  ACTEMRA  in  Rheumatoid  Arthri,s.  § Served  as  Global  Therapeu,c  Area  Head  for  Bone  and  Metabolic  Disorders  at  Amgen,  Inc.;  responsible  for  global  development  and  commercializa,on  strategies  for    denosumab  (Xgeva  and  Prolia).  § Began  his  career  at  GlaxoSmithKline  plc  (LSE:GSK),  where  he  held  various  posi,ons  of  increasing  responsibility  in  sales,  marke,ng,  strategic  pricing  and  business  development.  

(OTCQB:ORGS)  

Management  Team  (con0nued)  

Hugues  Bultot  –  Chief  Execu4ve  Officer  (MaSTherCell);  Member,  Orgenesis  BoD  Serial  life  sciences  entrepreneur,  ‘from  science  to  business’.  •  Former  CEO  of  Artelis,  a  company  focused  on  disposable  bioreactors  and  now  integrated  into  Pall  

Life  Sciences.  Co-­‐founded  company  in  2005,  developed  the  business  model,  helped  acquire  ini,al  customer  base,  ini,ated  diversifica,on  in  Cell  Therapy  area,  and  eventually  nego,ated  trade  sale  in  2010.  

•  Successfully  developed  a  global  network  in  the  bio-­‐process  industry  –  big  pharma,  academic  ins,tu,ons,  equipment  supplier,  NGO…  

•  Recently  co-­‐founded  Univercells,  a  company  focused  on  low-­‐cost  biopharmaceu,cals  –  vaccines,  mAbs  and  recombinant  proteins  –  bringing  further  depth  to    his  industry-­‐leading  knowledge  and  exper,se  in  low-­‐cost  manufacturing  to  the  benefit  of  MaSTherCell.  

•  Served  as  Director  of  various  companies  during  his  career  as  a  private  equity  manager,  as  a  tech  transfer  manager  and  as  a  corporate  finance  specialist.    

 Sarah  Ferber,  Ph.D.  –  Chief  Scien4fic  Officer  &  Founder  •  Studied  biochemistry  at  the  Technion  under  the  supervision  of  Professor  Avram  Hershko  and  

Professor  Aaron  Ciechanover,  winners  of  the  Nobel  Prize  in  Chemistry  in  2004.    •  Completed  a  post-­‐doctoral  fellowship  at  the  Joslin  Diabetes  Center  at  Harvard  Medical  School.    

Her  breakthrough  discovery  suggested  that  humans  carry  their  own  'stem-­‐cells'  throughout  adulthood,  thus  obvia,ng  the  need  for  embryonic  stem  cells  for  genera,ng  an  organ  in  need.    

•  Most  of  the  research  was  conducted  in  Prof.  Ferber’s  lab,  in  the  Endocrine  Research  Lab  at  the  Sheba  Medical  Center,  and  currently  employs  11  scien,sts.    

•  Received  TEVA,  LINDNER,  RUBIN  and  WOLFSON  awards  for  this  research.    •  Research  work  has  been  funded  over  the  past  10  years  by  the  Juvenile  Diabetes  Research  

Founda,on  (JDRF),  the  Israel  Academy  of  Science  founda,on  (ISF)  and  D-­‐Cure,  a  non-­‐profit  organiza,on.  

(OTCQB:ORGS)  

OTCQB:ORGS  |  Company  Presenta4on  –  October  2014  

Company  Contact:    

ScoF  Carmer  Chief  Execu,ve  Officer  Orgenesis  Maryland,  Inc.    

Headquarters:  Orgenesis,  Inc.  Germantown  Innova,on  Center  20271  Goldenrod  Lane  Germantown,  MD  20876  

Telephone:  301.204.1983  Email:  [email protected]  Corporate  Website:    (www.orgenesis.com)  

Investor  Rela4ons:    

Tobin  Smith      

NBT  Capital  Markets  240-­‐483-­‐4629  (office)  Email:    [email protected]  

Appendix  

Extensive  Patent  Porvolio  

IP  Pornolio  Patent   Title   Pub.  Date  US  2012/0329710  A1  patent  applica,on  

Methods  of  Inducing  Regulated  Pancrea,c  Hormone    Produc,on  in  Non-­‐Pancrea,c  Islet  Tissues  

December  27,  2012  

US  8119405  granted  patent  

Methods  of  Inducing  Regulated  Pancrea,c  Hormone    Produc,on  in  Non-­‐Pancrea,c  Islet  Tissues  

February  21,  2012  

AU  2004/236573  B2  grandet  patent  

Methods  of  Inducing  Regulated  Pancrea,c  Hormone    Produc,on  in  Non-­‐Pancrea,c  Islet  Tissues  

October  22,  2009  

EP  1354942  B1  granted  patent  

Induc,on  of  insulin-­‐producing  cells   January  30,  2008  

EP  1180143  B1  granted  patent  

IN  Vitro  Methods  of  Inducing  Regulated  Pancrea,c  Hormone  Produc,on  in  Non-­‐Pancrea,c  Islet  Tissues,  Pharmaceu,cal  Composi,ons  Related  Thereto  

May  9,  2007  

US  2005/0090465  A1  patent  applica,on  

Methods  of  Inducing  Regulated  Pancrea,c  Hormone  Produc,on  in  Non-­‐Pancrea,c  Tissues  

April  28,  2005  

AU  779619  B2  grandet  patent  

Methods  of  Inducing  Regulated  Pancrea,c  Hormone  Produc,on  in  Non-­‐Pancrea,c  Tissues  

February  3,  2005  

AU  2004/236573  A1  patent  applica,on  

Methods  of  Inducing  Regulated  Pancrea,c  Hormone  Produc,on  in  Non-­‐Pancrea,c  Tissues  

November  18,  2004  

WO  2004/098646  A1  patent  applica,on  

Methods  of  Inducing  Regulated  Pancrea,c  Hormone  Produc,on  in  Non-­‐Pancrea,c  Islet  Tissues  

November  18,  2004  

WO  2004/098646  A1R1  patent  applica,on  

Methods  of  Inducing  Regulated  Pancrea,c  Hormone   November  18,  2004  

(OTCQB:ORGS)  

“Methods  Of  Inducing  Regulated  Pancrea4c  Hormone  Produc4on  In  Non-­‐Pancrea4c  Islet  Tissues”  § Patent  granted  in  U.S.  &  Australia  § Published  in  Europe  &  Japan  

“Methods  Of  Inducing  Regulated  Pancrea4c  Hormone  Produc4on”  § Patent  granted  in  Australia  &  Europe  § Published  in  Japan  &  Canada    Currently  filing  third  family  of  patents  protec4ng  produc4on  process