osteochondral lesions of the talus - sports med · pdf fileortho-biologics • biologics:...

39
DR. CONNIE LEBRUN, MPE, CCFP(SEM), DIP SPORT MED, FACSM PROFESSOR, DEPARTMENT OF FAMILY PRACTICE FACULTY OF MEDICINE & DENTISTRY UNIVERSITY OF ALBERTA EDMONTON, ALBERTA, CANADA Osteochondral Lesions of the Talus

Upload: buihanh

Post on 16-Mar-2018

222 views

Category:

Documents


3 download

TRANSCRIPT

DR. CONNIE LEBRUN, MPE, CCFP(SEM), DIP SPORT MED, FACSMPROFESSOR, DEPARTMENT OF FAMILY PRACTICE FACULTY OF MEDICINE & DENTISTRY UNIVERSITY OF ALBERTAEDMONTON, ALBERTA, CANADA

Osteochondral Lesionsof the Talus

Definitions• Osteochondritis

dissecans (OCD) of talus• “Osteochondrosis”??• Accounts for only 4% of

reported cases of OCD– Vascular etiology?– Localized ischemia & AVN– Not an inflammatory

process so the term“osteochondritis”is a misnomer

– Younger patient– No history of trauma– More on medial side

Definitions• Osteochondral lesion of

talus (OLT):• Only 0.09% of all fractures and

1% of all talus fractures– Traumatic etiology– Commonly: ankle sprain

• Inversion injury• 6.5 per 100 ankle sprains

– Bosien et al. 1955– Older age group:

• 2nd through 4th decade• Average age 25 years

– More on lateral side– More prone to develop OA

Classification of OLT

Berndt and Hardy (1959):I. Compression of subchondral

bone – non surgical II. Partial detached flap -

non surgical vs arthroscopyIII. Detached but reduced -

lateral – surgery medial – casting

IV. Detached and loose - surgery – debridement - microfracture

Traumatic Etiology

• Lateral lesion:– Inversion injury of

dorsi-flexed ankle– Shallow and wafer-like

• Medial lesion:– Inversion injury of

plantar-flexed ankle– Deep and cup-shaped

Symptoms

• Activity-related pain• Stiffness• Swelling• Decreased ROM• Locking• Crepitus• Weakness• Instability• Palpable loose body

Diagnosis

• Xrays– AP, lateral, mortise view– AP in plantar-flexion

for medial lesions– Can diagnose 70-100%

of lesions

• CT scan– High-resolution with

2 mm cuts– Best for bone detail

Diagnosis and Prognosis?• Use of bone scan as

predictor is controversial– “Limited correlation of

bone scan findings, stability of lesion and ultimate need for surgery”

• Cahill, Am J Sports Med, 1989 (level IV)

– “4/4 patients with increased activity healed while 2/2 with decreased activity did not heal.”Therefore consider sx if decreased activity.”

• Paletta, Am J Sports Med, 1998 (level III)

Diagnosis

• MRI– Can show loosening

of fragment– Helpful for determining

stage of lesion – T2-weighted images with

high signal intensity beneath chondral surface

– 85% correlation with arthroscopic findings

– Improved with arthrography or IV Gadolinium contrast

• Dipaola, Arthroscopy, 1991

MRI Staging of Joints with Osteochondritis Dissecans

• Stage I--Thickening of articular cartilage and low signal changes (stable)

• Stage II--Articular cartilage breached, low-signal rim behind fragment indicating fibrous attachment (stable) (maybe surgery if chronic)

• Stage III--Articular cartilage breached, high-signal changes behind fragment and underlying subchondral bone (unstable…surgery!!!)

• Stage IV--Loose body (unstable….surgery!!!)

DiPaola et al. 1991

MRI Staging of OCD Lesions of the Talus

Snowboarders’ fracture

• Lateral process of talus– Can present like acute

ankle sprain

• Valderrabano 2005• von Knoch 2007

Snowboarders’ fracture

• Lateral process of talus

Snowboarders’ fracture

Management of Stage 1 & 2 OCL

• Teenagers:– Immobilization– Casting– Restricted

weightbearing? – Rehabilitative exercises?

• Systematic review –non-operative treatment leads to poor outcome!– Tol et al. 2000

Juvenile OCD?

• Retrospective chart review 2007-2011

• 85 patients:– Females 1.5X risk– Teenagers 7x risk of

children aged 6-11 years– Non-Hispanic whites

at greater risk? – African Americans –

lowest• Kessler et al. 2014

Juvenile OCD?

• Fixation of fragment?– Only if non-displaced– Viability of fragment?– Pin– Lag or compression

screw– Cortical bone plugs

• Buda 2016

Management of Osteochondral Lesions

Surgical Debridement• Best results with less

than 12-month delay– Excision of necrotic

sequestrum– Abrading crater– Drilling subchondral

bone or micro-fracture: stimulate formation of fibro-cartilage to fill gap

– Arthroscopy ±arthrotomy

– May require osteotomy depending on location

Management of Osteochondral Lesions

• Marrow stimulation:– Debridement +– Subchondral drilling– Microfracture

– 8-10 good results with arthroscopic debridement of posterior medial

– (level IV)• Baker, Arthroscopy,1986

Retrograde Drilling

• Used for primary OCDs– Subchondral bone

lesions with intact overlying cartilage

– Protects integrity of articular cartilage

– When defect is difficult to reach by arthroscopy

– May require osteotomy

Osteochondral Lesions of the TalusIndications & Outcomes

• Comparison of 39 studies treating ankle OCD’s with excision, excision and curettage, osteochondraltransplantation, fixation, retrograde drilling)– (level 2)

• Best outcome (86% good to excellent results) with:excision, curettage and drilling!

• Verhagen et al. Foot And Ankle Clin, 2003

Outcomes of Osteochondral Grafting

• 94% good to excellent results at 7 yrs of talus

• Hangody, 2003

• Allograft• Autograft• Mosaicplasty

– Morbidity of donor site– Need for osteotomies– NWB protocol after

• De L’Escalopier 2015• Emre 2012

Outcomes of Osteochondral Grafting

Talusan 2014

Management of Cystic Lesion

• Cancellous bone graft• Bone graft substitute• Osteoarticular

allografts• Alternative to

arthrodesis• NWB 6-8 weeks• CT to check healing

Osteochondral Grafting

• Allogenicosteochondraltransplantation (i.e. DeNovo NT®)– “off the shelf”– Arthroscopic

implantation– Secured with fibrin

sealant

Newer Techniques: ACI in AnkleAutologous chondrocyte implantation (ACI)

Newer Techniques: ACI in Ankle

• Autologous chondrocyte implantation (ACI)

• 14 patients with 32 month follow-up

• 79% good, 21% poor results– Mandelbaum et al. 2003 – (level IV)

Ortho-Biologics

• Biologics:– PRP– Stem cell therapy

• Platelet-derived growth factor (PDGF)– Arthroscopic

debridement followed by placement of recombinant human DPGF in matrix of tricalcium phosphate

– Younger 2016– DiGiovanni 2013

Bone Marrow Aspirate Concentration (BMAC) Transplantation

• Juvenile OCD results– Pagliazzi 2016

• Platelet-rich fibrin (PRF) harvested day before surgery

• 1-step technique• Bone marrow from iliac

crest- concentrated to remove RBC’s, plasma

• Collagen membrane

On the horizon???

• Focussed ESWT?– Early stages of adult OCD– Some success with

avascular femoral head necrosis

– Need electrohydraulic high-energy ESWT

– More difficult to focus in the ankle than in knee

• Thiele 2015

On the horizon???

• Pulsed electromagnetic fields– To hasten healing after

debridement and micro-fracture?

• NO evidence to support– Earlier resumption of sports– Higher % of patients

resuming sports– Functional or radiological

improvements up to 1 year– Reilingh et al. 2016

Osteochondral Lesions of the Talus

Case presentation

References• Baker CL et al. Arthroscopic treatment of transchondral talar dome

fractures. Arthroscopy 1986; 2(2): 82-87.• Berndt AL & Harty M. Transchondral fractures (osteochondritis

dissecans) of the talus. J Bone Joint Surg 1959; 41A:988-1020.• Bosien WR, Staples OS, Russell SW. Residual disability following acute

ankle sprains. J Bone Joint Surg 1955; 37A;1237-1243.• Buda R Treatment of osteochondritis dissecans of the talus in skeletally

immature population: a critical analysis of the available evidence. Foot and Ankle Specialist 2016; 9(3):265.

• Cahill et al. The results of conservative management of juvenile osteochondritis dissecans using joint scintigraphy. A prospective study. Am J Sports Med 1989; 17 (5):601-5.

• Corominas L et al. Retrograde percutaneous drilling for osteochondritisdissecans of the head of the talus: case report and review of the literature. J Foot Ankle Surg 2016; 55 (2):328-32.

References• De L’Escalopier et al. Outcomes of talar dome osteochondral defect

repair using osteocartilaginous autografts: 37 cases of Mosaicplasty®. Ortho Traumatol: Surg & Research 2015; 101:97-102.

• DiGiovanni et al. A review of the clinical experience with recombinant human platelet-derived growth factor-BB (rhPDGF-BB) in orthopaedicbone repair and regeneration. Current Ortho Practice 2013; 24(5):476-481.

• Dipaola, JD et al. Characterizing osteochondral lesions by magnetic resonance imaging. Arthroscopy. 1991;7:101–104.

• Emre et al. Open mosaicplasty in osteochondral lesions of the talus: a prospective study. Foot Ankle Surg 2012;51:556-60.

• Goh GSH et al. Outcomes are favorable after arthroscopic treatment of osteochondritis dissecans of the talus. J Foot Ankle Surg 2015; 54(1): 57-60.

• Hangody et al. Mosaicplasty for the treatment of articular defects of the knee and ankle. Clin Orthop Relat Re 2001; 391:5328-5336.

References• Heyse TJ et al. Juvenile osteochondritis dissecans of the talus: predictors

of conservative treatment failure. Acta Orthop Trauma Surg 2015; 135:1337-1341.

• Kessler et al. Osteochondritis dissecans of the ankle in children and adolescents: demographics and epidemiology. Am J Sports Med 2014; 42:2165-2171.

• Kruse et al. Arthoscopic De Novo NT® juvenile allograft cartilage implantation in the talus: a case presentation. J Foot Ankle Surg 2012; 51:218-221.

• Kumai T et al. Fixation of osteochondral lesions of the talus using cortical bone pegs. J Bone Joint Surg Br 2002;84:369–74.

• Mandelbaum BR et al. Autologous chondrocyte implantation of the talus. Arthroscopy 2003; 19(Suppl 1):129-37.

• Ogilvie-Harris DJ & Sarrosa EA. Arthroscopic treatment of osteochondritis dissecans of the talus. Arthroscopy 1999; 15:805-808.

References• Pagliazzi G et al. Tissue bioengineering in the treatment of

osteochondritis dissecans of the talus in children with open physis: preliminary results. J Pediatr Orthop 2016 Jul 2.

• Paletta GA et al. The prognostic value of quantitative bone scan in knee osteochondritis dissecans. A preliminary experience. Am J Sports Med 1998; 26(1):7-14.

• Reilingh ML et al. Effects of pulsed electromagnetic fields on return to sports after arthroscopic debridement and microfracture of osteochondral talar defects: a randomized, double-blind, placebo-controlled multicenter trial. Am J Sports Med 2016;44;1292-1300.

• Taluson PG et al. Osteochondritis dissecans of the talus: diagnosis and treatment in athletes. Clin Sports Med 2014; 33(2):267-84.

• Thiele S, Thiele R, Gerdesmeyer. Adult osteochondritis dissecans and focussed ESWT: a successful treatment option. Int J Surg 2015;24:191-194.

• Tol JL et al. Treatment strategies in osteochondral defects of the talardome: a systematic review. Foot Ankle Int 2000; 21: 119-126.

References• Valderrabano V et al. Snowboarder’s talus fracture: treatment outcome

of 20 cases after 3.5 years. Am J Sports Med 2005; 33(6): 871-880.• Verhagen et al. Systematic review of treatment strategies for

osteochondral defects of the talar dome. Foot Ankle Clin 2003;8:233-242.• von Knoch F et al. Fracture of the lateral process of the talus in

snowboarders. J Bone Joint Surg (Br) 2007; 89(6):772-777. • Woelfle JV et al. Clinical outcome and magnetic resonance imaging after

osteochondral autologous transplantation in osteochondritis dissecansof the talus. Foot Ankle Int 2013; 34 (2): 173-9.

• Younger A et al. A study to evaluate the safety of platelet-derived growth factor for treatment of osteochondral defects of the talus. Knee SurgSports Traumatol Arthrosc 2016; 24:1250-1258.

• Zengerink M et al. Treatment of osteochondral lesions of the talus: a systematic review. Knee Surg Sports Traumatol Arthosc 2010; 18:238-246.