other logic implementations

39
CONCORDIA VLSI D E SIG N LA B 1 Other Logic Implementations

Upload: paley

Post on 13-Jan-2016

50 views

Category:

Documents


0 download

DESCRIPTION

Other Logic Implementations. Pass gate/Transmission Gate. Pass Gate. NMOS passes good logic ‘0’. PMOS passes good logic ‘1’. CMOS TRANSMISSION GATE (TG). AND Gate. OR Gate. Multiplexer. EX-OR Gate. Delay Calculations of Pass gates. 4-1 MUX. High Current Delivery. - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: Other Logic Implementations

CONCORDIAVLSI DESIGN LAB

1

Other Logic Implementations

Page 2: Other Logic Implementations

CONCORDIAVLSI DESIGN LAB

2

Pass gate/Transmission Gate

C=1 OUT=A

C=0 OUT=NO OUTPUT (OPEN CIRCUIT)

CMOS TRANSMISSION GATE (TG)

NMOS passes good logic ‘0’

PMOS passes good logic ‘1’

Pass Gate

Page 3: Other Logic Implementations

CONCORDIAVLSI DESIGN LAB

3

Multiplexer

C A B F C A B F

0 0 0 0 1 0 0 0

0 0 1 1 1 0 1 0

0 1 0 0 1 1 0 1

0 1 1 1 1 1 1 1

C=1 C=01

0A

0

1 B

Page 4: Other Logic Implementations

CONCORDIAVLSI DESIGN LAB

4

AND Gate

A B F

0 0 0

0 1 0

1 0 0

1 1 1

A=1 B=1

A=0 B=1

1

1

1

10

1

0

0 01

0

1

1

0

Page 5: Other Logic Implementations

CONCORDIAVLSI DESIGN LAB

5

OR Gate

A B F

0 0 0

0 1 1

1 0 1

1 1 1

0

1

0

0

0

1

0

1

01

0

1

A=0B=0

A=1B=0

Page 6: Other Logic Implementations

CONCORDIAVLSI DESIGN LAB

6

Delay Calculations of Pass gates

buffereqeqeq m

nmnRC )1(]

2

)1([69.0

Page 7: Other Logic Implementations

CONCORDIAVLSI DESIGN LAB

7

4-1 MUX

Page 8: Other Logic Implementations

CONCORDIAVLSI DESIGN LAB

8

High Current Delivery

For High Current requirements of L-H

transitions

For High Current requirements of H-L

transitions

Page 9: Other Logic Implementations

CONCORDIAVLSI DESIGN LAB

9

Tristate

EN IN OUT

0 0 0

0 1 1

1 0 X

1 1 X

1

0

0/1 1/0

0

Z0/1

1

Page 10: Other Logic Implementations

CONCORDIAVLSI DESIGN LAB

10

EX-OR Gate

A B F

0 0 0

0 1 1

1 0 1

1 1 0

Page 11: Other Logic Implementations

CONCORDIAVLSI DESIGN LAB

11

EX_OR1

0

0

0

1 1

A=1 B=0

1

1

0

1

0 0

A=1 B=1

1

01

A=1B=1

X1

0

1

1

0

0

0

1

A=0B=1

1

1

1 1

1

0

0

Page 12: Other Logic Implementations

CONCORDIAVLSI DESIGN LAB

X

12

EX-OR/NOR With Driving Output

A=0B=0

A=0B=1

0 0

1

0

0

0

0

1

1

0

10

10

X

0

An inversion of the left circuits

Page 13: Other Logic Implementations

CONCORDIAVLSI DESIGN LAB

13

PLA

Page 14: Other Logic Implementations

CONCORDIAVLSI DESIGN LAB

14

Example : PLA

cbabcy

acy

baabcy

3

2

1

)()(

)()(

1

1

1

1

1

bacbay

bacbay

baabcy

baabcy

baabcy

Page 15: Other Logic Implementations

CONCORDIAVLSI DESIGN LAB

15

Transistor level Implementation

Output lineInput Lines

Input Lines

Output Lines

Page 16: Other Logic Implementations

CONCORDIAVLSI DESIGN LAB

16

Pseudo-nMOS Implementation

Ground

Red is Input

Green is Ground

Page 17: Other Logic Implementations

CONCORDIAVLSI DESIGN LAB

17

Altera 40nm FPGA’ahttp://www.altera.com/literature/br/br-stratix-

iv-hardcopy-iv.pdf

Table 2. HardCopy IV E Devices Overview

Device (1) ASICGates

(2)

MemoryBits(3)

I/O Pins PLLs FPGAPrototype

HC4E2YZ 3.9M 8.1 296 - 480 4 EP4SE110

HC4E3YZ 9.2M 10.7 296 - 480 4 EP4SE230

HC4E4YZ 7.6M 12.1 - 13.3 392 - 864 4/8/12 EP4SE290

HC4E5YZ 9.5M 16.8 480 - 864 4/8/12 EP4SE360

HC4E6YZ 11.5M 16.8 736 - 880 8/12 EP4SE530

HC4E7YZ 13.3M 16.8 736 - 880 8/12 EP4SE680

Notes:1.Y = I/O count, Z = package type (see the product catalog for more information)

2.ASIC gates calculated as 12 gates per logic element (LE), 5,000 gates per 18 x 18 multiplier(SRAMs, PLLs, test circuitry, I/O registers not included in gate count)

3.Not including MLABs

Page 18: Other Logic Implementations

CONCORDIAVLSI DESIGN LAB

Features Artix-7 Kintex-7 Virtex-7 Spartan-6 Virtex-6

Logic Cells 352,000 480,000 2,000,000 150,000 760,000

BlockRAM 19Mb 34Mb 68Mb 4.8Mb 38Mb

DSP Slices 1,040 1,920 3,600 180 2,016

DSP Performance (symmetric FIR)

1,248GMACS 2,845GMACS 5,335GMACS 140GMACS2,419GMACS

Transceiver Count 16 32 96 8 72

Transceiver Speed 6.6Gb/s 12.5Gb/s 28.05Gb/s 3.2Gb/s 11.18Gb/s

Total Transceiver Bandwidth (full duplex)

211Gb/s 800Gb/s 2,784Gb/s 50Gb/s 536Gb/s

Memory Interface (DDR3)

1,066Mb/s 1,866Mb/s 1,866Mb/s 800Mb/s 1,066Mb/s

PCI Express® Interface

Gen2x4 Gen2x8 Gen3x8 Gen1x1 Gen2x8

Agile Mixed Signal (AMS)/XADC

Yes Yes Yes   Yes

Configuration AES Yes Yes Yes Yes Yes

I/O Pins 600 500 1,200 576 1,200

I/O Voltage1.2V, 1.35V, 1.5V, 1.8V, 2.5V, 3.3V

1.2V, 1.35V, 1.5V, 1.8V, 2.5V, 3.3V

1.2V, 1.35V, 1.5V, 1.8V, 2.5V, 3.3V

1.2V, 1.5V, 1.8V, 2.5V, 3.3V

1.2V, 1.5V, 1.8V, 2.5V

EasyPath Cost Reduction Solution

- Yes Yes - Yes

FPGA Comparison Table

Page 19: Other Logic Implementations

CONCORDIAVLSI DESIGN LAB

19

Sequential Circuits

For correct operation,

TW cl

Solution:

use a narrow clock pulse. (Impractical)

Page 20: Other Logic Implementations

CONCORDIAVLSI DESIGN LAB

20

Clocking Conditions

Condition to achieve proper operation:

Tcl

Problem: Clock Skew

Page 21: Other Logic Implementations

CONCORDIAVLSI DESIGN LAB

21

Two-phase Non-Overlapping clocking

Problems:

•Routing two Clock Nets,

•Lower Frequency of

Operation

Page 22: Other Logic Implementations

CONCORDIAVLSI DESIGN LAB

22

Sequential Circuits-Single Clock

Single clock to synchronize operationsSuitable for simple applications

-ve going edge

Page 23: Other Logic Implementations

CONCORDIAVLSI DESIGN LAB

23

Different Latches

Dynamic

Static latch with cross-coupled circuit

Static latch with clocked feedback

Buffered static latch with clocked feedback

Page 24: Other Logic Implementations

CONCORDIAVLSI DESIGN LAB

24

D-Latch and the Flip Flop Operations

Page 25: Other Logic Implementations

CONCORDIAVLSI DESIGN LAB

25

The Master Slave Flip Flop +ve edge of CLK 2

Page 26: Other Logic Implementations

CONCORDIAVLSI DESIGN LAB

26

Master Slave Flip Flop

Setup time=G4+G5+G6

Hold time=G1+G2

W1=G5+G6+G3

W2=G9+G10+G7

Cycle time=W1+W2

•CLK generated locally

•Typical arrangement,

Page 27: Other Logic Implementations

CONCORDIAVLSI DESIGN LAB

27

BeforeCP Active Edge 0 1 Data has to bet set stable

Set-Up TimeG4+G5+G6

0

0

01

0

1

1

0

X

X

Page 28: Other Logic Implementations

CONCORDIAVLSI DESIGN LAB

28

1

10

1

0

0

1

X

XHold TimeG1+G2

1

AfterCP Active Edge 1 0 Data has to bet set stable

Page 29: Other Logic Implementations

CONCORDIAVLSI DESIGN LAB

29

0

0

01

0

1

1

0

X

X

LOW VALUE, W2G3 +G5 +G6

Page 30: Other Logic Implementations

CONCORDIAVLSI DESIGN LAB

30

0

0

01

0

1

1

0

X

X

CLK HIGH , W1G7 +G9 +G10

Page 31: Other Logic Implementations

CONCORDIAVLSI DESIGN LAB

31

CMOS two phase double latch circuits

Static buffered

Static un-buffered CLK1=1 CLK2=1

Dynamic

CLK1=1 CLK2=1

Page 32: Other Logic Implementations

CONCORDIAVLSI DESIGN LAB

32

D Flip-Flop

clkreset

D Q

Edge Triggered, D Flip Flop

clk

D

reset

Q

NAND1

NAND2

NAND3

NAND4

NAND5

NAND6

S

R

Page 33: Other Logic Implementations

CONCORDIAVLSI DESIGN LAB

33

When CLK changes from 0 to 1

Case1, D=0: tsetup= t4, thold=t3

clk

D

reset

Q

NAND1

NAND2

NAND3

NAND4

NAND5

NAND6

S

R

Path for set up

Path for hold

Nand00 101 1101110

01

1

1

010 1

0

1

Page 34: Other Logic Implementations

CONCORDIAVLSI DESIGN LAB

34

When CLK changes from 0 to 1

Case2, D=1 tsetup=t4 + t1 thold= t2Path to set

up

clk

D

reset

Q

NAND1

NAND2

NAND3

NAND4

NAND5

NAND6

S

R

Path to hold

1

100

1

1

1

Nand00 101 1101110

0 1

1

011

1

1

0

0

1

1

1

1 0

Page 35: Other Logic Implementations

CONCORDIAVLSI DESIGN LAB

35

clk

D

reset

Q

NAND1

NAND2

NAND3

NAND4

NAND5

NAND6

S

R

When CLK changes from 0 to 1

Case1, D=0: tsetup= t4, thold=t3

Case2, D=1 tsetup=t4 + t1 thold= t2

Page 36: Other Logic Implementations

CONCORDIAVLSI DESIGN LAB

36

D Flip FlopRising Edge

Data Change

Page 37: Other Logic Implementations

CONCORDIAVLSI DESIGN LAB

37

D Flip-Flop with direct set and clear

Input Output

SD CD D C O O’

H L X X H L

L H X X L H

H H X X H H

On+1 O’n+1

L L L L H

L L H H L

Page 38: Other Logic Implementations

CONCORDIAVLSI DESIGN LAB

38

JK Flip-FlopInput Output

SD CD C J K O O’

H L X X X H L

L H X X X L H

H H X X X H H

On+1 O’n+1

L L L L No Change

L L H L H L

L L L H L H

L L H H O’n On

Page 39: Other Logic Implementations

CONCORDIAVLSI DESIGN LAB

39

Thank you !