outline 1.stokes vectors, jones calculus and mueller calculus 2.optics of crystals: birefringence...

109
Outline 1. Stokes Vectors, Jones Calculus and Mueller Calculus 2. Optics of Crystals: Birefringence 3. Common polarization devices for the laboratory and for astronomical instruments 4. Principles of Polarimetry: Modulation and Analysis. Absolute and Relative Polarimetry 5. Principles of Polarimetry: Spatial modulation, Temporal modulation, Spectral modulation 6. Principles of Polarimetry: Noise and errors 7. Spurious sources of polarization

Upload: miguel-snyder

Post on 27-Mar-2015

217 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Outline 1.Stokes Vectors, Jones Calculus and Mueller Calculus 2.Optics of Crystals: Birefringence 3.Common polarization devices for the laboratory and

Outline

1. Stokes Vectors, Jones Calculus and Mueller Calculus

2. Optics of Crystals: Birefringence3. Common polarization devices for the

laboratory and for astronomical instruments4. Principles of Polarimetry: Modulation and

Analysis. Absolute and Relative Polarimetry5. Principles of Polarimetry: Spatial modulation,

Temporal modulation, Spectral modulation6. Principles of Polarimetry: Noise and errors7. Spurious sources of polarization

Page 2: Outline 1.Stokes Vectors, Jones Calculus and Mueller Calculus 2.Optics of Crystals: Birefringence 3.Common polarization devices for the laboratory and

Stokes Vector, Jones Calculus,

Mueller Calculus

playing around with matrices

A. López Ariste

Page 3: Outline 1.Stokes Vectors, Jones Calculus and Mueller Calculus 2.Optics of Crystals: Birefringence 3.Common polarization devices for the laboratory and

)( tkzii

y

x

y

x eeA

A

E

E

Assumptions:

•A plane transverse electromagnetic wave•Quasi-monochromatic•Propagating in a well defined direction z

Page 4: Outline 1.Stokes Vectors, Jones Calculus and Mueller Calculus 2.Optics of Crystals: Birefringence 3.Common polarization devices for the laboratory and

)( tkzii

y

x

y

x eeA

A

E

E

Jones Vector

Page 5: Outline 1.Stokes Vectors, Jones Calculus and Mueller Calculus 2.Optics of Crystals: Birefringence 3.Common polarization devices for the laboratory and

)( tkzii

y

x

y

x eeA

A

E

E

Jones Vector:

It is actually a complex vector with 3 free parametersIt transforms under the Pauli matrices.It is a spinor

y

x

y

x

y

x

E

EC

E

E

dc

ba

E

E

3,0i

iiaC

Page 6: Outline 1.Stokes Vectors, Jones Calculus and Mueller Calculus 2.Optics of Crystals: Birefringence 3.Common polarization devices for the laboratory and

3,0i

iiaC

10

010

10

011

01

102

0

03 i

i

The Jones matrix of an optical device

In group theory: SL(2,C)

Page 7: Outline 1.Stokes Vectors, Jones Calculus and Mueller Calculus 2.Optics of Crystals: Birefringence 3.Common polarization devices for the laboratory and

)( tkzii

y

x

y

x eeA

A

E

E

From the quantum-mechanical point of view, the wave function cannot be measured directly.

Observables are made of quadratic forms of the wave function:

EEJ

J is a density matrix : The coherence matrix

Page 8: Outline 1.Stokes Vectors, Jones Calculus and Mueller Calculus 2.Optics of Crystals: Birefringence 3.Common polarization devices for the laboratory and

**

**

yyxy

yxxx

EEEE

EEEEJ

3210 VUQIJ

Like Jones matrices, J also belongs to the SL(2,C) group, and can be decomposed in the basis of the Pauli matrices.

V

U

Q

I

Is the Stokes Vector

Page 9: Outline 1.Stokes Vectors, Jones Calculus and Mueller Calculus 2.Optics of Crystals: Birefringence 3.Common polarization devices for the laboratory and

3210 VUQIJ

V

U

Q

I

I

The Stokes vector is the quadractic form of a spinor. It is a bi-spinor, or also a 4-vector

)(

JTrI

Page 10: Outline 1.Stokes Vectors, Jones Calculus and Mueller Calculus 2.Optics of Crystals: Birefringence 3.Common polarization devices for the laboratory and

V

U

Q

I

02222 VUQI

02

0

02

3,2,1

4-vectors live in a Minkowsky space with metric (+,-,-,-)

)(

JTrI

Page 11: Outline 1.Stokes Vectors, Jones Calculus and Mueller Calculus 2.Optics of Crystals: Birefringence 3.Common polarization devices for the laboratory and

The Minkowski space

I

VQ

Partially polarized light

Fully polarizedlight

Cone of (fully polarized) light

2222 VUQI

2222 VUQI

Page 12: Outline 1.Stokes Vectors, Jones Calculus and Mueller Calculus 2.Optics of Crystals: Birefringence 3.Common polarization devices for the laboratory and
Page 13: Outline 1.Stokes Vectors, Jones Calculus and Mueller Calculus 2.Optics of Crystals: Birefringence 3.Common polarization devices for the laboratory and

y

x

y

x

y

x

E

EC

E

E

dc

ba

E

E

CJCCEECEE

E

EJ yx

y

x

IMICCTrCJCTrJTrI

)()()(

M is the Mueller matrix of the transformation

)( CCTrM

Page 14: Outline 1.Stokes Vectors, Jones Calculus and Mueller Calculus 2.Optics of Crystals: Birefringence 3.Common polarization devices for the laboratory and

)( CCTrM

From group theory, the Mueller matrix belongs to a group of transformations which is the square of SL(2,C)

Actually a subgroup of this general group called O+(3,1) or Lorentz group

),2(),2( CSLCSL

Page 15: Outline 1.Stokes Vectors, Jones Calculus and Mueller Calculus 2.Optics of Crystals: Birefringence 3.Common polarization devices for the laboratory and

The cone of (fully polarized) light

I

VQ

Lorentz boost = de/polarizer, attenuators, dichroism

Page 16: Outline 1.Stokes Vectors, Jones Calculus and Mueller Calculus 2.Optics of Crystals: Birefringence 3.Common polarization devices for the laboratory and

The cone of (fully polarized) light

I

VQ

3-d rotation = retardance, optical rotation

Page 17: Outline 1.Stokes Vectors, Jones Calculus and Mueller Calculus 2.Optics of Crystals: Birefringence 3.Common polarization devices for the laboratory and

Mueller Calculus

• Any macroscopic optical device that transforms one input Stokes vector to an output Stokes vector can be written as a Mueller matrix

• Lorentz group is a group under matrix multiplication: A sequence of optical devices has as Mueller matrix the product of the individual matrices

Page 18: Outline 1.Stokes Vectors, Jones Calculus and Mueller Calculus 2.Optics of Crystals: Birefringence 3.Common polarization devices for the laboratory and

Mueller Calculus: 3 basic operations

• Absorption of one component• Retardance of one component

respect to the other• Rotation of the reference system

Page 19: Outline 1.Stokes Vectors, Jones Calculus and Mueller Calculus 2.Optics of Crystals: Birefringence 3.Common polarization devices for the laboratory and

Mueller Calculus: 3 basic operations

• Absorption of one component

C

10200

0

aaC

0000

0000

0011

0011

2

aM

Page 20: Outline 1.Stokes Vectors, Jones Calculus and Mueller Calculus 2.Optics of Crystals: Birefringence 3.Common polarization devices for the laboratory and

Mueller Calculus: 3 basic operations

• Absorption of one component• Retardance of one component

respect to the other

10 110

01

ii

i eee

C

cossin00

sincos00

0010

0001

M

Page 21: Outline 1.Stokes Vectors, Jones Calculus and Mueller Calculus 2.Optics of Crystals: Birefringence 3.Common polarization devices for the laboratory and
Page 22: Outline 1.Stokes Vectors, Jones Calculus and Mueller Calculus 2.Optics of Crystals: Birefringence 3.Common polarization devices for the laboratory and

Mueller Calculus: 3 basic operations

• Absorption of one component• Retardance of one component

respect to the other• Rotation of the reference system

30 sincoscossin

sincos

C

1000

02cos2sin0

02sin2cos0

0001

M

Page 23: Outline 1.Stokes Vectors, Jones Calculus and Mueller Calculus 2.Optics of Crystals: Birefringence 3.Common polarization devices for the laboratory and
Page 24: Outline 1.Stokes Vectors, Jones Calculus and Mueller Calculus 2.Optics of Crystals: Birefringence 3.Common polarization devices for the laboratory and

Optics of Crystals: Birefringence

A. López Ariste

Page 25: Outline 1.Stokes Vectors, Jones Calculus and Mueller Calculus 2.Optics of Crystals: Birefringence 3.Common polarization devices for the laboratory and
Page 26: Outline 1.Stokes Vectors, Jones Calculus and Mueller Calculus 2.Optics of Crystals: Birefringence 3.Common polarization devices for the laboratory and

Chapter XIV, Born & Wolf

Page 27: Outline 1.Stokes Vectors, Jones Calculus and Mueller Calculus 2.Optics of Crystals: Birefringence 3.Common polarization devices for the laboratory and
Page 28: Outline 1.Stokes Vectors, Jones Calculus and Mueller Calculus 2.Optics of Crystals: Birefringence 3.Common polarization devices for the laboratory and
Page 29: Outline 1.Stokes Vectors, Jones Calculus and Mueller Calculus 2.Optics of Crystals: Birefringence 3.Common polarization devices for the laboratory and
Page 30: Outline 1.Stokes Vectors, Jones Calculus and Mueller Calculus 2.Optics of Crystals: Birefringence 3.Common polarization devices for the laboratory and
Page 31: Outline 1.Stokes Vectors, Jones Calculus and Mueller Calculus 2.Optics of Crystals: Birefringence 3.Common polarization devices for the laboratory and

Ellipsoïd

Page 32: Outline 1.Stokes Vectors, Jones Calculus and Mueller Calculus 2.Optics of Crystals: Birefringence 3.Common polarization devices for the laboratory and

Ellipsoïd

Page 33: Outline 1.Stokes Vectors, Jones Calculus and Mueller Calculus 2.Optics of Crystals: Birefringence 3.Common polarization devices for the laboratory and

Three types of crystals

A spherical wavefront

Page 34: Outline 1.Stokes Vectors, Jones Calculus and Mueller Calculus 2.Optics of Crystals: Birefringence 3.Common polarization devices for the laboratory and

Three types of crystals

Two apparent waves propagating at different speeds:•An ordinary wave, with a spherical wavefront propagating •at ordinary speed vo

•An extraordinary wave with an elliptical wavefront, its speed •depends on direction with characteristic values vo and ve

Page 35: Outline 1.Stokes Vectors, Jones Calculus and Mueller Calculus 2.Optics of Crystals: Birefringence 3.Common polarization devices for the laboratory and
Page 36: Outline 1.Stokes Vectors, Jones Calculus and Mueller Calculus 2.Optics of Crystals: Birefringence 3.Common polarization devices for the laboratory and
Page 37: Outline 1.Stokes Vectors, Jones Calculus and Mueller Calculus 2.Optics of Crystals: Birefringence 3.Common polarization devices for the laboratory and

Three types of crystals

Page 38: Outline 1.Stokes Vectors, Jones Calculus and Mueller Calculus 2.Optics of Crystals: Birefringence 3.Common polarization devices for the laboratory and
Page 39: Outline 1.Stokes Vectors, Jones Calculus and Mueller Calculus 2.Optics of Crystals: Birefringence 3.Common polarization devices for the laboratory and
Page 40: Outline 1.Stokes Vectors, Jones Calculus and Mueller Calculus 2.Optics of Crystals: Birefringence 3.Common polarization devices for the laboratory and

zs

De

Do

The ellipsoïd of D in uniaxial crystals

The two propagating waves are linearly polarized and orthogonal one to each other

Page 41: Outline 1.Stokes Vectors, Jones Calculus and Mueller Calculus 2.Optics of Crystals: Birefringence 3.Common polarization devices for the laboratory and
Page 42: Outline 1.Stokes Vectors, Jones Calculus and Mueller Calculus 2.Optics of Crystals: Birefringence 3.Common polarization devices for the laboratory and

Typical birefringences

•Quartz +0.009

•Calcite -0.172

•Rutile +0.287

•Lithium Niobate -0.085

Page 43: Outline 1.Stokes Vectors, Jones Calculus and Mueller Calculus 2.Optics of Crystals: Birefringence 3.Common polarization devices for the laboratory and

Common polarization devices for the laboratory and for

astronomical instruments

A. López Ariste

Page 44: Outline 1.Stokes Vectors, Jones Calculus and Mueller Calculus 2.Optics of Crystals: Birefringence 3.Common polarization devices for the laboratory and

Linear Polarizer

0000

0000

005.05.0

005.05.0

M

0000

02sin2cos2sin2sin

02sin2cos2cos2cos

02sin2cos1

5.0)(

0000

0000

005.05.0

005.05.0

)( 2

21

RRM

Page 45: Outline 1.Stokes Vectors, Jones Calculus and Mueller Calculus 2.Optics of Crystals: Birefringence 3.Common polarization devices for the laboratory and

Retarder

cossin00

sincos00

0010

0001

M

?)(

cossin00

sincos00

0010

0001

)( 1

RRM

Page 46: Outline 1.Stokes Vectors, Jones Calculus and Mueller Calculus 2.Optics of Crystals: Birefringence 3.Common polarization devices for the laboratory and
Page 47: Outline 1.Stokes Vectors, Jones Calculus and Mueller Calculus 2.Optics of Crystals: Birefringence 3.Common polarization devices for the laboratory and

Savart Plate

Page 48: Outline 1.Stokes Vectors, Jones Calculus and Mueller Calculus 2.Optics of Crystals: Birefringence 3.Common polarization devices for the laboratory and

Glan-Taylor Polarizer

Glan-Taylor.jpg

Page 49: Outline 1.Stokes Vectors, Jones Calculus and Mueller Calculus 2.Optics of Crystals: Birefringence 3.Common polarization devices for the laboratory and

Glan-Thompson Polarizing Beam-Splitter

Page 50: Outline 1.Stokes Vectors, Jones Calculus and Mueller Calculus 2.Optics of Crystals: Birefringence 3.Common polarization devices for the laboratory and

Rochon Polarizing Beamsplitter

Page 51: Outline 1.Stokes Vectors, Jones Calculus and Mueller Calculus 2.Optics of Crystals: Birefringence 3.Common polarization devices for the laboratory and

Polaroid

Page 52: Outline 1.Stokes Vectors, Jones Calculus and Mueller Calculus 2.Optics of Crystals: Birefringence 3.Common polarization devices for the laboratory and

Dunn Solar Tower. New Mexico

Page 53: Outline 1.Stokes Vectors, Jones Calculus and Mueller Calculus 2.Optics of Crystals: Birefringence 3.Common polarization devices for the laboratory and

dnne 0

Zero-order waveplates

Multiple-order waveplates

Typical birefringences

•Quartz +0.009

•Calcite -0.172

•Rutile +0.287

•Lithium Niobate -0.085

Page 54: Outline 1.Stokes Vectors, Jones Calculus and Mueller Calculus 2.Optics of Crystals: Birefringence 3.Common polarization devices for the laboratory and

Waveplates

Page 55: Outline 1.Stokes Vectors, Jones Calculus and Mueller Calculus 2.Optics of Crystals: Birefringence 3.Common polarization devices for the laboratory and
Page 56: Outline 1.Stokes Vectors, Jones Calculus and Mueller Calculus 2.Optics of Crystals: Birefringence 3.Common polarization devices for the laboratory and

Principles of PolarimetryModulation

Absolute and Relative Polarimetry

A. López Ariste

Page 57: Outline 1.Stokes Vectors, Jones Calculus and Mueller Calculus 2.Optics of Crystals: Birefringence 3.Common polarization devices for the laboratory and

Measure # 1 : I + Q

Measure # 2 : I - Q

Subtraction: 0.5 (M1 – M2 ) = Q

Addition: 0.5 (M1 + M2 ) = I

How to switch from Measure # 1 to Measure # 2?

MODULATION

Page 58: Outline 1.Stokes Vectors, Jones Calculus and Mueller Calculus 2.Optics of Crystals: Birefringence 3.Common polarization devices for the laboratory and

Measure # 1 : I + Q

Measure # 2 : I - Q

Subtraction: 0.5 (M1 – M2 ) = Q

Addition: 0.5 (M1 + M2 ) = I

Principle of Polarimetry

Everything should be the same EXCEPT for the sign

Page 59: Outline 1.Stokes Vectors, Jones Calculus and Mueller Calculus 2.Optics of Crystals: Birefringence 3.Common polarization devices for the laboratory and

MODULATION

Njj

njn

Njjj

ScM

ScM

,1

,1

11

VS

US

QS

IS

4

3

2

1

Page 60: Outline 1.Stokes Vectors, Jones Calculus and Mueller Calculus 2.Optics of Crystals: Birefringence 3.Common polarization devices for the laboratory and

MODULATION

Njj

njn

Njjj

ScM

ScM

,1

,1

11

VS

US

QS

IS

4

3

2

1

ii

i

cc

c

14,3,2

1 0

Page 61: Outline 1.Stokes Vectors, Jones Calculus and Mueller Calculus 2.Optics of Crystals: Birefringence 3.Common polarization devices for the laboratory and

MODULATION

Njj

njn

Njjj

ScM

ScM

,1

,1

11

ii

i

cc

c

14,3,2

1 0

IOM

O is the Modulation Matrix

Page 62: Outline 1.Stokes Vectors, Jones Calculus and Mueller Calculus 2.Optics of Crystals: Birefringence 3.Common polarization devices for the laboratory and

MODULATION

VIM

VIM

UIM

UIM

QIM

QIM

6

5

4

3

2

1

1001

1001

0101

0101

0011

0011

O

Conceptually, it is the easiest thingIs it so instrumentally?

Is it efficient respect to photon collection, noise and errors?

Page 63: Outline 1.Stokes Vectors, Jones Calculus and Mueller Calculus 2.Optics of Crystals: Birefringence 3.Common polarization devices for the laboratory and

MODULATION

IOM

MDMOI

1

nj

ijVUQIi D,1

2,,,

Del Toro Iniesta & Collados (2000)Asensio Ramos & Collados (2008)

nj

ijVUQIi Dn,1

2,,,

Page 64: Outline 1.Stokes Vectors, Jones Calculus and Mueller Calculus 2.Optics of Crystals: Birefringence 3.Common polarization devices for the laboratory and

MODULATION

MDMOI

1

Del Toro Iniesta & Collados (2000)

nj

ijVUQIi Dn,1

2,,,

VUQii

I

,,

2 1

1

Del Toro Iniesta & Collados (2000)Asensio Ramos & Collados (2008)

Page 65: Outline 1.Stokes Vectors, Jones Calculus and Mueller Calculus 2.Optics of Crystals: Birefringence 3.Common polarization devices for the laboratory and

MODULATION

VIM

VIM

UIM

UIM

QIM

QIM

6

5

4

3

2

1

1001

1001

0101

0101

0011

0011

O

3

1

1

,,

VUQ

I

Page 66: Outline 1.Stokes Vectors, Jones Calculus and Mueller Calculus 2.Optics of Crystals: Birefringence 3.Common polarization devices for the laboratory and

Design of a Polarimeter

•Specify an efficient modulation scheme: The answer is constrained by our instrumental choices

Page 67: Outline 1.Stokes Vectors, Jones Calculus and Mueller Calculus 2.Optics of Crystals: Birefringence 3.Common polarization devices for the laboratory and

Absolute vs. Relative Polarimetry

nj

ijVUQIi Dn,1

2,,,

VUQii

I

,,

2 1

1

Efficiency in Q,U and V limited by efficiency in I

What limits efficiency in I?

Page 68: Outline 1.Stokes Vectors, Jones Calculus and Mueller Calculus 2.Optics of Crystals: Birefringence 3.Common polarization devices for the laboratory and

Absolute vs. Relative Polarimetry

What limits efficiency in I?

Measure # 1 : I + Q

Measure # 2 : I - Q

Subtraction: 0.5 (M1 – M2 ) = Q

Addition: 0.5 (M1 + M2 ) = I

Principle of Polarimetry

Everything should be the same EXCEPT for the sign

Page 69: Outline 1.Stokes Vectors, Jones Calculus and Mueller Calculus 2.Optics of Crystals: Birefringence 3.Common polarization devices for the laboratory and

Absolute vs. Relative Polarimetry

What limits efficiency in I?

Measure # 1 : I + Q

Measure # 2 : I - Q

Subtraction: 0.5 (M1 – M2 ) = Q

Addition: 0.5 (M1 + M2 ) = I

Principle of Polarimetry

Everything should be the same EXCEPT for the sign

Usual photometry of present astronomical detectors is around 10-3

Page 70: Outline 1.Stokes Vectors, Jones Calculus and Mueller Calculus 2.Optics of Crystals: Birefringence 3.Common polarization devices for the laboratory and

Absolute vs. Relative Polarimetry

What limits efficiency in I?

You cannot do polarimetry better than photometry

Usual photometry of present astronomical detectors is around 10-3

Page 71: Outline 1.Stokes Vectors, Jones Calculus and Mueller Calculus 2.Optics of Crystals: Birefringence 3.Common polarization devices for the laboratory and

Absolute vs. Relative Polarimetry

What limits efficiency in I?

You cannot do ABSOLUTE polarimetry better than photometry

Usual photometry of present astronomical detectors is around 10-3

Page 72: Outline 1.Stokes Vectors, Jones Calculus and Mueller Calculus 2.Optics of Crystals: Birefringence 3.Common polarization devices for the laboratory and

Absolute vs. Relative Polarimetry

I

Q

I

QIQIM

I

Q

I

QIQIM

11

11

2

1

QI

I

Q

I

I

QI

I

QI

I

QI

21

2

)()2(

)(1)(1

Absolute error : 10-3 IRelative error : 10-3 Q

Page 73: Outline 1.Stokes Vectors, Jones Calculus and Mueller Calculus 2.Optics of Crystals: Birefringence 3.Common polarization devices for the laboratory and

Absolute vs. Relative Polarimetry

I

Q

I

QIQIM

I

Q

I

QIQIM

11

11

2

1

QI

I

Q

I

I

QI

I

QI

I

QI

21

2

)()2(

)(1)(1

Absolute error : 10-3 IRelative error : 10-3 Q

Li 6708

Page 74: Outline 1.Stokes Vectors, Jones Calculus and Mueller Calculus 2.Optics of Crystals: Birefringence 3.Common polarization devices for the laboratory and
Page 75: Outline 1.Stokes Vectors, Jones Calculus and Mueller Calculus 2.Optics of Crystals: Birefringence 3.Common polarization devices for the laboratory and

D2 D1

D2

Phase de 45 deg

Phase de 102 deg

Page 76: Outline 1.Stokes Vectors, Jones Calculus and Mueller Calculus 2.Optics of Crystals: Birefringence 3.Common polarization devices for the laboratory and

Design of a Polarimeter

•Specify an efficient modulation scheme: The answer is constrained by our instrumental choices

•Define a measurement that depends on relative polarimetry, if a good sensitivity is required

Page 77: Outline 1.Stokes Vectors, Jones Calculus and Mueller Calculus 2.Optics of Crystals: Birefringence 3.Common polarization devices for the laboratory and

Principles of Polarimetry Spatial modulation, Temporal

modulation, Spectral modulation

A. López Ariste

Page 78: Outline 1.Stokes Vectors, Jones Calculus and Mueller Calculus 2.Optics of Crystals: Birefringence 3.Common polarization devices for the laboratory and

Measure # 1 : I + Q

Measure # 2 : I - Q

Subtraction: 0.5 (M1 – M2 ) = Q

Addition: 0.5 (M1 + M2 ) = I

How to switch from Measure # 1 to Measure # 2?

MODULATION

Page 79: Outline 1.Stokes Vectors, Jones Calculus and Mueller Calculus 2.Optics of Crystals: Birefringence 3.Common polarization devices for the laboratory and

How to switch from Measure # 1 to Measure # n?

VIM

VIM

UIM

UIM

QIM

QIM

6

5

4

3

2

1

Page 80: Outline 1.Stokes Vectors, Jones Calculus and Mueller Calculus 2.Optics of Crystals: Birefringence 3.Common polarization devices for the laboratory and

Analyser: Calcite beamsplitter

V

U

Q

I

M

0

0

QI

QI

0

0

QI

QI

Page 81: Outline 1.Stokes Vectors, Jones Calculus and Mueller Calculus 2.Optics of Crystals: Birefringence 3.Common polarization devices for the laboratory and

Analyser: Rotating Polariser

0

2sin2cos2sin2sin

2sin2cos2cos2cos

2sin2cos

0000

02sin2cos2sin2sin

02sin2cos2cos2cos

02sin2cos1

2

2

2

2

UQI

UQI

UQI

V

U

Q

I

0

0

QI

QI

0

0

0

QI

QI

2

Page 82: Outline 1.Stokes Vectors, Jones Calculus and Mueller Calculus 2.Optics of Crystals: Birefringence 3.Common polarization devices for the laboratory and

Analyser: Rotating Polariser

Analyser: Calcite beamsplitter

2 beams ≡2 images Spatial modulation

2 angles ≡ 2 exposuresTemporal modulation

Page 83: Outline 1.Stokes Vectors, Jones Calculus and Mueller Calculus 2.Optics of Crystals: Birefringence 3.Common polarization devices for the laboratory and

Modulator:

V

U

Q

I

M Analyzer

0

0

QI

QI

What about U and V?

Page 84: Outline 1.Stokes Vectors, Jones Calculus and Mueller Calculus 2.Optics of Crystals: Birefringence 3.Common polarization devices for the laboratory and

Modulator:

V

U

Q

I

M Modulator

V

Q

U

I

V

U

Q

I

M Modulator

Q

U

V

I

Page 85: Outline 1.Stokes Vectors, Jones Calculus and Mueller Calculus 2.Optics of Crystals: Birefringence 3.Common polarization devices for the laboratory and

Modulator:

V

U

Q

I

M Modulator

V

Q

U

I

V

U

Q

I

M Modulator

Q

U

V

I

B

A

UI

UI

V

U

Q

I

MM ModAn

B

A

VI

VI

V

U

Q

I

MM ModAn

Page 86: Outline 1.Stokes Vectors, Jones Calculus and Mueller Calculus 2.Optics of Crystals: Birefringence 3.Common polarization devices for the laboratory and

Modulator: Rotating λ/4

cossin

sincos

cos0sin0

0100

sin0cos0

0001

VQ

U

VQ

I

V

U

Q

I

Q

U

V

I

2

B

A

VI

VI

V

U

Q

I

MM ModAn

Page 87: Outline 1.Stokes Vectors, Jones Calculus and Mueller Calculus 2.Optics of Crystals: Birefringence 3.Common polarization devices for the laboratory and

The basic Polarimeter

Modulator Analyzer

V

U

Q

I

3

2

1

S

S

S

I

3

2

1

1

S

S

SI

SI

3

2

1

1

S

S

SI

SI 1S

Page 88: Outline 1.Stokes Vectors, Jones Calculus and Mueller Calculus 2.Optics of Crystals: Birefringence 3.Common polarization devices for the laboratory and

Examples2 Quarter-Waves + Calcite Beamsplitter

QW1 QW2 Measure

T1 0° 0 ° Q

T2 22.5 ° 22.5 ° U

T3 0 ° -45 ° V

T4 0 ° 45 ° -V

….

Page 89: Outline 1.Stokes Vectors, Jones Calculus and Mueller Calculus 2.Optics of Crystals: Birefringence 3.Common polarization devices for the laboratory and

LCVR

Calcite

IwavelengthOM

)(

Page 90: Outline 1.Stokes Vectors, Jones Calculus and Mueller Calculus 2.Optics of Crystals: Birefringence 3.Common polarization devices for the laboratory and

Examples1 Rotating Quarterwave plate + Calcite Beamsplitter2 Photelastic Modulators (PEM) + Linear Polariser

tVttUtQS 2sin2sin2cos2cos21

0

1 QS

2

0 2

11

VSS

4

0

43

2 43

11

2

4

11

USSSS

Page 91: Outline 1.Stokes Vectors, Jones Calculus and Mueller Calculus 2.Optics of Crystals: Birefringence 3.Common polarization devices for the laboratory and

Spectral ModulationChromatic waveplate: )( f

V

U

Q

I

)(cos0)(sin0

0100

)(sin0)(cos0

0001

Followed by an analyzer )(cos1 QS

Page 92: Outline 1.Stokes Vectors, Jones Calculus and Mueller Calculus 2.Optics of Crystals: Birefringence 3.Common polarization devices for the laboratory and

Spectral ModulationChromatic waveplate: )( f

V

U

Q

I

)(cos0)(sin0

0100

)(sin0)(cos0

0001

Followed by an analyzer )(cos1 QS

See Video from Frans Snik (Univ. Leiden)

Page 93: Outline 1.Stokes Vectors, Jones Calculus and Mueller Calculus 2.Optics of Crystals: Birefringence 3.Common polarization devices for the laboratory and

Principles of Polarimetry Noise and errors

A. López Ariste

Page 94: Outline 1.Stokes Vectors, Jones Calculus and Mueller Calculus 2.Optics of Crystals: Birefringence 3.Common polarization devices for the laboratory and

Sensitivity vs. Accuracy

SENSITIVITY: Smallest detectable polarization signal

related to noise levels in Q/I, U/I, V/I.RELATIVE POLARIMETRY

ACCURACY: The magnitude of detected polarization signal That can be quantifiedParametrized by position of zero point for Q, U, VABSOLUTE POLARIMETRY

Page 95: Outline 1.Stokes Vectors, Jones Calculus and Mueller Calculus 2.Optics of Crystals: Birefringence 3.Common polarization devices for the laboratory and

Sensitivity vs. Accuracy

SENSITIVITY: Smallest detectable polarization signal

related to noise levels in Q/I, U/I, V/I.RELATIVE POLARIMETRY

MDMOI

1

nj

ijVUQIi Dn,1

2,,,

Gaussian Noise (e.g. Photon Noise, Camera Shot Noise)

Page 96: Outline 1.Stokes Vectors, Jones Calculus and Mueller Calculus 2.Optics of Crystals: Birefringence 3.Common polarization devices for the laboratory and

Correcting some unknown errorsSpatio-temporal modulation

Goal: to make the measurements symmetric respect to unknown errors in space and time

Exposure 1

I+V

I-V

Det

ecti

n in

dif

fere

nt p

ixel

s

Page 97: Outline 1.Stokes Vectors, Jones Calculus and Mueller Calculus 2.Optics of Crystals: Birefringence 3.Common polarization devices for the laboratory and

Spatio-temporal modulation

Goal: to make the measurements symmetric respect to unknown errors in space and time

Exposure 1

I+V

I-V

Exposure 2

I-V

I+V

Det

ecti

n in

dif

fere

nt p

ixel

s

Detection at different times

Page 98: Outline 1.Stokes Vectors, Jones Calculus and Mueller Calculus 2.Optics of Crystals: Birefringence 3.Common polarization devices for the laboratory and

Spatio-temporal modulation

2

2

2

1

1 41

I

Vo

I

V

VI

VI

VI

VI

Exposure 1

I+V

I-V

Exposure 2

I-V

I+V

:IV

Page 99: Outline 1.Stokes Vectors, Jones Calculus and Mueller Calculus 2.Optics of Crystals: Birefringence 3.Common polarization devices for the laboratory and

Spatio-temporal modulation

2

2

2

1

1 41

I

Vo

I

V

VI

VI

VI

VI

Let’s make it more general

:IV

2

002

2

1

1

I

Io

I

IK

IO

IO

IO

IO

Page 100: Outline 1.Stokes Vectors, Jones Calculus and Mueller Calculus 2.Optics of Crystals: Birefringence 3.Common polarization devices for the laboratory and

Cross-Talk

B

A

SI

SI

V

U

Q

I

MM ModAn1

1

This is our polarimeter This is what comes from the

outer universe

Is this true?

Page 101: Outline 1.Stokes Vectors, Jones Calculus and Mueller Calculus 2.Optics of Crystals: Birefringence 3.Common polarization devices for the laboratory and

StarV

U

Q

I

StarV

U

Q

I

?Star

V

U

Q

I

Page 102: Outline 1.Stokes Vectors, Jones Calculus and Mueller Calculus 2.Optics of Crystals: Birefringence 3.Common polarization devices for the laboratory and

935.0323.000

323.0935.000

0099.0009.0

00009.099.0

M

Page 103: Outline 1.Stokes Vectors, Jones Calculus and Mueller Calculus 2.Optics of Crystals: Birefringence 3.Common polarization devices for the laboratory and

StarV

U

Q

I

StarV

U

Q

I

Star

Telescope

V

U

Q

I

M

CrossTalk

Page 104: Outline 1.Stokes Vectors, Jones Calculus and Mueller Calculus 2.Optics of Crystals: Birefringence 3.Common polarization devices for the laboratory and

935.0323.000

323.0935.000

0099.0009.0

00009.099.0

M

Page 105: Outline 1.Stokes Vectors, Jones Calculus and Mueller Calculus 2.Optics of Crystals: Birefringence 3.Common polarization devices for the laboratory and

Solutions to Crosstalk

1. Avoid it:

2. Measure it

Mirrors with spherical symmetry (M1,M2) introduce no polarizationCassegrain-focus are good places for polarimetersTHEMIS, CFHT-Espadons, AAT-Sempol,TBL-Narval,HARPS-Pol,…

Given find its inverse and apply it to the measurements

It may be dependent on time and wavelengthIt forces you to observe the full Stokes vector

TelescopeM

Page 106: Outline 1.Stokes Vectors, Jones Calculus and Mueller Calculus 2.Optics of Crystals: Birefringence 3.Common polarization devices for the laboratory and

Dunn Solar Tower. New Mexico

Page 107: Outline 1.Stokes Vectors, Jones Calculus and Mueller Calculus 2.Optics of Crystals: Birefringence 3.Common polarization devices for the laboratory and
Page 108: Outline 1.Stokes Vectors, Jones Calculus and Mueller Calculus 2.Optics of Crystals: Birefringence 3.Common polarization devices for the laboratory and

Solutions to Crosstalk

3. Compensate itSeveral procedures:• Introduce elements that compensate the

instrumental polarization• Measure the Stokes vector that carries the

information• Project the Stokes vector into the

Eigenvector of the matrix

Page 109: Outline 1.Stokes Vectors, Jones Calculus and Mueller Calculus 2.Optics of Crystals: Birefringence 3.Common polarization devices for the laboratory and