overview of numerical methods for uncertainty … seminars/litvinenko_kaus… · overview of...

26
Overview of numerical methods for Uncertainty Quantification Alexander Litvinenko Center for Uncertainty Quantification http://sri-uq.kaust.edu.sa/

Upload: vodat

Post on 28-Feb-2018

215 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Overview of numerical methods for Uncertainty … seminars/Litvinenko_KAUS… · Overview of numerical methods for Uncertainty Quantification Alexander Litvinenko Center for Uncertainty

Overview of numerical methods for UncertaintyQuantification

Alexander Litvinenko

Center for UncertaintyQuantification

Center for UncertaintyQuantification

Center for Uncertainty Quantification Logo Lock-up

http://sri-uq.kaust.edu.sa/

Page 2: Overview of numerical methods for Uncertainty … seminars/Litvinenko_KAUS… · Overview of numerical methods for Uncertainty Quantification Alexander Litvinenko Center for Uncertainty

4*

Overview of uncertainty quantification

ConsiderA(u; q) = f ⇒ u = S(f ; q),

where S is a solution operator.Uncertain Input:

1. Parameter q := q(ω) (assume moments/cdf/pdf/quantilesof q are given)

2. Boundary and initial conditions, right-hand side3. Geometry of the domain

Uncertain solution:1. mean value and variance of u2. exceedance probabilities P(u > u∗)3. probability density functions (pdf) of u.

Center for UncertaintyQuantification

Center for UncertaintyQuantification

Center for Uncertainty Quantification Logo Lock-up

2 / 26

Page 3: Overview of numerical methods for Uncertainty … seminars/Litvinenko_KAUS… · Overview of numerical methods for Uncertainty Quantification Alexander Litvinenko Center for Uncertainty

4*

Realisations of random fields

Center for UncertaintyQuantification

Center for UncertaintyQuantification

Center for Uncertainty Quantification Logo Lock-up

3 / 26

Page 4: Overview of numerical methods for Uncertainty … seminars/Litvinenko_KAUS… · Overview of numerical methods for Uncertainty Quantification Alexander Litvinenko Center for Uncertainty

A big example:UQ in numerical aerodynamics

(described by Navier-Stokes + turbulence modeling)

Center for UncertaintyQuantification

Center for UncertaintyQuantification

Center for Uncertainty Quantification Logo Lock-up

4 / 26

Page 5: Overview of numerical methods for Uncertainty … seminars/Litvinenko_KAUS… · Overview of numerical methods for Uncertainty Quantification Alexander Litvinenko Center for Uncertainty

4*

Example: uncertainties in free stream turbulence

α

v

v

u

u’

α’

v1

2

Random vectors v1(θ) and v2(θ) model free stream turbulence

Center for UncertaintyQuantification

Center for UncertaintyQuantification

Center for Uncertainty Quantification Logo Lock-up

5 / 26

Page 6: Overview of numerical methods for Uncertainty … seminars/Litvinenko_KAUS… · Overview of numerical methods for Uncertainty Quantification Alexander Litvinenko Center for Uncertainty

4*

Example: UQ

Assume that RVs α and Ma are Gaussian with

mean st. dev.σ

σ/mean

α 2.79 0.1 0.036Ma 0.734 0.005 0.007

Then uncertainties in the solution lift CL and drag CD are

CL 0.853 0.0174 0.02CD 0.0206 0.003 0.146

Center for UncertaintyQuantification

Center for UncertaintyQuantification

Center for Uncertainty Quantification Logo Lock-up

6 / 26

Page 7: Overview of numerical methods for Uncertainty … seminars/Litvinenko_KAUS… · Overview of numerical methods for Uncertainty Quantification Alexander Litvinenko Center for Uncertainty

4*

500 MC realisations of cp in dependence on αi and Mai

Center for UncertaintyQuantification

Center for UncertaintyQuantification

Center for Uncertainty Quantification Logo Lock-up

7 / 26

Page 8: Overview of numerical methods for Uncertainty … seminars/Litvinenko_KAUS… · Overview of numerical methods for Uncertainty Quantification Alexander Litvinenko Center for Uncertainty

4*

Example: prob. density and cumuli. distrib. functions

0.75 0.8 0.85 0.9 0.950

5

10

15

20

25Lift: Comparison of densities

0.005 0.01 0.015 0.02 0.025 0.03 0.0350

50

100

150Drag: Comparison of densities

0.75 0.8 0.85 0.9 0.950

0.2

0.4

0.6

0.8

1Lift: Comparison of distributions

0.005 0.01 0.015 0.02 0.025 0.03 0.0350

0.2

0.4

0.6

0.8

1Drag: Comparison of distributions

sgh13

sgh29

MC

Figure : First row: density functions and the second row: distributionfunctions of lift and drag correspondingly.

Center for UncertaintyQuantification

Center for UncertaintyQuantification

Center for Uncertainty Quantification Logo Lock-up

8 / 26

Page 9: Overview of numerical methods for Uncertainty … seminars/Litvinenko_KAUS… · Overview of numerical methods for Uncertainty Quantification Alexander Litvinenko Center for Uncertainty

4*

Example: 3sigma intervals

Figure : 3σ interval, σ standard deviation, in each point of RAE2822airfoil for the pressure (cp) and friction (cf) coefficients.

Center for UncertaintyQuantification

Center for UncertaintyQuantification

Center for Uncertainty Quantification Logo Lock-up

9 / 26

Page 10: Overview of numerical methods for Uncertainty … seminars/Litvinenko_KAUS… · Overview of numerical methods for Uncertainty Quantification Alexander Litvinenko Center for Uncertainty

4*

Example: diffusion equation with uncertain coeffs

− div(κ(x , ω)∇u(x , ω)) = p(x , ω) in G × Ω, G ⊂ R3,u = 0 on ∂G, (1)

where κ(x , ω) - conductivity coefficient. Since κ positive,usually κ(x , ω) = eγ(x ,ω).

Center for UncertaintyQuantification

Center for UncertaintyQuantification

Center for Uncertainty Quantification Logo Lock-up

10 / 26

Page 11: Overview of numerical methods for Uncertainty … seminars/Litvinenko_KAUS… · Overview of numerical methods for Uncertainty Quantification Alexander Litvinenko Center for Uncertainty

(left) mean and standard deviation (right) of κ(x , ω) (lognormalrandom field with parameters µ = 0.5 and σ = 1).

Center for UncertaintyQuantification

Center for UncertaintyQuantification

Center for Uncertainty Quantification Logo Lock-up

11 / 26

Page 12: Overview of numerical methods for Uncertainty … seminars/Litvinenko_KAUS… · Overview of numerical methods for Uncertainty Quantification Alexander Litvinenko Center for Uncertainty

(left) mean and standard deviation (right) of the solution u.

Center for UncertaintyQuantification

Center for UncertaintyQuantification

Center for Uncertainty Quantification Logo Lock-up

12 / 26

Page 13: Overview of numerical methods for Uncertainty … seminars/Litvinenko_KAUS… · Overview of numerical methods for Uncertainty Quantification Alexander Litvinenko Center for Uncertainty

(left) a realization of the permeability and (right) a realisation ofthe solution).

Center for UncertaintyQuantification

Center for UncertaintyQuantification

Center for Uncertainty Quantification Logo Lock-up

13 / 26

Page 14: Overview of numerical methods for Uncertainty … seminars/Litvinenko_KAUS… · Overview of numerical methods for Uncertainty Quantification Alexander Litvinenko Center for Uncertainty

4*

Stochastical Methods overview

1. Monte Carlo Simulations (easy to implement,parallelisable, expensive, dim. indepen.).

2. Stoch. collocation methods with global polynomials (easyto implement, parallelisable, cheaper than MC, dim.depen.).

3. Stoch. collocation methods with local polynomials (easy toimplement, parallelisable, cheaper than MC, dim. depen.)

4. Stochastic Galerkin (difficult to implement, non-trivialparallelisation, the cheapest from all, dim. depen.)

Center for UncertaintyQuantification

Center for UncertaintyQuantification

Center for Uncertainty Quantification Logo Lock-up

14 / 26

Page 15: Overview of numerical methods for Uncertainty … seminars/Litvinenko_KAUS… · Overview of numerical methods for Uncertainty Quantification Alexander Litvinenko Center for Uncertainty

4*

Karhunen-Loeve Expansion

The Karhunen-Loeve expansion is the series

κ(x , ω) = µk (x) +∞∑

i=1

√λiki(x)ξi(ω), where

ξi(ω) are uncorrelated random variables and ki are basisfunctions in L2(G).Eigenpairs λi , ki are the solution of

Tki = λiki , ki ∈ L2(G), i ∈ N, where.

T : L2(G)→ L2(G),(Tu)(x) :=

∫G covk (x , y)u(y)dy .

Center for UncertaintyQuantification

Center for UncertaintyQuantification

Center for Uncertainty Quantification Logo Lock-up

15 / 26

Page 16: Overview of numerical methods for Uncertainty … seminars/Litvinenko_KAUS… · Overview of numerical methods for Uncertainty Quantification Alexander Litvinenko Center for Uncertainty

4*

KLE eigenfunctions in 2D

Center for UncertaintyQuantification

Center for UncertaintyQuantification

Center for Uncertainty Quantification Logo Lock-up

16 / 26

Page 17: Overview of numerical methods for Uncertainty … seminars/Litvinenko_KAUS… · Overview of numerical methods for Uncertainty Quantification Alexander Litvinenko Center for Uncertainty

4*

Covariance functions

The random field κ(x , ω) requires to specify its spatialcorrelation structure

covκ(x , y) = E[(κ(x , ·)− µκ(x))(κ(y , ·)− µκ(y))].

Let h =√∑3

i=1 h2i /`

2i , where hi := xi − yi , i = 1,2,3, `i are cov.

lengths.

Examples:Gaussian cov(h) = exp(−h2),exponential cov(h) = exp(−h).

Center for UncertaintyQuantification

Center for UncertaintyQuantification

Center for Uncertainty Quantification Logo Lock-up

17 / 26

Page 18: Overview of numerical methods for Uncertainty … seminars/Litvinenko_KAUS… · Overview of numerical methods for Uncertainty Quantification Alexander Litvinenko Center for Uncertainty

4*

Truncated Polynomial Chaos Expansion

ξ(ω) ≈Z∑

k=0

ak Ψk (θ1, θ2, ..., θM), where Z =(M + p)!

M!p!

- EXPENSIVE!M = 9, p = 2, Z = 55M = 9, p = 4, Z = 715M = 100, p = 4, Z ≈ 4 · 106.How to store and to handle so many coefficients ?The orthogonality of Ψk enables the evaluation

ak =< ξΨk >

< Ψ2k >

=1

< Ψ2k >

∫ξ(θ(ω))Ψk (θ(ω))dP(ω).

(e.g. Ψk are Hermite polynomials).

Center for UncertaintyQuantification

Center for UncertaintyQuantification

Center for Uncertainty Quantification Logo Lock-up

18 / 26

Page 19: Overview of numerical methods for Uncertainty … seminars/Litvinenko_KAUS… · Overview of numerical methods for Uncertainty Quantification Alexander Litvinenko Center for Uncertainty

4*

Discrete form

Take weak formulation of the diffusion equation, apply KLE andPCE to the test function v(x , ω), solution u(x , ω) and κ(x , ω),obtain

Ku =

m−1∑`=0

∑γ∈JM,p

∆(γ) ⊗ K `

u = p, (2)

where ∆(γ) are some discrete operators which can becomputed analytically, K` ∈ Rn×n are the stiffness matrices.

Center for UncertaintyQuantification

Center for UncertaintyQuantification

Center for Uncertainty Quantification Logo Lock-up

19 / 26

Page 20: Overview of numerical methods for Uncertainty … seminars/Litvinenko_KAUS… · Overview of numerical methods for Uncertainty Quantification Alexander Litvinenko Center for Uncertainty

4*

Galerkin stiffness matrix K

Center for UncertaintyQuantification

Center for UncertaintyQuantification

Center for Uncertainty Quantification Logo Lock-up

20 / 26

Page 21: Overview of numerical methods for Uncertainty … seminars/Litvinenko_KAUS… · Overview of numerical methods for Uncertainty Quantification Alexander Litvinenko Center for Uncertainty

4*

ODEs with uncertain coefficients and i.c.

Examples:1. Chaotic systems (Lorenz 63)2. Predator-pray model3. reaction/combustion/chemical equations

Center for UncertaintyQuantification

Center for UncertaintyQuantification

Center for Uncertainty Quantification Logo Lock-up

21 / 26

Page 22: Overview of numerical methods for Uncertainty … seminars/Litvinenko_KAUS… · Overview of numerical methods for Uncertainty Quantification Alexander Litvinenko Center for Uncertainty

4*

Lorenz 1963

Is a system of ODEs. Has chaotic solutions for certainparameter values and initial conditions.

x = σ(ω)(y − x)

y = x(ρ(ω)− z)− yz = xy − β(ω)z

Initial state q0(ω) = (x0(ω), y0(ω), z0(ω)) are uncertain.

Solving in t0, t1, ..., t10, Noisy Measur. → UPDATE, solving int11, t12, ..., t20, Noisy Measur. → UPDATE,...

Center for UncertaintyQuantification

Center for UncertaintyQuantification

Center for Uncertainty Quantification Logo Lock-up

22 / 26

Page 23: Overview of numerical methods for Uncertainty … seminars/Litvinenko_KAUS… · Overview of numerical methods for Uncertainty Quantification Alexander Litvinenko Center for Uncertainty

Trajectories of x,y and z in time. After each update (newinformation coming) the uncertainty drops. (O. Pajonk)

Center for UncertaintyQuantification

Center for UncertaintyQuantification

Center for Uncertainty Quantification Logo Lock-up

23 / 26

Page 24: Overview of numerical methods for Uncertainty … seminars/Litvinenko_KAUS… · Overview of numerical methods for Uncertainty Quantification Alexander Litvinenko Center for Uncertainty

4*

Stochastic Galerkin library

1. Type in your terminalgit clone git://github.com/ezander/sglib.git

2. To initialize all variables, run startup.m

You will find:generalised PCE, sparse grids, (Q)MC, stochastic Galerkin,linear solvers, KLE, covariance matrices, statistics, quadratures(multivariate Chebyshev, Laguerre, Lagrange, Hermite ) etc

There are: many examples, many test, rich demos

Center for UncertaintyQuantification

Center for UncertaintyQuantification

Center for Uncertainty Quantification Logo Lock-up

24 / 26

Page 25: Overview of numerical methods for Uncertainty … seminars/Litvinenko_KAUS… · Overview of numerical methods for Uncertainty Quantification Alexander Litvinenko Center for Uncertainty

4*

Open problems

1. Too many expensive (MC) simulations are required2. in reality distributions/cov. matrices of random variables

are unknown3. After discretization of random variables the problem

becomes high-dimensional.4. The iterative methods must deal with tensors. The linear

algebra becomes multi-linear. The rank truncation issue.

Center for UncertaintyQuantification

Center for UncertaintyQuantification

Center for Uncertainty Quantification Logo Lock-up

25 / 26

Page 26: Overview of numerical methods for Uncertainty … seminars/Litvinenko_KAUS… · Overview of numerical methods for Uncertainty Quantification Alexander Litvinenko Center for Uncertainty

4*

Take to home

1. KLE and PCE are used to discretize the stochasticproblem (e.g. for stochastic Galerkin)

2. KLE is optimal, used to separate x from ω

3. PCE is not optimal, used to represent unknown randomvariable ξ(ω) by Gaussian random variablesξ(ω) =

∑α ξ

αHα(θ).4. KLE contains less terms as PCE, but requires cov. function5. (Q)MC does not take into account good (e.g.

sparse/low-rank) properties of the operator6. Stochastic Galerkin does7. sparse grids are often used to compute PCE coeffs

Center for UncertaintyQuantification

Center for UncertaintyQuantification

Center for Uncertainty Quantification Logo Lock-up

26 / 26