overview of temperature measurement me 115 figures are from “practical guidelines for temperature...

19
Overview of Temperature Measurement ME 115 Figures are from www.omega.com “Practical Guidelines for Temperature Measurement” unless otherwise noted

Post on 21-Dec-2015

222 views

Category:

Documents


2 download

TRANSCRIPT

Page 1: Overview of Temperature Measurement ME 115 Figures are from  “Practical Guidelines for Temperature Measurement” unless otherwise noted

Overview of Temperature Measurement

ME 115

Figures are from www.omega.com “Practical Guidelines for Temperature Measurement” unless otherwise noted

Page 2: Overview of Temperature Measurement ME 115 Figures are from  “Practical Guidelines for Temperature Measurement” unless otherwise noted

Outline

Thermocouples RTDs Thermistors Infrared Thermometry Thin-Film Heat Flux Gauge How to Choose

Page 3: Overview of Temperature Measurement ME 115 Figures are from  “Practical Guidelines for Temperature Measurement” unless otherwise noted

Thermocouples

Seebeck effect– If two wires of dissimilar metals are joined at both ends and

one end is heated, current will flow.– If the circuit is broken, there will be an open circuit voltage

across the wires.– Voltage is a function of temperature and metal types.– For small T’s, the relationship with temperature is linear

– For larger T’s, non-linearities may occur.

V T

Page 4: Overview of Temperature Measurement ME 115 Figures are from  “Practical Guidelines for Temperature Measurement” unless otherwise noted

Measuring the Thermocouple Voltage If you attach the thermocouple directly to a voltmeter, you will have

problems.

You have just created another junction! Your displayed voltage will be proportional to the difference between J1 and J2 (and hence T1 and T2). Note that this is “Type T” thermocouple.

Page 5: Overview of Temperature Measurement ME 115 Figures are from  “Practical Guidelines for Temperature Measurement” unless otherwise noted

External Reference Junction

A solution is to put J2 in an ice-bath; then you know T2, and your output voltage will be proportional to T1-T2.

Page 6: Overview of Temperature Measurement ME 115 Figures are from  “Practical Guidelines for Temperature Measurement” unless otherwise noted

Other types of thermocouples

Many thermocouples don’t have one copper wire. Shown below is a “Type J” thermocouple.

If the two terminals aren’t at the same temperature, this also creates an error.

Page 7: Overview of Temperature Measurement ME 115 Figures are from  “Practical Guidelines for Temperature Measurement” unless otherwise noted

Isothermal Block The block is an electrical insulator but good heat

conductor. This way the voltages for J3 and J4 cancel out. Thermocouple data acquisition set-ups include these isothermal blocks.

If we eliminate the ice-bath, then the isothermal block temperature is our reference temperature

1 blockV T T

Page 8: Overview of Temperature Measurement ME 115 Figures are from  “Practical Guidelines for Temperature Measurement” unless otherwise noted

Software Compensation

How can we find the temperature of the block? Use a thermister or RTD.

Once the temperature is known, the voltage associated with that temperature can be subtracted off.

Then why use thermocouples at all?– Thermocouples are cheaper, smaller, more flexible and

rugged, and operate over a wider temperature range.

Most data acquisition systems have software compensation built in.

Page 9: Overview of Temperature Measurement ME 115 Figures are from  “Practical Guidelines for Temperature Measurement” unless otherwise noted

Thermocouple Types

If you do your own calibration, you can usually improve on the listed uncertainties.

Page 10: Overview of Temperature Measurement ME 115 Figures are from  “Practical Guidelines for Temperature Measurement” unless otherwise noted

Data Acquisition Systems for Thermocouples

Agilent, HP, and National Instruments are probably the most popular DAQ systems

Example National Instruments DAQ setup for thermocouples and costs (costs are from a system from a few years ago that we have in the lab)

item part number cost16-bit temperature data acquisition card PCI 6232E 1495analog input module for thermocouples SCXI-1112 695chassis SCXI-1000 695terminal block for thermocouples SCXI-1303 275shielded cable SH68-68-EP 95Total cost: 3255

Page 11: Overview of Temperature Measurement ME 115 Figures are from  “Practical Guidelines for Temperature Measurement” unless otherwise noted

RTDs (Resistance Temperature Detectors)

From Nicholas & White, Traceable Temperatures.

Resistivity of metals is a function of temperature. Platinum often used since it can be used for a wide temperature

range and has excellent stability. RTDs are more accurate but also larger and more expensive

than thermocouples and have a longer response time.

Page 12: Overview of Temperature Measurement ME 115 Figures are from  “Practical Guidelines for Temperature Measurement” unless otherwise noted

Resistance Measurement

Several different bridge circuits are used to determine the resistance. Bridge circuits help improve the accuracy of the measurements significantly. Bridge output voltage is a function of the RTD resistance.

Page 13: Overview of Temperature Measurement ME 115 Figures are from  “Practical Guidelines for Temperature Measurement” unless otherwise noted

Thermistors

Thermistors also measure the change in resistance with temperature.

Thermistors are very sensitive (up to 100 times more than RTDs and 1000 times more than thermocouples) and can detect very small changes in temperature. They are also very fast.

Due to their speed, they are used for precision temperature control and any time very small temperature differences must be detected.

They are made of ceramic semiconductor material (metal oxides).

The change in thermistor resistance with temperature is very non-linear.

Page 14: Overview of Temperature Measurement ME 115 Figures are from  “Practical Guidelines for Temperature Measurement” unless otherwise noted

Thermistor Non-Linearity

Standard thermistor curves are not provided as much as with thermocouples or RTDs. You often need a curve for a specific batch of thermistors.

Page 15: Overview of Temperature Measurement ME 115 Figures are from  “Practical Guidelines for Temperature Measurement” unless otherwise noted

Infrared Thermometry

Infrared thermometers measure the amount of radiation emitted by an object.

Peak magnitude is often in the infrared region. Surface emissivity must be known. This can add a lot

of error. Reflection from other objects can introduce error as

well. Surface whose temp you’re measuring must fill the

field of view of your camera.

Page 16: Overview of Temperature Measurement ME 115 Figures are from  “Practical Guidelines for Temperature Measurement” unless otherwise noted

Benefits of Infrared Thermometry

Can be used for– Moving objects– Non-contact applications

where sensors would affect results or be difficult to insert or conditions are hazardous

– Large distances– Very high temperatures

Prices range from $500 to $6000.

Accuracy is often in the 0.5-1% of full range. Uncertainties of 10°F are common, but at temperatures of several hundred degrees, this is small.

Page 17: Overview of Temperature Measurement ME 115 Figures are from  “Practical Guidelines for Temperature Measurement” unless otherwise noted

Thin-Film Heat Flux Gauge

Temperature difference across a narrow gap of known material is measured using a thermopile.

A thermopile is a group of thermocouples combined in series to reduce uncertainty and measure a temperature difference.

From Nicholas & White, Traceable Temperatures.

Page 18: Overview of Temperature Measurement ME 115 Figures are from  “Practical Guidelines for Temperature Measurement” unless otherwise noted

Thin-Film Heat Flux Gauge, cont.

Difficulties with these gauges– The distance between the two sides is very small, so the

temperature difference is small. The uncertainty in the temperature difference measurement can be large.

– Watch where you place them. If the effective conductivity of the gauges is different than the conductivity of the material surrounding it, it will be either easier or harder for heat to pass through it. Heat will take the path of least resistance, so if you don’t position the gauge carefully, you may not be measuring the actual heat flux.

Page 19: Overview of Temperature Measurement ME 115 Figures are from  “Practical Guidelines for Temperature Measurement” unless otherwise noted

Choice Between RTDs, Thermocouples, Thermisters

Cost – thermocouples are cheapest by far, followed by RTDs Accuracy – RTDs or thermisters Sensitivity – thermisters Speed - thermisters Stability at high temperatures – not thermisters Size – thermocouples and thermisters can be made quite small Temperature range – thermocouples have the highest range,

followed by RTDs Ruggedness – thermocouples are best if your system will be

taking a lot of abuse