overview on transverse momentum dependent distribution and fragmentation functions m. boglione

57
Overview on Transverse Momentum Dependent Distribution and Fragmentation Functions M. Boglione

Upload: lewis-carpenter

Post on 16-Jan-2016

221 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Overview on Transverse Momentum Dependent Distribution and Fragmentation Functions M. Boglione

Overview on Transverse Momentum Dependent

Distribution and Fragmentation Functions

M. Boglione

Page 2: Overview on Transverse Momentum Dependent Distribution and Fragmentation Functions M. Boglione

M. Boglione 2Glasgow HERMES Symposium

The nucleon has an internal structure x is the fraction of proton momentum carried by the parton The cross section is the incoherent sum of all partonic contributions convoluted with the parton distribution function, which only depends on x at LO

ˆ)( xfqDIS

q

(E,k) (E,k’)q

xP

P

Deep Inelastic Scattering

Page 3: Overview on Transverse Momentum Dependent Distribution and Fragmentation Functions M. Boglione

M. Boglione 3Glasgow HERMES Symposium

QCD corrections induce Q2 dependence

f(x) → f(x,Q2)

DGLAP evolution equations exactly predict this Q2 dependence

Q2 Evolution

NOTE : As we will see later, the evolution of some TMD distribution and fragmentation functions is yet unknown

Page 4: Overview on Transverse Momentum Dependent Distribution and Fragmentation Functions M. Boglione

M. Boglione 4Glasgow HERMES Symposium

Unpolarized distribution functions

Δfq↑/p↑(x)Δfsz/+(x)

-

fq/p(x)

-

Helicity distribution functions

qqq

ggg

qqq

ggg

Transversity distribution functions

qqqT

Parton distribution functions

Page 5: Overview on Transverse Momentum Dependent Distribution and Fragmentation Functions M. Boglione

M. Boglione 5Glasgow HERMES Symposium

Correlator

q Δq ΔTq

D.E. Soper, Phys. Rev. D 15 (1977) 1141; Phys. Rev. Lett. 43 (1979) 1847; J.C. Collins and D.E. Soper, Nucl. Phys. B194 (1982) 445; R.L. Jaffe, Nucl. Phys. B 229 (1983) 205.

Page 6: Overview on Transverse Momentum Dependent Distribution and Fragmentation Functions M. Boglione

M. Boglione 6Glasgow HERMES Symposium

Parton distribution functions Very good knowledge of unpolarized distribution functions,

q(x,Q2) and g(x,Q2)

Fairly good knowledge of longitudinally polarized, partonic distributions, Δq(x,Q2); poor knowledge of longitudinally polarized gluons Δg(x,Q2)

NO direct information on transversely polarized partonic distributions, ΔTq(x,Q2), from DIS

Page 7: Overview on Transverse Momentum Dependent Distribution and Fragmentation Functions M. Boglione

M. Boglione 7Glasgow HERMES Symposium

Parton distribution functions

Page 8: Overview on Transverse Momentum Dependent Distribution and Fragmentation Functions M. Boglione

M. Boglione 8Glasgow HERMES Symposium

There is no gluon transversity distribution function

Transversity cannot be studied in deep inelastic scattering because it is chirally odd

Transversity can only appear in a cross-section convoluted to another chirally odd function

++

––

+ –

SIDIS

+–

- ++–

+ –

+–

Drell -Yan

Transversity

Page 9: Overview on Transverse Momentum Dependent Distribution and Fragmentation Functions M. Boglione

M. Boglione 9Glasgow HERMES Symposium

ℓℓ’

*g

P

k

k’

fq(x)

dDh/q (z)

distribution function

XIncoming proton

elementary cross- section

fragmentation function

hfinal detected hadron

)(ˆ)( / zDxf qhqSIDIS

Semi Inclusive Deep Inelastic Scattering

Page 10: Overview on Transverse Momentum Dependent Distribution and Fragmentation Functions M. Boglione

M. Boglione 10Glasgow HERMES Symposium

Intrinsic TransverseMomentum

Page 11: Overview on Transverse Momentum Dependent Distribution and Fragmentation Functions M. Boglione

M. Boglione 11Glasgow HERMES Symposium

P

xP

k

Plenty of theoretical and experimental evidence for transverse motion of partons within nucleons,

and of hadrons within fragmentation jets

Intrinsic Transverse Momentum

Page 12: Overview on Transverse Momentum Dependent Distribution and Fragmentation Functions M. Boglione

M. Boglione 12Glasgow HERMES Symposium

Intrinsic Transverse Momentum

p p

Q2 = M2

qT

qL

l+

l–*

qT distribution of lepton pairs in D-Y processes

pT distribution of hadrons in SIDIS

Page 13: Overview on Transverse Momentum Dependent Distribution and Fragmentation Functions M. Boglione

M. Boglione 13Glasgow HERMES Symposium

Intrinsic Transverse Momentum Distribution and fragmentation functions now depend on the lightcone momentum fraction (x for the distributions and z for the fragmentations)

on Q2 (→pQCD evolution),

on the intrinsic transverse momentum of the partons, (k for the distributions and p for the fragmentations)

OPEN QUESTIONS:How do TMD’s depend on the intrinsic transverse momentum ?

Gaussian behaviour in the central region …Power law decrease at large transverse momentum…

Does the partonic intrinsic transverse momentum k (p) depend on x (z) ?

Page 14: Overview on Transverse Momentum Dependent Distribution and Fragmentation Functions M. Boglione

M. Boglione 14Glasgow HERMES Symposium

Leading twist TMD CorrelatorMulders and Tangermann, NP B461 (1996) 197, Boer and Mulders, PR D57 (1998) 5780

Page 15: Overview on Transverse Momentum Dependent Distribution and Fragmentation Functions M. Boglione

M. Boglione 15Glasgow HERMES Symposium

Transverse Mometum Dependent Distribution Functions

Courtesy of Aram Kotzinian

Correlations between spin

and transverse momentum

Page 16: Overview on Transverse Momentum Dependent Distribution and Fragmentation Functions M. Boglione

M. Boglione 16Glasgow HERMES Symposium

Transverse Momentum Dependent Distribution Functions

U

L

T

U

L

T

f1(x,k)Unpolarized

g1(x,k)Helicity

h1T(x,k) h1T (x,k)

Transversityg1T(x,k)

f1T (x,k)Sivers

h1 (x,k)

Boer-Mulders

h1L(x,k)

QUARK POLARIZATIONN

UCL

EON

PO

LARI

ZATI

ON

•Functions in bold face survive k integration•Functions in shaded cells are naïve T-odd •Functions in red box are chirally odd

Courtesy of A. Bacchetta

Page 17: Overview on Transverse Momentum Dependent Distribution and Fragmentation Functions M. Boglione

17M. Boglione

General Formalism with Helicity AmplitudesM. Anselmino, M. Boglione, U. D-Alesio, E. Leader, S. Melis, F. Murgia, PR D71, 014002 (2005), PR D73, 014020 (2006)

X

Aa

M. Anselmino, M. Boglione, U. D-Alesio, S. Melis, F. Murgia, A. Prokudin (2010) in preparation

The distribution function fa/A is the number density of partons of type a inside hadron A

Page 18: Overview on Transverse Momentum Dependent Distribution and Fragmentation Functions M. Boglione

M. Boglione 18Glasgow HERMES Symposium

General Formalism with Helicity Amplitudes

Page 19: Overview on Transverse Momentum Dependent Distribution and Fragmentation Functions M. Boglione

M. Boglione 19Glasgow HERMES Symposium

General Formalism with Helicity Amplitudes

Page 20: Overview on Transverse Momentum Dependent Distribution and Fragmentation Functions M. Boglione

M. Boglione 20Glasgow HERMES Symposium

Δfsz/p↑(x,k)

Δfsz/p+(x,k)Helicity fn.

Δfsx/p+(x,k)Δfsy/p↑(x,k)

Transversityfunction

Δfsx/p↑(x,k)Transversity

function

Δfsy/p(x,k) Boer-Mulders

function

ΔNfq/p↑(x,k)Sivers function

fq/p(x,k)

Transverse Mometum Dependent Distribution Functions

Correlations between spin

and transverse momentum

Page 21: Overview on Transverse Momentum Dependent Distribution and Fragmentation Functions M. Boglione

M. Boglione 21Glasgow HERMES Symposium

Transverse Mometum Dependent Distribution Functions

U

L

T

U

L

T

fq/p(x,k)Unpolarized

Δfsz/p+(x,k)Helicity

Δfsx/p↑(x,k) Δfsy/p

↑(x,k)Transversity

Δfsz/p↑(x,k)ΔNfq/p

↑(x,k)Sivers

Δfsy/p(x,k) Boer-Mulders

Δfsx/p+(x,k)

QUARK POLARIZATIONN

UCL

EON

PO

LARI

ZATI

ON

•Functions in bold face survive k integration•Functions in shaded cells are naïve T-odd •Functions in red box are chirally odd

Page 22: Overview on Transverse Momentum Dependent Distribution and Fragmentation Functions M. Boglione

M. Boglione 22Glasgow HERMES Symposium

General SIDISCross Section

Page 23: Overview on Transverse Momentum Dependent Distribution and Fragmentation Functions M. Boglione

M. Boglione 23Glasgow HERMES Symposium

SIDIS FACTORIZATION

TMD-PDF hard scattering TMD-FF

All three fundamental blocks contain phases. The most general expression for the cross-section is obtained when all of them are kept into account.

Page 24: Overview on Transverse Momentum Dependent Distribution and Fragmentation Functions M. Boglione

M. Boglione 24Glasgow HERMES Symposium

TMD’s in SIDISTrento

conventions SIDIS in parton model with intrinsic k┴

Factorization holds at large Q2,

and

(Ji, Ma, Yuan)QCDT kP

);,();,(ˆd);,(d 222 QzDQyQxf hq

lqlq

q qlhXlp

pkk

Unpolarized Cross Section

Page 25: Overview on Transverse Momentum Dependent Distribution and Fragmentation Functions M. Boglione

M. Boglione 25Glasgow HERMES Symposium

TMD in unpolarized SIDIS → Cahn Effect

EMC data, µp and µd, E between 100 and 280 GeV

Azimuthal dependence induced by quark intrinsic motion

CLAS data, arXiv:0809.1153 [hep-ex] F. Giordano and R. Lamb, AIP Conf.Proc.1149:423-426,2009.

W. Käfer, COMPASS collaboration, talk at Transversity 2008, Ferrara

Page 26: Overview on Transverse Momentum Dependent Distribution and Fragmentation Functions M. Boglione

M. Boglione 26Glasgow HERMES Symposium

TMD in unpolarized SIDIS → Cahn Effect

EMC data, µp and µd, E between 100 and 280 GeV

At further dependence on is generated

A cosφ dependence is also generated by Boer-Mulders Collins term, ⊗via a kinematical effect in dΔσ , not included in this fit.

Assume a simple, factorized form for the TMD distribution and fragmentation functions, with a gaussian dependence on the intrinsic transverse momentum

Determine the free parameters by fitting experimental data

M.Anselmino, M. Boglione, U. D’Alesio, A. Kotzinian, F. Murgia, A. Prokudin, Phys. Rev. D71:074006,2005.

Page 27: Overview on Transverse Momentum Dependent Distribution and Fragmentation Functions M. Boglione

M. Boglione 27Glasgow HERMES Symposium

W. Käfer, COMPASS collaboration, talk at Transversity 2008, Ferrara

Comparison withM. Anselmino, M. Boglione, A. Prokudin, C. Türk Eur. Phys. J. A 31, 373-381 (2007) does not include the Boer – Mulders contribution

TMD in unpolarized SIDIS → Cahn Effect

Page 28: Overview on Transverse Momentum Dependent Distribution and Fragmentation Functions M. Boglione

M. Boglione 28Glasgow HERMES Symposium

PT dependence of data in agreement with a Gaussian k⊥ dependence of unpolarized TMDs

Hint of a z-dependence at small z values

No hint of x dependence in the explored region

solid line → Gaussian TMD’s with

CLAS data, arXiv:0809.1153 [hep-ex] CLAS data, arXiv:0809.1153 [hep-ex]

Page 29: Overview on Transverse Momentum Dependent Distribution and Fragmentation Functions M. Boglione

M. Boglione 29Glasgow HERMES Symposium

Polarized SIDIS cross section

Page 30: Overview on Transverse Momentum Dependent Distribution and Fragmentation Functions M. Boglione

30

Polarized SIDIS cross section

Unpolarizedproton and lepton

Longitudinally polarizedproton,polarized lepton

Transverselypolarizedproton,unpolarized lepton

Transverselypolarizedproton,polarized lepton

Studying Sivers, Collins and other mechanisms is complicated by the fact that all these effects mix and overlap in the polarized SIDIS cross section and azimuthal asymmetries

Way out : build appropriately “weighted” azimuthal asymmetries !

The F structure functions contain all the TMD’s

Kotzinian, NP B441 (1995) 234, Mulders and Tangerman, NP B461 (1996) 197; Boer and Mulders, PR D57 (1998) 5780, Bacchetta et al., PL B595 (2004) 309, Bacchetta et al., JHEP 0702 (2007) 093, M. Anselmino, M. Boglione, U.D’Alesio, S. Melis, F. Murgia, A. Prokudin, (in preparation).

Page 31: Overview on Transverse Momentum Dependent Distribution and Fragmentation Functions M. Boglione

M. Boglione 31Glasgow HERMES Symposium(Avakian, Efremov, Schweitzer, Metz, Teckentrup, arXiv:0902.0689)

chiral-even TMDs

chiral-odd TMDs

Cahn kinematical effects

TMD’s in polarized SIDIS

Page 32: Overview on Transverse Momentum Dependent Distribution and Fragmentation Functions M. Boglione

M. Boglione 32Glasgow HERMES Symposium

TMD’s in SIDISone by one …

Page 33: Overview on Transverse Momentum Dependent Distribution and Fragmentation Functions M. Boglione

M. Boglione 33Glasgow HERMES Symposium

The Sivers Distribution Function

)ˆˆ( ),(),(

)ˆˆ( ),(21

),(),(

1/

//,/

kpS

kpSkS

kxfMk

kxf

kxfkxfxf

qTpq

pq

Npqpq

The Sivers function is related to the probability of finding an unpolarized quark inside a transversely polarized proton

X

pS

k

The Sivers function inbeds the correlation between the proton spin and the quark transverse momentum

The Sivers function is

T-odd

Page 34: Overview on Transverse Momentum Dependent Distribution and Fragmentation Functions M. Boglione

M. Boglione 34Glasgow HERMES Symposium

The Sivers Distribution Function

HERMES Collaboration, Phys.Rev.Lett.103:152002,2009.

HERMES Collaboration, Phys.Rev.Lett.103:152002,2009.

Page 35: Overview on Transverse Momentum Dependent Distribution and Fragmentation Functions M. Boglione

M. Boglione 35Glasgow HERMES Symposium

The Sivers Distribution Function

Courtesy of F. Bradamante

COMPASS vs HERMES, problems?

COMPASS proton data

S. Levorato for the COMPASS Collaboration, Transversity 2008

COMPASS Collaboration, Phys. Lett. B673: 127-135, 2009

COMPASS deuteron data

Compass finds Sivers = 0.

Up to now, only HERMES data

reveal non-zero Sivers effect.

We need further check s!

Page 36: Overview on Transverse Momentum Dependent Distribution and Fragmentation Functions M. Boglione

M. Boglione 36Glasgow HERMES Symposium

The Sivers Distribution Function

Determining the Sivers function

Models →

Fits →

M. Anselmino, M. Boglione, J.C. Collins, U. D’Alesio, A.V. Efremov, K. Goeke, A. Kotzinian, S. Menze, A. Metz, F. Murgia, A. Prokudin, P. Schweitzer, W. Vogelsang, F. Yuan

The first and 1/2-transverse moments of the Sivers quark distribution functions. The fits were constrained mainly (or solely) by the preliminary HERMES data in the indicated x-range.

The curves indicate the 1-σ regions of the various parameterizations.

Bacchetta, Gamberg, Goldstain, Mukherjee, Metz, Amrath, Shaefer, Yang, Brodsky, Schmidt, Hwang, Scopetta, Courtoy, Frattini, Vento, Radici, Pasquini, Yuan …

Page 37: Overview on Transverse Momentum Dependent Distribution and Fragmentation Functions M. Boglione

M. Boglione 37Glasgow HERMES Symposium

M.Anselmino, M. Boglione, U. D’Alesio, A. Kotzinian, S. Melis, F. Murgia, A. Prokudin, C. Türk, Eur.Phys.J.A39:89-100,2009.

Extraction of Sivers Function from SIDIS experimental data

New data,

old fit !

Page 38: Overview on Transverse Momentum Dependent Distribution and Fragmentation Functions M. Boglione

M. Boglione 38Glasgow HERMES Symposium

Sivers Function …… to do list

Update the fit using new analysis from HERMES and COMPASS and, possibly, more modern fragmentation functions

Study evolution equations

Test new parametrizations with non-gaussian intrinsic transverse momentum dependence

Comparison SIDIS vs. Drell-Yan

Page 39: Overview on Transverse Momentum Dependent Distribution and Fragmentation Functions M. Boglione

M. Boglione 39Glasgow HERMES Symposium

Spin-orbit correlations

The Sivers Distribution Function

A non-zero Sivers function requires non-zero orbital angular momentum !

Lattice [P. Haegler et al.]

Lu>0

Ld<0

[Matthias Burkardt]

Page 40: Overview on Transverse Momentum Dependent Distribution and Fragmentation Functions M. Boglione

M. Boglione 40Glasgow HERMES Symposium

3D view of the proton

Courtesy of Alexei Prokudin

Page 41: Overview on Transverse Momentum Dependent Distribution and Fragmentation Functions M. Boglione

M. Boglione 41Glasgow HERMES Symposium

3D view of the proton

Courtesy of Alexei Prokudin

Page 42: Overview on Transverse Momentum Dependent Distribution and Fragmentation Functions M. Boglione

M. Boglione 42Glasgow HERMES Symposium

The Boer-Mulders Distribution Function

)ˆˆ( ),(2

1),(

2

1

)ˆˆ( ),(2

1),(

2

1),(

1/

///,

kps

kpsks

qq

pq

qpq

Npqpq

kxhM

kkxf

kxfkxfxfq

The Boer-Mulders function is related to the probabilityof finding a polarized quark inside an unpolarized proton

X

pqs

k

The Boer-Mulders function inbeds the correlation between the quark spin and its transverse momentum

The Boer-Mulders

function is chirally odd and T-odd

Page 43: Overview on Transverse Momentum Dependent Distribution and Fragmentation Functions M. Boglione

M. Boglione 43Glasgow HERMES Symposium

The Boer-Mulders Distribution Function

W. Käfer, COMPASS collaboration, talk at Transversity 2008, FerraraF. Giordano and R. Lamb, AIP Conf.Proc.1149:423-426,2009.

L. P. Gamberg and G. R. Goldstein, Phys.Rev.D77:094016,2008.

Diquark spectator model

Page 44: Overview on Transverse Momentum Dependent Distribution and Fragmentation Functions M. Boglione

M. Boglione 44Glasgow HERMES Symposium

The Boer-Mulders Distribution Function

V. Barone, S. Melis, A. Prokudin ArXiv: 0912.5194

A. Prokudin, talk at Workshop on Transverse Spin Physics, Beijing (2008)

There are two contributions to <cos 2φ>:•Boer-Mulders + Collins (no suppression in 1/Q)•Cahn effect at O(k

2/Q2), which turns out to be large

Page 45: Overview on Transverse Momentum Dependent Distribution and Fragmentation Functions M. Boglione

M. Boglione 45Glasgow HERMES Symposium

The Boer-Mulders Distribution Function

?

Page 46: Overview on Transverse Momentum Dependent Distribution and Fragmentation Functions M. Boglione

M. Boglione 46Glasgow HERMES Symposium

)ˆˆ( ),(

),(

)ˆˆ( ),(2

1 ),(),(

1/

//,/

pps

ppsps

qqq

hqh

qqqh

Nqhqh

pzHMz

ppzD

pzDpzDzDq

The Collins function is related to the probability that a transversely polarized struck quark will fragment into a spinless hadron

The Collins function is

chirally odd

X

qqs

p

The Collins function inbeds the correlation between the fragmenting quark spin and the transverse momentum of the produced hadron

The Collins Fragmentation Function

Page 47: Overview on Transverse Momentum Dependent Distribution and Fragmentation Functions M. Boglione

M. Boglione 47

The Collins Effect in SIDIS

The Collins effect in SIDIS couples to transversity

COMPASS 2002-2004

S. Levorato for the COMPASS Collaboration, Transversity 2008

COMPASS proton data

Page 48: Overview on Transverse Momentum Dependent Distribution and Fragmentation Functions M. Boglione

M. Boglione 48Glasgow HERMES Symposium

• We need to determine two convoluted unknown functions– Fix one of the two functions according to some theoretical model and use

SIDIS data to determine the other (see for example Efremov, Goeke, Schweitzer)

– Perform a simultaneous fit of SIDIS and e+e-→h1h2X BELLE data.

Simultaneous determination of Transversity and Collins functions

BELLEThrust axis method

BELLEHadronic plane method

Page 49: Overview on Transverse Momentum Dependent Distribution and Fragmentation Functions M. Boglione

M. Boglione 49Glasgow HERMES Symposium

Simultaneous determination of Transversity and Collins functions

M.Anselmino, M. Boglione, U. D’Alesio, A. Kotzinian, S. Melis, F. Murgia, A. Prokudin, C. Türk

Models for the Collins functions

Page 50: Overview on Transverse Momentum Dependent Distribution and Fragmentation Functions M. Boglione

M. Boglione 50Glasgow HERMES Symposium

what about the last 3 TMDs? any relation with the others?

neglecting twist-3 contributions

similar to the Wandzura-Wilczek relation

supported by experiment

for a recent model of all twist-2 TMDs see Bacchetta et al., arXiv:0807.0323

The last three TMD’s …

Page 51: Overview on Transverse Momentum Dependent Distribution and Fragmentation Functions M. Boglione

M. Boglione 51Glasgow HERMES Symposium

HERMES data, PRL 84 (2000) 4047; PL B562 (2003) 182

COMPASS data, arXiv:0705.2402

The last three TMD’s …

H. Avakian., A.V. Efremov, P. Schweitzer, F. Yuan → Bag Model predictionsarXiv:0805.3355 [hep-ph]

Page 52: Overview on Transverse Momentum Dependent Distribution and Fragmentation Functions M. Boglione

52Glasgow HERMES Symposium

Pretzelosity

Spin-orbit correlationsLight-cone SU(6) quark-diquark model, Ma, Schmidt (1998)

P. Schweitzer, talk given at INT Program 09-3, Seattle

Page 53: Overview on Transverse Momentum Dependent Distribution and Fragmentation Functions M. Boglione

53Glasgow HERMES Symposium

• The Collins fragmentation function is universal (no initial/final state interactions, no effects induced by requiring color gauge invariance)

J. Collins and A. Metz, Phys. Rev. Lett. 93,252001 (2004), F. Yuan, arXiv:0903.4680

• The Sivers distribution function (naively time reversal odd) is subject to initial/final state interaction – color gauge invariance requirements induce color factors (process dependence).

C. J. Bomhof, P. J. Mulders,F. Pijlman, Eur. Phys. J. C 47, 147 (2006)

Example:

YanDrell

pq

NSIDIS

pq

N ff )()(

//

Universality of Sivers and Collins functions

Mark Schlegel, talk given at INT Program 09-3, Seattle

Page 54: Overview on Transverse Momentum Dependent Distribution and Fragmentation Functions M. Boglione

M. Boglione 54Glasgow HERMES Symposium

Drell-Yan Processes

A. Prokudin, talk at Workshop on Transverse Spin Physics, Beijing (2008)

Page 55: Overview on Transverse Momentum Dependent Distribution and Fragmentation Functions M. Boglione

M. Boglione 55Glasgow HERMES Symposium

Hot topics

Universality Factorization

Evolution

Orbital Angular Momentum

TMD’s

Page 56: Overview on Transverse Momentum Dependent Distribution and Fragmentation Functions M. Boglione

M. Boglione 56Glasgow HERMES Symposium

Present and future measurements …see talk by Marco Contalbrigo!

Page 57: Overview on Transverse Momentum Dependent Distribution and Fragmentation Functions M. Boglione

M. Boglione 57Glasgow HERMES Symposium

Enjoy the

Symposium !

Enjoy Loch Lomond!

Thank you !