overview slides of nigms predoctoral training grants

30
NIGMS Predoctoral NIGMS Predoctoral Training Program Training Program Guidelines Guidelines 2008 2008

Upload: pammy98

Post on 20-Dec-2014

341 views

Category:

Documents


0 download

DESCRIPTION

 

TRANSCRIPT

Page 1: Overview Slides of NIGMS Predoctoral Training Grants

NIGMS Predoctoral NIGMS Predoctoral Training Program Training Program

GuidelinesGuidelines

20082008

Page 2: Overview Slides of NIGMS Predoctoral Training Grants

NIGMS Predoctoral NIGMS Predoctoral Research Training Research Training

ProgramProgram Major mission of NIGMS Predoctoral-only training grants 11 pre- Ph.D. areas 1 pre - M.D.- Ph.D. area Support for 3,200 trainees

annually

Page 3: Overview Slides of NIGMS Predoctoral Training Grants

Trainee-Based Program Trainee-Based Program FeaturesFeatures

Support for early years of graduate training

Students selected for quality from several academic units, umbrella program(s), or broad interdisciplinary program

Provide maximum flexibility to trainees for selection of courses, rotations, research fields, and mentors

Page 4: Overview Slides of NIGMS Predoctoral Training Grants

Training GoalsTraining Goals Multidisciplinary and multi-

departmental training Faculty from different academic

units provide breadth of research opportunities

Training to master a core scientific area in depth

Acquire skills and knowledge of related fields

Page 5: Overview Slides of NIGMS Predoctoral Training Grants

Program Activities Program Activities Interdisciplinary training activities Broaden research skills and

approaches Cutting-edge research opportunities Courses and seminars Laboratory rotations Retreats, journal clubs, annual

meetings Opportunities for trainees to

present their research progress

Page 6: Overview Slides of NIGMS Predoctoral Training Grants

Program ResponsibilitiesProgram Responsibilities Monitor trainee progress

throughout their training Ensure timely completion Develop methods for ongoing

evaluations of quality Provide trainees and

prospective applicants information on career outcomes of graduates; provide career guidance for trainees

Page 7: Overview Slides of NIGMS Predoctoral Training Grants

Special NIH Special NIH RequirementsRequirements

Recruitment and retention for diversity Students from underrepresented racial and

ethnic groups Students with disabilities Students from economically disadvantaged

backgrounds

Training in the responsible conduct of research

Page 8: Overview Slides of NIGMS Predoctoral Training Grants

NIGMS Predoctoral Training ProgramsNIGMS Predoctoral Training Programs Behavioral-Biomedical Sciences Interface Bioinformatics and Computational Biology Biostatistics Biotechnology Cellular, Biochemical and Molecular Biology Chemistry-Biology Interface Genetics Medical Scientist Training Program Molecular Biophysics Molecular Medicine Pharmacological Sciences Systems and Integrative Biology

Page 9: Overview Slides of NIGMS Predoctoral Training Grants

Behavioral-Biomedical Sciences Behavioral-Biomedical Sciences Interface (BBI)Interface (BBI)

Program Director: Alison Cole

To develop basic behavioral scientists with rigorous training in biology/biomedical science

Curriculum and activities reinforce training at this interface

Significant participation of faculty and leadership from both sides of interface

Students primarily from behavioral departments or with behavioral backgrounds

Examples of behavioral depts: psychology, anthropology, demography, behavior, economics

Page 10: Overview Slides of NIGMS Predoctoral Training Grants

Bioinformatics and Computational Biology Bioinformatics and Computational Biology (BI)(BI)

Program Director: Jerry Li

To train a new class of scientists with a primary identity as computational biologist or bioinformatician who apply theoretical, mathematical, and computational approaches in biomedical research

Training should include the use of theory and computer applications in hypothesis generation and project execution

Students should be familiar with experimental methods and feel comfortable collaborating with bench scientists

Page 11: Overview Slides of NIGMS Predoctoral Training Grants

Biostatistics (BS)Biostatistics (BS)

Program Directors: Jerry Li & Shawn Drew

To ensure that a workforce of biostatisticians with a deep understanding of both statistical and biological theories and methodologies is available to biomedical, clinical, and behavioral research needs

Training should integrate biostatistical theories and evolving methodologies with basic biomedical research including, but not limited to, bioinformatics, genetics, molecular biology, cell biology, and physiology, as well as epidemiological, clinical, and behavioral studies

Page 12: Overview Slides of NIGMS Predoctoral Training Grants

Biotechnology (BT)Biotechnology (BT)

Program Director: Warren Jones Training to provide technical and intellectual

skills in fields which utilize biotechnology (e.g., molecular biology, tissue engineering, bioengineering, biochemistry, metabolic engineering, biomaterials, and drug delivery)

Trainees are expected to participate in seminar series, journal clubs, and retreats, which augment their training and promote interactions with students from differing disciplines

Trainees are required to participate in an industrial internship to gain research experience in a biotechnology or pharmaceutical firm

Page 13: Overview Slides of NIGMS Predoctoral Training Grants

Cellular, Biochemical and Molecular Cellular, Biochemical and Molecular Sciences (CBMS)Sciences (CBMS)

Program Directors: Marion Zatz and Peter Preusch

Broadest of interdisciplinary training programs May include: biochemistry, bioinformatics,

biophysics, chemistry, cell biology, developmental biology, genetics, immunology, microbiology, molecular biology, molecular medicine, neurobiology, and pathology

Wide range of numbers of appropriate trainees based on breadth of program

Page 14: Overview Slides of NIGMS Predoctoral Training Grants

Chemistry Biology Interface (CBI)Chemistry Biology Interface (CBI)

Program Director: Michael Rogers

Training focus is the use of synthetic and mechanistic chemistry to explore biological problems

One requirement: chemistry students receive significant training in biology in addition to in depth training in chemistry, and biology students receive significant training in chemistry in addition to in depth training in biology

Goal is to produce scientists that can work effectively at the interface, speaking the language of both disciplines

Offer interested students industrial internshipsOffer interested students industrial internships

Page 15: Overview Slides of NIGMS Predoctoral Training Grants

Genetics (GN)Genetics (GN)

Program Director: Marc Rhoades

Programs should provide dissertation opportunities and in-depth didactic training in all aspects of modern genetics

Trainees should also be exposed to closely related fields and be able to apply genetic approaches to problems in other areas of biology

Page 16: Overview Slides of NIGMS Predoctoral Training Grants

Medical Scientist Training Program Medical Scientist Training Program (MSTP)(MSTP)

Program Director: Bert Shapiro

Program must integrate medical and scientific training

There must be training compression so that duration is reasonable

There should be MSTP-specific activities for specialized training and to create a strong group identity

There should be career counseling at many points in the training

The graduates should be going to strong academic residencies with a commitment to research careers

The expectation is that a large majority of the graduates will become physician-scientists

Page 17: Overview Slides of NIGMS Predoctoral Training Grants

Molecular Biophysics (MB)Molecular Biophysics (MB)

Program Director: Paula Flicker

Training should focus on the applications of physics, mathematics, chemistry and engineering to problems in cell and molecular biology

Programs often bring together departments of chemistry, physics, or engineering and those departments offering training in the various areas of biology

Students commonly work in a number of areas, including structural biology, the biophysical characterization of biological macromolecules, single molecule detection, and electron microscopy

Programs typically bring in students with diverse educational backgrounds and need to provide appropriate training to each student such that all students understand quantitative biological sciences

Page 18: Overview Slides of NIGMS Predoctoral Training Grants

Molecular Medicine (MM)Molecular Medicine (MM)

Program Director: Marion ZatzProgram Director: Marion Zatz Training focus on basic biomedical sciences and

concepts and knowledge of molecular basis of disease Didactic training in areas such as pathophysiology and

molecular pathogenesis Program activities that provide students with

understanding of disease mechanisms, e.g. seminar series, journal clubs, participation in grand rounds or autopsy internships, dual mentors in basic and clinical science

Training program intended primarily for Ph.D. candidates

Goal: prepare scientists to work at interface of basic biomedical and clinical research (translational research)

Page 19: Overview Slides of NIGMS Predoctoral Training Grants

Pharmacological Sciences (PS)Pharmacological Sciences (PS)Program Director: Richard Okita

Provide exposure to cutting-edge research relevant to the discovery and development of therapeutic agents and to the basic understanding of drug targets and mechanisms of action

Training in broad subject areas that include pharmacology, toxicology, pharmaceutical chemistry, medicinal chemistry, pharmaceutics, pharmacokinetics and related areas

Programs are not expected to cover the entire range of PS research activities: some may have strength in molecular and cellular pharmacology, others in whole animal and human in vivo studies; some may emphasize toxicology, others may emphasize medicinal chemistry and pharmaceutics

Administrative center may be in a school of medicine, pharmacy, veterinary medicine, or other appropriate academic unit

Page 20: Overview Slides of NIGMS Predoctoral Training Grants

Systems and Integrative Biology Systems and Integrative Biology (SIB)(SIB)

Program Director: Alison Cole

Broad research competence required to investigate integrative, regulatory, and/or developmental processes of higher organisms and their functional components

Train in diverse experimental approaches- molecular and cellular to behavioral and computational- to explore integrated and complex biological problems

Strong emphasis on systems/integrative biology through coursework, seminars or other programmatic activities. Research opportunities in multiple disciplines including, but not limited to, physiology, biomedical engineering, neuroscience, behavioral sciences, clinical sciences, and cell and developmental biology

Page 21: Overview Slides of NIGMS Predoctoral Training Grants

NIGMS Special Requirements NIGMS Special Requirements

1. Describe the mission and objectives of the program to be supported by the training grant in relation to one or more of the identified NIGMS training grant program areas.

2. Describe how the proposed training grant fits into the institution’s overall graduate training programs: how is it unique from other existing predoctoral training programs?

Page 22: Overview Slides of NIGMS Predoctoral Training Grants

Special  NIGMS RequirementsSpecial  NIGMS Requirements

3. Describe collaborative and interdisciplinary features of the proposed training program. For ongoing programs, has training in any scientific disciplines or fields been added or deleted?

4. Describe any innovative features or activities that will be provided for trainees.

Page 23: Overview Slides of NIGMS Predoctoral Training Grants

Special NIGMS RequirementsSpecial NIGMS Requirements

5. Describe what the training program does to ensure that students have appropriate quantitative graduate training to pursue cutting-edge biomedical research. 

6. Describe how the training program provides opportunities for exposure to topics related to human health, physiology, and disease.

Page 24: Overview Slides of NIGMS Predoctoral Training Grants

Suggested FeaturesSuggested Features

1. Programs may offer opportunities for experience in teaching

2. Programs may recruit trainees from various backgrounds, including mathematics, engineering, and physical sciences

Page 25: Overview Slides of NIGMS Predoctoral Training Grants

Common Review QuestionsCommon Review Questions

How do you weight the value-added or impact of the T32 training program against other factors?

How do you determine the number of recommended trainee positions?

How do you evaluate the rationale for the use of trainee positions, i.e. number of years on grant and when supported?

How do you weight the breadth of a program vs. its scientific focus?

Page 26: Overview Slides of NIGMS Predoctoral Training Grants

Common Reviewer Common Reviewer QuestionsQuestions

How do you weight the value-added or impact of the T32 training program against other factors?

Comments: It depends on how the T32 program fits into the institution’s broader training efforts. In some cases the T32 program will be unique and have distinct value added or impact for its trainees. In other cases the special features of a T32 training program may have been incorporated into a broader training program so that T32 trainees are a subset of a larger program that meets NIGMS objectives. NIGMS recognizes the value of established programs that are providing effective interdisciplinary training and programmatic activities to their own trainees and including other students who may be part of a broader program. NIGMS also recognizes the impact that a T32 program has had by serving as a model for the development of an institutional training program. NIGMS strongly encourages innovation in its training programs and recognizes the value of established programs that are providing effective interdisciplinary training and programmatic activities to their own trainees and are serving as models for other predoctoral training programs in the institution. into in the institution’s overall graduate training programs. In some cases

Page 27: Overview Slides of NIGMS Predoctoral Training Grants

Common Reviewer Common Reviewer QuestionsQuestions

How do you determine the number of recommended trainee positions?

Comments:The recommendation should depend on both the size and quality of the relevant pool (applicant and matriculant), and for renewals, on the recent outcomes. In general, the maximum recommendation should be no more than the number of incoming eligible students, considering other sources of training support for the pool.

Page 28: Overview Slides of NIGMS Predoctoral Training Grants

Common Reviewer Common Reviewer QuestionsQuestions

How do you evaluate the rationale for the use of trainee positions, i.e. number of years on grant and when supported?

Comments:The number of years and timing of support is very variable from program to program. Each training program should provide its rationale. Earlier year support is emphasized to provide common training, cohesiveness, and time of greatest impact on training. It is common for programs to support students in years 1 and 2, or 2 and 3 but other options are allowed if well justified.

Page 29: Overview Slides of NIGMS Predoctoral Training Grants

Common Reviewer Common Reviewer QuestionsQuestions

How do you weight the breadth of a program vs. its scientific focus?

Comments:This depends, to a large extent, on which of the NIGMS program areas is under consideration. The least specific and most general programs, e.g. CBMS, can be quite broad. Other programs, e.g. MB, CBI, Genetics, are more targeted and need to provide a focus responsive to the NIGMS guidelines for that program.

Page 30: Overview Slides of NIGMS Predoctoral Training Grants

NIGMS Predoctoral Guidelines Including NIGMS Predoctoral Guidelines Including Expanded Descriptions of Specific Expanded Descriptions of Specific

Programs:Programs:

http://www.nigms.nih.gov/Training/InstPredoc/PredocTrainingDescription.htm

NIGMS Web Site