oxidation of a cold-worked 316l stainless steel in

2
HAL Id: cea-02434524 https://hal-cea.archives-ouvertes.fr/cea-02434524 Submitted on 10 Jan 2020 HAL is a multi-disciplinary open access archive for the deposit and dissemination of sci- entific research documents, whether they are pub- lished or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés. Oxidation of a cold-worked 316L stainless steel in pressuriezd water reactor primary water environment M. Maisonneuve, C. Duhamel, C. Guerre, J. Crepin, I. de Curieres, L. Verchere To cite this version: M. Maisonneuve, C. Duhamel, C. Guerre, J. Crepin, I. de Curieres, et al.. Oxidation of a cold-worked 316L stainless steel in pressuriezd water reactor primary water environment. EUROCORR 2017, Sep 2017, Prague, Czech Republic. cea-02434524

Upload: others

Post on 18-Dec-2021

1 views

Category:

Documents


0 download

TRANSCRIPT

HAL Id: cea-02434524https://hal-cea.archives-ouvertes.fr/cea-02434524

Submitted on 10 Jan 2020

HAL is a multi-disciplinary open accessarchive for the deposit and dissemination of sci-entific research documents, whether they are pub-lished or not. The documents may come fromteaching and research institutions in France orabroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, estdestinée au dépôt et à la diffusion de documentsscientifiques de niveau recherche, publiés ou non,émanant des établissements d’enseignement et derecherche français ou étrangers, des laboratoirespublics ou privés.

Oxidation of a cold-worked 316L stainless steel inpressuriezd water reactor primary water environment

M. Maisonneuve, C. Duhamel, C. Guerre, J. Crepin, I. de Curieres, L.Verchere

To cite this version:M. Maisonneuve, C. Duhamel, C. Guerre, J. Crepin, I. de Curieres, et al.. Oxidation of a cold-worked316L stainless steel in pressuriezd water reactor primary water environment. EUROCORR 2017, Sep2017, Prague, Czech Republic. �cea-02434524�

Results

Introduction

Material and Experimental Conditions

OXIDATION OF A COLD-WORKED 316L STAINLESS STEEL

IN PRESSURIZED WATER REACTOR PRIMARY WATER ENVIRONMENT

Eurocorr 2017, September 3-7, Prague

Composition

(weight %)

C S P Si Mn Ni Cr Mo Cu N

316L – this study 0,016 0,0009 0,026 0,62 1,86 10 16,54 2,03 - 0,022

• Pressurized Water Reactors (PWR) represent 76.3 % of the electrical power produced in 2015 in France [1]

• Operational feedback intergranular Stress Corrosion Cracking (SCC) affecting cold-worked stainless steel components

in PWR primary water [2]

• PWR primary water : pure hydrogenated and deaerated water, with Li and B additions, 150 bars and 290-340 °C

• Oxygen transients (oxygen injections in PWR primary water [3, 4]) = Possible detrimental factor

• Dissolved oxygen in PWR primary water has an impact on the :

Location of initiation sites (trans- or intergranular sites) [5]

Oxide layer properties (inner layer morphology and composition) [6]

• However, the oxygen transient effect on SCC susceptibility has not been extensively investigated to date

Annealing treatment (1050°C, Ar overpressure, 1h) applied to our specimens

Isotropic austenite grains (50 ± 10 µm) and residual ferrite (1-5 % in volume)

Non-sensitized material

Nominal PWR primary water (pure water, 150 bars, 340°C, pH = 7.0 to 7.2)

Element B Li H O Chlorides, sulfates, fluorides

Concentration 1000 ppm 2 ppm25-35 mL/kg

(TPN)< 0,01 ppm < 0,05 ppm

Marc Maisonneuve (a,b), Cécilie Duhamel (b), Catherine Guerre (a), Jérôme Crépin (b), Ian de Curières (c), Léna Verchère (a,b)

(a) Den-Service de la Corrosion et du Comportement des Matériaux dans leur Environnement (SCCME), CEA, Université Paris-Saclay, F-91191, Gif-

sur-Yvette, France

(b) MINES ParisTech, PSL Research University, MAT - Centre des matériaux, CNRS UMR 7633, BP 87 91003 Evry, France

(c) IRSN, Pole sûreté nucléaire, 31 avenue de la division Leclerc, BP 17, 92262 Fontenay-aux-Roses cedex, France

0

10

20

30

40

<0 0-50 50-100 100-150 150-200 200-250 >250

Fre

qu

en

cy (

%)

Localized penetration depth (nm)

0% - 500h

11% - 500h

0% - 1000h

Oxidation kinetics

SpecimenMean oxide

thickness (nm)

Mean localizedpenetration depth

(nm)

500 h 140 ± 41 92 ± 78

11% - 500 h 89 ± 43 87 ± 64

1000 h 146 ± 42 105 ± 74

Objectives

Conclusions

200 nm

Ni coating

Outer oxide layer

Inner oxide layer

Alloy

W coating

Penetrative filamentary oxide

First step: effect of dissolved

oxygen in PWR primary water

On oxidation kinetics and surface oxide layers nature

On localized oxide penetration kinetics, morphology and nature

Pre-strained / non cold-worked

316L stainless steel specimens

Oxidation of a stainless steel specimen exposed to PWR primary water

σ σ

AlloyOxide

penetration200 nmGrain boundary

PWR primary water

Outer

oxide layer

Inner oxide layer

General aim: Determine the effect of dissolved oxygen on SCC susceptibility of a cold-worked stainless steel in

PWR primary water

• Hypothesis: Link between oxidation and SCC susceptibility

• In particular, localized oxide penetrations are suspected to play a crucial role in crack initiation

PWR Core

Pump

Steam generator

Control rods

© Corinne Beurtey / CEAPWR primary circuit

Schematic representation of the primary circuit of a PWR

Oxidation in

nominal PWR

primary water

C2

Oxidation time = 500 h

Non cold-worked

C1

Oxidation time = 1000 h

Non cold-worked

EP1

Oxidation time = 500 h

Pre-strained (11%)

— Inner oxide layer (spinel structure)

[1] : Commissariat à l'Energie Atomique, Mémento sur l’énergie 2016, 2016

[2] : ILEVBARE, G., et al, Fontevraud 7, Avignon, 2010

[3] : COMBRADE, P., et al, Dossier Technique de L’ingénieur, bn3756, 2014

[4] : BETOVA, I., et al, rapport VTT-R-00699-12, 2012

[5] : HUIN, N., et al, EnvDeg 2015

[6] : TERACHI, T., et al, 61st NACExpo, Paper 06608, 2006

Duplex surface oxide layer

Localized oxide penetrations at grain boundaries or at slip bands

Cold-working lower mean oxide thickness

Increasing oxidation times increase of the deepest localized penetration density

SEM observations after oxidation tests in nominal PWR primary water TEM characterization of a non cold-worked specimen oxidized 500h at 340°C

Inner oxide layer: randomly-oriented nano-grains of spinel structure,

composition close to (Fe,Ni)(Fe,Cr)2O4

Outer oxide layer: Fe-rich, possibly magnetite Fe3O4 (to be confirmed)

Next stepsTests in nominal PWR primary water: oxidation kinetics and impact of cold-working on oxidation

Adjustment of the experimental methodology for tests in aerated PWR primary water

Tests in aerated PWR primary water effect of dissolved O2

STEM-HAADF micrograph of the surface oxide layer and corresponding EDS profiles

0

50

100

150

200

250

300

350

0

20

40

60

80

100

0 50 100 150 200 250 300

Sign

al a

sso

ciat

ed

to

O (

a.u

.)

Re

lati

ve p

rop

ort

ion

s o

f C

r, F

e, N

i(%

met

allic

ele

me

nts

)

AlloyInner

oxide layerOuter

oxide layer

Cr

Fe

Ni

OPosition (nm)

Non cold-worked specimens

at grain boundaries

Pre-strained specimen

at slip bands1 µm

Ni coating

Alloy

Localized oxide

penetration

Outer oxide layer

Inner oxide layer

Au coating

SEM (backscattered electrons) micrograph, cross-section of C2 specimen

100 nm

Alloy(grain 1)

Alloy(grain 2)

Inner oxide layer

Outer oxide layer

Pores

Localized oxide penetration

Bright-field TEM micrograph, cross-section of the specimen and diffraction pattern at the alloy/inner oxide interface

5 1/nm

{440}

{422}

{400}

{311}

{111}

{220}

: Alloy {220} planes— Inner oxide layer (spinel structure)

TEM characterization of a non cold-worked specimen oxidized 500h at 340°C