oxide-on-graphene field effect bio-ready sensors · oxide-on-graphene field effect bio-ready...

19
Oxide-on-graphene field effect bio-ready sensors Bei Wang 1, Kristi L. Liddell 2, Junjie Wang 1 , Brandon Koger 1 , Christine D. Keating 2 , and Jun Zhu 1,3 () Nano Res., Just Accepted Manuscript • DOI: 10.1007/s12274-014-0489-9 http://www.thenanoresearch.com on May 3, 2014 © Tsinghua University Press 2014 Just Accepted This is a “Just Accepted” manuscript, which has been examined by the peer-review process and has been accepted for publication. A “Just Accepted” manuscript is published online shortly after its acceptance, which is prior to technical editing and formatting and author proofing. Tsinghua University Press (TUP) provides “Just Accepted” as an optional and free service which allows authors to make their results available to the research community as soon as possible after acceptance. After a manuscript has been technically edited and formatted, it will be removed from the “Just Accepted” Web site and published as an ASAP article. Please note that technical editing may introduce minor changes to the manuscript text and/or graphics which may affect the content, and all legal disclaimers that apply to the journal pertain. In no event shall TUP be held responsible for errors or consequences arising from the use of any information contained in these “Just Accepted” manuscripts. To cite this manuscript please use its Digital Object Identifier (DOI® ), which is identical for all formats of publication. Nano Research DOI 10.1007/s12274-014-0489-9

Upload: others

Post on 10-Jun-2020

6 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Oxide-on-graphene field effect bio-ready sensors · Oxide-on-graphene field effect bio-ready sensors Bei Wang, Kristi L. Liddell, Junjie Wang, Brandon Koger, Christine D. Keating,

Nano Res

1

Oxide-on-graphene field effect bio-ready sensors

Bei Wang1†

, Kristi L. Liddell2†

, Junjie Wang1, Brandon Koger

1, Christine D. Keating

2, and Jun Zhu

1,3 ()

Nano Res., Just Accepted Manuscript • DOI: 10.1007/s12274-014-0489-9

http://www.thenanoresearch.com on May 3, 2014

© Tsinghua University Press 2014

Just Accepted

This is a “Just Accepted” manuscript, which has been examined by the peer-review process and has been

accepted for publication. A “Just Accepted” manuscript is published online shortly after its acceptance,

which is prior to technical editing and formatting and author proofing. Tsinghua University Press (TUP)

provides “Just Accepted” as an optional and free service which allows authors to make their results available

to the research community as soon as possible after acceptance. After a manuscript has been technically

edited and formatted, it will be removed from the “Just Accepted” Web site and published as an ASAP

article. Please note that technical editing may introduce minor changes to the manuscript text and/or

graphics which may affect the content, and all legal disclaimers that apply to the journal pertain. In no event

shall TUP be held responsible for errors or consequences arising from the use of any information contained

in these “Just Accepted” manuscripts. To cite this manuscript please use its Digital Object Identifier (DOI® ),

which is identical for all formats of publication.

Nano Research

DOI 10.1007/s12274-014-0489-9

Page 2: Oxide-on-graphene field effect bio-ready sensors · Oxide-on-graphene field effect bio-ready sensors Bei Wang, Kristi L. Liddell, Junjie Wang, Brandon Koger, Christine D. Keating,

1

TABLE OF CONTENTS (TOC)

Oxide-on-graphene field effect bio-ready sensors

Bei Wang, Kristi L. Liddell, Junjie Wang, Brandon

Koger, Christine D. Keating, and Jun Zhu*

The Pennsylvania State University, USA

This work reports on the fabrication, functionalization and operation of

a novel oxide-on-graphene field effect bio-ready sensor. pH sensing is

demonstrated.

Provide the authors’ website if possible.

Jun Zhu, http://www.personal.psu.edu/jxz26/zhulab/

Page 3: Oxide-on-graphene field effect bio-ready sensors · Oxide-on-graphene field effect bio-ready sensors Bei Wang, Kristi L. Liddell, Junjie Wang, Brandon Koger, Christine D. Keating,

2

Oxide-on-graphene field effect bio-ready sensors

Bei Wang1†, Kristi L. Liddell2†, Junjie Wang1, Brandon Koger1, Christine D. Keating2, and Jun Zhu1,3 (*) 1 Department of Physics, The Pennsylvania State University, University Park, Pennsylvania 16802, USA 2 Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, USA 3 Materials Research Institute, The Pennsylvania State University, University Park, Pennsylvania 16802, USA † These authors contributed equally to this work. Received: day month year / Revised: day month year / Accepted: day month year (automatically inserted by the publisher) © Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2011

 

ABSTRACT    

Electrical  detection  schemes  using  nanoscale  devices  offer   fast  and   label-­‐‑free  alternatives   to  biosensing  

techniques   based   on   chemical   and   optical   interactions.   Here   we   report   on   the   design,   fabrication,   and  

operation   of   oxide-­‐‑on-­‐‑graphene   ion-­‐‑sensitive   field   effect   sensor   arrays   using   large-­‐‑area   graphene   sheets  

synthesized  by  chemical  vapor  deposition.  In  this  scheme,  HfO2  and  SiO2  thin  films  are  deposited  atop  the  

graphene  sheet  and  play  the  dual  role  of  the  sensing  interface,  as  well  as  the  passivation  layer  protecting  the  

channel   and   electrodes   underneath   from   direct   contact   with   the   electrolyte.   We   further   demonstrate   the  

functionalization  of  the  SiO2  surface  with  3-­‐‑aminopropyltrimethoxysilane  (APTMS).  The  oxide-­‐‑on-­‐‑graphene  

sensors   operate   in   solution  with   high   stability   and   a   high   average  mobility   of   5000   cm2/Vs.  As   a   proof   of  

principle,   we   demonstrate   pH   sensing   using   the   bare   or   the   APTMS-­‐‑functionalized   SiO2   as   the   sensing  

surface.  The  measured  sensitivities,  46  mV/pH  and  43  mV/pH  respectively,  agree  well  with  existing  studies.  

We  further  show  that  by  applying  the  solution  gate  voltage  in  pulse,  the  hysteresis  in  the  transfer  curve  of  

the  graphene   transducer   can  be   eliminated,   greatly   improving   the   ionic  potential   resolution  of   the   sensor.  

Nano  Res    DOI  (automatically inserted by the publisher)  Research  Article    

Jun � 2/16/14 4:07 PM

Deleted: bio

Jun � 2/16/14 4:13 PM

Deleted: The  latter  enables  further  attachment  ofto  protein  and  nucleic  acid  

molecules

Jun � 2/16/14 4:13 PM

Deleted: .  This  design  utilizes  both  the  excellent  transport  characteristics  of  the  

graphene  transducer  and  the  

well-­‐‑established  linker  chemistry  of  the  

SiO2  surface  to  achieve  specific  binding  

and  detection  of  biomolecules.  

Jun � 2/16/14 4:12 PM

Deleted: 3-­‐‑aminopropyltrimethoxysilane  

(

Page 4: Oxide-on-graphene field effect bio-ready sensors · Oxide-on-graphene field effect bio-ready sensors Bei Wang, Kristi L. Liddell, Junjie Wang, Brandon Koger, Christine D. Keating,

3

These   experiments   demonstrate   the   potential   of   oxide-­‐‑on-­‐‑graphene   ion-­‐‑sensitive   field   effect   sensors   in  

on-­‐‑chip,  label-­‐‑free  and  real-­‐‑time  biosensing  applications.    

 KEYWORDS    graphene,  biosensor,  pH  sensor,  ISFET,  APTMS,  label-­‐‑free    

 1.  Introduction  

Sensors   are   essential   to   biomedical   diagnosis.   Compared   to   traditional  methods   such   as   fluorescence,  

surface  plasmon  resonance,  and  bioassays,  sensors  based  on  electrical  detection  schemes  can  potentially  be  

faster,   more   cost   effective,   and   require   less   specialized   equipment.   Ion-­‐‑sensitive   field   effect   transistors  

(ISFETs),  for  example,  work  by  converting  charge  accumulation  caused  by  the  binding  of  biomolecules  on  a  

sensing   surface   into   a   potential   signal,   which   is   then   detected   by   the   conductance   change   of   the   FET  

transducer  [1].  Such  sensors  can  be  readily  integrated  into  a  multiplexing  system  to  deliver  low-­‐‑cost,  on-­‐‑chip  

biomedical   diagnosis   [2-­‐‑4],   or   used   to   study   the   hybridization   and   binding   kinetics   of  DNA   and   proteins  

[5-­‐‑10].    

Until   recently,   ISFET   technology  primarily   focused  on  silicon   transistors   [1,  7,  8,  11].  The  sensitivity  of  

bulk  devices  is  ultimately  limited  by  its  bulk  carrier  mobility  of  ~500  cm2/Vs.  More  recent  efforts  explore  field  

effect  transistors  (FETs)  based  on  low-­‐‑dimensional  nanostructures,  such  as  nanowires  and  carbon  nanotubes,  

because   of   their   size,   large   surface-­‐‑to-­‐‑volume   ratio,   and   potentially   higher   sensitivity.   Although   high  

performances  have  been  demonstrated  [12-­‐‑15],  much  work  needs  to  be  done  to  address  practical  issues  such  

as  uniformity,  stability  and  scalability  before  applications  can  be  developed  [16,  17].  Graphene  FET  may  be  a  

———————————— Address correspondence to Jun Zhu, [email protected]

Jun � 2/16/14 4:14 PM

Deleted: romise

Page 5: Oxide-on-graphene field effect bio-ready sensors · Oxide-on-graphene field effect bio-ready sensors Bei Wang, Kristi L. Liddell, Junjie Wang, Brandon Koger, Christine D. Keating,

4

good   candidate   for   biosensing   because   of   its   excellent   carrier   mobility   and   the   availability   of   low-­‐‑cost  

large-­‐‑scale   synthetic  methods   [18-­‐‑21].   Indeed,   several   recent   studies   report   using   graphene   FETs   as   a   pH  

sensor   [22-­‐‑25]   and   for   the   detection   of   protein   and   DNA   [23,   26,   27].   However,   the   underlying   sensing  

mechanism  of  a  graphene  FET  is  not  clear.  The  reported  pH  sensitivities  of  as-­‐‑grown  graphene  sheets  vary  

from   6—99  mV/pH   [22-­‐‑25,   28].   Fu   et   al.   demonstrates   that   a   pristine   graphene   sheet   is   insensitive   to   H+  

concentration  change  in  solution  [28]  and  points  to  the  role  of  uncontrolled  extrinsic  imperfections,  such  as  

defects   and   contaminations,   in   the   sensing   process.   These   complications   require   further   studies   to   clarify.  

Furthermore,   a   pristine   graphene   surface   precludes   specific   binding   and   detection.   Functionalization,  

however,   severely   reduces   the   carrier  mobility   in   graphene.   For   example,   the   introduction   of   1013/cm2   sp3  

centers   (e.   g.   C-­‐‑NH2   to   bind   to   protein   and   DNA)   will   reduce   the   mobility   to   less   than   100   cm2/Vs,  

compromising   the   advantage   of   graphene   FETs   [29-­‐‑31].   In   comparison,   SiO2   has   been  widely   used   as   the  

dielectric   layer   and   sensing   surface   in   ISFETs   made   from   bulk   silicon   to   nanowires   because   of   the  

well-­‐‑established  silanization  chemistry  that  enables  the  immobilization  of  specific  bioprobes  and  targets  [32].  

The  ion  sensitivity  of  a  SiO2  surface  is  well  understood  by  the  site  dissociation  model  [33,  34].  

In   this   work,   we   demonstrate   the   fabrication   and   operation   of   a   novel   oxide-­‐‑on-­‐‑graphene   bio-­‐‑ready  

sensor.  In  this  scheme,  the  graphene  channel  is  passivated  by  a  SiO2/HfO2  (25  nm/20  nm)  double  oxide  layer,  

which   uses   the   top   SiO2   layer   as   the   sensing/immobilization   surface   and   the   high-­‐‑quality   HfO2   layer   to  

protect   the   channel   from   the   solution.   This   design   preserves   the   high   carrier   mobility   of   the   graphene  

transducer,  which   averages   5000   cm2/Vs   in   our   devices.  We  demonstrate   the   functionalization   of   the   SiO2  

surface  with  3-­‐‑aminopropyltrimethoxysilane  (APTMS),  as  a  pathway  to  the  immobilization  of  proteins  and  

DNA  [35].  The  devices  operate  stably  and  reproducibly  in  solution.  Bare  and  APTMS-­‐‑functionalized  devices  

Page 6: Oxide-on-graphene field effect bio-ready sensors · Oxide-on-graphene field effect bio-ready sensors Bei Wang, Kristi L. Liddell, Junjie Wang, Brandon Koger, Christine D. Keating,

5

are   sensitive   to   the   pH   value   of   phosphate   buffer   saline   (PBS)   solutions   ranging   from   4-­‐‑9.   The   observed  

sensitivity  of  46  mV/pH  and  34  mV/pH  respectively  are  in  good  agreement  with  results  obtained  on  similar  

surfaces   [1,   33,   34,   36].  Operating   the   solution  gate   in  pulse  mode  eliminates   the  hysteresis   in   the   transfer  

curve  of   the  graphene  FET,  which   is   a   common   issue   in  nanostructure-­‐‑based  biosensors.  Our  experiments  

show  the  potential  of  this  new  graphene-­‐‑based  device  design  in  on-­‐‑chip  sensing  applications.  

 

2.  Experimental  

The  pH  sensing  study  uses  0.010  M  PBS  (0.010  M  potassium  chloride  and  0.001  M  sodium  phosphate,  pH  

4.1,  6.0,  6.9,  or  8.8);  chemicals  are  purchased  from  Sigma  Aldrich.     HPLC  grade  water  for  buffer  preparation  

is  purchased  from  EMD  Chemicals.    

APTMS  functionalization  is  carried  out  in  3%  3-­‐‑aminopropyltrimethoxysilane  (APTMS,  TCI  America)  in  

200  proof   ethanol   (Koptec)   for   1   hour.   Excess  APTMS   is   removed  with   an   ethanol   rinse   followed  by   a   10  

minute  cure  at  110oC.      

pH   sensing   measurements   are   performed   by   covering   the   device   channel   area   in   a   droplet   of   PBS  

solution   of   the   desired   pH,   avoiding   contact   between   the   liquid   and   the   electrodes.   A   silicone   ring   is  

sometimes  used  to  confine   the  droplet.  Transfer  curves  are  obtained  at  each  pH  value   in   the  course  of  ~20  

minutes.  After  each  pH  measurement,  the  chip  is  thoroughly  rinsed  in  DI  water  followed  by  the  PBS  solution  

of  the  next  desired  pH  value  before  the  next  set  of  measurements  is  begun.          

3.  Results  and  discussion  

The   graphene   sheets   used   in   this   study   are   synthesized   by   a   low-­‐‑pressure   chemical   vapor   deposition  

Kristi Liddell� 3/25/14 2:19 PM

Deleted: romise

Page 7: Oxide-on-graphene field effect bio-ready sensors · Oxide-on-graphene field effect bio-ready sensors Bei Wang, Kristi L. Liddell, Junjie Wang, Brandon Koger, Christine D. Keating,

6

(CVD)   technique   on   copper   foil   [18].   Figure   1(a)   shows   a   scanning   electron   microscope   (SEM)   image   of  

as-­‐‑grown   graphene,   showing   a   full   monolayer   coverage   with   ~5%   multi-­‐‑layer   islands.   The   sheets   are  

transferred  to  290  nm  SiO2/highly  doped  Si  substrates  using  a  polymer-­‐‑assisted  wet  transfer  method  [18].  A  

typical  Raman  spectrum  of  transferred  graphene  is  given  in  Fig.  1(b),  where  a  small  ID/IG  ratio  of  less  than  0.1  

indicates   high-­‐‑quality   growth   [18].   The   transferred   sheet   is   annealed   in  Ar/H2   at   450°C   for   2   hours.  After  

annealing,   the   graphene   surface   appears   flat,   continuous   and  mostly   free   of   polymer   residue,  with   small  

amount  remaining  at  the  wrinkles  and  folds  of  the  sheet.    

Two-­‐‑terminal  graphene  FETs  of  dimensions  2  µμm  (width)  ×   4  µμm  (length)  are   fabricated  using  optical  

lithography,  reactive  ion  etching  and  metal  deposition.  We  then  deposit  20  nm  of  HfO2  on  the  whole  wafer  

using  atomic  layer  deposition  and  recipes  previously  established  by  our  group  [37],  followed  by  the  electron  

beam  evaporation  of  25  nm  of  SiO2.  An  optical  micrograph  of  a  sensor  array  and  an  SEM  image  of  a  channel  

are  shown  in  Fig.  2.    

Figure   3(a)   shows   a   schematic   of   the   oxide-­‐‑on-­‐‑graphene   sensor   operating   in   solution,   using   both   the  

doped  silicon  back  gate  and  the  solution  top  gate.  A  small  droplet  of  deionized  water  or  PBS  solution  forms  

the  solution  gate  above  the  channel  area  (see  Fig.  2).  Care  is  taken  to  ensure  that  the  droplet  does  not  cover  

the  contact  pads  of  the  device  being  measured.  A  tungsten  electrode  and  an  Ag/AgCl  reference  electrode  are  

inserted  into  the  droplet  to  apply  Vapp  and  read  Vsg,  the  potential  of  the  solution,  respectively.  The  use  of  the  

reference  electrode  is  necessary  to  eliminate  spurious  changes  in  the  characteristics  of  the  sensor  due  to  the  

variation   of   the   potential   drop   at   the   tungsten/solution   interface.   Because   of   the   conformal   growth   of   the  

HfO2  film,  the  channel  is  well  protected  from  the  solution  and  the  solution  gate  operates  with  a  small  leakage  

current  of  less  than  100  pA.  

Page 8: Oxide-on-graphene field effect bio-ready sensors · Oxide-on-graphene field effect bio-ready sensors Bei Wang, Kristi L. Liddell, Junjie Wang, Brandon Koger, Christine D. Keating,

7

Figure  3(b)  plots  the  conductance  of  a  graphene  channel  as  a  function  of  the  back  gate  voltage  Vbg  (top  

axis)  and   the   solution  gate  voltage  Vsg   (bottom  axis)  using  different   symbols.  The   two  axes  are   scaled  and  

offset  with  respect  to  one  another  so  that  the  two  measured  traces  overlap.  The  device  is  ambipolar  with  a  

small   amount   of   unintentional   doping.   The   back   gate   sweeps   are   typically   hysteretic  with   a   separation   of  

ΔVbg  ~7  V  between  the  two  charge  neutrality  points.  Only  one  sweep  direction  is  shown  here.  The  solution  

gate  hysteresis  ΔVsg  is  generally  less  than  100  mV.  The  scaling  ratio  γ  between  the  two  gate  voltages  Vsg  and  

Vbg  in  Fig.  3(b)  gives  the  ratio  between  the  capacitance  of  the  solution  gate,  Csg  and  that  of  the  back  gate  Cbg,  

i.e.,  Csg  =   γ  Cbg.  Measurements   on   11  devices   yield   γ  =  11.3  ±   1.1,   from  which  we  determine  Csg=   (127  ±   12)  

nF/cm2   using   a   back   gate   capacitance   Cbg=   11.2   nF/cm2.   This   result   can   be   understood   by   noting   that   Csg  

consists  of  the  capacitance  of  the  solution  CDL,  and  the  capacitance  of  the  double  oxide  layer  (20  nm  HfO2  and  

25  nm  SiO2)  Cox  in  series:  

  .

In   our   experiment,   CDL,  which   scales  with   the   ionic   concentration   of   the   solution  M   as  CDL~M1/2[5],   is  

much   larger   than   Cox   such   that   Csg≈   Cox.  We   determine   Cox   to   be   ~120   nF/cm2  through   direct   capacitance  

measurement,  which  agrees  very  well  with  Csg  obtained  here.  

We   determine   the   field-­‐‑effect   mobility   µFE   of   the   graphene   FETs   by   fitting   the   G(Vbg)   curve   to   the  

charged-­‐‑impurity  scattering  model,  following  Eq.  (2)  of  Hong  et  al  [38].  The  fit  describes  data  very  well,  as  

shown  in  Fig.  3(b).  The  field  effect  mobility  µFE  averages  approximately  5000  cm2/Vs  for  both  electrons  and  

holes,   indicating   the   high   quality   of   our   devices   among  CVD-­‐‑grown   graphene   [21].   The   high  µFE   and  Csg  

together  lead  to  a  high  normalized  transconductance  of  gm=  µFE·∙  Csg  =  0.6  mS/V.  In  devices  measured  here,  gm  

Csg =CDLCox

CDL +Cox

Page 9: Oxide-on-graphene field effect bio-ready sensors · Oxide-on-graphene field effect bio-ready sensors Bei Wang, Kristi L. Liddell, Junjie Wang, Brandon Koger, Christine D. Keating,

8

is  reduced  by  a  factor  of  a  few  due  to  the  contact  resistance,  which  is  around  5  kΩ  in  our  devices.  The  contact  

resistance  can  potentially  be  reduced  by  a  few  orders  of  magnitude  by  using  gentle  oxygen  plasma  etching  

and  annealing  [39]  to  further  increase  gm.  

In  field  effect  devices  made  from  nanomaterials  such  as  nanotubes,  nanowires,  and  graphene,  hysteretic  

transfer  curves  caused  by  interfacial  changes  and  adsorbates  are  a  common  problem  [13,  23,  40].  Adopting  

pulsed   gate   sweep   techniques   (Fig.   4(b))   applied   to   carbon   nanotube   FETs   [41,   42],   we   can   suppress   the  

hysteresis   in  our  graphene  FETs  completely.  Examples  of  hysteretic  and  hysteresis-­‐‑free  G(Vsg)   traces  of   the  

same  device  are   shown   in  Fig.   4(a).  The  elimination  of  hysteresis   eliminates  a   source  of  uncertainty   in   the  

operation  of  nanostructured  sensors  and  greatly  improves  their  long-­‐‑term  stability.  

Next  we  demonstrate  the  proof-­‐‑of-­‐‑principle  operation  of  the  oxide-­‐‑on-­‐‑graphene  sensor  by  measuring  its  

response  to  the  pH  of  PBS  solutions.  Both  bare  SiO2  and  APTMS-­‐‑functionalized  devices  are  tested  and  their  

sensing  performance  evaluated  in  Figs.  5  and  6.  The  test  protocol  is  described  in  the  experimental.  Briefly,  we  

measure  the  G(Vsg)  curve  of  the  graphene  FET  while  it  is  immersed  in  a  PBS  solution  droplet  of  a  fixed  pH  

value.   The   device   is   thoroughly   rinsed   with   de-­‐‑ionized   water   prior   to   exposure   to   another   droplet   of   a  

different  pH.  Measurements  of  the  same  pH  value  are  repeated  at  different  times  to  check  the  stability  of  the  

sensor.  The  same  test  is  done  on  many  graphene  FETs.    

Figure  5  shows  the  pH  response  of  a  bare  FET.  As  the  pH  value  of  the  PBS  solution  increases,  the  G(Vsg)  

curve  retains  its  shape  but  shifts  toward  positive  Vsg.  The  inset  of  Fig.  5  plots  the  position  of  the  Dirac  point  

VD  vs  pH.  The  error  bars  represent  the  spread  of  VD  from  repeated  measurements   in  the  course  of  6  hours.  

Measurements  are  reproducible  after  weeks,  demonstrating  excellent  stability  of  the  sensors.  In  the  range  of  

pH  =  4.1  to  8.8,  VD  (pH)  is  well  described  by  a  linear  fit,  with  a  slope  of  43  mV/pH.  Averaging  many  devices,  

we  obtain  a  voltage  sensitivity  of  (46  ±  8)  mV/pH.  These  results  are  in  good  agreement  with  literature  results  

Page 10: Oxide-on-graphene field effect bio-ready sensors · Oxide-on-graphene field effect bio-ready sensors Bei Wang, Kristi L. Liddell, Junjie Wang, Brandon Koger, Christine D. Keating,

9

and  can  be  well  understood  by  the  site-­‐‑dissociation  model  developed  for  oxide  surfaces  [1,  33,  34].  Briefly,  

the  pH  of  the  solution  affects  the  protonation  and  deprotonation  of  the  oxide  surface,  leading  to  a  change  in  

the  potential  drop  ψ0  at  the  solution/oxide  interface,  which  causes  the  G(Vsg)  curve  to  shift  in  Vsg.  In  the  case  

of   SiO2,   increasing   pH   increases   the   presence   of   negative   charges   on   the   SiO2   surface,   which   results   in   a  

larger  ψ0,  and  a  shift  in  G(Vsg)  towards  positive  Vsg.  This  is  exactly  what  we  observed.  In  the  linear  regime  of  

G(Vsg)   in   Fig.   5,   the   conductance   changes   by   4.2   µS/pH.   This   is   a   large   conductance   change   among  

nanostructured  sensors  [4,  12]  and  can  be  further  increased  by  reducing  the  oxide  thickness  (presently  45  nm)  

and  increasing  carrier  mobility  (presently  5000  cm2/Vs).    

In  Table   I,  we  compare  the  voltage  sensitivity  of  our  oxide-­‐‑on-­‐‑graphene  sensor  with  other  graphene  FET  

pH  sensors  reported  in  the  literature.  Existing  studies  show  a  large  variation  ranging  from  6  to  99  mV/pH  using  

as-­‐‑grown  graphene  obtained  from  different  methods.  This  large  variation  makes  graphene  pH  sensors  ill  suited  

for  applications.  The  underlying  sensing  mechanisms  are  not  well  understood  at  the  present,  but  the  presence  

of   defects,   contaminations   and   unintentional   chemical   functionalizations   has   been   suggested   to   play   key  

role[22,  28].  In  contrast,  the  sensitivity  of  our  oxide-­‐‑on-­‐‑graphene  sensor  is  given  by  the  well-­‐‑characterized  oxide  

surface   and   is   well   understood.   Indeed,   ISFET   based   pH   sensors   are   commercially   available   and   used   in  

applications   requiring   continuous   readings   such   as   environmental   monitoring[43].   They   are   also   a   crucial  

component   of   a   CMOS   integrated   non-­‐‑optical   genome   sequence   scheme   demonstrated   recently[8].   The  

oxide-­‐‑on-­‐‑grahpene   design   can   potentially   take   advantage   of   the   CMOS   architecture   already   developed   for  

silicon  ISFETs  while  using  higher  mobility  graphene  as  the  FET  transducer.  

We  next  show  that  oxide-­‐‑on-­‐‑graphene  FETs  can  be  readily  functionalized  with  amine  groups,  which  are  

commonly  used  to  immobilize  and  recognize  biomolecular  probes  and  targets  [7].  The  top  SiO2  surface  of  the  

graphene  FETs  are  functionalized  with  APTMS  following  procedures  described  in  the  experimental  section.  

Figure  6(a)   shows   the  high-­‐‑resolution  X-­‐‑ray  photoelectron   spectroscopy   (XPS)   spectra  of   the  N-­‐‑1s   state  on  

bare  and  APTMS-­‐‑functionalized  SiO2  surfaces,  respectively.  The  spectrum  on  functionalized  surface  exhibits  

two  prominent  peaks  at  399.9  and  401.9  eV  whereas  no  such  signal  is  detected  on  the  bare  SiO2  surface.  These  

peaks  correspond   to  NH2  and  NH3+  groups,   respectively,  with   the   latter  due   to   the  presence  of  water   [44].  

Atomic  force  microscopy  shows  that  most  areas  of   the  functionalized  surface  are  covered  by  a   thin  film  of  

average   thickness   0.7   nm   (Fig.   6(b)),  which   is   consistent  with   the   height   of   one  APTMS  molecule   [36].   In  

Page 11: Oxide-on-graphene field effect bio-ready sensors · Oxide-on-graphene field effect bio-ready sensors Bei Wang, Kristi L. Liddell, Junjie Wang, Brandon Koger, Christine D. Keating,

10

some  areas,  partial  coverage  as  well  as  local  aggregation  of  APTMS  molecules  is  also  observed.  Similar  to  the  

bare   oxide-­‐‑on-­‐‑graphene   devices,   G(Vsg)   of   APTMS-­‐‑functionalized   devices   shift   towards   positive   Vsg   with  

increasing  pH,  an  example  of  which  is  shown  in  Fig.  6(c).  The  inset  of  Fig.  6(c)  plots  the  pH-­‐‑dependent  Dirac  

point  VD  of  this  device,  from  which  we  extract  a  slope  of  28  mV/pH.  Averaging  many  devices,  we  find  the  

pH  sensitivity  of  APTMS-­‐‑functionalized  graphene  FETs  to  be  (34  ±  8)  mV/pH.  These  results  agree  well  with  

previous  studies  [36].  The  reduced  pH  sensitivity  is  expected,  as  the  amine  group  is  less  amphoteric  than  the  

Si-­‐‑OH  group   and   the   coverage   of   the  APTMS   layer   is   also  probably   less   dense   than   that   of   the   SiO2.   The  

functionalization   of   the   oxide-­‐‑on-­‐‑graphene   sensor  with  APTMS  paves   the   path   to   the   immobilization   and  

detection  of  specific  binding  events  of  molecules,  such  as  the  hybridization  of  DNAs.  

4.  Conclusions  

In   summary,   we   have   designed,   fabricated   and   demonstrated   the   operation   of   a   novel   high-­‐‑quality,  

oxide-­‐‑on-­‐‑graphene   field  effect  bio-­‐‑ready  sensor   in  solution.  The  use  of   thin  oxide   film  as   the  sensing   layer  

preserves   the   high   mobility   of   the   graphene   transducer   and   enables   sensing   specificity.   The  

oxide-­‐‑on-­‐‑graphene  FETs   function  stably  and  reproducibly.  As  a  proof  of  principle,  we  show  that  bare  and  

APTMS-­‐‑functionalized  SiO2  surfaces  response  to  the  pH  of  PBS  solutions,  with  the  sensitivity  of  46  mV/pH  

and   34   mV/pH   respectively.   Our   studies   open   the   door   to   using   graphene-­‐‑based   electrical   devices   to  

selectively  detect  the  presence  and  binding  events  of  molecules  of  interest.    

Acknowledgements

We  thank  Xiahua  Zhong  and  Wenchong  Hu  for  helpful  discussions  on  experimental  setup.  The  synthesis  

of   graphene,   device   preparation   and   electrical   measurements   are   supported   by   NSF   NIRT   grant   No.  

ECS-­‐‑0609243,   MRSEC   grant   No.   DMR-­‐‑0820404   and   CAREER   grant   No.   DMR-­‐‑0748604.   Wet   chemistry   and  

Page 12: Oxide-on-graphene field effect bio-ready sensors · Oxide-on-graphene field effect bio-ready sensors Bei Wang, Kristi L. Liddell, Junjie Wang, Brandon Koger, Christine D. Keating,

11

chemical  functionalization  work  was  supported  by  the  MSD  Focus  Center,  one  of  six  research  centers  funded  

under  the  Focus  Center  Research  Program  (FCRP),  a  Semiconductor  Research  Corporation  entity.  The  authors  

acknowledge  use  of  facilities  at  the  PSU  site  of  NSF  NNIN.  

 

References  [1] Bergveld, P. Thirty years of ISFETOLOGY: What happened in the past 30 years and what may happen in the

next 30 years. Sensor. Actuat. B-Chem. 2003, 88, 1-20. [2] Johannessen, E. A.; Wang, L.; Cui, L.; Tang, T. B.; Ahmadian, M.; Astaras, A.; Reid, S. W. J.; Murray, A. F.;

Flynn, B. W.; Beaumont, S. P. et al. Implementation of multichannel sensors for remote biomedical measurements in a microsystems format. IEEE T. Bio.-Med. Eng. 2004, 51, 525-535.

[3] Zhang, G. J.; Ning, Y. Silicon nanowire biosensor and its applications in disease diagnostics: A review. Anal. Chim. Acta. 2012, 749, 1-15.

[4] Patolsky, F.; Zheng, G.; Lieber, C. Nanowire-based biosensors. Anal. Chem. 2006, 78, 4260-4269. [5] Poghossian, A.; Cherstvy, A.; Ingebrandt, S.; Offenhausser, A.; Schoning, M. J. Possibilities and limitations of

label-free detection of DNA hybridization with field-effect-based devices. Sensor. Actuat. B-Chem. 2005, 111, 470-480.

[6] Bunimovich, Y. L.; Shin, Y. S.; Yeo, W. S.; Amori, M.; Kwong, G.; Heath, J. R. Quantitative real-time measurements of DNA hybridization with alkylated nonoxidized silicon nanowires in electrolyte solution. J. Amer. Chem. Soc. 2006, 128, 16323-16331.

[7] Gonçalves, D.; Prazeres, D.; Chu, V.; Conde, J. Detection of DNA and proteins using amorphous silicon ion-sensitive thin-film field effect transistors. Biosen. Bioelectron. 2008, 24, 545-551.

[8] Rothberg, J. M.; Hinz, W.; Rearick, T. M.; Schultz, J.; Mileski, W.; Davey, M.; Leamon, J. H.; Johnson, K.; Milgrew, M. J.; Edwards, M. et al. An integrated semiconductor device enabling non-optical genome sequencing. Nature 2011, 475, 348-352.

[9] Sorgenfrei, S.; Chiu, C.; Gonzalez Jr, R. L.; Yu, Y. J.; Kim, P.; Nuckolls, C.; Shepard, K. L. Label-free single-molecule detection of DNA-hybridization kinetics with a carbon nanotube field-effect transistor. Nat. Nanotechnol. 2011, 6, 126-132.

[10] Stern, E.; Klemic, J. F.; Routenberg, D. A.; Wyrembak, P. N.; Turner-Evans, D. B.; Hamilton, A. D.; LaVan, D. A.; Fahmy, T. M.; Reed, M. A. Label-free immunodetection with CMOS-compatible semiconducting nanowires. Nature 2007, 445, 519-522.

[11] Bausells, J.; Carrabina, J.; Errachid, A.; Merlos, A. Ion-sensitive field-effect transistors fabricated in a commercial CMOS technology. Sensor. Actuat. B-Chem. 1999, 57, 56-62.

[12] Cui, Y.; Wei, Q.; Park, H.; Lieber, C. M. Nanowire nanosensors for highly sensitive and selective detection of biological and chemical species. Science 2001, 293, 1289-1292.

[13] Allen, B. L.; Kichambare, P. D.; Star, A. Carbon nanotube field-effect-transistor-based biosensors. Adv. Mater. 2007, 19, 1439-1451.

[14] He, B.; Morrow, T.; Keating, C. Nanowire sensors for multiplexed detection of biomolecules. Curr. Opin. Chem. Bio. 2008, 12, 522-528.

Page 13: Oxide-on-graphene field effect bio-ready sensors · Oxide-on-graphene field effect bio-ready sensors Bei Wang, Kristi L. Liddell, Junjie Wang, Brandon Koger, Christine D. Keating,

12

[15] Roy, S.; Gao, Z. Q. Nanostructure-based electrical biosensors. Nano Today 2009, 4, 318-334. [16] Regonda, S.; Tian, R. H.; Gao, J. M.; Greene, S.; Ding, J. H.; Hu, W. Silicon multi-nanochannel FETs to

improve device uniformity/stability and femtomolar detection of insulin in serum. Biosen. Bioelectron. 2013, 45, 245-251.

[17] Tian, R. H.; Regonda, S.; Gao, J. M.; Liu, Y. L.; Hu, W. Ultrasensitive protein detection using lithographically defined Si multi-nanowire field effect transistors. Lab. Chip. 2011, 11, 1952-1961.

[18] Li, X. S.; Cai, W. W.; An, J. H.; Kim, S.; Nah, J.; Yang, D. X.; Piner, R.; Velamakanni, A.; Jung, I.; Tutuc, E. et al. Large-area synthesis of high-quality and uniform graphene films on copper foils. Science 2009, 324, 1312-1314.

[19] Shao, Y. Y.; Wang, J.; Wu, H.; Liu, J.; Aksay, I. A.; Lin, Y. H. Graphene based electrochemical sensors and biosensors: A review. Electroanal. 2010, 22, 1027-1036.

[20] Pumera, M.; Ambrosi, A.; Bonanni, A.; Chng, E. L. K.; Poh, H. L. Graphene for electrochemical sensing and biosensing. Trac-Trend. Anal. Chem. 2010, 29, 954-965.

[21] Mattevi, C.; Kim, H.; Chhowalla, M. A review of chemical vapour deposition of graphene on copper. J. Mater. Chem. 2011, 21, 3324-3334.

[22] Ang, P. K.; Chen, W.; Wee, A. T. S.; Loh, K. P. Solution-gated epitaxial graphene as pH sensor. J. Amer. Chem. Soc. 2008, 130, 14392-14393.

[23] Ohno, Y.; Maehashi, K.; Yamashiro, Y.; Matsumoto, K. Electrolyte-gated graphene field-effect transistors for detecting pH protein adsorption. Nano Lett. 2009, 9, 3318-3322.

[24] Cheng, Z. G.; Li, Q.; Li, Z. J.; Zhou, Q. Y.; Fang, Y. Suspended graphene sensors with improved signal and reduced noise. Nano Lett. 2010, 10, 1864-1868.

[25] Giacchetti, B. M.; Hsu, A.; Wang, H.; Kim, K. K.; Kong, J.; Palacios, T. CVD-grown graphene solution-gated field effect transistors for pH sensing. MRS Proc. 2011, 1283, DOI: 10.1557/opl.2011.583.

[26] Dong, X. C.; Shi, Y. M.; Huang, W.; Chen, P.; Li, L. J. Electrical detection of DNA hybridization with single-base specificity using transistors based on CVD-grown graphene sheets. Adv. Mater. 2010, 22, 1649-1653.

[27] Ang, P. K.; Jaiswal, M.; Lim, C.; Wang, Y.; Sankaran, J.; Li, A.; Lim, C. T.; Wohland, T.; Ozyilmaz, B.; Loh, K. P. A bioelectronic platform using a graphene-lipid bilayer interface. ACS Nano 2010, 4, 7387-7394.

[28] Fu, W.; Nef, C.; Knopfmacher, O.; Tarasov, A.; Weiss, M.; Calame, M.; Schonenberger, C. Graphene transistors are insensitive to pH changes in solution. Nano Lett. 2012, 11, 3597-3600.

[29] Chen, J. H.; Cullen, W. G.; Jang, C.; Fuhrer, M. S.; Williams, E. D. Defect scattering in graphene. Phys. Rev. Lett. 2009, 102, 236805.

[30] Hong, X.; Cheng, S.-H.; Herding, C.; Zhu, J. Colossal negative magnetoresistance in dilute fluorinated graphene. Phys. Rev. B 2011, 83, 085410.

[31] Ni, Z. H.; Ponomarenko, L. A.; Nair, R. R.; Yang, R.; Anissimova, S.; Grigorieva, I. V.; Schedin, F.; Blake, P.; Shen, Z. X.; Hill, E. H. et al. On resonant scatterers as a factor limiting carrier mobility in graphene. Nano Lett. 2010, 10, 3868-3872.

[32] Pividori, M. I.; Merkoci, A.; Alegret, S. Electrochemical genosensor design: immobilisation of oligonucleotides onto transducer surfaces and detection methods. Biosen. Bioelectron. 2000, 15, 291-303.

[33] Akiyama, T.; Ujihira, Y.; Okabe, Y.; Sugano, T.; Niki, E. Ion-sensitive field-effect transistors with inorganic gate oxide for pH sensing. IEEE T. Electron Dev. 1982, 29, 1936-1941.

[34] Van Hal, R.; Eijkel, J.; Bergveld, P. A general model to describe the electrostatic potential at electrolyte oxide

Page 14: Oxide-on-graphene field effect bio-ready sensors · Oxide-on-graphene field effect bio-ready sensors Bei Wang, Kristi L. Liddell, Junjie Wang, Brandon Koger, Christine D. Keating,

13

interfaces. Adv. Colloid Interfac. 1996, 69, 31-62. [35] Zhang, F. X.; Srinivasan, M. P. Self-assembled molecular films of aminosilanes and their immobilization

capacities. Langmuir 2004, 20, 2309-2314. [36] Khamaisi, B.; Vaknin, O.; Shaya, O.; Ashkenasy, N. Electrical performance of silicon-on-insulator field-effect

transistors with multiple top-gate organic layers in electrolyte solution. ACS Nano 2010, 4, 4601-4608. [37] Zou, K.; Hong, X.; Keefer, D.; Zhu, J. Deposition of high-quality HfO2 on graphene and the effect of remote

oxide phonon scattering. Phys. Rev. Lett. 2010, 105, 126601. [38] Hong, X.; Zou, K.; Zhu, J. Quantum scattering time and its implications on scattering sources in graphene.

Phys. Rev. B 2009, 80, 241415. [39] Robinson, J. A.; LaBella, M.; Zhu, M.; Hollander, M.; Kasarda, R.; Hughes, Z.; Trumbull, K.; Cavalero, R.;

Snyder, D. Contacting graphene. Appl. Phys. Lett. 2011, 98, 053103. [40] Wang, H.; Wu, Y.; Cong, C.; Shang, J.; Yu, T. Hysteresis of electronic transport in graphene transistors. ACS

Nano 2012, 4, 7221-7228. [41] Mattmann, M.; Roman, C.; Helbling, T.; Bechstein, D.; Durrer, L.; Pohle, R.; Fleischer, M.; Hierold, C. Pulsed

gate sweep strategies for hysteresis reduction in carbon nanotube transistors for low concentration NO2 gas detection. Nanotechnology 2010, 21, 185501.

[42] Estrada, D.; Dutta, S.; Liao, A.; Pop, E. Reduction of hysteresis for carbon nanotube mobility measurements using pulsed characterization. Nanotechnology 2010, 21, 085702.

[43] Jimenez-Jorquera, C.; Orozco, J.; Baldi, A. ISFET based microsensors for environmental monitoring. Sensors 2009, 10, 61-83.

[44] Chauhan, A. K.; Aswal, D. K.; Koiry, S. P.; Gupta, S. K.; Yakhmi, J. V.; Surgers, C.; Guerin, D.; Lenfant, S.; Vuillaume, D. Self-assembly of the 3-aminopropyltrimethoxysilane multilayers on Si and hysteretic current-voltage characteristics. Appl. Phys A-Mater. 2008, 90, 581-589.

Page 15: Oxide-on-graphene field effect bio-ready sensors · Oxide-on-graphene field effect bio-ready sensors Bei Wang, Kristi L. Liddell, Junjie Wang, Brandon Koger, Christine D. Keating,

14

Figures  

Figure 1. (a) SEM image of a continuous graphene film grown on copper substrate. Small, dark islands are multi-layers. (b) A typical

Raman spectrum of graphene transferred to SiO2/doped Si wafer showing a small ID/IG ratio of less than 0.1.

Figure 2. Optical image of one oxide-on-graphene field effect transistor array consisting of sixteen 2 µm × 4 µm two-terminal

graphene channels. The inset shows an SEM image of one such channel.

1µm

a

1500 2000 2500 1500 2000 2500

Raman Shift (cm-1)

Inte

nsity

(Arb

. Uni

t) b

1 mm

4µm

Page 16: Oxide-on-graphene field effect bio-ready sensors · Oxide-on-graphene field effect bio-ready sensors Bei Wang, Kristi L. Liddell, Junjie Wang, Brandon Koger, Christine D. Keating,

15

Figure 3. (a) Schematic drawing of the oxide-on-graphene FET operating in solution. The solution gate voltage is applied

through a tungsten electrode and read by an Ag/AgCl reference electrode. (b) The conductance of a graphene channel vs the

solution gate voltage Vsg (magenta solid triangle, bottom axis) and the backgate voltage Vbg (blue hollow square, top axis). The

two traces overlap well after scaling the Vbg and Vsg axes. The black solid line is a fit to the charged impurity model,

1/G=Rc+2/(neuFE+σres) following Eq. (2) of Ref. [38]. Fits to electrons and holes separately yield µFEe = 3900 and µFE

h = 5300

cm2/Vs respectively and Rce = 4700 Ω and Rc

h = 6300 Ω. σres= 0.17 mS.

Figure 4. (a) The conductance of a graphene channel vs the solution gate voltage Vsg with Vsg changed continuously (solid

magenta traces) and in pulse (blue hollow circles). The arrows indicate the sweeping directions of the magenta traces. The

time-varying pattern of the applied pulse is shown in (b) thigh = 25 ms, tlow = 75 ms

resubmission*

Vapp Vsg

- - - - - - - - + + + + + + + + +

Vbg

V

~Vds

a

60.0

80.0

100.0

120.0

-12 -8 -4 0 4

-1.5 -1.0 -0.5 0.0 0.5

Vbg(V)

Vsg(V)

120

100

80

60

-12 -8 -4 0

-0.5 0 0.5

b

G(µ

S)

W Ag/AgCl

290nm SiO2

25nm SiO2 20nm HfO2

p++ Si

S D

Vsg(V)

-0.6 -0.4 -0.2 0 0.2

G(µ

S)

thigh!

tlow!

a b

0.4 120

140

160

180

200

Page 17: Oxide-on-graphene field effect bio-ready sensors · Oxide-on-graphene field effect bio-ready sensors Bei Wang, Kristi L. Liddell, Junjie Wang, Brandon Koger, Christine D. Keating,

16

 

Figure 5. G(Vsg) curves of a graphene sensor with bare SiO2 surface in PBS solutions of different pH values as indicated in the

plot. From left to right: pH = 4.1 (blue), 6.0 (magenta), 6.9 (black), 8.8 (red). Inset: The Dirac point voltage VD as a function

of the pH value. The solid line is a linear fit with the slope of 43 mV/pH and a correlation coefficient greater than 0.99.

-0.6 -0.5 -0.4 -0.3 -0.2 -0.1

80

90

100

110

120

130 pH4 1st pH5.25 1st pH6 1st pH7 1st pH8.75 1st pH10

G(µ

S)

Vref(V)

4.1 6.0 6.9 8.8

Vsg (V)

G(µ

S)

Page 18: Oxide-on-graphene field effect bio-ready sensors · Oxide-on-graphene field effect bio-ready sensors Bei Wang, Kristi L. Liddell, Junjie Wang, Brandon Koger, Christine D. Keating,

17

Figure 6. (a) High-resolution XPS spectra of the N-1s state on bare (blue trace) and APTMS-functionalized SiO2 surfaces

(magenta trace). (b) AFM micrograph showing a differential height of 0.7 nm between areas covered by APTMS and where

the molecules were removed by contact mode scanning prior to acquiring this image. (c) G(Vsg) traces of an APTMS

functionalized sensor in PBS solution of different pH values. From left to right: pH = 4.1 (blue), 5.0 (magenta), 6.9 (black),

8.9 (red). Inset: The Dirac point voltage VD as a function of the pH value. The solid line is a linear fit with the slope of 28

mV/pH and a correlation coefficient of 0.97.

 

405 400 395

CP

S (A

rb. u

nit)

Binding energy (eV)

10

8

6

4

2

0

µm

1086420µm

-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

nm

a b NH3

+ NH2

0 2 4 6 8 10-0.50.00.51.01.52.02.53.03.5

Heigh

t (nm

)

X (µm)

-0.3 -0.2 -0.1 0.0 0.1 0.2 0.3

40.0

42.0

44.0

46.0

pH4 pH5 pH6 pH7 pH9

G (µ

S)

Vref (V)

4.1 5.0 6.9 8.9

z*

c

Vsg (V)

G(µ

S)

2 µm

Page 19: Oxide-on-graphene field effect bio-ready sensors · Oxide-on-graphene field effect bio-ready sensors Bei Wang, Kristi L. Liddell, Junjie Wang, Brandon Koger, Christine D. Keating,

18

Table  I.  Comparison  of  graphene  pH  sensors  

   

 

Ang    et  al[22]  

This  work  

Ohno    et  al[23]  

Giacchetti    et  al[25]    

Cheng    et  al[24]  

Fu  et  al[28]  

sensitivity  (mV/pH)  

99   46   27   24   18   6  

graphene  source   epitaxial   CVD   exfoliation   CVD   exfoliation   CVD