p 2.20 long-term lidar and radar observations of arctic...

1
Vertical Motion Long-Term Lidar and Radar Observations of Arctic Stratus at Two Locations Gijs de Boer, E.W. Eloranta, I.A. Razenkov J.P. Hedrick and J.P. Garcia (The University of Wisconsin - Madison ) M.D. Shupe ( NOAA Earth System Research Laboratory ) P 2.20 Mixed-Phase Arctic Stratus Long-Term Stratus Properties Introduction Mixed-phase clouds remain a difficult problem for both the observational and mod- eling communities. In particular, improved understanding of mixed-phase clouds in the Arctic is crucial because of radiative effects they impart on a region that is par- ticularly sensitive to change. In order to better understand these cloud structures, the University of Wisconsin Arctic High Spectral Resolution Lidar (AHSRL) has been deployed to two different Arctic locations. The first deployment lasted two months and was to Barrow, AK in support of the Mixed-Phase Arctic Clouds Experiment (M- PACE). The second deployment is ongoing, and so far over two years of data have been collected at Eureka, Canada. In both locations, the lidar was co-located with a NOAA Millimeter Cloud Radar (MMCR). Mixed phase stratus has been readily de- tected at both locations, and we currently have measurements for hundreds of hours of stratus cases. Results shown here are for both locations for single-ayer clouds only. Represented are 532 half-hour cases for Barrow, and 1569 for Eureka. Observation Sites The seatainer housing for the AHSRL in Barrow (left) and Eureka (right). The map of the western Arctic (top) shows the differences in location between Barrow and Eureka. (Bathymetric chart produced by and courtesy of the NOAA IBCAO program: http://www.ngdc.noaa.gov/mgg/bathymetry/arctic/arctic.html) Also visible in the Eureka picture is the antenna for the NOAA millimeter cloud radar (MMCR). N N Barrow Eureka A View From Above Acknowledgements 09 October, 2004: Barrow 15 February, 2006: Eureka Time (UT) Altitude (km) Lidar backscatter cross section (Masked values shown in black and white) 23:05 23:10 23:15 23:20 23:25 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 1/(m str) 1e−8 1e−7 1e−6 1e−5 1e−4 1e−3 Time (UT) Altitude (km) Radar backscatter cross section (Masked values shown in black and white) 23:05 23:10 23:15 23:20 23:25 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 1/(m str) 1e−14 1e−13 1e−12 1e−11 1e−10 1e−9 1e−8 1e−7 Time (UT) Altitude (km) Depolarization (Masked values shown in black and white) 23:05 23:10 23:15 23:20 23:25 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 Percent 1e−2 2e−2 5e−2 1e−1 2e−1 5e−1 1 Time (UT) Altitude (km) Lidar backscatter cross section (Masked values shown in black and white) 12:05 12:10 12:15 12:20 12:25 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6 2.8 1/(m str) 1e−8 1e−7 1e−6 1e−5 1e−4 1e−3 Time (UT) Altitude (km) Radar backscatter cross section (Masked values shown in black and white) 12:05 12:10 12:15 12:20 12:25 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6 2.8 1/(m str) 1e−14 1e−13 1e−12 1e−11 1e−10 1e−9 1e−8 1e−7 Time (UT) Altitude (km) Depolarization (Masked values shown in black and white) 12:05 12:10 12:15 12:20 12:25 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6 2.8 Percent 1e−2 2e−2 5e−2 1e−1 2e−1 5e−1 1 Lidar/Radar Microphysical Retrievals Based on method by Donovan and Van Lammeren (2001) 15 February, 2006: Eureka Time (UT) Altitude (km) Effective Diameter (Masked values shown in black and white) 12:05 12:10 12:15 12:20 12:25 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6 2.8 microns 20 40 60 80 100 120 140 160 180 200 Effective Diameter Time (UT) Altitude (km) Number Density (Masked values shown in black and white) 12:05 12:10 12:15 12:20 12:25 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6 2.8 1/L 1e−1 1 10 1e2 1e3 1e4 1e5 Number Density Time (UT) Altitude (km) Water Content (Masked values shown in black and white) 12:05 12:10 12:15 12:20 12:25 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6 2.8 g/m^3 1e−3 2e−3 5e−3 1e−2 2e−2 5e−2 1e−1 2e−1 5e−1 1 Water Content Time (UT) Altitude (km) Shupe Ice Water Content (Masked values shown in black and white) 12:05 12:10 12:15 12:20 12:25 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6 2.8 g/m^3 0.005 0.01 0.015 0.02 0.025 0.03 Radar IWC (Shupe, 2005) Time (UT) Altitude (km) Cloud Mask (Masked values shown in black and white) 12:05 12:10 12:15 12:20 12:25 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6 2.8 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 Cloud Mask 0 50 100 150 200 250 300 0 500 1000 1500 2000 2500 3000 Effective Diameter Effective Diameter ( µm) Altitude (m) max/min rad/lid deff mean rad/lid deff 10 0 10 2 10 4 10 6 10 8 0 500 1000 1500 2000 2500 3000 Number Density Number Density (#/L) Altitude (m) max/min rad/lid N mean rad/lid N 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 −500 0 500 1000 1500 2000 2500 3000 3500 Water Content Water Content (g/m 3 ) Altitude (m) max/min rad/lid WC mean rad/lid WC max/min rad only IWC mean rad onlyIWC TOP: Retrieved effective diameter, number density and water content from the AHSRL/MMCR combination. LEFT: A cloud mask derived from the MMCR and AHSRL. RIGHT: Ice water content as derived from the radar only (reflectivity rela- tionship: SHUPE, 2005). BOTTOM: Mean vertical profiles of the retrieved quantities for this half hour period, with ranges plotted. 0 1000 2000 3000 4000 5000 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 Altitude (m) Normalized # Cloud Base Altitude Barrow Eureka 0 1000 2000 3000 4000 5000 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 Altitude (m) Normalized # Cloud Top Altitude Barrow Eureka 0 500 1000 1500 2000 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 Cloud Thickness (m) Normalized # Cloud Thickness Barrow Eureka 0 50 100 150 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 Effective Diameter ( µm) Normalized # In−cloud Effective Diameter Barrow Eureka 0 0.02 0.04 0.06 0.08 0.1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 Ice Water Content (g/m 3 ) Normalized # In−Cloud Ice Water Content Barrow Eureka 10 3 10 4 10 5 10 6 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 Number Density (#/L) Normalized # In−Cloud Number Density Barrow Eureka 0 0.2 0.4 0.6 0.8 1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 Water Content (g/m 3 ) Normalized # In−cloud Water Content Barrow Eureka CLOUD 230 240 250 260 270 280 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 Cloud Base Temperature (K) Normalized # Cloud Base Temperature Barrow Eureka 230 235 240 245 250 255 260 265 270 275 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 Cloud Top Temperature (K) Normalized # Cloud Top Temperature Barrow Eureka 0 0.5 1 1.5 2 2.5 3 3.5 4 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 Optical Depth Normalized # Optical Depth Barrow Eureka PRECIPITATION SURFACE 220 230 240 250 260 270 280 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 Temperature (K) Normalized # Surface Temperature Barrow Eureka 0 50 100 150 200 250 300 350 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 Wind Direction (deg) Normalized # Surface Wind Direction Barrow Eureka 0 5 10 15 20 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 Wind Speed (m/s) Normalized # Surface Wind Speed Barrow Eureka 0 50 100 150 200 250 300 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 Effective Diameter ( µm) Normalized # Sub−cloud Effective Diameter Barrow Eureka 0 20 40 60 80 100 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 Number Density (#/L) Normalized # Sub−cloud Number Density Barrow Eureka 0 0.02 0.04 0.06 0.08 0.1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 Water Content (g/m 3 ) Normalized # Sub−cloud Water Content 0 0.02 0.04 0.06 0.08 0.1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 Ice Water Content (g/m 3 ) Normalized # Sub−cloud Ice Water Content Barrow Eureka 0 0.5 1 1.5 2 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 Optical Depth Normalized # Sub−cloud Optical Depth Barrow Eureka Figures courtesy of M. Shupe EUREKA Satellite Track 0 20 40 60 0 5000 10000 RO reff (liquid) reff (µm) altitude (m) 0 200 400 0 5000 10000 RO reff (ice) reff (µm) altitude(m) 0 20 40 60 0 5000 10000 RO WC (liquid) water content (mg/m 3 ) altitude (m) 0 2 4 6 0 5000 10000 RO WC (ice) water content (mg/m 3 ) altitude (m) CloudSAT Retrievals Longitude (deg) Altitude (km) CALIPSO Attenuated Backscatter (532) −86.1 −86 −85.9 −85.8 −85.7 0.5 1 1.5 2 2.5 3 1/sr 1e−8 1e−7 1e−6 1e−5 1e−4 1e−3 1e−2 1e−1 1 Time (UT) Altitude (km) Lidar backscatter cross section (Masked values shown in black and white) 11:05 11:10 11:15 11:20 11:25 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6 2.8 1/(m str) 1e−8 1e−7 1e−6 1e−5 1e−4 1e−3 Doppler Velocity (Masked values shown in black and white) Time (UT) 12:05 12:10 12:15 12:20 12:25 Altitude (km) 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6 2.8 m/s −1.5 −1 −0.5 0 0.5 1 1.5 2 Time (UT) 12:05 12:10 12:15 12:20 12:25 Shupe Ice Water Content (Masked values shown in black and white) Altitude (km) 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6 2.8 g/m^3 0.005 0.01 0.015 0.02 0.025 0.03 Vertical velocity measurements may help in explaining the horizontal variability of the observed precipitation structure. Here, the doppler spectra are used to look at ver- tical motion in the cloud layer. The CloudSAT and CALIPSO platforms allow for greater spatial coverage of these clouds. Shown are examples from October 30, 2006. Similarities between the ground and space based observa- tions are shown at right. This work is funded by NASA (144 QQ61 ), and the US Department of Energy (DE- FG02-06ER64187 ). Special thanks to Matthew Shupe (NOAA), Joe Garcia, Jim Hed- rick, and Igor Razenkov (Wisconsin) for their help with data and measurements.

Upload: others

Post on 24-Apr-2021

3 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: P 2.20 Long-Term Lidar and Radar Observations of Arctic ...lidar.ssec.wisc.edu/papers/conferences/ams_annual_2008/...Lidar/Radar Microphysical Retrievals Based on method by Donovan

Vertical Motion

Long-Term Lidar and Radar Observations of Arctic Stratus at Two Locations

Gijs de Boer, E.W. Eloranta, I.A. Razenkov J.P. Hedrick and J.P. Garcia (The University of Wisconsin - Madison )M.D. Shupe ( NOAA Earth System Research Laboratory )

P 2.20

Mixed-Phase Arctic Stratus Long-Term Stratus PropertiesIntroductionMixed-phase clouds remain a difficult problem for both the observational and mod-eling communities. In particular, improved understanding of mixed-phase clouds in the Arctic is crucial because of radiative effects they impart on a region that is par-ticularly sensitive to change. In order to better understand these cloud structures, the University of Wisconsin Arctic High Spectral Resolution Lidar (AHSRL) has been deployed to two different Arctic locations. The first deployment lasted two months and was to Barrow, AK in support of the Mixed-Phase Arctic Clouds Experiment (M-PACE). The second deployment is ongoing, and so far over two years of data have been collected at Eureka, Canada. In both locations, the lidar was co-located with a NOAA Millimeter Cloud Radar (MMCR). Mixed phase stratus has been readily de-tected at both locations, and we currently have measurements for hundreds of hours of stratus cases. Results shown here are for both locations for single-ayer clouds only. Represented are 532 half-hour cases for Barrow, and 1569 for Eureka.

Observation Sites

The seatainer housing for the AHSRL in Barrow (left) and Eureka (right). The map of the western Arctic (top) shows the differences in location between Barrow and Eureka. (Bathymetric chart produced by and courtesy of the NOAA IBCAO program: http://www.ngdc.noaa.gov/mgg/bathymetry/arctic/arctic.html) Also visible in the Eureka picture is the antenna for the NOAA millimeter cloud radar (MMCR).

N NBarrow

Eureka A View From Above

Acknowledgements

09 October, 2004: Barrow

15 February, 2006: Eureka

Time (UT)

Altit

ude

(km

)

Lidar backscatter cross section (Masked values shown in black and white)

23:05 23:10 23:15 23:20 23:25

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

1/(m str)1e−8

1e−7

1e−6

1e−5

1e−4

1e−3

Time (UT)

Altit

ude

(km

)

Radar backscatter cross section (Masked values shown in black and white)

23:05 23:10 23:15 23:20 23:25

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

1/(m str)1e−14

1e−13

1e−12

1e−11

1e−10

1e−9

1e−8

1e−7

Time (UT)

Altit

ude

(km

)

Depolarization (Masked values shown in black and white)

23:05 23:10 23:15 23:20 23:25

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

Percent1e−2

2e−2

5e−2

1e−1

2e−1

5e−1

1

Time (UT)

Altit

ude

(km

)

Lidar backscatter cross section (Masked values shown in black and white)

12:05 12:10 12:15 12:20 12:25

0.20.40.60.81.01.21.41.61.82.02.22.42.62.8

1/(m str)1e−8

1e−7

1e−6

1e−5

1e−4

1e−3

Time (UT)

Altit

ude

(km

)

Radar backscatter cross section (Masked values shown in black and white)

12:05 12:10 12:15 12:20 12:25

0.20.40.60.81.01.21.41.61.82.02.22.42.62.8

1/(m str)1e−14

1e−13

1e−12

1e−11

1e−10

1e−9

1e−8

1e−7

Time (UT)

Altit

ude

(km

)

Depolarization (Masked values shown in black and white)

12:05 12:10 12:15 12:20 12:25

0.20.40.60.81.01.21.41.61.82.02.22.42.62.8

Percent1e−2

2e−2

5e−2

1e−1

2e−1

5e−1

1

Lidar/Radar Microphysical RetrievalsBased on method by Donovan and Van Lammeren (2001)

15 February, 2006: Eureka

Time (UT)

Altit

ude

(km

)

Effective Diameter (Masked values shown in black and white)

12:05 12:10 12:15 12:20 12:25

0.20.40.60.81.01.21.41.61.82.02.22.42.62.8

microns

20

40

60

80

100

120

140

160

180

200

Effective Diameter

Time (UT)

Altit

ude

(km

)

Number Density (Masked values shown in black and white)

12:05 12:10 12:15 12:20 12:25

0.20.40.60.81.01.21.41.61.82.02.22.42.62.8

1/L1e−1

1

10

1e2

1e3

1e4

1e5

Number Density

Time (UT)

Altit

ude

(km

)

Water Content (Masked values shown in black and white)

12:05 12:10 12:15 12:20 12:25

0.20.40.60.81.01.21.41.61.82.02.22.42.62.8

g/m^31e−3

2e−3

5e−3

1e−2

2e−2

5e−2

1e−1

2e−1

5e−1

1

Water Content

Time (UT)

Altit

ude

(km

)

Shupe Ice Water Content (Masked values shown in black and white)

12:05 12:10 12:15 12:20 12:25

0.20.40.60.81.01.21.41.61.82.02.22.42.62.8

g/m^3

0.005

0.01

0.015

0.02

0.025

0.03

Radar IWC (Shupe, 2005)

Time (UT)

Altit

ude

(km

)

Cloud Mask (Masked values shown in black and white)

12:05 12:10 12:15 12:20 12:25

0.20.40.60.81.01.21.41.61.82.02.22.42.62.8

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Cloud Mask

0 50 100 150 200 250 3000

500

1000

1500

2000

2500

3000Effective Diameter

Effective Diameter (µm)

Altit

ude

(m)

max/min rad/lid deffmean rad/lid deff

100 102 104 106 1080

500

1000

1500

2000

2500

3000Number Density

Number Density (#/L)

Altit

ude

(m)

max/min rad/lid Nmean rad/lid N

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7−500

0

500

1000

1500

2000

2500

3000

3500Water Content

Water Content (g/m3)

Altit

ude

(m)

max/min rad/lid WCmean rad/lid WCmax/min rad only IWCmean rad onlyIWC

TOP: Retrieved effective diameter, number density and water content from the AHSRL/MMCR combination.LEFT: A cloud mask derived from the MMCR and AHSRL.RIGHT: Ice water content as derived from the radar only (reflectivity rela-tionship: SHUPE, 2005).BOTTOM: Mean vertical profiles of the retrieved quantities for this half hour period, with ranges plotted.

0 1000 2000 3000 4000 50000

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Altitude (m)

Nor

mal

ized

#

Cloud Base Altitude

BarrowEureka

0 1000 2000 3000 4000 50000

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Altitude (m)

Nor

mal

ized

#

Cloud Top Altitude

BarrowEureka

0 500 1000 1500 20000

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Cloud Thickness (m)

Nor

mal

ized

#

Cloud Thickness

BarrowEureka

0 50 100 1500

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Effective Diameter (µm)

Nor

mal

ized

#

In−cloud Effective Diameter

BarrowEureka

0 0.02 0.04 0.06 0.08 0.10

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Ice Water Content (g/m3)

Nor

mal

ized

#

In−Cloud Ice Water Content

BarrowEureka

103 104 105 1060

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number Density (#/L)

Nor

mal

ized

#

In−Cloud Number Density

BarrowEureka

0 0.2 0.4 0.6 0.8 10

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Water Content (g/m3)

Nor

mal

ized

#

In−cloud Water Content

BarrowEureka

CLOUD

230 240 250 260 270 2800

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Cloud Base Temperature (K)

Nor

mal

ized

#

Cloud Base Temperature

BarrowEureka

230 235 240 245 250 255 260 265 270 2750

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Cloud Top Temperature (K)

Nor

mal

ized

#

Cloud Top Temperature

BarrowEureka

0 0.5 1 1.5 2 2.5 3 3.5 40

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Optical Depth

Nor

mal

ized

#

Optical Depth

BarrowEureka

PRECIPITATION

SURFACE

220 230 240 250 260 270 2800

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Temperature (K)

Nor

mal

ized

#

Surface Temperature

BarrowEureka

0 50 100 150 200 250 300 3500

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Wind Direction (deg)

Nor

mal

ized

#

Surface Wind Direction

BarrowEureka

0 5 10 15 200

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Wind Speed (m/s)

Nor

mal

ized

#

Surface Wind Speed

BarrowEureka

0 50 100 150 200 250 3000

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Effective Diameter (µm)

Nor

mal

ized

#

Sub−cloud Effective Diameter

BarrowEureka

0 20 40 60 80 1000

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number Density (#/L)

Nor

mal

ized

#

Sub−cloud Number Density

BarrowEureka

0 0.02 0.04 0.06 0.08 0.10

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Water Content (g/m3)

Nor

mal

ized

#

Sub−cloud Water Content

0 0.02 0.04 0.06 0.08 0.10

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Ice Water Content (g/m3)

Nor

mal

ized

#

Sub−cloud Ice Water Content

BarrowEureka

0 0.5 1 1.5 20

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Optical Depth

Nor

mal

ized

#

Sub−cloud Optical Depth

BarrowEureka

Figures courtesy of M. Shupe

EUREKA

Satellite Track

0 20 40 600

5000

10000RO reff (liquid)

reff (µm)

altit

ude

(m)

0 200 4000

5000

10000RO reff (ice)

reff (µm)

altit

ude(

m)

0 20 40 600

5000

10000 RO WC (liquid)

water content (mg/m3)

altit

ude

(m)

0 2 4 60

5000

10000 RO WC (ice)

water content (mg/m3)

altit

ude

(m)

CloudSAT Retrievals

Longitude (deg)

Altit

ude

(km

)

CALIPSO Attenuated Backscatter (532)

−86.1 −86 −85.9 −85.8 −85.7

0.5

1

1.5

2

2.5

3

1/sr1e−8

1e−7

1e−6

1e−5

1e−4

1e−3

1e−2

1e−1

1

Time (UT)

Altit

ude

(km

)

Lidar backscatter cross section (Masked values shown in black and white)

11:05 11:10 11:15 11:20 11:25

0.20.40.60.81.01.21.41.61.82.02.22.42.62.8

1/(m str)1e−8

1e−7

1e−6

1e−5

1e−4

1e−3

Doppler Velocity (Masked values shown in black and white)

Time (UT)12:05 12:10 12:15 12:20 12:25

Altit

ude

(km

)

0.20.40.60.81.01.21.41.61.82.02.22.42.62.8

m/s

−1.5

−1

−0.5

0

0.5

1

1.5

2

Time (UT)12:05 12:10 12:15 12:20 12:25

Shupe Ice Water Content (Masked values shown in black and white)

Altit

ude

(km

)

0.20.40.60.81.01.21.41.61.82.02.22.42.62.8

g/m^3

0.005

0.01

0.015

0.02

0.025

0.03

Vertical velocity measurements may help in explaining the horizontal variability of the observed precipitation structure. Here, the doppler spectra are used to look at ver-tical motion in the cloud layer.

The CloudSAT and CALIPSO platforms allow for greater spatial coverage of these clouds. Shown are examples from October 30, 2006. Similarities between the ground and space based observa-tions are shown at right.

This work is funded by NASA (144 QQ61 ), and the US Department of Energy (DE-FG02-06ER64187 ). Special thanks to Matthew Shupe (NOAA), Joe Garcia, Jim Hed-rick, and Igor Razenkov (Wisconsin) for their help with data and measurements.