p4-classical thin airfoil theory

9
Classical Thin Airfoil Classical Thin Airfoil Theory Theory Symmetric Airfoil

Upload: revandifitro

Post on 16-May-2017

287 views

Category:

Documents


13 download

TRANSCRIPT

Page 1: p4-Classical Thin Airfoil Theory

Classical Thin Airfoil Classical Thin Airfoil TheoryTheorySymmetric Airfoil

Page 2: p4-Classical Thin Airfoil Theory

Symmetric AirfoilSymmetric Airfoil

Chamber line, z = z (x)

w

Chord lineco

V x

z

Chamber line, z = z (x)

sw

Chord lineco

V x

z

s

s xw

Page 3: p4-Classical Thin Airfoil Theory

Symmetric AirfoilSymmetric Airfoil

Chamber line, z = z (x)

V

P

dxdz1tan

dxdz1tan

o90 nV ,

Chamber line: stream line

0 swV n,

dxdzVV n

1tansin,

(4.12)

(4.13)

small are and attack, of angel smallfor 1

dxdztan

dx

dzVV n , toreduces (4.13)equation (4.14)

Page 4: p4-Classical Thin Airfoil Theory

Symmetric AirfoilSymmetric Airfoil

wd

s

xwsw

Thin airfoil, chamber line close to chord line

(4.15)

Velocity at point x induced by elemental vortex

xddw

2(4.16)

c

xdxw

0 2

Subst. To eq. (4.12)

(4.17)

020

c

xd

dxdzV

dxdzV

xdc

021

(4.18)Fundamental equation of thin Airfoil theory

Page 5: p4-Classical Thin Airfoil Theory

Symmetric AirfoilSymmetric Airfoil

The central problem of thin airfoil theory is to solve eq. 4.18 for vortex strength, subject to the Kutta condition

Vxd

dxdz

c

021

0 line, chordlinechamber airfoil, symmetricfor

(4.19)

Exact expression for inviscid, incompressible flow over a flat plate

dcd

cx

c

o

2

12

12

into transform

sin

cos

cos

(4.20)

(4.21)

(4.22)

Substitution into eq. 4.19

(4.23)

Vd

o0

21

coscossin

Page 6: p4-Classical Thin Airfoil Theory

Symmetric AirfoilSymmetric Airfoil

Vd

o0

21

coscossin

(4.23)

(4.24)

00

1 21

(4.23) into (4.24) eq.on substituti

oo

dVdcoscos

coscoscos

sin

(4.25)

oo

ndn

sinsin

coscoscos

0

(4.26)

VV

ddV

dV

oo

o

0

1

(4.25) eq. of side handright (4.26), eq. using

0 0

0

coscoscos

coscos

coscoscos

(4.27)

(4.23) eq. osolution t theindeed is

(4.24) Eq. (4.24). eq. toidentical is

21

(4.25) into (4.27) eq.on substituti

0

Vd

ocoscossin

sin

cos

12

issolution the

V

Page 7: p4-Classical Thin Airfoil Theory

Symmetric AirfoilSymmetric Airfoil

condition Kutta the

satisfies also (4.24) eq. thus

02

(4.24) eq.on rule HospitalL' using002

(4.24) eq. TE, at the

(4.24) 12

cossin

,sincos

V

V

V

spanunit per Lift theorem,

Joukowski-Kutta into (4.30) eq. subst.

)0(4.3 1

(4.29) into (4.24) eq.on substituti

(4.29) sin 2

(4.22) eq. and (4.20) eq. using

(4.28)

airfoil aroundn circulatio Total

0

0

0

cVdV

dc

dc

cos

(4.32)

coeficientlift

(4.31) 2

SqLc

VcVL

l

(4.33) 2

121

1 where

2

2

cV

Vcc

cS

l

(4.34) 2slopeLift

ddcl

Page 8: p4-Classical Thin Airfoil Theory

Symmetric AirfoilSymmetric Airfoil

d

dd

dL

LE

(4.35)

LE about theMomen

00

cc

LE dVdLM

dLdM

dVdL

dd

(4.37) 2

1 where

coeficientmoment

(4.36) 2

(4.22) and (4.20) eq. using

2

2

cqM

c

cSScq

Mc

cqM

LELEm

LELEm

LE

,

,(4.39)

4

(4.38) and (4.37) eq.

(4.38) 2

(4.33) eq. from however,

lLEm

l

cc

c

,

Page 9: p4-Classical Thin Airfoil Theory

Symmetric AirfoilSymmetric Airfoil

(4.41) 0

(4.40) and (4.39) eq.

(4.40) 4

(1.22) eq. point,

chord-quarterabout coeficientmoment

4

4

cm

lLEmcm

c

ccc

,

,,

center of pressure

(4.24) sin

cos

12 V

(4.33) 2lc

(4.34) 2slopeLift

ddcl

(4.41) 04 cmc ,