p7 photonic crystal optics

Upload: uni-ngo

Post on 14-Apr-2018

234 views

Category:

Documents


1 download

TRANSCRIPT

  • 7/27/2019 P7 Photonic Crystal Optics

    1/72

    7-2E. Photonic crystals

    Purdue Univ, Prof. Shalaev, http://cobweb.ecn.purdue.edu/~shalaev/

    Univ Central Flor ida, CREOL, Prof Kik, http://sharepoint.optics.ucf.edu/kik/OSE6938I/Handouts/Forms/Al lItems.aspx

  • 7/27/2019 P7 Photonic Crystal Optics

    2/72

    3-D

    2-D

    1-D

  • 7/27/2019 P7 Photonic Crystal Optics

    3/72

  • 7/27/2019 P7 Photonic Crystal Optics

    4/72

  • 7/27/2019 P7 Photonic Crystal Optics

    5/72

  • 7/27/2019 P7 Photonic Crystal Optics

    6/72

  • 7/27/2019 P7 Photonic Crystal Optics

    7/72

  • 7/27/2019 P7 Photonic Crystal Optics

    8/72

  • 7/27/2019 P7 Photonic Crystal Optics

    9/72

    Consider a two-dimensional hotonic cr stal

  • 7/27/2019 P7 Photonic Crystal Optics

    10/72

  • 7/27/2019 P7 Photonic Crystal Optics

    11/72

  • 7/27/2019 P7 Photonic Crystal Optics

    12/72

  • 7/27/2019 P7 Photonic Crystal Optics

    13/72

    Bloch theorem

  • 7/27/2019 P7 Photonic Crystal Optics

    14/72

    Bloch theorem

  • 7/27/2019 P7 Photonic Crystal Optics

    15/72

    Bloch theorem

  • 7/27/2019 P7 Photonic Crystal Optics

    16/72

    Bloch theorem

  • 7/27/2019 P7 Photonic Crystal Optics

    17/72

    Bloch theorem

  • 7/27/2019 P7 Photonic Crystal Optics

    18/72

    Bloch theorem

  • 7/27/2019 P7 Photonic Crystal Optics

    19/72

    Dispersion curve = Photonic band structure

    an gap

    Bandgap (no transmission) tan ng wave

    vgroup=0

    Long wavelength

  • 7/27/2019 P7 Photonic Crystal Optics

    20/72

    Dispersion curve = Photonic band structure

  • 7/27/2019 P7 Photonic Crystal Optics

    21/72

    Remind the Dis ersion Curve of Slab Wave uide

    Dispersion curve = Photonic band structure

    Because guiding modesredistribute themselves with

    Band structure

    frequency, for small , the

    dispersion curve of guiding

    modes approaches the cladding

    line;

    For lar e it a roaches thecore line.

  • 7/27/2019 P7 Photonic Crystal Optics

    22/72

    Dispersion curve = Photonic band structure

  • 7/27/2019 P7 Photonic Crystal Optics

    23/72

    Photonic band gap

    Light in 1-D photonic crystal

    H L H L H L

  • 7/27/2019 P7 Photonic Crystal Optics

    24/72

    Photonic band gap

  • 7/27/2019 P7 Photonic Crystal Optics

    25/72

    Photonic band gap

    ragg e ec on

    2 ( )B B

    nd Sin =

    2 ~ 2

    Bd B

    Bd

    = =

    Ph t i b d

  • 7/27/2019 P7 Photonic Crystal Optics

    26/72

    Photonic band gap

    ragg rac on

    Wavelength does not correspond to the

    period

    Wavelength corresponds to the

    period.

    .

    Wave propagates through.

    e ec e waves are n p ase.

    Wave does not propagate inside.

    Ph t i b d

  • 7/27/2019 P7 Photonic Crystal Optics

    27/72

    Photonic band gap

    22

    2E k

    m=

    Photonic band gap

  • 7/27/2019 P7 Photonic Crystal Optics

    28/72

    PBG formationPhotonic band gap

    1. Dispersion curve forfree space 3. At the band edges, standing wavesform, with the energy being either in

    the high or the low index regions

    2. In a periodic system, when half the

    aka ==2

    wavelength corresponds to the periodicity

    4. Standing waves transport no energy

    propagation.with zero group velocity

    Dispersion curve = Photonic band structure

  • 7/27/2019 P7 Photonic Crystal Optics

    29/72

    Dispersion curve = Photonic band structure

    n1: g n ex ma er a

    n2: low index material4. Standing waves transport no energy

    with zero group velocity

    n1 n2 n1 n1 n1n2 n2standing wave in n2Air band

    Sto band

    standing wave in n

    0

    k

    Dispersion curve = Photonic band structure

  • 7/27/2019 P7 Photonic Crystal Optics

    30/72

    Dispersion curve = Photonic band structure

    Plot the dispersion curves for both the positive and the negative sides,|>/ |>/ one reciprocal lattice vectors.

  • 7/27/2019 P7 Photonic Crystal Optics

    31/72

    2-D Photonic Crystals

    1. In 2-D PBG, different layer spacing, a, can be met along different =

    2. PBG Photonic band a = sto bands overla in all directions

    2D Photonic band structure

  • 7/27/2019 P7 Photonic Crystal Optics

    32/72

    2D Photonic band structure

    an agram

    Air band

    Stop band

    Dielectric band

    2D Photonic band structure

  • 7/27/2019 P7 Photonic Crystal Optics

    33/72

    2D Photonic band structure

    2D Photonic band structure

  • 7/27/2019 P7 Photonic Crystal Optics

    34/72

    2D Photonic band structure

    2D Photonic band structure

  • 7/27/2019 P7 Photonic Crystal Optics

    35/72

    2D Photonic band structure

  • 7/27/2019 P7 Photonic Crystal Optics

    36/72

    1. Stop band

  • 7/27/2019 P7 Photonic Crystal Optics

    37/72

    Four Possible Functionalities of PBG

    1. Use of Stop Band

    1. Stop Band:

    Stop bandomni-directional mirror

    PBG wave uides

    2. Dielectric band

  • 7/27/2019 P7 Photonic Crystal Optics

    38/72

    .

    2. Dielectric Band: Uses the

    strong dispersion availablen a p o on c crys a

    (dispersion engineeringDielectric band

    2. Dielectric band

  • 7/27/2019 P7 Photonic Crystal Optics

    39/72

    2. Dielectric band

  • 7/27/2019 P7 Photonic Crystal Optics

    40/72

    Remind the dispersion relation in bulk media

    1. In a homogeneous material in absence of

    material dispersion n()=constant =n, thespers on agram s s mp y a s ra g ne:=kc/n.

    2. In 2D systems, one can think of this line as a cone.

    For a given frequency , this cone becomes a constant frequency circle.

    2. Dielectric band

  • 7/27/2019 P7 Photonic Crystal Optics

    41/72

    ky

    kx

    W ti i k

    2. Dielectric band

  • 7/27/2019 P7 Photonic Crystal Optics

    42/72

    Wave propagation in k-space

    Real s ace

    The wave vector diagram tells us the direction and magnitude of the refracted

    and reflected beams. Their direction is normal to the iso-frequency curve and

    corresponds to Snells law.

    2. Dielectric band

  • 7/27/2019 P7 Photonic Crystal Optics

    43/72

    2. Dielectric band

  • 7/27/2019 P7 Photonic Crystal Optics

    44/72

    2. Dielectric band

  • 7/27/2019 P7 Photonic Crystal Optics

    45/72

    2. Dielectric band

  • 7/27/2019 P7 Photonic Crystal Optics

    46/72

    3. Air band

  • 7/27/2019 P7 Photonic Crystal Optics

    47/72

    3. Use of Air Band

    3. Air Band : Couples to radiative

    modes for light extraction

    - Air bandand fiber coupling.

    3. Air band

  • 7/27/2019 P7 Photonic Crystal Optics

    48/72

    4. Defect band

  • 7/27/2019 P7 Photonic Crystal Optics

    49/72

    .

    4. Defect Band : Couples to

    waveguide/cavity modes forDefect band

    spectral control such as PBGpoint defect laser or PBG linedefect filter, etc.

  • 7/27/2019 P7 Photonic Crystal Optics

    50/72

    Line Defect PBG Waveguide4. Defect band

  • 7/27/2019 P7 Photonic Crystal Optics

    51/72

    Line Defect PBG Waveguide

    Defect modes

    in stop band

    Dispersion diagram of W1 line-defect

    photonic crystal waveguide:

    .

    Photons are prohibited in the 2D PBG,

    which lead to lossless confinement of

    photons in the line defect area.

    Defects in PBG4. Defect band

  • 7/27/2019 P7 Photonic Crystal Optics

    52/72

    Defects in PBG

    4. Defect band

  • 7/27/2019 P7 Photonic Crystal Optics

    53/72

    4. Defect band

  • 7/27/2019 P7 Photonic Crystal Optics

    54/72

    4. Defect band

  • 7/27/2019 P7 Photonic Crystal Optics

    55/72

    4. Defect band

  • 7/27/2019 P7 Photonic Crystal Optics

    56/72

    3D Photonic band structure

  • 7/27/2019 P7 Photonic Crystal Optics

    57/72

    3D Photonic materialsS.Noda, Nature (1999) K. Robbie, Nature (1996)

    E. Yablonovitch, PRL(1989)

    Artificial Phonic Structure

    3D Photonic band structure

  • 7/27/2019 P7 Photonic Crystal Optics

    58/72

    Artificial Phonic Structure

    E.Yablonovitch et al., PRL (1987, 1991)

    Fabrication of artificial fcc material

    material.

  • 7/27/2019 P7 Photonic Crystal Optics

    59/72

    Natural Opals

  • 7/27/2019 P7 Photonic Crystal Optics

    60/72

    3D Photonic band structure

  • 7/27/2019 P7 Photonic Crystal Optics

    61/72

    Artificial opal sample (SEM Image)

    Several cleaved planes of fcc structure are shown

    3D Photonic band structure

  • 7/27/2019 P7 Photonic Crystal Optics

    62/72

    There are 3 in-layer position

    Silica spheres settle in

    close acked hexa onal

    A red; B blue; C green;

    Layers could pack in

    layerscc a ce: or

    hcp lattice: ABABAB

    3D Photonic band structure

  • 7/27/2019 P7 Photonic Crystal Optics

    63/72

    Inversed opals obtain greater dielectric contrast than opals.

    Band structure of diamond lattice3D Photonic band structure

  • 7/27/2019 P7 Photonic Crystal Optics

    64/72

    oton c an structure o amon att ce re ract ve n ex ~ .

    John et. al. PRE (1998)

    PCF

  • 7/27/2019 P7 Photonic Crystal Optics

    65/72

    PCF

  • 7/27/2019 P7 Photonic Crystal Optics

    66/72

    PCF

  • 7/27/2019 P7 Photonic Crystal Optics

    67/72

    The fiber supports a single mode over the range of at least 458-1550nm!

    PCF

  • 7/27/2019 P7 Photonic Crystal Optics

    68/72

    PCF

  • 7/27/2019 P7 Photonic Crystal Optics

    69/72

    PCF

  • 7/27/2019 P7 Photonic Crystal Optics

    70/72

    PCF

  • 7/27/2019 P7 Photonic Crystal Optics

    71/72

    PCF

  • 7/27/2019 P7 Photonic Crystal Optics

    72/72