paleoreef maps evaluation of a comprehensive database

36
7/23/2019 Paleoreef Maps Evaluation of a Comprehensive Database http://slidepdf.com/reader/full/paleoreef-maps-evaluation-of-a-comprehensive-database 1/36  ABSTRACT To get a better understanding of controls on reef development through time, we created a compre- hensive database on Phanerozoic reefs. The database currently comprises 2470 reefs and con- tains information about geographic position/paleo- position, age, reef type, dimensions, environmental setting, paleontological and petrographical fea- tures, and reservoir quality of each buildup. Reef data were analyzed in two qualitatively differ- ent ways. The first type of analysis was by visualiza- tion of paleogeographic reef distribution maps. Five examples (Late Devonian, Early Permian, Late Triassic, Late Jurassic, middle Miocene) are presented to show the potential of paleoreef maps for paleogeo- graphic and paleoclimatological reconstructions. The second type of analysis was a numerical pro- cessing of coded reef characteristics to realize major trends in reef evolution and properties of reef car- bonates. The analysis of paleolatitudinal reef distri- butions through time shows pronounced asymme- tries in some time slices, probably related to climatic asymmetries rather than controlled by plate tectonic evolution alone. The dominance of particu- lar reef builders through time suggests that there are seven cycles of Phanerozoic reef development. First curves for the Phanerozoic distribution of bio- erosion in reefs, bathymetric setting, and debris 1552 AAPG Bulletin, V. 83, No. 10 (October 1999), P. 1552–1587.  ©Copyright 1999. The American Association of Petroleum Geologists. All rights reserved. 1 Manuscript received December 8, 1997; revised manuscript received February 3, 1999; final acceptance March 3, 1999. 2 Institut für Paläontologie, Loewenichstrae 28, D-91054 Erlangen, Germany. 3 Current address: Museum für Naturkunde, Invalidenstr. 43, D-10115 Berlin, Germany; e-mail: [email protected] 4 Jagiellonian University, Institute of Geological Sciences, 30-063 Krakow, Oleandry 2a, Poland. This study was supported by the German Research Foundation (Projects Fl 42/75, Fl 42/80-1) and was partly embedded in the priority program on controls on biogenic sedimentation: reef evolution. Fruitful discussions with R. Koch (Erlangen), R. Leinfelder (Stuttgart), and B. Senowbari-Daryan (Erlangen) are gratefully acknowledged. D. Ford (Dallas) is thanked for editorial remarks. D. Jovanovic (Beograd), M. Link (Erlangen), R. Scasso (Buenos Aires), B. Senowbari-Daryan (Erlangen), and T. Steuber (Erlangen) provided important unpublished data. J. Collins, P. Playford, and J. Wilson are thanked for their reviews. The remarks of J. Collins were especially useful to improve the manuscript. Paleoreef Maps: Evaluation of a Comprehensive Database on Phanerozoic Reefs 1  Wolfgang Kiessling, 2,3 Erik Flügel, 2 and Jan Golonka 4 potential of reefs are presented. The observed pat- tern in the temporal and spatial distribution of reefs with reservoir quality may assist in hydrocarbon exploration. Statistical tests on the dependencies of reefal reservoir quality suggest that large size, high debris potential, low paleolatitude, high amount of marine aragonite cement, and a platform/shelf edge setting favor reservoir quality. Reefal reservoirs are significantly enhanced in times of high evaporite sedimentation, elevated burial of organic carbon, low oceanic crust production, low atmospheric CO 2 content, and cool paleoclimate, as well as when they are present in aragonite oceans. INTRODUCTION Modern coral reefs are the most complex and tax- onomically diverse marine ecosystems (Paulay, 1997; Hatcher, 1997). Biotic composition, sedimen- tary development, and diagenetic history of recent reefs reflect only a small part of the long-lasting his- tory of reefs that started about 2 b.y. ago with stro- matolitic buildups and continued with a wealth of different organic buildups in the Phanerozoic. Current and past changes of climatic and oceano- graphic conditions are recorded by reef biota and reef sediments. Because reefs also are considered important as alkalinity and climate-controlling car- bonate factories (Berger, 1982; Hubbard, 1997), as tracers of fossil benthic communities (Kauffman and Fagerstrom, 1993), and as hydrocarbon reservoirs (Greenlee and Lehmann, 1993), it is worthwhile to learn more about this fascinating ecosystem. Intense research on fossil reefs has accumulated a tremendous amount of data during the last 150 yr (Flügel and Flügel-Kahler, 1992), and several papers review Phanerozoic evolution of reefs (Newell, 1971; Heckel, 1974; Wilson, 1975; James, 1983; Sheehan, 1985; Fagerstrom, 1987; Copper, 1988, 1989; Talent, 1988; Flügel and Flügel-Kahler, 1992;  James and Bourque, 1992; Kauffman and Fager- strom, 1993; Wood, 1993, 1995). These papers focus on important biological and geological aspects of reef evolution; however, many open questions still exist regarding the driving forces of 

Upload: abdhafidz1

Post on 18-Feb-2018

217 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Paleoreef Maps Evaluation of a Comprehensive Database

7/23/2019 Paleoreef Maps Evaluation of a Comprehensive Database

http://slidepdf.com/reader/full/paleoreef-maps-evaluation-of-a-comprehensive-database 1/36

 ABSTRACT

To get a better understanding of controls on reef development through time, we created a compre-hensive database on Phanerozoic reefs. Thedatabase currently comprises 2470 reefs and con-tains information about geographic position/paleo-position, age, reef type, dimensions, environmental

setting, paleontological and petrographical fea-tures, and reservoir quality of each buildup.Reef data were analyzed in two qualitatively differ-

ent ways. The first type of analysis was by visualiza-tion of paleogeographic reef distribution maps. Fiveexamples (Late Devonian, Early Permian, LateTriassic, Late Jurassic, middle Miocene) are presentedto show the potential of paleoreef maps for paleogeo-graphic and paleoclimatological reconstructions.

The second type of analysis was a numerical pro-cessing of coded reef characteristics to realize majortrends in reef evolution and properties of reef car-bonates. The analysis of paleolatitudinal reef distri-

butions through time shows pronounced asymme-tries in some time slices, probably related toclimatic asymmetries rather than controlled by platetectonic evolution alone. The dominance of particu-lar reef builders through time suggests that thereare seven cycles of Phanerozoic reef development.First curves for the Phanerozoic distribution of bio-erosion in reefs, bathymetric setting, and debris

1552 AAPG Bulletin, V. 83, No. 10 (October 1999), P. 1552–1587.

 ©Copyright 1999. The American Association of Petroleum Geologists. Allrights reserved.

1Manuscript received December 8, 1997; revised manuscript receivedFebruary 3, 1999; final acceptance March 3, 1999.

2Institut für Paläontologie, Loewenichstrae 28, D-91054 Erlangen,Germany.

3Current address: Museum für Naturkunde, Invalidenstr. 43, D-10115Berlin, Germany; e-mail: [email protected]

4Jagiellonian University, Institute of Geological Sciences, 30-063 Krakow,Oleandry 2a, Poland.

This study was supported by the German Research Foundation (ProjectsFl 42/75, Fl 42/80-1) and was partly embedded in the priority program oncontrols on biogenic sedimentation: reef evolution. Fruitful discussions withR. Koch (Erlangen), R. Leinfelder (Stuttgart), and B. Senowbari-Daryan(Erlangen) are gratefully acknowledged. D. Ford (Dallas) is thanked foreditorial remarks. D. Jovanovic (Beograd), M. Link (Erlangen), R. Scasso(Buenos Aires), B. Senowbari-Daryan (Erlangen), and T. Steuber (Erlangen)provided important unpublished data. J. Collins, P. Playford, and J. Wilsonare thanked for their reviews. The remarks of J. Collins were especially usefulto improve the manuscript.

Paleoreef Maps: Evaluation of a Comprehensive Databaseon Phanerozoic Reefs1

 Wolfgang Kiessling,2,3Erik Flügel,2 and Jan Golonka4

potential of reefs are presented. The observed pat-tern in the temporal and spatial distribution of reefswith reservoir quality may assist in hydrocarbonexploration. Statistical tests on the dependencies of reefal reservoir quality suggest that large size, highdebris potential, low paleolatitude, high amount of marine aragonite cement, and a platform/shelf edgesetting favor reservoir quality. Reefal reservoirs are

significantly enhanced in times of high evaporitesedimentation, elevated burial of organic carbon,low oceanic crust production, low atmosphericCO2 content, and cool paleoclimate, as well aswhen they are present in aragonite oceans.

INTRODUCTION

Modern coral reefs are the most complex and tax-onomically diverse marine ecosystems (Paulay,1997; Hatcher, 1997). Biotic composition, sedimen-tary development, and diagenetic history of recent

reefs reflect only a small part of the long-lasting his-tory of reefs that started about 2 b.y. ago with stro-matolitic buildups and continued with a wealth of different organic buildups in the Phanerozoic.

Current and past changes of climatic and oceano-graphic conditions are recorded by reef biota andreef sediments. Because reefs also are consideredimportant as alkalinity and climate-controlling car-bonate factories (Berger, 1982; Hubbard, 1997), astracers of fossil benthic communities (Kauffman andFagerstrom, 1993), and as hydrocarbon reservoirs(Greenlee and Lehmann, 1993), it is worthwhile tolearn more about this fascinating ecosystem.

Intense research on fossil reefs has accumulated atremendous amount of data during the last 150 yr(Flügel and Flügel-Kahler, 1992), and several papersreview Phanerozoic evolution of reefs (Newell,1971; Heckel, 1974; Wilson, 1975; James, 1983;Sheehan, 1985; Fagerstrom, 1987; Copper, 1988,1989; Talent, 1988; Flügel and Flügel-Kahler, 1992; James and Bourque, 1992; Kauffman and Fager-strom, 1993; Wood, 1993, 1995). These papersfocus on important biological and geologicalaspects of reef evolution; however, many openquestions still exist regarding the driving forces of 

Page 2: Paleoreef Maps Evaluation of a Comprehensive Database

7/23/2019 Paleoreef Maps Evaluation of a Comprehensive Database

http://slidepdf.com/reader/full/paleoreef-maps-evaluation-of-a-comprehensive-database 2/36

reef development and evolution mainly due tothree shortcomings: (1) many comprehensive reef studies are limited to one time slice of variableextent, (2) investigation of reef features throughtime are treated mostly qualitatively and semiquan-titatively rather than strictly quantitatively, and (3)the interpretation of fossil reef distributions is

biased by using simplified and commonly obsoletepaleogeographic maps and oversimplified or exag-gerated distribution plots.

The most comprehensive “database” on ancientreefs was presented by Flügel and Flügel-Kahler(1992); however, although more than 2000 refer-ences are cited in their papers, it is not muchmore than a literature survey and is hampered byprevious points two and three. In this study, weuse a comprehensive computer database of Phanerozoic reefs together with new paleogeo-graphic maps to analyze the variation of reef fea-tures and reef localities through time. The database

was applied in two independent ways. The firstapplication was a visual evaluation of paleogeo-graphic reef distribution maps. The concentrationof reef settings in particular areas, the latitudinaldistribution and boundaries of reef occurrences,and the relation of paleogeography and reefs weredirectly observed. In addition, selected reef fea-tures could be highlighted by defining differentcolors or setting filter functions. Five paleogeo-graphic maps (Upper Devonian, Lower Permian,Upper Triassic, Upper Jurassic, middle Miocene)are featured in this paper for a discussion of theirpotential in reef studies.

The second application was a numerical analysisof coded reef features. Interpretation is based onthe examination of diagrams and statistical analy-ses. Although this method produces less straightfor-ward results, it allows a much more profound dis-cussion than the maps alone. Secular trends in reef evolution are best studied by using quantitativedata. We limit our discussion to eight selected reef features: abundance, size, paleoposition, bioticcomposition, bioerosion, bathymetry, debris poten-tial, and reservoir potential.

DATABASE STRUCTUREThe database contains outcropping reefs, as well

as reefs known only from the subsurface (drillingand seismic exploration). Modern-type reefs andreef mounds, mud mounds, and major biostromeswere considered, but are described separately.

Most reef data used were extracted from pub-lished references (cf. Flügel and Flügel-Kahler,1992), but we also included personal communica-tions and unpublished reports. The literature analy-sis was focused on comprehensive papers provid-

ing either detailed descriptions of single reefs ordealing with reef distribution and characteristicson a regional scale. Currently, 1700 references areconsidered in the database. Reef characteristicswere transformed into numerical codes to allow anobjective and statistically meaningful analysis of thedata (Table 1).

To permit a comparison of reef abundance overtime, a minimum distance for a reef to be countedseparately within the same time slice was chosen.Owing to the scale of paleogeographic maps, thisdistance was set to 20 km; however, if more closelyspaced reefs were of different ages, from a differentpaleogeographic setting, or of significantly differ-ent composition, they were included in thedatabase. Reef attributes are assigned only if ade-quate descriptions are available, otherwise thedatabase fields remained blank (missing value instatistical analyses).

The database structure contains seven main

headings: (1) reef identification and references, (2)age, (3) present-day position and paleoposition, (4)general features, (5) environment, (6) paleontologi-cal features, and (7) petrographical features andreservoir potential.

Reef Identification and References

The definite identification of each reef in thedatabase is possible by using a specific identifica-tion number for each reef. This number is neces-sary to link the main database with related data

sets (e.g., references, paleopositions). A trivialname for each reef is also provided to permit aquick assignment of its location. This field con-tains a short name of the reef or of the locality andthe name of the country or United States statewhere the reef is situated. Each reef is assigned atleast one reference but may be assigned to up tosix references. References are coded by four-digitnumbers and are linked to the reference databasecontaining the whole reference.

 Age

Under this heading, several fields are included.Three fields are reserved for the stratigraphic age of the reef, including system, series, and stage. Another field contains the chronostratigraphic agein millions of years (Ma), according to the slightlymodified geological time scale of Gradstein and Ogg(1996). The most important field in this category isthe time slice. A total of thirty-two time slices wereused, encompassing the time between thePrecambrian–Cambrian boundary and the lateMiocene–Pliocene. The six megasequences of Sloss

Kiessling et al. 1553

Page 3: Paleoreef Maps Evaluation of a Comprehensive Database

7/23/2019 Paleoreef Maps Evaluation of a Comprehensive Database

http://slidepdf.com/reader/full/paleoreef-maps-evaluation-of-a-comprehensive-database 3/36

(1963) form the major frame for our time slicesbecause they can be correlated intercontinentallyand have been shown to be linked to global tectonics(Sloss, 1972; Soares et al., 1978) and high-ordereustatic sea level fluctuations (e.g., Haq et al.,1988). The definition of time slices corresponds tosupersequences as defined by Mobil and partiallydefined by Golonka and Ford (1997a, b) andGolonka et al. (1997a, b), but owing to limited datanot all Phanerozoic supersequences are separated.

The boundaries of the time slices are defined bysecond- to third-order eustatic sea level minima.Thus, the time slices represent time intervals thatmay embrace several stages or transit systemboundaries but also may cut stages. The philosophybehind this approach is a more natural subdivisionof the geological record not biased by regional dif-ferences and not a priori influenced by biologicalevolution. The time intervals represented by eachtime slice are listed in Table 2. The last field withinthe category age estimates the reliability of agedetermination given in the literature.

Present-Day Position and Paleoposition

Present-day coordinates are represented by twonumbers referring to latitude and longitude(Greenwich coordinates). Southern and westerncoordinates are negative numbers. The correctassignment of a plate number is crucial for calculat-ing the paleogeographic reef position. The platesare coded in the database by three-digit numbers.The calculated paleopositions also are represented

by two fields: paleolatitude and paleolongitude.The method used for paleogeographic reconstruc-tions is described in a following section.

General Features

Reef Typ e Four reef types were distinguished: (1) true

reefs, where the organisms form a rigid framework,(2) reef mounds, where matrix/cement and organ-isms are about equally important and the buildup is

1554 Paleoreef Maps

Table 1. Two Examples of Reefs as Coded in the Paleoreef Database*

Category Field Frasnian Stromatoporoid Mound Miocene Coral Reef  

1 Reef name Couvin, Belgium Cap Blanc, Mallorca, SpainReef number 1560 679References 839, 960, 976 645, 670, 1194

2 Age/System Devonian Tertiary

 Age/Series Upper Upper Age/Stage Middle Frasnian Tortonian–Messinian Age/time slice 9 32 Age/m.y. 371 7 Age/reliability 3 = exact and reliable age assignment 3 = exact and reliable age assignment

3 Location/today 50.0500°N, 4.4667°E 39.4167°N, 2.7833°EPlate 315 = Avalonia 320 = Balearic IslandsLocation/paleo 20.0639°S, 4.7912°E 39.3528°N, 1.9269°E

4 Reef type 2 = reef mound 1 = reef  Size/thickness 3 = 100 m–500 m 2 = 10 m–100 mSize/width 4 = >500 m 2 = 20 m–100 mSize/extension 40 km 20 km

5 Environment 1a = intraplatform 2a = platform marginBathymetry 2 = below fair-weather wave base 1 = above fair-weather wave base

6 Biota main 4 = stromatoporoids 1 = scleractinian coralsBiota detailed 9 = stromatoporoids, corals 1 = corals, red algae (hydrozoans,(bryozoans, algae/microbes) foraminifera, microbes, sponges)

Guild 3 = binder dominated 1 = framework dominatedDiversity 2 = moderate 1 = low (strongly dominated

by Porites )Bioerosion/macro Absent PresentBioerosion/micro Absent Present

7 Micrite 3 = abundant 2 = moderately abundantSparite 2 = moderately abundant 1 = fewReservoir potential No Yes (high porosity)Debris potential 2 = moderate 2 = moderate

*Remarks in parentheses refer to an additional memo field. Numbers in the first column indicate categories as titled in text. References: 645 = Pomar(1991); 670 = Esteban (1979); 839 = Lecompte (1958); 960 = Lecompte (1970); 1194 = Pomar et al. (1996).

Page 4: Paleoreef Maps Evaluation of a Comprehensive Database

7/23/2019 Paleoreef Maps Evaluation of a Comprehensive Database

http://slidepdf.com/reader/full/paleoreef-maps-evaluation-of-a-comprehensive-database 4/36

essentially matrix-supported, (3) mud mounds,where organisms are minor constituents of thebuildup consisting predominantly of carbonatemud, and (4) biostromes, where dense growth of reef-building organisms is evident, but there is nodepositional relief. Because the difference betweensmall biostromes and fossiliferous beds is hazy and

small biostromes were too numerous to be count-ed, only major biostromes within a time slice wererecorded in the database.

Size The vertical and lateral extensions of a reef body

were registered. Because most of the data providedin publications are not very accurate in thisrespect, a rather coarse interval classification wasused: (1) less than 10 m thick and less than 20wide, (2) 10–100 m thick and 20–100 m wide, (3)100–500 m thick or wide, (4) more than 500 m

thick or wide. Reef complexes containing stackedsmaller buildups were described as one single reef at a given locality. If several reefs were describedaligned in a continuous belt, the length of the reef belt in kilometers was recorded.

Environment

We have separated four principal depositionalsettings for reefs, each subdivided into several envi-ronments (Figure 1).

(1) Shelf or platform: (1a) within shallow car-

bonate platform, (1b) intraplatform sag, (1c) epeir-ic sea, (1d) coastal, transitional, marginal marine,and (1e) open-marine shelf.

(2) Platform or shelf margin: (2a) platform mar-gin bordering shallow basins, (2b) platform or shelf margin bordering deep basins, and (2c) atoll struc-ture, seamounts.

(3) Slope or ramp: (3a) upper slope or innerramp and (3b) lower slope or outer ramp.

(4) Basin: (4a) moderately deep basin (abovephotic zone, <200 m) and (4b) deep basin.

For some reefs it is difficult to assign the correctdepositional environment, e.g., the difference

between epeiric sea and open-marine shelf is notalways precisely defined. The same is true for epeir-ic sea, open-marine shelves, and ramps [seeBurchette and Wright (1992) for a comprehensivediscussion]. Ramps were only counted as such if they were bordering the open ocean.

Bathymetry: The determination of paleowaterdepth is quite reliable if two intervals are consid-ered: 1 = above fair-weather wave base; 2 = belowfair-weather wave base. A finer bathymetric classifi-cation is not feasible in most cases owing to lack of specific data.

Paleontological FeaturesBiot ic Comp osi t ion 

The biotic composition of reefs in the databaserefers only to reef-building organisms. Reef-dwellingor destructive organisms were not considered. Reef-builders were defined as sessile organisms havingthe potential to contribute significantly to buildupformation by constructing, baffling, or binding.Two fields in the database refer to the biotic composi-tion of reef builders. The quantitatively dominant reef building group is listed in the first field. In reefs

Kiessling et al. 1555

Figure 1—Schematic position of the different reef envi-ronment settings used in the database. SL =sea level, 1a=shallow carbonate platform, 1b =intraplatform sag, 1c= epeiric sea, 1d = coastal, transitional, marginalmarine, 1e = open-marine shelf, 2a = platform marginbordering shallow basins, 2b = platform/shelf marginbordering deep basins, 2c = atoll structure, seamounts,3a = upper slope or inner ramp, 3b = lower slope or outer ramp, 4a = moderately deep basin (<200 m), 4b =deep basin.

Page 5: Paleoreef Maps Evaluation of a Comprehensive Database

7/23/2019 Paleoreef Maps Evaluation of a Comprehensive Database

http://slidepdf.com/reader/full/paleoreef-maps-evaluation-of-a-comprehensive-database 5/36

with a pronounced horizontal and vertical zonation,the dominant reef-builder in the reef core or climaxstage was listed, even if the group was not dominantin the whole buildup. In the second field, all impor-tant reef-builders in a buildup were considered. Sixty-five combinations of reef-building groups have beendistinguished so far. The combinations are coded by

two-digit numbers.

Dominant Gui ld Following the guild model of Fagerstrom (1987,

1991), the dominant guild of reef builders in each reef was determined: The constructor guild, the bafflerguild, and the binder/encruster guild were separated.Some fossil groups can be always assigned to thesame guild (e.g., stromatolites = binder guild), butmost groups are classified into different guildsdepending on growth form (Fagerstrom, 1987, 1988).

Di ver sity The diversity field also exclusively refers to reef 

builders. Because the quality of published data isquite heterogeneous, a rather coarse interval classifi-cation of diversity was applied: 1 = low diversity(less than five species or one species strongly pre-dominant); 2 = moderate diversity, and 3 = highdiversity (more than 25 species).

Bioerosion We distinguished macroborings and microbor-

ings. Because the study of bioerosion in fossil reefsis still in its infancy (Vogel, 1993), we decided notto consider more than binary (presence/absence)data. Evidence provided in the original text or a fig-ure showing boring traces was necessary for a posi-tive indication in the bioerosion fields.

Petrographical Features and Reservoir Quality 

Petr ogr ap hy The amount of micrite and sparite (synsedimen-

tary or early diagenetic marine carbonate cement)was listed in two separate fields. They were quanti-fied with respect to the proportion of biota, micrite,and sparite using three intervals. We also noted if the reefs were heavily dolomitized because dolomi-tization reduces the reliability of paleontologicaldata and provides information on reservoir quality.

Reser voi r Qu ali ty Reservoir quality of reefs from published data is usual-

ly difficult to quantify precisely. In many cases, however,

one can evaluate whether a reef has a reservoir poten-tial; therefore, a binary field was included in thedatabase saying whether a reef may have a reservoirpotential. In the subsurface, only reefs with testedreservoir quality are included, whereas outcroppingreefs need to have preserved high porosity (>3%) andat least moderate thickness (>10 m) to be classified as

having reservoir quality. Outcropping equivalents of subsurface reservoirs were not included if porosityhad been destroyed by surface diagenesis. Seals andsource rocks were not considered. The databaselumps productive and nonproductive reefal reservoirs.

Debr is Potent ia l Many ancient reefs consist predominantly of 

debris formed by reef organisms and reworking of lithified reef rocks (Zankl, 1977; Hubbard et al.,1990). Because the significance and amount of debris in reefs are thought to vary considerably

through time, we tried to quantify the production of debris in reefs. Owing to the limited information onthe absolute amount of debris produced by a reef,we quantified the relative debris production. Again,poor data did not allow us to separate more thanthree intervals: 1 = low, 2 = moderate, and 3 = highdebris production. Low debris production is sup-posed for reefs with a high proportion of autochthonous reef carbonates or reefs lacking fore-reef debris. Many reefs with low debris productionare from deeper water environments, but reefs inprotected lagoonal environments and buildups dom-inated by certain fossil groups (e.g., microbes) also

are unlikely to produce high amounts of debris. Theabsolute amount of debris production is not relevantfor this field. A 200-m-thick reef can be classified ashighly debris producing as can be a reef of less than10 m thickness if they both consist almost exclusive-ly of rudstones and reworked boundstones. Thus,the values in this field reflect the potential of a reef to produce debris rather than the volume of debrisproduced. The actual debris production of a reef canbe calculated with the aid of reef dimensions.

 Additional Information

If a detailed study was available, additional informa-tion from that study was included under remarks (thick-ness of reef in meters, species names, average porosi-ty, etc.) to allow a later refinement of the database.

EVALUATION OF DATA COMPLETENESS ANDRELIABILITY OF INTERPRETATIONS

Currently, 2470 Phanerozoic reefs are in thedatabase assigned to 32 time slices as defined in

1556 Paleoreef Maps

Page 6: Paleoreef Maps Evaluation of a Comprehensive Database

7/23/2019 Paleoreef Maps Evaluation of a Comprehensive Database

http://slidepdf.com/reader/full/paleoreef-maps-evaluation-of-a-comprehensive-database 6/36

Table 2. The number of reefs in a single time sliceranges between 14 and 245 (74 on average). Thistremendous range in number can be attributed totwo possible reasons: either it reflects a real differ-ence between times of reef crises and peaks in reef development or it reflects a bias of unequal reef data availability.

Before starting to draw conclusions from the sta-tistical analysis of reef characteristics, we shouldtry to find out which one of these possibilities bet-ter applies to our database. Figure 2 depicts thenumber of reefs in each time slice and the averagenumber of reefs per million years. How real is thetrend depicted by Figure 2? As an example, theabundance of Early Cambrian reefs is certainlyunderrepresented in the database. The abundantSiberian reefs of this time (Rowland and Gangloff,1988) are not all included in the database becauseinformative descriptions are limited to rather fewreefs. Despite this, decreased reef numbers in the

Middle Cambrian to Early Ordovician represent areal trend caused by the disappearance of archaeo-cyathid-microbe communities in the MiddleCambrian (James and Debrenne, 1980) and theabsence of reef-building corals and stromato-poroids. The radiation of the latter groups in theMiddle–Late Ordovician is reflected in an increas-ing reef abundance in the Late Ordovician andSilurian (see also Copper, 1994). In the Devonian,the increasing amount of reefs toward theFrasnian–Famennian boundary appears to be real.The prominent peak of Givetian–Frasnian reefsprobably is somewhat exaggerated as a result of 

intense exploration activities in Canada and Russiarelated to their economic importance. Althoughthe peak may be too high in relation to the sur-rounding time slices, it likely reflects an actualpeak in the number of reefs. The reduced amountof buildups after the early Famennian “reef crisis”also is likely to represent reality; however, the lowabundance of Late Carboniferous to Artinskianreefs is suggested to be artificial because most of the reefs are situated in Russia, where data accessis difficult and the actual number of reefs may bemuch higher. The high number of reefs in theTriassic is related to the intense research in the

 Alpine-Mediterranean area during the last 25 yr(Flügel, 1981) and hence reflects the real situation.The drop of reef numbers in the Early Jurassicappears to be real (Triassic–Jurassic reef crisis).The abundance of Early Jurassic reefs would beeven lower if the common L i t h io t i s biohermswere not considered. The bloom of Late Jurassicreefs is real (Leinfelder, 1994), as is the decrease inthe number of reefs in the Cretaceous; however,the abundance of reefs in the Cretaceous wouldincrease if all minor rudist-biostromes were includ-ed. Because the decision of including or omitting a

rudist association is subjective, the trend shownwithin the Cretaceous is somewhat artificial. Thelow amount of reefs in the Paleogene is thought toreflect the actual situation, as does the increase of reefs in the Neogene. The Neogene peak is muchmore pronounced when normalized reef numbersare examined, since Cenozoic time slices are con-

siderably shorter than Paleozoic and Mesozoictime slices (Table 2).In summary, the amount of reef data in the

database largely reflects the real situation in mostcases, but an occasional bias is present, related tounequal quantity and quality of published data andsome subjective categorization. Our graphs of reef distribution (Figure 2; see also Figure 13) are ingood agreement with the reef abundance curve of Talent (1988). Talent’s approach has the advantageof possessing higher stratigraphic resolution(stages) and better reflecting Phanerozoic reef crises; however, our charts provide more quantita-

tive information about what Talent (1988) called“episodes of reef construction.” The Silurian,Frasnian, Late Jurassic, and Miocene peaks in reef abundance are obviously more important than indi-cated in Talent’s curve.

Information on ancient reefs is rather heteroge-neous because type and quality of information varies depending on scientific scope and scale ofstudy (description of one particular reef vs. region-al surveys or reviews); hence, the reliability of attributes in the database as the basis for statisticalanalyses is another important question. All essentialinformation and an at least fair stratigraphic assign-

ment could be found in the references for about48%of the reefs in the database. An average of 22%of reefs in the database lack detailed informationon paleontological, environmental, or petrographi-cal attributes, and 30% of the reefs in the databaselack an indication of reef size or dominant biota(Figure 3). Certain reef characteristics (e.g., bioero-sion or biotic diversity) mostly refer to Europeanand North American reefs because these attributesare rarely described in other areas; however, ade-quate descriptions of some reefs can be found in allregions and time slices. Assuming that other reefsin the same area with the same biotic composition

and age do not differ notably in main features, thenegative influence of heterogeneous knowledgemay be insignificant.

Similar arguments can be given for the reefs notrepresented in the database. Even the best knowntime slices are incomplete regarding the amount of reefs in the database due to burial, erosion, or lack of investigation in particular areas. Although thisfact certainly biases the interpretation potential of global reef distribution, its effect on the statisticalevaluation is relatively low, as indicated by a com-parison of statistical analyses at different stages of 

Kiessling et al. 1557

Page 7: Paleoreef Maps Evaluation of a Comprehensive Database

7/23/2019 Paleoreef Maps Evaluation of a Comprehensive Database

http://slidepdf.com/reader/full/paleoreef-maps-evaluation-of-a-comprehensive-database 7/36

1558 Paleoreef Maps

   T  a   b   l  e   2 .   D  e   f   i  n   i  t   i  o  n  o   f   T   i  m  e   S   l   i  c  e  s   U  s  e   d   i  n  t   h  e   R  e  e   f   D  a  t  a   b  a  s  e   *

   T   i  m  e

   S   l   i  c  e

   S   h  o  r   t  c  u   t   f  o  r

   A  g  e  o   f   P   l  a   t  e   T  e  c   t  o  n   i  c

   D  u  r  a   t   i  o  n  o   f

   N  o .

   P  e  r   i  o   d

   T   i  m  e   S   l   i  c  e

   L  o  w  e  r   B  o  u  n   d  a  r  y

   U  p  p  e  r   B  o  u  n   d  a  r  y

   R  e  c  o  n  s   t  r  u  c   t   i  o  n   (   M  a   )

   T   i  m  e   S   l   i  c  e   (  m .  y .   )

   1

   C  a  m   b  r   i  a  n

   E  a  r   l  y   C  a  m   b  r   i  a  n

   N  e  m  a   k   i   t -   D  a   l   d  y  n   i  a  n

   T  o  y  o  n   i  a  n

   5   2   0

   3   3

   2

   C  a  m   b  r   i  a  n

   M   i   d   d   l  e   C  a  m   b  r   i  a  n

   T  o  y  o  n   i  a  n

   D  r  e  s   b  a  c   h   i  a  n

   5   0   2

   1   4

   3

   C  a  m   b  r   i  a  n –   O  r   d  o  v   i  c   i  a  n

   T  r  e  m  a   d  o  c   i  a  n

   F  r  a  n  c  o  n   i  a  n

   T  r  e  m  a   d  o  c   i  a  n

   4   8   8

   1   5

   4

   O  r   d  o  v   i  c   i  a  n

   A  r  e  n   i  g   i  a  n

   A  r  e  n   i  g   i  a  n

   L   l  a  n  v   i  r  n   i  a

  n

   4   7   2

   2   1

   5

   O  r   d  o  v   i  c   i  a  n

   C  a  r  a   d  o  c   i  a  n

   D  a  r  r   i  w   i   l   i  a  n

   A  s   h  g   i   l   l   i  a  n

   4   5   2

   2   1

   6

   S   i   l  u  r   i  a  n

   L   l  a  n   d  o  v  e  r   i  a  n

   R   h  u   d   d  a  n   i  a  n

   T  e   l  y  c   h   i  a  n

   4   3   5

   1   5

   7

   S   i   l  u  r   i  a  n

   W  e  n   l  o  c   k   i  a  n

   W  e  n   l  o  c   k   i  a  n

   E  a  r   l  y   P  r   i   d

  o   l   i  a  n

   4   2   5

   1   0

   8

   S   i   l  u  r   i  a  n –   D  e  v  o  n   i  a  n

   L  o  c   h   k  o  v   i  a  n

   M   i   d   d   l  e   P  r   i   d  o   l   i  a  n

   M   i   d   d   l  e   P  r

  a  g   i  a  n

   4   1   2

   1   6

   9

   D  e  v  o  n   i  a  n

   E  m  s   i  a  n –   E   i   f  e   l   i  a  n

   L  a   t  e   P  r  a  g   i  a  n

   E   i   f  e   l   i  a  n

   3   9   6

   2   2

   1   0

   D  e  v  o  n   i  a  n

   G   i  v  e   t   i  a  n –   F  r  a  s  n   i  a  n

   G   i  v  e   t   i  a  n

   E  a  r   l  y   F  a  m

  e  n  n   i  a  n

   3   6   8

   2   0

   1   1

   D  e  v  o  n   i  a  n –   C  a  r   b  o  n   i   f  e  r  o  u  s

   T  o  u  r  n  a   i  s   i  a  n

   M   i   d   d   l  e   F  a  m  e  n  n   i  a  n

   E  a  r   l  y   V   i  s  e

  a  n

   3   4   8

   2   2

   1   2

   C  a  r   b  o  n   i   f  e  r  o  u  s

   V   i  s  e  a  n –   S  e  r  p  u   k   h  o  v   i  a  n

   M   i   d   d   l  e   V   i  s  e  a  n

   S  e  r  p  u   k   h  o

  v   i  a  n

   3   2   8

   1   5

   1   3

   C  a  r   b  o  n   i   f  e  r  o  u  s

   M  o  s  c  o  v   i  a  n –   K  a  s   i  m  o  v   i  a  n

   B  a  s   h   k   i  r   i  a  n

   K  a  s   i  m  o  v   i  a  n

   3   0   2

   2   7

   1   4

   C  a  r   b  o  n   i   f  e  r  o  u  s –   P  e  r  m   i  a  n

   A  s  s  e   l   i  a  n

   G  z   h  e   l   i  a  n

   A  s  s  e   l   i  a  n

   2   8   7

   1   1

   1   5

   P  e  r  m   i  a  n

   A  r   t   i  n  s   k   i  a  n

   S  a   k  m  a  r   i  a  n

   K  u  n  g  u  r   i  a  n

   2   7   7

   1   7

   1   6

   P  e  r  m   i  a  n

   G  u  a   d  a   l  u  p   i  a  n

   R  o  a   d   i  a  n

   C   h  a  n  g   h  s   i  n  g   i  a  n

   2   5   5

   2   0

   1   7

   T  r   i  a  s  s   i  c

   L  a   d   i  n   i  a  n

   I  n   d  u  a  n

   E  a  r   l  y   C  a  r  n   i  a  n

   2   3   2

   2   4

   1   8

   T  r   i  a  s  s   i  c –   J  u  r  a  s  s   i  c

   N  o  r   i  a  n

   L  a   t  e   C  a  r  n   i  a  n

   M   i   d   d   l  e   H  e   t   t  a  n  g   i  a  n

   2   1   8

   2   1

   1   9

   J  u  r  a  s  s   i  c

   P   l   i  e  n  s   b  a  c   h   i  a  n

   L  a   t  e   H  e   t   t  a  n  g   i  a  n

   E  a  r   l  y   A  a   l  e

  n   i  a  n

   1   9   5

   2   4

   2   0

   J  u  r  a  s  s   i  c

   B  a   j  o  c   i  a  n –   B  a   t   h  o  n   i  a  n

   M   i   d   d   l  e   A  a   l  e  n   i  a  n

   M   i   d   d   l  e   B  a

   t   h  o  n   i  a  n

   1   6   9

   1   2

   2   1

   J  u  r  a  s  s   i  c

   O  x   f  o  r   d   i  a  n -   K   i  m  m  e  r   i   d  g   i  a  n

   L  a   t  e   B  a   t   h  o  n   i  a  n

   M   i   d   d   l  e   T   i   t   h  o  n   i  a  n

   1   5   2

   2   0

   2   2

   J  u  r  a  s  s   i  c –   C  r  e   t  a  c  e  o  u  s

   B  e  r  r   i  a  s   i  a  n

   L  a   t  e   T   i   t   h  o  n   i  a  n

   E  a  r   l  y   V  a   l  a

  n  g   i  n   i  a  n

   1   4   0

   1   2

   2   3

   C  r  e   t  a  c  e  o  u  s

   B  a  r  r  e  m   i  a  n

   L  a   t  e   V  a   l  a  n  g   i  n   i  a  n

   E  a  r   l  y   A  p   t   i  a  n

   1   2   6

   1   8

   2   4

   C  r  e   t  a  c  e  o  u  s

   A   l   b   i  a  n

   L  a   t  e   A  p   t   i  a  n

   M   i   d   d   l  e   C  e  n  o  m  a  n   i  a  n

   1   0   5

   2   3

   2   5

   C  r  e   t  a  c  e  o  u  s

   T  u  r  o  n   i  a  n

   L  a   t  e   C  e  n  o  m  a  n   i  a  n

   E  a  r   l  y   C  a  m

  p  a  n   i  a  n

   9   0

   1   3

   2   6

   C  r  e   t  a  c  e  o  u  s

   C  a  m  p  a  n   i  a  n

   M   i   d   d   l  e   C  a  m  p  a  n   i  a  n

   S  e   l  a  n   d   i  a  n

   7   6

   2   3

   2   7

   P  a   l  e  o  g  e  n  e

   Y  p  r  e  s   i  a  n

   T   h  a  n  e   t   i  a  n

   Y  p  r  e  s   i  a  n

   5   3

   9

   2   8

   P  a   l  e  o  g  e  n  e

   L  u   t  e   t   i  a  n

   L  u   t  e   t   i  a  n

   B  a  r   t  o  n   i  a  n

   4   5

   1   2

   2   9

   P  a   l  e  o  g  e  n  e

   R  u  p  e   l   i  a  n

   P  r   i  a   b  o  n   i  a  n

   R  u  p  e   l   i  a  n

   3   3

   9

   3   0

   P  a   l  e  o  g  e  n  e –   N  e  o  g  e  n  e

   A  q  u   i   t  a  n   i  a  n

   C   h  a   t   t   i  a  n

   A  q  u   i   t  a  n   i  a  n

   2   2

   8

   3   1

   N  e  o  g  e  n  e

   S  e  r  r  a  v  a   l   l   i  a  n

   B  u  r   d   i  g  a   l   i  a  n

   S  e  r  r  a  v  a   l   l   i  a  n

   1   4

   1   0

   3   2

   N  e  o  g  e  n  e

   M  e  s  s   i  n   i  a  n

   T  o  r   t  o  n   i  a  n

   P   l   i  o  c  e  n  e

   6

   9

   *   T   i  m  e  s   l   i  c  e  s  a  r  e   d  e   f   i  n  e   d   b  y  s  u  p  e  r  s  e

  q  u  e  n  c  e  s .

Page 8: Paleoreef Maps Evaluation of a Comprehensive Database

7/23/2019 Paleoreef Maps Evaluation of a Comprehensive Database

http://slidepdf.com/reader/full/paleoreef-maps-evaluation-of-a-comprehensive-database 8/36

data input. Because the reef database will alwaysremain incomplete, the stability of calculatedmeans of reef attributes with an increasing amountof data is a crucial factor. In Figure 4, three stagesin database development (September 1996,October 1997, December 1998) are comparedwith respect to the percentage of major reefs(thickness >100 m) in each time slice for theLochkovian–Messinian. The 1996 curve takes intoaccount 1460 reefs, the 1997 curve refers to 1816reefs, and the new curve considers 2042 reefs. Although up to 160% of data was added to the timeslices, the percentage of major reefs changedinsignificantly in most of the time slices. Even therelatively strong deviations in some slices(Asselian, Aquitanian) do not change the overallpattern. Stronger deviations are noted when a ran-dom selection of reef data is studied. We comparethe curve based on the whole database (2470reefs), with the curve based on a random selectionof 1000 reefs (Figure 5). The two curves differ indetails, yet the major trend is still apparent in therandom selection. We conclude that furtherprogress in database development will modify

details of the results, but the major patterns andtrends are already visible.

The stability of trends uncovered by the databaseproves its value as a predictive tool. A rough esti-mate of attributes will be possible on reefs in unex-plored areas.

PALEOGEOGRAPHIC RECONSTRUCTIONS

 All reefs were assigned to time slices andplate numbers, a necessary step for extractingevolutionary trends and calculating paleoposi-tions. The plate tectonic model describes therelative motions between approximately 300plates and terranes. This model was construct-ed using PLATES and P ALEOMAP software, whichintegrates computer graphics and data manage-ment technology with a highly structured andquantitative description of tectonic relation-ships. The heart of this program is the rotationfile, which is constantly updated as new paleo-magnetic data become available. Hot-spot volca-noes serve as reference points for the calculation

Kiessling et al. 1559

Figure 2—Number of reefs in the database. The absolute number (bars) and the number of reefs per million years(line) in each time slice are indicated. Abundance peaks are likely to represent real times of reef prosperity.

0

50

100

150

200

250

300

0

2

4

6

8

10

12

14

16

18

20

Absolute number of reefs

Number per m.y.

   E  a  r   l  y   C  a  m   b  r   i  a  n

   M   i  d  d   l  e   C  a  m   b  r   i  a  n

   T  r  e  m  a  d  o  c   i  a  n

  A  r  e  n   i  g    i  a  n

  C  a  r  a  d  o  c   i  a  n

   L   l  a  n  d  o  v  e  r   i  a  n

   W  e  n   l  o  c   k   i  a  n

   L  o  c   h   k  o  v   i  a  n

   E  m  s   i  a  n  /   E   i  f  e   l   i  a  n

  G   i  v  e   t   i  a  n  /   F  r  a  s  n   i  a  n

   T  o  u  r  n  a   i  s   i  a  n

   V   i  s  e  a  n  /  S  e  r  p  u   k   h  o  v   i  a  n

   M  o  s  c  o  v   i  a  n  /   K  a  s   i  m  o  v   i  a  n

  A  s  s  e   l   i  a  n

  A  r   t   i  n  s   k   i  a  n

  G  u  a  d  a   l  u  p   i  a  n

   L  a  d   i  n   i  a  n

   N  o  r   i  a  n

   P   l   i  e  n  s   b  a  c   h   i  a  n

   B  a   j   o  c   i  a  n  /   B  a   t   h  o  n   i  a  n

   K   i  m  m  e  r   i  d  g    i  a  n

   B  e  r  r   i  a  s   i  a  n

   B  a  r  r  e  m   i  a  n  A   l   b   i  a  n

   T  u  r  o  n   i  a  n

  C  a  m  p  a  n   i  a  n

   Y  p  r  e  s   i  a  n

   L  u   t  e   t   i  a  n

   R  u  p  e   l   i  a  n

  A  q   u   i   t  a  n   i  a  n

  S  e  r  r  a  v  a   l   l   i  a  n

   M  e  s  s   i  n   i  a  n

   N  o .  o   f   R  e  e   f  s

   N  o  r  m  a   l   i  z  e   d   N  o .  o   f   R

  e  e   f  s

Page 9: Paleoreef Maps Evaluation of a Comprehensive Database

7/23/2019 Paleoreef Maps Evaluation of a Comprehensive Database

http://slidepdf.com/reader/full/paleoreef-maps-evaluation-of-a-comprehensive-database 9/36

1560 Paleoreef Maps

   F   i  g  u  r  e   3 —   C  o  m  p   l  e  t  e  n  e  s  s  o   f   i  n   f  o  r  m  a  t   i  o  n   i  n  t   h  e   d  a  t  a   b  a  s  e .   G  o  o   d

  =   i  n   f  o  r  m  a  t   i  o  n   i  s  p  r  e  s  e  n  t   f  o  r  a   l   l   f

   i  e   l   d  s  o   f  a   d  a  t  a  s  e  t  a  n   d  s  t  r  a  t   i  g  r  a  p   h

   i  c  a  s  s   i  g  n  m  e  n  t   i  s  a  t

   l  e  a  s  t   f  a   i  r   l  y  e  x  a  c  t  ;   f  a   i  r  =   d  e  t  a   i   l  e   d   i  n   f  o  r  m  a  t   i  o  n  o  n  p  a   l  e  o  n  t  o   l  o  g  y ,  p  a   l  e  o  e  n  v   i  r  o  n  m  e  n  t ,  o  r  p  e  t  r  o  g  r  a  p   h  y   i  s  m   i  s  s   i  n  g  ;  p  o  o  r  =   i  n   f  o  r  m  a  t   i  o  n  o

  n  r  e  e   f   d   i  m  e  n  s   i  o  n  s ,

  p  a   l  e  o  n  t  o   l  o  g  y ,  p  e  t  r  o  g  r  a  p   h  y ,  o

  r  p  a   l  e  o  e  n  v   i  r  o  n  m  e  n  t   i  s   l  a  c   k   i  n  g .

   0   %

   5   0   %

   1   0   0   %

   P  o  o  r

   F  a   i  r

   G  o  o   d

    E   a   r   l   y   C   a   m

   b   r   i   a   n

    M   i    d    d   l

   e   C   a   m

   b   r   i   a   n

    T   r   e   m

   a    d   o   c   i   a

   n   A   r   e   n   i   g   i   a   n

   C   a   r   a    d   o   c   i   a

   n

   L   l   a   n    d

   o   v   e   r   i   a   n

     W   e   n   l   o   c   k   i   a   n

   L   o   c   h   k   o   v   i   a

   n

    E   m   s   i   a

   n   /    E   i   f   e

   l   i   a   n

    G   i   v   e

   t   i   a   n   /

    F   r   a   s   n   i   a   n

    T   o   u   r   n   a   i   s   i   a   n

    V   i   s   e   a   n   /   S   e   r   p   u   k   h   o   v   i   a   n

    M   o   s   c   o   v   i   a

   n   /    K   a   s

   i   m   o   v   i

   a   n   A   s   s   e   l   i   a   n

   A   r   t   i   n   s   k   i   a

   n

    G   u   a

    d   a   l   u   p   i   a   n   L   a    d   i   n   i   a   n  N   o   r

   i   a   n

   P   l   i   e   n   s   b   a   c   h   i   a   n

    B   a   j   o   c   i   a   n   /

    B   a   t   h   o   n   i   a   n

    K   i   m   m   e   r   i    d   g

   i   a   n

    B   e   r   r   i   a   s   i   a

   n    B   a   r   r   e   m   i   a   n   A   l   b   i   a   n

    T   u   r   o   n   i   a   n

   C   a   m   p   a   n   i   a   n   Y   p   r   e   s   i   a   n   L   u   t   e   t   i   a   n   R   u   p   e   l   i   a   n

   A   q   u   i   t   a   n   i   a   n

   S   e   r   r   a   v   a   l   l   i   a

   n    M   e   s   s   i   n

   i   a   n

   R  e  e f  s  (    % )

Page 10: Paleoreef Maps Evaluation of a Comprehensive Database

7/23/2019 Paleoreef Maps Evaluation of a Comprehensive Database

http://slidepdf.com/reader/full/paleoreef-maps-evaluation-of-a-comprehensive-database 10/36

of paleolongitudes (Golonka and Bocharova,1997). Magnetic data have been used to definepaleolatitudinal position of continents and rota-

tion of plates. For Jurassic and younger ageslices, the magnetic anomalies have been used todefine the evolution of the oceans. Ophiolitesand deep-water sediments mark paleo-oceans,which were subducted and included into foldbelts.

The plate tectonic reconstruction maps havebeen combined with paleoenvironmental andlithological data, enabling the generation of detailed paleogeographic maps. Thirty-two mapswere constructed that depict the changing config-uration of mountains, land, shallow seas, and deep

ocean basins for distinctive time intervals encom-passing a time span from the Early Cambrian tothe late Miocene–Pliocene. Generally, the individ-

ual maps illustrate the conditions present duringthe maximum marine transgressions of a higherfrequency cyclicity. Relative sea level cyclicity(Haq et al., 1988; Ross and Ross, 1988; Greenleeand Lehmann, 1993), chronostratigraphy (Gradsteinand Ogg, 1996), and regional unconformities pro- vide the basis to partition the higher frequencydepositional cycles into subdivisions rangingfrom 8 to 33 Ma. The calculated paleolatitudesand paleolongitudes were loaded into the data-base and used to generate the paleoreef maps dis-cussed in this paper (Figures 6–11).

Kiessling et al. 1561

Figure 4—Comparison of three stages in database development. The percentage of major reefs (thicker than 100 m)in each time slice is indicated for three stages in database development (September 1996, October 1997, December 1998). Note the stability of the overall trend despite a substantial increase of reef data.

0

10

20

30

40

50

60

   L  o  c   h   k  o  v   i  a  n

  G   i  v  e   t   i  a  n  /   F  r  a  s  n   i  a  n

   V   i  s  e  a  n  /  S  e

  r  p  u   k   h  o  v   i  a  n

  A  s  s  e   l   i  a  n

  G  u  a  d  a   l  u  p   i  a  n

   N  o  r   i  a  n

   B  a   j   o  c   i  a  n

  /   B  a   t   h  o  n   i  a  n

   B  e  r  r   i  a  s   i  a  n

  A   l   b   i  a  n

  C  a  m  p  a  n   i  a  n

   L  u   t  e   t   i  a  n

  A  q   u   i   t  a  n   i  a  n

   M  e  s  s   i  n   i  a  n

   E  m  s   i  a  n  /   E   i  f  e   l   i  a  n

   T  o  u  r  n  a   i  s   i  a  n

   M  o  s  c  o  v   i  a  n  /

   K  a  s   i  m  o  v   i  a  n

  A  r   t   i  n  s   k   i  a  n

   L  a  d   i  n   i  a  n

   P   l   i  e  n  s   b  a  c   h   i  a  n

   K   i  m

  m  e  r   i  d  g    i  a  n

   B  e  r  r  e  m   i  a  n

   T  u  r  o  n   i  a  n

   Y  p  r  e  s   i  a  n

   R  u  p  e   l   i  a  n

  S  e  r  r  a  v  a   l   l   i  a  n

% Major Reefs 96% Major Reefs 97

98% Major Reefs

Page 11: Paleoreef Maps Evaluation of a Comprehensive Database

7/23/2019 Paleoreef Maps Evaluation of a Comprehensive Database

http://slidepdf.com/reader/full/paleoreef-maps-evaluation-of-a-comprehensive-database 11/36

1562 Paleoreef Maps

Figure 5—Percentageof major reefs in eachtime slice as calculatedfrom the database.(a) Diagram based ona random selectionof 1000 reefs.(b) Diagram based on

all 2470 data. Althoughthe two graphs exhibitdifferences in detail,the overall trend isthe same. Largeamounts of thick reef complexes are notedfrom the Devonian tothe Tournaisian, fromthe Sakmarian to theNorian, and in theCenozoic.

Page 12: Paleoreef Maps Evaluation of a Comprehensive Database

7/23/2019 Paleoreef Maps Evaluation of a Comprehensive Database

http://slidepdf.com/reader/full/paleoreef-maps-evaluation-of-a-comprehensive-database 12/36

   F   i  g  u  r  e   6 —   G   l  o   b  a   l   d   i  s  t  r   i   b  u  t   i  o  n

  o   f   G   i  v  e  t   i  a  n –   F  r  a  s  n   i  a  n  r  e  e   f  s .   O  c  e  a  n  s  u  r   f  a  c  e  c  u  r  r  e  n  t  s  w  e  r  e   d  e  r   i  v  e   d   f  r  o  m  t   h  e  p   l  a  t  e  t  e  c  t  o  n   i  c  c  o  n   f   i  g  u  r  a  t   i  o  n .   1  =   M  o  u  n  t  a   i  n  s ,   2  =   l  a  n   d ,

   3  =  s   h  e   l   f ,   4  =   d  e  e  p  w  a  t  e  r ,   5  =

  p  r  e   d   i  c  t  e   d  u  p  w  e   l   l   i  n  g  z  o  n  e  s ,  s   l   i  g   h  t   l  y  m  o   d   i   f   i  e   d   f  r  o  m   G  o   l  o  n   k  a  e  t  a   l .   (   1   9   9   4   ) ,   6  =  r  e  e   f  s  t   h   i  c   k  e  r  t   h  a  n   1   0   0  m ,   7  =  r  e  e   f  s   b  e  t  w  e  e  n   1   0  a  n   d

   1   0   0  m  t   h   i  c   k  n  e  s  s ,   8  =  r  e  e   f  s  t   h   i  n  n  e  r  t   h  a  n   1   0  m ,   9  =  r  e  e   f  s  w   i  t   h  o  u  t  t   h   i  c   k  n  e  s  s   d  a  t  a .   N  o  t  e  t   h  e  c   l  o  s  e  a  s  s

  o  c   i  a  t   i  o  n  o   f  m  a  n  y  r  e  e   f  s  w   i  t   h  p  r  e   d   i  c  t  e   d  u  p  w  e   l   l   i  n  g  s   i  t  e  s  a  n   d  t   h  e

  w   i   d  e   l  a  t   i  t  u   d   i  n  a   l   d   i  s  t  r   i   b  u  t   i  o  n  o   f  r  e  e   f  s .

Page 13: Paleoreef Maps Evaluation of a Comprehensive Database

7/23/2019 Paleoreef Maps Evaluation of a Comprehensive Database

http://slidepdf.com/reader/full/paleoreef-maps-evaluation-of-a-comprehensive-database 13/36

DISCUSSION OF PALEOREEF MAPS

We selected five examples to exhibit the poten-tial of paleoreef maps for interpreting Phanerozoicreef distributions. We briefly describe the mapswith respect to the latitudinal extent of the reef belt in relation to paleoclimate, regional reef con-

centrations, proposed upwelling, and selected reef attributes. More detailed interpretations of themaps are hampered by the lack of sophisticatedpaleo-oceanographic models. In the Late Triassicmaps, we additionally exemplify our paleogeo-graphic reconstructions in detail. The evolution of particular features in a wider context is referred toin the subsequent section.

Late Middle–Late Devonian

The global proliferation of reefs during this time

(Late Middle–Late Devonian (Givetian-Frasnian,slice 9; Figure 6) (Moore, 1989; Copper, 1994) iswell represented in the database. A total of 245reefs were recorded. The diversity of reef types isrelatively low. Reef mounds with stromatoporoidsand tabulate/rugosan corals as the main con-stituents are dominant. Reefs are approximatelyequally abundant on both hemispheres. Theextraordinarily warm climate of this time (Dickins,1993) is reflected by reefs occurring in abnormallyhigh latitudes. The belt of reef developmentextends from around 50°N (Amur region and SetteDaban Range, east Siberia) (Bol’shakova et al.,

1994) to 42°S. The southernmost buildups areGivetian mud mounds of Algeria (Wendt et al.,1997). The southernmost reef mounds dominatedby stromatoporoids or corals are situated in Moroc-co (Cattaneo et al., 1993) and in central Afghan-istan (Mistaen, 1985).

There are six centers of reef development: (1)Siberian platform, Russia, (2) Timan-PechoraProvince, Russia, (3) Alberta, Canada, (4) centralEurope, (5) Morocco, and (6) south China; howev-er, from Figures 3 and 6 it becomes obvious thatalthough there are large numbers of reefs, there isnot a proportionally large number of reefs with

good data. This discrepancy is partly attributed tothe fact that many Devonian reefs are located inRussia, where data access is difficult, and becausemany Givetian–Frasnian reefs occurring in the sub-surface of Canada and Russia are known onlythrough seismic exploration and drilling.

The abundance of thick reef complexes is out-standing (Figures 5, 6). More than 30%of all record-ed reefs are producing reservoirs or may be regard-ed as having reservoir quality. The major sites of hydrocarbon production are Alberta, Volga-Urals,and Timan-Pechora.

Many of the Givetian–Frasnian reefs are locatedat or close to sites with more than 70% probabilityof coastal upwelling (Golonka et al., 1994). Reefsalong the former northeastern margin of theSiberian craton are situated in a belt with predictedupwelling in the Northern Hemisphere Summer.Coastal upwelling also is predicted along the west-

ern coast of Australia, where the famous Canningbasin barrier reef developed (Playford, 1980), inthe Moravian karst region, and along the formerwestern margin of the south China block. We con-clude that Givetian–Frasnian reefs could thrive inareas in or close to coastal upwelling. This positionmay reflect the ability of Devonian reef builders tocope with higher nutrient levels than modern reefs(Hallock and Schlager, 1986; Wood, 1993, 1995). An alternative explanation could be the barredbasin model of Whalen (1995) that emphasized therole of tectonic barriers in deflecting cool easternboundary currents and preventing high nutrient

concentrations in the barred basins. Although thismodel may apply for south China, Australia, andNorth America, the direct association of reefs andupwelling in the Pechora-Urals and Moravian karstregions confirms that Givetian–Frasnian buildupscould grow in water with high nutrient concentra-tion owing to an autecology of reef builders differ-ent from builders of modern reefs. Considering thegreat reservoir potential of Frasnian reefs, it is notsurprising that their distribution is closely linkedwith source rock distribution (compare Klemmeand Ulmishek, 1991).

Early Permian (Asselian, Slice 13)

We recorded a total of 74 reefs in the EarlyPermian (Asselian, slice 13; Figure 7) time slice. Mostof them are reef mounds and mud mounds ratherthan true reefs. Algae (mostly phylloid algae andPalaeoaplysina ) dominate most of the buildups.More than one-half of the reefs have a reservoirpotential or are producing reservoirs (Figure 15).More than 30%of the buildups were situated belowthe fair-weather wave base (Figure 14b).

The main locations of reef growth were (1) Urals

and Timan-Pechora Province, Russia, (2) BarentsSea north of Norway, and (3) Texas and NewMexico. Buildups with reservoir quality occur espe-cially in Russia.

The Asselian time slice is special in that most of the reefs are situated in the Northern Hemisphere,although most of the marine shelves are located inthe Southern Hemisphere. Reef mounds and mudmounds are present to latitudes greater than 40°Non the Northern Hemisphere, but do not extendbeyond 15°S in the Southern Hemisphere. This pro-nounced asymmetry in reef distribution (Figure 12)

1564 Paleoreef Maps

Page 14: Paleoreef Maps Evaluation of a Comprehensive Database

7/23/2019 Paleoreef Maps Evaluation of a Comprehensive Database

http://slidepdf.com/reader/full/paleoreef-maps-evaluation-of-a-comprehensive-database 14/36

   F   i  g  u  r  e   7 —   G   l  o   b  a   l   d   i  s  t  r   i   b  u  t   i  o  n

  o   f   A  s  s  e   l   i  a  n  r  e  e   f  s .   O  c  e  a  n  s  u  r   f  a  c  e  c  u  r  r  e  n  t  s  w  e  r  e   d  e  r   i  v  e   d   f  r  o  m  t   h  e  p   l  a  t  e  t  e  c  t  o  n   i  c  c  o  n   f   i  g  u  r  a  t   i  o  n .   1  =   M  o

  u  n  t  a   i  n  s ,   2  =   l  a  n   d ,   3  =  s   h  e   l   f ,

   4  =   d  e  e  p  w  a  t  e  r ,   5  =  p  r  e   d   i  c  t  e   d  u  p  w  e   l   l   i  n  g  z  o  n  e  s ,  s   l   i  g   h  t   l  y  m  o   d   i   f   i  e   d   f  r  o  m   G  o   l  o  n   k  a  e  t  a   l .   (   1   9   9   4   ) ,   6  =  r  e  e   f  s  w   i  t   h  r  e  s  e  r  v  o   i  r  q  u  a   l   i  t  y ,   7  =

  r  e  e   f  s  w   i  t   h  o  u  t  o  r  u  n   k  n  o  w  n

  r  e  s  e  r  v  o   i  r  q  u  a   l   i  t  y .   C  o  n  t   i  n  e  n  t  a

   l   i  c  e  s   h  e  e  t  s  a  r  e  n  o  t   i  n   d   i  c  a  t  e   d .

Page 15: Paleoreef Maps Evaluation of a Comprehensive Database

7/23/2019 Paleoreef Maps Evaluation of a Comprehensive Database

http://slidepdf.com/reader/full/paleoreef-maps-evaluation-of-a-comprehensive-database 15/36

   F   i  g  u  r  e   8 —   G   l  o   b  a   l   d   i  s  t  r   i   b  u  t   i  o  n

  o   f   N  o  r   i  a  n –   R   h  a  e  t   i  a  n  r  e  e   f  s .   O  c  e  a  n  s  u  r   f  a  c  e  c  u  r  r  e  n  t  s  w  e  r  e   d  e  r   i  v  e   d   f  r  o  m

  t   h  e  p   l  a  t  e  t  e  c  t  o  n   i  c  c  o  n   f   i  g  u  r  a  t   i  o  n .   1  =   M  o  u  n  t  a   i  n  s ,   2  =   l  a  n   d ,   3  =

  s   h  e   l   f ,   4  =   d  e  e  p  w  a  t  e  r ,   5  =  p  r  e   d   i  c  t  e   d  u  p  w  e   l   l   i  n  g  z  o  n  e  s ,  s   l   i  g   h  t   l  y  m

  o   d   i   f   i  e   d   f  r  o  m   G  o   l  o  n   k  a  e  t  a   l .   (   1   9   9   4   ) ,   6  =  r  e  e   f  s  w   i  t   h   h   i  g   h   d  e   b  r   i  s  p  o  t  e  n  t   i  a   l ,   7  =  r  e  e   f  s  w   i  t   h  m  o   d  e  r  a  t  e

   d  e   b  r   i  s  p  o  t  e  n  t   i  a   l ,   8  =  r  e  e   f  s  w   i  t   h   l  o  w   d  e   b  r   i  s  p  o  t  e  n  t   i  a   l ,   9  =  r  e  e   f  s

  w   i  t   h  o  u  t   d  a  t  a   i  n   d   i  c  a  t   i  n  g   d  e   b  r   i  s  p  o  t  e  n  t   i  a   l .   T   h  e  m  a   j  o  r   i  t  y  o   f  r  e  e   f  s  a  r  e  s   i  t  u  a  t  e   d   i  n   M  e   d   i  t  e  r  r  a  n  e  a  n

   T  e  t   h  y  s .   S  e  e   F   i  g  u  r  e   9   f  o  r  a  m  a  g  n   i   f   i  c  a  t   i  o  n  o   f  t   h  e  w  e  s  t  e  r  n   T  e  t   h  y  s .

Page 16: Paleoreef Maps Evaluation of a Comprehensive Database

7/23/2019 Paleoreef Maps Evaluation of a Comprehensive Database

http://slidepdf.com/reader/full/paleoreef-maps-evaluation-of-a-comprehensive-database 16/36

is likely related to climatic asymmetry during theGondwana glaciation. According to Dickins (1993),the Asselian was the time of maximum SouthernHemisphere glaciation, whereas there is no evi-dence for ice in the Northern Hemisphere; howev-er, the different composition of high-latitude

mounds in the Northern Hemisphere points to apronounced climatic zonation even in the ice-freepart of the Early Permian. The reef-builder Palaeo-ap lys ina , regarded herein as an enigmatic alga(Watkins and Wilson, 1989), exemplifies this differ-ence.Palaeoaplysina was suggested to represent a

Kiessling et al. 1567

Figure 9—Distribution of Tethyan reefs in the Norian–Rhaetian time slice with reef numbers. 1 = Nondepositionallandmasses (orange color indicates topographic highs), 2 =terrestrial depositional environment (undifferentiated),3 = fluvial-lacustrine depositional environment, 4 = coastal, transitional, marginal-marine environment, 5 =shallow-sea, shelf environment, 6 = slope environment, 7 = deep ocean basins with sediments, 8 = deep oceanbasins with little or no sediments (primarily oceanic crust), 9 =sandstone/siltstone, 10 =shale, clay, mudstone, 11 =carbonates, 12 =evaporites, 13 =mixed sandstone/shale, 14 =mixed carbonate/shale, 15 =dolomites, 16 =red beds,17 =intrashelf, intraplatform reefs, 18 =platform or shelf margin reefs, 19 =slope, ramp, and basin reefs, 20 =reefs

 with no data on paleoenvironment, 21 =reef number in the database, 22 =oceanic spreading center and transform

faults, 23 = subduction zone. Ad = Adria, Ib = Iberia, Ki = Kirsehir and Sakariya, Lu = Lut, Mo = Moesia, Pi = Pindosocean, Si =Sicily, SM =Serbo-Macedonian terrane, Ti =Tisa, Ta =Taurus.

Page 17: Paleoreef Maps Evaluation of a Comprehensive Database

7/23/2019 Paleoreef Maps Evaluation of a Comprehensive Database

http://slidepdf.com/reader/full/paleoreef-maps-evaluation-of-a-comprehensive-database 17/36

cool-water dweller (Davies and Nassichuk, 1973),but new data provide evidence for Palaeoaplysina favoring moderate temperatures (Ritter and Morris,1997). Mounds with Palaeoaplys ina are foundnorth of 25°N paleolatitude in the Urals, Svalbard,and along the northern margin of North America,but extended down to 15°N at the western margin

of North America. The low-latitude occurrences arelikely related to relatively cool eastern boundarycurrents along the Panthalassa margin.

Considering the high reservoir potential of  Asselian reefs (Figure 7), it is amazing that they usu-ally are far from modeled coastal upwelling areas;however, many reefs are located close to mountainareas (central Pangean mountain range, proto-Urals). Continental weathering may have led tohigh nutrient concentrations in those settings. Reef distribution is closely linked with source rock dis-tribution (Klemme and Ulmishek, 1991) in thisinterval.

Late Triassic (Norian–Rhaetian, Slice 18)

The Norian supersequence corresponds with alow first-order sea level stand at a time of high con-tinental emergence. The supercontinent Pangeabegan its breakup. Early greenhouse conditionsprevailed (Frakes et al., 1992). The Middle–LateTriassic was characterized by a pronounced mon-soonal climate (Mutti and Weissert, 1995). There isno evidence of significant continental glaciation.

 A total of 117 reefs were recorded in the Late

Triassic (Norian–Rhaetian, slice 17; Figures 8 and 9)time slice. The diversity of reef types is moderate.Most of the Norian–Rhaetian reefs and reef moundsare characterized by a predominance of scleractini-an corals or coralline sponges (Flügel, 1981, 1994).The Norian reefs of the Mediterranean Tethys arecharacterized by a high debris potential (Figure 8)and a high amount of platform/shelf margin reefs.Compared to the Scythian–Carnian time slice(Figure 12, slice 16), there is a significant spatialexpansion of reefs. This is true for the advancetoward higher latitudes, as well as the augmenta-tion along the western margin of North America.

The northern boundary of reef growth is demarcat-ed by occurrences in the Northern Caucasus, inSichote Alin, and in Japan at around 40°N. Thesouthernmost occurrences of reefs were located at38°S (Chile and Papua New Guinea). Nearly allshelf areas between 40°N and 40°S encompassedreefs or at least reef mounds, but there appears tobe a gap at the equatorial Southern Hemisphere. Ascalculated from the database, the diversity of reef builders obviously is much more affected by paleo-geographic setting (comparison of eastern paleo-Pacific and Tethys) than by latitudes.

Based on data of Kristan-Tollmann (Kristan-Tollmann and Tollmann, 1981, 1982), Stanley (1988,1994) developed a Late Triassic reef distributionmap. Although Stanley’s map showed a pattern simi-lar to that of our map, Stanley’s map uses an obsoletepaleogeography and places much emphasis on reefslocated on Panthalassa terranes. Although we agree

that many Late Triassic reefs were situated onseamounts and terranes, which later accreted atNorth America, our reconstructions suggest thatthey were located much closer to the American mar-gin than is proposed by Stanley (1988).

Reefs appear close to predicted upwelling sitesof Golonka et al. (1994) along the western marginof North America and South America and along theformer northern margin of Australia. The predictedupwelling for North America may not be realbecause east Pacific terranes that could havedeflected eastern boundary currents were not con-sidered in the model of Golonka et al. (1994); how-

ever, reefs in South America and along the Australian margin are likely to be associated withupwelling. Reefal carbonates in Peru are mostlylimited to small-scale coral-sponge biostromes(Stanley, 1994), but there are true reefs in Timor(Vinassa de Regny, 1915) and offshore northwest Australia (Röhl et al., 1991; Colwell et al., 1994).

Figure 9 provides an example of a regional paleo-geographic map combined with paleoreef posi-tions, allowing a more detailed evaluation. In thewestern Tethys, Late Paleozoic and Triassic riftingand sea-floor spreading resulted in several separat-ed carbonate platforms (Dercourt et al., 1993;

Philip et al., 1996; Golonka and Gahagen, 1997).The large amount of western Tethyan reefs was dis-tributed on a large carbonate platform that existedduring most of the Mesozoic, spreading from Apulia through the Ionian and Hellenide terranes tothe Taurus zone (Dercourt et al., 1993). This zonewas connected with the Alpine–Inner Carpathianarea, which forms the marginal carbonate platformof Europe. The Alpine–Inner Carpathian area con-tains abundant reefs. The narrow branch of neo-Tethys recorded in the deep-water sediments of Sicily (Kozur, 1990; Catalano et al., 1991), LagoNegro (Marsella et al., 1993), and Crete (Kozur and

Krahl, 1987), as well as in the Mammonia ophiolitecomplex in Cyprus (Robertson and Woodcock,1979; Morris, 1996), separated the Adria-Taurusplatform from the African continent. The incipientPindos ocean separated the Pelagonian, Sakhariya,and Kirsehir carbonate platforms from the Ionian-Taurus platform (Robertson et al., 1991, 1996;Stampfli et al., 1991). The Lut (Iran) carbonate plat-form with numerous reefs belongs to the Cimmeriancontinent, separated from Gondwana by the mainneo-Tethyan oceanic branch (Sengör, 1984; Sengöret al., 1984; Ricou, 1996).

1568 Paleoreef Maps

Page 18: Paleoreef Maps Evaluation of a Comprehensive Database

7/23/2019 Paleoreef Maps Evaluation of a Comprehensive Database

http://slidepdf.com/reader/full/paleoreef-maps-evaluation-of-a-comprehensive-database 18/36

The western Tethys reefs exhibit distinct pat-terns (Figure 9; Table 3) in terms of tectonic-sedimentary patterns, the frequency of the reefs,the types of principal reef builders, and the distri-bution of reef biota. Reefs formed (1) on marginalcarbonate platforms close to the Eurasian continent(northwestern Caucasus, western Carpathians, and

northern calcareous Alps), (2) on various separatedcarbonate platforms facing deeper water basins(southern Alps, Apennines, Sicily, Greece, southernTurkey), and (3) in restricted shelf environments(southern Spain).

Reefs are concentrated in an inner shelf zone par-allel to the northwestern coast of the Tethys andextending a length of several hundred kilometers,and within a region consisting of separated platformsand comprising an area of about 1.8 × 106km2.

Norian–Rhaetian reefs include coralline spongereefs, coralline sponge–coral reefs, coral reefs, dasy-cladacean algal reefs, serpulid-carbonate cement

reefs, and microbial reefs (Table 3). The last threetypes, known from southern Spain, the Apennines,and the southern Alps, indicate particular environ-mental conditions excluding the regular reef builders. Coralline sponge reefs and coral reefsoccur in close association, but coral reefs seem tobe more common in the inner shelf zone.

The comparison of the taxonomic compositionof the coral and coralline sponge faunas indicatesrelations between the reefs situated in the north-western Tethys (northern Alps) and those connect-ed with the separated platforms. Reefs on separat-ed platforms, however, yield a high number of 

endemic taxa. In contrast, there are significantpaleontological differences considering the bioticcomposition of reefs formed on the Cimmeriancontinent (Lut block, Iran).

Platform margin reefs (e.g., Dachstein-type reefs;northern and southern Alps, Sicily) are distinctlythicker than intraplatform reefs that are usually lessthan 50 m thick (Table 3).

Late Jurassic (Oxfordian–Kimmeridgian)

There are currently 164 reefs considered in the

Late Jurassic (Oxfordian–Kimmeridgian; Figure 10)time slice. The Late Jurassic is marked by highdiversity of reef types (Leinfelder, 1994; Leinfelderet al., 1996), including thrombolitic mounds, sili-ceous sponge mounds, and coral reefs. Reefs of alltypes are found in Europe, where reefs are mostwidespread in this time slice. Reefs outside Europeare mostly coral-dominated reefs and biostromes.There is seismic evidence for a major reef trendalong the eastern shelf of North America, but mostreefs in this trend are poorly known. Rare wells indi-cate small-scale stromatolite-Tubiphytes bioherms

and thrombolitic mounds rather than coral reefs inthe Oxfordian–Kimmeridgian (Ellis et al., 1985;Pratt and Jansa, 1989).

In contrast to the Late Jurassic reef distributionmap of Leinfelder (1994), we do not indicate anyreefs in western and northwestern North America. According to Beauvais (1992), there are only scat-

tered coral occurrences that can hardly be calledreefs. With the exception of this discrepancy, ourdistribution plots are similar.

Bioherms can be found in all latitudes between45°S (Neuquen basin, Argentina) (Legarreta, 1991)and 52°N (Japan). The paleogeographic data for the Japanese reefs, however, are rather doubtful andthe reefs may have originated in much lower lati-tudes. Thus, the northern limit of reef distributionis marked by occurrences in Britain, Poland, andUzbekistan at around 40°N. The high paleolatitude(54°S) reefs of Patagonia, Argentina, reported byRamos (1978) are assigned to the Tithonian–

Berriasian time slice (R. Scasso, 1997, personalcommunication).Scleractinian-dominated reefs could thrive in

higher latitudes in the Southern Hemisphere thanin the Northern Hemisphere. Although this is inagreement with an asymmetrical temperature dis-tribution on both hemispheres (Kiessling andScasso, 1996), it is puzzling that Argentinean reefscould exist in a setting that should have been influ-enced by cool eastern boundary currents. Thisparadox is best explained by the barred basinmodel of Whalen (1995), that is, the proto-Andeanarc may have acted to deflect eastern boundary

currents.On a global scale, warm surface water (morethan 18°C in winter) can be assumed between40°N and 55°S paleolatitude. This statement is sup-ported by other paleoclimatic data (Vakhrameev,1991; Ditchfield et al., 1994; Hallam, 1994;Ditchfield, 1997). We agree with Leinfelder (1994)that the Upper Jurassic reef distribution reflects amaritime greenhouse effect.

Late Jurassic upwelling sites were suggestedthrough paleoclimatic modeling by Parrish andCurtis (1982), Ross et al. (1992), Golonka et al.(1994), and Price et al. (1995). Reefs generally

are rare in predicted upwelling areas; however,some reefal areas are closely associated with thepredicted upwelling centers of Golonka et al.(1994) that include intrashelf coral biostromes inSaudi Arabia (El-Asa’ad, 1991), diverse reef typesin the Caucasus and Crimea (Kuznetsov, 1993;Michailova, 1968), and coral reefs in Amu-Darya(Fortunatova et al., 1986). The actual source rock distribution (Klemme and Ulmishek, 1991) iscoincident with some reef occurrences in theGulf of Mexico, in the Amu-Darya region, and in Arabia.

Kiessling et al. 1569

Page 19: Paleoreef Maps Evaluation of a Comprehensive Database

7/23/2019 Paleoreef Maps Evaluation of a Comprehensive Database

http://slidepdf.com/reader/full/paleoreef-maps-evaluation-of-a-comprehensive-database 19/36

1570 Paleoreef Maps

Table 3. List of Upper Triassic Reefs Evaluated in the Mediterranean Tethys*

Dominant Reef Number Name Stage Type Thickness** Builder

1 Tilkideligi Tepe, Turkey Norian Reef 2 Coralline sponges4 Aksu, Turkey Norian Reef 2 Coralline sponges5 Adnet, Salzburg, Austria Rhaetian Reef 3 Corals6 Rötelwand, Austria Rhaetian Reef 3 Corals

7 Rio Blanco, Spain Rhaetian Reef mound 2 Serpulids9 Grimming, Austria Upper Norian Reef 3 Coralline sponges11 Argolis, Greece Norian–Rhaetian Reef 3 Coralline sponges12 Feichtenstein, Austria Rhaetian Reef 3 Corals13 Gruber, Austria Rhaetian Reef mound 3 Corals16 Wilde Kirche, Austria Rhaetian Reef 2 Corals17 Hochschwab, Austria Upper Norian Reef 1 Corals19 Pokljuka, Slovenia Upper Norian Reef 3 Corals21 Hohe Wand, Austria Upper Norian Reef 2 Coralline sponges25 Mala Fatra, Slovakia Rhaetian Biostrome 1 Corals26 Panormide, Sicily, Italy Upper Norian Reef 3 Coralline sponges28 Gosaukamm, Austria Upper Norian Reef 3 Coralline sponges32 Gesäuse, Austria Upper Norian Reef 3 Coralline sponges40 Steinplatte, Austria Rhaetian Biostrome 1 Corals44 Hochkönig, Austria Upper Norian Reef 3 Corals45 Luda-Kamcia, Bulgaria Norian – – –

72 Begunjscica, Slovenia Rhaetian Reef 2 Coralline sponges75 Marawand, Delijan, Iran Norian–Rhaetian Reef 2 Coralline sponges76 Lakaftari, Esfahan, Iran Middle Norian Reef 2 Corals77 Tabas, Iran Norian–Rhaetian Reef mound 2 Corals80 Hoher Göll, Bavaria, Germany Upper Norian Reef 4 Corals83 Waliabad, Iran Rhaetian Reef mound 2 Coralline sponges84 Monte Genuardo, Sicily, Italy Norian–Rhaetian Reef 3 Coralline sponges92 Dereköy, Turkey Norian Reef 2 Coralline sponges93 Triglav, Slovenia Upper Norian Reef 3 Corals94 Vascau, Romania Norian Reef mound 2 Corals

101 Gela, Sicily Norian Reef 3 Algae102 Rhätikon, Switzerland Rhaetian Reef mound 1 Corals106 Lattari Mountains, Italy Rhaetian Mud mound 1 Microbes119 Topuk, Turkey Norian Reef 2 Coralline sponges120 Rahatalana Yayla, Turkey Upper Norian Reef 1 Corals137 Karakorum, Kashmir Lower Norian Reef 3 Corals

138 Northern Kaukasus, Russia Norian Reef 2 Coralline sponges150 Yesilova, Turkey Upper Norian Reef 3 Coralline sponges155 Cyprus Carnian–Norian Reef – Corals169 Zádial Plateau, Slovakia Norian Reef 2 Corals172 Liptovska Osada, Slovakia Norian Reef 3 Corals179 N-Calabria, Italy Norian Reef – Corals208 Val Adrara, Italy Rhaetian Biostrome 1 Corals212 Korfu, Greece Rhaetian Reef 1 Corals235 Monte Lieggio, Salerno, Italy Norian Mud mound 1 Serpulids246 Madonie, Sicily Upper Norian Reef 3 Coralline sponges268 Naybandan, Iran Norian Biostrome 2 Coralline sponges343 Kocagedik, Turkey Carnian–Norian – 3 Corals359 Durmitor, Montenegro Norian Reef 3 –396 Pico de la Carne, Spain Norian Biostrome 2 Algae474 Epidauros, Greece Norian Reef 2 Coralline sponges

1494 Vapa, Zlatibor, Serbia Norian Reef mound 2 Corals

1720 Artavaggio, southern Alps, Italy Upper Norian Reef 1 Serpulids1721 Vello, southern Alps, Italy Upper Norian Reef 1 Serpulids2136 Bobrovcek, High Tatra, Slovakia Rhaetian Biostrome 1 Corals2156 Albenza, Southern Alps Rhaetian Reef 1 Corals2191 Meimeh, Delijan, Iran Norian–Rhaetian Reef 2 Coralline sponges2192 Kuhbanan, Kerman, Iran Norian–Rhaetian Biostrome 1 Corals2336 Simferopol, Ukraine Norian-Rhaetian Reef 2 Corals2342 Monte Cetona, Tuscany, Italy Rhaetian Mud mound – Serpulids2343 Ponte Arverino, Umbria, Italy Rhaetian Mud mound 1 Microbes2344 Monti Simbruini, Apennines, Italy Norian-Rhaetian Reef 2 Serpulids2348 Salzbrunnen, Bagherabad, Iran Rhaetian Reef 1 Corals2353 Mahallat, Iran Norian Reef mound 2 Corals

*Upper Triassic reefs are time slice 18; see also Figure 9.**Thickness data: 1 = <10 m; 2 = 10-100 m; 3 = 100-500 m; 4 = >500 m.

Page 20: Paleoreef Maps Evaluation of a Comprehensive Database

7/23/2019 Paleoreef Maps Evaluation of a Comprehensive Database

http://slidepdf.com/reader/full/paleoreef-maps-evaluation-of-a-comprehensive-database 20/36

   F   i  g  u  r  e   1   0 —   G   l  o   b  a   l   d   i  s  t  r   i   b  u  t   i  o

  n  o   f   O  x   f  o  r   d   i  a  n –   K   i  m  m  e  r   i   d  g   i  a  n  r  e

  e   f  s .   O  c  e  a  n  s  u  r   f  a  c  e  c  u  r  r  e  n  t  s  w  e  r  e   d  e  r   i  v  e   d   f  r  o  m  t   h  e  p   l  a  t  e  t  e  c  t  o  n   i  c  c  o

  n   f   i  g  u  r  a  t   i  o  n .   1  =   M  o  u  n  t  a   i  n  s ,

   2  =   l  a  n   d ,   3  =  s   h  e   l   f ,   4  =   d  e  e  p  w

  a  t  e  r ,   5  =  p  r  e   d   i  c  t  e   d  u  p  w  e   l   l   i  n  g  z  o  n  e  s ,  s   l   i  g   h  t   l  y  m  o   d   i   f   i  e   d   f  r  o  m   G  o   l  o  n   k  a  e  t  a   l .   (   1   9   9   4   ) ,   6  =   i  n  t  r  a  s   h  e   l   f   /   i  n  t  r  a  p   l  a  t   f  o  r  m  r  e  e   f  s ,   7  =  p   l  a  t   f  o  r  m

  o  r  s   h  e   l   f  m  a  r  g   i  n  r  e  e   f  s ,   8  =  s   l  o  p  e ,  r  a  m  p ,  a  n   d   b  a  s   i  n  r  e  e   f  s ,   9  =  r  e  e   f  s  w   i  t   h  o  u  t   d  a  t  a   i  n   d   i  c  a  t   i  n  g  p  a   l  e  o  e  n  v   i  r  o  n  m  e  n  t .

Page 21: Paleoreef Maps Evaluation of a Comprehensive Database

7/23/2019 Paleoreef Maps Evaluation of a Comprehensive Database

http://slidepdf.com/reader/full/paleoreef-maps-evaluation-of-a-comprehensive-database 21/36

Middle Miocene (Burdigalian–Serravallian)

During the early to middle Miocene (Burdigalian–Serravallian; Figure 11), reefs achieved an almostmodern-type global distribution pattern, butMiocene reefs in the Mediterranean area and thepara-Tethys extended beyond the modern coral

reef distribution. Framework-dominated coral-algalbuildups represent the great majority of reefs. Although the map depicts 146 reefs, it is still con-sidered incomplete. Reef data probably are missingin the present-day Indian Ocean and some Pacificatolls owing to poor knowledge of subsurface geol-ogy; however, the proposed distribution of early–middle Miocene coral reefs of Franseen et al.(1996) appears to be exaggerated. Judging from thestrong similarity with the distribution map of Miocene shallow-water carbonates (Sun andEsteban, 1994), Franseen et al. (1996) obviouslylumped reefal and platform carbonates in their plot.

 According to Jordan et al. (1990), Miocene reefsexisted in latitudes between 27°S and 48°N. Ourmap, however, shows a much wider extent of reef distribution (42°S to 50°N). Feary and James(1995) provided seismic evidence for the exis-tence of a nearly 500-km-long middle Miocene bar-rier reef along the southern margin of Australia;however, little is known about the composition of this reef trend. The northern limit of reef occur-rences is marked by algal-vermetid reef mounds inPoland (Pisera, 1985). Other reefs of the northernpara-Tethys are composed mostly of bryozoans,coralline algae, serpulids, and sessile foraminifera

(Pisera, 1996). Reefs with corals playing a signifi-cant role in reef construction are found up to 47°N(Dullo, 1983).

Sun and Esteban (1994) recognized two endmembers of paleoclimatic and depositional settingof Miocene reefs: (1) humid, oceanic tropical-subtropical settings and (2) arid, land-locked temperate-subtropical settings. Reefs in southeast Asia and thewestern Pacific belong in the first category. Thesereefs are mostly diverse coral-algal reefs, and many of them form important hydrocarbon reservoirs. Another important center of reef development wassituated in the Caribbean, which can be described as

a transitional setting (Sun and Esteban, 1994). TheMediterranean area and incipient Red Sea form thethird center of middle Miocene reef development.These reefs can be assigned to the arid, land-lockeddepositional setting.

Considering the modern aspect of most middleMiocene reefs, it is not surprising that almost all of them were outside the upwelling centers modeledby Parrish and Curtis (1982) and Golonka et al.(1994). Actual source rock occurrences (Klemmeand Ulmishek, 1991) are virtually never accompa-nied by coral-algal reefs.

EVALUATION OF PALEOGEOGRAPHICAL REEFDISTRIBUTION THROUGH TIME

The reef distribution on the paleogeographicmaps can be compared with modern reef distribu-tions to evaluate the differences. There are twomajor deviations: (1) variable paleolatitudinal con-

centrations of reef growth and (2) variable amountsof reefs on the eastern margins of the oceans.The paleolatitudinal distribution of reefs was dif-

ferent during most of the Phanerozoic from thealmost symmetrical pattern of Holocene zooxan-thellate coral reefs that are restricted to a beltbetween 33°N and 31°S. The average paleolatitu-dinal site of reefs (mean of all reef paleolatitudesin one time slice) changed significantly (Figure12). Throughout the Phanerozoic a principal shiftfrom the Southern Hemisphere toward theNorthern Hemisphere occurred. This trend fol-lows the general northward drift of continents

during the Phanerozoic. The average paleolatitudeof Cambrian reefs was at 18°S. Interestingly, therewere very few reefs in the Cambrian equatorialregion (10°S to 10°N). In the latest Cambrian andEarly Ordovician, a strong shift toward the equatoris evident. With the exception of small mounds inthe San Juan Province of Argentina (Armella, 1994),all “reefs” were situated in low paleolatitudes. Inthe Middle–Late Ordovician, the average paleolati-tude of reefs returned to higher southern latitudes(around 15°S) before another shift toward theequator occurred in the Silurian. After a return torelatively high southern paleolatitudes in the

Lochkovian, the average position of reefs shiftedfinally toward the Equator during the Devonianand Early Carboniferous. The Frasnian time slice(Figure 12, slice 10) represents one of the rareperiods in the Phanerozoic when the reefs werealmost symmetrically arranged on both hemi-spheres. This is especially remarkable becausemost of the continental shelves were still situatedin the Southern Hemisphere at that time. Themean paleolatitude of reefs shifted to theNorthern Hemisphere in the Moscovian and neverreturned back to the Southern Hemisphere. Thismajor shift to the north was completed in the

 Asselian (Early Permian), when most of the reefswere concentrated in the interval from 30° to40°N (Figure 12, slice 14). After a southward shiftduring the Middle and Late Permian, a stepwisemovement of main reef localities to higher north-ern latitudes can be observed. In the Oxfordian–Kimmeridgian time slice, the average paleolati-tude of reefs was 25°N. After a backsteppingtoward the equator, the mean paleolatitudereached its highest Phanerozoic value in the latestCretaceous (nearly 30°N). The average paleolati-tude of reefs remained at relatively high northern

1572 Paleoreef Maps

Page 22: Paleoreef Maps Evaluation of a Comprehensive Database

7/23/2019 Paleoreef Maps Evaluation of a Comprehensive Database

http://slidepdf.com/reader/full/paleoreef-maps-evaluation-of-a-comprehensive-database 22/36

   F   i  g  u  r  e   1   1 —   G   l  o   b  a   l   d   i  s  t  r   i   b  u  t   i  o

  n  o   f   S  e  r  r  a  v  a   l   l   i  a  n   (  m   i   d   d   l  e   M   i  o  c  e  n  e   )  r  e  e   f  s .   O  c  e  a  n  s  u  r   f  a  c  e  c  u  r  r  e  n  t  s  w

  e  r  e   d  e  r   i  v  e   d   f  r  o  m  t   h  e  p   l  a  t  e  t  e  c  t  o  n

   i  c  c  o  n   f   i  g  u  r  a  t   i  o  n .   1  =   M  o  u  n -

  t  a   i  n  s ,   2  =   l  a  n   d ,   3  =  s   h  e   l   f ,   4  =   d  e  e  p  w  a  t  e  r ,   5  =  p  r  e   d   i  c  t  e   d  u  p  w  e   l   l   i  n  g  z  o  n  e  s ,  s   l   i  g   h  t   l  y  m  o   d   i   f   i  e   d   f  r  o  m   G

  o   l  o  n   k  a  e  t  a   l .   (   1   9   9   4   ) ,   6  =  t  r  u  e  r  e  e   f  s ,   7  =  r  e  e   f  m  o  u  n   d  s ,   8  =  m  u   d

  m  o  u  n   d  s   /   b  a  n   k  s ,   9  =   b   i  o  s  t  r  o  m

  e  s ,   1   0  =  r  e  e   f  s  w   i  t   h  o  u  t   d  a  t  a   i  n   d   i  c  a  t   i  n  g  t  y  p  e .   C  o  n  t   i  n  e  n  t  a   l   i  c  e  s   h  e  e  t  s  a  r  e  n  o  t   i  n   d   i  c  a  t  e   d .

Page 23: Paleoreef Maps Evaluation of a Comprehensive Database

7/23/2019 Paleoreef Maps Evaluation of a Comprehensive Database

http://slidepdf.com/reader/full/paleoreef-maps-evaluation-of-a-comprehensive-database 23/36

   F   i  g  u  r  e   1   2 —   A  v  e  r  a  g  e  p  a   l  e  o   l  a  t   i  t  u   d   i  n  a   l  s   i  t  e  s  o   f  r  e  e   f  s   f  r  o  m  t   h  e   E  a  r   l  y   C  a  m   b  r   i  a  n  t  o  t   h  e   l  a  t  e   M   i  o  c  e  n  e –   P   l

   i  o  c  e  n  e .   T   h  e  c  o  n  c  e  n  t  r  a  t   i  o  n  o   f  r  e  e   f  s   i  s   l  a  r  g  e   l  y  r  e   l  a  t  e   d  t  o  t   h  e   d   i  s -

  t  r   i   b  u  t   i  o  n  o   f   l  a  r  g  e  s   h  e   l   f  a  r  e  a  s ,   b  u  t  o  c  e  a  n  o  g  r  a  p   h   i  c  a  s  y  m  m  e  t  r   i  e  s

  a   l  s  o  a  r  e   i  m  p  o  r  t  a  n  t .   T   h  e  r  e   i  s  a  c  o  n

  c  e  n  t  r  a  t   i  o  n  o   f   L  a  t  e   C  a  r   b  o  n   i   f  e  r  o  u  s

  a  n   d   E  a  r   l  y   P  e  r  m   i  a  n  r  e  e   f  s  o  n

  t   h  e   N  o  r  t   h  e  r  n   H  e  m   i  s  p   h  e  r  e ,  a

   l  t   h  o  u  g   h  t   h  e  m  a   j  o  r   i  t  y  o   f  s   h  e   l   f  a  r  e  a  s  w  a  s  s   i  t  u  a  t  e   d   i  n  t   h  e   S  o  u  t   h  e  r  n   H  e  m   i  s  p   h  e  r  e   (   F   i  g  u  r  e   7   ) .   T   h   i  s  a  s  y  m  m

  e  t  r  y   i  s   l   i   k  e   l  y  r  e   l  a  t  e   d  t  o  t   h  e

   G  o  n   d  w  a  n  a  g   l  a  c   i  a  t   i  o  n .

Page 24: Paleoreef Maps Evaluation of a Comprehensive Database

7/23/2019 Paleoreef Maps Evaluation of a Comprehensive Database

http://slidepdf.com/reader/full/paleoreef-maps-evaluation-of-a-comprehensive-database 24/36

latitudes in the Tertiary, reaching 25°N in Ypresian,but only 11°N in Lutetian.

Flügel (1994) analyzed the changing paleolatitu-dinal distribution of Pangean (Carboniferous– Jurassic) reefs. His pattern exhibits the same trend,but owing to the limited stratigraphic resolution(stratigraphic systems), he was not able to observe

the Moscovian–Artinskian Northern Hemisphereexcursion.We mentioned that the general trend of chang-

ing reef distribution on both hemispheres is strong-ly related to the distribution of continents and shelf areas. The more intense geologic research in theNorthern Hemisphere biases the concentration of reefs in the database, thereby influencing the pat-tern depicted in Figure 12; however, rapid changesin the paleolatitudinal distribution are hardlyexplained by plate tectonic configuration or het-erogeneous distribution of data. Asymmetries of cli-mate and surface current properties also likely had

a major impact on the pattern, and is especiallytrue for the late Paleozoic Gondwana glaciationthat caused a jump of the reef locations toward theNorthern Hemisphere.

The paleogeographic sites of major reef develop-ment also indicate significant oceanographicchanges and reflect the changing ecology of reef builders. Before the Middle Triassic, reefs were notconcentrated at the western margins of largeoceans. Instead, numerous reefs developed on theeastern margin of Panthalassa and along relativelyshallow intracontinental seaways. A longitudinaldistribution similar to that of the Holocene was not

achieved before the Oligocene.

PALEOGEOGRAPHIC ASPECTS

Based on the knowledge of the pattern dis-cussed, we now discuss the applicability of reefsfor paleogeographic reconstructions; however, thisapproach must be taken with care because wemove into the dangerous grounds of circular rea-soning by trying to both derive a better paleogeog-raphy and evaluate the spatial reef distributionthrough time from the database. The evaluation of 

paleolatitudes by using a uniform approach mustconsider different paleoclimatic conditions and thepossibility of cool-water adapted reefs. Even today,the main reef belt is situated in the tropics and sub-tropics, but particular reef types (e.g., Lophelia mounds) are found up to the polar circle (Teichert,1958; Henrich et al., 1996); hence the classificationof reef attributes is crucial for using reefs as paleo-latitudinal indicators.

In some time slices there is a distinct difference inthe composition of high-latitude reefs comparedwith low-latitude reefs (e.g., Asselian, Figure 7). In

these time slices, reefs of a particular compositionare likely to indicate water temperature and thusmay give a hint to paleolatitude. In other time slices(e.g., Norian, Oxfordian–Kimmeridgian), reefs at orbeyond the boundary of modern reef distribution donot show pronounced compositional differencescompared with lower latitude reefs in the same

paleoenvironment. In these cases it is very difficultto use reefs as paleolatitudinal indicators. The longi-tudinal setting (western vs. eastern margin of oceans) commonly had a more pronounced impacton reef composition and biodiversity than the lati-tude. This fact additionally restricts the applicationof reefs for paleolatitudinal reconstructions, but atthe same time enhances the possibilities for terranereconstructions (Belasky and Runnegar, 1993).Similar restrictions apply for the paleoclimatic inter-pretation of reef distribution maps. Icehouse timeslices do not exhibit a more equatorial concentra-tion of reefs than greenhouse time slices.

From the global pattern depicted in our reef distri-bution maps (Figures 6–11) and associated discus-sions, we are able to argue that the plate tectonicreconstruction of some areas needs to be revised.This is true for the Japanese archipelago in theTriassic–Jurassic and for parts of far eastern Russia(e.g., Koryak and Sikhote Alin) in the Paleozoic. A better knowledge of Devonian reefs in Russia wouldhelp to judge the validity of the high paleolatitudesassigned to many Russian microcontinents (Figure 6).

 VARIATION OF SELECTED REEF ATTRIBUTES

THROUGH TIMEThe analysis of secular variation in reef features

was done by plotting diagrams and conductingstatistical tests. Owing to the rather coarse classifi-cation intervals of many reef features, only distinctdifferences are reflected in the diagrams. In thispaper, we limit the discussion to major bioticcomposition, bioerosion, bathymetry, debrispotential, and reservoir potential of Phanerozoicreefs.

If the dominant reef-building group in each reef is plotted on a diagram (Figure 13), the typical biot-

ic composition of Phanerozoic reefs is relativelywell represented. Similar to James and Bourque(1992), we recognize more reef cycles than hadbeen previously (e.g., James, 1983) suggested.Following is a list of reef attributes through time.Seven reef cycles are evident.

(1) Cambrian–Early Ordovician: Reef moundsand microbial mounds, usually dominated bymicrobes/stromatolites. The climax of reef devel-opment was reached in the Early Cambrian throughthe significant contribution of archaeocyathids toreef building.

Kiessling et al. 1575

Page 25: Paleoreef Maps Evaluation of a Comprehensive Database

7/23/2019 Paleoreef Maps Evaluation of a Comprehensive Database

http://slidepdf.com/reader/full/paleoreef-maps-evaluation-of-a-comprehensive-database 25/36

(2) Middle Ordovician–Late Devonian: Reef mounds and reefs, usually dominated by stromato-poroids and tabulate or rugose corals. Bryozoans areadditionally important in the Ordovician and Silurian.The climax of reef development was reached in the

Givetian–Frasnian. In comparison with the graphs of  James (1983) and James and Bourque (1992), we notea significant decrease of reef abundance in the EarlyDevonian (compare also Talent, 1988). This cycle wasterminated by the Frasnian–Famennian reef crisis.

1576 Paleoreef Maps

Figure 13—DominantPhanerozoic reef typesand reef builders.The curves to the leftindicate the cumulativenumber of reefs and reef mounds and the number of mud mounds and

biostromes in each timeslice. Horizontal bars onthe right depict thecumulative number of reefs in which a particular fossil group is dominant.“Others” refers tobrachiopods,pelmatozoans, andforaminifera. SevenPhanerozoic cycles ofreef building are evident(large numbers).Major mass extinctions

are demarcated bystarred lines.

Page 26: Paleoreef Maps Evaluation of a Comprehensive Database

7/23/2019 Paleoreef Maps Evaluation of a Comprehensive Database

http://slidepdf.com/reader/full/paleoreef-maps-evaluation-of-a-comprehensive-database 26/36

(3) Latest Devonian–Early Permian: Reef moundsand mounds, usually dominated by algae, microbes,and bryozoans. There is no distinct climax of reef development in this cycle.

(4) Middle Permian–Middle Triassic: Reef mounds, mounds, and reefs, usually dominated bypharetronid (calcareous) sponges, microbes, or

corals. Although this cycle is interrupted by thePermian–Triassic extinction, middle and LatePermian reefs do not differ significantly fromMiddle Triassic reefs with respect to their high-rank taxonomic composition and reef attributes (veri-fied by cluster analysis).

(5) Late Triassic–earliest Cretaceous: Reefs, reef mounds, mounds, and biostromes usually dominat-ed by scleractinian corals. Again, this cycle is inter-rupted by a major extinction (Triassic–Jurassicboundary). The Late Triassic is transitional betweencycles 4 and 5, but cluster analysis showed that it ismore closely related to cycle 5. The Early Jurassic is

exceptional owing to the great number of bivalvebioconstructions. The climax of reef developmentwas reached in the Late Jurassic.

(6) Cretaceous: Biostromes and reef mounds usu-ally dominated by rudist bivalves or scleractiniancorals. An indistinct climax was reached in the lateEarly Cretaceous. This cycle was terminated by theCretaceous–Tertiary extinction event, which led tothe total extinction of rudists.

(7) Tertiary: Reefs, usually dominated by sclerac-tinian corals, with significant contribution bycoralline red algae. The climax of reef developmentwas reached in the middle Miocene.

Reefs with evidence of bioerosion are underrep-resented in the database because bioerosion israrely described or mentioned in publications, eventhough it may be present; however, the observedpattern (Figure 14a) may give some hint to actual variations in the intensity of bioerosion. We empha-size bioerosion because it is thought to be an impor-tant factor in reef evolution (Vogel, 1993), and theintensity of bioerosion may indicate past nutrientlevels (Hallock, 1988). The oldest reefs with evi-dence of bioerosion are known from the EarlyCambrian (James et al., 1977; Gandin and Debrenne,1984). During most of the Paleozoic, few reefs

(<10%) showed evidence of bioerosion. The moststriking increase in bioerosion is evident after thePermian–Triassic extinction. This expansion of bio-erosion is likely to reflect the real situation and canbe explained by the Mesozoic diversification of predators [“Mesozoic marine revolution” of Vermeij(1977)]. The abundance of reefs with evidence of bioerosion commonly is in marked contrast to thediversity of macroborings, e.g., macroboringsgreatlydiversified in the Devonian (Kobluk et al., 1978),but fewer than 10% of the reefs recorded in thedatabase show evidence of bioerosion; however,

this observation is biased by generally few descrip-tions of bioerosion in reefs.

The percentage of reefs formed below fair-weather wave base is relatively high between theDevonian and the Triassic (Figure 14b). The mostprominent peak is in the Tournaisian–early Viseantime slice, where 65% of the “reefs” grew in deep-

water environments. The Permian is another peri-od with a considerable number of deeper waterreefs (up to 31%). In all other time slices 3–25% of the reefal structures evidently formed below wavebase. Note that after the Frasnian–Famennian reef crisis most of the subsequent reefs grew in deeperwater, whereas after the Triassic–Jurassic crisis con-siderably fewer reefs formed below wave base.

The average debris potential of reefs varies con-siderably (Figure 14c), but there is a significantincrease through the Phanerozoic (r = 0.77, α <0.001). After some debris potential of Early–MiddleCambrian reefs, there was a sharp decline until the

Middle Ordovician. During the Silurian andDevonian, the mean debris potential achieved itshighest Paleozoic values. The entire Carboniferousand most of the Permian are characterized by rela-tively low debris potential. Late Permian–LateTriassic reefs had about the same mean potentialto produce debris as the Silurian–Devonian reefs. After the latest Triassic reef crisis, the averagedebris potential was low (predominance of L i t h io t i s mounds). During the Jurassic until theearliest Cretaceous, debris potential increasedrapidly and continuously. An opposing trend isobserved during the Cretaceous and early

Paleogene. A significant increase in debris poten-tial is noted in the Lutetian, followed by a declinein the Oligocene–Miocene.

The relative amount of debris produced by a reef depends on different parameters, such as waterenergy, topography, mineralogy, architecture of framework, and bioerosion. We used the databaseto explore the relationships among the differentreef features and debris potential. A simplified cor-relation matrix of normalized values is depicted inTable 4. This table indicates that a significant corre-lation exists between debris potential and nearly allquantitative parameters of the database. High

debris potential is more likely to occur in reefswith great thickness, high diversity of reef builders,little micrite content, evidence of bioerosion, andin shallow water and low latitude settings.

REEFS AS RESERVOIRS

Carbonates and especially reefs and reefal sedi-ments form important hydrocarbon reservoirs(Roehl and Choquette, 1985; Greenlee andLehmann, 1993; Kuznetsov, 1997). Roehl and

Kiessling et al. 1577

Page 27: Paleoreef Maps Evaluation of a Comprehensive Database

7/23/2019 Paleoreef Maps Evaluation of a Comprehensive Database

http://slidepdf.com/reader/full/paleoreef-maps-evaluation-of-a-comprehensive-database 27/36

1578 Paleoreef Maps

Figure 14—Comparison of bioerosion, bathymetric setting, and debris production of reefs through time. (a) Per-centage of reefs with evidence of bioerosion in each time slice; (b) percentage of reefs grown below fair-weather 

 wave base in each time slice; (c) average debris potential of reefs in each time slice (1 =low; 3 =high). Debris poten-tial tends to increase during times of few deep-water reefs and many reefs showing evidence of bioerosion.

Page 28: Paleoreef Maps Evaluation of a Comprehensive Database

7/23/2019 Paleoreef Maps Evaluation of a Comprehensive Database

http://slidepdf.com/reader/full/paleoreef-maps-evaluation-of-a-comprehensive-database 28/36

Choquette (1985) stated that 61% of the recover-able oil in giant fields is from carbonate reservoirs.

Paleogeographic plots showing sites of reservoirreefs compared with reefs without reservoir quality(Figure 7) can assist to detect general patterns of reservoir distribution and may provide a tool inhydrocarbon exploration.

The reservoir potential of reefs varies extremelythrough the Phanerozoic (Figure 15). Our data sug-gest that there are four periods containing reefalreservoirs. Abundant reefs with reservoir quality arerecognized from the Silurian to the Late Permian, inthe Late Jurassic, in the middle Cretaceous, and inthe Miocene. The peak in absolute reservoirs is evi-dent in the Givetian–Frasnian (more than 80 reefs),but the relative amount of reservoirs is highest inthe Asselian (more than 50%of reefs).

The overall pattern is similar to the results of Greenlee and Lehmann (1993), but there are differ-ences regarding the quantity of reefal reservoirs

through time. Although reservoir quality as definedin this paper does not necessarily imply productivehydrocarbon reservoirs, we think that our resultsbetter reflect the importance of particular times forhydrocarbon exploration in reefs. Three argumentssubstantiate this statement.

(1) Greenlee and Lehmann (1993) mostly refer-red to Exxon data and particularly excludedbuildups from the former Soviet Union and China,whereas our database takes into account reefs fromall over the world.

(2) Greenlee and Lehmann (1993) exclusivelyreferred to subsurface data of producing reservoirs,

whereas our study includes outcrop data and datafrom reefs with reservoir potential but lacking hydro-carbon accumulation (e.g., Capitan reef trend).

(3) The diagram in Figure 15 is based on 2470reef data, whereas Greenlee and Lehmann (1993)referred to 29 reefal reservoirs.

Despite all of these methodological differences,we have an unequal temporal distribution of reefalreservoirs similar to that of Greenlee and Lehmann(1993). For instance, we recognize reservoir quality(productive and nonproductive) for nearly 40% of the Permian reefs, whereas there are almost no reefalreservoirs in the Triassic. The interpretation of such

tremendous differences is difficult. We agree withGreenlee and Lehmann (1993) that times of reefalreservoirs correspond to times of extensive sourcedeposition, but we see no relation with high-ordereustatic sea level fluctuations. We note the seculardifferences in reefal reservoirs, although all of ourtime slices are defined by second-order sea level. A quantitative test of the percentage of reservoirs andthe mean first-order sea level in time slices (Vail et al.,1977; Hallam, 1984) did not produce any significantcorrelations. Third-order sea level fluctuations cer-tainly can have an important effect on the reservoir

quality of reefs (Sun and Esteban, 1994; Sun andWright, 1998), but this does not explain the strong variations between supersequences.

Klemme and Ulmishek (1991) noted six majorsource rock intervals: Silurian, Late Devonian–Tournaisian, Pennsylvanian–Early Permian, Late Jurassic, Aptian–Turonian, and Oligocene–Miocene;hence, the Phanerozoic deposition of source rockscorrelates stratigraphically with the development of reefal reservoirs. Although the correlation is not per-fect concerning absolute amounts, it is sufficient topresume a link between the driving forces for sourcerock deposition and reefal reservoir development.This link does not imply that abundant source rock deposition directly enhances the reservoir quality of reefs. More likely physicochemical parameters

(paleoclimate, sea water chemistry, plate tectonics)may favor source rock deposition and reefal reservoirdevelopment simultaneously.

Productive reefs occur in icehouse (Moscovian– Asselian, Miocene) and in greenhouse (Silurian–Devonian, middle Cretaceous) climatic cycles, and incalcite-dominated, as well as in aragonite-dominated,reefs. Additionally, reefal reservoirs occur in all typesof reefs: biostromal complexes (middle Cretaceous),mud mounds (e.g., Moscovian–Asselian), reef mounds (e.g., Frasnian), and framework-dominatedcoral reefs (Miocene).

The areal or temporal vicinity of porous reefs to

petroleum source rocks is another crucial point indefining productive reservoirs. Due to the likelyabsence of photosymbiosis before the LateTriassic (Stanley and Swart, 1995), reefs were notadapted to oligotrophic settings (Wood, 1993,1995). Although it was suggested that somePaleozoic tabulate corals and stromatoporoids har-bored symbionts (Wood, 1995), the observed pat-tern of reef distribution (Figure 6) does not supporta generally nutrient-limited setting for stromato-poroid-dominated reefs. Asselian bioherms do notflourish in areas with proposed upwelling (Figure 7),

Kiessling et al. 1579

Table 4. Correlation Matrix (Based on Spearman-Rho)of Debris Potential and Reservoir Quality withQuantitative Reef Attributes*

Debris ReservoirPotential Quality

Size + +

Diversity + +Micrite –Sparite +Debris Potential +Water Depth –

 Absolute Paleolatitude – –Bioerosion + –

*+ and –  indicate slope of significant (α<0.01) correlations.

Page 29: Paleoreef Maps Evaluation of a Comprehensive Database

7/23/2019 Paleoreef Maps Evaluation of a Comprehensive Database

http://slidepdf.com/reader/full/paleoreef-maps-evaluation-of-a-comprehensive-database 29/36

but their vicinity to prominent mountain rangesmay indicate elevated nutrient levels through conti-nental erosion. Thus, the ability of many Paleozoic

reefs and mounds to flourish in nutrient-rich sur-face water may enhance their reservoir potential incomparison to Mesozoic–Cenozoic reefs.

1580 Paleoreef Maps

0

10

20

30

40

50

60

70

80

90

   E  a  r   l  y   C  a  m   b  r   i  a  n

   M   i  d  d   l  e   C  a  m   b  r   i  a  n

   T  r  e  m  a  d  o  c   i  a  n

  A  r  e  n   i  g    i  a  n

  C  a  r  a  d  o  c   i  a  n

   L   l  a  n  d  o  v  e  r   i  a  n

   W  e  n   l  o  c   k   i  a  n

   L  o  c   h   k  o  v   i  a  n

   E  m  s   i  a  n  /   E   i  f  e   l   i  a  n

  G   i  v  e   t   i  a  n  /   F  r  a  s  n   i  a  n

   T  o  u  r  n  a   i  s   i  a  n

   V   i  s  e  a  n  /  S  e  r  p  u   k   h  o  v   i  a  n

   M  o  s  c  o  v   i  a  n  /   K  a  s   i  m  o  v   i  a  n

  A  s  s  e   l   i  a  n

  A  r   t   i  n  s   k   i  a  n

  G  u  a  d  a   l  u  p   i  a  n

   L  a  d   i  n   i  a  n

   N  o  r   i  a  n

   P   l   i  e  n  s   b  a  c   h   i  a  n

   B  a   j   o  c   i  a  n  /   B  a   t   h  o  n   i  a  n

   K   i  m  m  e  r   i  d  g    i  a  n

   B  e  r  r   i  a  s   i  a  n

   B  a  r  r  e  m   i  a  n  A   l   b   i  a  n

   T  u  r  o  n   i  a  n

  C  a  m  p  a  n   i  a  n

   Y  p  r  e  s   i  a  n

   L  u   t  e   t   i  a  n

   R  u  p  e   l   i  a  n

  A  q   u   i   t  a  n   i  a  n

  S  e  r  r  a  v  a   l   l   i  a  n

   M  e  s  s   i  n   i  a  n

 

   R  e  e   f  s   W   i   t   h   R  e  s  e  r  v  o   i  r   Q  u  a   l   i   t  y   (   N  o .  a  n

   d   %   )

Figure 15—Amount (white bars) and percentage (black bars) of reefs with reservoir potential in each time slice. Notethe pronounced differences between time slices and the almost total lack of reefal reservoirs from the Triassic toMiddle Jurassic.

Table 5. Quantitative Comparison of Reservoir Quality with Qualitative Reef Attributes*

Good Moderate Poor

Environment Shelf/platform margin Intrashelf/intraplatformSlope/rampBasin

Reef Type Reef mound True reef BiostromeMud mound

Dominant Reef Builder Algae Microbes Siliceous spongesTubiphytes  Coralline sponges Tabulates/rugosa

Scleractinians Worms

Pelecypods OthersBryozoansDominant Guild Constructor Baffler

Binder

*Based on one-way ANOVA models. Mean reservoir potential is significantly enhanced in shelf/platform margin environments, in reef mounds, in algal orTubiphytes buildups, and in buildups dominated by the constructor or binder guild.

Page 30: Paleoreef Maps Evaluation of a Comprehensive Database

7/23/2019 Paleoreef Maps Evaluation of a Comprehensive Database

http://slidepdf.com/reader/full/paleoreef-maps-evaluation-of-a-comprehensive-database 30/36

 A statistical analysis of the database permits amore quantitative approach to the problem. In afirst step we produced a correlation matrix of allstandardized quantitative reef features (Table 4).This resulted in a significant positive correlationbetween reservoir quality and reef size (thicknessand extension), debris potential, and the amount of 

marine cement. The negative correlation of bioero-sion and reservoir potential is an artifact related tothe facts that buildup reservoirs are usually poorlydescribed paleontologically and that reservoirs arecommon in Paleozoic reefs with generally little evi-dence of bioerosion. The correlation of reservoirquality and debris potential is logical consideringthat many reefal reservoirs are located in reef-derived debris rather than in the autochthonousreef rock (Alsharhan, 1985; Crevello et al., 1985).The positive correlation of reefal reservoir qualitywith the amount of marine cement is contrary towhat one would expect and may be explained by

the usually unstable aragonitic mineralogy of earlydiagenetic sparite, especially in algal-rich reefs(Mazzullo and Cys, 1979; James et al., 1988) thatgenerally form good reservoir rocks. The similarityin the abundance of biocementstones (Webb,1996) and reefal reservoirs in the Paleozoic hints toanother possible interpretation: Grotzinger andKnoll (1995) proposed that reduced shelf space forcarbonate precipitation, increased calcium flux tothe oceans, and deep basinal anoxia should favormassive carbonate precipitation; hence, globaloceanographic peculiarities in particular time inter- vals simultaneously may favor both reefal reservoir

quality and precipitation of marine cement.The relation of qualitative (environment, reef type, dominant biota, dominant guild) and quantita-tive reef attributes was analyzed with one-way ANOVA (analysis of variance) models (Table 5).Shelf/platform margin reefs contain significantlymore reservoirs than do reefs from all other envi-ronments. The differences in reservoir abundanceamong intrashelf/intraplatform, slope/ramp, andbasinal reefs are insignificant. Reef mounds aremore likely to form reservoirs on average than truereefs, mud mounds, or biostromes. The number of reservoirs in true reefs and mud mounds does not

differ significantly, but biostromes have the signifi-cantly lowest reservoir potential of all reef typesseparated in the database. Algal- or Tubiphytes -dominated buildups are more likely to form reser- voirs than are reefs predominated by microbes,coralline sponges, scleractinian corals, pelecypods,or bryozoans. Bryozoans form reservoirs morecommonly than reefs predominated by siliceoussponges, tabulate/rugose corals, worms, or otherreef builders. Reefs predominated by the construc-tor and binder guilds bear significantly more reser- voirs than buildups with prevailing bafflers.

The combination of statistical methods permitsthe definition of an “ideal” Phanerozoic reefal reser- voir: a large reef mound at the shelf/platform mar-gin, dominated by constructors or binders andTubiphytes or algae containing abundant marinecement, producing large quantities of debris, andsituated in a low paleolatitude. Not all of these

attributes will be realized together in one particularreef (e.g., algal and Tubiphytes reefs are virtuallynever dominated by the constructor guild), but themore of these features that are realized in a buildup,the more likely it represents a prospective target. Insummary, the qualitative statement of Burchette andWright (1992), who emphasized the organic andsedimentary facies as a major control of buildupreservoir potential, can be confirmed by our data.

In addition, other physicochemical parameters inthe earth system need to be analyzed as well. Thiscan be done by a correlation matrix of mean reef attributes and published earth system parameters for

each time slice. We have tested the correlations of the percentage of reservoirs in the time slices witheustatic sea level curves (see preceding sections),global carbonate and evaporite sedimentation(Kazmierczak et al., 1985; Bluth and Kump, 1991),oceanic crust production (Gaffin, 1987), atmospher-ic CO2 concentrations and global paleotemperature(Frakes, 1979; Berner, 1994), atmospheric oxygenconcentrations (Berner and Canfield, 1989), Mg/Caratio in seawater (Hardie, 1996; Stanley and Hardie,1998), calcite vs. aragonite percentage in ooids andin skeletal organisms (Mackenzie and Agegian, 1989;Stanley and Hardie, 1998), the strontium isotope

curve of Burke et al. (1982), and the carbonateδ13

Ccurve of Holser (1992). All published curves wereaveraged to fit our time slice definition. The percent-age of reefal reservoirs is significantly enhanced intime slices with large reef numbers, a high percent-age of deeper water mounds, a high mean sparitecontent in reefs, high global evaporite sedimenta-tion, high atmospheric oxygen and low carbon diox-ide concentration, low global mean temperatures,low oceanic crust production, high δ13C in carbon-ate, low percentage of calcite ooids, and elevatedMg/Ca (aragonite ocean). Mean reservoir quality intime slices is not correlated with global carbonate

sedimentation and87

Sr/86

Sr in seawater.The strongest correlations ([r ] > 0.6, α < 0.01)are noted with global temperature (Berner, 1994)(calculated from the CO2 curve), atmospheric oxy-gen concentration, δ13C, and evaporite sedimenta-tion area (Figure 16). Considering the qualitativestatement that reefal reservoirs occur in warm andin cool paleoclimatic modes, the strong negativecorrelation of reefal reservoir quality and calculat-ed paleotemperature (Berner, 1994) is surprising.The correlation is weaker (but still significant) withpaleoclimatic conditions derived directly from the

Kiessling et al. 1581

Page 31: Paleoreef Maps Evaluation of a Comprehensive Database

7/23/2019 Paleoreef Maps Evaluation of a Comprehensive Database

http://slidepdf.com/reader/full/paleoreef-maps-evaluation-of-a-comprehensive-database 31/36

geologic record (Frakes, 1979). One might con-clude that cool global paleoclimate favors reservoirdevelopment in reefs; however, reservoir quality isenhanced in lower absolute paleolatitudes (Table4), hence the relation of paleoclimate and reefalreservoir quality remains controversial. Because thelong-term δ13C curve and the oxygen concentra-

tion curve can be taken as measures of net organiccarbon burial (Berner and Canfield, 1989; Holser etal., 1996), one may presume an actual relationbetween organic carbon burial and reefal reservoirdevelopment. This agrees with the previously dis-cussed stratigraphic correlation of reservoir andsource rock formation on a supersequence level.Evaporite sedimentation area (Bluth and Kump,1991) is positively correlated with both δ13C andthe percentage of reefal reservoirs (Figure 16),hence a connection among these three measuresmay be presumed but is difficult to explain. Degensand Paluska (1979) proposed a model to explain

the relation between evaporite sedimentation andsource rock generation. They emphasized a “pick-ling effect” of saline brines from evaporite depositsthat prevented rapid organic matter degradation. A model more directly linking evaporites and sec-ondary porosity generation in reefal carbonateswas suggested by Sun (1992). He observed a signifi-cant leaching of Miocene skeletal aragonite byhypersaline brines and stated that leaching byhypersaline brines may be at least as important asleaching by meteoric water in the geologic record. Although the global applicability of this model isdisputable, it would fit excellently to our data and

may explain the strong difference in reservoir qual-ity between the Guadalupian and the Ladinian timeslices, which are similar in other reef attributes.

In summary, there is not a solitary explanationfor the observed pattern depicted in Figure 15.The database suggests that Phanerozoic reefalreservoir distribution is closely related to bioticevolution and geologic parameters that affectedpaleo-oceanographic water mass properties on aglobal scale. We suspect a direct control of evap-orite sedimentation and global paleoclimate,whereas largely unknown factors simultaneouslycontrol global reservoir quality, global organic car-

bon burial, precipitation of marine cement inreefs, and the percentage of deeper water reefs.Low-order (first- and second-order) sea level fluc-tuations do not play a significant role in definingproductive reservoirs.

CONCLUSIONS

The paleoreef maps database offers new oppor-tunities for understanding the reef ecosystem, foranalyzing past climates, and for plate tectonic and

paleogeographic reconstructions. The patternsdepicted in paleogeographic reef maps (Figures6–11), the overall patterns observed after numericalprocessing of the database (Figures 2, 5, 12–16), andstatistical results (Tables 4, 5), are likely to representreality, although the database is, and always willremain, incomplete. Some bias is caused by incom-

plete data, poor knowledge of reefs, heterogeneousdistribution of information in time and space, andthe occasional subjective treatment of data.

In comparison with published reef distributionmaps, our paleoreef maps are less sketchy, allowthe application of different filters, and permit thedistinction of particular reef types. These possibili-ties considerably enhance the potential use of reefsfor paleoclimatic and paleogeographic studies. Thepaleogeographic distribution pattern of reefs withreservoir quality (Figure 7) can provide a tool forhydrocarbon exploration.

The diagrams in Figure 14 present the first pro-

posal of secular variations of bioerosion, debrispotential, and bathymetry in and of reefs throughtime. These figures suggest an overall increase of bioerosion and debris potential through time,whereas there appears to be a decrease of deeperwater reefs from the Carboniferous to the Tertiary.

Our curves for reef abundance, biotic composi-tion, paleolatitudinal distribution, and reservoirpotential show similarities with published results,but also exhibit significant deviations. The variationsin reef abundance (Figure 2) and biotic composition(Figure 13) on a high-ranked taxonomic level can begrouped into seven cycles of reef development. The

cycles may cross times of reef crises and massextinctions (Ordovician–Silurian, Permian–Triassic),suggesting that the reef ecosystem is more stablethan commonly thought. The paleolatitudinal con-centration of reefs (Figure 12) is characterized by anoverall Phanerozoic northward drift. This roughlyfollows the drift of continental plates, but climaticasymmetries affected the global pattern consider-ably, especially during the late Paleozoic Gondwanaglaciation. The reservoir potential of Phanerozoicreefs (Figure 15) exhibits enormous changesthrough time. These changes are likely to be morecontrolled by biotic and paleo-oceanographic evolu-

tion rather than by sea level fluctuations. Time sliceswith elevated organic carbon burial, raised evaporitesedimentation area, lower paleotemperatures, and alarge percentage of aragonite ooids are characterizedby significantly enhanced reefal reservoir quality ona global scale (Figure 16).

OUTLOOK 

The current state of the database allows only sta-tistical tests based on rather long time intervals. To

1582 Paleoreef Maps

Page 32: Paleoreef Maps Evaluation of a Comprehensive Database

7/23/2019 Paleoreef Maps Evaluation of a Comprehensive Database

http://slidepdf.com/reader/full/paleoreef-maps-evaluation-of-a-comprehensive-database 32/36

evaluate reef attributes on a finer stratigraphic level,more data are required and international cooperationis essential. The authors are currently editing a publi-cation on Phanerozoic reef patterns to which severalreef specialists are contributing. With this major pro- ject, we expect that shortcomings and biases in thedatabase will be significantly reduced; nevertheless,we conclude this paper with a call for data. We arewilling to offer parts of the database in exchange fornew data. All paleoreef maps discussed in this papercan be downloaded from our internet home page(http://www.geol.uni-erlangen.de/pal/palreef.htm).

REFERENCES CITED

 Alsharhan, A. S., 1985, Depositional environment, reservoirunits evolution, and hydrocarbon habitat of ShuaibaFormation, Lower Cretaceous, Abu Dhabi, United ArabEmirates: AAPG Bulletin, v. 69, p. 899–912.

 Armella, C., 1994, Thrombolitic-stromatolitic cycles of theCambro–Ordovician boundary sequence, PrecordilleraOriantal basin, western Argentina, i n  J. Bertrand-Sarfati andC. Monty, eds., Phanerozoic stromatolites II: Dordrecht,

Kluwer Academic Publishers, p. 421–441.Beauvais, L., 1992, Corals of the circum-Pacific region, i n G. E. G.

Westermann, ed., The Jurassic of the circum-Pacific:Cambridge, Cambridge University Press, p. 324–327.

Belasky, P., and B. Runnegar, 1993, Biogeographic constraints fortectonic reconstructions of the Pacific region: Geology, v. 21,p. 979–982.

Berger, W. H., 1982, Increase of carbon dioxide in theatmosphere during deglaciation: the coral reef hypothesis:Naturwissenschaften, v. 69, p. 87–88.

Berner, R. A., 1994, Geocarb II: a revised model of atmosphericCO2 over Phanerozoic time: American Journal of Science, v. 294, p. 56–91.

Berner, R. A., and D. Canfield, 1989, A new model foratmospheric oxygen over Phanerozoic time: American Journalof Science, v. 289, p. 333–361.

Bluth, G. J. S., and L. R. Kump, 1991, Phanerozoic paleogeology: American Journal of Science, v. 291, p. 284–308.

Bol’shakova, L. N., M. P. Geller, R. V. Goryunova, V. N. Dubatolov, A. B. Ivanovskiy, V. N. Kosmyn, V. A. Luchinina, B. S. Sokolov,and Yu. I. Tesakov, 1994, Paleozoic coral reefs in Russia:Stratigrafiya Geologicheskaya Korrelyatsiya, v. 2/1, p. 46–54.

Burchette, T. P., and V. P. Wright, 1992, Carbonate rampdepositional systems: Sedimentary Geology, v. 79, p. 3–57.

Burke, W. H., R. E. Denison, E. A. Hetherington, R. B. Koepenik, H. F.Nelson, and J. B. Otto, 1982, Variations of seawater 87Sr/86Srthrough Phanerozoic time: Geology, v. 10, p. 516–519.

Kiessling et al. 1583

Figure 16—Correlation of reefal reservoir percentage in time slices with selected global physicochemical variables.Global surface air temperature (Berner, 1994) is inversely correlated with reservoir frequency, whereas the globalarea of evaporite sedimentation (Bluth and Kump, 1991) and the global δ13C in carbonates (‰ PDB) (Holser, 1992)are positively correlated.

0

10

20

30

40

50

60

-2

-1

0

1

2

3

4

5

6

         δ   1   3   C

δ13

C

Total evaporites (105 km2)

Surface air temperature (°C)

% Reefal reservoirs

   E  a  r   l  y   C  a  m   b  r   i  a  n

   M   i  d  d   l  e   C  a  m   b  r   i  a  n

   T  r  e  m  a  d  o  c   i  a  n

  A  r  e  n   i  g    i  a  n

  C  a  r  a  d  o  c   i  a  n

   L   l  a  n  d  o  v  e  r   i  a  n

   W  e  n   l  o  c   k   i  a  n

   L  o  c   h   k  o  v   i  a  n

   E  m  s   i  a  n  /   E   i  f  e   l   i  a  n

  G   i  v  e   t   i  a  n  /   F  r  a  s  n   i  a  n

   T  o  u  r  n  a   i  s   i  a  n

   V   i  s  e  a  n  /  S  e  r  p  u   k   h  o  v   i  a  n

   M  o  s  c  o  v   i  a  n  /   K  a  s   i  m  o  v   i  a  n

  A  s  s  e   l   i  a  n

  A  r   t   i  n  s   k   i  a  n

  G  u  a  d  a   l  u  p   i  a  n

   L  a  d   i  n   i  a  n

   N  o  r   i  a  n

   P   l   i  e  n  s   b  a  c   h   i  a  n

   B  a   j   o  c   i  a  n  /   B  a   t   h  o  n   i  a  n

   K   i  m  m  e  r   i  d  g    i  a  n

   B  e  r  r   i  a  s   i  a  n

   B  a  r  r  e  m   i  a  n  A   l   b   i  a  n

   T  u  r  o  n   i  a  n

  C  a  m  p  a  n   i  a  n

   Y  p  r  e  s   i  a  n

   L  u   t  e   t   i  a  n

   R  u  p  e   l   i  a  n

  A  q   u   i   t  a  n   i  a  n

  S  e  r  r  a  v  a   l   l   i  a  n

   M  e  s  s   i  n   i  a  n

    R  e  e   f   R  e  s  e  r  v  o   i  r  s   (   %   )   E  v  a  p  o  r   i   t  e   D  e  p  o  s   i   t   i  o  n  a   l   A  r  e  a   (        °   C   )

Page 33: Paleoreef Maps Evaluation of a Comprehensive Database

7/23/2019 Paleoreef Maps Evaluation of a Comprehensive Database

http://slidepdf.com/reader/full/paleoreef-maps-evaluation-of-a-comprehensive-database 33/36

Catalano, R., P. Di Stefano, and H. Kozur, 1991, Permiancircumpacific deep-water faunas from the western Tethys(Sicily, Italy): new evidence for the position of the PermianTethys: Palaeogeography, Palaeoclimatology, Palaeoecology, v. 87, p. 75–108.

Cattaneo, G., A. Tahiri, M. Zahraoui, and D. Vachard, 1993, Lasédimentation récifale du Givétien dans la Meseta marocainenord-occidentale: Comptes Rendus de l’Academie des SciencesSerie II, v. 317, p. 73–80.

Colwell, J. B., U. Röhl, U. von Rad, and E. Kristan-Tollmann, 1994,Mesozoic sedimentary and volcaniclastic rocks dredged from thenorthern Exmouth plateau and Rowley terrace, offshorenorthwest Australia: Australian Geological Survey Organisation Journal of Australian Geology and Geophysics, v. 15, p. 11–42.

Copper, P., 1988, Ecological succession in Phanerozoic reef ecosystems: is it real?: Palaios, v. 3, p. 136–152.

Copper, P., 1989, Enigmas in Phanerozoic reef development: Association of Australasian Palaeontologists Memoir, v. 8, 371 p.

Copper, P., 1994, Ancient reef ecosystem expansion and collapse:Coral Reefs, v. 13, p. 3–11.

Crevello, P. D., P. M. Harris, D. L. Stoudt, and L. R. Baria, 1985,Porosity evolution and burial diagenesis in a Jurassic reef-debris reservoir, Smackover Formation, Hico Knowles field,Louisiana, i n P. O. Roehl and P. W. Choquette, eds., Carbonatepetroleum reservoirs: New York, Springer-Verlag, p. 387–406.

Davies, G. R., and W. W. Nassichuk, 1973, The hydrozoan?Palaeoaplysina from the upper Paleozoic of Ellesmere Island, Arctic Canada: Journal of Paleontology, v. 47, p. 251–265.

Degens, E. T., and A. Paluska, 1979, Hypersaline solutions interactwith organic detritus to produce oil: Nature, v. 281,p. 666–668.

Dercourt, I., L. E. Ricou, and B. Vrielnyck, eds., 1993, Atlas of Tethys paleoenvironmental maps: Paris, Gauthier-Villars, 307 p.

Dickins, J. M., 1993, Climate of the Late Devonian to Triassic:Palaeogeography, Palaeoclimatology, Palaeoecology, v. 100,p. 89–94.

Ditchfield, P. W., 1997, High northern palaeolatitude Jurassic–Cretaceous palaeotemperature variation: new data from KongKarls Land, Svalbard: Palaeogeography, Palaeoclimatology,Palaeoecology, v. 130, p. 163–175.

Ditchfield, P. W., J. D. Marshall, and D. Pirrie, 1994, High latitude

palaeotemperature variation: new data from the Tithonian toEocene of James Ross Island, Antarctica: Palaeogeography,Palaeoclimatology, Palaeoecology, v. 107, p. 79–101.

Dullo, W.-C., 1983, Fossildiagenese im miozänen Leitha-Kalk derParatethys von Österreich: Ein Beispiel für Faunenverschie-bungen durch Diageneseunterschiede: Facies, v. 8, p. 1–112.

El-Asa’ad, G. M. A., 1991, Oxfordian hermatypic corals fromcentral Saudi Arabia: Géobios, v. 24, p. 267–287.

Ellis, P. M., P. D. Crevello, and L. S. Eliuk, 1985, Upper Jurassic andLower Cretaceous deep-water buildups, Abenaki Formation,Nova Scotia shelf: SEPM Core Workshop, v. 6, p. 212–248.

Esteban, M., 1979, Significance of the upper Miocene coral reefsof the western Mediterranean: Palaeogeography, Palaeo-climatology, Palaeoecology, v. 29, p. 169–188.

Fagerstrom, J. A., 1987, The evolution of reef communities: New York, John Wiley, 600 p.

Fagerstrom, J. A., 1988, A structural model for reef communities:Palaios, v. 3, p. 217–220.Fagerstrom, J. A., 1991, Reef-building guilds and a checklist for

determining guild membership: Coral Reefs, v. 10, p. 47–52.Feary, D. A., and N. P. James, 1995, Cenozoic biogenic mounds

and buried Miocene(?) barrier reef on a predominantly cool-water carbonate continental margin—Eucla basin, westernGreat Australian Bight: Geology, v. 23, p. 427–430.

Flügel, E., 1981, Paleoecology and facies of Upper Triassic reefs inthe northern Calcareous Alps, in D. F. Toomey, ed., Europeanfossil reef models: SEPMSpecial Publication 30, p. 291–359.

Flügel, E., 1994, Pangean shelf carbonates: controls and paleoclimaticsignificance of Permian and Triassic reefs: Geological Societyof America Special Paper, v. 228, p. 247–266.

Flügel, E., and E. Flügel-Kahler, 1992, Phanerozoic reef evolution:basic questions and data base: Facies, v. 26, p. 167–278.

Fortunatova, N. K., I. G. Micheev, A. G. Ibragimov, V. P.Farbirovich, and A. G. Shvez-Teneta-Gurii, 1986, Metodi vydeleniya rifovych fazii v verchnejurskich karbonatychotlozheniyach Yzhnogo Uzbekistana, i n B. S. Sokolov, ed.,Fanerosoiskie rifi i koralli SSSR: Moskow, Nauka, p. 149–161.

Frakes, L. A., 1979, Climates through geologic time: Amsterdam,Elsevier, 310 p.

Frakes, L. A., J. E. Francis, and J. I. Syktus, 1992, Climate modes of the Phanerozoic: the history of the earth’s climate over thepast 600 million yr: Cambridge, Cambridge University Press,274 p.

Franseen, E. K., M. Esteban, W. C. Ward, and J.-M. Rouchy, 1996,Introduction, i n E. K. Franseen, M. Esteban, W. C. Ward, and J.-M. Rouchy, eds., Models for carbonate stratigraphy fromMiocene reef complexes of Mediterranean regions: SEPMConcepts in Sedimentology and Paleontology, v. 5, p. v–ix.

Gaffin, S., 1987, Ridge volume dependence on seafloor generationrate and inversion using long term sea level change: American Journal of Science, v. 287, p. 596–611.

Gandin, A., and F. Debrenne, 1984, Lower Cambrian bio-constructions in southwestern Sardinia (Italy): Geobios,Memoir Special, v. 8, p. 231–240.

Golonka, J., and N. Y. Bocharova, 1997, Hot spots activity and the

break-up of Pangea: Gaea Heidelbergensis, v. 3, p. 143.Golonka, J., and D. Ford, 1997a, Absaroka (Pennsylvanian–Triassic) paleoenvironment and lithofacies (abs.): CanadianSociety of Petroleum Geologists–SEPM Joint Convention,Program with Abstracts, p. 109.

Golonka, J., and D. Ford, 1997b, Sauk and Tippecanoe(Cambrian–Silurian) paleoenvironment and lithofacies (abs.):Canadian Society of Petroleum Geologists–SEPM JointConvention, Program with Abstracts, p. 110.

Golonka, J., and L. Gahagan, 1997, Tectonic model of theMediterranean terranes (abs.): AAPG Bulletin, v. 81, p. 1378.

Golonka, J., M. I. Ross, and C. R. Scotese, 1994, Phanerozoicpaleogeographic and paleoclimatic modeling maps: CanadianSociety of Petroleum Geologists Memoir, v. 17, p. 1–47.

Golonka, J., D. Ford, and J. Bednarczyk, 1997a, Kaskaskia(Devonian–Mississippian) paleoenvironment and lithofacies

(abs.): Canadian Society of Petroleum Geologists–SEPMJointConvention, Program with Abstracts, p. 110.Golonka, J., D. Ford, M. Edrich, R. Pauken, J. Wildharber, and N. Y.

Bocharova, 1997b, Zuni (Jurassic–Cretaceous) paleoenvironmentand lithofacies (abs.): Canadian Society of PetroleumGeologists–SEPMJoint Convention, Program with Abstracts, p. 111.

Gradstein, F. M., and J. G. Ogg, 1996, Geological time scale forthe Phanerozoic: Episodes, v. 19, p. 3–4.

Greenlee, S. M., and P. J. Lehmann, 1993, Stratigraphic framework of productive carbonate buildups, i n R. G. Loucks and J. F.Sarg, eds., Carbonate sequence stratigraphy: recentdevelopments and applications: AAPG Memoir 57, p. 43–62.

Grotzinger, J. P., and A. H. Knoll, 1995, Anomalous carbonateprecipitates: is the Precambrian the key to the Permian?:Palaios, v. 10, p. 578–596.

Hallam, A., 1984, Pre-Quaternary changes of sea level: Annual

Reviews of Earth and Planetary Science, v. 12, p. 205–243.Hallam, A., 1994, Jurassic climates as inferred from the sedimentaryand fossil record, in  J. R. L. Allen, B. J. Hoskins, B. W. Sellwood,R. A. Spicer, and P. J. Valdes eds., Palaeoclimates and theirmodelling: London, Chapman and Hall, p. 79–88.

Hallock, P., 1988, The role of nutrient availability in bioerosion:consequences to carbonate buildups: Palaeogeography,Palaeoclimatology, Palaeoecology, v. 63, p. 275–291.

Hallock, P., and W. Schlager, 1986, Nutrient excess and thedemise of coral reefs and carbonate platforms: Palaios, v. 1,p. 389–398.

Haq, B. U., J. Hardenbol, and P. R. Vail, 1988, Mesozoic andCenozoic chronostratigraphy and cycles of sea-level change, i n C. K. Wilgus, B. S. Hastings, C. G. St. C. Kendall, H. W.

1584 Paleoreef Maps

Page 34: Paleoreef Maps Evaluation of a Comprehensive Database

7/23/2019 Paleoreef Maps Evaluation of a Comprehensive Database

http://slidepdf.com/reader/full/paleoreef-maps-evaluation-of-a-comprehensive-database 34/36

Posamentier, C. A. Ross, and J. C. van Wagoner, eds., Sea-levelchanges—an integrated approach: SEPM Special Publication 42,p. 71–108.

Hardie, L. A., 1996, Secular variation in seawater chemistry: anexplanation for the coupled secular variation in themineralogies of marine limestones and potash evaporites overthe past 600 m.y.: Geology, v. 24, p. 279–283.

Hatcher, B. G., 1997, Coral reef ecosystems: how much greater isthe whole than the sum of the parts?: Coral Reefs, v. 16,

p. S77–S91.Heckel, P. H., 1974, Carbonate buildups in the geologic record: areview, i n L. F. Laporte, ed., Reefs in time and space: SEPMSpecial Publication 18, p. 90–154.

Henrich, R., A. Freiwald, A. Wehrmann, P. Schäfer, C. Samtleben,and H. Zankl, 1996, Nordic cold-water carbonates: occurrencesand controls, in  J. Reitner, F. Neuweiler, and F. Gunkel, eds.,Global and regional controls on biogenic sedimentation: Göttinger Arbeiten zur Geologie und Paläontologie, Sonderband 2,p. 35–52.

Holser, W. T., 1992, Stable isotope geochemistry of sulfate andchloride rocks: Lecture Notes in Earth Sciences, v. 43,p. 153–176.

Holser, W. T., M. Magaritz, and R. L. Ripperdan, 1996, Globalisotopic events, i n O. H. Walliser, ed., Global events and eventstratigraphy: Berlin, Springer-Verlag, p. 63–88.

Hubbard, D. K., 1997, Reefs as dynamic systems, i n C. Birkeland,ed., Life and death of coral reefs: London, Chapman and Hall,p. 43–67.

Hubbard, D. K., A. I. Miller, and D. Scaturo, 1990, Production andcycling of calcium carbonate in a shelf-edge reef system (U.S. Virgin Islands): applications to the nature of reef systems inthe fossil record: Journal of Sedimentary Petrology, v. 60,p. 335–360.

 James, N. P., 1983, Reef environment, i n P. A. Scholle, D. G.Bebout, and C. H. Moore, eds., Carbonate depositionalenvironments: AAPG Memoir 33, p. 345–440.

 James, N. P., and P.-A. Bourque, 1992, Reefs and mounds, i n R. G.Walker and N. P. James, eds., Facies models: response to sealevel change: St. John’s, Geological Association of Canada,p. 323–347.

 James, N. P., and F. Debrenne, 1980, Lower Cambrian bioherms:

pioneer reefs of the Phanerozoic: Acta PalaeontologicaPolonica, v. 25, p. 655–668. James, N. P., D. R. Kobluk, and S. G. Pemberton, 1977, The oldest

macroborers: Lower Cambrian of Labrador: Science, v. 197,p. 980–983.

 James, N. P., J. L. Wray, and R. N. Ginsburg, 1988, Calcification of encrusting aragonitic algae Peyssonneliaceae : implications forthe origin of late Paleozoic reefs and cements: Journal of Sedimentary Petrology, v. 58, p. 291–303.

 Jordan, C. F., Jr., M. W. Colgan, S. H. Frost, D. Bosence, andM. Esteban, 1990, An overview of Miocene reefs: AAPGBulletin, v. 76, p. 688–689.

Kauffman, E. G., and J. A. Fagerstrom, 1993, The Phanerozoicevolution of reef diversity, i n R. E. Ricklefs and D. Schluter,eds., Species diversity in ecological communities: Chicago,University of Chicago Press, p. 315–329.

Kazmierczak, J., V. Ittekkot, and E. T. Degens, 1985, Bio-calcification through time: environmental challenge andcellular response: Paläontologische Zeitschrift, v. 59, p. 15–33.

Kiessling, W., and R. Scasso, 1996, Ecological perspectives of Late Jurassic radiolarian faunas from the Antarctic Peninsula, i n 

 A. C. Riccardi, ed., Advances in Jurassic research: Zurich,Transtec, v. 1/2, p. 317–326.

Klemme, H. D., and G. F. Ulmishek, 1991, Effective petroleum sourcerocks of the world: stratigraphic distribution and controllingdepositional factors: AAPG Bulletin, v. 75, p. 1809–1851.

Kobluk, D. R., N. P. James, and S. G. Pemberton, 1978, Initialdiversification of macroboring ichnofossils and exploitation of the macroboring niche in the lower Paleozoic: Paleobiology, v. 4, p. 163–170.

Kozur, H., 1990, Deep-water Permian in Sicily and its possibleconnection with the Himalaya-Tibet region: Fifth Himalaya-Tibet-Karakorum Workshop, p. 27.

Kozur, H., and J. Krahl, 1987, Erster Nachweis von Radiolarien intethyalen Perm Europas: Neues Jahrbuch für Geologie undPaläontologie, Abhandlungen, v. 174, p. 357–372.

Kristan-Tollman, E., and A. Tollmann, 1981, Die Stellung der Tethys inder Trias und die Herkunft ihrer Fauna: Mitteilungen derÖsterreichischen Geologischen Gesellschaft, v. 74/75, p. 129–135.

Kristan-Tollman, E., and A. Tollmann, 1982, Die Entwicklung derTethystrias und Herkunft ihrer Fauna: Geologische Rundschau, v. 71, p. 987–1019.

Kuznetsov, V. G., 1993, Late Jurassic–Early Cretaceous carbonateplatform in the northern Caucasus and Precaucasus, i n  J. A. T.Simo, R. W. Scott, and J.-P. Masse, eds., Cretaceous carbonateplatforms: AAPG Memoir 56, p. 455–463.

Kuznetsov, V. G., 1997, Oil and gas in reef reservoirs in theformer USSR: Petroleum Geoscience, v. 3, p. 65–71.

Lecompte, M., 1958, Les recifs paleozoiques Belgique: Geo-logische Rundschau, v. 47, p. 384–401.

Lecompte, M., 1970, Die Riffe im Devon der Ardennen und ihreBildungsbedingungen: Geologica et Paleontologica, v. 4,p. 25–71.

Legarreta, L., 1991, Evolution of a Callovian–Oxfordian carbonatemargin in the Neuquén basin of west-central Argentina: facies,

architecture, depositional sequences and global sea-levelchanges: Sedimentary Geology, v. 70, p. 209–240.Leinfelder, R. R., 1994, Distribution of Jurassic reef types: a mirror

of structural and environmental changes during breakup of Pangea: Canadian Society of Petroleum Geologists Memoir, v. 17, p. 677–700.

Leinfelder, R. R., W. Werner, M. Nose, D. U. Schmid, M. Krautter,M. Laternser, M. Takacs, and D. Hartmann, 1996, Paleoecology,growth parameters and dynamics of coral, sponge andmicrobolite reefs from the Late Jurassic, i n  J. Reitner,F. Neuweiler, and F. Gunkel, eds., Global and regional controlson biogenic sedimentation: Göttinger Arbeiten zur Geologieund Paläontologie, Sonderband 2, p. 227–248.

Marsella, E., H. Kozur, and B. D’Argenio, 1993, Monte FacitoFormation (Scythian–middle Carnian); a deposit of theancestral Lagonegro basin in southern Apennines: Bolletino de

Sevisio Geologico Italia, v. 119, p. 225–248.Mazzullo, S. J., and J. M. Cys, 1979, Marine aragonite sea floorgrowths and cements in Permian phylloid algal moundsSacramento Mountains New Mexico USA: Journal of Sedimentary Petrology, v. 49, p. 917–936.

Michailova, M. V., 1968, Biogermnie massivy v verchnejurskichotlozheniyach gornogo Krima i Severnogo Kavkaza,Iskopaemie rifi i metodika ich izuchenya. Trudy treteipaleoekologo–litologicheskoi sessii: Moscow, Uraliskii Filial Akademii Nauk SSSR, p. 196–209.

Mistaen, B., 1985, Phénomènes récifaux dans le Dévoniend’Afghanistan (Montagnes Centrales): Societe Géologie duNord, v. 11, 381 p.

Moore, P. F., 1989, Devonian reefs in Canada and some adjacentareas, i n H. H. J. Geldsetzer, N. P. James, and G. E. Tebbutt,eds., Reefs—Canada and adjacent areas: Canadian Society of 

Petroleum Geologists Memoir, v. 13, p. 367–390.Morris, A., 1996, A review of palaeomagnetic research in theTroodos ophiolite, Cyprus, i n  A. Morris and D. H. Tarling,eds., Palaeomagnetism and tectonics of the Mediterraneanregion: Geological Society of London Special Publicationno. 105, p. 311–324.

Mutti, M., and H. Weissert, 1995, Triassic monsoonal climate andits signature in Ladinian–Carnian carbonate platforms(southern Alps, Italy): Journal of Sedimentary Research, v. B65,p. 357–367.

Newell, N. D., 1971, An outline history of tropical organic reefs: American Museum Novitates, v. 2465, p. 1–37.

Parrish, J. T., and R. L. Curtis, 1982, Atmospheric circulation,upwelling, and organic-rich rocks in the Mesozoic and

Kiessling et al. 1585

Page 35: Paleoreef Maps Evaluation of a Comprehensive Database

7/23/2019 Paleoreef Maps Evaluation of a Comprehensive Database

http://slidepdf.com/reader/full/paleoreef-maps-evaluation-of-a-comprehensive-database 35/36

Cenozoic eras: Palaeogeography, Palaeoclimatology,Palaeoecology, v. 40, p. 31–66.

Paulay, G., 1997, Diversity and distribution of reef organisms, i n 

C. Birkeland, ed., Life and death of coral reefs: London,Chapman and Hall, p. 298–353.

Philip, J., J.-P. Masse, and G. Camoin, 1996, Tethyan carbonateplatforms, i n  A. E. M. Nairn, L.-E. Ricou, B. Vrielnyck, and J. Dercourt, eds., The oceans basins and margin, v. 8, theTethys Ocean: New York, Plenum Press, p. 239–266.

Pisera, A., 1985, Paleoecology and lithogenesis of the middleMiocene (Badenian) algal-vermetid reefs from the Roztocze Hills,south-eastern Poland: Acta Geologica Polonica, v. 35, p. 89–155.

Pisera, A., 1996, Miocene reefs of the Paratethys: a review, i n 

E. K. Franseen, M. Esteban, W. C. Ward, and J.-M. Rouchy,eds., Models for carbonate stratigraphy from Miocene reef complexes of Mediterranean regions: SEPM, Concepts inSedimentology and Paleontology, v. 5, p. 97–104.

Playford, P. E., 1980, Devonian “Great Barrier Reef” of Canningbasin, Western Australia: AAPG Bulletin, v. 64, p. 814–840.

Pomar, L., 1991, Reef geometries, erosion surfaces and high-frequency sea-level changes, upper Miocene reef complex,Mallorca, Spain: Sedimentology, v. 38, p. 243–269.

Pomar, L., W. C. Ward, and D. G. Green, 1996, Upper Miocenereef complex of the Llucmajor area, Mallorca, Spain, i n E. K.Franseen, M. Esteban, W. C. Ward, and J.-M. Rouchy, eds.,

Models for carbonate stratigraphy from Miocene reef complexes of Mediterranean regions: SEPM, Concepts inSedimentology and Paleontology, v. 5, p. 191–225.

Pratt, B. R., and L. F. Jansa, 1989, Upper Jurassic shallow waterreefs of offshore Nova Scotia, i n H. H. J. Geldsetzer, N. P. James, and G. E. Tebbutt, eds., Reefs—Canada and adjacentareas: Canadian Society of Petroleum Geologists Memoir, v. 13,p. 741–747.

Price, G. D., B. W. Sellwood, and P. J. Valdes, 1995,Sedimentological evaluation of general circulation modelsimulations for the “greenhouse” Earth: Cretaceous and Jurassiccase studies: Sedimentary Geology, v. 100, p. 159–180.

Ramos, V. A., 1978, Los arrecifes de la Formacion Cotidiano(Jurasico superior) en la Cordillera Patagonia y su significadopaleoclimatico: Ameghiniana, v. 15, p. 97–111.

Ricou, L.-E., 1996, The plate tectonic history of the past Tethys

Ocean, i n  A. E. M. Nairn, L.-E. Ricou, B. Vrielnyck, and J. Dercourt, eds., The oceans basins and margin, v. 8, theTethys Ocean: New York, Plenum Press, p. 9–70.

Ritter, S. M., and Morris, T. H., 1997, Oldest and lowest latitudinaloccurrence of Palaeoaplysina : Middle Pennsylvanian ElyLimestone, Burbank Hills, Utah: Palaios, v. 12, p. 397–401.

Robertson, A. H. F., and N. H. Woodcock, 1979, Mamoniacomplex, southwest Cyprus: evolution and emplacement of aMesozoic continental margin: Geological Society of AmericaBulletin, v. 90, p. 651–665.

Robertson, A. H. F., P. D. Clift, P. Degnan, and G. Jones, 1991,Paleogeographic and paleotectonic evolution of easternMediterranean neotethys: Palaeogeography, Palaeoclimatology,Palaeoecology, v. 87, p. 289–344.

Robertson, A. H. F., J. E. Dixon, S. Brown, A. Collins, A. Morris,E. A. Pickett, I. Sharp, and T. Ustaomer, 1996, Alternative

tectonic models for the late Palaeozoic–early Tertiarydevelopment of Tethys in the eastern Mediterranean region, i n  A. Morris and D. H. Tarling, eds., Palaeomagnetism andtectonics of the Mediterranean region: Geological Society of London Special Publication 105, p. 239–263.

Roehl, P. O., and P. W. Choquette, 1985, Introduction, i n P. O.Roehl and P. W. Choquette, eds., Carbonate petroleumreservoirs: New York, Springer-Verlag, p. 1–15.

Röhl, U., T. Dumont, U. von Rad, R. Martini, and L. Zaninetti,1991, Upper Triassic Tethyan carbonates off northwest Australia (Wombat plateau, ODP Leg 122): Facies, v. 25,p. 211–252.

Ross, C. A., and J. R. P. Ross, 1988, Late Paleozoic transgressive-regressive deposition, i n C. K. Wilgus, B. S. Hastings, C. G.

St. C. Kendall, H. W. Posamentier, C. A. Ross, and J. C. van Wagoner, eds., Sea-level changes—an integratedapproach: SEPM Special Publication no. 42, p. 227–247.

Ross, C. A., G. T. Moore, and D. N. Hayashida, 1992, Late Jurassicpaleoclimate simulation—paleoecological implications forammonoid provinciality: Palaios, v. 7, p. 487–507.

Rowland, S. M., and R. A. Gangloff, 1988, Structure andpaleoecology of Lower Cambrian reefs: Palaios, v. 3, p. 111–135.

Sengör, A. M. C., 1984, The Cimmeride orogenic system and the

tectonics of Eurasia: Geological Society of America SpecialPaper 195, 82 p.Sengör, A. M. C., Y. Yilmaz, and O. Sungurlu, 1984, Tectonics of 

the Mediterranean Cimmerides: nature and evolution of thewestern termination of paleo-Tethys, i n  J. E. Dixon and A. H.F. Robertson, eds., The geological evolution of the easternMediterranean: Oxford, Blackwell, p. 77–112.

Sheehan, P. M., 1985, Reefs are not so different—they follow theevolutionary pattern of level-bottom communities: Geology, v. 13, p. 46–49.

Sloss, L. L., 1963, Sequences in the cratonic interior of North America: Geological Society of America Bulletin, v. 74,p. 93–113.

Sloss, L. L., 1972, Synchrony of Phanerozoic sedimentary-tectonicevents of the North American craton and the Russian platform:24th International Geological Congress, Section 6, p. 24–32.

Soares, P. C., P. M. B. Landim, and V. J. Fulfaro, 1978, Tectoniccycles and sedimentary sequences in the Brazilianintracratonic basins: Geological Society of America Bulletin, v. 89, p. 181–191.

Stampfli, G., J. Marcoux, and A. Baud, 1991, Tethyan margins inspace and time: Palaeogeography, Palaeoclimatology,Palaeoecology, v. 87, p. 373–409.

Stanley, G. D., Jr., 1988, The history of early Mesozoic reef communities: a three-step process: Palaios, v. 3, p. 170–183.

Stanley, G. D., Jr., 1994, Late Paleozoic and early Mesozoic reef-building organisms and paleogeography: the Tethyan–North American connection: Courier Forschungs-Institut Sencken-berg, v. 172, p. 69–75.

Stanley, G. D., Jr., and P. K. Swart, 1995, Evolution of the coral-zooxanthellae symbiosis during the Triassic: a geochemicalapproach: Paleobiology, v. 21, p. 179–199.

Stanley, S. M., and L. A. Hardie, 1998, Secular oscillations in thecarbonate mineralogy of reef-building and sediment-producingorganisms driven by tectonically forced shifts in seawaterchemistry: Palaeogeography, Palaeoclimatology, Palaeoecology, v. 144, p. 3–19.

Sun, S. Q., 1992, Skeletal aragonite dissolution from hypersalineseawater: a hypothesis: Sedimentary Geology, v. 77, p. 249–257.

Sun, S. Q., and M. Esteban, 1994, Paleoclimatic controls onsedimentation, diagenesis, and reservoir quality: lessons fromMiocene carbonates: AAPG Bulletin, v. 78, p. 519–543.

Sun, S. Q., and V. P. Wright, 1998, Controls on reservoir quality of an Upper Jurassic reef mound in the Palmers Wood field area,Weald basin, southern England: AAPG Bulletin, v. 82,p. 497–515.

Talent, J. A., 1988, Organic reef-building: episodes of extinctionand symbiosis?: Senckenbergiana lethaea, v. 69, p. 315–368.

Teichert, C., 1958, Cold- and deep-water coral banks: AAPGBulletin, v. 42, p. 1064–1082. Vail, P. R., R. M. J. Mitchum, R. G. Todd, J. M. Widmier, S. I.

Thompson, J. B. Sangree, J. N. Bubb, and W. G. Hatlelid, 1977,Seismic stratigraphy and global changes of sea-level, i n C. E.Payton, ed., Seismic stratigraphy—applications to hydrocarbonexploration: AAPG Memoir 26, p. 49–212.

 Vakhrameev, V. A., 1991, Jurassic and Cretaceous floras andclimates of the Earth: Cambridge, Cambridge University Press,318 p.

 Vermeij, G. J., 1977, The Mesozoic marine revolution: evidencefrom snails, predators and grazers: Paleobiology, v. 3,p. 245–258.

 Vinassa de Regny, P., 1915, Triadische Algen, Spongien,

1586 Paleoreef Maps

Page 36: Paleoreef Maps Evaluation of a Comprehensive Database

7/23/2019 Paleoreef Maps Evaluation of a Comprehensive Database

http://slidepdf.com/reader/full/paleoreef-maps-evaluation-of-a-comprehensive-database 36/36

 Anthozoen und Bryozoen aus Timor: Palaeontologie vonTimor, v. 4/8, p. 75–117.

 Vogel, K., 1993, Bioeroders in fossil reefs: Facies, v. 28, p. 109–114.Watkins, R., and E. C. Wilson, 1989, Paleoecologic and

biogeographic significance of the biostromal Palaeoaplysina 

in the lower McCloud Limestone, eastern Klamath Mou:Palaios, v. 4, p. 181–192.

Webb, G. E., 1996, Was Phanerozoic reef history controlled bythe distribution of nonenzymatically secreted reef carbonates

(microbial carbonate and biologically induced cement)?:Sedimentology, v. 43, p. 947–971.Wendt, J., Z. Belka, B. Kaufmann, R. Kostrewa, and J. Hayer,

1997, The world’s most spectacular carbonate mud mounds

(Middle Devonian, Algerian Sahara): Journal of SedimentaryResearch, section A, v. 67, p. 424–436.

Whalen, M. T., 1995, Barred basins: a model for eastern oceanbasin carbonate platforms: Geology, v. 23, p. 625–628.

Wilson, J. L., 1975, Carbonate facies in geologic history: Berlin,Springer-Verlag, 471 p.

Wood, R., 1993, Nutrients, predation and the history of reef-building: Palaios, v. 8, p. 526–543.

Wood, R., 1995, The changing biology of reef-building: Palaios,

 v. 10, p. 517–529.Zankl, H., 1977, Quantitative aspects of carbonate production in aTriassic reef complex: Proceedings of the Third InternationalCoral Reef Symposium, v. 2, p. 379–382.

Kiessling et al. 1587

 Wolfgang Kiessling

Wolfgang Kiessling is currently apostdoctoral fellow at HumboldtUniversity in Berlin. He has been aresearch associate at the University of Erlangen, where he received hisPh.D. in 1995. Previously, he workedas consultant for Shell PhilippinesExploration. His major research inter-ests are ecosystem evolution, marinepaleoecology, micropaleontology,and carbonate sedimentology.

Erik Flügel

Erik Flügel is full professor of paleontology and head of the Instituteof Paleontology at the Erlangen-

Nürnberg University. He is editor of the international journal Facies . Hehas worked on microfacies analysisand depositional models of carbon-ate rocks, calcareous algae, paleoe-cology of Permian–Jurassic reefs inthe Alpine-Mediterranean region,and in the field of archeometry. Hiscurrent research interests are the evolution of Phanerozoicreefs and the integration of microfacies data into appliedfacies concepts.

 Jan Golonka

 Jan Golonka is a senior lecturer atthe Jagiellonian University in Krakow,Poland. He received his M. Sc. degree(1967) from the University of Miningand Metallurgy, and Ph.D. (1978)from the Geological Institute, Poland.From 1967 to 1981 he was a universi-ty lecturer and research geologist inthe Geological Institute. He workedfor Mobil in Dallas from 1982 to 1999.His research interests focus on paleo-geography, plate tectonics, paleoclimatology, and global andregional geology.

 ABOUTTHEAUTHORS