panel method for mixed configurations with finite thickness with zero thickness

Upload: nadji-chi

Post on 07-Aug-2018

212 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/20/2019 Panel Method for Mixed Configurations With Finite Thickness With Zero Thickness

    1/8

    Panel method for mixed congurations with  nite thicknessand zero thickness

     José M. Ezquerro, Victoria Lapuerta n, Ana Laverón-Simavilla, José M. García, Taisir Avilés

    Universidad Politécnica de Madrid, Plaza de Cardenal Cisneros, 3, 28040 Madrid, Spain

    a r t i c l e i n f o

     Article history:

    Received 23 July 2013

    Received in revised form10 January 2014

    Accepted 10 April 2014Available online 8 May 2014

    Keywords:

    Aerodynamics

    Panel method

    Mixed conguration

    Potential  ow

    a b s t r a c t

    Panel methods are well-known methods for solving potential   uid   ow problems. However, mixed

    congurations of obstacles with   nite thickness and zero thickness have not been solved with these

    methods. Such congurations arise naturally in delta wings, sailing boats, and even in complete aircraftaerodynamics. In this work, a new numerical approach is proposed for solving 2D mixed congurations

    of obstacles with  nite thickness and zero thickness. The method is based on the Dirichlet and Neumann

    formulations and is checked by comparison with analytical results.

    &   2014 Elsevier Ltd. All rights reserved.

    1. Introduction

    Methods for solving potential   uid   ows are frequently used in

    engineering practices, mainly for preliminary design. Although non-

    potential models like CFDs (Computational Fluid Dynamics) are wide-

    spread, they require long calculation times and the results are notalways reliable so inputs from potential methods are often needed.

    One of the most developed potential methods is the panel

    method   [1–3]. The main advantage of this method is that it

    reduces the dimension of the problem by one order, so the

    numerical cost is very low compared with non-potential methods.

    The panel methods allow one to calculate numerically the

    solution of any given problem as long as the velocity potential

    satises the Laplace equation. There has been much work and

    many numerical codes based on panel methods  [4–11]   since the

    pioneering work of Hess and Smith  [4].

    The panel method based on Green's formula was   rst intro-

    duced in the work of Morino and Kuo   [5], in which the primary

    unknown was the velocity potential. There are two main formula-

    tions of panel methods based on Green's formula: Neumann andDirichlet [3]. The Dirichlet formulation solves the Laplace equation

    numerically and the velocity potential is obtained. However,

    with the Neumann formulation only differences of potential are

    obtained. Dirichlet formulation is more stable, more suitable to

    numerical computation than Neumann formulation and leads to

    numerical errors of smaller order of magnitude.

    However, these formulations cannot be directly applied to

    mixed congurations of both   nite and zero thickness, such as

    the mast and the sail of a sailing boat, traf c signs [12], delta wings

    or congurations like Gurney   aps [13]. In   [14]  a distribution of 

    vortices is used to model the surface of a mast and sail and sources

    and sinks are used to represent the  ow separation, which is justan empirical  t to data from wind tunnel and is not related to the

    subject of this paper. Nevertheless, in this work we show that

    methods based on discrete vortex do not recover correctly the  ow

    around mixed two-dimensional congurations.

    In this paper a numerical scheme for mixed two-dimensional

    (2D) congurations of   nite and zero-thickness bodies is pre-

    sented. This method does not introduce spurious singularities in

    the numerical resolution and gives very good precision results,

    even for very thin airfoils or airfoils with cusped trailing edge.

    The paper is organized as follows: in  Section 2   Dirichlet and

    Neumann formulations are reviewed. In Section 3 a new numerical

    scheme for mixed two-dimensional (2D) congurations of   nite

    thickness and zero-thickness bodies is presented. This formulation

    is also applicable to bodies without thickness, providing moreprecise results than the discrete vortex solution. In   Section 4   an

    analytical solution is calculated in order to check the results

    and the precision of the numerical method. Section 5 is dedicated

    to the analysis of the results and,   nally, in   Section 6   the main

    conclusions are extracted.

    2. Review of Dirichlet and Neumann formulations

    In this section Dirichlet and Neumann formulations are reviewed

    and reformulated.

    Contents lists available at  ScienceDirect

    journal homepage:   www.elsevier.com/locate/enganabound

    Engineering Analysis with Boundary Elements

    http://dx.doi.org/10.1016/j.enganabound.2014.04.011

    0955-7997/& 2014 Elsevier Ltd. All rights reserved.

    n Corresponding author.

    E-mail addresses:  [email protected] (J.M. Ezquerro),

    [email protected] (V. Lapuerta),

    [email protected] (A. Laverón-Simavilla),  [email protected] (T. Avilés).

    Engineering Analysis with Boundary Elements 44 (2014) 28–35

    http://www.sciencedirect.com/science/journal/09557997http://www.elsevier.com/locate/enganaboundhttp://dx.doi.org/10.1016/j.enganabound.2014.04.011mailto:[email protected]:[email protected]:[email protected]:[email protected]://dx.doi.org/10.1016/j.enganabound.2014.04.011http://dx.doi.org/10.1016/j.enganabound.2014.04.011http://dx.doi.org/10.1016/j.enganabound.2014.04.011http://dx.doi.org/10.1016/j.enganabound.2014.04.011mailto:[email protected]:[email protected]:[email protected]:[email protected]://crossmark.crossref.org/dialog/?doi=10.1016/j.enganabound.2014.04.011&domain=pdfhttp://crossmark.crossref.org/dialog/?doi=10.1016/j.enganabound.2014.04.011&domain=pdfhttp://crossmark.crossref.org/dialog/?doi=10.1016/j.enganabound.2014.04.011&domain=pdfhttp://dx.doi.org/10.1016/j.enganabound.2014.04.011http://dx.doi.org/10.1016/j.enganabound.2014.04.011http://dx.doi.org/10.1016/j.enganabound.2014.04.011http://www.elsevier.com/locate/enganaboundhttp://www.sciencedirect.com/science/journal/09557997

  • 8/20/2019 Panel Method for Mixed Configurations With Finite Thickness With Zero Thickness

    2/8

     2.1. Dirichlet formulation for  nite-thickness bodies

    The formulation is based on Green's integral equation  [3],

    Φð x pÞ ¼

    Z  Σ B

    Φ∇Φm  n ds

    Z  Σ W 

    ðΦþ Φ Þ∇Φm  n ds þΦ1   ð1Þ

    where   Φ   is the velocity potential at a generic point   P , of 

    coordinates   x p, outside the body (see   Fig. 1),   n   is the normalvector dened such that it always points into the  uid region, Φ1is the potential of the stationary   uid far enough from the body,

    Φþ is the velocity potential on the upper side of the discontinuitysurface, Σ w, and  Φ

    on the lower one.  Φm  is the potential at  x pdue to sources located at the body or at the discontinuity surface

    with unit strength and   ∇Φm  n   is the potential at   x p   due todoublets located at the body or at the discontinuity surface with

    their axes perpendicular to the  Σ B   or  Σ w  surfaces. The internalpotential inside the body has been considered zero. The velocity

    potential dened by Eq. (1) already fullls the zero normal velocity

    at the body boundary (∂Φ=∂n ¼ 0).Eq. (1)  represents the velocity potential  Φ  of a distribution of 

    doublets on both the surface of the body and the discontinuity

    surface, with axis  n  and intensities  Φ  and  Φþ Φ , respectively.The solution of this integral equation is obtained by letting   x ptend to Σ B.

    The basic idea of this method consists in solving Green's

    integral equation by discretization of the body: the body is

    replaced by   N   straight panels, see   Fig. 2, and it is assumed that

    the velocity potential  Φ   is constant on each panel,  Φ j, whichcorrespond to a constant distribution of doublets along the panel.

    Each panel is dened by two limiting nodes placed on the body

    surface, whose coordinates are  ð x j; z  jÞ. In the middle point of each

    panel a collocation point is placed,  ð xcp j ; z cp j Þ. The numbering of the

    panels is in a clockwise sense, panel  N ¼1 being the  rst panel of 

    the lower surface starting from the trailing edge of the obstacle.

    The discontinuity surface is modeled as a single panel of innite

    length (it is numbered panel  N þ 1).

    In this formulation the unknown variables of the problem arethe velocity potential values on each panel,  Φ j. The equationswhich have to be solved are obtained by particularizing Eq.  (1)  on

    the collocation points. The problem is reduced to an algebraic

    system of equations:

    Φk ¼ Φ1k    ∑N 

     j  ¼  1

    Φ j2π 

    Z  panel j

     x  x cpk j x  x cpk j

    2

    n ds ΦN  Φ1

    2π 

    Z  panel N þ 1

     x  x cpk j x  x cpk j

    2  n ds   ð2Þ

    where Φ1k  is the potential of the stationary  uid far enough fromthe body calculated in the collocation points. Using an angular

    reference parallel to the discontinuity surface panel and a local

    frame attached to each panel (see Fig. 3), Eq. (2)  can be reformu-

    lated as

    Φk ¼ Φ1k þ   ∑N 

     j  ¼  1

    Φ j2π 

    ðθ  jkF  θ 

     jkI Þ þ

    ΦN  Φ12π 

      θ 1k   ð3Þ

    where θ kF  j , θ kI 

     j and θ 1k   are dened in Fig. 3. Note that the velocity

    potential of each panel, given by the term   ðΦ j=2π Þðθ  jkF  θ 

     jkI Þ   in

    Eq.   (3), does not introduce any discontinuity in the   uid   ow.

    It introduces a discontinuity segment, the straight line between

    the two nodes  j  and  j þ1, which models the surface of the body.

    The velocity potential value changes from   Φ j=2 in the uppersurface to   Φ j=2 in the lower surface of the panel since  θ 

     jkF  θ 

     jkI 

     jumps from π  to  π . As mentioned above, in order to solve Eq.  (1),the point x p, in the  ow outside the body, tends to the collocation

    points over the body, therefore the potential on the upper surface

    of the panel, Φ j=2, which is the potential of the outer  ow around

    the discretized body, is selected hereafter. The only discontinuityline in the  uid domain is the discontinuity surface which starts in

    the trailing edge of the prole and ends at innity.

     2.2. Neumann formulation for zero-thickness bodies

    Nowadays, the potential methods most widely used to solve

    zero-thickness bodies are the vortex-lattice method for 3D con-gurations and the discrete vortex method for 2D congurations

    [3]. These methods can be derived from the Neumann formulation,

    but some information of Green's integral is lost in the derivation

    and the errors are larger than those obtained using the Dirichlet

    formulation.

    Here Neumann equations are reformulated by modeling the

    zero-thickness bodies by panels with two wet faces (see   Fig. 4),as a degenerate boundary [15].

    Eq. (3)  leads to

    2πΦk ¼ 2πΦ1k þ   ∑ j ¼  N 

     j  ¼  1

    Φ jðθ  jkF  θ 

     jkI Þ þðΦN  Φ1Þθ 

    1

    k   ð4Þ

    and expanding the summation and the discontinuity term,

    ∑ j ¼  N 

     j  ¼  1

    Φ jðθ  jkF  θ 

     jkI Þ þðΦN  Φ1Þθ 

    1

    k   ¼Φ1ðθ 1kF  θ 

    1kI  θ 

    1

    k   Þ

    þΦN ðθ N kF  θ 

    N kI  þθ 

    1k   Þ þ   ∑

     j  ¼  N =2

     j  ¼  2

    Φ jðθ  jkF  θ 

     jkI Þ þ   ∑

     j  ¼  N  1

     j  ¼  N =2 þ 1

    Φ jðθ  jkF  θ 

     jkI Þ

    ð5Þ

    Fig. 1.   Fluid domain in Green’s integral equation.

    Fig. 2.   Discretization of geometry for a  nite-thickness obstacle.

    Fig. 3.   Denition of  θ kF 

     j ,  θ kI 

     j and  θ 1k

      .

     J.M. Ezquerro et al. / Engineering Analysis with Boundary Elements 44 (2014) 28– 35   29

  • 8/20/2019 Panel Method for Mixed Configurations With Finite Thickness With Zero Thickness

    3/8

    By using,

    θ 1kI  þθ 1k   ¼ 0   ð6Þ

    θ N kF  þθ 1

    k   ¼ 0   ð7Þ

    θ  jkI  ¼ θ N þ 1  jkF    ð8Þ

    and being γ  j the potential jump between upper and lower surfacesof the same panel,

    γ  j ¼ Φ j ΦN þ 1  j   ð9Þ

    then, Eq. (5)  can be rewritten as

    ∑ j  ¼  N 

     j ¼  1

    Φ jðθ  jkF  θ 

     jkI Þ þðΦN  Φ1Þθ 

    1k   ¼ γ N θ 

    N kI  þ   ∑

     j ¼  N  1

     j  ¼  N =2 þ 1

    γ  jðθ  jkF  θ 

     jkI Þ

    ð10Þ

    By introducing Eq.   (10)   in Eq.   (4)   and imposing the boundary

    condition over the body at the collocation point  k,

    ∇Φk  nk  ¼ 0   ð11Þ

    this leads to

    0 ¼ 2π ∇Φ1k   nk  γ N θ 0N kI  þ   ∑

     j ¼  N  1

     j  ¼  N =2 þ 1

    γ  jðθ 0 jkF  θ 

    0 jkI Þ ð12Þ

    where

    ∇ x k θ  j

    k  nk  ¼ θ 0 j

    k   ð13Þ

    and the Kutta condition,

    γ N þ 1 γ N  ¼ 0   ð14Þ

    has been imposed.

    Renaming the panels in the sum in order to begin from the

    leading edge of the airfoil, reordering terms in Eq.   (12)   and

    changing the dummy index   j   to   l ¼ j N =2 we   nally have the

    algebraic system of equations that allows one to obtain M  values of 

    the jump of the potential. It is remarkable that with Neumann

    conditions the   N  unknowns of the potential cannot be obtained,

    but only   M ¼N /2 unknowns: the jump of potential between the

    faces of the panels,  γ l:

    γ M θ 0M kI     ∑

    l ¼  M  1

    l ¼  1γ lðθ 

    0lkF  θ 

    0lkI Þ ¼ 2π ∇Φ1k   nk    ð15Þ

    3. Method for mixed nite-thickness and zero-thickness

    bodies

    In this section a new formulation is developed to solve zero-

    thickness bodies and mixed congurations with both   nite-

    thickness and zero-thickness bodies.

     3.1. Mixed Dirichlet –Neumann formulation for zero-thickness bodies

    Here we obtain a new formulation for zero-thickness bodies.

    First, Eq.  (3)   is duplicated and applied at the collocation points  k

    situated on the lower surface,  krN =2, and upper surface, k4N =2:

    Φk ¼ Φ1k þ  ∑N =2

     j  ¼  1 ja k

    Φ j2π 

    ðθ  jkF  θ 

     jkI Þ þ   ∑

     j  ¼  N =2 þ 1 jaN  þ 1 þ k

    Φ j2π 

    ðθ  jkF  θ 

     jkI Þ

    þΦk2

      þΦN þ 1 k

    2  þ

    ΦN  Φ12π 

      θ 1k   ;   krN 

    2  ð16Þ

    Φk ¼ Φ1k þ   ∑N =2

     j  ¼  1 jaN  þ 1 þ k

    Φ j

    2π 

    ðθ  jkF  θ 

     jkI Þ þ   ∑

     j  ¼  N =2 þ 1 ja k

    Φ j

    2π 

    ðθ  jkF  θ 

     jkI Þ

    þΦk2

      þΦN þ 1 k

    2  þ

    ΦN  Φ12π 

      θ 1k   ;   k4N 

    2  ð17Þ

    setting,

    l ¼ N þ 1 j   ð18Þ

    and introducing it into the  rst sum of Eqs. (16) and (17) we have

    Φk ¼ Φ1k þ   ∑N =2 þ 1

    l  ¼  N la k

    Φl2π 

    ðθ lkF  θ 

    lkI Þ þ   ∑

     j  ¼  N =2 þ 1 jaN  þ 1 k

    Φ j2π 

    ðθ  jkF  θ 

     jkI Þ

    þΦk2

      þΦN þ 1 k

    2  þ

    ΦN  Φ12π 

      θ 1k   ;   krN 

    2  ð19Þ

    Φk ¼ Φ1k þ   ∑

    N =2 þ 1

    l  ¼  N la k

    Φl2π ðθ 

    l

    kF  θ l

    kI Þ þ   ∑

     j  ¼  N =2 þ 1 ja k

    Φ j2π ðθ 

     j

    kF  θ  j

    kI Þ

    þΦk2

      þΦN þ 1 k

    2  þ

    ΦN  Φ12π 

      θ 1k   ;   k4N 

    2:   ð20Þ

    Reversing the order in the  rst sum of Eqs. (19) and (20), taking

    into account

    θ  jkF  θ  jkI  ¼ ðθ 

    N þ 1  jkF    θ 

    N þ 1  jkI    Þ;   ð21Þ

    noting that  k  is the same point on the lower and upper surfaces

    and identifying the corresponding potentials on the upper surface

    (Φþk  ) and lower surface (Φk   ), then become

    Φk   ¼Φ1k þ   ∑N 

     j  ¼  N =2 þ 1 ja k

    Φþ j   Φ

     j

    2π   ðθ 

     jkF  θ 

     jkI Þ

    þΦk

    2  þ

    Φþk2

      þΦN  Φ1

    2π   θ 

    1

    k   ð22Þ

    Φþk   ¼Φ1k þ   ∑N 

     j  ¼  N =2 þ 1 ja k

    Φþ j   Φ

     j

    2π   ðθ  jkF  θ 

     jkI Þ

    þΦþk

    2  þ

    Φk2

      þΦN  Φ1

    2π   θ 

    1

    k   ð23Þ

    Finally, using γ  j ¼ Φþ

     j   Φ

     j   , as dened in the previous section,

    we have

    Φk   ¼Φ1k þ  ∑M 

     j  ¼  1 jak

    γ  j2π 

    ðθ  jkF  θ 

     jkI Þ

    γ  j2

    þγ M 2π 

    θ 1k   ð24Þ

    Φþk   ¼Φ1k þ  ∑M 

     j  ¼  1 jak

    γ  j2π 

    ðθ  jkF  θ  jkI Þ þ

    γ  j2

    þγ M 2π 

    θ 1k   ð25Þ

    This system needs the Neumann formulation for zero-thick-

    ness bodies, formulated in the previous section, so the combined

    equation system is composed by Eqs. (15), (24) and (25).

    The velocity on each side of the body can be calculated using

    V 7i   ¼Φ7i 1 Φ

    7

    i

    c i;   i ¼ 2;…N ;   ð26Þ

    where  c i  is the length of each panel. The pressure coef cient can

    be calculated on the lower and upper surfaces with

    c 7 pi   ¼ 1  V 7i

    V 1 2

    :   ð27Þ

    Fig. 4.   Discretization of geometry for a zero thickness obstacle.

     J.M. Ezquerro et al. / Engineering Analysis with Boundary Elements 44 (2014) 28– 3530

  • 8/20/2019 Panel Method for Mixed Configurations With Finite Thickness With Zero Thickness

    4/8

     3.2. Formulation for mixed nite-thickness and zero-thickness bodies

    The geometry of the body is shown in Fig. 5. The zero-thickness

    part of the body is modeled by   M   panels numbered from the

    trailing edge of the   nite-thickness airfoil towards the trailing

    edge of the airfoil itself and with normal vectors pointing

    upwards. The   nite-thickness part is divided into   N    panels

    numbered clockwise and starting from the lower surface trailing

    edge. The normal vector for the panels in the zero-thickness part

    points towards the upper surface. The discontinuity surface is

    taken as panel N þM þ1 and its normal vector is oriented upwards.

    As in the previous case, a collocation point is placed at the center

    of each panel.

    The solution of the coupled problem is achieved by calculating

    the potential jump at each of the panels with Eq. (15) and equating

    the potential of the inner surface of the  nite-thickness panels to

    the internal potential, that is, zero. Finally, a set of algebraic

    equations is obtained,

    γ N þ M θ 0N þ M kI      ∑

     j  ¼  N þ M  1

     j ¼  1

    γ  jðθ 0 jkF  θ 

    0 jkI Þ ¼ 2π ∇Φ1k   nk ;

    k ¼ N þ 1;…N þ M    ð28Þ

    ∑ j ¼  N þ M 

     j  ¼  1 ja k

    γ  j2π 

    ðθ  jkF  θ 

     jkI Þ

    γ k2

     þγ N þ M 

    2π   θ 1k   ¼ Φ1k ;   k ¼ 1;…N :   ð29Þ

    In matrix form,

    ½ A jk

    fγ  jg ¼ fbg ð30Þ

    The potential of each panel is easily obtained with Eq.   (25), andtaking into account the denition of the jump of the potential,

    Eq. (9), we have

    for   k ¼ 1;…; N 

    Φþk   ¼ γ k   ð31Þ

    Φk   ¼Φi ¼ 0   ð32Þ

    and for   k ¼ N þ1;…; N þM ;

    Φþk   ¼Φ1k þ   ∑ j  ¼  N þ M 

     j  ¼  1 ja k

    γ  j2π 

    ðθ  jkF  θ 

     jkI Þ þ

    γ k2

     þγ N þ M 

    2π   θ 

    1

    k   ð33Þ

    Φk   ¼Φþk   γ k   ð34Þ

    4. Analytical solution

    In order to validate the numerical scheme proposed for mixed

    zero-thickness and   nite-thickness congurations an analytical

    expression is obtained for the conguration presented at the top of 

    Fig. 6, which consists of a curved airfoil and a camber line. Next,

    the complete transformation outlined in Fig. 6 is described.

    First, to obtain curved airfoils, a generalized Karman–Trefftz

    transformation is used to map a symmetric conguration formed

    by a circular body and a at plate (t -plane) into a curved airfoil and

    a camber line (s-plane).

    The whole conguration in the   t -plane is rotated an angle, β , about the origin,

     β ¼ arctan  aδ  ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

    R2 ðaδ Þ2q 

    0B@

    1CA ð35Þ

    and translated to point   t 0 ¼ að  λþiδ Þ, where   δ   is the camberparameter of Karman–Trefftz transformation,   λ   is the thickness

    parameter of Karman–Trefftz transformation, R  is the radius of the

    circular body and   a ¼ R=

     ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið1þ λÞ2 þδ 2

    q   . Then, the Karman–Trefftz

    transformation leads to

    s¼ ka1þc 

    1c   ð36Þ

    where

    c ¼  ðte i β þt 0Þ a

    ðte i β þt 0Þ þa

    !kð37Þ

    and 1rkr2.

    The second transformation, a Joukowski transformation from

    the t -plane to the τ -plane, maps the circle and zero-thickness plateonto a single plate (see Fig. 6),

    τ ¼ t þR2

    t  

      l2

    2ðRþlÞ  ð38Þ

    The length of the plate in the  τ -plane is

    L ¼4RðRþlÞ þl2

    Rþl  ð39Þ

    The third transformation is a Joukowski transformation from

    the τ -plane to the Ω-plane, the inverse of which is

    τ ¼ Ωþ ρ2

     Ω  ð40Þ

    with  ρ ¼ L=4.The circle theorem is used and an appropriate vortex intensity

    is included to obtain the complex velocity potential in  Ω  plane,

     g ð ΩÞ ¼ U 1   Ωe iα þ

     ρ2

     Ω eiα 

    þ

    iΓ 

    2π   log  Ω   ð41Þ

    Γ  ¼ 4πρU 1   sin  α    ð42Þ

    Finally, the conjugate velocity is

    dg 

    ds¼

     dg 

    d Ωd Ω

    dτ dτ 

    dt 

    dt 

    ds¼

     dg 

    d Ω1

    dτ 

    d Ω

    dτ 

    dt 

    1

    ds

    dt 

    ð43Þ

    where

    dτ 

    d Ω  ¼ 1

     ρ2

     Ω2  ð44Þ

    dτ 

    dt   ¼ 1

    R2

    t 2  ð45Þ

    ds

    dt   ¼ 2ka

    ððte i β þt 0Þ aÞk 1

    ððte i β þt 0Þ þ aÞ3

      e i β  ð46Þ

    5. Results and discussion

    Fig. 7   compares the pressure coef cient from the analytical

    solution described in   Section 4   with the pressure coef cient

    obtained with the numerical scheme proposed in   Section 3. As

    this  gure shows, the agreement is very good even with only 59

    panels for the body and 31 for the plate. The amount of panels in

    Fig. 5.   Mixed conguration (thick and non-thick) panel discretization.

     J.M. Ezquerro et al. / Engineering Analysis with Boundary Elements 44 (2014) 28– 35   31

  • 8/20/2019 Panel Method for Mixed Configurations With Finite Thickness With Zero Thickness

    5/8

    the surfaces of the thick prole and the camber line is such that

    their lengths are approximately the same.To check the convergence of the method, the error in the

    circulation,  Γ , has been calculated. Note that the lift is propor-tional to the circulation.  Fig. 8   shows the relative error of the

    numerical method as a function of  N , being  Γ num ¼ ΦN  Φ1 . Theresults are very good. For example, for  N ¼100, the relative error is

    0.4% and for  N ¼500 the error is 0.07%.

    Fig. 9   compares the pressure coef cient from the analytical

    solution described in   Section 4   with the pressure coef cient

    obtained with the numerical scheme proposed in  Section 3   and

    with the result obtained using the discrete vortex method. All

    the calculations of the discrete vortex method presented in the

    paper have been performed using the standard method [3] (vortex

    placed at a quarter of the panel chord and collocation point

    at three quarters of the panel chord). The error in the pressure

    coef cient is calculated as error¼jc  p;numerical c  p;analyticalj   and is

    plotted in  Fig. 10  computed with each numerical method for anincreasing number of panels. These  gures show that:

    (i) The error in our method is signicantly smaller than the one

    in discrete vortex method, and the difference is more impor-

    tant for a small number of panels. Increasing the number of 

    panels in the discrete vortex method does not reduce the

    error to the level found in our method. For example, in the

    case of   Fig. 10(c), the mean relative error with respect to

    the analytical solution is: 1% in the upper surface and 0.2% in

    the lower surface calculated with our method, and 16% in the

    upper surface and 10% in the lower surface calculated with

    the discrete vortex method.

    (ii) When the number of panels increases, the error of the discrete

    vortex method decreases, but this method never recovers

    Fig. 6.   Complete conformal mapping transformation.

     J.M. Ezquerro et al. / Engineering Analysis with Boundary Elements 44 (2014) 28– 3532

  • 8/20/2019 Panel Method for Mixed Configurations With Finite Thickness With Zero Thickness

    6/8

    correctly the behavior in the junction between the   nite

    thickness and zero-thickness elements. The maximum error in

    the junction obtained with our method in case (a) is 0.4559 for

    C þ

     p   and 0.8388 for C 

     p  , in case (b) is 0.3641 for  C þ

     p   and 0.8354

    for C  p  , and in case (c) is 0.3131 for C þ

     p   and 0.6121 for C 

     p   . The

    maximum error in the junction obtained with the discrete

    vortex method in case (a) is 3.143 for  C þ p   and 4.367 for C 

     p   , in

    case (b) is 3.423 for C þ p   and 5.069 for C 

     p  , and in case (c) is 2.406

    for C þ p   and 3.819 for C 

     p   . Our method does signicantly better in

    the junction even with a small number of panels.

    Fig. 7.  Comparison of the pressure coef cient obtained with the analytical solution

    of  Section 4  and the mixed Dirichlet–Neumann numerical approach proposed in

    Section 3 (D–N) for  N ¼59, M ¼32. The parameters of the conguration are  α ¼121

    and l/R ¼7.

    Fig. 8.   Relative error in the circulation for the numerical approach proposed in

    Section 3. The parameters of the conguration are  α ¼121  and  l/R¼7.

    Fig. 9.   Pressure coef cient obtained with the analytical solution of  Section 4, the

    mixed Dirichlet–Neumann numerical approach proposed in Section 3  (D–N) and

    the discrete vortex method for   N ¼49,   M ¼17. The data of the conguration are

    α  β  ¼ 21, l/R¼3,  k ¼1.8,  λ¼0.05,  δ ¼0.3.

    Fig. 10.   Error in the pressure coef cient calculated with the mixed Dirichlet–

    Neumann numerical approach proposed in Section 3 (D–N) and the discrete vortex

    method for (a) N ¼49, M ¼17, (b) N ¼94, M ¼ 32 and (c) N ¼146, M ¼49. The data of 

    the conguration are  α  β  ¼ 21,  l/R¼3,  k ¼1.8,  λ¼0.05, δ ¼0.3.

     J.M. Ezquerro et al. / Engineering Analysis with Boundary Elements 44 (2014) 28– 35   33

  • 8/20/2019 Panel Method for Mixed Configurations With Finite Thickness With Zero Thickness

    7/8

    (iii) Our method ts much better than the discrete vortex method

    with the analytical solution in the  nite thickness part. This is

    because the order of magnitude of the error in the discrete

    vortex method is the same as the order of magnitude in

    the Neumann method error, which is higher than the order of 

    magnitude in the Dirichlet method error.

    Fig. 11   shows the pressure coef cient obtained using thenumerical approach of   Section 3 for a Karman–Trefftz body with

    a cosine-shaped camber line. Notice that in the lower surface the

    angle in the junction is greater than 1801, and therefore the

    velocity is innite, whereas in the upper surface the angle is

    smaller than 1801  and the velocity is zero. The method recovers

    correctly this behavior.

    Fig. 12  compares the pressure coef cient from the analytical

    solution described in   Section 4   with the pressure coef cient

    obtained with the numerical scheme proposed in   Section 3 for a

    very thin airfoil. The prole used is a Karman–Trefftz, with

    k ¼1.915, which gives an airfoil with 10.8% of maximum thickness

    and a trailing edge angle of 15.31. The pressure coef cient is

    calculated for an angle of the incident  ow of 51. We have used 60

    panels in the airfoil and 35 panels in the tail. As can be seen the

    numerical solution   ts extremely well with the analytical exact

    solution even for this very thin airfoil. It is well known that the

    discrete vortex method is not applicable to very thin congura-

    tions, as this one.

    The method here described is also capable of providing good

    results even for congurations with cusped trailing edges as can

    be seen in Fig. 13. In this  gure the pressure coef cient computed

    Fig. 11.   Pressure coef cient calculated with the mixed Dirichlet–Neumann numer-

    ical approach proposed in   Section 3   (D–N) for   N ¼59,   M ¼46. The data of the

    conguration are  α  β ¼ 21,  k ¼1.8,  λ¼0.19, δ ¼0.2.

    Fig.12.  Pressure coef cient calculated with the analytical solution of  Section 4 and

    the mixed Dirichlet–Neumann numerical approach proposed in Section 3 (D–N) for

    N ¼60, M ¼35. The data of the conguration are α  β  ¼ 51, l/R¼5, k ¼1.915, λ¼0.04,

    δ ¼0.

    Fig.13.   Pressure coef cient calculated with the analytical solution of  Section 4, the

    mixed Dirichlet–Neumann numerical approach proposed in  Section 3  ( D–N) and

    the discrete vortex method for (a)  N ¼31,  M ¼11, (b) N ¼80, M ¼ 26 and (c)  N ¼153,

    M ¼ 48. The data of the conguration are  α  β  ¼ 21

    ,  l/R¼3,  k ¼2,  λ ¼0.2,  δ ¼0.3.

     J.M. Ezquerro et al. / Engineering Analysis with Boundary Elements 44 (2014) 28– 3534

  • 8/20/2019 Panel Method for Mixed Configurations With Finite Thickness With Zero Thickness

    8/8

    with the discrete vortex method and our method is compared to

    the pressure coef cient obtained with the analytical solution, for

    an increasing number of panels. The error in the calculation of the

    pressure coef cient obtained with the numerical scheme and the

    discrete vortex method is shown in   Fig. 14, for an increasing

    number of panels. These  gures show that:

    (i) Our method ts much better than the discrete vortex method

    with the analytical solution. In fact, in the discrete vortex

    method the error increases when the number of panels

    increases and this method does not converge to the analytical

    solution. The maximum error in the junction obtained with

    our method in case (a) is 0.1787 for  C þ

     p   and 0.0970 for C 

     p   , incase (b) is 0.2313 for  C þ p   and 0.1256 for C 

     p   , and in case (c) is

    0.2368 for  C þ p   and 0.1457 for  C 

     p   . The maximum error in the

     junction obtained with the discrete vortex method in case

    (a) is 2.732 for C þ p   and 6.603 for C 

     p  , in case (b) is 4.183 for  C þ

     p

    and 2.456 for  C  p   , and in case (c) is 13.367 for  C þ

     p   and 5.583

    for  C  p   .

    (ii) Our method ts very well with the analytical solution even for

    a low number of panels. For increasing number of panels our

    method converges to the analytical solution, and the method

    performs well even near the junction.

    6. Conclusions

    In this work a new formulation for combined   nite-thickness

    and zero-thickness bodies has been developed. This formulation

    has been tested by comparison with analytical solutions and gives

    very good agreement even for very thin airfoils and airfoils with

    cusped trailing edge. The convergence of this new formulation has

    also been tested.

    The method can be very useful for preliminary design in all

    kinds of problems that combine both   nite-thickness and zero-

    thickness bodies; these include sailing boats, Gurney   ap cong-

    urations, and the study of realistic aircraft aerodynamics.

    References

    [1]  Hess JL. Panel methods in computational  uid dynamics. Annu Rev Fluid Mech1990;22(1):255–74.

    [2] Erickson LL. Panel methods—an introduction. NASA technical paper 2995;1990.

    [3]   Katz J, Plotkin A. Low-speed aerodynamics. New York: Cambridge UniversityPress; 2001.

    [4]   Hess JL, Smith AMO. Calculation of non-lifting potential   ow about arbitrarythree-dimensional bodies. J Ship Res 1964;8(2):22–44.

    [5]  Morino L, Kuo CC. Subsonic potential aerodynamics for complex congura-tions: a general theory. AIAA J 1974;12(2):191–7.

    [6] Rubbert PE, Saaris GR. A general three-dimensional potential   ow methodapplied to V/STOL Aerodynamics. SAE paper no. 680304; 1968.

    [7] Hess JL. Calculation of potential   ow about arbitrary 3-D lifting bodies.Douglas Aircraft Company. Report MDC-J5679-01; 1972.

    [8]   Morino L, Chen LT, Suciu EO. Steady and oscillatory subsonic and supersonicaerodynamics around complex congurations. AIAA J 1975;13(3):368–74.

    [9] Ehlers FE, Rubbert PE. A mach line panel method for computing the linearizedsupersonic  ow. NASA CR-152126; 1979.

    [10]   Hwang WS. A boundary node method for airfoils based on the Dirichletcondition. Comput Methods Appl Mech Eng 2000;190(13–14):1679–88.

    [11]  Ye W, Fei Y. On the convergence of the panel method for potential problemswith non-smooth domains. Eng Anal Bound Elem 2009;33(6):837–44.

    [12]   Sanz-Andrés A, Laverón-Simavilla A, Baker C, Quinn A. Vehicle-induced forceon pedestrian barriers. J Wind Eng Inderodyn 2004;92:413–26.

    [13]  Morishita E. Schwartz–Christoffel panel method. Trans Japan Soc AeronautSpace Sci 2004;47(156):153–7.

    [14]   Wilkinson S. Simple multilayer panel method for partially separated   owsaround two-dimensional masts and sails. AIAA J 1987;26(4):394–5.

    [15]  Chen JT, Hong HK. Review of dual boundary element methods with emphasison hypersingular integrals and divergent series. Appl Mech Rev 1999;52(1):17–33.

    Fig. 14.   Error in the pressure coef cient obtained with the mixed Dirichlet–

    Neumann numerical approach proposed in Section 3 (D–N) and the discrete vortex

    method (a) N ¼ 31, M ¼11, (b) N ¼80, M ¼ 26 and (c) N ¼153, M ¼48. The data of the

    conguration are  α  β  ¼ 21,  l/R¼ 3, k ¼2,  λ¼0.2,  δ ¼0.3.

     J.M. Ezquerro et al. / Engineering Analysis with Boundary Elements 44 (2014) 28– 35   35

    http://refhub.elsevier.com/S0955-7997(14)00088-5/sbref1http://refhub.elsevier.com/S0955-7997(14)00088-5/sbref1http://refhub.elsevier.com/S0955-7997(14)00088-5/sbref1http://refhub.elsevier.com/S0955-7997(14)00088-5/sbref1http://refhub.elsevier.com/S0955-7997(14)00088-5/sbref1http://refhub.elsevier.com/S0955-7997(14)00088-5/sbref1http://refhub.elsevier.com/S0955-7997(14)00088-5/sbref1http://refhub.elsevier.com/S0955-7997(14)00088-5/sbref3http://refhub.elsevier.com/S0955-7997(14)00088-5/sbref3http://refhub.elsevier.com/S0955-7997(14)00088-5/sbref3http://refhub.elsevier.com/S0955-7997(14)00088-5/sbref4http://refhub.elsevier.com/S0955-7997(14)00088-5/sbref4http://refhub.elsevier.com/S0955-7997(14)00088-5/sbref4http://refhub.elsevier.com/S0955-7997(14)00088-5/sbref4http://refhub.elsevier.com/S0955-7997(14)00088-5/sbref4http://refhub.elsevier.com/S0955-7997(14)00088-5/sbref4http://refhub.elsevier.com/S0955-7997(14)00088-5/sbref4http://refhub.elsevier.com/S0955-7997(14)00088-5/sbref5http://refhub.elsevier.com/S0955-7997(14)00088-5/sbref5http://refhub.elsevier.com/S0955-7997(14)00088-5/sbref5http://refhub.elsevier.com/S0955-7997(14)00088-5/sbref5http://refhub.elsevier.com/S0955-7997(14)00088-5/sbref5http://refhub.elsevier.com/S0955-7997(14)00088-5/sbref5http://refhub.elsevier.com/S0955-7997(14)00088-5/sbref5http://refhub.elsevier.com/S0955-7997(14)00088-5/sbref8http://refhub.elsevier.com/S0955-7997(14)00088-5/sbref8http://refhub.elsevier.com/S0955-7997(14)00088-5/sbref8http://refhub.elsevier.com/S0955-7997(14)00088-5/sbref8http://refhub.elsevier.com/S0955-7997(14)00088-5/sbref8http://refhub.elsevier.com/S0955-7997(14)00088-5/sbref8http://refhub.elsevier.com/S0955-7997(14)00088-5/sbref8http://refhub.elsevier.com/S0955-7997(14)00088-5/sbref10http://refhub.elsevier.com/S0955-7997(14)00088-5/sbref10http://refhub.elsevier.com/S0955-7997(14)00088-5/sbref10http://refhub.elsevier.com/S0955-7997(14)00088-5/sbref10http://refhub.elsevier.com/S0955-7997(14)00088-5/sbref10http://refhub.elsevier.com/S0955-7997(14)00088-5/sbref10http://refhub.elsevier.com/S0955-7997(14)00088-5/sbref10http://refhub.elsevier.com/S0955-7997(14)00088-5/sbref11http://refhub.elsevier.com/S0955-7997(14)00088-5/sbref11http://refhub.elsevier.com/S0955-7997(14)00088-5/sbref11http://refhub.elsevier.com/S0955-7997(14)00088-5/sbref11http://refhub.elsevier.com/S0955-7997(14)00088-5/sbref11http://refhub.elsevier.com/S0955-7997(14)00088-5/sbref12http://refhub.elsevier.com/S0955-7997(14)00088-5/sbref12http://refhub.elsevier.com/S0955-7997(14)00088-5/sbref12http://refhub.elsevier.com/S0955-7997(14)00088-5/sbref12http://refhub.elsevier.com/S0955-7997(14)00088-5/sbref12http://refhub.elsevier.com/S0955-7997(14)00088-5/sbref13http://refhub.elsevier.com/S0955-7997(14)00088-5/sbref13http://refhub.elsevier.com/S0955-7997(14)00088-5/sbref13http://refhub.elsevier.com/S0955-7997(14)00088-5/sbref13http://refhub.elsevier.com/S0955-7997(14)00088-5/sbref13http://refhub.elsevier.com/S0955-7997(14)00088-5/sbref13http://refhub.elsevier.com/S0955-7997(14)00088-5/sbref13http://refhub.elsevier.com/S0955-7997(14)00088-5/sbref14http://refhub.elsevier.com/S0955-7997(14)00088-5/sbref14http://refhub.elsevier.com/S0955-7997(14)00088-5/sbref14http://refhub.elsevier.com/S0955-7997(14)00088-5/sbref14http://refhub.elsevier.com/S0955-7997(14)00088-5/sbref14http://refhub.elsevier.com/S0955-7997(14)00088-5/sbref14http://refhub.elsevier.com/S0955-7997(14)00088-5/sbref14http://refhub.elsevier.com/S0955-7997(14)00088-5/sbref15http://refhub.elsevier.com/S0955-7997(14)00088-5/sbref15http://refhub.elsevier.com/S0955-7997(14)00088-5/sbref15http://refhub.elsevier.com/S0955-7997(14)00088-5/sbref15http://refhub.elsevier.com/S0955-7997(14)00088-5/sbref15http://refhub.elsevier.com/S0955-7997(14)00088-5/sbref15http://refhub.elsevier.com/S0955-7997(14)00088-5/sbref15http://refhub.elsevier.com/S0955-7997(14)00088-5/sbref15http://refhub.elsevier.com/S0955-7997(14)00088-5/sbref15http://refhub.elsevier.com/S0955-7997(14)00088-5/sbref14http://refhub.elsevier.com/S0955-7997(14)00088-5/sbref14http://refhub.elsevier.com/S0955-7997(14)00088-5/sbref13http://refhub.elsevier.com/S0955-7997(14)00088-5/sbref13http://refhub.elsevier.com/S0955-7997(14)00088-5/sbref12http://refhub.elsevier.com/S0955-7997(14)00088-5/sbref12http://refhub.elsevier.com/S0955-7997(14)00088-5/sbref11http://refhub.elsevier.com/S0955-7997(14)00088-5/sbref11http://refhub.elsevier.com/S0955-7997(14)00088-5/sbref10http://refhub.elsevier.com/S0955-7997(14)00088-5/sbref10http://refhub.elsevier.com/S0955-7997(14)00088-5/sbref8http://refhub.elsevier.com/S0955-7997(14)00088-5/sbref8http://refhub.elsevier.com/S0955-7997(14)00088-5/sbref5http://refhub.elsevier.com/S0955-7997(14)00088-5/sbref5http://refhub.elsevier.com/S0955-7997(14)00088-5/sbref4http://refhub.elsevier.com/S0955-7997(14)00088-5/sbref4http://refhub.elsevier.com/S0955-7997(14)00088-5/sbref3http://refhub.elsevier.com/S0955-7997(14)00088-5/sbref3http://refhub.elsevier.com/S0955-7997(14)00088-5/sbref1http://refhub.elsevier.com/S0955-7997(14)00088-5/sbref1