parameterizing dark energy z. huang, r. j. bond, l. kofman canadian institute of theoretical...

23
Parameterizing Dark Energy Z. Huang, R. J. Bond, L. Kofman Canadian Institute of Theoretical Astrophysics

Upload: jesse-bryant

Post on 18-Dec-2015

216 views

Category:

Documents


1 download

TRANSCRIPT

Page 1: Parameterizing Dark Energy Z. Huang, R. J. Bond, L. Kofman Canadian Institute of Theoretical Astrophysics

Parameterizing Dark Energy Z. Huang, R. J. Bond, L. Kofman

Canadian Institute of Theoretical Astrophysics

Page 2: Parameterizing Dark Energy Z. Huang, R. J. Bond, L. Kofman Canadian Institute of Theoretical Astrophysics

w - Dark Energy Equation of State

Constant w=w0 w(a)=w0+wa(1-a) Principal components

Data: CMB + SN + LSS + WL + Lya Code: modified cosmomc

w0 = -0.98 ± 0.05

s1=0.12 s2=0.32 s3=0.63

Page 3: Parameterizing Dark Energy Z. Huang, R. J. Bond, L. Kofman Canadian Institute of Theoretical Astrophysics

What we know about w

Phenomenologically• w is close to –1 at low redshift• Rich information at z<2, weak information at

2<z<4, almost no information at z>4• Results depend on parametrization. Need

theoretical priors.

What if we start from physics?

Page 4: Parameterizing Dark Energy Z. Huang, R. J. Bond, L. Kofman Canadian Institute of Theoretical Astrophysics

Use physics to solve problems

When Canadian plug does not fit UK socket…

Page 5: Parameterizing Dark Energy Z. Huang, R. J. Bond, L. Kofman Canadian Institute of Theoretical Astrophysics

Dynamics of Quintessence/Phantom

we do need assumptions

simplicity of w(a).

simplicity of V(φ).

Page 6: Parameterizing Dark Energy Z. Huang, R. J. Bond, L. Kofman Canadian Institute of Theoretical Astrophysics

Dynamics of Quintessence/Phantom

define

Field equation + Friedmann Equations

Popular story of quintessence: Fast rolling (large eV) in early universe (scaling regime); Slow rolling (small eV) in late universe.

Page 7: Parameterizing Dark Energy Z. Huang, R. J. Bond, L. Kofman Canadian Institute of Theoretical Astrophysics

Simplicity assumptions

1. V(f) is monotonic. 2. Quintessence rolls down (dV/dt<0). Phantom rolls up

(dV/dt>0).3. w is close to -1 at low redshift. Quantitatively, |1+w|<0.4 at

0<z<1.

4. V(f) is a “simple” function. Quantitatively, |hV| is less than or of the same order of either Planck scale or eV.

examples, V(f) = V0 exp(-lf)V(f) = V0 + V1 fV(f) = V0 fn (n=0,±1, ±2, ±3,…)

In the relevant redshift range (e.g. 0<z<4),

Page 8: Parameterizing Dark Energy Z. Huang, R. J. Bond, L. Kofman Canadian Institute of Theoretical Astrophysics

1-parameter parametrization• Additional assumption: slow-roll at 0<z<10

(initial velocity Hubble-damped at low redshift).

where

es>0, quintessence

es=0, cosmological constant

es<0, phantom

CMB + SN + LSS + WL + Lya

“average slope” es=<ev>

Page 9: Parameterizing Dark Energy Z. Huang, R. J. Bond, L. Kofman Canadian Institute of Theoretical Astrophysics

Initial velocity is damped by Hubble friction

Page 10: Parameterizing Dark Energy Z. Huang, R. J. Bond, L. Kofman Canadian Institute of Theoretical Astrophysics

Time variation of eV is not important

Given solution w(a) and eV(a), define trajectory variables:

• es= eV uniformly averaged at 1/3<a<1.

• ew = (1+w)/f(a/aeq). (remind: 1-param formula is wfit=-1+ es f(a/aeq))

Page 11: Parameterizing Dark Energy Z. Huang, R. J. Bond, L. Kofman Canadian Institute of Theoretical Astrophysics

Constraint Equation

• Define w0=w|

a=1,

wa=-dw/da|a=1

w0 and wa are functions of (es, Ωm).

Numerical fitting yields

Page 12: Parameterizing Dark Energy Z. Huang, R. J. Bond, L. Kofman Canadian Institute of Theoretical Astrophysics

binned SNe samples (192 samples)

Some w0-wa mimic cosmological constant

Page 13: Parameterizing Dark Energy Z. Huang, R. J. Bond, L. Kofman Canadian Institute of Theoretical Astrophysics

2-parameter parametrization• Assumption: slow-roll at 0<z<2 (with possible non-damped

velocity).

Hubble damping termCMB + SN + LSS + WL +

Lya

Page 14: Parameterizing Dark Energy Z. Huang, R. J. Bond, L. Kofman Canadian Institute of Theoretical Astrophysics

2-parameter parametrization - residual velocity at low redshift.

Page 15: Parameterizing Dark Energy Z. Huang, R. J. Bond, L. Kofman Canadian Institute of Theoretical Astrophysics

3-parameter parametrizationIn general eV varies. Assuming no oscillation , we model

Other corrections can only be numerically fitted:

•redefine aeq.

•O(θ3) term numerical fitting.

•as- es power suppression (if es and as are both large, the power of Hubble damping term would be suppressed).

When all smoke clears

Page 16: Parameterizing Dark Energy Z. Huang, R. J. Bond, L. Kofman Canadian Institute of Theoretical Astrophysics

3-parameter parametrization

Page 17: Parameterizing Dark Energy Z. Huang, R. J. Bond, L. Kofman Canadian Institute of Theoretical Astrophysics

3-parameter fitting

• Perfectly fits slow-to-moderate roll.

Page 18: Parameterizing Dark Energy Z. Huang, R. J. Bond, L. Kofman Canadian Institute of Theoretical Astrophysics

Fit wild rising trajectories

Page 19: Parameterizing Dark Energy Z. Huang, R. J. Bond, L. Kofman Canadian Institute of Theoretical Astrophysics

Measuring 3 parameters• Use 3-parameter for 0<z<4. Assume w(z>4)=wh

(free parameter).

Page 20: Parameterizing Dark Energy Z. Huang, R. J. Bond, L. Kofman Canadian Institute of Theoretical Astrophysics

Comparing 1-2-3-parameter1-parameter: use 1-param formula for all redshift.

2-parameter: use 2-param formula for 0<z<2, assuming w(z>2)=wh (free constant).

3-parameter: use 3-param formula for 0<z<4, assuming w(z>4)=wh (free constant).

Conclusion: all the complications are irrelevant, now only can measure es

CMB + SN + WL + LSS +Lya

Page 21: Parameterizing Dark Energy Z. Huang, R. J. Bond, L. Kofman Canadian Institute of Theoretical Astrophysics

Forecast: Planck + JDEM SN + DUNE WL

Page 22: Parameterizing Dark Energy Z. Huang, R. J. Bond, L. Kofman Canadian Institute of Theoretical Astrophysics

Thawing, freezing or non-monotonic?

• Thawing: w monotonically deviate from -1.• Freezing: w monotonically approaches -1.• Our parameterization with flat priors. Roughly 15 percent thawing, 8 percent

freezing, most are non-monotonic.

With freezing prior:

With thawing prior:

Page 23: Parameterizing Dark Energy Z. Huang, R. J. Bond, L. Kofman Canadian Institute of Theoretical Astrophysics

Conclusions

For a wide class of quintessence/phantom models, the functional form V(φ) in the near future is observationally immeasurable. Only a key trajectory parameter es = (1/16πG) <(V’/V)2> can be well measured.

The second parameter as can only be constrained to be less than ~0.3.

For current observational data, even with (physically motivated) dynamic w(a) parametrization, cosmological constant remains to be the best and simplest model.