parametric representation of the hydrometeor spectra for les warm bulk microphysical schemes

54
Parametric representation of the hydrometeor spectra for LES warm bulk microphysical schemes. Olivier Geoffroy, Pier Siebesma Olivier Geoffroy, Pier Siebesma (KNMI), (KNMI), Jean-Louis Brenguier, Frederic Burnet Jean-Louis Brenguier, Frederic Burnet (Météo-France) (Météo-France) I. Problematic, methodology and measurements II. Cloud spectrum: results III. Rain spectrum: results IV. Sensitivity tests in shallow cumulus simulations.

Upload: umay

Post on 18-Jan-2016

48 views

Category:

Documents


2 download

DESCRIPTION

Olivier Geoffroy, Pier Siebesma (KNMI), Jean-Louis Brenguier, Frederic Burnet (Météo-France). Parametric representation of the hydrometeor spectra for LES warm bulk microphysical schemes. Problematic, methodology and measurements Cloud spectrum: results Rain spectrum: results - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: Parametric representation of the hydrometeor spectra  for  LES warm bulk microphysical schemes

Parametric representation of the hydrometeor spectra

for LES warm bulk microphysical schemes.

Olivier Geoffroy, Pier Siebesma (KNMI),Olivier Geoffroy, Pier Siebesma (KNMI),Jean-Louis Brenguier, Frederic Burnet (Météo-France)Jean-Louis Brenguier, Frederic Burnet (Météo-France)

I. Problematic, methodology and measurements

II. Cloud spectrum: results

III. Rain spectrum: results

IV. Sensitivity tests in shallow cumulus simulations.

V. Z-R relationship

Page 2: Parametric representation of the hydrometeor spectra  for  LES warm bulk microphysical schemes

To derive other moments from M0 & M3, M0 & M3 it is necessary to make an assumption about the shape of the CDSD and the RDSD

5~ MFcq

2~ MFcN

Cloud Sedim:

Radar reflectivity:

Interaction withradiative transfert:

τ~M2

4~ MFrq

1~ MFrN

Rain Sedim

Problematic

),N,f(q~ cc c

Rain evap:

~M1 & M2

autoconversion:Radar

reflectivity:

Nc (M0) & qc (~M3), Nr (M0) & qr (~M3)

Microphysical processes / variables

Cond/evap:

Bulk prognostics variables =

~SM1 =M6

=M6

Page 3: Parametric representation of the hydrometeor spectra  for  LES warm bulk microphysical schemes

))ln

)D/Dln((

2

1exp(

lnD2

1)D( 2

g

g

g

Nn

))D(exp(D)(

)D( 1

Nn

Generalized GammaLognormal

Are Lognormal, Gamma, Gamma in mass suitable ? With which value of the width parameter σg or ν?

Common distributions

ν =1 ν =6ν =11

α=1Size distri = Gamma

α=3Mass distri = Gamma

= Marshall Palmer

σg=? ν =?3 parametersM0, M3 = prognostics

4 parametersM0, M3 = prognosticsα =1 or 3

Page 4: Parametric representation of the hydrometeor spectra  for  LES warm bulk microphysical schemes

Observationnal dataData = particule counters in situ Measurements at 1Hz resolution (~ 100 m).

-Sc and Cu spectra - Measurements at each levels in the BL

- ~100 m resolution- Complete hydrometeors spectra : 1 µm to 10 mm

flight plan

RICO : 7 cases of CuACE-2 : 8 cases of Sc

Fast FSSP : ~2 ~50 µmOAP-260-X : 5635 µm2DP-200X: 245 12645 µm

Fast FSSP : ~2 ~40 µmOAP-200-X : 35 310 µm

Instruments

campaign

Page 5: Parametric representation of the hydrometeor spectra  for  LES warm bulk microphysical schemes

Cloud Rain D0

MethodologyFor each spectrum:

D0 = 75 µm

Cloud:ACE-2 : 19000 spectra

RICO : 8500 spectra

Page 6: Parametric representation of the hydrometeor spectra  for  LES warm bulk microphysical schemes

qc, Nc

Cloud Rain D0

MethodologyFor each spectrum:

D0 = 75 µm

Cloud:ACE-2 : 19000 spectra

RICO : 8500 spectra

σ g Lognormal

M1

Page 7: Parametric representation of the hydrometeor spectra  for  LES warm bulk microphysical schemes

qc, Nc

Cloud Rain D0

MethodologyFor each spectrum:

D0 = 75 µm

Cloud:ACE-2 : 19000 spectra

RICO : 8500 spectra

σ g Lognormal

M1 M2 M5 M6

σ g σ g σ g

Page 8: Parametric representation of the hydrometeor spectra  for  LES warm bulk microphysical schemes

ν1

qc, Nc

Cloud Rain D0

MethodologyFor each spectrum:

D0 = 75 µm

Cloud:ACE-2 : 19000 spectra

RICO : 8500 spectra

σ g Gamma

Lognormal

M1 M2 M5 M6

ν1 σ g

ν1 σ g

ν1 σ g

Page 9: Parametric representation of the hydrometeor spectra  for  LES warm bulk microphysical schemes

ν1

qc, Nc

Cloud Rain

MethodologyFor each spectrum:

D0 = 75 µm

Cloud:ACE-2 : 19000 spectra

RICO : 8500 spectra

σ g

Gamma in mass

Gamma

Lognormal

M1 M2 M5 M6

ν1 σ g

ν1 σ g

ν1 σ g

ν3 ν3 ν3 ν3

D0

Page 10: Parametric representation of the hydrometeor spectra  for  LES warm bulk microphysical schemes

ν1

qc, Nc

Cloud Rain D0

MethodologyFor each spectrum:

D0 = 75 µm

Rain:ACE-2 : not used

RICO : 2860 spectra

Cloud:ACE-2 : 19000 spectra

RICO : 8500 spectra

σ g

Gamma in mass

Gamma

Lognormal

M1 M2 M5 M6

ν1 σ g

ν1 σ g

ν1 σ g

ν3 ν3 ν3 ν3

M1 M2 M4 M6

qr, Nr

ν1 σ g

ν1 σ g

ν1 σ g

ν1 σ g

ν3 ν3 ν3 ν3

Page 11: Parametric representation of the hydrometeor spectra  for  LES warm bulk microphysical schemes

Plan

I. Methodology and measurements

II. Cloud spectrum: results

III. Rain spectrum: results

IV. Sensitivity tests in shallow cumulus simulations.

Page 12: Parametric representation of the hydrometeor spectra  for  LES warm bulk microphysical schemes

Cloud, width parameter=f(M1)

Grey points = value of σg that best represent M1 for each spectrum

Circles = value that minimize the standard deviation of the absolute errors Mmeasure-Manalytic in each moment class

Triangles = value that minimize the standard deviation of the relative errors Mmeasure/ Manalytic in each moment class

Page 13: Parametric representation of the hydrometeor spectra  for  LES warm bulk microphysical schemes

Cloud, width parameter=f(Mp)

Circles = value that minimize the standard deviation of the absolute errors Mmeasure-Manalytic in each moment class

Triangles = value that minimize the standard deviation of the relative errors Mmeasure/ Manalyticin each moment class

Value of the width parameter:

32.1g

111

2.13

Lognormal:

Gamma:

Gamma in mass:

Page 14: Parametric representation of the hydrometeor spectra  for  LES warm bulk microphysical schemes

Lognormal:

Gamma:

Gamma in mass:

Cloud, width parameter=f(qc)

Parameterization formulation :

1.0))ln((338.2 cg q

4200 4.01 cq

75.080 6.03 cq

Circles = value that minimize the standard deviation of the absolute errors Mmeasure-Manalytic in each LWC class

Triangles = value that minimize the standard deviation of the relative errors Mmeasure/ Manalyticin each LWC class

Page 15: Parametric representation of the hydrometeor spectra  for  LES warm bulk microphysical schemes

Gamma in mass:

Gamma:

Lognormal:

Cloud, relative error=f(Mp)

Value of the width parameter:

32.1g

111

2.13

Page 16: Parametric representation of the hydrometeor spectra  for  LES warm bulk microphysical schemes

Cloud, relative error = f(qc)

Lognormal:

Gamma:

Gamma in mass:

Parameterizations:

1.0))ln((338.2 cg q

4200 4.01 cq

75.080 6.03 cq

Page 17: Parametric representation of the hydrometeor spectra  for  LES warm bulk microphysical schemes

Gamma in mass:

Gamma:

Lognormal:

Cloud, relative error=f(Mp)

Value of the width parameter:

32.1g

111

2.13

Page 18: Parametric representation of the hydrometeor spectra  for  LES warm bulk microphysical schemes

Cloud, relative error = f(qc)

Lognormal:

Gamma:

Gamma in mass:

Parameterizations:

1.0))ln((338.2 cg q

4200 4.01 cq

75.080 6.03 cq

Page 19: Parametric representation of the hydrometeor spectra  for  LES warm bulk microphysical schemes

Plan

I. Methodology and measurements

II. Cloud spectrum: results

III. Rain spectrum: results

IV. Sensitivity tests in shallow cumulus simulations.

Page 20: Parametric representation of the hydrometeor spectra  for  LES warm bulk microphysical schemes

Rain: Gamma, ν=f(Dv)

Seifert (2008)

ν=f(Dv)

Measurements vs Seifert (2008) results:- Some distributions larger than Marshall Palmer at low Dv

- Less narrow distributions at high Dv

1

16

13

10

7

4

Differences:- Measurements at every levels in cloud region- Seifert (2008): distribution at the surface, no condensation

Marshall and Palmer (1948)

Marshall and Palmer (1948)

Stevens and Seifert (2008)

ν=f(Dv)

ν=f(Dv)

Page 21: Parametric representation of the hydrometeor spectra  for  LES warm bulk microphysical schemes

Rain : free parameter=f(qr)

Dependance in function of qr Better results

Lognormal:

Gamma:

Gamma in mass:

Parameterizations :

15.054.0 rg q

6.01 /008.0 rq

7.03 /005.0 rq

Circles = value that minimize the standard deviation of the absolute errors Mmeasure-Manalytic in each RWC class

Triangles = value that minimize the standard deviation of the relative errors Mmeasure/ Manalytic in each RWC class

Page 22: Parametric representation of the hydrometeor spectra  for  LES warm bulk microphysical schemes

Rain : relative errors

Dependance in function of qr Better results

Lognormal:

Gamma:

Gamma in mass:

Parameterizations:

15.054.0 rg q

6.01 /008.0 rq

7.03 /005.0 rq

Marshall Palmer

Page 23: Parametric representation of the hydrometeor spectra  for  LES warm bulk microphysical schemes

Plan

I. Problematic, methodology and measurements

II. Cloud spectrum: results

III. Rain spectrum: results

IV. Sensitivity tests in shallow cumulus simulations.

V. Z-R relationship

Page 24: Parametric representation of the hydrometeor spectra  for  LES warm bulk microphysical schemes

Sensivity test: RICO case

LWP (g m-2)

RWP (g m-2)

Rsurface (W m-2)

Ensemble of models

DALES simulationsModels of the intercomparison exercise (black)

ν3c=1, νr=1ν3c=f(lwc), νr=f(lwc)

Page 25: Parametric representation of the hydrometeor spectra  for  LES warm bulk microphysical schemes

Deeper BL based on RICO

θl

qt

-0.6 K

+ 2.5 g kg-1

+ 0.5 g kg-1

Colder

Moister-0.6 K

Averaged profilesrestart

Page 26: Parametric representation of the hydrometeor spectra  for  LES warm bulk microphysical schemes

Sensitivity to ν3c

ν3c 1 f(qc)

LWP (g m-2) 14.8 17.1

RWP (g m-2) 8.9 4.3

0

22

4

2 ))1(

)(1(

)3)(1(

*20

au

c

c

c

ccccr

N

q

x

k

t

q

υc=1 A=8 υc=2 A=3.75υc=3 A= 2.7

Autoconversion rate :

=A

3 10-8

(Seifert and Beheng, 2006)

Page 27: Parametric representation of the hydrometeor spectra  for  LES warm bulk microphysical schemes

Sensitivity to νr

νr 1 f(qc) ( )

νSS08

( )6 11

LWP (g m-2) 15.0 14.8 16.0 18.3 19.0

RWP (g m-2) 7.6 8.9 12.5 20.3 23.1

CB

CT

Processes depending on νr : rain sedim, evap, self-collection and break-up

width

Page 28: Parametric representation of the hydrometeor spectra  for  LES warm bulk microphysical schemes

Plan

I. Problematic, methodology and measurements

II. Cloud spectrum: results

III. Rain spectrum: results

IV. Sensitivity tests in shallow cumulus simulations.

V. Z-R relationship

Page 29: Parametric representation of the hydrometeor spectra  for  LES warm bulk microphysical schemes

Z-R

Snodgrass (2009)

Z=68 R2

Page 30: Parametric representation of the hydrometeor spectra  for  LES warm bulk microphysical schemes

Summary

-Development of a parameterization of the width parameter of the cloud droplet spectra as a function of the LWC.

-Development of a parameterization of the width parameter of the rain drop spectra as a function of the RWC

32.1g

111

2.13

Lognormal:

Gamma:

Gamma in mass:

1.0))ln((338.2 cg q

4200 4.01 cq

75.080 6.03 cq

Lognormal:

Gamma:

15.054.0 rg q

6.01 /008.0 rq

Page 31: Parametric representation of the hydrometeor spectra  for  LES warm bulk microphysical schemes

Z-R

Snodgrass: redTRMM: green

Only 2dp

Page 32: Parametric representation of the hydrometeor spectra  for  LES warm bulk microphysical schemes

Z-R

Page 33: Parametric representation of the hydrometeor spectra  for  LES warm bulk microphysical schemes

Sensitivity to νr

νr 1 f(qc) ( )

νSS08

( )6 11

LWP (g m-2) 15.0 14.8 16.0 18.3 19.0

RWP (g m-2) 7.6 8.9 12.5 20.3 23.1

Without rain evaporation

- Sensivity to νr in sedim process similar results as Stevens and Seifert (2008)- Main sensitivity : sedimentation process. νr in sedim RWP

νr in sedim Vqr evap LWP RWP νr in evap evap LWP

νr 1 f(qc) νSS08 6 11

LWP (g m-2) 12.4 / 13.3 13.2 12.8

RWP (g m-2) 9.5 / 15.1 19.2 21.9

CB

CT

Processes depending on νr : rain sedim, evap, self-collection and break-up

widthFluxprecip

Page 34: Parametric representation of the hydrometeor spectra  for  LES warm bulk microphysical schemes

Observational data

ACE-2 : not usedRICO : 2860 spectra

ACE-2 : 19000 spectra RICO : 8500 spectra

Scatterplot all qc-Nc values Scatterplot all qr-Nr values

Large number of spectra typical of Sc and Cu

(RF07, RF08, RF11, RF13)

Page 35: Parametric representation of the hydrometeor spectra  for  LES warm bulk microphysical schemes

Measured spectra

ACE-2 : 8 cases of ScFast FSSP : ~2 ~50 µm, 266 bins OAP-260-X : 5635 µm, 63 bins, Δbin~ 10 µm 2DP-200X: 45 12645 µm, 63 bins, Δbin~ 200 µm

Fast FSSP : ~2 ~40 µm, 266 bins OAP-200-X : 15 310 µm, 15 bins, Δbin~ 20 µm

RICO : 7 cases of Cu

- Complete hydrometeors spectra : 1 µm to 10 mm

Page 36: Parametric representation of the hydrometeor spectra  for  LES warm bulk microphysical schemes

32.1g

111

2.13

Parameterization formulation :

Cloud, absolute error=f(Mp)

Normalization:M1: 100 µm cm-3

M2 :1000 µm2 cm-3

M5:107 µm5 cm-3

M6 :109 µm6 cm-3

σ: 1 µm

Page 37: Parametric representation of the hydrometeor spectra  for  LES warm bulk microphysical schemes

Cloud, absolute error =f(qc)

1.0))ln((338.2 cg q

4200 4.01 cq

75.080 6.03 cq

Parameterization formulation :

Normalization:M1: 100 µm cm-3

M2 :1000 µm2 cm-3

M5:107 µm5 cm-3

M6 :109 µm6 cm-3

σ: 1 µm

Page 38: Parametric representation of the hydrometeor spectra  for  LES warm bulk microphysical schemes

ACE 2 - RICO

Page 39: Parametric representation of the hydrometeor spectra  for  LES warm bulk microphysical schemes

Only ACE 2

Page 40: Parametric representation of the hydrometeor spectra  for  LES warm bulk microphysical schemes

Only ACE 2

Page 41: Parametric representation of the hydrometeor spectra  for  LES warm bulk microphysical schemes

Only RICO

Page 42: Parametric representation of the hydrometeor spectra  for  LES warm bulk microphysical schemes

Only RICO

Page 43: Parametric representation of the hydrometeor spectra  for  LES warm bulk microphysical schemes

Rain sedimentation

))/6001(1(65.9

))/6001(1(65.9)(

)3(

r

r

rsbNr

rsbqr

CV

CV

Terminal velocities parameterization (Stevens and Seifert, 2008) :

Vqr > VNr

V=f(Dv), νr=1 V=f(Dv), νr =6 V=f(Dv), νr =11

Vqr

VNr

Vqr-VNr

Vqr

VNr

Vqr-VNr

Vqr

VNr

Vqr-VNr

broader : νr Vqr ,VNr distribution Vqr-VNr

Size sorting

Page 44: Parametric representation of the hydrometeor spectra  for  LES warm bulk microphysical schemes

Rain sedimentation (averaged profiles)

ν width Vqr Rsurf dRWP /dt RWP

ν width RWP evap LWP (positive feedback)

sc / b-up : low impact

Evap : low impact µ evap but larger droplets Rsurf

Sedim

LWP RWP (peaks) RWP , Rsurf

(large drops)

Page 45: Parametric representation of the hydrometeor spectra  for  LES warm bulk microphysical schemes

Rain evaporation

0

)()(2

)( dDDnDDFG

t

rnventilatio

a

wevap

r

5.03/1 )Re(DNbaF scvfvfvent

evapr

r

revapevap

r

t

q

q

NC

t

N)()(

Cevap = 1 Dv = constant during evaporation (happens if preence of little drops)Cevap = 0 Nr = constant during evaporation (happens if only large drops)

Rain mixing ratio rr

Rain concentration Nr

Cevap = 0.7 – 1 (A. Seifert personal com)

Page 46: Parametric representation of the hydrometeor spectra  for  LES warm bulk microphysical schemes

Cevap sensitivity

Cevap = 0.7 – 1 (A. Seifert personal com)

Cevap=1Cevap=0.7Cevap=0

~2 mm j-1

Cevap = 1 Dv = constant, Nr

Cevap = 0 Nr = constant, Dv

evap LWP and RWP

evapr

r

revapevap

r

t

q

q

NC

t

N)()(

Page 47: Parametric representation of the hydrometeor spectra  for  LES warm bulk microphysical schemes

Autoconversion, sensitivity

0

22

4

2 ))1(

)(1(

)3)(1(

*20

au

c

c

c

ccccr

N

q

x

k

t

q

= 8 (υc=1)= 3.75 (υc=2)= 2.7 (υc=3)

kcc= 4.44 E9 m3 kg-2 s-1

10.44 E9 m3 kg-2 s-1

Autoconversion rate :

(Cloud droplet width)Collection efficiency

~2 mm j-1

Sensitivity to the coefficientsυc (cloud droplet spectra width)

Page 48: Parametric representation of the hydrometeor spectra  for  LES warm bulk microphysical schemes

The rain drop distribution

),,( rrr Nrf )Dexp(D)(

)D( 1rr

rr

rrN

n

Gamma law :

1 free parameter : νr

Gamma law (rr = 0.2 g kg-1, Nr = 10000 m-3)

νr = 1νr =6νr =11

with :

Dv νr ν Narrowerdistribution

Seifert (2008)

νν=f(Dv)

1

16

13

10

7

4

1-D bin model spectra :

= Marshall Palmer

Page 49: Parametric representation of the hydrometeor spectra  for  LES warm bulk microphysical schemes

νr sensivityνr=1

νr=f(Dv) νr=6

νr=11

~2 mm j-1

ν

Width

Size sorting

Vqr

Rsurf

dRWP /dt

RWP

ν

RWP

evap

LWP

Impact due to sedimention

(acrr ~ cste)

Page 50: Parametric representation of the hydrometeor spectra  for  LES warm bulk microphysical schemes

Precipitating flights :RF07, RF08, RF12 (low vlues and low number of points , 0.10 g m-3), RF13, RF11

Page 51: Parametric representation of the hydrometeor spectra  for  LES warm bulk microphysical schemes

Explicit (bin) scheme

50 – 100 variables High numerical cost

Bulk scheme : only 2 bins

cloud rain

D0 ~ 40 - 100 µm

1 - 5 variables Numerical cost Parameterisations of the microphysical processes

D~ 40 µm

n(D)

~ 1 µm ~ 8 mm

D

n(D)

~ 1 µm ~ 8 mm

dDDnDM pp

0

)(

Warm cloud Bulk parameterisation

Page 52: Parametric representation of the hydrometeor spectra  for  LES warm bulk microphysical schemes

Sensivity test: RICO case

LWP (g m-2)

RWP (g m-2)

Psurface (W m-2)

DALES simulations

Page 53: Parametric representation of the hydrometeor spectra  for  LES warm bulk microphysical schemes

Rain: Gamma, ν=f(Dv)

Seifert (2008)

ν=f(Dv)

Measurements vs Seifert (2008) results:- Some distributions larger than Marshall Palmer at low Dv

- Less narrow distributions at high Dv

1

16

13

10

7

4

Differences:- Measurements at every levels in cloud region- Seifert (2008): distribution at the surface, no condensation

Marshall and Palmer (1948)

Marshall and Palmer (1948)

Stevens and Seifert (2008)

ν=f(Dv)

ν=f(Dv)

Page 54: Parametric representation of the hydrometeor spectra  for  LES warm bulk microphysical schemes

Sensitivity to νr

νr 1 f(qc) ( )

νSS08

( )6 11

LWP (g m-2) 15.0 14.8 16.0 18.3 19.0

RWP (g m-2) 7.6 8.9 12.5 20.3 23.1

CB

CT

Processes depending on νr : rain sedim, evap, self-collection and break-up

width