parne elektrane

26
Prof. dr. sc. Z. Prelec ENERGETSKA POSTROJENJA Poglavlje: 1 (Parne elektrane) List: 1 -------------------------------------------------------------------------------------------------------------------------------------------- PARNE ELEKTRANE Parne elektrane su termoenergetska postrojenja za proizvodnju električne energije, u čijim se kružnim procesima, kao radni fluid, koristi para s određenim pogonskim parametrima (tlak, temperatura). Shema pretvorbe energije u parnim elektranama Kružni proces po kojemu se odvija pretvorba toplinske energije u mehaničku (električnu) naziva se Clausius – Rankineov koji se u svome teoretskom obliku, ako se zanemare nepovratni gubici, odvija između dvije izobare i dvije izentrope. Parnu elektranu čine sljedeći osnovni dijelovi: - generator pare u kojemu se proizvodi para potrebnih radnih parametara (tlaka i temperature); - parni turbogenerator u kojemu se ekspanzijom pare vrši pretvorba toplinske energije pare u mehanički rad, odnosno u električnu energiju; - kondenzator u kojemu se para vraća u tekuće stanje; - napojna pumpa pomoću koje se voda tlači te podiže na stanje (tlak) s kojim ulazi u generator pare. Kem. energija Ložište Ogrjevne površine GENERATOR PARE Stator Rotor Topl. energija Para D. pl. Gorivo GENERATOR Topl. energija Para Kinet. energija Meh. energija El. energija TURBINA

Upload: chombebombe

Post on 28-Oct-2014

178 views

Category:

Documents


4 download

TRANSCRIPT

Page 1: parne elektrane

Prof. dr. sc. Z. Prelec ENERGETSKA POSTROJENJA Poglavlje: 1 (Parne elektrane) List: 1 --------------------------------------------------------------------------------------------------------------------------------------------

PARNE ELEKTRANE

Parne elektrane su termoenergetska postrojenja za proizvodnju električne energije, u čijim se kružnim procesima, kao radni fluid, koristi para s određenim pogonskim parametrima (tlak, temperatura). Shema pretvorbe energije u parnim elektranama

Kružni proces po kojemu se odvija pretvorba toplinske energije u mehaničku (električnu) naziva se Clausius – Rankineov koji se u svome teoretskom obliku, ako se zanemare nepovratni gubici, odvija između dvije izobare i dvije izentrope. Parnu elektranu čine sljedeći osnovni dijelovi: - generator pare u kojemu se proizvodi para potrebnih radnih parametara (tlaka i temperature); - parni turbogenerator u kojemu se ekspanzijom pare vrši pretvorba toplinske energije pare u mehanički rad, odnosno u električnu energiju; - kondenzator u kojemu se para vraća u tekuće stanje; - napojna pumpa pomoću koje se voda tlači te podiže na stanje (tlak) s kojim ulazi u generator pare.

Kem. energija

Ložište

Ogrjevne površine

GENERATOR PARE

Stator Rotor Topl.

energija

Para

D. pl. Gorivo

GENERATOR

Topl. energija

Para Kinet. energija

Meh. energija

El. energija

TURBINA

Page 2: parne elektrane

Prof. dr. sc. Z. Prelec ENERGETSKA POSTROJENJA Poglavlje: 1 (Parne elektrane) List: 2 --------------------------------------------------------------------------------------------------------------------------------------------

Osnova shema parne elektrane T-s dijagram C-R kružnog procesa

p-v dijagram C-R kružnog procesa h-s dijagram C-R kružnog procesa

p

4 6 5 1

2 3

pi=konst

pk=konst.

4

5

6

1

2

3

h

v

6

4

5

1

2

3

T

4

5 6

1

2 3

Ti=konst.

Tk=konst. pk=konst.

s

pi=konst.

s

Page 3: parne elektrane

Prof. dr. sc. Z. Prelec ENERGETSKA POSTROJENJA Poglavlje: 1 (Parne elektrane) List: 3 --------------------------------------------------------------------------------------------------------------------------------------------

Toplinska iskoristivost idealna Clausius-Rankineova procesa (teorijska iskoristivost)

1

21

qqq

toplina.dovtoplina.odvtoplina.dov

t−

=−

toplinadovenergijamehutrenergijamehproizv

t ..... −

Budući je (h4-h3)<<(h1-h2

), utjecaj veličine rada u pumpi može se zanemariti, pa za takav slučaj proizlazi:

31

21

hhhh

t −−

h1-h4….. h

toplina dovedena u generatoru pare, 2-h3

h…..toplina odvedena u kondenzatoru,

1-h2 teorijski rad parne turbine (po jedinici mase):

…..izentropska ekspanzija u parnoj turbini, odnosno

wt,t=h1-h h

2

4-h3 teorijski rad za pogon pumpe (po jedinici mase):

…..izentropsko tlačenje u pumpi,odnosno

wt,p=h4-h3

41

3241

hh)hh()hh(

t−

−−−=η

)hh()hh()hh()hh(

t3431

3421

−−−−−−

Page 4: parne elektrane

Prof. dr. sc. Z. Prelec ENERGETSKA POSTROJENJA Poglavlje: 1 (Parne elektrane) List: 4 --------------------------------------------------------------------------------------------------------------------------------------------

Kod promatranja idealna (teorijskoga) procesa ne uzimaju se u obzir nepovratni gubici u procesu (trenje, prigušivanje, vrtloženje).

Teorijski rad idealnoga (reverzibilnoga) C-R procesa

wt=wt,t -wt,p=(h1-h2)-(h4-h3

)

Stvarni rad realnoga C-R procesa Turbina Pumpa

h2' h2

p1 T1

h

1 h1

h

s

4'

p1

p2

10 p1,0

T1,0

2 2'

p2

s

3

4

h3

h4 h4'

Page 5: parne elektrane

Prof. dr. sc. Z. Prelec ENERGETSKA POSTROJENJA Poglavlje: 1 (Parne elektrane) List: 5 --------------------------------------------------------------------------------------------------------------------------------------------

Uzimajući u obzir unutarnje nepovratne gubitke, slijedi: Unutarnji rad turbine (po jedinici mase)

wi,t= h1-h2' = (h1-h2)η

gdje je:

i,t

ηi,t

– unutarnja iskoristivost parne turbine(0,85…0,90)

Unutarnji rad pumpe (po jedinici mase)

p,i'p,i

hhhhwη−

=−= 3434

gdje je: ηi,p

– unutarnja iskoristivost pumpe (0,85…0,90)

Unutarnja iskoristivost turbinsko-pumpnoga sklopa

)hh()hh(

hh)hh(

wwww p,i

t,i

p,tt,t

p,it,i)p,t(i

3421

3421

−−−η−

−η−=

−−

Ukupna unutarnja iskoristivost parna kružna procesa

ηi=ηt ηgdje je:

i(t,p)

ηi(t,p)

– unutarnja iskoristivost turbinsko-pumpna sklopa

Page 6: parne elektrane

Prof. dr. sc. Z. Prelec ENERGETSKA POSTROJENJA Poglavlje: 1 (Parne elektrane) List: 6 --------------------------------------------------------------------------------------------------------------------------------------------

Utjecaj unutarnjih gubitaka u pumpi na unutarnju ukupnu iskoristivost energetskoga procesa je relativno malen, pa se s dovoljno točnosti može uzeti da je ηi(t,p)~ηi,t

, odnosno:

ηi=ηt η Ukupna iskoristivost energetskoga procesa na spojci

turbine

i,t

Određuje se uzimajući u obzir mehaničke gubitke (u ležajima, uljnim pumpama, reduktoru), odnosno množenjem unutarnje (ηi) i mehaničke iskoristivosti (η m

).

ηa=ηi ηm= ηt ηi(t,p) ηgdje je:

m

ηm

- mehanička iskoristivost turbine (0,97…0,99).

Ukupna efektivna iskoristivost energetskoga procesa do stezaljka generatora električne energije

Određuje se uzimajući u obzir gubitke u generatoru, odnosno množenjem ukupne vanjske iskoristivosti (ηa) s iskoristivošću generatora (ηeg

).

ηe=ηa ηeg= ηt ηi(t,p) ηm η

eg

gdje je: ηeg

– iskoristivost generatora el. energije (0,96…0,99).

Page 7: parne elektrane

Prof. dr. sc. Z. Prelec ENERGETSKA POSTROJENJA Poglavlje: 1 (Parne elektrane) List: 7 --------------------------------------------------------------------------------------------------------------------------------------------

Iskoristivost parovoda

Određuje se uzimajući u obzir gubitke tlaka zbog strujanja pare i gubitke topline kroz izolaciju parovoda od generatora pare do ulaza u turbinu, a izražava se iskoristivošću parovoda (ηp

).

',

'p hh

hh

401

41

−−

gdje je: h1,0

h – entalpija pare na izlazu iz generatora pare.

1<h1,0, zbog gubitaka u parovodu (ηp

=0,98…0,99).

Količina topline koju treba dovesti u ložište

generatora pare (po jedinici mase pare)

Da bi se iz vode ulazna stanja (h4') proizvela para stanja (h1,0), potrebno je u ložište dovesti toplinu qlož

(po jedinici mase vode/pare).

ložp

'

ožl

',gp q

hhq

hhη−

=−

=η 41401

pgp

'lož

hhqηη−

= 41odnosno ,

gdje je ηgp

– iskoristivost generatora pare (0,90…0,94).

Page 8: parne elektrane

Prof. dr. sc. Z. Prelec ENERGETSKA POSTROJENJA Poglavlje: 1 (Parne elektrane) List: 8 --------------------------------------------------------------------------------------------------------------------------------------------

Ukupna efektivna iskoristivost parnoga energetskog postrojenja

Određuje se uzimajući u obzir sve gubitke koji nastaju od ulaza goriva u ložište generatora pare do izlaza električne energije u elektroenergetsku mrežu, odnosno:

ηef,uk=ηgp ηp ηeg ηm ηi(t,p) η

t

Snaga proizvedene električne energije

NE=D(h1-h4)ηe= D(h1-h4)ηt ηi(t,p )ηm η

eg

gdje je: D – protočna količina pare kroz turbinu u jedinici vremena

Količina topline dovedene u ložište

Da bi generator pare proizveo količinu pare (D), parametara (p1,0, T1,0), u ložište treba dovesti toplinu (Qlož

):

gppegmptit

E

gppgpplož

NhhDQQηηηηηηηηηη ),(

'411 )(=

−==

gdje je: Q1

N – efektivno predana toplina u generatoru pare,

E

– snaga električne energije na stezaljkama generatora

Page 9: parne elektrane

Prof. dr. sc. Z. Prelec ENERGETSKA POSTROJENJA Poglavlje: 1 (Parne elektrane) List: 9 --------------------------------------------------------------------------------------------------------------------------------------------

Količina goriva

Količina goriva zavisi o njegovoj toplinskoj vrijednosti, te proizlazi iz relacije Qlož=BHd

, odnosno:

dgppegmptit

E

dgppdgppd

lož

HN

HhhD

HQ

HQB

ηηηηηηηηηη ),(

'411 )(=

−===

gdje je: Hd

- donja toplinska vrijednost goriva koje se koristi za pogon generatora pare.

NAČINI POVEĆANJA TOPLINSKE ISKORISTIVOSTI C-R

PARNOGA KRUŽNOG PROCESA

Povećanje toplinske iskoristivosti C-R (Clausius-Rankineovog) kružnoga procesa može se postići na sljedeće načine:

1) Povećanjem tlaka ulazne pare u turbinu, 2) Povećanjem temperature ulazne pare u turbinu, 3) Sniženjem temperature kondezacije pare, 4) Naknadnim pregrijavanjem (među-pregrijavanjem) pare, 5) Regenerativnim predgrijavanjem napojne vode.

Page 10: parne elektrane

Prof. dr. sc. Z. Prelec ENERGETSKA POSTROJENJA Poglavlje: 1 (Parne elektrane) List: 10 --------------------------------------------------------------------------------------------------------------------------------------------

1) Povećanje tlaka ulazne pare u turbinu

Povećanje tlaka ulazne (svježe) pare u turbinu djeluje na povišenje temperature isparivanja, s time na povišenje srednje temperature dijela procesa na kojemu se dovodi toplina, što općenito djeluje na povišenje toplinske iskoristivosti kružnoga procesa.

Utjecaj tlaka pare na iskoristivost C-R procesa

s

1 2 3 T

K

x1 x2 x3 x=1 x=0

p1>p2>p3

x1<x2<x3

p1

p2

p3

pk

T1=T2=T3

Page 11: parne elektrane

Prof. dr. sc. Z. Prelec ENERGETSKA POSTROJENJA Poglavlje: 1 (Parne elektrane) List: 11 --------------------------------------------------------------------------------------------------------------------------------------------

Utjecaj tlaka pare na iskoristivost C-R procesa

Povećanjem tlaka ulazne pare u turbinu, pri istoj temperaturi, istodobno se djeluje na: • povišenje srednje temperature dijela procesa na kojemu se dovodi toplina, • povećanje toplinske iskoristivosti kružnoga procesa, • povećanje toplinskoga pada u turbini, • smanjenje specifične potrošnje pare po jedinici proizvedene

mehaničke energije, • povećanje vlažnosti izlazne pare iz turbine, što uzrokuje

povećani utjecaj erozije u njenim izlaznim stupnjevima te smanjenje unutrašnje iskoristivosti turbine.

s

Δh1 Δh2

Δh3

T=const. h

K

1 2 3

Δh1> Δh2> Δh3

Page 12: parne elektrane

Prof. dr. sc. Z. Prelec ENERGETSKA POSTROJENJA Poglavlje: 1 (Parne elektrane) List: 12 --------------------------------------------------------------------------------------------------------------------------------------------

2) Povećanje temperature ulazne pare u turbinu

Povećanjem temperature ulazne (svježe) pare u turbinu povisuje se srednja temperatura dijela procesa na kojemu se dovodi toplina što, uz nepromijenjene ostale parametre, utječe na povišenje toplinske iskoristivosti kružnoga procesa.

Utjecaj temperature ulazne pare na iskoristivost C-R procesa

3

2

T

K

x1 x2 x3 x=1 x=0

T1< T2< T3 x1<x2<x3

p=const.

pk

1

s

Page 13: parne elektrane

Prof. dr. sc. Z. Prelec ENERGETSKA POSTROJENJA Poglavlje: 1 (Parne elektrane) List: 13 --------------------------------------------------------------------------------------------------------------------------------------------

Utjecaj temperature ulazne pare na iskoristivost C-R procesa

Povećanjem temperature ulazne pare u turbinu, pri nepromijenjenim ostalim parametrima, djeluje se na: • povišenje srednje temperature dijela procesa na kojemu se dovodi toplina, • povećanje toplinske iskoristivosti kružnoga procesa, • povećanje toplinskoga pada u turbini, • smanjenje specifične potrošnje pare po jedinici proizvedene

mehaničke energije, • smanjenje vlažnosti pare u izlaznim stupnjevima turbine.

s

h

K

Δh1< Δh2< Δh3

Δh3

Δh2

Δh1

1

2

p=const.

pk=const.

3

Page 14: parne elektrane

Prof. dr. sc. Z. Prelec ENERGETSKA POSTROJENJA Poglavlje: 1 (Parne elektrane) List: 14 --------------------------------------------------------------------------------------------------------------------------------------------

3) Sniženje temperature / tlaka kondenzacije pare

Sniženjem temperature / tlaka kondenzacije pare smanjuje se količina topline koja se odvodi u okolinu iz kružnoga procesa čime se, uz nepromijenjene ostale parametre, povećava njegova toplinska iskoristivost.

Utjecaj temperature i tlaka kondenzacije pare na iskoristivost C-R procesa

T

K

x3 x2 x1 x=1 x=0

Tk1> Tk2> Tk3

pk1> pk2> pk3

x1>x2>x3

p=const.

pk2=const.

s

pk1=const.

pk3=const.

Tk1=const.

Tk2=const. Tk3=const.

Page 15: parne elektrane

Prof. dr. sc. Z. Prelec ENERGETSKA POSTROJENJA Poglavlje: 1 (Parne elektrane) List: 15 --------------------------------------------------------------------------------------------------------------------------------------------

Utjecaj temperature i tlaka kondenzacije pare na iskoristivost C-R procesa

Utjecaj tlaka kondenzacije pare na iskoristivost C-R procesa

s

h

K

Δh1< Δh2< Δh3

1

2 3

pk1 pk2 pk3

Vrijednosti se odnose za p1=80 bar i t1=500 0C

Page 16: parne elektrane

Prof. dr. sc. Z. Prelec ENERGETSKA POSTROJENJA Poglavlje: 1 (Parne elektrane) List: 16 --------------------------------------------------------------------------------------------------------------------------------------------

Sniženjem tlaka (povećanje vakuuma), a s time i temperature u kondenzatoru, uz nepromijenjene ostale pogonske parametre, djeluje se na: • povećanje toplinske iskoristivosti kružnoga procesa, • povećanje toplinskoga pada u turbini, • smanjenje specifičnoga utroška pare, • povećanje vlažnosti izlazne pare. Tlak u kondenzatoru prvenstveno ovisi o stanju okoline (donji spremnik topline), odnosno o temperaturi vode za hlađenje. Uobičajeno se kreće od 0,025 do 0,05 bar. Daljnje sniženje tlaka ograničeno je zbog: • povećanja specifičnoga volumena pare, • povećanja dužine lopatica u izlaznome dijelu turbine, • povećanja dimenzija kondenzatora, • minimalne razlike temperature rashladne vode i kondenzata

za izmjenu topline uz tehno-ekonomski prihvatljive dimenzije kondenzatora (kreće se 5 do 15 0

C).

Pogoršanje pogonskih uvjeta kondenzatora može biti uzrokovano: • porastom temperature okoline, a s time i rashladne vode, • smanjenjem protoka rashladne vode, • prljanjem izmjenjivačkih površina kondenzatora, • kvarom uređaja za održavanje vakuuma u kondenzatoru

(neispravan rad ejektora, propuštanje brtvenih spojeva i prodor okolnoga zraka u kondenzator).

Page 17: parne elektrane

Prof. dr. sc. Z. Prelec ENERGETSKA POSTROJENJA Poglavlje: 1 (Parne elektrane) List: 17 --------------------------------------------------------------------------------------------------------------------------------------------

4) Naknadno pregrijavanje ( među-pregrijavanje) pare

Naknadnim pregrijavanjem (među-pregrijavanjem) pare povisuje se srednja temperatura dijela procesa na kojemu se dovodi toplina, čime se povisuje njegova toplinska iskoristivost.

v s

p

4 6 5 1

2 3

pi=konst

pk=konst.

4

5

6

1

2

3

h

pmp=konst. 7 8

7

8 T=konst.

s

6

1

7

8 T

4

5 6

1

2 3

Ti=konst.

Tk=konst. pk=konst.

pi=konst.

8

7

Tpp~Tmp

2

3

4

5

Page 18: parne elektrane

Prof. dr. sc. Z. Prelec ENERGETSKA POSTROJENJA Poglavlje: 1 (Parne elektrane) List: 18 --------------------------------------------------------------------------------------------------------------------------------------------

Naknadnim pregrijavanjem (među-pregrijavanjem ) pare postiže se: • Povećanje toplinske iskoristivosti kružna procesa, • Smanjenje vlažnosti pare u izlaznom dijelu turbine, • Smanjenje erozijskoga oštećenja izlaznih stupnjeva turbine. Iskoristivost idealna C-R procesa s

među-pregrijavanjem pare

)()()()()(

7841

342871

hhhhhhhhhh

t −+−−−−+−

Temperatura među-pregrijavanja:

tmp ≅ tpp = t

Tlak među-pregrijavanja pare:

1

pmp ≅ (1/5 do 1/4) ppp=p

1

Među-pregrijavanje pare obično se izvodi kod energetskih sustava s radnim tlakom većim od 80 bar. Među-pregrijavanje se najčešće izvodi s jednim među-pregrijačem, a rjeđe s dva među-pregrijača (zbog konstrukcijskih i pogonskih problema). Povećanje toplinske iskoristivosti C-R procesa s jednim među-pregrijanjem pare iznosi 4 - 5 %.

Page 19: parne elektrane

Prof. dr. sc. Z. Prelec ENERGETSKA POSTROJENJA Poglavlje: 1 (Parne elektrane) List: 19 --------------------------------------------------------------------------------------------------------------------------------------------

Ostali efekti ugradnje među-pregrijača: • Povećanje investicijskih troškova, • Povećanje otpora strujanja pare, što umanjuje efekte

povećanja toplinske iskoristivost, • Mogući pogonski problemi kod kretanja i zaustavljanja

pogona, ako se pri tome ne osigura zadovoljavajuće hlađenje cijevi među-pregrijača. Naime, kod pokretanja i zaustavljanja pogona može nastati problem nedovoljna hlađenja cijevi među-pregrijača zbog premaloga protoka pare kroz cijevi u takvim prijelaznim fazama pogona.

5) Regenerativno zagrijavanja napojne vode Regenerativno zagrijavanje napojne vode naziva se predgrijavanje vode prije ulaza u generator pare pomoću pare koja se oduzima iz turbine na jednom ili više stupnjeva. Regenerativnim zagrijavanjem postiže se: • Povišenje toplinske iskoristivosti kružnoga parnog procesa

zbog povišenja srednje temperature dijela procesa na kojemu se dovodi toplina,

• Sniženje topline koja se iz kondenzatora odvodi u okolinu, budući se smanjuje protok pare kroz kondenzator za količinu koja se iz turbine oduzima za regenerativno zagrijavanje,

• Smanjuje se potrebna količina rashladne vode za hlađenje kondenzatora – manji utrošak energije za pogon pumpi rashladne vode.

Page 20: parne elektrane

Prof. dr. sc. Z. Prelec ENERGETSKA POSTROJENJA Poglavlje: 1 (Parne elektrane) List: 20 --------------------------------------------------------------------------------------------------------------------------------------------

Regenerativno zagrijavanje obično se odvija u više stupnjeva, ali ne više od deset, jer se daljnjim povećanjem broja regenerativnih zagrijača ne postižu efekti koji opravdavaju njihovu ugradnju zbog rasta investicijskih troškova, otpora strujanja kroz izmjenjivače, složenosti postrojenja. Utjecaj broja regenerativnih zagrijača na povećanje iskoristivosti parnoga kružnog procesa

Page 21: parne elektrane

Prof. dr. sc. Z. Prelec ENERGETSKA POSTROJENJA Poglavlje: 1 (Parne elektrane) List: 21 --------------------------------------------------------------------------------------------------------------------------------------------

Zagrijači napojne vode, prema načinu povezivanja u kružni sustav, izvode se na tri glavna načina: Zagrijači s direktnom izmjenom topline (miješanjem)

Zagrijači s indirektnom izmjenom topline (površinski

izmjenjivači topline) i kaskadnim odvodom kondenzata

Zagrijači s indirektnom izmjenom topline (površinski

izmjenjivači topline) i pumpnim odvodom kondenzata

Prema generatoru pare Iz kondenzatora

Para za grijanje (iz oduzimanja turbine)

Prema generatoru pare

Para za grijanje (iz oduzimanja turbine)

Iz kondenzatora

U kondenzator

Para za grijanje (iz oduzimanja turbine)

Iz kondenzatora

Prema generatoru pare

Page 22: parne elektrane

Prof. dr. sc. Z. Prelec ENERGETSKA POSTROJENJA Poglavlje: 1 (Parne elektrane) List: 22 --------------------------------------------------------------------------------------------------------------------------------------------

Regenerativno zagrijavanje napojne vode najčešće se izvodi s indirektnom izmjenom topline i kaskadnim odvodom kondenzata. Jedan od izmjenjivača topline izvodi se sa direktnim miješanjem, a u tom slučaju on ima i funkciju otplinjivača (degazatora). Shema regenerativna zagrijavanja s dva indirektna i jednim direktnim izmjenjivačem topline

Legenda:

GP – generator pare NTZ – niskotlačni zagrijač VT – visokotlačna turbina ONV – otplinjivač napojne vode NT – niskotlačna turbina NP – napojna pumpa K – kondenzator VTZ – visokotlačni zagrijač KP –kondenzatna pumpa

14

1

2

13

7

2A

6

4

5

2C

11 10

12

3 3 1

5A

8 9

2B

VTZ NTZ ONV

VT NT

K

GP

KP NP

Page 23: parne elektrane

Prof. dr. sc. Z. Prelec ENERGETSKA POSTROJENJA Poglavlje: 1 (Parne elektrane) List: 23 --------------------------------------------------------------------------------------------------------------------------------------------

h-s dijagram sustava s regenerativnim zagrijavanjem s dva indirektna i jednim direktnim izmjenjivačem topline

1 – Stanje pare na izlazu iz pregrijača pare / na ulazu u V.T. turbinu:

• protočna količina pare, D • udjel protočne količine pare, α=1 • entalpija pare, h

2 – Stanje pare na izlazu iz V.T. turbine: 1

• protočna količina pare, D • udjel protočne količine pare, α=1 • entalpija pare, h

22

A

(prvo oduzimanje pare iz turbine) – Stanje pare na ulazu u visokotlačni zagrijač

• protočna količina pare, α1

• udjel protočne količine pare, αD

• entalpija pare, h1

2A=h

2

1

s

x=1,0

2

4

5

6

7

8

9

10

11

12

13

14

2C

5A

h 3

Page 24: parne elektrane

Prof. dr. sc. Z. Prelec ENERGETSKA POSTROJENJA Poglavlje: 1 (Parne elektrane) List: 24 --------------------------------------------------------------------------------------------------------------------------------------------

2B

• protočna količina pare, (1-α – Stanje pare na ulazu u među-pregrijač:

1

• udjel protočne količine pare, 1- α)D

• entalpija pare, h1

2B=h2

2 C

• protočna količina kondenzata, α – Stanje kondenzata na izlazu iz visokotlačna zagrijača

1

• udjel protočne količine kondenzata, αD

• entalpija kondenzata, h1

3 – Stanje pare na izlazu iz među-pregrijača: 2C

• protočna količina pare, (1-α1

• udjel protočne količine pare, 1- α)D

• entalpija pare, h1

4 - Stanje pare na ulazu direktni zagrijač - otplinjivač 3

( drugo oduzimanje pare iz turbine) • protočna količina pare, α2

• udjel protočne količine pare, αD

• entalpija pare, h2

5 – Stanje pare na ulazu u nisko-tlačni zagrijač 4

(drugo oduzimanje pare iz turbine) • protočna količina pare, α3

• udjel protočne količine pare, αD

• entalpija pare, h3

55

A

• protočna količina kondenzata, α – Stanje kondenzata na izlazu iz nisko-tlačna zagrijača

3

• udjel protočne količine kondenzata, αD

• entalpija kondenzata, h3

6 – Stanje pare na izlazu iz turbine / na ulazu u kondenzator 5a

• protočna količina pare, (1-α1- α2- α3

• udjel protočne količine pare, 1-α) D

1- α2- α• entalpija pare, h

3

7 – Stanje kondenzata na izlazu iz kondenzatora 6

• protočna količina kondenzata, (1-α1- α2

• udjel protočne količine kondenzata, 1-α) D 1- α

• entalpija kondenzata, h2

7

Page 25: parne elektrane

Prof. dr. sc. Z. Prelec ENERGETSKA POSTROJENJA Poglavlje: 1 (Parne elektrane) List: 25 --------------------------------------------------------------------------------------------------------------------------------------------

8 – Stanje kondenzata na tlačnoj strani pumpe glavnoga kondenzata / na ulazu u niskotlačni zagrijač

• protočna količina kondenzata, (1-α1- α2

• udjel protočne količine kondenzata, 1-α) D 1- α

• entalpija kondenzata, h2

9 – Stanje kondenzata na izlazu iz niskotlačna zagrijača / na ulazu u direktni 8

zagrijač (otplinjivač) • protočna količina kondenzata, (1-α1- α2

• udjel protočne količine kondenzata, 1-α) D 1- α

• entalpija kondenzata, h2

10 – Stanje napojne vode na izlazu iz direktna zagrijača - otplinjivača / na 9

usisnoj strani napojne pumpe • protočna količina napojne vode, D • udjel protočne količine napojne vode, α=1 • entalpija napojne vode, h

11 – Stanje napojne vode na ulazu u visokotlačni zagrijač / na tlačnioj 10

strani napojne pumpe • protočna količina napojne vode, D • udjel protočne količine napojne vode, α=1 • entalpija napojne vode, h

12 – Stanje napojne vode na izlazu iz visokotlačna zagrijača / na ulazu u 11

generator pare • protočna količina napojne vode, D • udjel protočne količine napojne vode, α=1 • entalpija napojne vode, h

13 – Stanje napojne vode na ulazu u isparivač generatora pare 12

• protočna količina napojne vode, D • udjel protočne napojne vode, α=1 • entalpija napojne vode, h

14 – Stanje pare na ulazu u pregrijač pare 13

• protočna količina pare, D • udjel protočne količine pare, α=1 • entalpija pare, h

14

Page 26: parne elektrane

Prof. dr. sc. Z. Prelec ENERGETSKA POSTROJENJA Poglavlje: 1 (Parne elektrane) List: 26 --------------------------------------------------------------------------------------------------------------------------------------------

Bilanca topline visokotlačna zagrijača ( indirektni izmjenjivač topline)

ℎ12 − ℎ11 = 𝛼1(ℎ2𝐴 − ℎ2𝐶) ℎ2𝐴 = ℎ2 ℎ12 − ℎ11 = 𝛼1(ℎ2 − ℎ2𝐶)

𝜶𝟏 =𝒉𝟏𝟐 − 𝒉𝟏𝟏𝒉𝟐 − 𝒉𝟐𝑪

Bilanca topline otplinjača

( direktni izmjenjivač topline) 𝛼2ℎ4 + 𝛼1ℎ2𝐶 + (1− 𝛼1 − 𝛼2)ℎ9 = ℎ10 𝛼2ℎ4 + 𝛼1ℎ2𝐶 + ℎ9 − 𝛼1ℎ9 − 𝛼2ℎ9 = ℎ10

𝜶𝟐 =𝒉𝟏𝟎 − 𝜶𝟏𝒉𝟐𝑪 − 𝒉𝟗 + 𝜶𝟏𝒉𝟗

𝒉𝟒 − 𝒉𝟗

Bilanca topline niskotlačna zagrijača

( indirektni izmjenjivač topline) (1 − 𝛼1 − 𝛼2)(ℎ9 − ℎ8) = 𝛼3(ℎ5 − ℎ5𝐴)

𝜶𝟑 =(𝟏 − 𝜶𝟏 − 𝜶𝟐)(𝒉𝟗 − 𝒉𝟖)

𝒉𝟓 − 𝒉𝟓𝑨