part i - design of steel members

Upload: anonymous-cuoijrli

Post on 14-Apr-2018

223 views

Category:

Documents


0 download

TRANSCRIPT

  • 7/29/2019 Part I - Design of Steel Members

    1/91

    Diseo de Estructuras de Acero - Parte I

    CIMEPI - Agosto 2013

    Instructor: Ing. Telmo A. Snchez, Ph.D. 1

    1

    Part I Design of Steel

    Members

    2

    In this course we will be studying the design of the

    following components, according to the provisions of the

    2010 American Institute of Steel Construction (AISC)

    Specification for Structural Steel Buildings:

    Introduction to Steel Design

    1.1 Basics of Structural Steel Construction:

    Tension Members

    Bearing and Column Base Plates

    ColumnsBeams

    Beam - Columns

    Steel - to - Steel Connections

    3

    Introduction to Steel Design

    1.1 Basics of Structural Steel Construction:

    Typical framing:

    2 3

    A

    B

    Spandrel beam

    Beam

    Deck direction

    Definition:

    Bay is the area bounded

    by 3 or 4 columns

    4

    Introduction to Steel Design

    1.2 Design Specifications:

    ASCE-7: This specification

    provides the criteria for the

    calculation of design loads in

    buildings in general (steel

    buildings, concrete buildings, etc.)(ASCE, 2005, 2010).

  • 7/29/2019 Part I - Design of Steel Members

    2/91

    Diseo de Estructuras de Acero - Parte I

    CIMEPI - Agosto 2013

    Instructor: Ing. Telmo A. Snchez, Ph.D. 2

    5

    Introduction to Steel Design

    1.2 Design Specifications:

    AISC: This specification provides

    the criteria for the design of

    structural steel buildings and their

    connections (AISC, 2005, 2010).

    6

    Introduction to Steel Design

    1.2 Design Specifications:

    CEC: Este cdigo contiene

    normativas locales para el diseo

    de estructuras de acero (CEC,

    2012).

    7

    Introduction to Steel Design

    1.2 Design Specifications:

    AISI: This specification dealswith the design of cold-formed

    steel structures (AISI, 2007).

    8

    Introduction to Steel Design

    1.2 Design Specifications:

    AASHTO: This specification

    covers the design of highway

    bridges and related structures

    (AASHTO, 2012).

  • 7/29/2019 Part I - Design of Steel Members

    3/91

    Diseo de Estructuras de Acero - Parte I

    CIMEPI - Agosto 2013

    Instructor: Ing. Telmo A. Snchez, Ph.D. 3

    9

    Introduction to Steel Design

    1.2 Design Specifications:

    Steel Construction Manual: Themanual is a book that contains

    design aids and other valuable

    information for the designer. The

    specification and its commentary

    are included in the manual inSection 16.

    AISCM Manual

    AISCS Specification

    10

    Introduction to Steel Design

    Design Philosophies:

    There are two basic specification philosophies:

    ASD Allowable Stress Design

    LRFD Load and Resistance Factor Design

    * LRFD is sometimes referred to as Limit States Design

    1.2 Design Specifications:

    11

    Introduction to Steel Design

    Define:

    Limit State: Condition in which a structure or

    component becomes unfit for service and is

    judged either to be no longer useful for itsintended function (serviceability limit state) or to

    have reached its ultimate load-carrying capacity

    (strength limit state).

    1.2 Design Specifications:

    12

    Introduction to Steel Design

    For all specifications:

    1.2 Design Specifications:

    Loading d Resistance

    Define:

    Loading

    ResistanceSafetyofFactor

    = accounts for under-strengthand over loads

    Basic Factor of Safety = 1.67 (determined by society)

  • 7/29/2019 Part I - Design of Steel Members

    4/91

    Diseo de Estructuras de Acero - Parte I

    CIMEPI - Agosto 2013Instructor: Ing. Telmo A. Snchez, Ph.D. 4

    13

    Introduction to Steel Design

    1.2 Design Specifications:

    Define:

    Loading

    ResistanceSafetyofFactor

    Basic Factor of Safety = 1.67 (determined by society)

    Factor of Safety is direct in ASD

    Factor of Safety is in two parts in LRFD:

    Resistance Factor

    Load Factor

    14

    Introduction to Steel Design

    1.3 2005 and 2010 AISC Specifications

    The 2005 AISCS was the first that combines ASD and

    LRFD procedures. Previous to this specification, there

    were separate ASD and LRFD specifications.

    ASD (1989) LRFD (1999) ASD,LRFD ( , 2010 )

    15

    Introduction to Steel Design

    1.3 2010 AISC Specification

    ASD: General format for ASD

    Required strength referred to as

    a loading combination

    where:

    :n

    i

    RQ d

    iQ

    :nR Allowable strength

    i Load typeiQ Nominal (service or working) load

    nR Nominal resistance

    : Factor of safety16

    Introduction to Steel Design

    1.3 2010 AISC Specification

    LRFD: General format for LRFD

    Required strength, ,referred to

    as a loading combination

    where:

    nunii RRRQ dd IIJ iiQJ

    nRI Allowable strength

    i Load type

    iQ Nominal (service or working) load

    nR Nominal resistanceResistance factor corresponding to nR

    iJ Load factor corresponding to iQ

    uR

    or

  • 7/29/2019 Part I - Design of Steel Members

    5/91

    Diseo de Estructuras de Acero - Parte I

    CIMEPI - Agosto 2013

    Instructor: Ing. Telmo A. Snchez, Ph.D. 5

    17

    Introduction to Steel Design

    I

    1.3 2010 AISC Specification

    LRFD Specification Basis:

    LRFD is based on a probabilistic model. The load

    factor, , and the resistance factor, , reflect the fact

    that loads, load effects and resistances can be

    determined only to imperfect degrees of accuracy.

    takes into account variations in loading over the life

    structuretakes into account:

    Ii

    J

    iJ

    1. unavoidable design model

    2. variations in dimensions

    3. variations in erected positions

    inaccuracies

    18

    Introduction to Steel Design

    1.3 2010 AISC Specification

    LRFD Specification Basis:

    Q,R

    FrequencyQ: loading R: resistance

    failure

    19

    Frequency

    mean

    Introduction to Steel Design

    1.3 2010 AISC Specification

    LRFD Specification Basis:

    VE

    E = number of std. deviations= reliability index= 3.0 for members, 4.0 for conn.

    V = standard deviation

    Q

    Rln

    Q

    Rln

    20

    Introduction to Steel Design

    1.3 2010 AISC Specification

    Load Factors and Load Combinations for LRFD:

    The load combinations for LRFD recognize that, when

    several transient loads act in combination, only one

    assumes its maximum lifetime value, based on a 50-

    year recurrence, while the others are at their

    arbitrary-point-in-time values.

  • 7/29/2019 Part I - Design of Steel Members

    6/91

    Diseo de Estructuras de Acero - Parte I

    CIMEPI - Agosto 2013Instructor: Ing. Telmo A. Snchez, Ph.D. 6

    21

    Introduction to Steel Design

    1.3 2010 AISC Specification

    Load Factors and Load Combinations for LRFD:

    uRFor LRFD, the required strength, , is determinedfrom the following factored combinations, which are

    on p.2-8 of the Manual, and are based on ASCE-7

    Section 2.3:

    E.orW.D.

    S.L.E.D.

    RorSorL.L.W.D.W.orL.RorSorL.D.

    orRSorL.L.D.

    D.

    r

    r

    r

    016190

    20500121

    50506121

    80506121

    506121

    41

    r

    r

    22

    Introduction to Steel Design

    Load Factors and Load Combinations for LRFD:

    Where:

    loadearthquake

    loadwind

    rainwatertodueload

    Ecuador)inapplicable(notsnow

    loadliveroof

    occupacytodueloadlive

    loaddead

    E

    W

    R

    S

    L

    L

    D

    r

    1.3 2010 AISC Specification

    23

    Introduction to Steel Design

    Example 1:

    The compression member shown in the

    figure is subject to the following service

    loads. Determine the controlling load

    combination, and the corresponding

    required strength.

    D=115 kipsL= 60 kipsLr= 23 kips

    1.3 2010 AISC Specification

    24

    Introduction to Steel Design

    Example 1:

    kips...

    RorSorL.L.W.D.

    kips...

    W.orL.RorSorL.D.

    kips...orRSorL.L.D.

    kips.

    D.

    r

    r

    r

    1802350605011521

    50506121

    2056050236111521

    80506121

    2462350606111521

    506121

    16111541

    41

    1.3 2010 AISC Specification

  • 7/29/2019 Part I - Design of Steel Members

    7/91

    Diseo de Estructuras de Acero - Parte I

    CIMEPI - Agosto 2013Instructor: Ing. Telmo A. Snchez, Ph.D. 7

    25

    Introduction to Steel Design

    kipsRu 246

    Example 1:

    kips.

    E.orW.D.

    kips..

    S.L.E.D.

    10411590

    016190

    168605011521

    20500121

    r

    r

    Load combination 2 controls

    Note that some of the load combinations can

    be eliminated by inspection.

    1.3 2010 AISC Specification

    26

    Introduction to Steel Design

    Example 1:Ru= 246 kips

    1.3 2010 AISC Specification

    27

    Introduction to Steel Design

    1.4 Structural Shapes:

    Types of shapes:

    Hot-rolledBuilt-up

    Types of hot-rolled shapes:

    a) H-shapes: could be W,M,S,HP

    flange

    web

    28

    Introduction to Steel Design

    1.4 Structural Shapes:

    plf.076weight

    .in.d 923

    Types of hot-rolled shapes:

    a) H-shapes: could be W,M,S,HP

    i) W-shapes, p. 1-10+

    Example: W24x76 (W610x113)

    Note that nominal depth and

    actual depth are not the

    same.

  • 7/29/2019 Part I - Design of Steel Members

    8/91

    Diseo de Estructuras de Acero - Parte I

    CIMEPI - Agosto 2013Instructor: Ing. Telmo A. Snchez, Ph.D. 8

    29

    Introduction to Steel Design

    1.4 Structural Shapes:

    Types of hot-rolled shapes:

    a) H-shapes: could be W,M,S,HP

    ii) M-shapes, p.1-28+

    Example: M4x6

    iii) S-shapes, p.1-30+

    Example: S12x40.8 plf.840weight .ind 12

    30

    Introduction to Steel Design

    1.4 Structural Shapes:

    Types of hot-rolled shapes:

    a) H-shapes: could be W,M,S,HP

    iv) HP-shapes, p.1-32+

    Example: HP12x84

    b) Channels or C - or MC sections, p. 1-34+

    Example: C12x50MC 18x58

    31

    Introduction to Steel Design

    1.4 Structural Shapes:

    Types of hot-rolled shapes:

    c) Angles, p.1-40+

    Example: L8x8x5/8 equal-leg angle

    L8x6x3/4 unequal-leg angle

    toe

    leg

    toeheel

    32

    Introduction to Steel Design

    1.4 Structural Shapes:

    Types of hot-rolled shapes:

    d) Tee-sections, p.1-48+

    Example: WT20x196 cut from a W40x392

    stem

    Also cut from M - and S - Shapes

  • 7/29/2019 Part I - Design of Steel Members

    9/91

    Diseo de Estructuras de Acero - Parte I

    CIMEPI - Agosto 2013Instructor: Ing. Telmo A. Snchez, Ph.D. 9

    33

    Introduction to Steel Design

    1.4 Structural Shapes:

    Types of hot-rolled shapes:

    e) Hollow Structural Sections (HSS), p.1-72+

    Example: HSS 20x12x5/8 rectangular HSS

    HSS 10.000x0.635 round HSS

    34

    Introduction to Steel Design

    1.4 Structural Shapes:

    Types of hot-rolled shapes:

    f) Pipe, p.1-99

    Three types: strong, extra strong, and double-

    extra strong

    .ind 12|

    Example: Pipe 12 x-Strong

    35

    LLBB SLBB

    Gusset

    Plate

    Introduction to Steel Design

    1.4 Structural Shapes:

    Types of built-up shapes:

    a) Double angles, p.1-100+

    LLBB: Long leg back to backSLBB: Short leg back to back

    2L8x6x LLBB

    Example:

    36

    Introduction to Steel Design

    1.4 Structural Shapes:

    Types of built-up shapes:

    b) Double channels, p1-108+

    x

    y

  • 7/29/2019 Part I - Design of Steel Members

    10/91

    Diseo de Estructuras de Acero - Parte I

    CIMEPI - Agosto 2013

    Instructor: Ing. Telmo A. Snchez, Ph.D. 10

    37

    Introduction to Steel Design

    1.4 Structural Shapes:

    Types of built-up shapes:

    c) I Sections

    Weld (316 -1

    4 in.)

    38

    Introduction to Steel Design

    1.5 Structural Steels:

    High strength steel

    Mild steel F

    F

    V

    yVuV

    H

    39

    yield plateau

    Estrain

    hardening

    regionelastic

    region

    Introduction to Steel Design

    1.5 Structural Steels:

    yH1512

    yV

    uuyy F,F VV

    yH

    In the AISC Specification:

    40

    Introduction to Steel Design

    1.5 Structural Steels:

    ksiFy ksiFu

    Common structural steels used in buildings:

    ASTM A36 36 58-65ASTM A992 50 65

    ASTM A572 Gr. 42 42 60

    ASTM A572 Gr. 50 50 65

    ASTM A572 Gr. 60 60 75

    Steel

  • 7/29/2019 Part I - Design of Steel Members

    11/91

    Diseo de Estructuras de Acero - Parte I

    CIMEPI - Agosto 2013

    Instructor: Ing. Telmo A. Snchez, Ph.D. 11

    41

    Introduction to Steel Design

    1.5 Structural Steels:

    Most common structural steels:

    ASTM A36 for connection plates and angles

    ASTM A992 for hot-rolled members

    ASTM A572 Gr. 50 for plates used in built-up members

    42

    43 44

  • 7/29/2019 Part I - Design of Steel Members

    12/91

    Diseo de Estructuras de Acero - Parte I

    CIMEPI - Agosto 2013

    Instructor: Ing. Telmo A. Snchez, Ph.D. 12

    45

    Tension Member Design

    Types: a) Wire rope, bridge strand

    b) Rods

    Non-threaded (welded)

    Threaded

    Non-upsetUpset

    2.1 Introduction:

    46

    c) Plates primarily splice plates

    d) Single rolled members

    splice plates

    Tension Member Design

    47

    e) Built-up members

    truss bottom chord

    Tension Member Design

    48

    Limit States (Failure Modes):

    Strength:

    T

    Serviceability:

    rupture (Fu)

    T

    yielding (Fy)

    i) slendernessi) yielding

    ii) deflection at service loadsii) rupture

    Tension Member Design

  • 7/29/2019 Part I - Design of Steel Members

    13/91

    Diseo de Estructuras de Acero - Parte I

    CIMEPI - Agosto 2013

    Instructor: Ing. Telmo A. Snchez, Ph.D. 13

    49

    2.2 Design Criteria:

    D1. Slenderness Limitations

    D2. Tensile Strength

    D3. Area DeterminationD4. Built-up Members

    D5. Pin-connected Members

    D6. Eyebars

    Chapter D applies to members subject to axial

    tension caused by static forces acting through

    the centroidal axis.

    Tension Member Design

    50

    D1. Slenderness Limitations:

    .,

    300

    inA

    Ir

    r

    rL

    rL

    d except rods (see user note)

    slenderness ratio

    radius of gyration

    Tension Member Design

    51

    D2. Tensile Strength:

    The design tensile strength, , of tension members,

    shall be the lower value obtained according to the limit

    states oftensile yieldingin the gross section and tensile

    rupture in the (effective) net section.

    D2.(a) For tensile yielding in

    the gross section:

    gyn AFP 90.0tI

    D2.(b) For tensile rupture in

    the net section:

    eun AFP 75.0tI

    ntPI

    ntu PP Id

    Tension Member Design

    52

    D3. Area Determination:

    Ag = gross area

    An = net area (gross area hole area)

    B

    B'

    A

    A'Sec. A-A'

    Gross Area (Ag)

    Sec. B-B'

    Net Area (An)

    Tension Member Design

  • 7/29/2019 Part I - Design of Steel Members

    14/91

    Diseo de Estructuras de Acero - Parte I

    CIMEPI - Agosto 2013

    Instructor: Ing. Telmo A. Snchez, Ph.D. 14

    53

    D3. Area Determination:

    U=1.0 if all the elements in the section are connectedby bolts or welds. If one or more elements are not

    connected, calculate U according Table D3.1

    Ae = effective area

    U = shear lag factor

    UAA ne

    Tension Member Design

    54

    D3. Area Determination:

    Tension Member Design

    55

    D3. Area Determination:

    Tension Member Design

    56

    D3. Area Determination:

    Tension Member Design

  • 7/29/2019 Part I - Design of Steel Members

    15/91

    Diseo de Estructuras de Acero - Parte I

    CIMEPI - Agosto 2013

    Instructor: Ing. Telmo A. Snchez, Ph.D. 15

    57

    D3. Area Determination:

    U accounts for unequal stress distribution in the

    transverse section of the tension member. If the

    section has unconnected elements, the effective area

    is less than the net area (i.e. U

  • 7/29/2019 Part I - Design of Steel Members

    16/91

    Diseo de Estructuras de Acero - Parte I

    CIMEPI - Agosto 2013

    Instructor: Ing. Telmo A. Snchez, Ph.D. 16

    61

    Tension Member Design

    More examples:

    uT

    Length of bolted connection:

    uT

    62

    More examples:

    Length of welded connections:

    Tension Member Design

    uT uT

    63

    Staggered Fasteners:

    In a bolted connection, the reduction in the net area,

    An, can be minimized if the bolts are staggered. The

    net area is the minimum area calculated, following all

    the possible paths where tension fracture can occur.

    Tension Member Design

    64

    Staggered Fasteners:A

    A

    B

    B

    C

    C

    min

    nA

    long. spacing between

    consecutive holes (pitch)

    transv. spacing between

    consecutive holes (gage)

    number of diagonals (n=2

    for the conn. shown)area of one holehA

    t

    g

    snAAA

    AAA

    AAA

    hgCC

    hgBB

    hgAA

    43

    2

    2

    thickness of material at the hole

    Tension Member Design

    s

    g

    n

    t

  • 7/29/2019 Part I - Design of Steel Members

    17/91

    Diseo de Estructuras de Acero - Parte I

    CIMEPI - Agosto 2013

    Instructor: Ing. Telmo A. Snchez, Ph.D. 17

    65

    Example:

    Calculate the net area of the element shown below.

    AC

    CAB

    B

    .in.r

    .in.x

    .in.g

    .in.s

    .ind

    in.A

    .in.t

    .in.d

    y

    b

    g

    w

    7790

    6740

    52

    62

    347

    3870

    0012

    43

    2

    C12x25

    Tension Member Design

    "8

    52

    "212

    66

    2

    2

    2

    2

    2

    2

    2

    161

    161

    43

    526

    716

    3870524

    6252

    433905347

    52

    3870524

    6252233904347

    66633902347

    33903870

    in.A

    in.

    ..

    .

    ..A

    in.

    ..

    ...A

    in...A

    in..'A

    n

    FE

    BB

    AA

    h

    Example:

    Tension Member Design

    AC

    CAB

    B

    "852

    "2

    12

    AC-C

    67

    D4. Built-up Members:

    300d

    z

    z

    yxz

    r

    L

    randrrx

    y z

    principal axes

    For a single angle:

    Tension Member Design

    x

    y

    300

    300

    d

    d

    y

    x

    r

    L

    r

    L

    For two angles:

    68

    2.3 Analysis and Design Examples:

    Example 1:

    Calculate the tension

    design strength of the I-

    shape shown in the figure.

    W18x35

    .7.17

    .425.0

    .300.0

    30.102

    ind

    int

    int

    inA

    f

    w

    g

    ASTM A992

    ksiF

    ksiF

    u

    y

    65

    50

    critical section

    Tension Member Design

  • 7/29/2019 Part I - Design of Steel Members

    18/91

    Diseo de Estructuras de Acero - Parte I

    CIMEPI - Agosto 2013Instructor: Ing. Telmo A. Snchez, Ph.D. 18

    6

    Example 1:

    425043010

    01

    750

    87

    87

    161

    161

    43

    ..A

    .ind

    .U

    AUA

    AF.P

    n

    'h

    ne

    eun

    I

    kips.

    ..

    AF.P gyn

    50463

    301050900

    900

    I

    Rupture strength:

    all elements connected

    Tension Member Design

    Yielding strength:

    kips.

    ..P

    in.AA

    n

    ne

    5429

    81865750

    8182

    I

    70

    Example 1:

    Design strength:

    kips.P

    kips.P

    kips.PP

    n

    rupture_n

    yielding_nminn

    5429

    5429

    5463

    I

    I

    II

    rupture controls

    Tension Member Design

    71

    Example 2:

    AC

    CAB

    B

    Determine if the element is adequate to resist the loads

    shown and satisfies the deflection limit. The member

    length is 15 ft.

    C12x25, A36

    (see previous example)

    Tension Member Design

    "8

    52

    "212.in

    kipsLkipsD

    L 163

    105

    50

    d

    '

    .in.r

    .in.x

    in.A

    in.A

    y

    n

    g

    7790

    6740

    526

    347

    2

    2

    72

    Example 2:

    Design strength:

    Yielding strength:

    kips

    ..

    AF.P gyn

    330

    34750900

    900

    I

    Required strength:

    kips

    ..

    L.D.Pu

    228

    105615021

    6121

    By inspection the second loadcombination controls

    Tension Member Design

    Di d E t t d A P t I

  • 7/29/2019 Part I - Design of Steel Members

    19/91

    Diseo de Estructuras de Acero - Parte I

    CIMEPI - Agosto 2013

    Instructor: Ing. Telmo A. Snchez, Ph.D. 19

    73

    Example 2:

    Design strength:

    Rupture strength:

    kips

    ..P

    in...A

    ..

    .

    L

    xU

    AUA

    AF.P

    n

    e

    ne

    eun

    269

    19658750

    196526950

    95062525

    674011

    750

    2

    I

    Tension Member Design

    74

    Example 2:

    the element can resist the applied loads

    kipsP

    kipsP

    kipsPP

    n

    rupture_n

    yielding_nminn

    269

    269

    330

    I

    I

    II

    rupture controls

    kipsPkipsP nu 269228 d I

    Tension Member Design

    75

    Example 2:

    Slenderness limit:

    300231

    7790

    1215

    d

    .r

    L

    y

    OK

    Tension Member Design

    76

    Example 2:

    Deflection limit:

    .in..in..EA

    LP

    g

    LL

    18800890

    29000347

    1215105

    163 d

    '

    OK

    C12x25, A36, is adequate

    Tension Member Design

    Diseo de Estructuras de Acero Parte I

  • 7/29/2019 Part I - Design of Steel Members

    20/91

    Diseo de Estructuras de Acero - Parte I

    CIMEPI - Agosto 2013

    Instructor: Ing. Telmo A. Snchez, Ph.D. 20

    77

    Tension Member Design

    Workshop 1

    78

    79 80

    Diseo de Estructuras de Acero Parte I

  • 7/29/2019 Part I - Design of Steel Members

    21/91

    Diseo de Estructuras de Acero - Parte I

    CIMEPI - Agosto 2013

    Instructor: Ing. Telmo A. Snchez, Ph.D. 21

    81

    Compression Member Design

    Limit states: 1. Flexural (lateral) buckling

    2. Flexural-torsional buckling

    3. Torsional buckling

    4. Local buckling

    Lateral buckling Torsional buckling Lat.-tor. buckling

    3.1 Introduction:

    Web local buckling Flange local buckling

    In this course we

    will focus on limit

    state 1. and define

    limit state 4.

    82

    Compression Member Design

    Ideal columns: Assumptions

    3.2 Flexural Buckling:

    1.Elastic:

    2. Perfectly straight:Pe

    Pe

    P

    P

    0

    0

    "

    "

    6

    yPyIE

    yIEyPM

    M

    x

    o

    Eulers solution:

    2

    2

    L

    EIPe

    S

    83

    Compression Member Design

    2rI now,

    e

    Eulers buckling

    stress

    2

    2

    L

    EIPe

    S

    2

    2

    2

    22

    rL

    e

    e

    e

    E

    AL

    EAr

    A

    P

    SV

    S

    V

    L/r

    y

    2

    2

    rL

    e

    ESV

    but steel yields

    at some point

    The result:

    3.2 Flexural Buckling:

    Ideal column behavior

    L/r

    y

    84

    Compression Member Design

    Real columns:

    T

    C

    C

    3.2 Flexural Buckling:

    1.Residual stresses due to manufacturing process:

    actual line ref. line

    rt

    rc = 10 18 ksi

    rt = tensile residual stresses

    rc = compressive residual stresses

    Diseo de Estructuras de Acero - Parte I

  • 7/29/2019 Part I - Design of Steel Members

    22/91

    Diseo de Estructuras de Acero Parte I

    CIMEPI - Agosto 2013

    Instructor: Ing. Telmo A. Snchez, Ph.D. 22

    85

    Compression Member Design

    Real columns:

    P

    P

    3.2 Flexural Buckling:

    1.Residual stresses due to manufacturing process:

    In stub columns:

    y

    y-rc

    rc + P/A

    Inelastic

    Elastic

    86

    Compression Member Design

    Real columns:

    3.2 Flexural Buckling:

    2. Out-of-straightness:

    reference line real line

    3. Other factors:

    - end conditions

    - unknown eccentricity

    - out of plumbness

    87

    Compression Member Design

    Design of real columns:

    3.2 Flexural Buckling:

    inelastic elastic

    empirical curve

    ideal curve

    e

    0.877e

    r

    L

    V

    yV

    88

    Compression Member Design

    Define:

    3.3 Local Buckling:

    member section

    This section has

    five elements

    elements

    Diseo de Estructuras de Acero - Parte I

  • 7/29/2019 Part I - Design of Steel Members

    23/91

    Diseo de Estructuras de Acero Parte I

    CIMEPI - Agosto 2013

    Instructor: Ing. Telmo A. Snchez, Ph.D. 23

    89

    Compression Member Design

    Define:

    3.3 Local Buckling:

    unstiffened elements

    (one end connected)

    stiffened element

    (both ends connected)

    90

    Compression Member Design

    Define: There are two types of elements, stiffened and unstiffened

    3.3 Local Buckling:

    1 stiff. elmt. 4 unst.

    2 unst. elmts. 3 unst. elmts. 4 stiff. elmts. 1 stiff. elmt. 2 unst.

    7 stiff. elmt. 4 unst. 8 stiff. elmt. 4 unst.

    91

    Compression Member Design

    Local buckling occurs when the cross section of a

    compression member has elements so thin that they

    buckle locally, with a lower load than the load required

    to make the column buckle laterally.

    3.3 Local Buckling:

    local buckling flex. (overall) buckling

    Only those members thathave thin (slender)

    elements can buckle

    locally. If there are not

    slender elements, the

    only failure mode is

    overall buckling.

    92

    Compression Member Design

    In an I-section member there are two types of local

    buckling: flange local buckling and web local buckling.

    3.3 Local Buckling:

    Web local buckling (WLB) Flange local buckling (FLB)

    Diseo de Estructuras de Acero - Parte I

  • 7/29/2019 Part I - Design of Steel Members

    24/91

    CIMEPI - Agosto 2013

    Instructor: Ing. Telmo A. Snchez, Ph.D. 24

    93

    Compression Member Design

    3.3 Local Buckling:

    Local slenderness ratio

    A member can collapse because of local buckling if its section

    has slender elements. The element slenderness ratio is

    computed by dividing its length (b) by its thickness (t).

    t

    b

    f

    f

    t

    b

    t

    b

    2

    wt

    h

    t

    b

    Example:

    flange slenderness ratio

    web slenderness ratio

    94

    Compression Member Design

    More examples:

    3.3 Local Buckling:

    flanges:

    web:

    f

    f

    tb

    tb

    wt

    h

    t

    b

    flanges:

    tb

    tb

    t

    h

    t

    b

    legs:

    tb

    tb

    flange:

    stem:

    f

    f

    tb

    tb

    wt

    d

    t

    b

    95

    Compression Member Design

    3.3 Local Buckling:

    Table B4.1 of the AISCs specification gives the limit rfor sections subject to compression. If the slendernessratio, b/t, is more than r, the element is consideredslender.

    rt

    bO!

    slender element

    local buckling may occur

    before flexural buckling

    If

    Note: A section is considered slender if one or more of its

    elements are slender.

    96

    Compression Member Design

    3.3 Local Buckling:

    Diseo de Estructuras de Acero - Parte I

  • 7/29/2019 Part I - Design of Steel Members

    25/91

    CIMEPI - Agosto 2013

    Instructor: Ing. Telmo A. Snchez, Ph.D. 25

    97

    Compression Member Design

    Determine if a W21x93, A992 is a slender section.

    Example:

    332

    534

    930

    428

    580

    621

    2

    .

    .

    .in.t

    .in.b

    .in.t

    .in.d

    w

    f

    f

    th

    tb

    f

    f

    w

    W21x93 ASTM A992

    ksiF

    ksiF

    u

    y

    65

    50

    98

    Compression Member Design

    Example:

    the flange is non-slender

    Flange: From Table B4.1, Case 1:

    135

    549302

    428

    2

    513

    50

    29000560560

    ..

    ..

    .

    t

    b

    t

    b

    .

    .F

    E.

    f

    f

    y

    r

    O

    99

    Compression Member Design

    Example:

    Web: From Table B4.1, Case 5:

    935332

    332

    935

    50

    29000491491

    ..

    .t

    h

    t

    b

    .

    .F

    E.

    w

    y

    r

    O

    the web is non-slender

    Neither the flanges nor the web are slender elements.

    Therefore, the section is a non-slender section. Local

    buckling will not control the design of this member.

    100

    Compression Member Design

    Determine if the built-up section shown below is a

    slender section. The material is A572 Gr. 50

    Example:

    .in.t

    .in.b

    .in.t

    .in.h

    .in.d

    f

    f

    w

    01

    09

    50

    119

    022

    Section ASTM A572 Gr. 50

    ksiF

    ksiF

    u

    y

    65

    50

    Diseo de Estructuras de Acero - Parte I

  • 7/29/2019 Part I - Design of Steel Members

    26/91

    CIMEPI - Agosto 2013

    Instructor: Ing. Telmo A. Snchez, Ph.D. 26

    101

    Compression Member Design

    Example:

    the flange is non-slender

    Flange: From Table B4.1, Case 2:

    m

    m

    41254

    54012

    9

    2

    41250

    29000650640

    760650350

    65044

    640

    50119

    .

    ..t

    b

    t

    b

    ..

    .

    ...

    .k

    F

    Ek.

    f

    f

    r

    ..

    th

    c

    y

    cr

    w

    O

    O

    OK (footnote [a])

    102

    Compression Member Design

    Example:

    Web: From Table B4.1, Case 5:

    935238

    238500

    119

    935

    50

    29000491491

    ..

    ..

    .

    t

    h

    t

    b

    .

    .F

    E.

    w

    y

    r

    !

    O

    the web is slender

    Since the web is slender, the section is slender. Local

    buckling may occur prior to overall member buckling.

    103

    Compression Member Design

    3.3 Design Criteria:Chapter E addresses members subject to axial

    compression through the centroidal axis.

    E1. General Provisions

    E2. Slenderness Limitations and Effective Length

    E3. Compressive Strength for Flexural Buckling ofMembers without Slender Elements

    E4. Compressive Strength for Torsional and Flexural-Torsional Buckling of Members without SlenderElements

    E5. SingleAngle Compression Members

    E6. Built-up Members

    E7. Members with Slender Elements

    104

    Compression Member Design

    E1. General Provisions:

    The design compressive strength, IcPn, is determined asfollows:

    The nominal compressive strength, Pn, shall be thelowest value obtained according to the limit states offlexural buckling (E3.), torsional buckling (E4.), andflexural-torsional buckling(E4.).

    Diseo de Estructuras de Acero - Parte I

  • 7/29/2019 Part I - Design of Steel Members

    27/91

    CIMEPI - Agosto 2013

    Instructor: Ing. Telmo A. Snchez, Ph.D. 27

    105

    Compression Member Design

    E1. General Provisions:

    (a) For doubly-symmetric and singly-symmetricmembers the limit state of flexural buckling is

    applicable.

    (b) For singly-symmetric and unsymmetric members,

    and certain doubly-symmetric members, such as

    cruciform or built-up columns, the limit states of

    torsional or flexural-torsional buckling are also

    applicable.

    90.0cIFor all limit states,

    106

    Compression Member Design

    E2. Slenderness Limitations and Effective Length:

    r

    L

    K

    Slenderness limit:

    effective length factor

    laterally unbraced length of the member

    governing radius of gyration

    md

    200r

    LKrecommended

    107

    Compression Member Design

    E2. Slenderness Limitations and Effective Length:

    108

    Compression Member Design

    E3. Compressive Strength for Flexural Buckling of

    Members without Slender Elements:

    gcrn AFP

    crF flexural buckling stress

    yF

    E

    r

    KL71.4d(a) When y

    F

    F

    cr FFe

    y

    658.0

    yF

    E

    r

    KL71.4!(b) When ecr FF 877.0

    Diseo de Estructuras de Acero - Parte I

  • 7/29/2019 Part I - Design of Steel Members

    28/91

    CIMEPI - Agosto 2013

    Instructor: Ing. Telmo A. Snchez, Ph.D. 28

    109

    Compression Member Design

    E3. Compressive Strength for Flexural Buckling of

    Members without Slender Elements:

    elastic critical buckling stress

    (Eulers buckling stress).

    2

    2

    r

    KL

    EFe

    S

    eF

    110

    Compression Member Design

    Elasticregion

    Inelastic

    region

    E3. Compressive Strength for Flexural Buckling of

    Members without Slender Elements:

    2

    2

    r

    KL

    EFe

    S

    ecr FF 877.0

    200 r

    KL

    yF444.0

    yF yF

    F

    cr FFe

    y

    658.0

    yF

    E71.4

    crF

    111

    Compression Member Design

    3.4 Analysis and Design Examples:

    Example 1:

    Determine the available strength, , of a W14x99.

    A992 steel.ncPI

    ncPI Properties:

    W14x99

    523

    349

    713

    176

    129

    2

    2

    .

    .

    .in.r

    .in.r

    in.A

    w

    f

    f

    th

    tb

    y

    x

    g

    112

    Compression Member Design

    3.4 Analysis and Design Examples:

    Example 1:

    51350

    29000560349

    2...

    t

    b

    f

    f

    Overall slenderness:

    5.3171.3

    1275.90.1

    0.19

    17.6

    1275.90.1

    y

    yy

    x

    xx

    r

    LKr

    LK

    controls

    Element slenderness:

    Flange:

    93550

    29000491523 ...

    t

    h

    w

    Web:

    The section is non-slender

    Diseo de Estructuras de Acero - Parte I

  • 7/29/2019 Part I - Design of Steel Members

    29/91

    CIMEPI - Agosto 2013

    Instructor: Ing. Telmo A. Snchez, Ph.D. 29

    113

    Compression Member Design

    3.4 Analysis and Design Examples:

    Example 1:

    :ncPI

    ?! 5.3111350

    2900071.4 we are in the

    inelastic zone

    ksiF

    ksiEF

    FF

    cr

    rKL

    e

    y

    F

    F

    cre

    y

    5.4650658.0

    2885.31

    29000

    658.0

    288

    50

    2

    2

    2

    2

    SS

    kips

    ...

    AF.P gcrnc

    1217

    12954690

    90

    I

    114

    Compression Member Design

    3.4 Analysis and Design Examples:

    Example 1:

    :ncPI

    Notice that . Table 4-22 lists for

    various values.

    From Table 4-22, with and :

    kipsP

    PksiF

    nc

    nc

    crc

    1218

    1.2985.4185.41

    I

    II

    yrKL

    crc FfF ,I crcFIyF

    ksiFy 50 5.31rKL

    115

    Compression Member Design

    3.4 Analysis and Design Examples:

    Example 1:

    :ncPI

    116

    Compression Member Design

    3.4 Analysis and Design Examples:

    Example 2:

    Determine the available strength, , of a W12x65,

    braced at mid-height as shown below. Use A992 steel.nc

    PI

    ncPI Properties:

    W12x65

    9.24

    92.9

    .02.3

    .28.5

    1.19

    2

    2

    w

    f

    f

    th

    t

    b

    y

    x

    g

    inr

    inr

    inA

    ncPI

    '26xxLK '13yyLK

    Diseo de Estructuras de Acero - Parte I

  • 7/29/2019 Part I - Design of Steel Members

    30/91

    CIMEPI - Agosto 2013

    Instructor: Ing. Telmo A. Snchez, Ph.D. 30

    117

    Compression Member Design

    3.4 Analysis and Design Examples:

    Example 2:

    Check local slenderness:

    513929

    51350

    29000560

    560

    9292

    ..

    ..

    F

    E.

    .t

    b

    t

    b

    y

    r

    f

    f

    O

    rt

    bOdIf the section is non-slender

    Flange:

    935924

    93550

    29000491

    491

    924

    ..

    ..

    F

    E.

    .t

    h

    t

    b

    y

    r

    w

    OTable B4.1 Case 3

    Case 10

    Web:

    this section will not failby local buckling

    118

    Compression Member Design

    3.4 Analysis and Design Examples:

    Example 2:

    Flexural buckling:

    751023

    121301

    159285

    122601

    ..

    .

    r

    LK

    ..

    .

    r

    LK

    y

    yy

    x

    xx

    controls

    1.59rKLksiFcrc 87.34Iwith from Table 4-22

    kipsP

    P

    nc

    nc

    666

    1.1987.34

    I

    I

    119

    Compression Member Design

    3.4 Analysis and Design Examples:

    Example 3:

    Select the lightest W14 section if Pu = 480 kips. The

    member length is 12 ft and both ends are pinned. The

    member material is A992.

    Assume

    .45.2

    9.17 2

    inr

    inA

    y

    g

    .92.1

    6.15 2

    inr

    inA

    y

    g

    80rKL

    ; from Table 4-22 ksiFcrc 2.28I

    0.172.28

    480

    80.180

    )1212(0.1

    crc

    ug

    y

    F

    PA

    r

    I

    with these values, the

    possible sections are:

    W14x61

    W14x53

    120

    Compression Member Design

    3.4 Analysis and Design Examples:

    Example 3:

    Try the W14x53 section:

    0.7592.1

    12120.1

    r

    KL; from Table 4-22 ksiFcrc 8.29I

    kipsPkipsP

    AFP

    unc

    gcrcnc

    480465

    6.158.29

    I

    II

    N.G.

    Try the W14x61 section:

    ; from Table 4-22 ksiFcrc 8.32I

    kipsPkipsP

    AFP

    unc

    gcrcnc

    480587

    9.178.32

    !

    I

    II

    OK

    8.5845.2

    12120.1

    r

    KL

    Diseo de Estructuras de Acero - Parte I

  • 7/29/2019 Part I - Design of Steel Members

    31/91

    CIMEPI - Agosto 2013

    Instructor: Ing. Telmo A. Snchez, Ph.D. 31

    121

    Compression Member Design

    3.4 Analysis and Design Examples:

    Example 3:

    Check local buckling:

    5.1375.7

    5.1350

    29000

    56.0

    56.0

    75.72

    r

    y

    r

    f

    f

    F

    E

    t

    b

    t

    b

    O

    O

    Flange:

    9.354.30

    9.3550

    29000

    49.1

    49.1

    4.30

    r

    y

    r

    w

    F

    E

    t

    h

    t

    b

    O

    OTable B4.1 Case 3 Case 10

    Web:

    this section will not fail bylocal buckling

    Use W14x61, A992

    122

    Compression Member Design

    3.4 Analysis and Design Examples:

    Example 4:

    Select a W12 , A992 if the required strength is 745 kips.

    The column details are shown below.

    kipsPu 745

    '24xxLK '18yyLK

    kipsPu 745

    123

    Compression Member Design

    3.4 Analysis and Design Examples:

    Example 4:

    Assume y-direction controls,

    .88.275

    1812inry

    .07.3

    .38.5

    6.252

    inr

    inr

    inA

    y

    x

    g

    y

    yy

    r

    LK

    75

    y

    yy

    r

    LK; from Table 4-22 ksiFcrc 8.29IAssume

    20.258.29

    745inA

    g Required ; Required

    Try W12x87:

    124

    Compression Member Design

    5.5307.3

    12240.1

    x

    xx

    r

    LK

    3.4 Analysis and Design Examples:

    Example 4:

    Check assumptions done before:

    kipsPkipsP

    P

    AFP

    unc

    nc

    gcrcnc

    745801

    6.253.31

    !

    I

    I

    II

    3.7007.3

    12180.1

    y

    yy

    r

    LK; from Table 4-22 ksiFcrc 3.31I

    3.7007.3

    12180.1

    y

    yy

    r

    LKOK

    OK

    >

    Diseo de Estructuras de Acero - Parte I

  • 7/29/2019 Part I - Design of Steel Members

    32/91

    CIMEPI - Agosto 2013

    Instructor: Ing. Telmo A. Snchez, Ph.D. 32

    125

    Compression Member Design

    3.4 Analysis and Design Examples:

    Example 4:

    Check slenderness:

    Use W12x87, A992

    8.359.18

    4.135.72

    r

    w

    r

    f

    f

    t

    h

    t

    b

    O

    O OK

    OK

    126

    Compression Member Design

    3.4 Analysis and Design Examples:

    Example 5:

    Find ncPI for the section shown below. The material is A36.

    ncPI

    98

    3 xPL

    98

    3 xPL

    12

    16

    5 xPL

    127

    Compression Member Design

    3.4 Analysis and Design Examples:

    Example 5:

    Check slenderness:

    Web:Flange:

    m

    614012

    61436

    29000650640

    76065044

    640

    012

    2

    9

    2

    165

    12

    8

    3

    ..

    ..

    .

    ..k

    F

    Ek.

    .

    t

    b

    r

    twh

    c

    y

    cr

    f

    f

    O

    O

    m

    342438

    34236

    29000491

    491

    43812

    16

    5

    ..

    ..

    F

    E.

    .

    t

    h

    y

    r

    w

    OTable B4.1 Case 4 Case 10

    OK

    OK

    128

    Compression Member Design

    3.4 Analysis and Design Examples:

    Example 5:

    Section properties:

    Need

    .in..

    .

    A

    Ir

    in.

    I

    in.A

    y

    y

    y

    g

    082510

    645

    645

    1212

    19

    12

    12

    5101292

    4

    3

    1653

    83

    2

    165

    83

    :, yg rA

    Diseo de Estructuras de Acero - Parte I

  • 7/29/2019 Part I - Design of Steel Members

    33/91

    CIMEPI - Agosto 2013

    Instructor: Ing. Telmo A. Snchez, Ph.D. 33

    129

    Compression Member Design

    3.4 Analysis and Design Examples:

    Example 5:

    Flexural buckling:

    kips.

    ..

    AFP gcrcnc

    0230

    510921

    II

    5.8608.2

    12150.1

    y

    yy

    r

    LK; from Table 4-22 ksiFcrc 9.21I

    130

    Compression Member Design

    Workshop 2

    131 132

    Diseo de Estructuras de Acero - Parte I

  • 7/29/2019 Part I - Design of Steel Members

    34/91

    CIMEPI - Agosto 2013

    Instructor: Ing. Telmo A. Snchez, Ph.D. 34

    133

    Beams - Laterally Supported

    4.1 Overview:Define: Laterally supported beam

    Pu

    Lateral supports Pu

    Pu

    The beam can deflect vertically, butrotation and horizontal displacement

    are prevented by lateral supports

    Deflection

    Rotation

    and

    H. disp.

    y'

    134

    Beams - Laterally Supported

    4.1 Overview:Define: Laterally unsupported beam

    The beam deflects vertically, has ahorizontal displacement, and rotates

    Pu x'

    y'

    I

    135

    Beams - Laterally Supported

    4.1 Overview:

    Laterally supported beam design study

    Topic Section

    - Bending strength 4.2, 4.3, and 4.4

    - Shear strength 4.5

    - Deflection limits 4.6

    - Web crippling strength 4.7

    - Web yielding strength 4.7

    - Beam bearing plate strength 4.8

    136

    Beams - Laterally Supported

    4.1 Overview:

    Laterally supported beam design study

    Shear strengthuV

    uM Bending strength Deflection limits

    'nvu VV Id

    nbu MM Id max'd

    uq

    arrugamiento

    Diseo de Estructuras de Acero - Parte I

  • 7/29/2019 Part I - Design of Steel Members

    35/91

    CIMEPI - Agosto 2013

    Instructor: Ing. Telmo A. Snchez, Ph.D. 35

    137

    Beams - Laterally Supported

    4.1 Overview:

    Laterally supported beam design study

    Web crippling Web yielding Beam bearing plate strength

    uq

    nu RR d Inu RR d I nu RR d I

    yielding here

    uR uR uR

    138

    Beams - Laterally Supported

    4.2 Bending Theory:Assumptions:

    a) Plane sections remain plane

    b) The member is prismatic

    c) The material is elastic perfectly plastic

    yV

    yH H

    139

    Beams - Laterally Supported

    4.2 Bending Theory:

    Strain

    Stress

    yHH yHH yHH ! yHH !!

    yVV

    yV

    yV yV yV

    140

    Beams - Laterally Supported

    CL

    4.2 Bending Theory:

    Plastic moment

    Moment at 1st yield

    maxM

    pM

    yM

    '

    EI

    wLCL

    384

    54

    '

    CL'

    yM

    pM

    w

    Fluye toda laseccin

    Diseo de Estructuras de Acero - Parte I

  • 7/29/2019 Part I - Design of Steel Members

    36/91

    CIMEPI - Agosto 2013

    Instructor: Ing. Telmo A. Snchez, Ph.D. 36

    141

    Beams - Laterally Supported

    4.2 Bending Theory:

    maxVReview of Elastic Beam Theory:

    StressStrain

    e.n.a.

    e.n.a.= elastic neutral axis

    I

    yM

    I

    yM

    M ane

    maxmax

    ... 0

    6

    V

    V

    142

    Beams - Laterally Supported

    4.2 Bending Theory:

    maxy

    IS

    Define:

    2d

    x

    x

    IS

    S = elastic section module

    For H and C shapes:

    2fb

    y

    y

    IS

    For T shapes:

    Review of Elastic Beam Theory:

    143

    Ac

    AtTy

    Cy

    Beams - Laterally Supported

    4.3 Calculation of Plastic Moment Capacity:

    yV

    yVp.n.a. = plastic neutral axis

    pMcy

    ty

    p.n.a

    0

    AAA

    AA

    TC

    F

    tc

    tycy

    yy

    VV

    one half of the area is above

    and below the p.n.a144

    Beams - Laterally Supported

    4.3 Calculation of Plastic Moment Capacity:

    iix yAZ

    x

    xyp

    iiyp

    ttccyp

    tytcycp

    tycyp

    tycyp

    anp

    Z

    ZM

    yAM

    yAyAM

    yAyAM

    yTyCM

    yTyCM

    M

    V

    V

    V

    VV

    0...

    plastic section modulus

    with respect to p.n.a.

    Diseo de Estructuras de Acero - Parte I

  • 7/29/2019 Part I - Design of Steel Members

    37/91

    CIMEPI - Agosto 2013

    Instructor: Ing. Telmo A. Snchez, Ph.D. 37

    145

    Beams - Laterally Supported

    4.3 Calculation of Plastic Moment Capacity:

    x

    x

    xy

    xy

    y

    p

    S

    Z

    S

    Z

    M

    Mf

    f

    V

    V

    xyr

    xyp

    xyy

    SF.M

    ZM

    SM

    70

    V

    V

    shape factor

    Definitions:

    plastic section modulus

    elastic section modulus

    Define:

    x

    x

    r

    p

    y

    Z

    S

    M

    M

    M

    plastic moment

    yield moment

    first yield moment

    146

    Beams - Laterally Supported

    4.3 Calculation of Plastic Moment Capacity:

    f shape factorDefine:

    The shape factor is a measure of the remaining

    bending strength beyond the yield moment.

    CL

    yM

    pM

    maxM

    '

    reserve strength

    147

    ftkips.

    SM

    in.S

    in.

    I

    IS

    xyy

    x

    x

    d

    xx

    19612

    26536

    265587

    58712

    17

    4

    1

    2

    176

    2

    1

    12

    5062

    3

    21

    217

    43

    165

    23

    2

    V

    Beams - Laterally Supported

    4.3 Calculation of Plastic Moment Capacity:

    f

    Example 1:

    Find ,and for strong axis bending. The

    member material is A36.py MM ,

    PL1

    2 x 6

    PL12 x 6

    PL 516 x 17

    148

    151

    196

    225

    225

    36

    1754

    17

    2

    17

    16

    5

    4

    1

    2

    176

    2

    12

    12175

    3

    .f

    M

    Mf

    ftkips

    ZM

    in.

    yAZ

    y

    p

    .xyp

    iix

    V

    Beams - Laterally Supported

    p.n.a.

    4.3 Calculation of Plastic Moment Capacity:

    Example 1:

    with respect to p.n.a.

    CL

    15%

    yMpM

    maxM

    tiene quever conlos esfuerzosresiduales entre 10y 18 ksi

    Diseo de Estructuras de Acero - Parte I

  • 7/29/2019 Part I - Design of Steel Members

    38/91

    CIMEPI - Agosto 2013

    Instructor: Ing. Telmo A. Snchez, Ph.D. 38

    149

    kipsftM

    SM

    inI

    S

    inI

    y

    yyy

    b

    y

    y

    y

    f

    0.18

    12

    0.636

    00.63

    0.18

    0.1812

    17

    12

    65.02

    3

    2

    4

    3

    1653

    V

    Beams - Laterally Supported

    4.3 Calculation of Plastic Moment Capacity:

    f

    Example 2:

    Compute ,and for the previous section

    with respect to y-axis.py

    MM ,

    PL12 x 6

    PL12 x 6

    PL 516 x 17

    x

    y

    150

    53.1

    0.186.27

    6.27

    36

    21.92

    17

    2

    235.02

    1221.9

    2

    3252

    f

    MMf

    ftkipsM

    ZM

    Z

    yAZ

    y

    p

    p

    yyp

    y

    iiy

    V

    Beams - Laterally Supported

    4.3 Calculation of Plastic Moment Capacity:

    Example 2:

    with respect to y-p.n.a.

    yM

    pM

    maxM

    CL

    53%

    '

    151

    70

    70

    .

    SF.M xyr

    CL

    slender

    non-compact

    compact

    Beams - Laterally Supported

    4.4 Flexural Design of Beams:

    4.4.1 Basic Beam Behavior and Response Curve:

    pM

    rM

    maxM

    '

    xyp ZFM

    accounts forresidual stresses

    local buckling

    yM

    yM yield moment

    rM moment at first yielding

    152

    Beams - Laterally Supported

    4.4 Flexural Design of Beams:

    4.4.1 Basic Beam Behavior and Response Curve:

    p

    M

    rM

    nM

    pO

    Types of elements :

    a) compact

    b) non-compact

    c) slender

    General response curve

    compact

    element

    non-compact

    elementslender

    element

    straight line

    hyperbola

    rO tbO

    tipos de seccionespara vigas

    esbeltez

    Diseo de Estructuras de Acero - Parte I

  • 7/29/2019 Part I - Design of Steel Members

    39/91

    CIMEPI - Agosto 2013

    Instructor: Ing. Telmo A. Snchez, Ph.D. 39

    153

    Beams - Laterally Supported

    Define:

    4.4 Flexural Design of Beams:

    4.4.2 Strong Axis Bending of H-Shapes:

    r

    rp

    p

    OO

    OOO

    OO

    !

    dd

    If

    If

    If

    compact element

    non-compact element

    slender element

    Section Elements

    f

    w

    O

    O web slenderness ratio

    flange slenderness ratio

    154

    Beams - Laterally Supported

    4.4 Flexural Design of Beams:

    4.4.2 Strong Axis Bending of H-Shapes:

    Table B4.1 indicates

    the limits p and r to

    determine the type of

    element within a

    section

    155

    Beams - Laterally Supported

    4.4 Flexural Design of Beams:

    4.4.2 Strong Axis Bending of H-Shapes:

    nbu MM I

    Design criterion:

    90.0bIuM Required flexural strength (from moment diagram)

    n

    M Nominal flexural strength (Chapter F specification)

    , in a laterally supported beam, is function of the type

    of elements (compact, non-compact, slender) within the

    section

    nM

    156

    Beams - Laterally Supported

    4.4 Flexural Design of Beams:

    4.4.2 Strong Axis Bending of H-Shapes:

    , compact flange and compact web:nM

    Compact web:

    y

    pw

    w

    wFE

    th 76.3d OO

    Compact flange:

    y

    pf

    f

    f

    fF

    E

    t

    b38.0

    2d OO

    xypn ZFMM

    Table B4.1 Case 15(rolled and built-up section)

    Table B4.1 cases 10 and 11(rolled and built-up section)

    AISCS (F2-1)

    Un elementorigidizado y 4sin rigidizar

    Diseo de Estructuras de Acero - Parte I

  • 7/29/2019 Part I - Design of Steel Members

    40/91

    CIMEPI - Agosto 2013

    Instructor: Ing. Telmo A. Snchez, Ph.D. 40

    157

    Beams - Laterally Supported

    4.4 Flexural Design of Beams:

    4.4.2 Strong Axis Bending of H-Shapes:

    , non-compact flange and compact web:nM

    Non-compact flange: rffpf OOO d

    Table B4.1 Case 10(rolled section)

    yL

    th

    c

    L

    crf

    y

    rf

    F.F

    .k.

    F

    Ek.

    F

    E.

    w

    70

    7604

    350

    950

    01

    dd

    O

    O

    Table B4.1 Case 11

    (built-up section)

    Table B4.1 footnote (a)

    Table B4.1 footnote (b)

    158

    Beams - Laterally Supported

    4.4 Flexural Design of Beams:

    4.4.2 Strong Axis Bending of H-Shapes:

    , non-compact flange and compact web:nM

    Notice that:

    pfrf

    pff

    xyppn SF.MMMOO

    OO70

    xyr SF.M 70

    AISCS (F3-1)

    159

    Beams - Laterally Supported

    4.4 Flexural Design of Beams:

    4.4.2 Strong Axis Bending of H-Shapes:

    , slender flange and compact web:nM

    rff OO !

    AISCS (F3-2)2

    9.0

    f

    xcn

    SEkM

    O

    160

    Beams - Laterally Supported

    pM

    rM

    nM

    pfO

    Summary for beams with compact webs:

    compact

    flange

    non-compact

    flangeslender

    flange

    rfOf

    f

    t

    b

    f 2

    2O

    4.4 Flexural Design of Beams:

    4.4.2 Strong Axis Bending of H-Shapes:

    xy ZF

    pfrf

    pff

    xypp SFMMOO

    OO75.0

    2

    9.0

    f

    xcSEk

    O

    Diseo de Estructuras de Acero - Parte I

  • 7/29/2019 Part I - Design of Steel Members

    41/91

    CIMEPI - Agosto 2013

    Instructor: Ing. Telmo A. Snchez, Ph.D. 41

    161

    Beams - Laterally Supported

    4.4 Flexural Design of Beams:

    4.4.2 Strong Axis Bending of H-Shapes:

    Example 3:

    Compute for a W21x68. The member material is A992.nbMI

    W21x68

    3

    3

    2

    160

    1406.43

    04.6

    inZ

    inS

    x

    x

    t

    h

    tb

    f

    f

    162

    Beams - Laterally Supported

    4.4 Flexural Design of Beams:

    4.4.2 Strong Axis Bending of H-Shapes:

    Example 3:

    Check slenderness:

    web:

    ?

    6.906.43

    6.90

    50

    2900076.376.3

    6.43

    y

    p

    w

    w

    F

    E

    t

    h

    O

    O

    flange:

    ?

    15.904.6

    15.9

    50

    2900038.038.0

    04.62

    y

    p

    f

    f

    f

    F

    E

    t

    b

    O

    O

    ftkips.ZF.M xynb

    600

    12

    160509090IDesign strength:

    compact web compact flange

    163

    Beams - Laterally Supported

    4.4 Flexural Design of Beams:

    4.4.2 Strong Axis Bending of H-Shapes:

    Example 4:

    Compute for a W14x90. The member material is A992.nbMI

    W14x90

    3

    3

    2

    157

    143

    9.25

    2.10

    inZ

    inS

    x

    x

    th

    tb

    f

    f

    164

    Beams - Laterally Supported

    4.4 Flexural Design of Beams:

    4.4.2 Strong Axis Bending of H-Shapes:

    Example 4:

    Check slenderness:

    web:

    ?

    6.909.25

    6.9050

    2900076.376.3

    9.25

    y

    p

    w

    w

    F

    E

    th

    O

    O

    flange:

    ?

    1.242.1015.9

    1.2450

    290000.10.1

    15.950

    2900038.038.0

    2.102

    y

    r

    y

    p

    f

    ff

    F

    E

    F

    E

    t

    b

    O

    O

    O

    compact web

    non-compact flange

    Diseo de Estructuras de Acero - Parte I

  • 7/29/2019 Part I - Design of Steel Members

    42/91

    CIMEPI - Agosto 2013

    Instructor: Ing. Telmo A. Snchez, Ph.D. 42

    165

    Beams - Laterally Supported

    4.4 Flexural Design of Beams:

    4.4.2 Strong Axis Bending of H-Shapes:

    Example 4:

    Design Strength:

    ftkips..

    ...M

    ftkips.SF.M

    ftkipsZFM

    SF.MM.M

    nb

    xyr

    xyp

    pfrf

    pff

    xyppnb

    574159024

    15921041765465490

    41712

    143507070

    65412

    15750

    75090

    I

    OO

    OOI

    166

    Beams - Laterally Supported

    4.4 Flexural Design of Beams:

    4.4.2 Strong Axis Bending of H-Shapes:

    Example 5:

    Compute for a section shown below. The member

    material is A572 Gr. 50.nbMI

    Properties:

    3

    3

    3233

    1135.4925.0225.9105.02

    1035.9

    977

    97725.9105.012

    5.0102

    12

    1825.0

    inyAZ

    inc

    IS

    inI

    iix

    xx

    x

    PL12 x 10

    PL12 x 10

    PL14 x 18

    167

    Beams - Laterally Supported

    4.4 Flexural Design of Beams:

    4.4.2 Strong Axis Bending of H-Shapes:

    Example 5:

    Check slenderness:

    web:

    ?

    6.9072

    6.9050

    2900076.376.3

    7225.0

    18

    y

    p

    w

    w

    F

    E

    th

    O

    O

    compact web

    168

    Beams - Laterally Supported

    4.4 Flexural Design of Beams:

    4.4.2 Strong Axis Bending of H-Shapes:

    Example 5:

    Check slenderness:

    760471044

    15950

    29000380380

    10502

    10

    2

    25018

    ..k

    ..F

    E.

    .t

    b

    .th

    c

    y

    p

    f

    f

    f

    w

    O

    O

    non-compact

    flange

    flange:

    ?

    81810159

    8185070

    290004710950

    950

    ..

    ..

    ..

    F

    Ek.

    L

    crO

    Diseo de Estructuras de Acero - Parte I

  • 7/29/2019 Part I - Design of Steel Members

    43/91

    CIMEPI - Agosto 2013

    Instructor: Ing. Telmo A. Snchez, Ph.D. 43

    169

    ftkips..

    ..M

    ftkips.SF.M

    ftkipsZFM

    MMM.M

    nb

    xyr

    xyp

    pfrf

    pff

    rppnb

    410159818

    1591030047147190

    30012

    103507070

    47112

    11350

    90

    I

    OO

    OOI

    Beams - Laterally Supported

    4.4 Flexural Design of Beams:

    4.4.2 Strong Axis Bending of H-Shapes:

    Example 5:

    Design Strength:

    170

    Beams - Laterally Supported

    4.4 Flexural Design of Beams:

    4.4.3 Weak Axis Bending:

    Web local buckling is not a limit state

    Flange local buckling is the same as strong axis bending

    e.n.a=p.n.a.

    yV yV

    171

    Beams - Laterally Supported

    4.4 Flexural Design of Beams:

    4.4.4 Analysis and Design Examples:

    Select the lightest H-shape if Mu = 305 kips-ft, A992.

    uxynbMZFM !? 9.0I

    33.81509.0

    12305

    9.0in

    F

    MZ

    y

    urequired

    Example 6:

    Lets assume that the section is compact

    From Manual Table 3-2, two possible options are:

    W16x45

    W10x68

    33.82 inZx 3

    3.85 inZx

    The W16x45 (45plf) is the best option

    since it is lighter than the W10x68

    (68plf). Need to check compactness.

    172

    Beams - Laterally Supported4.4 Flexural Design of Beams:

    4.4.4 Analysis and Design Examples:

    Example 6:

    primera fluencia

    Plastico

    Diseo de Estructuras de Acero - Parte I

  • 7/29/2019 Part I - Design of Steel Members

    44/91

    CIMEPI - Agosto 2013

    Instructor: Ing. Telmo A. Snchez, Ph.D. 44

    173

    ?

    159236

    159

    50

    29000380380

    2362

    ..

    ..

    F

    E.

    .t

    b

    y

    p

    f

    f

    f

    O

    O

    Beams - Laterally Supported

    4.4 Flexural Design of Beams:

    4.4.4 Analysis and Design Examples:

    Example 6:

    Use W16x45

    Check slenderness:

    web:

    ?

    690141

    690

    50

    29000763763

    141

    ..

    ..

    F

    E.

    .t

    h

    y

    p

    w

    w

    O

    O

    flange:

    compact web compact flange

    174

    Beams - Laterally Supported

    4.4 Flexural Design of Beams:

    4.4.4 Analysis and Design Examples:

    Example 7:

    Design a H-shape for the beam shown below. Use A992.

    self-weightkipsPkipsP

    LD30,10

    4PL

    2wL

    uM

    -

    175

    Beams - Laterally Supported

    4.4 Flexural Design of Beams:

    4.4.4 Analysis and Design Examples:

    Example 7:

    Factored load and moment:

    max

    .4 1.4 10 141.2 1.6 1.2 10 1.6 30 60

    Du

    D L

    P kipsPP P kips

    Estimate the beam weight = 60 plf plfwu 72602.1

    ftkips

    .Mu

    3044300

    8

    200720

    4

    2060 2

    176

    Beams - Laterally Supported

    4.4 Flexural Design of Beams:

    4.4.4 Analysis and Design Examples:

    Example 7:

    Assume the section is compact:

    Estimate the beam section:

    3

    1815090

    12304

    90 in..F.

    M

    Z y

    u

    d'req

    .25.0

    .5.0

    .8

    int

    int

    inb

    w

    f

    f

    PL12 x 8

    PL14 x 2y

    PL12 x 8

    Diseo de Estructuras de Acero - Parte I

  • 7/29/2019 Part I - Design of Steel Members

    45/91

    CIMEPI - Agosto 2013

    Instructor: Ing. Telmo A. Snchez, Ph.D. 45

    177

    Beams - Laterally Supported

    4.4 Flexural Design of Beams:

    4.4.4 Analysis and Design Examples:

    Example 7:

    Determine the minimum web height:

    .in..d

    .in.y.in.y

    y..y..

    yA.Z

    y

    iix

    01750282

    00897

    2502505082181

    681

    2

    o

    m

    t

    mt

    .in.in

    Ld

    171024

    1220

    24Rule of thumb

    OK

    PL 12 x 8

    PL14 x 2y

    PL 1 x 8

    178

    Beams - Laterally Supported

    4.4 Flexural Design of Beams:

    4.4.4 Analysis and Design Examples:

    Example 7:

    Check slenderness:

    m

    690064

    690

    50

    29000

    763763

    64250

    117

    ..

    .

    .F

    E

    .

    .t

    h

    yp

    w

    w

    O

    O

    m

    1598

    159

    50

    29000

    380380

    08502

    8

    2

    ..

    .

    .F

    E

    .

    ..t

    b

    yp

    f

    f

    f

    O

    O

    compact, OK

    web:

    compact, OK

    flange:

    179

    Beams - Laterally Supported

    4.4 Flexural Design of Beams:

    4.4.4 Analysis and Design Examples:

    Example 7:

    Check beam weight assumption:

    m

    plfplf.

    Aw

    inA..A

    g

    g

    g

    60840

    12

    12490

    12250165082

    2

    2

    G

    OK

    180

    Beams - Laterally Supported

    4.4 Flexural Design of Beams:

    4.4.4 Analysis and Design Examples:

    Example 7:

    Use PLx8 for the flanges and

    PLx16 for the web, A992

    PL12 x 8

    PL14 x 16

    PL12 x 8

    (must check shear and deflection)

    Para una primeraaproximacin se puededespreciar el peso propio,ya definido se comprueba

    Diseo de Estructuras de Acero - Parte I

  • 7/29/2019 Part I - Design of Steel Members

    46/91

    CIMEPI - Agosto 2013

    Instructor: Ing. Telmo A. Snchez, Ph.D. 46

    181

    Beams - Laterally Supported

    4.4 Flexural Design of Beams:

    4.4.4 Analysis and Design Examples:

    Example 8:

    Design the filler beams for the bay shown in the figure. Use

    A572 Gr. 60.Live load = 100 psf

    Slab + deck = 107 psf

    Mech. = 5 psf

    Ceiling = 3 psf

    Miscellaneous = 2 psf

    Dead load = 117 psf

    182

    Beams - Laterally Supported

    4.4 Flexural Design of Beams:

    4.4.4 Analysis and Design Examples:

    Example 8:

    Factored load and moment:

    ftkipsLw

    M

    plfLD

    plfDw

    plfw

    plfw

    uu

    u

    L

    D

    m

    1538

    20064.3

    8

    306410006.112202.16.12.1

    170812204.14.1

    100010010

    12205011710

    22

    max

    Assume beam weight = 50 plf:the beam self-weight

    is 5% of the dead load

    183

    Beams - Laterally Supported

    4.4 Flexural Design of Beams:

    4.4.4 Analysis and Design Examples:

    Example 8:

    Assume the section is compact:

    Estimate the beam section:

    3

    '0.34

    609.0

    12153

    9.0

    in

    F

    MZ

    y

    udreq

    .25.0

    .375.0

    .6

    int

    int

    inb

    w

    f

    f

    PL 3 8 x 6

    PL 14 x 2y

    PL 3 8 x 6

    184

    Beams - Laterally Supported

    4.4 Flexural Design of Beams:

    4.4.4 Analysis and Design Examples:

    Example 8:

    Determine the minimum web height:

    .25.12

    .75.5.62.5

    25.0375.0620.34

    0.34

    22375.0

    ind

    inyiny

    yy

    yAZ

    y

    iix

    o

    mt

    mt

    .in..inft

    Ld

    ft

    .in

    25121020

    2rule of thumb

    OK

    PL 3 8 x 6

    PL 14 x 2 y

    PL 3 8 x 6

    Diseo de Estructuras de Acero - Parte I

  • 7/29/2019 Part I - Design of Steel Members

    47/91

    CIMEPI - Agosto 2013

    Instructor: Ing. Telmo A. Snchez, Ph.D. 47

    185

    Beams - Laterally Supported

    4.4 Flexural Design of Beams:

    4.4.4 Analysis and Design Examples:

    Example 8:

    Check slenderness:

    m

    690046

    690

    50

    29000763763

    46250

    2755

    ..

    .

    .F

    E.

    .

    .

    t

    h

    yp

    w

    w

    O

    O

    m

    1508

    159

    50

    29000

    380380

    0837502

    6

    2

    ..

    .

    .F

    E

    .

    ..t

    b

    yp

    f

    f

    f

    O

    O

    compact, OK

    web:

    compact, OK

    flange:

    186

    Beams - Laterally Supported

    4.4 Flexural Design of Beams:

    4.4.4 Analysis and Design Examples:

    Example 8:

    Check beam weight assumption:

    m

    plfplfw

    Aw

    inA

    A

    g

    g

    g

    501.25

    12

    38.7

    490

    38.7

    25.075.52375.062

    2

    2

    G

    OK

    187

    Beams - Laterally Supported

    4.4 Flexural Design of Beams:

    4.4.4 Analysis and Design Examples:

    Example 8:

    Use PL3/8x6 for the flanges and

    PLx11 for the web, A572 Gr.60

    PL 38 x 6

    PL 14 x 111

    2

    PL 38 x 6

    (must check shear and deflection)

    188

    Beams - Laterally Supported

    Workshop 3

    Diseo de Estructuras de Acero - Parte I

  • 7/29/2019 Part I - Design of Steel Members

    48/91

    CIMEPI - Agosto 2013

    Instructor: Ing. Telmo A. Snchez, Ph.D. 48

    189

    Beams - Laterally Supported

    V

    4.5 Shear Strength:Limit states:

    maxW

    It

    VQW

    Design approximation:

    a) Shear Yielding

    b)Shear Buckling

    Shear stress:

    ww td

    V

    A

    V

    maxW

    Shear yield stress:

    y

    y

    y VV

    W 577.03 Von Misses

    theory of failureyy

    F6.0W for design

    190

    Beams - Laterally Supported

    4.5 Shear Strength:4.5.1 Design Criteria:

    Chapter G addresses webs of singly- or doubly-

    symmetric members subject to shear in the plane

    of the web, single angles and HSS sections, and

    shear in the weak direction of singly or doubly

    symmetric shapes.

    nvu VV Id 90.0vI

    191

    Beams - Laterally Supported

    4.5 Shear Strength:

    4.5.1 Design Criteria:

    AISCS section G2.1:

    vwyn CAFV 6.0

    for shear yielding:

    for shear buckling:

    AISCS (G2-1)

    0.1v

    C

    0.1v

    C

    192

    inelasticbuckling

    elasticbuckling

    G2-4

    G2-5

    yielding

    G2-3

    1.0

    Beams - Laterally Supported

    4.5 Shear Strength:

    4.5.1 Design Criteria:

    AISCS section G2.1:

    is a function ofw

    webt

    hO

    vC

    wth

    vC

    y

    v

    F

    Ek.101

    y

    v

    F

    Ek.371

    Diseo de Estructuras de Acero - Parte I

  • 7/29/2019 Part I - Design of Steel Members

    49/91

    CIMEPI - Agosto 2013

    Instructor: Ing. Telmo A. Snchez, Ph.D. 49

    193

    Beams - Laterally Supported

    4.5 Shear Strength:4.5.1 Design Criteria:

    AISCS section G2.1:

    w

    y

    v

    v

    y

    v

    wy

    v

    v

    y

    v

    w

    th

    F

    Ek

    C

    F

    Ek

    t

    h

    F

    Ek

    C

    F

    Ek

    t

    h

    10.1

    37.110.1

    0.1

    10.1

    d

    dFor

    For

    AISCS (G2-3)

    AISCS (G2-4)

    194

    Beams - Laterally Supported

    4.5 Shear Strength:4.5.1 Design Criteria:

    AISCS section G2.1:

    yth

    vv

    wy

    v

    F

    kEC

    t

    h

    F

    Ek

    w

    2

    51.1

    37.1

    For

    AISCS (G2-5)

    stiffenersFor sections without

    stiffeners, 5v

    k

    195

    Beams - Laterally Supported

    4.5 Shear Strength:

    4.5.1 Design Criteria:

    AISCS section G2.1:

    :24.2yw F

    E

    t

    hd

    0.1vI

    Special case:

    For hot-rolled sections with

    vwyn CAFV 6.0 0.1vC

    Note: Shear will only control for large loads and short

    spans.

    196

    Beams - Laterally Supported

    4.5 Shear Strength:

    4.5.2 Design Examples:

    Example 9:

    Determine if W18x71, A992, is adequate for shear.

    kipsPu 170

    kips5.42kips5.127

    5.127

    5.42

    )(kipsVu

    W18x71

    4.32

    .495.0

    .5.18

    w

    w

    t

    h

    int

    ind

    Neglect the beam weight

    Diseo de Estructuras de Acero - Parte I

  • 7/29/2019 Part I - Design of Steel Members

    50/91

    CIMEPI - Agosto 2013

    Instructor: Ing. Telmo A. Snchez, Ph.D. 50

    197

    Beams - Laterally Supported

    4.5 Shear Strength:4.5.2 Design Examples:

    Example 9:

    0.10.1

    9.534.32

    9.5350

    29000

    24.224.2

    4.32

    6.0

    5.127

    ?m

    vv

    y

    w

    vwynv

    u

    C

    F

    E

    t

    h

    CAFV

    kipsV

    I

    II

    m!

    kips.kips.

    kips.

    .....

    .tdF..V wynv

    51277274

    7274

    014950518506001

    016001

    OK

    special case

    198

    Beams - Laterally Supported

    4.5 Shear Strength:4.5.2 Design Examples:

    Example 10:

    Determine in the following shape. The material is

    A572 Gr. 50.nvVI

    PL 3 4 x 6

    PL 3 4 x 6

    PL14 x 16

    199

    Beams - Laterally Supported

    4.5 Shear Strength:

    4.5.2 Design Examples:

    Example 10:

    8.7350

    29000537.137.1

    2.5950

    2900051.11.1

    5

    6416

    6.09.0

    41

    m

    y

    v

    y

    v

    v

    w

    vwynv

    F

    Ek

    F

    Ek

    kt

    h

    CAFVI

    kips

    .....V

    ..F

    Ek.

    C

    ..

    nv

    th

    y

    v

    v

    w

    109

    9250517250506090

    925064

    259

    11

    87364259

    ?

    I

    unstiffened webs

    inelastic shear

    buckling

    200

    Beams - Laterally Supported

    4.6 Serviceability Considerations:

    Chapter L addresses serviceability performance

    design requirements.

    L1. General ProvisionsL2. Camber L3. DeflectionsL4. DriftL5. VibrationL6. Wind-Induced MotionL7. Expansion and ContractionL8. Connection Slip

    Diseo de Estructuras de Acero - Parte I

  • 7/29/2019 Part I - Design of Steel Members

    51/91

    CIMEPI - Agosto 2013

    Instructor: Ing. Telmo A. Snchez, Ph.D. 51

    201

    Beams - Laterally Supported

    4.6 Serviceability Considerations:Deflections:

    Deflections in structural members and structural

    systems under appropriate service load combinations

    should not impair the serviceabilityof the structure.

    Empirical Rules:

    2

    240360L

    d.ii

    span,

    span.i LL

    t

    dd '' (floors) (roofs)

    d = depth of the beam

    L = length of the beam

    202

    Beams - Laterally Supported

    4.6 Serviceability Considerations:Vibrations:

    203

    Beams - Laterally Supported

    4.6 Serviceability Considerations:

    Example 11:

    a)Check of filler beams.L'

    W16x26

    4301 inIx

    m

    '

    .667.0.412.0

    .667.0360

    1220

    360

    .412.030129000384

    1728200.15

    384

    5

    0.110100

    100

    44

    inin

    inL

    inEI

    Lw

    klfftplfw

    psfL

    LL

    L

    OK

    204

    Beams - Laterally Supported

    4.6 Serviceability Considerations:

    Example 11:

    b) Compute due to concrete, deck, and beam.C'

    .45.000.1

    10.1412.0

    10.12610107

    26

    107

    in

    klfw

    plf

    psf

    c

    c

    '

    For a beam to be cambered,

    slab + deck

    beam

    camber must be .43 in

    Diseo de Estructuras de Acero - Parte I

  • 7/29/2019 Part I - Design of Steel Members

    52/91

    CIMEPI - Agosto 2013

    Instructor: Ing. Telmo A. Snchez, Ph.D. 52

    205

    Beams - Laterally Supported

    4.7 Web Yielding and Web Crippling:

    Reactions

    Load bearing on flange

    failurefailure

    *Concentrated Loads

    206

    Beams - Laterally Supported

    4.7 Web Yielding and Web Crippling:

    yieldinghere

    design

    ywyn

    nu

    kk

    FtNkFAR

    RR

    d

    5.2

    0.1

    1

    I

    I

    Web Yielding (J10.2):

    AISCS (J10-3)

    Exterior:

    1

    d

    207

    Beams - Laterally Supported

    4.7 Web Yielding and Web Crippling:

    design

    wyn

    nu

    kk

    tFNkR

    RR

    d

    5

    0.1II

    Web Yielding (J10.2):

    AISCS (J10-2)

    Interior:

    t

    208

    Beams - Laterally Supported

    4.7 Web Yielding and Web Crippling:

    75.0

    d

    I

    I nu RR

    Web Crippling (J10.3):

    localbuckling

    Diseo de Estructuras de Acero - Parte I

  • 7/29/2019 Part I - Design of Steel Members

    53/91

    CIMEPI - Agosto 2013

    Instructor: Ing. Telmo A. Snchez, Ph.D. 53

    209

    Beams - Laterally Supported

    4.7 Web Yielding and Web Crippling:

    w

    fy

    f

    wwn

    t

    tEF

    t

    t

    d

    NtR

    5.1

    2318.0

    Web Crippling (J10.3):

    t

    Interior loads:

    210

    Beams - Laterally Supported

    4.7 Web Yielding and Web Crippling:

    w

    fy

    f

    wwn

    w

    fy

    f

    wwn

    t

    tEF

    t

    t

    d

    NtR

    dN

    t

    tEF

    t

    t

    d

    NtR

    dN

    !

    d

    5.1

    2

    5.1

    2

    2.04

    14.0

    :2.0

    314.0

    :2.0

    Web Crippling (J10.3):

    Exterior loads:Two cases:

    211

    Beams - Laterally Supported

    4.7 Web Yielding and Web Crippling:

    nu RR ! IIf , install bearing stiffeners:

    2dt

    212

    Beams - Laterally Supported

    4.7 Web Yielding and Web Crippling:

    nRIDetermine and if bearing stiffeners are required.

    kipsPu 150

    Example 12:

    W16x26, A992

    .747.0

    .250.0

    .345.0

    .7.15

    ink

    int

    int

    ind

    design

    w

    f

    Diseo de Estructuras de Acero - Parte I

  • 7/29/2019 Part I - Design of Steel Members

    54/91

    CIMEPI - Agosto 2013

    Instructor: Ing. Telmo A. Snchez, Ph.D. 54

    213

    Beams - Laterally Supported

    4.7 Web Yielding and Web Crippling:

    d!

    Web yielding:

    Example 12:

    from the end of the beam:

    m!

    kipskipsR

    R

    tFNkR

    n

    n

    wyn

    150153

    250.0505.8747.050.1

    5

    I

    I

    I

    OK

    No stiffeners required

    214

    Beams - Laterally Supported

    4.7 Web Yielding and Web Crippling:

    2

    d!

    Web crippling:

    Example 12:

    from the end of the beam:

    m

    kipskipsR

    R

    t

    tEF

    t

    t

    d

    NtR

    n

    n

    w

    fy

    f

    wwn

    150106

    25.0

    345.05029000

    345.0

    25.0

    7.15

    5.83125.08.075.0

    318.0

    5.1

    2

    5.1

    2

    I

    I

    II

    N.G., use bearing stiffeners

    or change the beam

    215

    Beams - Laterally Supported

    4.7 Web Yielding and Web Crippling:

    Limit states:

    4.7.1 Beam Bearing Plate Design (AISCM, p14-3):

    expandinggrout

    uV

    .4 inN .1 inbB f |t

    Web yielding

    Web crippling

    Plate bending

    Concrete crushing

    N

    ptB

    216

    Beams - Laterally Supported

    on full area

    d

    d

    BNA

    psipsif

    A

    A

    AAAfP

    AfP

    PR

    c

    cp

    cp

    pu

    1

    '

    1

    2

    1

    21'

    1'

    150002500

    2

    85.0

    85.0

    60.0II

    4.7 Web Yielding and Web Crippling:

    Concrete Crushing (J8):

    on less thanthe full area

    for calculation

    purposesbut

    plan area of base plate

    CL

    CLA1 A2

    A1 A2

    11

    A1 = A2

    4.7.1 Beam Bearing Plate Design (AISCM, p14-3):

    Requisitos

    aplastamientodel concreto

    Es el factor de

    resistencia alaplastamientodel concreto

    Diseo de Estructuras de Acero - Parte I

  • 7/29/2019 Part I - Design of Steel Members

    55/91

    CIMEPI - Agosto 2013

    Instructor: Ing. Telmo A. Snchez, Ph.D. 55

    217

    Beams - Laterally Supported

    pt

    designk

    uR

    4.7 Web Yielding and Web Crippling:

    Plate Bending:In the design model only a 1 str ip is

    used and is analyzed as a cantileverbeam.

    for a rectangle :

    pP"1

    1A

    RP up

    m

    y

    udreq

    p

    u

    F

    MZ

    mPM

    9.0

    2

    1

    '

    2

    b

    d

    o

    o4

    1

    4

    2

    '

    2p

    dreq

    tZ

    bdZ solve for

    pt

    assuming yielding

    4.7.1 Beam Bearing Plate Design (AISCM, p14-3):

    218

    Design the beam and the bearing plate for the member

    shown below. Use A36 for the beam and for the bearing

    plates. The beam is supported on a 12 in. wide concrete

    wall.

    Beams - Laterally Supported

    ksi.'f

    L

    ftL

    .ind

    w

    w

    c

    L

    ftkips

    D

    ftkip

    L

    03

    360

    6

    10

    7

    9

    d

    d

    '

    4.8 Summary Example:Example 13:

    DL ww ,

    219

    Beams - Laterally Supported

    ftkipLw

    M

    kipsV

    LD

    D

    w

    uu

    u

    ftkips

    ftkips

    u

    6.1028

    68.22

    8

    4.682

    68.22

    8.2296.172.16.12.1

    8.974.14.1

    22

    max

    uu MV

    Required strength:

    Need to calculate and

    4.8 Summary Example:Example 13:

    220

    Beams - Laterally Supported

    Bending strength:

    Estimate the beam section:

    3

    '0.38

    369.0

    126.182

    9.0in

    F

    MZ

    y

    udreq

    .25.0

    .375.0

    .6

    int

    int

    inb

    w

    f

    f

    PL3

    8 x 5

    PL14 x 2y

    PL 38 x 5

    4.8 Summary Example:Example 13:

    Diseo de Estructuras de Acero - Parte I

  • 7/29/2019 Part I - Design of Steel Members

    56/91

    CIMEPI - Agosto 2013

    Instructor: Ing. Telmo A. Snchez, Ph.D. 56

    221

    Beams - Laterally Supported

    Determine the minimum web height:

    .75.14

    .00.7.83.6

    25.0375.0520.38

    0.38

    228

    3

    ind

    inyiny

    yy

    yAZ

    y

    iix

    o

    m!

    t

    mt

    .in.in.

    .inft

    d

    Ld

    .in

    ft

    .in

    37514

    32

    6

    2rule of thumb

    OK

    PL 38 x 5

    PL14 x 2y

    PL 38 x 5

    4.8 Summary Example:Example 13:

    222

    Beams - Laterally Supported

    Check local slenderness:

    m

    107056

    107

    36

    29000763763

    56250

    207

    .

    .F

    E.

    .

    .

    t

    h

    y

    p

    w

    w

    O

    O

    m

    810676

    810

    36

    29000380380

    67637502

    05

    2

    ..

    .

    .F

    E.

    ..

    .

    t

    b

    y

    p

    f

    f

    f

    O

    O

    compact, OK

    web:

    compact, OK

    flange:

    4.8 Summary Example:Example 13:

    223

    m

    kipskips

    kipsR

    kipsR

    R

    CAFR

    u

    nv

    nv

    vwynv

    7.714.68

    4.68

    7.71

    0.125.075.14366.090.0

    6.090.0

    I

    I

    Beams - Laterally Supported

    Shear Strength:

    0.18.6956

    8.6936

    29000510.1

    10.1

    5

    5625.0

    14

    ?

    m

    v

    y

    v

    v

    w

    C

    F

    Ek

    k

    t

    h

    OK

    unstiffened web

    4.8 Summary Example:Example 13:

    224

    Beams - Laterally Supported

    m

    .in..in.

    .in.L

    .in..EILw

    klf.w

    inI

    LL

    L

    x

    2000360

    200360

    126

    360

    036025129000384

    172860953845

    09

    251

    44

    3

    '

    OK

    Check deflection:

    4.8 Summary Example:Example 13:

    Diseo de Estructuras de Acero - Parte I

  • 7/29/2019 Part I - Design of Steel Members

    57/91

    CIMEPI - Agosto 2013

    Instructor: Ing. Telmo A. Snchez, Ph.D. 57

    225

    Beams - Laterally Supported

    Use PL3/8x5 for the flanges and

    PLx14 for the web, A36.

    PL38 x 5

    PL14 x 14

    PL38 x 5

    4.8 Summary Example:Example 13:

    226

    14

    Beams - Laterally Supported

    Bearing plate design:

    uV

    Try PL 7x8 A36:

    4.8 Summary Example:Example 13:

    227

    Beams - Laterally Supported

    Check web yielding:

    m

    kips.kips.

    kips.R

    kips.R

    ....RtFNk..R

    .in.k

    u

    n

    n

    wydeignn

    design

    383468

    468

    383

    250368625052015201

    625041

    83

    I

    II

    OK

    4.8 Summary Example:Example 13:

    Assume in. welds

    228

    Beams - Laterally Supported

    Check web crippling:

    ?! 2.027.075.14

    4

    d

    NEnd, Equation J10-5(b):

    m

    -

    -

    kips.kips.R

    .

    .

    .

    ..

    ....R

    t

    tEF

    t

    t.

    d

    Nt..R

    n

    .

    n

    w

    fy

    .

    f

    w

    wn

    468225

    250

    37503629000

    3750

    25020

    7514

    84125040750

    204

    140750

    51

    2

    51

    2

    I

    I

    I

    N.G., need to use stiffeners

    Stiffener design will be covered in section 10

    4.8 Summary Example:Example 13:

    Diseo de Estructuras de Acero - Parte I

  • 7/29/2019 Part I - Design of Steel Members

    58/91

    CIMEPI - Agosto 2013

    Instructor: Ing. Telmo A. Snchez, Ph.D. 58

    229

    Beams - Laterally Supported

    Check concrete crushing:

    m!

    kips.kipsP

    ....P

    .A

    A

    inA

    inA

    psif

    A

    AAf..P

    p

    p

    c'

    c'p

    468131

    531560385060

    253156

    132

    13227212

    5687

    3000

    85060

    1

    2

    2

    2

    2

    1

    1

    21

    I

    I

    I

    beam

    OK

    4.8 Summary Example:Example 13:

    230

    Beams - Laterally Supported

    Bearing plate thickness:

    .in..Z

    t

    tbin.

    .

    .Z

    .inkips..

    .M

    ksi..

    A

    RP

    .in..m

    d'req

    req,p

    p

    d'req

    u

    up

    62501

    15604

    1

    4

    41560

    3690

    065

    0652

    8821221

    22156

    468

    882250

    2

    3

    2

    1

    27

    designk

    pt

    Use PL 5/8x7x0-8,A36

    4.8 Summary Example:Example 13:

    231

    Beams - Laterally Supported

    4.8 Summary Example:Example 13:

    Flanges PL 38 x 5

    Web PL 14 x 14A36

    PL 58" x 7" x 0'-8" A36

    Final design:

    232

    Beams - Laterally Supported

    N

    n

    n

    4.9 Column Base Plate Design (AISCM p14-4):

    fb85.0

    m

    Limit states:

    m d95.0

    B

    uP

    1

    A

    PP up

    - Concrete crushing

    - Plate bending

    Diseo de Estructuras de Acero - Parte I

  • 7/29/2019 Part I - Design of Steel Members

    59/91

    CIMEPI - Agosto 2013

    Instructor: Ing. Telmo A. Snchez, Ph.D. 59

    233

    Beams - Laterally Supported

    pt

    y

    up

    p

    y

    ur

    rynbu

    p

    p

    u

    F

    Mt

    t

    F

    MZ

    ZFMM

    nP

    mP

    M

    9.0

    4

    4

    1

    9.0

    9.0

    21

    21

    2

    2

    2

    max

    d

    I

    pt

    2

    85.0

    6.0

    1

    2

    1

    21'

    d

    d

    A

    A

    A

    AAfP

    PP

    cp

    pu II

    Concrete crushing (J8): Plate bending:

    4.9 Column Base Plate Design (AISCM p14-4):

    234

    PL15"x24" A36

    Pier 24"x48"

    W18x119

    Beams - Laterally Supported

    Check if the column plate shown above is adequate if

    .Determine .

    Example 14:

    uP

    kipsPu 1300

    psifc 5000'

    ptW18x119

    .3.11

    .0.19

    inb

    ind

    f

    4.9 Column Base Plate Design (AISCM p14-4):

    235

    Beams - Laterally Supported

    Concrete crushing:

    m!

    kipskips

    ....P

    .A

    A

    inA

    inA

    A

    AAf..P

    p

    c'p

    13001359

    4813600585060

    2481792

    360

    7923324

    3602415

    85060

    1

    2

    2

    2

    2

    1

    1

    21

    I

    I

    OK

    Example 14:

    4.9 Column Base Plate Design (AISCM p14-4):

    236

    Beams - Laterally Sup