part iii facilities, chapter 5 mooring facilities · 2017-08-15 · part iii facilities, chapter 5...

42
PART III FACILITIES, CHAPTER 5 MOORING FACILITIES – 725 – (2) Embedment length of sheet pile walls for permanent situations and variable situations in respect of Level 1 earthquake ground motion The mechanical behavior of the sheet pile wall varies depending on the embedment length. With a short embedment length the behavior characteristics are free earth support conditions, and with a long embedment length the behavior characteristics are fixed earth support conditions. In order to ensure stability of the sheet pile wall under permanent situations and variable situations, It is preferable that the bottom of the sheet pile is fixed sufficiently in the ground, in other words that fixed earth support conditions be satisfied. Conventionally, the embedment length was obtained by the free earth support method based on classical earth pressure theory. Takahashi and Kikuchi 49) showed that the embedment length obtained with this method by considering appropriate partial factors is considered to be fixed earth support condition. Also, the equivalent beam method for obtaining the cross-section of sheet piles assumes fixed earth support conditions. If the embedment length of sheet piles is to obtain by the free earth support method, analysis of the embedment length of the sheet pile wall can be carried out using the following equation. This equation is obtained from the equilibrium of moments of the earth pressure and residual water pressure about the point of installation of the ties, as shown in Fig. 2.3.3. In the following equation, the symbol γ is the partial factor corresponding to its subscript, where the subscripts k and d indicate the characteristic value and the design value, respectively. (2.3.7) where, P p : resultant passive earth pressure acting on the sheet pile wall (kN/m) P a : resultant active earth pressure acting on the sheet pile wall (kN/m) P w : resultant residual water pressure acting on the wall structure (kN/m) P dw : resultant active water pressure acting on the wall body (kN/m) (only during earthquakes) ad : distance between the position of installation of the tie rod and the point of action of the resultant force (m) γ a : structural analysis coefficient In calculating the design values of earth pressure in the equation, the tangent of the angle of shearing resistance tanφ, the cohesion c, the wall surface friction angle δ, the effective unit weight w', the surcharge q, and the seismic coefficient for verification during earthquakes only k h may be calculated using equation (2.3.8), and Part II, Chapter 5, 1 Earth Pressure may be used for reference. The design value of residual water pressure may be calculated as appropriate by reference to Part II, Chapter 5, 2.1 Residual Water Pressure, after calculating the design value of residual water level from equation (2.3.8), taking the tide level and tidal difference at the front surface into consideration. Also, the design value of dynamic water pressure used in the performance verification during an earthquake may be calculated as appropriate by reference to Part II, Chapter 5, 2.2 Dynamic Water Pressure, after first calculating the design value of seismic coefficient for verification from equation (2.3.8). The partial coefficients used in calculation of the design values may be obtained by reference to Table 2.3.3. (2.3.8) In cohesive soil ground, normally if equation (2.3.9) is not satisfied, stability of embedment is not ensured. (2.3.9) where, c : cohesion of the soil at the seabed (kN/m 2 ) q : surcharge (kN/m 2 ) w i : weight of the soil of the i th stratum above the seabed surface, for below the residual water level, the weight in water (kN/m 2 ) ρ w : density of seawater (t/m 3 ) g : gravitational acceleration (m/s 2 ) h w : difference in water level between the residual water level and the front surface tide level (m) The design values in the equation may be calculated from the following equation. (2.3.10)

Upload: others

Post on 11-Mar-2020

6 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: PART III FACILITIES, CHAPTER 5 MOORING FACILITIES · 2017-08-15 · PART III FACILITIES, CHAPTER 5 MOORING FACILITIES – 727 – 2) Values proposed by Takahashi and 49)Kikuchi, et

PART III FACILITIES, CHAPTER 5 MOORING FACILITIES

–725–

(2)Embedment length of sheet pilewalls for permanent situations and variable situations in respect of Level 1earthquakegroundmotion

① Themechanical behavior of the sheet pilewall varies depending on the embedment length. With a shortembedmentlengththebehaviorcharacteristicsarefreeearthsupportconditions,andwithalongembedmentlengththebehaviorcharacteristicsarefixedearthsupportconditions.Inordertoensurestabilityofthesheetpilewallunderpermanentsituationsandvariablesituations,Itispreferablethatthebottomofthesheetpileisfixedsufficientlyintheground,inotherwordsthatfixedearthsupportconditionsbesatisfied.Conventionally,theembedmentlengthwasobtainedbythefreeearthsupportmethodbasedonclassicalearthpressuretheory.Takahashi and Kikuchi 49) showed that the embedment length obtained with this method by consideringappropriatepartialfactorsisconsideredtobefixedearthsupportcondition.Also,theequivalentbeammethodforobtainingthecross-sectionofsheetpilesassumesfixedearthsupportconditions.

② Iftheembedmentlengthofsheetpilesistoobtainbythefreeearthsupportmethod,analysisoftheembedmentlengthofthesheetpilewallcanbecarriedoutusingthefollowingequation.Thisequationisobtainedfromtheequilibriumofmomentsoftheearthpressureandresidualwaterpressureaboutthepointofinstallationoftheties,asshowninFig. 2.3.3.Inthefollowingequation,thesymbolγisthepartialfactorcorrespondingtoitssubscript,wherethesubscriptskanddindicatethecharacteristicvalueandthedesignvalue,respectively.

(2.3.7)

where, Pp :resultantpassiveearthpressureactingonthesheetpilewall(kN/m) Pa :resultantactiveearthpressureactingonthesheetpilewall(kN/m) Pw :resultantresidualwaterpressureactingonthewallstructure(kN/m) Pdw :resultantactivewaterpressureactingonthewallbody(kN/m)(onlyduringearthquakes) a–d :distancebetweenthepositionofinstallationofthetierodandthepointofactionoftheresultant

force(m) γa :structuralanalysiscoefficient

Incalculating thedesignvaluesof earthpressure in theequation, the tangentof theangleof shearingresistancetanφ,thecohesionc,thewallsurfacefrictionangleδ,theeffectiveunitweightw',thesurchargeq,andtheseismiccoefficientforverificationduringearthquakesonlykhmaybecalculatedusingequation(2.3.8),andPart II, Chapter 5, 1 Earth Pressuremaybeusedforreference.Thedesignvalueofresidualwaterpressuremaybecalculatedasappropriateby reference toPart II, Chapter 5, 2.1 Residual Water Pressure,aftercalculatingthedesignvalueofresidualwaterlevelfromequation(2.3.8),takingthetidelevelandtidaldifferenceatthefrontsurfaceintoconsideration.Also,thedesignvalueofdynamicwaterpressureused in theperformanceverificationduringanearthquakemaybecalculatedas appropriateby referencetoPart II, Chapter 5, 2.2 Dynamic Water Pressure, after first calculating the design value of seismiccoefficientforverificationfromequation(2.3.8).ThepartialcoefficientsusedincalculationofthedesignvaluesmaybeobtainedbyreferencetoTable 2.3.3.

(2.3.8)

③ Incohesivesoilground,normallyifequation(2.3.9)isnotsatisfied,stabilityofembedmentisnotensured.

(2.3.9)where,

c :cohesionofthesoilattheseabed(kN/m2) q :surcharge(kN/m2) wi :weightofthesoiloftheithstratumabovetheseabedsurface,forbelowtheresidualwaterlevel,

theweightinwater(kN/m2) ρw :densityofseawater(t/m3) g :gravitationalacceleration(m/s2) hw :differenceinwaterlevelbetweentheresidualwaterlevelandthefrontsurfacetidelevel(m)

Thedesignvaluesintheequationmaybecalculatedfromthefollowingequation.

(2.3.10)

Page 2: PART III FACILITIES, CHAPTER 5 MOORING FACILITIES · 2017-08-15 · PART III FACILITIES, CHAPTER 5 MOORING FACILITIES – 727 – 2) Values proposed by Takahashi and 49)Kikuchi, et

–726–

TECHNICAL STANDARDS AND COMMENTARIES FOR PORT AND HARBOUR FACILITIES IN JAPAN

Whenequation(2.3.9)isnotsatisfiedbecausethesoilsattheseabedareweak,theneithertheseabedsoilsshouldbeimprovedbyanappropriatemethod,orastructuresuchasasheetpilewallwitharelievingplatformshouldbeadopted.

④ Characteristicembedmentlengthconsideringtherigidityofthesheetpilewallcross-section

(a) According to the elastic beam analysismethod described in (1)④ above, the behavior characteristics ofasheetpilewallcanvarydependingon theembedment length. Inotherwords, if thesheetpiling isnotlongerbyacertainvalue, thesheetpilewallwillnotbestable. Theembedment length thatbringsaboutthelimitingstabilitystateiscalledthelimitingembedmentlengthDC. Iftheembedmentlengthislongerthanthelimitingembedmentlength,theflexuralmomentinthesheetpilewallbecomesthepeakmaximumflexuralmomentMPunderfreeearthsupportconditions.TheembedmentlengthobtainedaboveiscalledthetransitionembedmentlengthDP.Iftheembedmentlengthisincreasedfurther,theflexuralmomentbecomestheconvergentmaximummomentMFunderfixedearthsupportconditions.TheminimumembedmentlengthatwhichthisisachievediscalledtheconvergentembedmentlengthDF.

(b)FlexibilitynumberofthesheetpileAsameasuretoindicatetherigidityofasheetpilewallasastructure,thefollowingflexibilitynumberintheequation(2.3.11)proposedbyRoweisused:

(2.3.11)where

ρ :flexibilitynumber(m3/MN) H :totallengthofsheetpile(m) E :Young’smodulusofthesheetpile(MN/m2) I :geometricalmomentofinertiaperunitwidthofthecross-sectionofthesheetpile(m4/m)

ForHinρ=H4/EI,RoweusesthesumoftotalheightofthesheetpilewallfromtheseabottomtothetopofthesheetpilewallHandtheembeddedlengthD offixedearthsupportstateasthetotallengthofsheetpile.Also,TakahashiandKikuchiEtal.suggestanewindexcalledthesimilaritynumberthatisderivedbyusingtheflexibilitynumberandgroundcharacteristics.TheheightHT fromtheseabottomtothetierodinstallationpointisusedforthelengthH inthisequation:

(2.3.12)where,

ω :similaritynumber ρ :flexibilitynumber(m3/MN) h :modulusofsubgradereactionofthesheetpilewall(MN/m3) HT :heightfromthetieinstallationpointtotheseabedsurface(m) E :Young’smodulusofthesheetpile(MN/m2) I :geometricalmomentofinertiaperunitwidthofthecross-sectionofthesheetpile(m4/m)

Byexpressingthemechanicalcharacteristicsofasheetpilewallwithasimilaritynumber,theeffectoftherigidityofthesheetpilescanbeestimatedquantitatively.

(c)ModulusofsubgradereactionofsheetpilesThereareaveryfewreferencedatathatgivesmeasuredorsuggestedvaluesofmodulusofsubgradereactionof thesheetpileh. Therefore it ispreferable toobtain thesevaluesbymeansofmodel testsand/orfieldmeasurements. The proposed values that have traditionally been used include the values proposed byTerzaghiandtheonesproposedbyTakahashiandKikuchi,etal.,whichhavebeenobtainedbymodifyingTerzaghi’svalues.TheresearchconductedbyTakahashiandKikuchi,etal.showsthattheeffectoferrorsinthemodulusofsubgradereactionisnotfatalforpracticaluse.49)ThusthevaluesproposedbyTakahashiandKikuchi,etal.maynormallybeusedasthecoefficientofsubgradereactionofsheetpilewall.

1) ValuesproposedbyTerzaghi51)ThevaluesproposedbyTerzaghiareaslistedinTable 2.3.1.

Table 2.3.1 Modulus of Subgrade Reaction for Sheet Pile Wall in Sandy Ground (h)(MN/m3)

Relativedensityofsand Loose Medium Dense

Modulusofsubgradereaction(h) 24 38 58

Page 3: PART III FACILITIES, CHAPTER 5 MOORING FACILITIES · 2017-08-15 · PART III FACILITIES, CHAPTER 5 MOORING FACILITIES – 727 – 2) Values proposed by Takahashi and 49)Kikuchi, et

PART III FACILITIES, CHAPTER 5 MOORING FACILITIES

–727–

2) ValuesproposedbyTakahashiandKikuchi,etal.49)TakahashiandKikuchi,etal.confirmedthattheresultofTschebotarioff’smodeltestofsheetpilewall52)doesnotcontradictwiththevaluesproposedbyTerzaghi.TheyrelatedthemodulusofsubgradereactionlistedinTable 2.3.1 withtheN-value,usingtherelationshipbetweenthemodulusofsubgradereactionand the relativedensityproposedbyTerzaghiaswell as the relationshipbetween theN-valueand therelativedensity53)alsodemonstratedbyTerzaghi.ThentheyadoptedthesmallervalueofmodulusofsubgradereactiontobeonthesafesideandconnectedtheresultantvaluesusingasmoothlineasshowninFig. 2.3.9. TheyalsorelatedthemodulusofsubgradereactionwiththeangleofshearingresistanceasshowninFig. 2.3.10,usingoneequation(2.3.13)ofDunham’sequationsforcalculatingthesmallerangleofshearingresistanceforagivenN-value.

(2.3.13)

where, φ :angleofshearingresistance(°) N :N-value

However, it shouldbenoted thatFig. 2.3.10 isanexpedientgraph toacertaindegree,asDunham’sequationsincludecasesthatgivethelargerangleofshearingresistancedependingonthegrainsizeofsandysoil. Fig. 2.3.9 and2.3.10 alsoshowthevaluesproposedbyTerzaghiinadditiontothevaluesproposedbyTakahashiandKikuchi,atal.

1000

20

40

60

80

20 30 40 50

N-value

Values proposed by Terzaghi

Values proposed by Takahashi, Kikuchi, et al.

Mod

ulus

of s

ubgr

ade

reac

tion

h (M

N/m

3 )

Fig. 2.3.9 Relationship between Modulus of Subgrade Reaction(h)and N-value

Page 4: PART III FACILITIES, CHAPTER 5 MOORING FACILITIES · 2017-08-15 · PART III FACILITIES, CHAPTER 5 MOORING FACILITIES – 727 – 2) Values proposed by Takahashi and 49)Kikuchi, et

–728–

TECHNICAL STANDARDS AND COMMENTARIES FOR PORT AND HARBOUR FACILITIES IN JAPAN

20150

20

40

60

80

25 30 35 40

Values proposed by Terzaghi

Values proposed by Takahashi, Kikuchi, et al.

Angle of ineternal friction (°)

Mod

ulus

of s

ubgr

ade

reac

tion

h (M

N/m

3 )

Fig. 2.3.10 Relationship between Modulus of Subgrade Reaction(h)and Angle of Internal Friction( )

(d)DeterminationoftheembeddedlengthofsheetpileusingRowe’smethodInthedeterminationoftheembeddedlengthofsheetpilesusingRowe’smethod,acharacteristicvaluethatsatisfiesequation(2.3.14)canbeused.Asequation(2.3.14)takesintoconsiderationthestiffnessofthesheetpilewithout theearthpressure,whenreducing theearthpressureof theexistingsteelsheetpilequaywallorsimilarimprovementmethod,itisnecessarytobeawarethattheearthpressurereductioneffectdoesnotnecessarilyresultinashorteningoftheembedmentlength.Therefore,whenconsideringtheearthpressurereductioneffect,itispreferabletoalsousethemethodsof①to④above.

(2.3.14)where

δs :ratiooftheembeddedlengthofsheetpiletotheheightofthetierodinstallationpointabovetheseabottom

DF :embeddedlengthofsheetpile(m) HT :heightofthetierodinstallationpointabovetheseabottom(m) ω :similaritynumber(=ρh) ρ :flexibilitynumber(=HT4/EI)(m3/MN) E :Young’smodulusofsheetpile(MN/m2) I :geometricalmomentofinertiaofsheetpilewallperunitwidth(m4/m) h :modulusofsubgradereactiontosheetpilewall(MN/m3)

Theembeddedlengthcalculatedwiththisequationistheconvergedembeddedlength.AccordingtothestudyconductedbyTakahashiandKikuchi,etal.anincreaseofjusta2%–plusinthemaximumflexuralmoment occurs when an embedded length corresponding to 70% of the converged embedded length isemployed.Thereforetheuseoftheconvergedembeddedlengthasthedesignembeddedlengthsecuresthesafety,andthereisnoneedtoconsideramarginagainstthesafety. Equation (2.3.14) formulates the relationship between the ratio of the convergent embedment lengthDF to thevirtualwallheightHT,δ=(DF/HT), and the similaritynumberω shown inFig. 2.3.11. This isbasedonanalysiscarriedoutbyTakahashiandKikuchi,atal.usingasimulationmodelfor72caseswithacombinationofconditions forwaterdepthof thequay (–4 to–14m), soil conditions, seismicconditions(kh=0.2), andmaterial conditions of the steel sheet piles. InFig. 2.3.11, δ for permanent situations andearthquakeconditionsareobtainedasδN and δSrespectively,butinequation(2.3.14)δSisusedfortheactionofearthquakesbecauseitindicateslargevalues. Also,inthisanalysisbyTakahashiandKikuchi,etal.therelationshipbetweenthesimilaritynumber,theratioµ (=MF/MT),andtheratioτ(=TF/TT)werestudied.TheratioµistheratioofthemaximumflexuralmomentMFwhenthereisconvergentembedmentlengthDFinthebendingcurveanalysistothemaximumflexuralmomentMTcalculatedbytheequivalentbeammethodassumingthetie installationpointandtheseabedsurfaceasthesupportpoints.TheratioτistheratiooftietensionforceTFwhenthereisconvergent

Page 5: PART III FACILITIES, CHAPTER 5 MOORING FACILITIES · 2017-08-15 · PART III FACILITIES, CHAPTER 5 MOORING FACILITIES – 727 – 2) Values proposed by Takahashi and 49)Kikuchi, et

PART III FACILITIES, CHAPTER 5 MOORING FACILITIES

–729–

embedmentlengthDF inthebendingcurveanalysistothetietensionforceTTcalculatedfromthevirtualbeammethod.TheserelationshipsareshowninFigs. 2.3.12to2.3.13.

Fig. 2.3.11 Relationship between ω and δ

Perm

anen

t sta

tes

Dur

ing

seis

mic

mot

ions

Fig. 2.3.12 Relationship between µ and ω

Page 6: PART III FACILITIES, CHAPTER 5 MOORING FACILITIES · 2017-08-15 · PART III FACILITIES, CHAPTER 5 MOORING FACILITIES – 727 – 2) Values proposed by Takahashi and 49)Kikuchi, et

–730–

TECHNICAL STANDARDS AND COMMENTARIES FOR PORT AND HARBOUR FACILITIES IN JAPAN

Perm

anen

t sta

tes

Dur

ing

seis

mic

mot

ions

Fig. 2.3.13 Relationship between τand ω

(3)FlexuralMomentofSheetPilesandReactionatTieMemberInstallationPoint

① Themaximumflexuralmomentofsheetpilesandreactionatthetiememberinstallationpointshallbecalculatedwithanappropriatemethodthattakesintoconsiderationtherigidityandembeddedlengthofthesheetpilesandthecharacteristicsoftheground.

② ThemaximumflexuralmomentandreactionforceatthetiememberinstallationpointofsheetpilesmaybedeterminedusingtheequivalentbeammethoddescribedbeloworRowe’smethod.However,careshouldbeexercisedwhenusingtheequivalentbeammethod,becausethesectionforcesmaybeunderestimatedwhentherigidityofthesheetpilesishigh.

③ EquivalentBeamMethodTheequivalentbeammethodcalculatesthemaximumflexuralmomentandreactionforceatthetiememberinstallationpointofthesheetpilesbyassumingasimplebeamsupportedatthetiememberinstallationpointandtheseabottomwiththeearthpressureandresidualwaterpressureactingastheloadabovetheseabottom(seeFig. 2.3.14).

L.W.L.Reaction at the tie rod point (Ap)

Tie member

Act

ive

earth

pre

ssur

eA

ctiv

e ea

rth p

ress

ure

Residualwater pressure

Residual water level

Fig. 2.3.14 Equivalent Beam for Obtaining Flexural Moment

Page 7: PART III FACILITIES, CHAPTER 5 MOORING FACILITIES · 2017-08-15 · PART III FACILITIES, CHAPTER 5 MOORING FACILITIES – 727 – 2) Values proposed by Takahashi and 49)Kikuchi, et

PART III FACILITIES, CHAPTER 5 MOORING FACILITIES

–731–

④ The seabed surface used in calculating the flexural moment should take margin of the depth intoconsideration.

⑤ Thedesignvaluesofmaximumflexuralmomentinthesheetpilewallandthereactionforceatthetiememberinstallation point can normally be calculated using the following equation. In the following equation, thesubscriptdindicatesthedesignvalue.

(a) Reactionforceatthetieinstallationpoint

(2.3.15)

where, Ap :reactionforceatthetieinstallationpoint(kN/m) Pa :resultantactiveearthpressurefromthetopofthesheetpilingtotheseabedsurface(kN/m) Pw :resultantresidualwaterpressurefromthetopofthesheetpilingtotheseabedsurface(kN/m) Pdw :resultantdynamicwaterpressureactingonthesheetpilewall(kN/m)(onlyduringearthquakes) a–c :distancefromtheinstallationpositionofthetiemembertothepointofactionoftheresultant

force(m) L :distancefromtheinstallationpositionofthetiemembertotheseabedsurface(m)

(b)Maximumflexuralmoment

(2.3.16)where,

Ap :reactionatthetieinstallationpoint(kN/m) P'a :resultantactiveearthpressurefromthetopofthesheetpiletothepositionwheretheshearforce

Sbecomes0(kN/m) P'w :resultantresidualwaterpressurefromthetopofthesheetpiletothepositionwheretheshear

forceSbecomes0(kN/m) P'dw :resultantdynamicwaterpressurefromthetopofthesheetpiletothepositionwheretheshear

forceSbecomes0(kN/m)(duringanearthquakeonly) a :distancefromthepositionwhere theshearforceSbecomes0 to the tiemember installation

position(m) b–d :distance from the positionwhere the shear forceS becomes 0 to the point of action of the

resultantforce(m)

Thedesignvaluesofearthpressure,residualwaterpressure,andresultantdynamicwaterpressureforcemaybeappropriatelycalculatedbyreferencetoPart II, Chapter 5, 1 Earth Pressure. Part II, Chapter 5, 2.1 Residual Water Pressure,andPart II, Chapter 5, 2.2 Dynamic Water Pressure,aftercalculatingthedesignvaluesof the tangentof theangleof shearing resistance tanφ, thecohesionc, thewall surfacefrictionangleδ,theeffectiveunitweightw',thesurchargeq,theseismiccoefficientforverificationduringearthquakesonlykh,andtheresidualwaterlevelRWL,fromequation(2.3.8).

⑥When themaximumflexuralmomentofsheetpilesand the tiemember installationpoint reactionforceareto be determined taking the effects of themodulus of subgrade reaction and the rigidity of the sheet pilesintoconsideration,thefollowingmethodcanbeused.Themaximumflexuralmomentandreactionforcearecalculatedbyusing theequivalentbeammethodand thecorrection factorsobtained fromFigs. 2.3.12and2.3.13aremultipliedby thosevalues. Theseismiccoefficient forperformanceverificationpurposesshowninFigs. 2.3.12 and2.3.13 has been set at 0.20. Values obtained from these figuresmay be used for theperformanceverificationforvariablesituationinrespectofLevel1earthquakegroundmotionunlessaverydetailedverificationisrequired.

(4)VerificationofStressesintheSheetPileWallforPermanentSituationandVariableSituationinrespectofLevel1earthquakegroundmotion

① Analysisofstressesinthesheetpilewallmaybecarriedoutusingthefollowingequation.Inthefollowingequation,thesymbolγisthepartialfactorcorrespondingtoitssubscript,wherethesubscriptskanddindicatecharacteristicvalueandthedesignvaluerespectively.

(2.3.17)

Page 8: PART III FACILITIES, CHAPTER 5 MOORING FACILITIES · 2017-08-15 · PART III FACILITIES, CHAPTER 5 MOORING FACILITIES – 727 – 2) Values proposed by Takahashi and 49)Kikuchi, et

–732–

TECHNICAL STANDARDS AND COMMENTARIES FOR PORT AND HARBOUR FACILITIES IN JAPAN

where, σy :bendingyieldstressofthesteelmaterial(N/mm2) Mmax :maximumflexuralmomentinthesheetpilewall(Nmm/m) Z :sectionmodulusofthesteelmaterial(mm3/m) γa :structuralanalysisfactor(seeTable 2.3.3)

Equation(2.3.18)maybeusedforcalculatingthedesignvaluesofbendingyieldstressofthesteelmaterialin theequation. Forthedesignvalueof themaximumflexuralmomentinthesheetpilewall,refer to(3) Flexural Moment of Sheet Piles and Reaction at Tie Member Installation Point.

(2.3.18)

② Thejointlengthofsteelsheetpilesshouldbeaslongaspossible,fromthepointofviewofmaintainingtheintegrityofthesheetpiles.However,takingintoconsiderationdamagetothejointsduringconstruction,thejointsdonotnormallyextendtothebottomsofthesheetpiles.Normallythebottomendofthejointisatthedepthwheretheactiveearthpressurestrengthandthepassiveearthpressurestrengthareequal,oriscontinuoustothevirtualfixitypoint(1/β, refertothevirtualfixingpointshowninChapter 5, 5.2.2 Setting of Basic Cross-section),andisfrequently2–3mbelowtheseabedsurface.Iftheresidualwaterleveldifferenceislarge,thejointlengthofsteelsheetpilesshouldbedeterminedtakingthepipingphenomenonintoaccount.Thetopendofthejointisoftenextendedupto30–40cmabovethebottomsurfaceofthesuperstructure.

③ WhenU-shapedSteelsheetpileissubjectedtobending,thereisapossibilitythatverticalslipoccuratjointswhichlocateatthecenterofthewall.Inthiscase,theU-shapedsteelsheetpileswillnotactintegrallywiththeadjacentsheetpiles.Inthissituationthesectionmodulusandthegeometricalmomentofinertiaofthecross-sectioncalculatedassumingthesteelsheetpilesactintegrallyinthewallmaynotbeobtained.Methodsforevaluatingtheeffectofthisslipinthejointsincludethemethodofreducingthecross-sectionperformancebymultiplyingbyajointefficiencycoefficient.55),56)

(5)VerificationofStressesintheTieMembersunderPermanentSituationandVariableSituationsinrespectofLevel1earthquakegroundmotion

① Analysis of stresses in the tiemembersmaybe carriedout using the following equation. In the followingequation,thesubscriptdindicatesthedesignvalue.

(2.3.19)

where, σy :yieldstressintensioninthetiemember(N/mm2) Td :tensionforceintiemember(N) A :cross-sectionalareaoftiemember(mm2) γa :structuralanalysisfactor

Equation(2.3.18)maybeusedforcalculatingthedesignvalueoftensileyieldstressofthetiememberintheequation.Forthedesignvalueofthetensionforceinthetiemember,referto② Tension force of tie member,below.

② Tensionforceoftiemember

(a) Thetensionactingonatiemembercanbecalculatedbasedonthereactionattieinstallationpointcalculatedinaccordancewith(3) Flexural Moment of Sheet Pile and Reaction at Tie Member Installation Point above.Inthiscase,thereactionattiememberinstallationpointshouldbecalculatedbytakingtherigidityof thesheetpilewallcrosssectionintoconsideration. Takenotethat thetiemembertensionforcethat iscalculatedinaccordancewith(3) Flexural Moment of Sheet Pile and Reaction at Tie Member Installation Point aboveis thetensionforcepermeterofquaywall length. Tiemembersareusuallyinstalledatfixedintervals,andinsomecases,tiemembersmaybeattachedatacertainanglewiththelineperpendiculartothesheetpilewalltoavoidtheexistingstructurelocatedbehindthewall.Therefore,itisnecessarytocalculatethetiemembertensionforceconsideringthesesiteconditions.

(b)Thetensionforcethatactsonatiememberisgenerallycalculatedbyequation(2.3.20).Intheequationbelow,subscriptd standsforthedesignvalue.

(2.3.20)where

T :tensionforceoftiemember(kN)

Page 9: PART III FACILITIES, CHAPTER 5 MOORING FACILITIES · 2017-08-15 · PART III FACILITIES, CHAPTER 5 MOORING FACILITIES – 727 – 2) Values proposed by Takahashi and 49)Kikuchi, et

PART III FACILITIES, CHAPTER 5 MOORING FACILITIES

–733–

Ap :reactionatthetiememberinstallationpoint (kN/m) :tiememberinstallationinterval(m) θ :inclinationangleoftiemembertothelineperpendiculartothesheetpilewall(°)

(c) Insomecases,bollardsareinstalledonthecopingofasheetpilewallandthetractiveforcesofshipsactingonthebollardsaretransmittedtothetiemembers. Usually,thecopingisassumedtobeabeamwiththetiemembersaselasticsupportsandthetiemembertensionforcemaybecalculatedusingequation(2.3.21),assumingthatthetractiveforceisevenlysharedbyfourtiemembersnearabollard.Intheequationbelow,subscriptd standsforthedesignvalue.

(2.3.21)where

T :tensionforceactinginthetiemember(kN) Ap :reactionforceattheinstallationpointofthetiemember(kN/m) :spacingofinstallationoftiemembers(m) θ :inclinationangleoftiememberinperpendiculartothesheetpilewallandthetiemember(°) P : horizontalcomponentofthetractiveforceofshipactingonabollard(kN)

RefertoPart II, Chapter 8, 2.4 Actions due to Traction by Ships fordetailsontractiveforcesofships.

③ Tierods

(a) Fortheyieldstressoftierods,refertoTable 2.3.2.

(b)Thetensilestressinthetierodiscalculatedusingthecross-sectionfromwhichtheamountofcorrosionhasbeendeducted.Fortheamountofcorrosion,refertoPart II, Chapter 11, 2.3.2 Corrosion Rates of Steel.

④ TiewiresInsteadoftierods,so–calledtiewiremaybeused,thatismadefromhardenedsteelwirehavingcharacteristicsequivalenttohardenedsteelwire(JISG3506),orPCsteelwirehavingcharacteristicsequivalenttopianowire(JISG3502).

Table 2.3.2 Characteristics of Tie Rod Materials

TypeRupturestrength

(N/mm2)Yieldstress(N/mm2)

Elongation(%)

Yieldstress/rupturestrength

SS400 ≥402(dia.40mmorless)

≥235≥24 0.58

(dia.>40mm)≥215

≥24 0.53

SS490 ≥490(dia.40mmorless)

≥275≥21 0.56

(dia.>40mm)≥255

≥21 0.52

Hightensilestrengthsteel490

≥490 ≥325 ≥24 0.66

Hightensilestrengthsteel590

≥590 ≥390 ≥22 0.66

Hightensilestrengthsteel690

≥690 ≥440 ≥20 0.64

Hightensilestrengthsteel740

≥740 ≥540 ≥18 0.73

(6)VerificationofStressesinWale

① Analysisofstressesinwalingmaybecarriedoutusingthefollowingequation.Inthefollowingequation,thesubscriptdindicatesthedesignvalue.Intheequation,allthepartialfactorsexceptthestructuralanalysisfactormaybetakentobe1.0.Thestructuralanalysisfactormaybetakentobe1.4forthepermanentsituations,and1.12forthevariablesituationsassociatedwithLevel1earthquakegroundmotion.

Page 10: PART III FACILITIES, CHAPTER 5 MOORING FACILITIES · 2017-08-15 · PART III FACILITIES, CHAPTER 5 MOORING FACILITIES – 727 – 2) Values proposed by Takahashi and 49)Kikuchi, et

–734–

TECHNICAL STANDARDS AND COMMENTARIES FOR PORT AND HARBOUR FACILITIES IN JAPAN

(2.3.22)

where, σy :bendingyieldstressinthewaling(N/mm2) Mmax :maximumflexuralmomentinthewaling(Nmm/m) Z :sectionmodulusofthewaling(mm3) γa :structuralanalysisfactor

Equation (2.3.18)may be used to calculate the design value of bending yield stress of thewaling in theequation.Forthecalculationofthemaximumflexuralmomentinthewaling,referto②below.

② Variousequationsforcalculatingthemaximumflexuralmomentofwalehavebeenproposed.Themoment,however,shouldbedeterminedaccordingtoconditionsatthesitesothatthecrosssectionissafeandeconomical.Ingeneral,themaximumflexuralmomentofwalemaybecalculatedusingequation(2.3.23).Intheequationbelow,subscriptd standsforthedesignvalue.

(2.3.23)where

:maximumflexuralmomentofwale(kN·m) T :tensionforceofatiemembercalculatedinaccordancewith(5) ② Tension force of tie member

(kN) :tierodinstallationinterval(m)

Thisequationisobtainedbyanalyzingathree–spancontinuousbeamsupportedatthetiememberinstallationpointsandsubjectedtothereactionatthetieinstallationpoint(Ap)asauniformlydistributedload.

③Whenbollardsareinstalledonthecoping,itisnecessarytoverifytheperformanceofthewalenearoneofthebollardsusingatiemembertensionforcethattakesintoconsiderationthetractiveforceofshipinaccordancewith(5) ② Tension force of tie member above.However,whenthewaleisembeddedintothecoping,theeffectofthetractiveforceofshipmaybeignored.

(7)AnalysisofSlipFailureintheGroundunderpermanentsituationsForanalysisofslipfailureinthegroundofsheetpilesquaywalls,refertoanalysisofslipfailureinthegroundin2.2 Gravity-type Quaywalls.Inthiscase,theanalysisiscarriedoutforcircularslipfailurespassingbelowthebottomofthesheetpilewall.StandardvaluesofthepartialfactorsusedintheperformanceverificationareshowninTable 2.3.3.

(8)PartialFactorsforpermanentsituationsandvariablesituationsinrespectofLevel1earthquakegroundmotion

① Partialfactorsforthestandardsystemfailureprobabilitiesfortheembedmentlengthofsheetpilewalls,sheetpilewallstresses,tierodstresses,andcircularslipfailureforsheetpilequaywallsunderpermanentsituationsareshowninTable 2.3.3(a).Basedontheaveragesafetylevelfordesignmethodsofthepast,theaveragesystemreliabilityindexforstabilityofwallstructuresis5.6orwhenconvertedintoafailureprobability9.9×10–9,theaveragereliabilityindexforcircularslipfailureis6.0orwhenconvertedintoafailureprobability9.2×10–10.Whentheexpectedtotalcostexpressedbythesumoftheinitialconstructioncostandtheexpectedvalueoftherestorationcostduetocollapseistakenintoconsideration,thesystemreliabilityindexthatminimizestheexpectedtotalcostis3.6orwhenconvertedintoafailureprobability1.7×10–4forhighearthquake-resistancefacilities,and2.7orwhenconvertedintoafailureprobability4.0×10–forotherquaywalls.358)

Page 11: PART III FACILITIES, CHAPTER 5 MOORING FACILITIES · 2017-08-15 · PART III FACILITIES, CHAPTER 5 MOORING FACILITIES – 727 – 2) Values proposed by Takahashi and 49)Kikuchi, et

PART III FACILITIES, CHAPTER 5 MOORING FACILITIES

–735–

Table 2.3.3 Standard Partial Factors(a) Permanent situations (No. 1)

Highearthquake-resistancefacilities

OtherthanHighearthquake-resistancefacilities

TargetsystemreliabilityindexβT 3.6 2.7TargetsystemreliabilityindexβT 1.7×10–4 4.0×10–3

γ γ µ/X k V γ α µ/X k V

Embedm

entlengthofsh

eetpilewalls

Sandysoilground

γtanφ’ Tangentoftheangleofshearingresistance

0.65 1.000 1.00 0.100 0.75 1.000 1.000 0.100

γc’ Cohesion 1.00 0.000 1.00 0.100 1.00 0.000 1.000 0.100γw’ Effectiveunitweight 1.00 0.000 1.00 0.050 1.00 0.000 1.000 0.050γδ Wallsurfacefrictionangle 0.90 0.300 1.00 0.100 0.90 0.300 1.000 0.100γq Surcharge 1.00 – – – 1.00 – – –γ RWL Residualwaterlevel 1.00 0.000 1.00 0.050 1.00 0.000 1.000 0.050γa Structuralanalysisfactor 1.00 – – – 1.00 – – –

Cohesivesoilground

γtanφ’ Tangentoftheangleofshearingresistance

0.70 0.820 1.00 0.100 0.80 0.820 1.000 0.100

γc’ Cohesion 0.75 0.700 1.00 0.100 0.80 0.700 1.000 0.100γw’ Effectiveunitweight 1.05 –0.190 1.00 0.050 1.05 –0.190 1.000 0.050γδ Wallsurfacefrictionangle 0.95 0.120 1.00 0.100 0.95 0.120 1.000 0.100γq Surcharge 1.00 – – – 1.00 – – –γ RWL Residualwaterlevel 1.00 0.000 1.00 0.050 1.00 0.000 1.000 0.050γa Structuralanalysisfactor 1.00 – – – 1.00 – – –

Sheetpilewallstresses Sandysoilground

γtanφ ‘ Tangentoftheangleofshearingresistance

0.75 0.760 1.00 0.100 0.85 0.760 1.000 0.100

γc’ Cohesion 1.00 0.000 1.00 0.100 1.00 0.000 1.000 0.100γw’ Effectiveunitweight 1.05 –0.320 1.00 0.050 1.05 –0.320 1.000 0.050γδ Wallsurfacefrictionangle 1.00 0.000 1.00 0.100 1.00 0.000 1.000 0.100γq Surcharge 1.00 – – – 1.00 – – –γ RWL Residualwaterlevel 1.00 0.000 1.00 0.050 1.00 0.000 1.000 0.050γσy SY295,SY390,SKY490 1.00 0.720 1.20 0.065 1.00 0.720 1.200 0.065γσy SKY400 1.00 0.720 1.26 0.073 1.00 0.720 1.260 0.073γa Structuralanalysisfactor 1.00 – – – 1.00 – – –

Cohesivesoilground

γtanφ ‘ Tangentoftheangleofshearingresistance

0.80 0.500 1.00 0.100 0.85 0.500 1.00 0.100

γc’ Cohesion 1.00 0.000 1.00 0.100 1.00 0.000 1.00 0.100γw’ Effectiveunitweight 1.05 –0.250 1.00 0.050 1.05 –0.250 1.00 0.050γδ Wallsurfacefrictionangle 1.00 0.000 1.00 0.100 1.00 0.000 1.00 0.100γq Surcharge 1.00 – – – 1.00 – – –γ RWL Residualwaterlevel 1.00 0.000 1.00 0.050 1.00 0.000 1.00 0.050γσy SY295,SY390,SKY490 0.90 1.000 1.20 0.065 1.00 1.000 1.20 0.065γσy SKY400 0.95 1.000 1.26 0.073 1.00 1.000 1.26 0.073γa Structuralanalysisfactor 1.00 – – – 1.00 – – –

Stressesintiemem

bers

Sandysoil

ground

γσy HT690 0.60 0.750 1.13 0.070 0.65 0.750 1.13 0.070γσy SS400 0.65 0.750 1.26 0.073 0.70 0.750 1.26 0.073γa Structuralanalysis

coefficient1.00 – – – 1.00 – – –

Cohesiv

esoilg

round γσy HT690 0.55 0.940 1.13 0.070 0.60 0.940 1.13 0.070

γσy SS400 0.65 0.940 1.26 0.073 0.70 0.940 1.26 0.073γa Structuralanalysisfactor 1.00 – – – 1.00 – – –

Page 12: PART III FACILITIES, CHAPTER 5 MOORING FACILITIES · 2017-08-15 · PART III FACILITIES, CHAPTER 5 MOORING FACILITIES – 727 – 2) Values proposed by Takahashi and 49)Kikuchi, et

–736–

TECHNICAL STANDARDS AND COMMENTARIES FOR PORT AND HARBOUR FACILITIES IN JAPAN

Table 2.3.3 Standard Partial Factors(a) Permanent situations (No. 2)

Highearthquake-resistancefacilities

Otherthanhighearthquake-resistancefacilities

γ α µ/X k V γ α µ/X k V

Circularslipfailure

γc’ Soilstrength:cohesion 0.90 0.309 1.00 0.040 0.90 0.329 1.00 0.040

γtanφ’Soilstrength:tangentoftheangleofshearingresistance 0.90 0.398 1.00 0.040 0.90 0.396 1.00 0.040

γw1 Unitweightofsoilsabovetheseabedsurface 1.10 –0.259 1.00 0.030 1.10 –0.271 1.00 0.030

γw2 Unitweightofsandysoilstratabelowtheseabedsurface 0.90 0.314 1.00 0.030 0.90 0.312 1.00 0.030

γw3 Unitweightofcohesivesoilstratabelowtheseabedsurface 1.00 0.000 1.00 0.030 1.00 0.000 1.00 0.030

γq Surcharges 1.70 –0.467 1.00 0.400 1.60 –0.487 1.00 0.400γ RWL Residualwaterlevel 1.10 –0.040 1.00 0.050 1.10 –0.040 1.00 0.050

*1: α:sensitivityfactor,µ/Xk:deviationofaveragevalue(averagevalue/characteristicvalue),V:coefficientofvariation.*2: Itisnecessarytodeterminewhichisgoverninginthesoilcompositionofthefoundationsunderconsideration,thesandysoilstrataorthe

cohesivesoilstrata,andusethepartialfactorsappropriateforsandysoilgroundorcohesivesoilground.Forexample,ifitisdeterminedthatthesandysoilstrataaregoverning(sandysoilground),whenthereisathinstratumofcohesivesoil,verificationiscarriedoutusingthepartialfactorforthecohesionofasandysoilground.

*3: σyindicatestheyieldstrengthofthesteelmaterial,andthepartialfactorsareselectedinaccordancewiththetypeofsteelused.*4: Thedesignvalueof the tensionforce in the tiemember iscalculatedfromthedesignvalueof tiemember installationpoint reaction

obtainedfromtheverificationofstressesinthesheetpiles.*5: Theangleofshearingresistanceφ'whencalculatingearthpressureisobtainedfromφ'=arctan(γtanφ'・tanφ'k).*6: Forapplyingthepartialfactorstocircularslipfailure,refertothepointsofcautiongivenin Chapter 2, 3 Slope Stability, 3.1(7) Partial

Factors.

Table 2.3.3 Standard Partial Factors(b) Variable situations in respect of Level 1 earthquake ground motion

AllfacilitiesPerformancerequirement Serviceability

γ α µ/X k V

Embedm

entlengthofsh

eet

piledwalls

Sandysoilground

γtanφ’ Tangentoftheangleofshearingresistance 1.00 – – –γc’ Cohesion 1.00 – – –γw’ Effectiveunitweight 1.00 – – –γδ Wallsurfacefrictionangle 1.00 – – –γq Surcharge 1.00 – – –γRWL Residualwaterlevel 1.00 – – –γkh Seismiccoefficientforverification 1.00 – – –γa Structuralanalysisfactor 1.20 – – –

Stressesofsheetpiledwalls

Sandysoilground

γtanφ’ Tangentoftheangleofshearingresistance 1.00 – – –γc’ Cohesion 1.00 – – –γw’ Unitweight 1.00 – – –γδ Wallsurfacefrictionangle 1.00 – – –γq Surcharge 1.00 – – –γp Tractiveforces(duringtractionbyships) 1.00 – – –γ RWL Residualwaterlevel 1.00 – – –γkh Seismiccoefficientforverification 1.00 – – –γσy Steelmaterialyieldstress 1.00 – – –γa Structuralanalysisfactor 1.12 – – –

Stressesintiemembers

γσy Steelmaterialyieldstrength 1.00 – – –γa Structuralanalysisfactor 1.67 – – –

*1:Thedesignvalueofthetensionforceinthetiememberiscalculatedfromthedesignvalueofthetiememberinstallationpointreactionobtainedfromtheverificationofsheetpilingstresses.

Page 13: PART III FACILITIES, CHAPTER 5 MOORING FACILITIES · 2017-08-15 · PART III FACILITIES, CHAPTER 5 MOORING FACILITIES – 727 – 2) Values proposed by Takahashi and 49)Kikuchi, et

PART III FACILITIES, CHAPTER 5 MOORING FACILITIES

–737–

② Itisnecessarytodeterminewhichisdominantinthesoilcompositionofthegroundunderconsideration,thesandysoilstrataorthecohesivesoilstrataground,andusethepartialfactorsasappropriate.Forexample,ifitisdeterminedthatthesandysoilstrataaredominant,whenthereisathinstratumofcohesivesoil,verificationiscarriedoutusingthepartialfactorforthecohesionofasandysoilground. Regardingthepartialfactorsofquaywallsotherthanhighearthquake-resistancefacilities,calculationsshallbecarriedoutusingapartialfactorof1.0orhigherforthesteelmaterialyieldstressforthestressesinsheetpilewalls insandysoilground. For theperformanceverificationof facilitiesother thanports, therearenoexamplesoftheuseofdesignvaluesofthesteelmaterialyieldstrengthgreaterthantheJISspecificationvalues.Therefore,insettingthepartialfactors,thepartialfactorforthetangentoftheangleofshearingresistancewithalargesensitivityfactorissettoavaluelargerthanthevaluecalculatedfromareliabilityanalysis.Inthiswaytheflexuralmomentinthesheetpilewallisreduced,andacorrectioniscarriedoutsothatthepartialfactorofthesteelmaterialstrengthis1.0.

③ Intheverificationofsheetpiledquaywalls,itisnecessarytotakeintoconsiderationboththeactiveandpassiveearthpressure.Also,thereareapproachesthatdonotnecessarilyevaluatetheresistanceonthepassivesideasearthpressureandratherevaluateasabeamonanelasticfoundation,sopartialfactorsarenotprovidedforearthpressureinTable 2.3.3.

(9)PerformanceVerificationofAnchoragesforSheetPileQuaywallsonVariableSituationsinrespectofLevel1earthquakegroundmotion

① Locationofanchoragework

(a) Inprinciple,thelocationoftheanchorageworkshallneedtobesetatanappropriatedistancefromthesheetpilewall toensure the structural stabilityof themainbodyof thewall andanchorage,dependingon thecharacteristicsoftheanchoragework.Normally,thefurtherthepositionofinstallationoftheanchorageworkfromthesurfaceofthesheetpilewall,themoreeffectiveinrestrainingdeformationofthesheetpilewallduringanearthquake.59)

(b)Thelocationoftheanchorageworkshouldbedeterminedappropriatelyinconsiderationofthestructuraltypeoftheanchoragework,becausethestabilityoftheanchorageworkitselfisaffectedbyitspositionandthelocationatwhichthestabilityisachievedvariesdependingonthestructuraltype.

(c) ThelocationofconcretewallanchorageispreferablydeterminedtoensurethattheactivefailureplanestartingfromtheintersectionofseabottomandsheetpilewallandthepassivefailureplaneoftheslabanchoragedrawnfromthebottomoftheanchoragedonotintersectbelowthegroundsurfaceasshowninFig. 2.3.15.

(d)Thelocationofverticalpileanchorageispreferablydeterminedtoensurethatthepassivefailureplanefromthe point of m1/3 below the tiemember installation point of the anchorage and the active failure planefromtheintersectionofseabottomandsheetpilesdonotintersectatthelevelbelowthehorizontalsurfacecontainingthetiememberinstallationpointattheanchorageasshowninFig. 2.3.16.Thevalueofm1isthedepthofthefirstzeropointofflexuralmomentforafree–headpilebelowthetiememberinstallationpoint,whilethehorizontalsurfacecontainingtheinstallationpointoftiememberattheanchorageisassumedasthegroundsurface.

Tie memberW.L.

Residualwater level

Activefailure plane

Slab anchorage

Passivefailure plane

Shee

t pile

Fig. 2.3.15 Location of Slab Anchorage Works

Page 14: PART III FACILITIES, CHAPTER 5 MOORING FACILITIES · 2017-08-15 · PART III FACILITIES, CHAPTER 5 MOORING FACILITIES – 727 – 2) Values proposed by Takahashi and 49)Kikuchi, et

–738–

TECHNICAL STANDARDS AND COMMENTARIES FOR PORT AND HARBOUR FACILITIES IN JAPAN

W.L.

3m1

Tie member

Residual waterlevelResidual waterlevel

Activefailure plane

Passivefailure planeSh

eet p

ile

Verticalpile anchorage

Fig. 2.3.16 Location of Vertical Pile Anchorage

(e) Thelocationofsheetpileanchoragemaybedeterminedinaccordancewiththelocationofverticalpilewhenthesheetpilescanberegardedasalongpile.Whenthesheetpilescannotberegardedasalongpile,thelocationofanchoragemaybedeterminedbyignoringthepartdeeperthanthelevelm1/2belowthetiememberinstallationpointatthesheetpileanchorageandthenapplyingthemethodofthelocationdeterminationofconcretewallanchorage.

(f) Forthemethodtoobtainthefirstzeropointoftheflexuralmomentoftheverticalpileanchorageandsheetpileanchorageandthemethodtodeterminewhetherasheetpileanchoragecanbeconsideredasalongpile,refertoPortandHarbourResearchInstitute’smethoddescribedinPart III, Chapter 2, 2.4 Pile Foundations, 2.4 .5 Estimation of Pile Behavior using Analytical Methods.

(g)For ordinary sheet pile quaywallswhose tiemembers run horizontally, an angle of –15ºmay be used asthewallfrictionangleinthedeterminationofthepassivefailureplanethatisdrawnfromtheverticalpileanchorageorsheetpileanchorage.

(h)Thelocationofcoupled-pileanchorageshouldbebehindtheactivefailureplaneofthesheetpilewalldrawnfromtheseabottomwhenitisassumedthatthetensionofthetiememberisresistedonlybytheaxialbearingcapacityofthepilesasshowninFig. 2.3.17.Whenthetensionofthetiememberisevaluatedtoberesistedbyboth theaxialand lateralbearingcapacity inconsiderationof thebending resistanceof thepiles, it isnecessarytolocatetheanchorageinaccordancewiththelocationoftheverticalpile.

(i) Thepartialfactorsusedindeterminingthepositionoftheanchorageworkmayallbetakentobe1.0.

W.L. Tie member

Residualwater levelResidualwater level

Activefailure plane

Shee

t pile

Coupled-pileanchorage

Fig. 2.3.17 Position of Coupled-Pile Anchorage

② Examinationofthestabilityofslabanchorage

(a) The height and placing depth of slab anchorage may be determined to satisfy equation (2.3.24), on theassumption that the tiemember tension forceand theactiveearthpressurebehind theslabanchorageareresistedbythepassiveearthpressureinfrontoftheslabanchorageasshowninFig. 2.3.18.Inthefollowingequations,symbolγrepresentsthepartialfactorforitssubscript,andsubscriptsdandkrespectivelystandforthedesignvalueandthecharacteristicvalue.Intheexaminationforthestabilityoftheslabanchorage,whencalculatingthereactionatthetiememberinstallationpointusingthepartialfactorassociatedwiththeverificationofsheetpilestressinTable 2.3.3,thepartialfactorcanbesetat2.1whenthestructuralanalysisfactorisatpermanentsituationand2.0whenitisatvariablesituationinrespectofLevel1earthquakegroundmotion.

(2.3.24)

Page 15: PART III FACILITIES, CHAPTER 5 MOORING FACILITIES · 2017-08-15 · PART III FACILITIES, CHAPTER 5 MOORING FACILITIES – 727 – 2) Values proposed by Takahashi and 49)Kikuchi, et

PART III FACILITIES, CHAPTER 5 MOORING FACILITIES

–739–

where EP :resultantpassiveearthpressureactingonslabanchorage(N/m) AP :reactionatthetiememberinstallationpointcalculatedaccordingto(3) Flexural Moment of

Sheet Pile and Reaction at Tie Member Installation Point above,using thepartial factorassociatedwiththeverificationofsheetpilestressinTable 2.3.3(N/m)

EA :resultantactiveearthpressureactingonslabanchorage(N/m) γa :structuralanalysisfactor

Thedesignvaluesintheequationmaybecalculatedfromthefollowingequation.However,forcalculatingtheearthpressureactingonaslabanchored,normallyitisassumedthatthesurchargeactasshowninFig. 2.3.18,withactiveearthpressureconsideredandpassiveearthpressurenotconsidered.

=1.2(Permanentsituations),1.0(VariablesituationsinrespectofLevel1earthquakegroundmotion)

=1.0(Permanentsituations,variablesituationsinrespectofLevel1earthquakegroundmotion)

= 1.0 (Permanent situations, variable situations in respect of Level 1 earthquake groundmotion) (2.3.25)

KpKA

EA

Ap

Ep

q: Surcharge

Residual water level

Fig. 2.3.18 Forces Acting on Slab Anchorage

(b)Thewallsurfacefrictionangleusedincalculatingtheearthpressureisnormallyassumedtobe15°inthecaseofactiveearthpressureand0°inthecaseofpassiveearthpressure.However,inthecaseofadeadmananchor,anupwardactingtensionforceactsontheanchored,sothewallsurfacefrictionforceactsupwards,which is theoppositeof thenormalcaseofpassiveearthpressure,and thepassiveearthpressurewillbereduced.Inthiscasethewallsurfacefrictionangleisnormallyassumedtobe15°.

(c)When theactive failureplaneof the sheetpile and thepassive failureplaneof the slabanchoragedrawnin accordance with① Location of anchorage work above intersect below the ground surface level, itis preferable to consider the fact that the passive earth pressure acting on the vertical surface above theintersectionpointdoesnotfunctionasaresistanceforceasshowninFig. 2.3.19;itshouldbesubtractedfromthedesignvalueofEP ofequation(2.3.24).Whentheintersectionpointislocatedabovetheresidualwaterlevel,thepassiveearthpressuretobesubtractedmaybecalculatedusingequation(2.3.26)Inthefollowingequation,thesubscriptdindicatesthedesignvalue.

(2.3.26)where

w :weightofsoil(kN/m2) hf :depthfromthegroundsurfacetotheintersectionofthefailureplanes(m)

Page 16: PART III FACILITIES, CHAPTER 5 MOORING FACILITIES · 2017-08-15 · PART III FACILITIES, CHAPTER 5 MOORING FACILITIES – 727 – 2) Values proposed by Takahashi and 49)Kikuchi, et

–740–

TECHNICAL STANDARDS AND COMMENTARIES FOR PORT AND HARBOUR FACILITIES IN JAPAN

KP :coefficientofpassiveearthpressure

Thedesignvaluewdfortheweightofsoilisexpressedastheproductofthedesignvaluefortheunitweightofthesoillayerunderreviewandthedepthhffromthegroundsurfacetotheintersectionofthefailureplanes.

Active

failur

e surf

acePassive failure surface

Passive failure surface

Passive earth pressureto be deducted( Ep)∆

Fig. 2.3.19 Earth Pressure to be subtracted from the Passive Earth Pressure that Acts on Anchorage Wall when the Active Failure Plane of Sheet Pile Wall and the Passive Failure Plane of Slab Anchorage Intersect

(d)CrosssectionofslabanchorageSlabanchorageshouldhavestabilityagainst theflexuralmomentcausedbytheearthpressureandthe tiemembertension.Ingeneral,themaximumflexuralmomentmaybecalculatedbyassumingthattheearthpressure isapproximatedtoanequallydistributedloadandtheslabanchorageisacontinuousslabin thehorizontaldirectionandacantileverslabfixedatthetiememberinstallationpointintheverticaldirection,andthenusingequation(2.3.27).Inthefollowingequation,thesubscriptdindicatesthedesignvalue.

(2.3.27)where

MH :horizontalmaximumflexuralmoment(N·m) MV :verticalmaximumflexuralmomentpermeterinlength(N·m/m) T :tiemembertensionaccordingto(5) Verification of Stress in Tie Members under Permanent

Situation and Variable Situation in respect of Level 1 earthquake ground motion (N) :tiememberinterval(m) h :heightofslabanchorage(m)

ThelayoutofthereinforcingbarsforMH maybedeterminedontheassumptionthattheeffectivewidthoftheslabanchorageis2b withthetiememberinstallationpointasthecenter,whereb isthethicknessoftheslabanchorageatthetiememberinstallationpoint.

③ Examinationofstabilityofverticalpileanchorage

(a) Verticalpileanchoragemaybeverifiedforperformanceasverticalpilessubjectedtoahorizontalforceduetotiemembertension.

(b)Forthepartialfactorsusedintheperformanceverification,referto⑤ Partial factors.

④ Examinationofstabilityofcoupled-pileanchorage

(a) Coupled-pileanchoragemaybeverifiedforperformanceascoupledpilessubjectedtoahorizontalforceduetotiemembertension.

(b)Forthepartialfactorsusedintheperformanceverification,referto⑤ Partial factors.

⑤ PartialfactorsFor standard partial factors for use in the verification of the stability of vertical piles and coupled piles asanchorageforthepermanentsituationsandvariablesituationsinrespectofLevel1earthquakegroundmotion

Page 17: PART III FACILITIES, CHAPTER 5 MOORING FACILITIES · 2017-08-15 · PART III FACILITIES, CHAPTER 5 MOORING FACILITIES – 727 – 2) Values proposed by Takahashi and 49)Kikuchi, et

PART III FACILITIES, CHAPTER 5 MOORING FACILITIES

–741–

adoptedforsheetpilequaywalls,refertothevaluesinTable 2.3.4.Partialfactorsaredeterminedtakingintoconsiderationthesettingofdesignmethodsofthepast.

Table 2.3.4 Standard Partial Factors(a) Permanent situations

AllfacilitiesPerformancerequirement Serviceability

γ α µ/X k V

Verticalpileanchorage Stress

γks , γkc Lateralresistancecoefficient 1.00 – – –γσy Steelyieldstrength 1.00 – – –γa Structuralanalysisfactor 1.35 – – –

Coupledpile

anchorage

Stress

γw Weightofsuperstructure 1.00 – – –γws Weightofsoilonsuperstructure 1.00 – – –γq Surcharge 1.00 – – –γkch Modulusofsubgradelateralreaction 1.00 – – –γσy Steelyieldstrength 1.00 – – –γa Structuralanalysisfactor 1.45 – – –

Axialresistanceforce

γc’ Cohesion 1.00 – – –γN N-value 1.00 – – –

γRu ResistanceforcePull-outpiles 0.40 – – –Push-inpiles 0.45 – – –

γa Structuralanalysisfactor 1.00 – – –

*1: Thedesignvalueof tie tensionforce iscalculatedfromthedesignvalueof tiemember installationpoint reactionobtainedfromtheverificationofstressesinthesheetpile.

*2:Thedesignvalueofthepileaxialforcesusedinanalysisofbearingforcesincoupled-pileanchorageisobtainedfromtheverificationofstressesinthecoupledpiles.

*3:TheN-valuesandcohesionwhencalculatingthecharacteristicvalueofresistanceforceusedinanalysisofbearingforcesincoupled–pileanchoragearecharacteristicvalues.

Table 2.3.4 Standard Partial Factors(b) Variable situations in respect of Level 1 earthquake ground motion

AllfacilitiesPerformancerequirement Serviceability

γ α µ/X k V

Verticalpileanchorage

Stress

γks,γkc Lateralresistancecoefficient 1.00 – – –γσy Yieldstrengthofsteel 1.00 – – –γa Structuralanalysisfactor 1.12 – – –

Coupledpileanchorage

Stress

γw Weightofsuperstructure 1.00 – – –γws Weightofsoilonsuperstructure 1.00 – – –γq Surcharge 1.00 – – –γkch Modulusofsubgradelateralreaction 1.00 – – –γσy Yieldstrengthofsteel 1.00 – – –γa Structuralanalysisfactor 1.12 – – –

Bearingforces

γc’ Cohesion 1.00 – – –γN N-value 1.00 – – –

γRuResistanceforce

Pull-outpiles 0.40 – – –

Push-inpiles

Endbearingpiles 0.66 – – –Frictionpiles 0.50 – – –

γa Structuralanalysisfactor 1.00 – – –

*1: Thedesignvalueof tie tensionforce iscalculatedfromthedesignvalueof tiemember installationpoint reactionobtainedfromtheverificationofstressesinthesheetpile.

*2:Thedesignvalueofthepileaxialforcesusedinanalysisofbearingforcesinanchoredcoupledpilesisobtainedfromtheverificationofstressesinthecoupledpiles.

*3:TheN-valuesandcohesionwhencalculatingthecharacteristicvalueofresistanceforceusedinanalysisofbearingforcesincoupledpileanchoragearecharacteristicvalues.

Page 18: PART III FACILITIES, CHAPTER 5 MOORING FACILITIES · 2017-08-15 · PART III FACILITIES, CHAPTER 5 MOORING FACILITIES – 727 – 2) Values proposed by Takahashi and 49)Kikuchi, et

–742–

TECHNICAL STANDARDS AND COMMENTARIES FOR PORT AND HARBOUR FACILITIES IN JAPAN

⑥ Examinationofstabilityofsheetpileanchorage

(a)Whenthesheetpileanchoragebelowthetiememberinstallationpointislongenoughtoberegardedasalongpile,thecrosssectionofthesheetpileanchoragemaybedeterminedinaccordancewith③ Examination of stability of vertical pile anchorageabove.

(b)Sheetpilesanchoragethatcannotberegardedasalongpilemaybeverifiedinaccordancewith② Examination of stability of slab anchorageaboveontheassumptionthattheearthpressureactsonarangedowntom1/2pointbelowthetiememberinstallationpoint,asshowninFig. 2.3.30.Thelengthm1istheverticaldistancefromthetiememberinstallationpointtothefirstzeropointoftheflexuralmomentofsheetpilesassumingthatthesheetpileanchorageisalongpile.

Fig. 2.3.20 Virtual Earth Pressure for Short Sheet Pile Anchorage

(10) VerificationofGroundMotionsbyDynamicAnalysisMethods

① Forperformanceverificationofsheetpilequaywallsforgroundmotionsbydynamicanalysismethods,referto(9) Performance Verification for Ground Motions(detailed methods)in2.2 Gravity-type Quaywalls,2.2.3 Performance Verification. However,forsheetpilequaywallsthestressdistributioninthesoilvariesdependingontheconstructionprocess,soitisnecessarytoselectananalysismethodcapableofreproducingthestressdistributioninthesoilbeforetheearthquake.

② FortheaccidentalsituationsinrespectofLevel2earthquakegroundmotion,thestandardlimitvalueswhencarryingouttheperformanceverificationfortheamountofdeformationmaybeappropriatelycalculatedbyreferenceto1.4 Standard Concept of Allowable Deformation of High Earthquake-resistance Facilities for Level 2 earthquake ground motion.

(11) PerformanceVerificationofSuperstructures

① Superstructuremaybeverifiedasacantileverbeamthatisfixedatthetopofthesheetpileandsubjectedtotheearthpressureasanaction.However,itisnecessarytoconsiderthetractiveforcesofshipsandtheactiveearthpressurebehindthewallforthepartsonwhichbollardsareinstalledandthefenderreactionforceandthepassiveearthpressurebehindthewallforthepartsonwhichfendersareinstalled.Theonlyfactorthatshouldbeconsideredwithregardtoconditionsduringanearthquakeistheactiveearthpressure.

② ThetractiveforcesofshipsandfenderreactionsmaybeappliedasshowninFig. 2.3.21assumedtobeactingoverawidthbofthesuperstructureasshowninFig. 2.3.21(b).Inthiscase,normallywhenconsideringthetractiveforces,asurchargeshallbeconsideredintheactiveearthpressurecalculation,andwhenapplyingthefenderreactionsthepassiveearthpressuresurchargeshallnotbeconsidered.Thewallsurfacefrictionanglemaybetakentobe15°foractiveearthpressureand0°forpassiveearthpressure.Fortractiveforcesofshipsandfenderreactions,refertoPart II, Chapter 8, 2 Actions Caused by Ships.

Page 19: PART III FACILITIES, CHAPTER 5 MOORING FACILITIES · 2017-08-15 · PART III FACILITIES, CHAPTER 5 MOORING FACILITIES – 727 – 2) Values proposed by Takahashi and 49)Kikuchi, et

PART III FACILITIES, CHAPTER 5 MOORING FACILITIES

–743–

b=4l

(a)(a)

P P/b

(b)

Permanent states ofactive earth pressure

b : width of action of tractive force (m) l : tie member interval (m)P : tractive force of ship (N)

Fig. 2.3.21 Tractive Forces of Ships Acting on the Superstructure

2.3.5 Structural Details

(1) InstallationofSheetPiles,Ties,andWaling

①Walingisnormallyinstalledsandwichingtiemembers,andfixedtothesheetpilewithboltsorsimilar.Ifwalingisinstalledtotherearofthesheetpile,thecross-sectionofthefasteningboltscanbedeterminedfromequation(2.3.28). However,ifnotembeddedinthecoping,it isnecessarytoconsideracorrosionallowance. Inthefollowingequation,thesymbolγisthepartialfactorforthesubscript,andthesubscriptdindicatesthedesignvalue.

(2.3.28)where,

A :boltcross-sectionalarea(cm2) Ap :reactionattiememberinstallationpointobtainedfromtheabove2.3.4(3) Flexural Moment of

Sheet Piles and Reaction at Tie Member Installation Point(N/m) w :spacingofsheetpile fastened to thewaling(m),when installedatoneposition intermediate

betweentiemembers,equivalenttoahalfofthetiememberspacing n :numberofboltsatonelocation(No.) σy :tensileyieldstressofbolt(N/cm2) γa :structuralanalysisfactor

In the equation, all the partial factors except the structural analysis factormaybe taken to be 1.0. Ifintermediateboltsareused,thestructuralanalysisfactormaybetakentobe2.5forpermanentsituations,and1.67forvariablesituationsinrespectoftheLevel1earthquakegroundmotion.Also,equation(2.3.18)maybeusedtocalculatethedesignvalueofthetensileyieldstressofthesteelmaterial.

(2)TieMemberTiemembertensionforceobtainedin2.3.4 (5) ② Tension force of tie member mustbetransmittedsafelytotheanchoragework.Whenbendingstresscausedbythesettlementofbackfillsoilisanticipated,thisshouldbetakenintoconsideration.

(3)InstallationofAnchoragesandTieMembers

① Acontinuousbeamalongthefacelineofquaywallisusuallyconstructedontopoftheanchoragepiles,andthetiemembersareattachedtothebeam.Thisbeammaybeverifiedforperformanceasacontinuousbeamsubjectedtothetiemembertensionforceandthereactionforceofthepiles.

Page 20: PART III FACILITIES, CHAPTER 5 MOORING FACILITIES · 2017-08-15 · PART III FACILITIES, CHAPTER 5 MOORING FACILITIES – 727 – 2) Values proposed by Takahashi and 49)Kikuchi, et

–744–

TECHNICAL STANDARDS AND COMMENTARIES FOR PORT AND HARBOUR FACILITIES IN JAPAN

2.4 Cantilevered Sheet Pile QuaywallsPublic NoticePerformance Criteria of Sheet Pile Quaywalls

Article 502Inadditiontotheprovisionsintheprecedingparagraph,theperformancecriteriaofcantileveredsheetpilesshallbesuchthattheriskinwhichtheamountofdeformationofthetopofthepilemayexceedtheallowable limit of deformation is equal toor less than the threshold level under thepermanent actionsituationsinwhichthedominantactionisearthpressureandunderthevariableactionsituationinwhichthedominantactionsareLevel1earthquakegroundmotions,shipberthing,andtractionbyships.

[Technical Note]

2.4.1 Fundamentals of Performance Verification

(1)Theperformanceverificationmethodsdescribedhereapplytosheetpilewallsdrivenintosandysoilground,andarenotapplicabletocohesivesoilground.

(2)Anexampleof thesequenceofperformanceverificationofcantileveredsheetpilequaywalls isshowninFig. 2.4.1.

Page 21: PART III FACILITIES, CHAPTER 5 MOORING FACILITIES · 2017-08-15 · PART III FACILITIES, CHAPTER 5 MOORING FACILITIES – 727 – 2) Values proposed by Takahashi and 49)Kikuchi, et

PART III FACILITIES, CHAPTER 5 MOORING FACILITIES

–745–

Verification of deformation of top of sheet pile by simple method

Verification of stresses in sheet pile wall

Determination of embedment length of sheet pile

Examination of circular slips failure, settlementPermanent situations

Examination of deformation by dynamic analysis, etc.

Accidental state in respect ofLevel 2 earthquake ground motion

Setting of design conditions

Determination of cross-sectional dimensions

Verification of structural members

*1

*2

*3

Assumption of cross-section dimensions

Evaluation of actions including seismic coefficient for verification

Verification of deformation and stresses by dynamic analysis

Performance verificationPerformance verificationPermanent situations, variable situations of Level 1

earthquake ground motion and action of ships

Permanent situations,variable situations of action of ships

Permanent situations, variable situations in respectof Level 1 earthquake ground motion and

action of ships

Variable situations in respect ofLevel 1 earthquake ground motion

*1:Evaluationoftheeffectofliquefactionisnotshown,soitisnecessarytoconsidertheseseparately.*2:Whennecessary,anexaminationoftheamountofdeformationbydynamicanalysiscanbecarriedoutfortheLevel1earthquakeground

motion. For high earthquake-resistance facilities, it is preferable that examination of the amount of deformation be carried out by dynamic

analysis.*3:VerificationinrespectofLevel2earthquakegroundmotioniscarriedoutforhighearthquake-resistancefacilities.

Fig. 2.4.1 Example of Sequence of Performance Verification for Cantilevered Sheet Pile Quaywalls

Page 22: PART III FACILITIES, CHAPTER 5 MOORING FACILITIES · 2017-08-15 · PART III FACILITIES, CHAPTER 5 MOORING FACILITIES – 727 – 2) Values proposed by Takahashi and 49)Kikuchi, et

–746–

TECHNICAL STANDARDS AND COMMENTARIES FOR PORT AND HARBOUR FACILITIES IN JAPAN

(3)Fig. 2.4.2showsanexampleofacross-sectionofacantileveredsheetpilequaywall.

H.W.L.

L.W.L.

Rubber fender

(Crest height of steel pipe pile)

Curbing Bollard

Original ground level

Pavement curb

Backfill rock

Steel pipe pile

Design water depth

Backfill soil

Apron

Fig. 2.4.2 Example of Cross-section of Cantilevered Sheet Pile Quaywall

2.4.2 Actions

(1)Forcesactingonacantileveredsheetpilewallcanreferto2.3 Sheet Pile Quaywalls.

(2)Wheretheseabedgroundisofsandysoil,avirtualbottomsurfaceisassumedattheelevationwherethesumoftheactiveearthpressureandresidualwaterpressureisequaltothepassiveearthpressure.Itisassumedthattheearthpressureandresidualwaterpressurewillactonthepartofcantileveredsheetpilewallabovesuchthevirtualbottomsurface,asillustratedinFig. 2.4.3.

L.W.L Residual water level

Sea bottom

Passive earth pressure

Active earth pressure +residual water pressure

Virtualbottom surface

Difference between(active earth pressure +residual water pressure)and (passive earth pressure)

Fig. 2.4.3 Determination of Virtual Bottom Surface

(3)Thecharacteristicvalueoftheseismiccoefficientforverificationusedintheperformanceverificationofcantileveredsheet piled quaywalls under the variable situations in respect of Level 1 earthquake groundmotion shall beappropriatelycalculated taking thestructuralcharacteristics intoaccount. Forconvenience, thecharacteristicvalueoftheseismiccoefficientforverificationofcantileveredsheetpiledquaywallsmaybecalculatedasthesheetpiledquaywallswithverticalpileanchorage,in2.3 Sheet Pile Quaywalls,2.3.2(9) Seismic Coefficient used in Performance Verification of Sheet Pile Quaywalls with Pile Anchorage for Variable Situations in respect of Level 1 earthquake ground motion.

Page 23: PART III FACILITIES, CHAPTER 5 MOORING FACILITIES · 2017-08-15 · PART III FACILITIES, CHAPTER 5 MOORING FACILITIES – 727 – 2) Values proposed by Takahashi and 49)Kikuchi, et

PART III FACILITIES, CHAPTER 5 MOORING FACILITIES

–747–

2.4.3 Performance Verification

(1)PerformanceVerificationofSheetPileWalls

① Themaximumflexuralmoment in a sheet pilewall shall be calculated appropriately by using an analysismethodcorrespondingtothemechanicalbehaviorcharacteristicsofthewall.ThemaximumflexuralmomentinasheetpilewallisnormallycalculatedbythePHRImethodconcerningthelateralresistanceofpiles.

② Thelateralresistanceofpilecanbecalculatedinaccordancewith2.4.5[4] Estimation of Pile Behavior using Analytical Methods in this Part, Chapter 2, 2.4 Pile Foundations.

③Whensteelpipesareusedassheetpiles,thesecondarystressoftendevelopsinsteelpipesofasheetpilewallduetothedeformationofthesteelpipecrosssection(i.e.acircularcrosssectionisdeformedintoanellipticone)thatiscausedbytheearthandresidualwaterpressure.Cantileveredsheetpilewallsarethestructurestendtoexperiencelargedisplacement,andthereisariskaboutsuchwallsthatarelativelyhighsecondarystressmaydevelopintheareasaroundthepointwheretheflexuralmomentbecomesmaximum.Thelargerthediameterofthesteelpipe,thehigherthelevelofsecondarystressbecomes.Insuchacase,therefore,itispreferabletoperformexaminationofstrengthagainstthesecondarystress.Thesecondarystressofasteelpipeiscalculatedusingequation(2.4.1).

(2.4.1)where

σt :secondarystress(N/mm2) p :earthpressureandresidualwaterpressureactingonthesheetpilewall(kN/m2) D :diameterofpipe(mm) t :platethicknessofpipe(mm) α :coefficient

Thecoefficientα in theequationmaybedefinedbyreferencetoFig. 2.4.4, takingintoconsiderationthewidthofaction,foundationconditionsandconstraintconditions.Inthisfigure,“Sliding”and“Fixed”indicatethedisplacementconditionsofthejointsofthesteelpipepile,inaccordancewiththegroundconditionsandconstraintconditionsofthesheetpiling.

0.25

0.20

0.15

0.10

0.05

0.000 30 60 90 120 150 180

2θLoad

SlidingSliding

Width of action θ (˚)Width of action θ (˚)

FixedFixedCoe

ffic

ient

α

Fig. 2.4.4 Coefficientα

Verificationmaybecarriedoutusingthefollowingequation(2.4.2),basedontheaxialstressσlinthepileobtainedinaccordancewith5.2 Open-Type Wharves on Vertical Piles,andthesecondarystressσtobtainedfromequation(2.4.1).Inthefollowing,thesymbolγisthepartialfactorcorrespondingtothesubscript,andthesubscriptskanddindicatethecharacteristicvalueandthedesignvalue,respectively.Thestructuralanalysisfactormaybe taken tobe1.2 forpermanent situations,and1.0 forvariablesituations in respectofLevel1earthquakegroundmotion.

(2.4.2)

where, σl :stressduetoaxialforcesinthepile(N/mm2)

Page 24: PART III FACILITIES, CHAPTER 5 MOORING FACILITIES · 2017-08-15 · PART III FACILITIES, CHAPTER 5 MOORING FACILITIES – 727 – 2) Values proposed by Takahashi and 49)Kikuchi, et

–748–

TECHNICAL STANDARDS AND COMMENTARIES FOR PORT AND HARBOUR FACILITIES IN JAPAN

σt :secondarystressduetobendingmomentinthepile(N/mm2) fyd :designyieldstressofthepile(N/mm2),fyd = fyk /γm fyk :yieldstressofpile(N/mm2) γm :materialcoefficient(=1.05) γb :membercoefficient(=1.1) γa :structuralanalysisfactor

Thedesignvaluesintheequationmaybecalculatedfromthefollowingequation.Also,thepartialfactorsmaybealltakentobe1.0.

(2.4.3)

(2)ExaminationofEmbeddedLengthsofSheetPilesTheembeddedlengthofsheetpilesshallbeequaltoorlongerthantheeffectivelengthofpilesthatiscalculatedinaccordancewith2.4.5 Static Maximum Lateral Resistance of PilesinPart II, Chapter 2, 2.4 Pile Foundations.Becauseacantileveredsheetpilewallretainstheearthbehindthewallinthemechanismsameaspilesdo,theembeddedlengthofthesheetpilemaybecalculatedinthesamewayasinthecaseofapile.InthePHRImethodforthelateralresistanceofpiles,therequiredembeddedlengthiscalculatedas1.5m1,wherem1representsthedepthoffirstzeropointoftheflexuralmomentofcantileveredpile.Itshouldbenotedthattheembeddedlengthcalculatedhere is thatmeasurednot from the seabottomsurface,but thatmeasured from thevirtualbottomsurface.

Page 25: PART III FACILITIES, CHAPTER 5 MOORING FACILITIES · 2017-08-15 · PART III FACILITIES, CHAPTER 5 MOORING FACILITIES – 727 – 2) Values proposed by Takahashi and 49)Kikuchi, et

PART III FACILITIES, CHAPTER 5 MOORING FACILITIES

–749–

2.5 Sheet Pile Quaywalls with Raking Pile Anchorages2.5.1 Fundamentals of Performance Verification

(1)Thefollowingisapplicabletotheperformanceverificationofmooringfacilitiesinwhichrakingpilesaredrivenbehindthesheetpilewall,andthetopsofthesheetpilewallandtherakingpilesareconnectedtosupportthesoilbehindthesheetpilewall.

(2)AnexampleofthesequenceofperformanceverificationofsheetpiledquaywallswithrakingpileanchoragesisshowninFig. 2.5.1.

(3)Anexampleofacross-sectionofsheetpilequaywallswithrakingpileanchoragesisshowninFig. 2.5.2.

Verification of stresses in sheet pile and raking anchorage piles

Verification of bearing capacity of raking piles

Determination of embedment length of sheet pile

Verification of circular slip failurePermanent situations

Examination of amount of deformation by dynamic analysis

Accidental state in respect of Level 2 earthquake ground motion

Setting of design conditions

Determine cross-sectional dimensions

Verification of structural members

*1

*2

*3

Assumption of cross-sectional dimensions

Evaluation of actions including seismic coefficient for verification

Verification of deformation and stresses by dynamic analysis

Performance verificationPerformance verificationPermanent situations, variable situations in respect

of Level 1 earthquake ground motion

Permanent situations, variable situations in respectof Level 1 earthquake ground motion

and action of ships

Permanent situations, variable situations in respectof Level 1 earthquake ground motion

and action of ships

Variable situations in respect of Level 1 earthquake ground motion

*1:Theevaluationoftheeffectofliquefactionisnotshown,itisnecessarytoconsidertheseseparately.*2:Whennecessary,anexaminationoftheamountofdeformationbydynamicanalysiscanbecarriedoutfortheLevel1earthquakeground

motion. Forhighearthquake-resistancefacilities,itispreferablethattheexaminationoftheamountofdeformationbecarriedoutbydynamic analysis.*3:VerificationinrespectofLevel2earthquakegroundmotioniscarriedoutforhighearthquake-presistancefacilities.

Fig 2.5.1 Example of Sequence of Performance Verification of Sheet Pile Quaywalls with Raking Pile Anchorages

Page 26: PART III FACILITIES, CHAPTER 5 MOORING FACILITIES · 2017-08-15 · PART III FACILITIES, CHAPTER 5 MOORING FACILITIES – 727 – 2) Values proposed by Takahashi and 49)Kikuchi, et

–750–

TECHNICAL STANDARDS AND COMMENTARIES FOR PORT AND HARBOUR FACILITIES IN JAPAN

Sheet pile Raking anchorage pile

L.W.L.H.W.L.

Fig. 2.5.2 Example of Cross-section of Sheet Pile Quaywall with Raking Pile Anchorage

2.5.2 Actions

(1)Fortheactiononsheetpiledwallswithrakingpileanchorages,referto2.3 Sheet Pile Quaywalls.

(2)ThecharacteristicvalueoftheseismiccoefficientforverificationusedinperformanceverificationofsheetpilequaywallswithrakingpileanchoragesforthevariablesituationsinrespectofLevel1earthquakegroundmotionshallbeappropriatelycalculated taking thestructuralcharacteristics intoconsideration. Forconvenience, thecharacteristicvalueoftheseismiccoefficientforverificationofsheetpilequaywallswithrakingpileanchoragesmaybecalculatedasthesheetpilequaywallsverticalpileanchorage, in2.3.2(9) Seismic Coefficient used in Performance Verification of Sheet Pile Quaywalls with Pile Anchorage for Variable Situations in respect of Level 1 earthquake ground motion.

2.5.3 Performance Verification

(2)VerificationofStressesinSheetPileandRakingAnchoragePiles

① Forsheetpilequaywallswithrakingpileanchorages,verificationmaybecarriedoutfortheresistanceofthesheetpileandthepiles,againsttheactionsinthehorizontalandverticaldirectionattheconnectionpoint,earthpressureandresidualwaterpressure.

② Thehorizontalandverticalforcesactingontheconnectionpointbetweenasheetpileandarakingpilecanbecalculatedbyassumingthattheconnectionisapinstructure.

(3)DeterminationofEmbeddedLengthsofSheetPileandRakingPileTheembeddedlengthofthesheetpileorrakinganchoragepilethatisrequiredtoresisttheforcesactingintheaxialdirectionaswellasthedirectionperpendiculartotheaxiscanbecalculatedinaccordancewithPart II, Chapter, 2.4 Pile Foundations.However,itispreferabletoexaminethebearingcapacityintheaxialdirectionofthesheetpileandthatoftherakinganchoragepilethroughloadingandpullingtests.

2.5.4 Performance Verification of Structural Members

Performanceverificationofsheetpiledquaywallswithrakingpileanchoragescanapplythatofsheetpiledquaywallsandopentypewharvesonverticalpiles.Referto2.3.4 Performance Verifi cation,and5.2.5 Performance Verification of Structural Members.

Page 27: PART III FACILITIES, CHAPTER 5 MOORING FACILITIES · 2017-08-15 · PART III FACILITIES, CHAPTER 5 MOORING FACILITIES – 727 – 2) Values proposed by Takahashi and 49)Kikuchi, et

PART III FACILITIES, CHAPTER 5 MOORING FACILITIES

–751–

2.6 Open-type Quaywall with Sheet Pile Wall Anchored by Forward Batter Piles2.6.1 Fundamentals of Performance Verification

(1)Theprovisionsinthissectionshallbeappliedtotheperformanceverificationofsheetpilequaywallsthatarebuiltbycouplingthesheetpileheadswiththerakinganchoragepilesdriveninthegroundinfrontofthesheetpilesthatretaintheearthintheback.

(2)Open-typequaywallwith sheetpilewall anchoredby forewardbatterpiles arenormallyconstructedwith anopen–typewharfbuiltinfrontofthesheetpilewall.Theopen–typewharfmayormaynotbeintegratedintothesheetpilewall,butthissectionprovidesguidelinesforthecasesinwhichtheopen–typewharfandsheetpilewallareintegrated.Forthecasesinwhichtheopen–typewharfisnotintegratedintothesheetpilewall,referto2.3 Sheet Pile Quaywalls,5.2 Open–Type Wharves on Vertical Piles,and5.3 Open–Type Wharves on Coupled Raking Piles.Theperformanceverificationmethoddescribedinthissectionisbasedonthesheetpileperformanceverificationwiththeequivalentbeammethod.Therefore,thestructuraltypescoveredbythissectionaresteelsheetpilewallsdrivenintoasandysoilgroundorahardclayeysoilground.

(3)AnexampleofthesequenceofperformanceverificationofOpen-typeQuaywallwithSheetPileWallAnchoredbyForwardBatterPilesisshowninFig. 2.6.1.

(4)Here,amethodofcarryingouttheperformanceverificationofthesheetpilesandtheperformanceverificationof theotherpiles in threestages isdescribed,asamethodofsimpleverification. Performanceverificationofthesheetpilescanbecarriedoutinaccordancewiththemethodsofperformanceverificationofsheetpile,byconsidering the connectionpoints between the raking support piles and the sheet pile to be fulcrums. Next,thereactionat theconnectionpointsbetweentherakingsupportpilesandthesheetpile isconsidered tobeahorizontalforceactingonthepiledpiersuperstructure,andtheaxialforcesactinginthesheetpileandthepilesarecalculatedinaccordancewiththeperformanceverificationofopentypewharvesonrakingpiles.Then,thesheetpileandtherakingsupportpilesareconsideredtobearigidframestructurefixedatavirtualfixingpoint,andthemomentsinthetopconnectionpointsduetoearthpressureandotherhorizontalforcesarecalculated.

(5)Anexampleofcross-sectionofopen-typequaywallwithsheetpilewallanchoredbyforwardbatterpilesisshowninFig. 2.6.2.

Page 28: PART III FACILITIES, CHAPTER 5 MOORING FACILITIES · 2017-08-15 · PART III FACILITIES, CHAPTER 5 MOORING FACILITIES – 727 – 2) Values proposed by Takahashi and 49)Kikuchi, et

–752–

TECHNICAL STANDARDS AND COMMENTARIES FOR PORT AND HARBOUR FACILITIES IN JAPAN

Verification of circular slip failurePermanent situations

Setting of design conditions

Determination of cross-sectional dimensions

Verification of structural members

*1

*2

*3

Assumption of cross-sectional dimensions

Evaluation of actions including seismic coefficient for verification

Performance verificationPerformance verificationPermanent situations, variable situations in respect

of Level 1 earthquake ground motion

Variable situations in respect of action of ships,surcharge, and Level 1 earthquake ground motion

Variable situations in respect ofLevel 1 earthquake ground motion

Accidental state in respect of Level 2 earthquake ground motion

Verification of stresses in piles

Verification of bearing capacity of piles

Determination of embedment length of sheet pile

Verification of stresses in sheet pile wall

Examination of amount of deformation by dynamic analysis

Verification of deformation andpiled pier damage by dynamic analysis

Verification of bearing capacity of piles

*1:Theevaluationoftheeffectofliquefactionisnotshown,itisnecessarytoconsidertheseseparately.*2:Whennecessary,anexaminationoftheamountofdeformationbydynamicanalysiscanbecarriedoutfortheLevel1earthquakeground

motion. Forhighearthquake-resistancefacilities,itispreferablethattheexaminationoftheamountofdeformationbecarriedoutbydynamic analysis.*3:VerificationinrespectofLevel2earthquakegroundmotioniscarriedoutforhighearthquake-resistancefacilities.

Fig. 2.6.1 Example of Sequence of Performance Verification ofOpen-type Quaywall with Sheet Pile Wall Anchored by Forward Batter Piles

Page 29: PART III FACILITIES, CHAPTER 5 MOORING FACILITIES · 2017-08-15 · PART III FACILITIES, CHAPTER 5 MOORING FACILITIES – 727 – 2) Values proposed by Takahashi and 49)Kikuchi, et

PART III FACILITIES, CHAPTER 5 MOORING FACILITIES

–753–

Bollard

Fenders

Backfill rocks

Steel pipe pile

Steel sheet pipe pile

Steel pipe pile

Design water depth

Fig. 2.6.2 Example of Cross-section of Open-type Quaywall with Sheet Pile Wall Anchored by Forward Batter Piles

2.6.2 Actions

(1)Fortheactiononthepiledpierpart,referto5.2 Open-Type Wharves on Vertical Piles.

(2)Fortheactionofthesheetpile,referto2.3 Sheet Pile Quaywalls.

(3)Theselfweightofreinforcedconcreteof thesuperstructureofopen–typewharfcanbecalculatedwithaunitweightof21kN/m2intheperformanceverificationoftheverticalandrakingpilesandsheetpilesinaccordancewith5.3 Open-Type Wharves on Coupled Raking Piles.

(4)Thefenderreactionforcecanbecalculatedusingcalculationmethodsdescribedin5.2 Open-Type Wharves on Vertical Piles.

(5)Thecharacteristicvalueoftheseismiccoefficientforverificationusedinperformanceverificationofopen-typequaywallwithsheetpilewallanchoredbyforewardbatterpilesforthevariablesituationsinrespectofLevel1earthquakegroundmotionshallbeappropriatelycalculatedtakingthestructuralcharacteristicsintoconsideration.Forconvenience,thecharacteristicvalueoftheseismiccoefficientforverificationusedinperformanceverificationofopen-typequaywallwithsheetpilewallanchoredbyforewardbatterpilesmaybecalculatedinaccordancewith5.2 Open Type Wharf on Vertical Piles, 5.2.3(10) Ground Motion used in Performance Verification of Seismic–resistant.

2.6.3 Layout and Dimensions

(1)Refertothesizeofdeckblockandlayoutofpilesdescribedin 5.2 Open-Type Wharves on Vertical Piles forthesizeofoneblockofthesuperstructureandlayoutofpiles.

(2)Itispreferablethatlayoutandinclinationoftherakingpilesaredeterminedinconsiderationoftheirpositionalrelationshipwithotherpilesandconstructionwork–relatedconstraintssuchasthoseconcerningthecapacityofpiledrivingequipment.Apileinclinationofabout20ºisnormallyusedforrakingpiles.

(3)Forthedimensionsofthesuperstructure,refertodimensionsofsuperstructurein5.2 Open-Type Wharves on Vertical Piles.

2.6.4 Performance Verification

(1)Performanceverificationofthesheetpilewallmaybecarriedoutconsideringtheconnectionpointbetweentherakingsupportpileandthesheetpileasfulcrums.Referto2.3 Sheet Pile Quaywalls.

Page 30: PART III FACILITIES, CHAPTER 5 MOORING FACILITIES · 2017-08-15 · PART III FACILITIES, CHAPTER 5 MOORING FACILITIES – 727 – 2) Values proposed by Takahashi and 49)Kikuchi, et

–754–

TECHNICAL STANDARDS AND COMMENTARIES FOR PORT AND HARBOUR FACILITIES IN JAPAN

(2)Fortheearthpressureandresidualwaterpressureactingonthesheetpile,theconnectionpointbetweentherakingsupportpileandthesheetpilemaybeconsideredtobeafulcrumreaction.

(3)If it is necessary to carry out verification of rotation of the piled pier block, this shall be appropriatelyconsidered.

(4)PerformanceVerificationofthePiledPierPart

① Fortheperformanceverificationofthepiledpierpart,referto5.2 Open-type Wharves on Vertical Piles,and5.3 Open-type Wharves on Coupled Raking Piles.

② Forassumptionsregardingtheseabed,refertoassumptionsregardingtheseabedin5.2 Open–type Wharves on Vertical Piles.Forthehorizontalresistanceofpiles,estimationofthebehaviorofthepilesmaybecarriedoutusingthemethodofY.L.Chang.

③ The vertical loads distributed to the pile heads can be calculated as the fulcrum reaction forces under theassumptionthatthesuperstructureofopen–typewharfisasimplebeamsupportedatthepositionsofpileheads.Theaxialforcesontherakingpileandsheetpileshouldbecalculatedaccordingtoequation(2.4.60)in2.4.5[6] Lateral Bearing Capacity of Coupled PilesinPart III,Chapter 2, 2.4 Pile Foundations usingthehorizontalforceonthequaywallandtheverticalloaddistributedtopileheads.Fortheaxialforceofaverticalpile,theverticalloaddistributedtothepileheadmaybeused.

④ Theflexuralmomentattheconnectionoftherakingpileandthesheetpilemaybecalculatedasthemomentduetotheearthpressure,residualwaterpressureandotherhorizontalforces,byassumingthattherakingandsheetpilesconstitutearigidframefixedatthevirtualfixedpoint.

(5)Examinationofembeddedlengthwithrespecttotheaxialforce,andexaminationoftheembeddedlengthwithrespecttothelateralresistancecanbemadeinaccordancewith5.2 Open-type Wharves on Vertical Piles.

2.6.5 Performance Verification of Structural Members

(1)Theperformanceverificationforstructuralmembersofsheetpilewallanchoredbyforwordbatterpilescanbemadebyreferringtotheprovisionsin2.3 Sheet Pile Quaywalls and5.2 Open-type Wharves on Vertical Piles.

(2)Theconnectingpointofthesheetpilewallandrakingpileneedtobestructuredsothattheloadtransmissionfunctionsadequately.

(3)The superstructure of open–type wharf shall be structured so that it fully withstands the flexural momenttransmittedfromthesheetpilewall.

(4)Theconnectingpointbetween thesheetpilewallandrakingpilemusthavesufficient reinforcement,becausebreakageordamageattheconnectingpointcouldleadtothecollapseoftheentirequaywall.Theflexuralmomentgeneratedintheheadofthesheetpileistransmittedtothesuperstructureofopen–typewharf.Therefore,thisflexuralmomentneedtobetakenintoconsiderationintheperformanceverificationofthesuperstructure.

Page 31: PART III FACILITIES, CHAPTER 5 MOORING FACILITIES · 2017-08-15 · PART III FACILITIES, CHAPTER 5 MOORING FACILITIES – 727 – 2) Values proposed by Takahashi and 49)Kikuchi, et

PART III FACILITIES, CHAPTER 5 MOORING FACILITIES

–755–

2.7 Double Sheet Pile QuaywallsPublic NoticePerformance Criteria of Double Sheet Pile Quaywalls

Article 503Inadditiontotheprovisionsinthefirstparagraph,theperformancecriteriaofdoublesheetpilestructuresshallbeasspecifiedinthesubsequentitems(1)Theriskofoccurrenceofslidingofthestructuralbodyshallbeequaltoorlessthanthethresholdlevel

underthepermanentactionsituationsinwhichthedominantactionisearthpressureandunderthevariableactionsituationinwhichthedominantactionisLevel1earthquakegroundmotions.

(2)Theriskthatthedeformationofthetopofthefrontorrearsheetpilemayexceedtheallowablelimitofdeformationshallbeequaltoorlessthanthethresholdlevelunderthepermanentactionsituationinwhich thedominantaction isearthpressureandunder thevariableactionsituation inwhich thedominantactionisLevel1earthquakegroundmotions.

(3)Theriskoflosingthestabilityduetosheardeformationofthestructuralbodyshallbeequaltoorlessthanthe threshold levelunder thepermanentactionsituationinwhichthedominantactionisearthpressure.

[Technical Note]

2.7.1 Fundamentals of Performance Verification

(1)Thefollowingisapplicabletotheperformanceverificationofmooringfacilitiesthatuseadoublesheetpilestructure.

(2)Adoublesheetpilequaywallisamooringfacilityinwhichtworowsofsheetpilewallsaredrivenandconnectedbytiemembersorsimilar,thenthespacebetweenthetwowallsisbackfilledwithsoilsothatanearthretainingstructureisformed.

(3)Anexampleofthecross-sectionofadoublesheetpilequaywallisshowninFig. 2.7.1.(4)AnexampleofthesequenceofperformanceverificationofdoublesheetpilequaywallsisshowninFig.

2.7.2.

Waling

Paint coatingSteel pipe sheet pile

Design water depth

Quaywall face line

Apron

Sand filling

Replacement sand

High tensile steel tie rod

Waling

Filling

Steel pipe sheet pile

Fig. 2.7.1 Example of the Cross-section of a Double Sheet Pile Quaywall

Page 32: PART III FACILITIES, CHAPTER 5 MOORING FACILITIES · 2017-08-15 · PART III FACILITIES, CHAPTER 5 MOORING FACILITIES – 727 – 2) Values proposed by Takahashi and 49)Kikuchi, et

–756–

TECHNICAL STANDARDS AND COMMENTARIES FOR PORT AND HARBOUR FACILITIES IN JAPAN

Setting of design conditions

Analysis of the amount of deformation by dynamic analysis

Verification of bearing capacity of piles

Permanent situations, variable situations ofLevel 1 earthquake ground motion

Permanent situations, and variable situations of Level 1 earthquake ground motion

and action of ships

Permanent situations, and variable situations of Level 1 earthquake ground motion

Variable situations of Level 1earthquake ground motion

Accidental states of Level 2earthquake ground motion

Permanent situation

Determination of cross-sectional dimensions

Verification of structural members

Verification of circular slip failure and settlementPermanent situations

Permanent situation, and variable situation of Level 1 earthquake ground motion

Provisional assumption of cross-sectional dimensions

Evaluation of actionsPerformance verificationPerformance verification

*1

*2

*3

Verification of shear deformation of double sheet pile wall structure

Determination of embedment length of sheet pile

Verification of stresses in sheet pile wall

Verification of stresses in tie members

Verification of stresses in waling

Verification of sliding of double sheet pile wall structure

*1:Theevaluationoftheeffectofliquefactionisnotshown,sothismustbeseparatelyconsidered.*2:AnalysisoftheamountofdeformationduetoLevel1earthquakegroundmotionmaybecarriedoutbydynamicanalysiswhennecessary. Forhighearthquake-resistancefacilities,analysisoftheamountofdeformationbydynamicanalysisisdesirable.*3:Forhighearthquake-resistancefacilities,verificationiscarriedoutforLevel2earthquakegroundmotion.

Fig. 2.7.2 Example of the Sequence of Performance Verification of Double Sheet Pile Quaywalls

Page 33: PART III FACILITIES, CHAPTER 5 MOORING FACILITIES · 2017-08-15 · PART III FACILITIES, CHAPTER 5 MOORING FACILITIES – 727 – 2) Values proposed by Takahashi and 49)Kikuchi, et

PART III FACILITIES, CHAPTER 5 MOORING FACILITIES

–757–

(5)Intheperformanceverificationofdoublesheetpilequaywalls,theperformanceverificationmethodsforsteelsheetpilecellular-bulkheadquaywallsorsheetpilequaywallswithsheetpileanchoragehaveconventionallybeenapplied.Therefore,whenverifyingtheperformanceofadoublesheetpilequaywallwiththeconditionsthataresimilartothoseusedinexistingquaywalls,performanceverificationmethodsdescribedinthissectionmaybeused.

2.7.2 Actions

(1)For the action on double sheet pile quaywalls, refer to 2.9 Cellular-bulkhead Quaywalls with Embedded Sections.

(2)ThecharacteristicvalueoftheseismiccoefficientforverificationusedinperformanceverificationofdoublesheetpilequaywallsforthevariablesituationsofLevel1earthquakegroundmotionshallbeappropriatelycalculatedtakingintoconsiderationthestructuralcharacteristics.Forconvenience,thecharacteristicvalueoftheseismiccoefficientforverificationofdoublesheetpilequaywallsmaybecalculatedinaccordancewiththatforanchoredverticalpile typesheetpiledquaywalls, in2.3.2(9) Performance Verification of Anchorages for Sheet Pile Quaywalls on Variable Situation in respect of Level 1 Earthquake Ground Motion.

2.7.3 Performance Verification

(1)Theexaminationtodeterminethewidthbetweentwosheetpilewallstoachievetherequiredstrengthagainstsheardeformationcanbemadeinaccordancewith2.9 Cellular-bulkhead Quaywalls with Embedded Sections.

(2)Thecalculationofthedeformationmomentcanbemadeinaccordancewith2.9 Cellular-bulkhead Quaywalls with Embedded Sections.

(3)Thecalculationof theresistancemomentcanbemadeinaccordancewith2.9 Cellular-bulkhead Quaywalls with Embedded Sections.However,theresistancemomentduetothefrictionsatthejointsbetweensheetpilesofthepartitionwallsisnotconsiderednormally.

(4)Theembeddedlengthofsheetpilesisdeterminedasthelongeroneofeitherthatcalculatedbythemethodforsheetpileshavingordinaryanchoragereferringtoexaminationofembeddedlengthsofsheetpilesin2.3 Sheet Pile Quaywallsorthatsatisfyingtheallowablelimitforhorizontaldisplacementrequirementreferringtoexaminationof stability ofwall body as awhole and examination of displacement ofwall top in2.9 Cellular-bulkhead Quaywalls with Embedded Sections

(5)Adouble sheetpilequaywall canbeconsideredasakindofgravitywall. Thus it isnecessary toverify thestabilityagainstslidingofthequaywallandtheoverallslopestabilityincludingthewallstructure,asinthecaseofacellular-bulkheadtypequaywall.Intheperformanceverificationreferencecanbemadeinaccordancewiththeperformanceverificationdescribedin2.2 Gravity-type Quaywalls.Slidingisusuallyexaminedeitheratthevirtualbottomsurfacewhichistakenattheseabottomorthehorizontalplaneatthetoeofthesheetpilewall.Intheformercase,theresistanceofthesheetpilewallbelowtheseabottomshouldbeignored.Intheexaminationoftheoverallslopestabilityincludingthedoublesheetpilequaywall,theembeddedlengthofthedoublesheetpilequaywallmustbecomparedwiththerequiredembeddedlengthcalculatedforacorrespondingsinglesheetpilequaywallwithanchorage.Iftheformerisfoundlongerthanthelatter,theresistanceoftheportionofsheetpilesbelowthecalculatedtoeofthelattersheetpilesshouldbeignoredagainstthecircularslipplanepassingthelevelbelowthetoe.

(6)Performanceverificationoftheslabanduprightsectionofthesuperstructurecanbemadeinaccordancewiththeperformanceverificationofrelievingplatformin2.8 Quaywalls with Relieving Platforms.Foundationpilesaresometimesdrivenintothefillingmaterialtosupportthesuperstructure.Thesepilesshouldhavesufficientsafetyagainstthehorizontalandverticalforcestransmittedfromthesuperstructure.Hereitisassumedthattheverticalforcetransmittedfromthesuperstructureisentirelybornebythepiles,andtheverticalbearingcapacityofthepileiscalculatedbyignoringtheskinfrictionbetweenthepileandthefillingmaterial.Thehorizontalforcethatactsonthesuperstructureistransmittedtothedoublesheetpilequaywallpartlythroughthepilesandpartlythroughthesheetpiles.Thereforeitisnecessarytodetermineappropriateburdenshearingofthehorizontalforcebythetwosections.

(7)Whendoublesheetpiledwallstructuresareused,theamountofdeformationmaybeevaluatedbyastaticmethodusingSawaguchi’smethod72)orOhori’smethod.73)

Page 34: PART III FACILITIES, CHAPTER 5 MOORING FACILITIES · 2017-08-15 · PART III FACILITIES, CHAPTER 5 MOORING FACILITIES – 727 – 2) Values proposed by Takahashi and 49)Kikuchi, et

–758–

TECHNICAL STANDARDS AND COMMENTARIES FOR PORT AND HARBOUR FACILITIES IN JAPAN

2.8 Quaywalls with Relieving PlatformsPublic NoticePerformance Criteria of Quaywalls with Relieving Platforms

Article 51 The performance criteria of quaywallswith relieving platforms shall be as specified in the subsequentitems:(1)Sheetpilesshallhavetheembedmentlengthasnecessaryforstructuralstabilityandcontainthedegree

ofriskthatthestressesinthesheetpilesmayexceedtheyieldstressatthelevelequaltoorlessthanthethresholdlevelunderthepermanentactionsituationinwhichthedominantactionisearthpressureandunderthevariableactionsituationinwhichthedominantactionisLevel1earthquakegroundmotions.

(2)TheriskofoccurrenceofslidingoroverturningtothestructuralbodyshallbeequaltoorlessthanthethresholdlevelunderthepermanentactionsituationinwhichthedominantactionisearthpressureandunderthevariableactionsituationinwhichthedominantactionisLevel1earthquakegroundmotions.

(3)Thefollowingcriteriashallbesatisfiedunderthepermanentactionsituationinwhichthedominantactionisselfweight:(a)Theriskthattheaxialforcesactingintherelievingplatformpilesmayexceedtheresistanceforce

basedonfailureofthesoilsshallbeequaltoorlessthanthethresholdlevel.(b)Theriskofimpairingtheintegrityofthemembersoftherelievingplatformshallbeequaltoorless

thanthethresholdlevel.(4)Thefollowingcriteriashallbesatisfiedunderthepermanentactionsituationinwhichthedominant

actionisearthpressureandunderthevariableactionsituationinwhichthedominantactionsareLevel1earthquakegroundmotions,shipberthing,andtractionbyships:(a)Theriskthattheaxialforcesactingontherelievingplatformpilesmayexceedtheresistanceforce

basedonfailureofthesoilsshallbeequaltoorlessthanthethresholdlevel.(b)Theriskthatthestressactingontherelievingplatformpilesmayexceedtheyieldstressshallbe

equaltoorlessthanthethresholdlevel.(c)Theriskofimpairingtheintegrityofthemembersoftherelievingplatformshallbeequaltoorless

thanthethresholdlevel.(5)Theriskofoccurrenceofaslipfailureinthegroundthatpassesbelowthebottomendofthesheet

pilingshallbeequaltoorlessthanthethresholdlevelunderthepermanentactionsituationinwhichthedominantactionisselfweight.

[Commentary]

(1)PerformanceCriteriaofQuaywallswithRelievingPlatforms①Theperformancecriteriaofquaywallswithrelievingplatformsshallusethefollowinginaccordance

withthedesignsituationsandthestructuremembers. Besidestheserequirements,whennecessarythesettingsofthePublic Notice Article 22 Paragraph 3(ScouringandWashingOut)shallbeapplied.

②SheetpileandStructuralStability(a)The setting for sheet pile and structural stability of the performance criteria of quaywallswith

relievingplatformsandthedesignsituationsexcludingaccidentalsituationsshallbeinaccordancewithAttached Table 37.

Page 35: PART III FACILITIES, CHAPTER 5 MOORING FACILITIES · 2017-08-15 · PART III FACILITIES, CHAPTER 5 MOORING FACILITIES – 727 – 2) Values proposed by Takahashi and 49)Kikuchi, et

PART III FACILITIES, CHAPTER 5 MOORING FACILITIES

–759–

Attached Table 37 Setting for the Performance Criteria of Sheet Pile and Structural Stability of Quaywalls with Relieving Platforms and the Design Situations excluding Accidental Situations

MinisterialOrdinance PublicNotice

Performancerequirements

Designsituation

Verificationitem Indexofstandardlimitvalue

Article

Paragraph

Item

Article

Paragraph

Item Situation Dominating

actionNon–

dominatingaction

26 1 2 51 1 1 Serviceability Permanent Earthpressure Waterpressure,surcharges

Necessaryembedmentlength

Systemfailureprobabilityunderpermanentsituationsofselfweightandearthpressure(Highearthquake-resistancefacilityPf=1.7×10–3)(Otherthanhighearthquake-resistancefacilityPf=4.0×10–3)

Yieldingofsheetpile

Variable L1earthquakegroundmotion

Earthpressure,waterpressure,surcharges

Necessaryembedmentlength

Allowableamountofdeformationoftopofquaywall:applysheetpilequaywallsYieldingofsheetpiling

2 Permanent Earthpressure Selfweight,waterpressure,surcharge

Sliding/overturningofwallstructure

Systemfailureprobabilityunderpermanentsituationsofselfweightandearthpressure(Highearthquake-resistancefacilityPf=1.7×10–3)(Otherthanhighearthquake-resistancefacilityPf=4.0×10–3)

Variable L1earthquakegroundmotion

Selfweightearthpressure,waterpressure,surcharge

Sliding/overturningofwallstructure

LimitvalueforslidingLimitvalueforoverturning(Allowableamountofdeformationoftopofquaywall:applygravity-typequaywalls)

5 Permanent Selfweight Waterpressure,surcharge

Circularslipfailureofground

Systemfailureprobabilityunderpermanentsituationsofselfweightandearthpressure(Highearthquake-resistancefacilityPf=1.7×10–3)(Otherthanhighearthquake-resistancefacilityPf =4.0×10–3)

(b)PerformancecriteriaofsheetpileOfthesettingsfortheperformancecriteriaforrelievingplatformquaywallsandthedesignsituations,thoseapplicabletothesheetpileshallcomplywiththesettingsinaccordancewiththePublic Notice Article 50 Paragraph 1(PerformanceCriteriaforSheetPiledQuaywalls).

(c)PerformanceCriteriaofWallStructuresIntheverificationofthestabilityofthestructureofquaywallswithrelievingplatforms,thewallstructureisequivalenttothewallstructureinthecaseofagravity-typequaywall.ThewallstructureshallcomplywiththesettingofthePublic Notice Article 49(PerformanceCriteriaofGravity-typeQuaywalls).

(d)PerformanceCriteriaofCircularSlipsintheGroundThe setting for circular slips in the ground shall complywith the settings of thePublic Notice Article 50 Paragraph 1(PerformanceCriteriaofSheetPileQuaywalls).

③RelievingPlatformandRelievingPlatformPiles(a) Thesettings for relievingplatformsand relievingplatformpilesshallbeasshown inAttached

Table 38.

Page 36: PART III FACILITIES, CHAPTER 5 MOORING FACILITIES · 2017-08-15 · PART III FACILITIES, CHAPTER 5 MOORING FACILITIES – 727 – 2) Values proposed by Takahashi and 49)Kikuchi, et

–760–

TECHNICAL STANDARDS AND COMMENTARIES FOR PORT AND HARBOUR FACILITIES IN JAPAN

Attached Table 38 Settings for the Performance Criteria for the Relieving Platform and Relieving Platform Piles of Quaywalls with Relieving Platforms and the Design situations excluding Accidental Situations

MinisterialOrdinance PublicNotice

Performancerequirements

Designsituation

Verificationitem Indexofstandardlimitvalue

Article

Paragraph

Item

Article

Paragraph

Item Situation Dominating

actionNon–

dominatingaction

26 1 2 51 1 3a Serviceability Permanent Selfweight Surcharging,waterpressure

Axialforcesonrelievingplatformpiles

Resistancecapacitybasedonfailureoftheground(pushing,pulling)

3b Earthpressure,waterpressure,surcharge

Serviceabilityofcross-sectionofrelievingplatform

Limitvalueofbendingcompressivestress(serviceabilitylimitstate)

4a Variable Earthpressure Selfweight,waterpressure,surcharge

Axialforcesactingontherelievingplatformpiles

Resistancecapacitybasedonfailureoftheground(pushing,pulling)

L1earthquakegroundmotion

Selfweight,earthpressure,waterpressure,surcharge

Tractionofships

4b Permanent Earthpressure Waterpressure,surcharge

Yieldingofrelievingplatform

Designyieldstress

Variable L1earthquakegroundmotion

Selfweight,earthpressure,waterpressure,surchargeTractionof

ships4c Permanent Earthpressure Waterpressure,

surchargeServiceabilityofcross-sectionofrelievingplatform

Limitingvalueofbendingcompressivestress(serviceabilitylimitstate)

Variable L1earthquakegroundmotion

Selfweight,earthpressure,waterpressure,surcharge

Failureofcross-sectionofrelievingplatform

Designcross-sectionalresistanceforce(ultimatelimitstate)

Tractionofships

(b)AxialForcesActingontheRelievingPlatformPilesVerificationoftheaxialforcesactingontherelievingplatformpilesistoverifytheriskthattheaxialforcesactingontherelievingplatformpileswillexceedtheresistanceforcebasedonfailureofthegroundisequaltoorlessthanthelimitingvalue.

(c)YieldingofRelievingPlatformPilesVerificationofyieldingintherelievingplatformpilesistoverifytheriskthatthestressesactingontherelievingplatformpileswillexceedtheyieldstressisequaltoorlessthanthelimitingvalue.

(d)ServiceabilityoftheCross-sectionoftheRelievingPlatformVerificationofserviceabilityoftherelievingplatformistoverifytheriskthatthedesignbendingcompressivestressesintherelievingplatformwillexceedthelimitingvalueofcompressivestressisequaltoorlessthanthelimitingvalue.

(e)Cross-sectionalFailureoftheRelievingPlatformVerificationofcross-sectionalfailureoftherelievingplatformistoverifytheriskthatthedesigncross-sectionalforcesintherelievingplatformwillexceedthedesigncross-sectionalresistanceisequaltoorlessthanthelimitingvalue.

[Technical Note]

2.8.1 Principles of Performance Verification

(1)Theprovisionsinthischaptermaybeappliedtotheperformanceverificationofquaywallwithrelievingplatformthatcomprisesarelievingplatform,asheetpilewallinfrontoftherelievingplatform,andrelievingplatformpiles.

(2)Sheetpilequaywallwitharelievingplatformnormallycomprisearelievingplatform,asheetpilewallinfrontof the relieving platform, and relieving platform piles. The relieving platform is inmany cases constructedasanL-shapedstructureofcast-in-placereinforcedconcreteandisusuallyburiedunderlandfillmaterial,butsometimesaboxshapeplatformisusedtoreducetheweightoftheplatformandtheearthquakeforcesthatactonitseeFig. 2.8.1 and2.8.2.

Page 37: PART III FACILITIES, CHAPTER 5 MOORING FACILITIES · 2017-08-15 · PART III FACILITIES, CHAPTER 5 MOORING FACILITIES – 727 – 2) Values proposed by Takahashi and 49)Kikuchi, et

PART III FACILITIES, CHAPTER 5 MOORING FACILITIES

–761–

(3)Theperformanceverificationofaquaywallwitharelievingplatformcanbemadeseparatelyforthesheetpiles,therelievingplatform,andtherelievingplatformpiles.

Sheet pile wall

Relieving platform

Relieving platform piles

W.L.

Fig. 2.8.1 Structure of Quaywall with Relieving Platform (L-Shaped Platform)

W.L.

Relieving platform

Void

Fig. 2.8.2 Structure of Quaywall with Relieving Platform (Box Shape Platform)

(4)AnexampleofthesequenceofperformanceverificationofaquaywallwithrelievingplatformisshowninFig. 2.8.3.

Page 38: PART III FACILITIES, CHAPTER 5 MOORING FACILITIES · 2017-08-15 · PART III FACILITIES, CHAPTER 5 MOORING FACILITIES – 727 – 2) Values proposed by Takahashi and 49)Kikuchi, et

–762–

TECHNICAL STANDARDS AND COMMENTARIES FOR PORT AND HARBOUR FACILITIES IN JAPAN

Setting of design conditions

Permanent situation, variable situations of Level 1 earthquake ground motion

Permanent situation

Permanent situation, and variable situations of Level 1 earthquake ground motion

and action of ships

Accidental situations of Level 2 earthquake ground motion

Determination of cross-sectional dimensions

Verification of structural members (verification of relieving platform, etc.)

Permanent situation

Permanent situation, and variable situations of Level 1 earthquake ground motion

Variable situations of Level 1 earthquake ground motion

Evaluation of actions including seismic coefficient for verification

Provisional assumption of cross-sectional dimensions

Performance verificationPerformance verification

*1

*2

*3

Determination of embedment length of sheet pile

Analysis of stresses in sheet pile wall

Determination of dimensions of sheet pile

Provisional layout of relieving platform

Verification of axial forces on relieving platform piles

Verification of stresses in relieving platform piles

Verification of sliding and overturning as a gravity wall

Analysis of the amount of deformation by dynamic analysis

Verification of deformation and stress by dynamic analysis

Verification of circular slips failure and settlement

*1:Theevaluationoftheeffectofliquefactionisnotshown,sothismustbeseparatelyconsidered.*2:AnalysisoftheamountofdeformationduetoLevel1earthquakegroundmotionmaybecarriedoutbydynamicanalysiswhennecessary. Forhighearthquake-resistancefacilities,analysisoftheamountofdeformationbydynamicanalysisisdesirable.*3:Forhighearthquake-resistancefacilities,verificationiscarriedoutforLevel2earthquakegroundmotion.

Fig. 2.8.3 Example of the Sequence of Performance Verification of a Quaywall with Relieving Platform

Page 39: PART III FACILITIES, CHAPTER 5 MOORING FACILITIES · 2017-08-15 · PART III FACILITIES, CHAPTER 5 MOORING FACILITIES – 727 – 2) Values proposed by Takahashi and 49)Kikuchi, et

PART III FACILITIES, CHAPTER 5 MOORING FACILITIES

–763–

2.8.2 Actions

(1)The earth pressure and residual water pressure acting on sheet piles vary greatly according to structuralcharacteristics.Therefore,theyshallbecalculatedappropriatelyinconsiderationoftheheightandwidthoftherelievingplatformaswellassupportconditions.

(2)When the active failure surface of backfill soil from the intersection between the sea bottomand sheet pilesintersectstherelievingplatform,theactiveearthpressureactingonthesheetpilewallcanbecalculatedontheassumptionthatthebottomoftherelievingplatformisthevirtualgroundsurfaceandnosurchargeisonitasshowninFig. 2.8.4.

(3)Theresidualwaterpressureactingonthesheetpilewallshouldbeconsideredthesameasthatofthecasewithoutarelievingplatform.Theforcetobeadoptedshouldbetheresidualwaterpressureactingontherangebelowthebottomlevelofrelievingplatform,seeFig. 2.8.4.

(4)Asforpassiveearthpressureinfrontoftheembeddedsectionofsheetpile,2.3 Sheet Pile Quaywallscanbereferred.

Design water level(L.W.L) Residual water level

Passiveearth pressure

Activeearth pressure

Res

idua

l wat

er p

ress

ure

Fig. 2.8.4 Earth Pressure and Residual Water Pressure Acting on Sheet Pile Wall

(5)ThecharacteristicvalueofseismiccoefficientforverificationusedintheperformanceverificationofquaywallswithrelievingplatformsforthevariablesituationsassociatedwithLevel1earthquakegroundmotionshallbecalculatedtakingthestructuralcharacteristicsintoconsideration.Forconvenience,thecharacteristicvalueofseismiccoefficientforverificationofquaywallswithrelievingplatformsmaybecalculatedbyreferencetothe2.2.2(1) Seismic Coefficient for Verification used in Verification of Damage due to Sliding and Overturning of Wall Body and Insufficient Bearing Capacity of Foundations Ground in Variable Situations in Respect of Level 1 Earthquake Ground Motion,complyingwithgravity-typequaywalls.

(6)Itisnotdesirablethatthewidthoftherelievingplatformbeshortenedtotherangewhereitdoesnotintersectwiththeactivefailuresurfaceextendingfromtheseabedsurface.However,iftheuseofashortrelievingplatformisunavoidable,thefollowingmethodcanbeusedasthemethodofcalculatingtheactiveearthpressureactingonthesheetpile. AsshowninFig. 2.8.5, theearthpressureactingonthesheetpilewalliscalculatedastheearthpressureactinginthecasethatthereisnorelievingplatformbelowtheintersectionpointoftheactivefailuresurfacedrawnfromtherearendoftherelievingplatformandthesheetpile,andastheearthpressureactingin(2)above,abovethepointofintersectionofthenaturalfailuresurfaceduringLevel1earthquakegroundmotiondrawnfromtherearendoftherelievingplatformandthesheetpile.Betweenthesetwo,itmaybeassumedthattheearthpressurevarieslinearly. Thedesignvalueof the angleα formedbetween thenatural failure surface and thehorizontalduring anearthquakecangenerallybeobtainedfromequation(2.8.1).Inthefollowingequation,thesubscriptdindicatesthedesignvalue.

(2.8.1)

where, φ :angleofshearingresistanceofthesoil(°) kh' :apparentseismiccoefficient

Thedesignvaluesintheequationmaybecalculatedfromthefollowingequation.Intheequation,thesymbolγisthepartialfactorcorrespondingtoitssubscript,andthesubscriptskanddindicatethecharacteristicvalueand

Page 40: PART III FACILITIES, CHAPTER 5 MOORING FACILITIES · 2017-08-15 · PART III FACILITIES, CHAPTER 5 MOORING FACILITIES – 727 – 2) Values proposed by Takahashi and 49)Kikuchi, et

–764–

TECHNICAL STANDARDS AND COMMENTARIES FOR PORT AND HARBOUR FACILITIES IN JAPAN

thedesignvalue,respectively.Also,thepartialfactorsmayallbeassumedtobe1.0.

(2.8.2)

Active failure surface

Design tide level(L.W.L.)

α= -tan-1k'φα= -tan-1k'φ

Fig. 2.8.5 Earth Pressure Acting on Sheet Pile with Narrow Relieving Platform

(7)Thehorizontalforcetransmittedfromthesheetpilewallmaybecalculatedwiththesamemethodasthatforthereaction forceat the tie rodsettingpointobtained inaccordancewith2.3.4 Performance Verificationof2.3 Sheet Pile Quaywalls byregardingthebottomelevationofrelievingplatformasatierodsettingpoint.

(8) Thetractiveforceofshipsandfenderreactionforcealsoactontherelievingplatform. Theseexternalforcesshouldbeconsideredasnecessary.

(9) Theexternalforcestransmittedfromthesheetpilewalltotherelievingplatformincludethehorizontalforceandflexuralmoment.However,thetransmissionoftheflexuralmomentisignoredforthesakeofsafety,becausethefixingofthesheetpilestotherelievingplatformmaynotberigidenough.

(10)TheearthpressureandresidualwaterpressureactingonthebackoftherelievingplatformcanbecalculatedinaccordancewithPart II, Chapter 5, 1 Earth Pressure andPart II, Chapter 5, 2.1 Residual Water Pressure.Inthecalculationofearthpressure,surchargeshouldbetakenintoconsideration.Inthepartbelowthebottomofrelievingplatform,thedifferencebetweenactionearthpressureactingontherearandthepassiveearthpressureactingonthefrontactsastheactiveearthpressuredowntothedepthwherethetwopressuresarebalanced.ThisshouldbeaddedasshowninFig. 2.8.6.Thefrictionangleofthewallmaybetakentobe15°foractiveearthpressure,and–15°forpassiveearthpressure.

pp pa

pa

pa- pp

Force transmittedfrom sheet piling Residual water level

Residual water pressureDesign tide level(L.W.L)

Fig. 2.8.6 External Forces to be Considered for Performance Verification of Relieving Platform

2.8.3 Performance Verification

(1)PerformanceVerificationofSheetPileWall

① Theembeddedlengthofsheetpilescanbeexaminedbyassumingthatthejointbetweenthesheetpilewallandrelievingplatformisahingesupport,replacingthebottomoftherelievingplatformwithatierodsettingpointandapplying2.3 Sheet Pile Quaywalls.

② Verificationofstressesinthesheetpilewallmaybecarriedoutinaccordancewith2.3 Sheet Piled Quaywalls,replacingtherelievingplatformbottomsurfacewiththetieinstallationpoint.

③ Inadditiontotheflexuralmomentduetoearthpressure, theflexuralmomentandverticalforcetransmittedfromtherelievingplatformactonthesheetpilesofasheetpilewall.Normallytheflexuralmomenttransmittedfromtherelievingplatformisnottakenintoconsideration,becauseitusuallyactsinadirectionoppositetothat

Page 41: PART III FACILITIES, CHAPTER 5 MOORING FACILITIES · 2017-08-15 · PART III FACILITIES, CHAPTER 5 MOORING FACILITIES – 727 – 2) Values proposed by Takahashi and 49)Kikuchi, et

PART III FACILITIES, CHAPTER 5 MOORING FACILITIES

–765–

ofthemaximumflexuralmomentthatactsonthesheetpilesandthusreducesthemaximumflexuralmoment.Furthermore,theverticalforcetransmittedfromtherelievingplatformtothesheetpilewallisnormallynottakenintoconsiderationwhenthefrontrowofrelievingplatformpilesisdriveninasclosetothesheetpilewallaspossibleandthissignificantlyreducestheverticalforceactingonthesheetpiles.

(2)PerformanceVerificationoftheRelievingPlatform

Arelievingplatformshouldbeverifiedforperformanceasacontinuousbeamforboththedirectionofquaywallalignmentandthedirectionperpendiculartothealignment(seeFig. 2.8.7).Loadsshouldnotbedistributedinthetwodirections.WhentherelievingplatformisanL–shapedstructure,theuprightsectionshouldbeverifiedforperformanceasacantileverbeamsupportedattheslabsection.

Coupled piles +

+M0Ap

M0

Ap

w wd

w wd

Vertical pile

Bending moment

Bending moment due to surcharge

Bending moment transmitted from upright part

Tensile force

M0 : Maximum bending moment of upright partAp : Force transmitted from sheet pileW : Surchargewd : Load due to deadweight and soil

Fig. 2.8.7 Continuous Beam Assumed in Performance Verification of Relieving Platform

(3)PerformanceVerificationoftheRelievingPlatformPiles

① Performance of relieving platform piles can be verified in accordance with Part II, Chapter 2, 2.4 Pile Foundations.

② Inprinciple,relievingplatformpilesshouldconsistofacombinationofcoupledpilesandverticalpiles.Thehorizontalexternalforcemaybebornebythecoupledpilesonly,andtheverticalexternalforcemaybebornebytheverticalpilesonly.Itmaybeassumedthateachofthecoupledpilesburdensthehorizontalforceequally.

③ Inthedesignofrelievingplatformpiles,assessmentshouldbemadeforthemostdangerousstateofeachpilebyvaryingthesurcharge,directionofseismicforces,andsealevelwithinthedesignconditionranges.

④ Incalculatingtheaxialloadresistanceofeachoftherelievingplatformpiles,itisdesirabletoassumethatinthegroundabovethesheetpileactivefailuresurfacedrawnfromtheseabedsurface,theskinfrictiondoesnotcontributeastheresistanceforceoftherelievingplatformpiles.

⑤ Ifitisunavoidablethattherelievingplatformpilesareallcomposedbyverticalpiles,whendistributingthehorizontalforcetotheverticalpiles,normallyitisassumedincalculatingtheresistanceforcenormaltotheiraxesthatthereisnosoilabovethesheetpileactivefailuresurfacedrawnfromtheseabedsurface.

(4)AnalysisoftheStabilityasGravity-typeWallStructures

① Theexaminationofthestabilityofaquaywallwithrelievingplatformasawholecanbemadebyassumingthatthequaywallwithrelievingplatformisakindofgravity-typewall.

Page 42: PART III FACILITIES, CHAPTER 5 MOORING FACILITIES · 2017-08-15 · PART III FACILITIES, CHAPTER 5 MOORING FACILITIES – 727 – 2) Values proposed by Takahashi and 49)Kikuchi, et

–766–

TECHNICAL STANDARDS AND COMMENTARIES FOR PORT AND HARBOUR FACILITIES IN JAPAN

② Foranalyzingthestabilityoftheassumedgravity-typewallstructure,referto2.2 Gravity-type Quaywalls.Inthiscase,thepassiveearthpressuretothefrontofthesheetpileisconsidered.

③ Aquaywallwithrelievingplatformmaybeconsideredasarectangularshapegravity-typewalldefinedbyaverticalplanecontainingtherearfaceoftherelievingplatformandahorizontalplanecontainingthebottomendsofthefrontsidebatterpilesofthecoupledpiles,asshowninFig. 2.8.8.

W.L.

Fig. 2.8.8 Virtual Wall as Gravity-type Wall

(5)VerificationofCircularSlipFailureForanalysisofcircularslipfailure,refertoChapter 2, 3 Stability of Slopes.Inthiscaseanalysisiscarriedoutforcircularslipfailurepassingunderthebottomendofthesheetpile.Also,forsettingthetidelevel,refertoPart II, Chapter 2, 3 Tide Levels.