part2: dissipative systems and non-equilibrium bose ... · part2: dissipative systems and...

49
Outline Non-equilibrium condensation in dissipative environment Part2: Dissipative Systems and Non-Equilibrium Bose-Einstein Condensation Marzena Hanna Szyma ´ nska Department of Physics University of Warwick August 2010 / The 5th Windsor Summer School Marzena Hanna Szyma ´ nska Dissipative Systems and Non-Equilibrium BEC 1 / 11

Upload: others

Post on 28-May-2020

8 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Part2: Dissipative Systems and Non-Equilibrium Bose ... · Part2: Dissipative Systems and Non-Equilibrium Bose-Einstein Condensation Marzena Hanna Szymanska´ Department of Physics

OutlineNon-equilibrium condensation in dissipative environment

Part2: Dissipative Systems and Non-EquilibriumBose-Einstein Condensation

Marzena Hanna Szymanska

Department of PhysicsUniversity of Warwick

August 2010 / The 5th Windsor Summer School

Marzena Hanna Szymanska Dissipative Systems and Non-Equilibrium BEC 1 / 11

Page 2: Part2: Dissipative Systems and Non-Equilibrium Bose ... · Part2: Dissipative Systems and Non-Equilibrium Bose-Einstein Condensation Marzena Hanna Szymanska´ Department of Physics

OutlineNon-equilibrium condensation in dissipative environment

1 Non-equilibrium condensation in dissipative environmentPolariton model and Keldysh field theoryMean-field equationsConnections of mean-field equations to other limitsPhase transition and fluctuationsSuperfluidity

Marzena Hanna Szymanska Dissipative Systems and Non-Equilibrium BEC 2 / 11

Page 3: Part2: Dissipative Systems and Non-Equilibrium Bose ... · Part2: Dissipative Systems and Non-Equilibrium Bose-Einstein Condensation Marzena Hanna Szymanska´ Department of Physics

OutlineNon-equilibrium condensation in dissipative environment

Overview: Polaritons

Experiments

[Kasprzak, et al., Nature2006]

[Lagoudakis et al.,Nature Physics 2008]

[Utsunomiya et al., NaturePhysics 2008]

[Amo et al., Nature 2009]

Theoretically complexextended size, internal structure, stronginteractions and the BCS-BEC crossover

2D vs finite size

excitonic and photonic disorder

non-equilibrium and dissipation

[Keeling, Eastham, Szymanska, et al., PRL 2004, PRB 2005]

[Marchetti, Keeling, Szymanska, et al., PRL 2006, PRB 2007]

Marzena Hanna Szymanska Dissipative Systems and Non-Equilibrium BEC 3 / 11

Page 4: Part2: Dissipative Systems and Non-Equilibrium Bose ... · Part2: Dissipative Systems and Non-Equilibrium Bose-Einstein Condensation Marzena Hanna Szymanska´ Department of Physics

OutlineNon-equilibrium condensation in dissipative environment

Overview: Polaritons

Experiments

[Kasprzak, et al., Nature2006]

[Lagoudakis et al.,Nature Physics 2008]

[Utsunomiya et al., NaturePhysics 2008]

[Amo et al., Nature 2009]

Theoretically complexextended size, internal structure, stronginteractions and the BCS-BEC crossover

2D vs finite size

excitonic and photonic disorder

non-equilibrium and dissipation

[Keeling, Eastham, Szymanska, et al., PRL 2004, PRB 2005]

[Marchetti, Keeling, Szymanska, et al., PRL 2006, PRB 2007]

Marzena Hanna Szymanska Dissipative Systems and Non-Equilibrium BEC 3 / 11

Page 5: Part2: Dissipative Systems and Non-Equilibrium Bose ... · Part2: Dissipative Systems and Non-Equilibrium Bose-Einstein Condensation Marzena Hanna Szymanska´ Department of Physics

OutlineNon-equilibrium condensation in dissipative environment

Overview: Polaritons

Experiments

[Kasprzak, et al., Nature2006]

[Lagoudakis et al.,Nature Physics 2008]

[Utsunomiya et al., NaturePhysics 2008]

[Amo et al., Nature 2009]

Theoretically complexextended size, internal structure, stronginteractions and the BCS-BEC crossover

2D vs finite size

excitonic and photonic disorder

non-equilibrium and dissipation

[Keeling, Eastham, Szymanska, et al., PRL 2004, PRB 2005]

[Marchetti, Keeling, Szymanska, et al., PRL 2006, PRB 2007]

Marzena Hanna Szymanska Dissipative Systems and Non-Equilibrium BEC 3 / 11

Page 6: Part2: Dissipative Systems and Non-Equilibrium Bose ... · Part2: Dissipative Systems and Non-Equilibrium Bose-Einstein Condensation Marzena Hanna Szymanska´ Department of Physics

OutlineNon-equilibrium condensation in dissipative environment

Overview: Polaritons

Experiments

[Kasprzak, et al., Nature2006]

[Lagoudakis et al.,Nature Physics 2008]

[Utsunomiya et al., NaturePhysics 2008]

[Amo et al., Nature 2009]

Theoretically complexextended size, internal structure, stronginteractions and the BCS-BEC crossover

2D vs finite size

excitonic and photonic disorder

non-equilibrium and dissipation

[Keeling, Eastham, Szymanska, et al., PRL 2004, PRB 2005]

[Marchetti, Keeling, Szymanska, et al., PRL 2006, PRB 2007]

Marzena Hanna Szymanska Dissipative Systems and Non-Equilibrium BEC 3 / 11

Page 7: Part2: Dissipative Systems and Non-Equilibrium Bose ... · Part2: Dissipative Systems and Non-Equilibrium Bose-Einstein Condensation Marzena Hanna Szymanska´ Department of Physics

OutlineNon-equilibrium condensation in dissipative environment

Overview: Polaritons

Experiments

[Kasprzak, et al., Nature2006]

[Lagoudakis et al.,Nature Physics 2008]

[Utsunomiya et al., NaturePhysics 2008]

[Amo et al., Nature 2009]

Theoretically complexextended size, internal structure, stronginteractions and the BCS-BEC crossover

2D vs finite size

excitonic and photonic disorder

non-equilibrium and dissipation

[Keeling, Eastham, Szymanska, et al., PRL 2004, PRB 2005]

[Marchetti, Keeling, Szymanska, et al., PRL 2006, PRB 2007]

Marzena Hanna Szymanska Dissipative Systems and Non-Equilibrium BEC 3 / 11

Page 8: Part2: Dissipative Systems and Non-Equilibrium Bose ... · Part2: Dissipative Systems and Non-Equilibrium Bose-Einstein Condensation Marzena Hanna Szymanska´ Department of Physics

OutlineNon-equilibrium condensation in dissipative environment

Overview: Polaritons

Experiments

[Kasprzak, et al., Nature2006]

[Lagoudakis et al.,Nature Physics 2008]

[Utsunomiya et al., NaturePhysics 2008]

[Amo et al., Nature 2009]

Theoretically complex

extended size, internal structure, stronginteractions and the BCS-BEC crossover

2D vs finite size

excitonic and photonic disorder

non-equilibrium and dissipation

[Keeling, Eastham, Szymanska, et al., PRL 2004, PRB 2005]

[Marchetti, Keeling, Szymanska, et al., PRL 2006, PRB 2007]

Marzena Hanna Szymanska Dissipative Systems and Non-Equilibrium BEC 3 / 11

Page 9: Part2: Dissipative Systems and Non-Equilibrium Bose ... · Part2: Dissipative Systems and Non-Equilibrium Bose-Einstein Condensation Marzena Hanna Szymanska´ Department of Physics

OutlineNon-equilibrium condensation in dissipative environment

Overview: Polaritons

Experiments

[Kasprzak, et al., Nature2006]

[Lagoudakis et al.,Nature Physics 2008]

[Utsunomiya et al., NaturePhysics 2008]

[Amo et al., Nature 2009]

Theoretically complexextended size, internal structure, stronginteractions and the BCS-BEC crossover

2D vs finite size

excitonic and photonic disorder

non-equilibrium and dissipation

[Keeling, Eastham, Szymanska, et al., PRL 2004, PRB 2005]

[Marchetti, Keeling, Szymanska, et al., PRL 2006, PRB 2007]

Marzena Hanna Szymanska Dissipative Systems and Non-Equilibrium BEC 3 / 11

Page 10: Part2: Dissipative Systems and Non-Equilibrium Bose ... · Part2: Dissipative Systems and Non-Equilibrium Bose-Einstein Condensation Marzena Hanna Szymanska´ Department of Physics

OutlineNon-equilibrium condensation in dissipative environment

Overview: Polaritons

Experiments

[Kasprzak, et al., Nature2006]

[Lagoudakis et al.,Nature Physics 2008]

[Utsunomiya et al., NaturePhysics 2008]

[Amo et al., Nature 2009]

Theoretically complexextended size, internal structure, stronginteractions and the BCS-BEC crossover

2D vs finite size

excitonic and photonic disorder

non-equilibrium and dissipation

[Keeling, Eastham, Szymanska, et al., PRL 2004, PRB 2005]

[Marchetti, Keeling, Szymanska, et al., PRL 2006, PRB 2007]

Marzena Hanna Szymanska Dissipative Systems and Non-Equilibrium BEC 3 / 11

Page 11: Part2: Dissipative Systems and Non-Equilibrium Bose ... · Part2: Dissipative Systems and Non-Equilibrium Bose-Einstein Condensation Marzena Hanna Szymanska´ Department of Physics

OutlineNon-equilibrium condensation in dissipative environment

Overview: Polaritons

Experiments

[Kasprzak, et al., Nature2006]

[Lagoudakis et al.,Nature Physics 2008]

[Utsunomiya et al., NaturePhysics 2008]

[Amo et al., Nature 2009]

Theoretically complexextended size, internal structure, stronginteractions and the BCS-BEC crossover

2D vs finite size

excitonic and photonic disorder

non-equilibrium and dissipation

[Keeling, Eastham, Szymanska, et al., PRL 2004, PRB 2005]

[Marchetti, Keeling, Szymanska, et al., PRL 2006, PRB 2007]

Marzena Hanna Szymanska Dissipative Systems and Non-Equilibrium BEC 3 / 11

Page 12: Part2: Dissipative Systems and Non-Equilibrium Bose ... · Part2: Dissipative Systems and Non-Equilibrium Bose-Einstein Condensation Marzena Hanna Szymanska´ Department of Physics

OutlineNon-equilibrium condensation in dissipative environment

Overview: Polaritons

Experiments

[Kasprzak, et al., Nature2006]

[Lagoudakis et al.,Nature Physics 2008]

[Utsunomiya et al., NaturePhysics 2008]

[Amo et al., Nature 2009]

Theoretically complexextended size, internal structure, stronginteractions and the BCS-BEC crossover

2D vs finite size

excitonic and photonic disorder

non-equilibrium and dissipation

[Keeling, Eastham, Szymanska, et al., PRL 2004, PRB 2005]

[Marchetti, Keeling, Szymanska, et al., PRL 2006, PRB 2007]

Marzena Hanna Szymanska Dissipative Systems and Non-Equilibrium BEC 3 / 11

Page 13: Part2: Dissipative Systems and Non-Equilibrium Bose ... · Part2: Dissipative Systems and Non-Equilibrium Bose-Einstein Condensation Marzena Hanna Szymanska´ Department of Physics

OutlineNon-equilibrium condensation in dissipative environment

Polariton model and Keldysh field theoryMean-field equationsConnections of mean-field equations to other limitsPhase transition and fluctuationsSuperfluidity

Non-equilibrium Condensation: model and method

Model: Hsys =X

pωpψ

†pψp +

εα“

b†αbα − a†αaα

”+Xα,p

“gα,pψpb†αaα + h.c.

H = Hsys

Schematically: pump γ, decay κ

Hsys,bath 'Xp,k

√κψpΨ†

k+Xα,k

√γ“

a†αAk + b†αBk

”+h.c.

Method: Keldysh path integral techniques adopted for broken symmetry systemswith strong dissipation

Marzena Hanna Szymanska Dissipative Systems and Non-Equilibrium BEC 4 / 11

Page 14: Part2: Dissipative Systems and Non-Equilibrium Bose ... · Part2: Dissipative Systems and Non-Equilibrium Bose-Einstein Condensation Marzena Hanna Szymanska´ Department of Physics

OutlineNon-equilibrium condensation in dissipative environment

Polariton model and Keldysh field theoryMean-field equationsConnections of mean-field equations to other limitsPhase transition and fluctuationsSuperfluidity

Non-equilibrium Condensation: model and method

Model: Hsys =X

pωpψ

†pψp

+Xα

εα“

b†αbα − a†αaα

”+Xα,p

“gα,pψpb†αaα + h.c.

H = Hsys

Schematically: pump γ, decay κ

Hsys,bath 'Xp,k

√κψpΨ†

k+Xα,k

√γ“

a†αAk + b†αBk

”+h.c.

Method: Keldysh path integral techniques adopted for broken symmetry systemswith strong dissipation

Marzena Hanna Szymanska Dissipative Systems and Non-Equilibrium BEC 4 / 11

Page 15: Part2: Dissipative Systems and Non-Equilibrium Bose ... · Part2: Dissipative Systems and Non-Equilibrium Bose-Einstein Condensation Marzena Hanna Szymanska´ Department of Physics

OutlineNon-equilibrium condensation in dissipative environment

Polariton model and Keldysh field theoryMean-field equationsConnections of mean-field equations to other limitsPhase transition and fluctuationsSuperfluidity

Non-equilibrium Condensation: model and method

Model: Hsys =X

pωpψ

†pψp +

εα“

b†αbα − a†αaα

+Xα,p

“gα,pψpb†αaα + h.c.

H = Hsys

Schematically: pump γ, decay κ

Hsys,bath 'Xp,k

√κψpΨ†

k+Xα,k

√γ“

a†αAk + b†αBk

”+h.c.

Method: Keldysh path integral techniques adopted for broken symmetry systemswith strong dissipation

Marzena Hanna Szymanska Dissipative Systems and Non-Equilibrium BEC 4 / 11

Page 16: Part2: Dissipative Systems and Non-Equilibrium Bose ... · Part2: Dissipative Systems and Non-Equilibrium Bose-Einstein Condensation Marzena Hanna Szymanska´ Department of Physics

OutlineNon-equilibrium condensation in dissipative environment

Polariton model and Keldysh field theoryMean-field equationsConnections of mean-field equations to other limitsPhase transition and fluctuationsSuperfluidity

Non-equilibrium Condensation: model and method

Model: Hsys =X

pωpψ

†pψp +

εα“

b†αbα − a†αaα

”+Xα,p

“gα,pψpb†αaα + h.c.

H = Hsys

Schematically: pump γ, decay κ

Hsys,bath 'Xp,k

√κψpΨ†

k+Xα,k

√γ“

a†αAk + b†αBk

”+h.c.

Method: Keldysh path integral techniques adopted for broken symmetry systemswith strong dissipation

Marzena Hanna Szymanska Dissipative Systems and Non-Equilibrium BEC 4 / 11

Page 17: Part2: Dissipative Systems and Non-Equilibrium Bose ... · Part2: Dissipative Systems and Non-Equilibrium Bose-Einstein Condensation Marzena Hanna Szymanska´ Department of Physics

OutlineNon-equilibrium condensation in dissipative environment

Polariton model and Keldysh field theoryMean-field equationsConnections of mean-field equations to other limitsPhase transition and fluctuationsSuperfluidity

Non-equilibrium Condensation: model and method

Model: Hsys =X

pωpψ

†pψp +

εα“

b†αbα − a†αaα

”+Xα,p

“gα,pψpb†αaα + h.c.

H = Hsys + Hsys,bath + Hbath

Schematically: pump γ, decay κ

Hsys,bath 'Xp,k

√κψpΨ†

k+Xα,k

√γ“

a†αAk + b†αBk

”+h.c.

Method: Keldysh path integral techniques adopted for broken symmetry systemswith strong dissipation

Marzena Hanna Szymanska Dissipative Systems and Non-Equilibrium BEC 4 / 11

Page 18: Part2: Dissipative Systems and Non-Equilibrium Bose ... · Part2: Dissipative Systems and Non-Equilibrium Bose-Einstein Condensation Marzena Hanna Szymanska´ Department of Physics

OutlineNon-equilibrium condensation in dissipative environment

Polariton model and Keldysh field theoryMean-field equationsConnections of mean-field equations to other limitsPhase transition and fluctuationsSuperfluidity

Non-equilibrium Condensation: model and method

Model: Hsys =X

pωpψ

†pψp +

εα“

b†αbα − a†αaα

”+Xα,p

“gα,pψpb†αaα + h.c.

H = Hsys + Hsys,bath + Hbath

Schematically: pump γ, decay κ

Hsys,bath 'Xp,k

√κψpΨ†

k+Xα,k

√γ“

a†αAk + b†αBk

”+h.c.

Method: Keldysh path integral techniques adopted for broken symmetry systemswith strong dissipation

Marzena Hanna Szymanska Dissipative Systems and Non-Equilibrium BEC 4 / 11

Page 19: Part2: Dissipative Systems and Non-Equilibrium Bose ... · Part2: Dissipative Systems and Non-Equilibrium Bose-Einstein Condensation Marzena Hanna Szymanska´ Department of Physics

OutlineNon-equilibrium condensation in dissipative environment

Polariton model and Keldysh field theoryMean-field equationsConnections of mean-field equations to other limitsPhase transition and fluctuationsSuperfluidity

Non-equilibrium Condensation: model and method

Model: Hsys =X

pωpψ

†pψp +

εα“

b†αbα − a†αaα

”+Xα,p

“gα,pψpb†αaα + h.c.

H = Hsys + Hsys,bath + Hbath

Schematically: pump γ, decay κ

Hsys,bath 'Xp,k

√κψpΨ†

k+Xα,k

√γ“

a†αAk + b†αBk

”+h.c.

Method: Keldysh path integral techniques adopted for broken symmetry systemswith strong dissipation

Marzena Hanna Szymanska Dissipative Systems and Non-Equilibrium BEC 4 / 11

Page 20: Part2: Dissipative Systems and Non-Equilibrium Bose ... · Part2: Dissipative Systems and Non-Equilibrium Bose-Einstein Condensation Marzena Hanna Szymanska´ Department of Physics

OutlineNon-equilibrium condensation in dissipative environment

Polariton model and Keldysh field theoryMean-field equationsConnections of mean-field equations to other limitsPhase transition and fluctuationsSuperfluidity

Saddle-point of non-equilibrium action: mean-fieldEquilibrium BEC: described by Gross-Pitaevskii equation (mean-field equation for thecondensate)

i∂t +∇2

2m− V (r)

!ψ = U|ψ|2ψ

Non-equilibrium generalisation of Gross-Pitaevskii in BEC and gap equation in BCSregimes (note: now it is complex)

(i∂t − ωc + iκ)ψ = χ(ψ)ψ

For steady-state solution ψ(r, t) = ψe−iµS t

Susceptibility:

χ(ψ, µS) = −g2γX

excitons

Zdν2π

(Fa + Fb)ν + (Fb − Fa)(iγ + εα − 12µS)

[(ν − Eα)2 + γ2][(ν + Eα)2 + γ2]

E2α = (εα − 1

2µS)2 + g2|ψ|2

Marzena Hanna Szymanska Dissipative Systems and Non-Equilibrium BEC 5 / 11

Page 21: Part2: Dissipative Systems and Non-Equilibrium Bose ... · Part2: Dissipative Systems and Non-Equilibrium Bose-Einstein Condensation Marzena Hanna Szymanska´ Department of Physics

OutlineNon-equilibrium condensation in dissipative environment

Polariton model and Keldysh field theoryMean-field equationsConnections of mean-field equations to other limitsPhase transition and fluctuationsSuperfluidity

Saddle-point of non-equilibrium action: mean-fieldEquilibrium BEC: described by Gross-Pitaevskii equation (mean-field equation for thecondensate)

i∂t +∇2

2m− V (r)

!ψ = U|ψ|2ψ

Non-equilibrium generalisation of Gross-Pitaevskii in BEC and gap equation in BCSregimes (note: now it is complex)

(i∂t − ωc + iκ)ψ = χ(ψ)ψ

For steady-state solution ψ(r, t) = ψe−iµS t

Susceptibility:

χ(ψ, µS) = −g2γX

excitons

Zdν2π

(Fa + Fb)ν + (Fb − Fa)(iγ + εα − 12µS)

[(ν − Eα)2 + γ2][(ν + Eα)2 + γ2]

E2α = (εα − 1

2µS)2 + g2|ψ|2

Marzena Hanna Szymanska Dissipative Systems and Non-Equilibrium BEC 5 / 11

Page 22: Part2: Dissipative Systems and Non-Equilibrium Bose ... · Part2: Dissipative Systems and Non-Equilibrium Bose-Einstein Condensation Marzena Hanna Szymanska´ Department of Physics

OutlineNon-equilibrium condensation in dissipative environment

Polariton model and Keldysh field theoryMean-field equationsConnections of mean-field equations to other limitsPhase transition and fluctuationsSuperfluidity

Saddle-point of non-equilibrium action: mean-fieldEquilibrium BEC: described by Gross-Pitaevskii equation (mean-field equation for thecondensate)

i∂t +∇2

2m− V (r)

!ψ = U|ψ|2ψ

Non-equilibrium generalisation of Gross-Pitaevskii in BEC and gap equation in BCSregimes (note: now it is complex)

(i∂t − ωc + iκ)ψ = χ(ψ)ψ

For steady-state solution ψ(r, t) = ψe−iµS t

Susceptibility:

χ(ψ, µS) = −g2γX

excitons

Zdν2π

(Fa + Fb)ν + (Fb − Fa)(iγ + εα − 12µS)

[(ν − Eα)2 + γ2][(ν + Eα)2 + γ2]

E2α = (εα − 1

2µS)2 + g2|ψ|2

Marzena Hanna Szymanska Dissipative Systems and Non-Equilibrium BEC 5 / 11

Page 23: Part2: Dissipative Systems and Non-Equilibrium Bose ... · Part2: Dissipative Systems and Non-Equilibrium Bose-Einstein Condensation Marzena Hanna Szymanska´ Department of Physics

OutlineNon-equilibrium condensation in dissipative environment

Polariton model and Keldysh field theoryMean-field equationsConnections of mean-field equations to other limitsPhase transition and fluctuationsSuperfluidity

Limits of mean-field equations

Mean-field equations

µs − ωc + iκ = −g2γX

excitons

Zdν2π

(Fa + Fb)ν + (Fb − Fa)(iγ + εα − 12µS)

[(ν − Eα)2 + γ2][(ν + Eα)2 + γ2]

Large temperature T :

laser limit, only imaginary part, gain balances loss

κ = −g2γX

excitons

Fb − Fa

4E2α + 4γ2

→g2

2γ×Inversion

Equilibrium limit κ, γ → 0: well known gap equation

ωc − µs =X

excitons

g2

2Eαtanh

„βEα

2

«

Marzena Hanna Szymanska Dissipative Systems and Non-Equilibrium BEC 6 / 11

Page 24: Part2: Dissipative Systems and Non-Equilibrium Bose ... · Part2: Dissipative Systems and Non-Equilibrium Bose-Einstein Condensation Marzena Hanna Szymanska´ Department of Physics

OutlineNon-equilibrium condensation in dissipative environment

Polariton model and Keldysh field theoryMean-field equationsConnections of mean-field equations to other limitsPhase transition and fluctuationsSuperfluidity

Limits of mean-field equations

Mean-field equations

µs − ωc + iκ = −g2γX

excitons

Zdν2π

(Fa + Fb)ν + (Fb − Fa)(iγ + εα − 12µS)

[(ν − Eα)2 + γ2][(ν + Eα)2 + γ2]

Large temperature T :

laser limit, only imaginary part, gain balances loss

κ = −g2γX

excitons

Fb − Fa

4E2α + 4γ2

→g2

2γ×Inversion

Equilibrium limit κ, γ → 0: well known gap equation

ωc − µs =X

excitons

g2

2Eαtanh

„βEα

2

«

Marzena Hanna Szymanska Dissipative Systems and Non-Equilibrium BEC 6 / 11

Page 25: Part2: Dissipative Systems and Non-Equilibrium Bose ... · Part2: Dissipative Systems and Non-Equilibrium Bose-Einstein Condensation Marzena Hanna Szymanska´ Department of Physics

OutlineNon-equilibrium condensation in dissipative environment

Polariton model and Keldysh field theoryMean-field equationsConnections of mean-field equations to other limitsPhase transition and fluctuationsSuperfluidity

Limits of mean-field equations

Mean-field equations

µs − ωc + iκ = −g2γX

excitons

Zdν2π

(Fa + Fb)ν + (Fb − Fa)(iγ + εα − 12µS)

[(ν − Eα)2 + γ2][(ν + Eα)2 + γ2]

Large temperature T : laser limit, only imaginary part, gain balances loss

κ = −g2γX

excitons

Fb − Fa

4E2α + 4γ2

→g2

2γ×Inversion

Equilibrium limit κ, γ → 0: well known gap equation

ωc − µs =X

excitons

g2

2Eαtanh

„βEα

2

«

Marzena Hanna Szymanska Dissipative Systems and Non-Equilibrium BEC 6 / 11

Page 26: Part2: Dissipative Systems and Non-Equilibrium Bose ... · Part2: Dissipative Systems and Non-Equilibrium Bose-Einstein Condensation Marzena Hanna Szymanska´ Department of Physics

OutlineNon-equilibrium condensation in dissipative environment

Polariton model and Keldysh field theoryMean-field equationsConnections of mean-field equations to other limitsPhase transition and fluctuationsSuperfluidity

Limits of mean-field equations

Mean-field equations

µs − ωc + iκ = −g2γX

excitons

Zdν2π

(Fa + Fb)ν + (Fb − Fa)(iγ + εα − 12µS)

[(ν − Eα)2 + γ2][(ν + Eα)2 + γ2]

Large temperature T : laser limit, only imaginary part, gain balances loss

κ = −g2γX

excitons

Fb − Fa

4E2α + 4γ2

→g2

2γ×Inversion

Equilibrium limit κ, γ → 0: well known gap equation

ωc − µs =X

excitons

g2

2Eαtanh

„βEα

2

«

Marzena Hanna Szymanska Dissipative Systems and Non-Equilibrium BEC 6 / 11

Page 27: Part2: Dissipative Systems and Non-Equilibrium Bose ... · Part2: Dissipative Systems and Non-Equilibrium Bose-Einstein Condensation Marzena Hanna Szymanska´ Department of Physics

OutlineNon-equilibrium condensation in dissipative environment

Polariton model and Keldysh field theoryMean-field equationsConnections of mean-field equations to other limitsPhase transition and fluctuationsSuperfluidity

Limits of mean-field equations

Mean-field equations

µs − ωc + iκ = −g2γX

excitons

Zdν2π

(Fa + Fb)ν + (Fb − Fa)(iγ + εα − 12µS)

[(ν − Eα)2 + γ2][(ν + Eα)2 + γ2]

Large temperature T : laser limit, only imaginary part, gain balances loss

κ = −g2γX

excitons

Fb − Fa

4E2α + 4γ2

→g2

2γ×Inversion

Equilibrium limit κ, γ → 0:

well known gap equation

ωc − µs =X

excitons

g2

2Eαtanh

„βEα

2

«

Marzena Hanna Szymanska Dissipative Systems and Non-Equilibrium BEC 6 / 11

Page 28: Part2: Dissipative Systems and Non-Equilibrium Bose ... · Part2: Dissipative Systems and Non-Equilibrium Bose-Einstein Condensation Marzena Hanna Szymanska´ Department of Physics

OutlineNon-equilibrium condensation in dissipative environment

Polariton model and Keldysh field theoryMean-field equationsConnections of mean-field equations to other limitsPhase transition and fluctuationsSuperfluidity

Limits of mean-field equations

Mean-field equations

µs − ωc + iκ = −g2γX

excitons

Zdν2π

(Fa + Fb)ν + (Fb − Fa)(iγ + εα − 12µS)

[(ν − Eα)2 + γ2][(ν + Eα)2 + γ2]

Large temperature T : laser limit, only imaginary part, gain balances loss

κ = −g2γX

excitons

Fb − Fa

4E2α + 4γ2

→g2

2γ×Inversion

Equilibrium limit κ, γ → 0: well known gap equation

ωc − µs =X

excitons

g2

2Eαtanh

„βEα

2

«

Marzena Hanna Szymanska Dissipative Systems and Non-Equilibrium BEC 6 / 11

Page 29: Part2: Dissipative Systems and Non-Equilibrium Bose ... · Part2: Dissipative Systems and Non-Equilibrium Bose-Einstein Condensation Marzena Hanna Szymanska´ Department of Physics

OutlineNon-equilibrium condensation in dissipative environment

Polariton model and Keldysh field theoryMean-field equationsConnections of mean-field equations to other limitsPhase transition and fluctuationsSuperfluidity

Limits of mean-field equationsMean-field equation

(i∂t − ωc + iκ)ψ = χ(ψ, µs)ψ

Local density approximation:"i∂t + iκ−

V (r)−

∇2

2m

!#ψ(r) = χ(ψ(r , t))ψ(r , t)

At low density the nonlinear, complex susceptibility can be simplified: ComplexGross-Pitaevskii equation

i∂tψ =

"−∇2

2m+ V (r) + U|ψ|2 + i

“γeff − κ− Γ|ψ|2

”#ψ

Vortex lattices, Keeling & Berloff PRL 2008Persistent currents and quantised vortices, D. Sanvitto, F. M. Marchetti, M. H. Szymanska et al, Nature Physics, July 2010

Marzena Hanna Szymanska Dissipative Systems and Non-Equilibrium BEC 7 / 11

Page 30: Part2: Dissipative Systems and Non-Equilibrium Bose ... · Part2: Dissipative Systems and Non-Equilibrium Bose-Einstein Condensation Marzena Hanna Szymanska´ Department of Physics

OutlineNon-equilibrium condensation in dissipative environment

Polariton model and Keldysh field theoryMean-field equationsConnections of mean-field equations to other limitsPhase transition and fluctuationsSuperfluidity

Limits of mean-field equationsMean-field equation

(i∂t − ωc + iκ)ψ = χ(ψ, µs)ψ

Local density approximation:"i∂t + iκ−

V (r)−

∇2

2m

!#ψ(r) = χ(ψ(r , t))ψ(r , t)

At low density the nonlinear, complex susceptibility can be simplified: ComplexGross-Pitaevskii equation

i∂tψ =

"−∇2

2m+ V (r) + U|ψ|2 + i

“γeff − κ− Γ|ψ|2

”#ψ

Vortex lattices, Keeling & Berloff PRL 2008Persistent currents and quantised vortices, D. Sanvitto, F. M. Marchetti, M. H. Szymanska et al, Nature Physics, July 2010

Marzena Hanna Szymanska Dissipative Systems and Non-Equilibrium BEC 7 / 11

Page 31: Part2: Dissipative Systems and Non-Equilibrium Bose ... · Part2: Dissipative Systems and Non-Equilibrium Bose-Einstein Condensation Marzena Hanna Szymanska´ Department of Physics

OutlineNon-equilibrium condensation in dissipative environment

Polariton model and Keldysh field theoryMean-field equationsConnections of mean-field equations to other limitsPhase transition and fluctuationsSuperfluidity

Limits of mean-field equationsMean-field equation

(i∂t − ωc + iκ)ψ = χ(ψ, µs)ψ

Local density approximation:"i∂t + iκ−

V (r)−

∇2

2m

!#ψ(r) = χ(ψ(r , t))ψ(r , t)

At low density the nonlinear, complex susceptibility can be simplified: ComplexGross-Pitaevskii equation

i∂tψ =

"−∇2

2m+ V (r) + U|ψ|2 + i

“γeff − κ− Γ|ψ|2

”#ψ

Vortex lattices, Keeling & Berloff PRL 2008Persistent currents and quantised vortices, D. Sanvitto, F. M. Marchetti, M. H. Szymanska et al, Nature Physics, July 2010

Marzena Hanna Szymanska Dissipative Systems and Non-Equilibrium BEC 7 / 11

Page 32: Part2: Dissipative Systems and Non-Equilibrium Bose ... · Part2: Dissipative Systems and Non-Equilibrium Bose-Einstein Condensation Marzena Hanna Szymanska´ Department of Physics

OutlineNon-equilibrium condensation in dissipative environment

Polariton model and Keldysh field theoryMean-field equationsConnections of mean-field equations to other limitsPhase transition and fluctuationsSuperfluidity

Fluctuations: phase transition

Keldysh approach:GS = GR − GA = −i

fihψ†, ψ

i−

flGK = −i

fihψ†, ψ

i+

fl= (2n(ω) + 1)GS

L =Dψ†ψ

E= i(n(ω) + 1)GS

GS =2Im[GR−1]

Im[GR−1]2 + Re[GR−1]2

n(ω) =−GK−1

4Im[GR−1]2

Re[GR−1(ω∗p)]= 0 ω∗p normal modes

Im[GR−1(µeff)]= 0 n(µeff) diverges

At transition gap Equation is:

G−1R (ω = µS ,p = 0) = 0

Marzena Hanna Szymanska Dissipative Systems and Non-Equilibrium BEC 8 / 11

Page 33: Part2: Dissipative Systems and Non-Equilibrium Bose ... · Part2: Dissipative Systems and Non-Equilibrium Bose-Einstein Condensation Marzena Hanna Szymanska´ Department of Physics

OutlineNon-equilibrium condensation in dissipative environment

Polariton model and Keldysh field theoryMean-field equationsConnections of mean-field equations to other limitsPhase transition and fluctuationsSuperfluidity

Fluctuations: phase transition

Keldysh approach:GS = GR − GA = −i

fihψ†, ψ

i−

flGK = −i

fihψ†, ψ

i+

fl= (2n(ω) + 1)GS

L =Dψ†ψ

E= i(n(ω) + 1)GS

GS =2Im[GR−1]

Im[GR−1]2 + Re[GR−1]2

n(ω) =−GK−1

4Im[GR−1]2

Re[GR−1(ω∗p)]= 0 ω∗p normal modes

Im[GR−1(µeff)]= 0 n(µeff) diverges

At transition gap Equation is:

G−1R (ω = µS ,p = 0) = 0

Marzena Hanna Szymanska Dissipative Systems and Non-Equilibrium BEC 8 / 11

Page 34: Part2: Dissipative Systems and Non-Equilibrium Bose ... · Part2: Dissipative Systems and Non-Equilibrium Bose-Einstein Condensation Marzena Hanna Szymanska´ Department of Physics

OutlineNon-equilibrium condensation in dissipative environment

Polariton model and Keldysh field theoryMean-field equationsConnections of mean-field equations to other limitsPhase transition and fluctuationsSuperfluidity

Fluctuations: phase transition

Keldysh approach:GS = GR − GA = −i

fihψ†, ψ

i−

flGK = −i

fihψ†, ψ

i+

fl= (2n(ω) + 1)GS

L =Dψ†ψ

E= i(n(ω) + 1)GS

GS =2Im[GR−1]

Im[GR−1]2 + Re[GR−1]2

n(ω) =−GK−1

4Im[GR−1]2

Re[GR−1(ω∗p)]= 0 ω∗p normal modes

Im[GR−1(µeff)]= 0 n(µeff) diverges

At transition gap Equation is:

G−1R (ω = µS ,p = 0) = 0

Marzena Hanna Szymanska Dissipative Systems and Non-Equilibrium BEC 8 / 11

Page 35: Part2: Dissipative Systems and Non-Equilibrium Bose ... · Part2: Dissipative Systems and Non-Equilibrium Bose-Einstein Condensation Marzena Hanna Szymanska´ Department of Physics

OutlineNon-equilibrium condensation in dissipative environment

Polariton model and Keldysh field theoryMean-field equationsConnections of mean-field equations to other limitsPhase transition and fluctuationsSuperfluidity

Fluctuations: phase transition

Keldysh approach:GS = GR − GA = −i

fihψ†, ψ

i−

flGK = −i

fihψ†, ψ

i+

fl= (2n(ω) + 1)GS

L =Dψ†ψ

E= i(n(ω) + 1)GS

GS =2Im[GR−1]

Im[GR−1]2 + Re[GR−1]2

n(ω) =−GK−1

4Im[GR−1]2

Re[GR−1(ω∗p)]= 0 ω∗p normal modes

Im[GR−1(µeff)]= 0 n(µeff) diverges

At transition gap Equation is:

G−1R (ω = µS ,p = 0) = 0

Marzena Hanna Szymanska Dissipative Systems and Non-Equilibrium BEC 8 / 11

Page 36: Part2: Dissipative Systems and Non-Equilibrium Bose ... · Part2: Dissipative Systems and Non-Equilibrium Bose-Einstein Condensation Marzena Hanna Szymanska´ Department of Physics

OutlineNon-equilibrium condensation in dissipative environment

Polariton model and Keldysh field theoryMean-field equationsConnections of mean-field equations to other limitsPhase transition and fluctuationsSuperfluidity

Fluctuations: phase transition

Keldysh approach:GS = GR − GA = −i

fihψ†, ψ

i−

flGK = −i

fihψ†, ψ

i+

fl= (2n(ω) + 1)GS

L =Dψ†ψ

E= i(n(ω) + 1)GS

GS =2Im[GR−1]

Im[GR−1]2 + Re[GR−1]2

n(ω) =−GK−1

4Im[GR−1]2

Re[GR−1(ω∗p)]= 0 ω∗p normal modes

Im[GR−1(µeff)]= 0 n(µeff) diverges

Equilbrium BECn(ω) = nB(ω) i.e n(µ) diverges

At transition gap Equation is:

G−1R (ω = µS ,p = 0) = 0

Marzena Hanna Szymanska Dissipative Systems and Non-Equilibrium BEC 8 / 11

Page 37: Part2: Dissipative Systems and Non-Equilibrium Bose ... · Part2: Dissipative Systems and Non-Equilibrium Bose-Einstein Condensation Marzena Hanna Szymanska´ Department of Physics

OutlineNon-equilibrium condensation in dissipative environment

Polariton model and Keldysh field theoryMean-field equationsConnections of mean-field equations to other limitsPhase transition and fluctuationsSuperfluidity

Fluctuations: phase transition

Keldysh approach:GS = GR − GA = −i

fihψ†, ψ

i−

flGK = −i

fihψ†, ψ

i+

fl= (2n(ω) + 1)GS

L =Dψ†ψ

E= i(n(ω) + 1)GS

GS =2Im[GR−1]

Im[GR−1]2 + Re[GR−1]2

n(ω) =−GK−1

4Im[GR−1]2

Re[GR−1(ω∗p)]= 0 ω∗p normal modes

Im[GR−1(µeff)]= 0 n(µeff) diverges

At transition gap Equation is:

G−1R (ω = µS ,p = 0) = 0

Marzena Hanna Szymanska Dissipative Systems and Non-Equilibrium BEC 8 / 11

Page 38: Part2: Dissipative Systems and Non-Equilibrium Bose ... · Part2: Dissipative Systems and Non-Equilibrium Bose-Einstein Condensation Marzena Hanna Szymanska´ Department of Physics

OutlineNon-equilibrium condensation in dissipative environment

Polariton model and Keldysh field theoryMean-field equationsConnections of mean-field equations to other limitsPhase transition and fluctuationsSuperfluidity

Fluctuations: phase transition

Keldysh approach:GS = GR − GA = −i

fihψ†, ψ

i−

flGK = −i

fihψ†, ψ

i+

fl= (2n(ω) + 1)GS

L =Dψ†ψ

E= i(n(ω) + 1)GS

GS =2Im[GR−1]

Im[GR−1]2 + Re[GR−1]2

n(ω) =−GK−1

4Im[GR−1]2

Re[GR−1(ω∗p)]= 0 ω∗p normal modes

Im[GR−1(µeff)]= 0 n(µeff) diverges

At transition gap Equation is:

G−1R (ω = µS ,p = 0) = 0

Marzena Hanna Szymanska Dissipative Systems and Non-Equilibrium BEC 8 / 11

Page 39: Part2: Dissipative Systems and Non-Equilibrium Bose ... · Part2: Dissipative Systems and Non-Equilibrium Bose-Einstein Condensation Marzena Hanna Szymanska´ Department of Physics

OutlineNon-equilibrium condensation in dissipative environment

Polariton model and Keldysh field theoryMean-field equationsConnections of mean-field equations to other limitsPhase transition and fluctuationsSuperfluidity

Fluctuations: phase transition

Keldysh approach:GS = GR − GA = −i

fihψ†, ψ

i−

flGK = −i

fihψ†, ψ

i+

fl= (2n(ω) + 1)GS

L =Dψ†ψ

E= i(n(ω) + 1)GS

GS =2Im[GR−1]

Im[GR−1]2 + Re[GR−1]2

n(ω) =−GK−1

4Im[GR−1]2

Re[GR−1(ω∗p)]= 0 ω∗p normal modes

Im[GR−1(µeff)]= 0 n(µeff) diverges[Szymanska et al., PRL ’06; PRB ’07]

At transition gap Equation is:

G−1R (ω = µS ,p = 0) = 0

Marzena Hanna Szymanska Dissipative Systems and Non-Equilibrium BEC 8 / 11

Page 40: Part2: Dissipative Systems and Non-Equilibrium Bose ... · Part2: Dissipative Systems and Non-Equilibrium Bose-Einstein Condensation Marzena Hanna Szymanska´ Department of Physics

OutlineNon-equilibrium condensation in dissipative environment

Polariton model and Keldysh field theoryMean-field equationsConnections of mean-field equations to other limitsPhase transition and fluctuationsSuperfluidity

Fluctuations: phase transition

Keldysh approach:GS = GR − GA = −i

fihψ†, ψ

i−

flGK = −i

fihψ†, ψ

i+

fl= (2n(ω) + 1)GS

L =Dψ†ψ

E= i(n(ω) + 1)GS

GS =2Im[GR−1]

Im[GR−1]2 + Re[GR−1]2

n(ω) =−GK−1

4Im[GR−1]2

Re[GR−1(ω∗p)]= 0 ω∗p normal modes

Im[GR−1(µeff)]= 0 n(µeff) diverges[Szymanska et al., PRL ’06; PRB ’07]

At transition gap Equation is:

G−1R (ω = µS ,p = 0) = 0

Marzena Hanna Szymanska Dissipative Systems and Non-Equilibrium BEC 8 / 11

Page 41: Part2: Dissipative Systems and Non-Equilibrium Bose ... · Part2: Dissipative Systems and Non-Equilibrium Bose-Einstein Condensation Marzena Hanna Szymanska´ Department of Physics

OutlineNon-equilibrium condensation in dissipative environment

Polariton model and Keldysh field theoryMean-field equationsConnections of mean-field equations to other limitsPhase transition and fluctuationsSuperfluidity

Fluctuations: collective modes and decay of correlations

When condensed

DethG−1

R (ω,p)i

= ω2 − c2p2

(ω+ix)2+x2 − c2p2

Poles:ω∗ = c|p|

−ix ±q

c2p2−x2

Viloates Landau crtiterion!

Correlations (in 2D):˙ψ†(r, t)ψ(0, r ′)

¸' |ψ|2 exp

ˆ−Dφφ(t , r , r ′)

˜Dψ†(r, t)ψ(0, 0)

E' |ψ|2 exp

"−η(

ln(r/ξ) r →∞, t ' 012 ln(c2t/xξ2) r ' 0, t →∞

#η(pump,decay,density) and not η(T,density) as in equilibrium

[Szymanska et al., PRL ’06; PRB ’07]

Marzena Hanna Szymanska Dissipative Systems and Non-Equilibrium BEC 9 / 11

Page 42: Part2: Dissipative Systems and Non-Equilibrium Bose ... · Part2: Dissipative Systems and Non-Equilibrium Bose-Einstein Condensation Marzena Hanna Szymanska´ Department of Physics

OutlineNon-equilibrium condensation in dissipative environment

Polariton model and Keldysh field theoryMean-field equationsConnections of mean-field equations to other limitsPhase transition and fluctuationsSuperfluidity

Fluctuations: collective modes and decay of correlations

When condensed

DethG−1

R (ω,p)i

=

ω2 − c2p2

(ω+ix)2+x2 − c2p2

Poles:ω∗ =

c|p|

−ix ±q

c2p2−x2

Viloates Landau crtiterion!

Correlations (in 2D):˙ψ†(r, t)ψ(0, r ′)

¸' |ψ|2 exp

ˆ−Dφφ(t , r , r ′)

˜Dψ†(r, t)ψ(0, 0)

E' |ψ|2 exp

"−η(

ln(r/ξ) r →∞, t ' 012 ln(c2t/xξ2) r ' 0, t →∞

#η(pump,decay,density) and not η(T,density) as in equilibrium

[Szymanska et al., PRL ’06; PRB ’07]

Marzena Hanna Szymanska Dissipative Systems and Non-Equilibrium BEC 9 / 11

Page 43: Part2: Dissipative Systems and Non-Equilibrium Bose ... · Part2: Dissipative Systems and Non-Equilibrium Bose-Einstein Condensation Marzena Hanna Szymanska´ Department of Physics

OutlineNon-equilibrium condensation in dissipative environment

Polariton model and Keldysh field theoryMean-field equationsConnections of mean-field equations to other limitsPhase transition and fluctuationsSuperfluidity

Fluctuations: collective modes and decay of correlations

When condensed

DethG−1

R (ω,p)i

=

ω2 − c2p2

(ω+ix)2+x2 − c2p2

Poles:ω∗ =

c|p|

−ix ±q

c2p2−x2

Viloates Landau crtiterion!

Correlations (in 2D):˙ψ†(r, t)ψ(0, r ′)

¸' |ψ|2 exp

ˆ−Dφφ(t , r , r ′)

˜

Dψ†(r, t)ψ(0, 0)

E' |ψ|2 exp

"−η(

ln(r/ξ) r →∞, t ' 012 ln(c2t/xξ2) r ' 0, t →∞

#η(pump,decay,density) and not η(T,density) as in equilibrium

[Szymanska et al., PRL ’06; PRB ’07]

Marzena Hanna Szymanska Dissipative Systems and Non-Equilibrium BEC 9 / 11

Page 44: Part2: Dissipative Systems and Non-Equilibrium Bose ... · Part2: Dissipative Systems and Non-Equilibrium Bose-Einstein Condensation Marzena Hanna Szymanska´ Department of Physics

OutlineNon-equilibrium condensation in dissipative environment

Polariton model and Keldysh field theoryMean-field equationsConnections of mean-field equations to other limitsPhase transition and fluctuationsSuperfluidity

Fluctuations: collective modes and decay of correlations

When condensed

DethG−1

R (ω,p)i

=

ω2 − c2p2

(ω+ix)2+x2 − c2p2

Poles:ω∗ =

c|p|

−ix ±q

c2p2−x2

Viloates Landau crtiterion!

Correlations (in 2D):˙ψ†(r, t)ψ(0, r ′)

¸' |ψ|2 exp

ˆ−Dφφ(t , r , r ′)

˜Dψ†(r, t)ψ(0, 0)

E' |ψ|2 exp

"−η(

ln(r/ξ) r →∞, t ' 012 ln(c2t/xξ2) r ' 0, t →∞

#η(pump,decay,density) and not η(T,density) as in equilibrium

[Szymanska et al., PRL ’06; PRB ’07]

Marzena Hanna Szymanska Dissipative Systems and Non-Equilibrium BEC 9 / 11

Page 45: Part2: Dissipative Systems and Non-Equilibrium Bose ... · Part2: Dissipative Systems and Non-Equilibrium Bose-Einstein Condensation Marzena Hanna Szymanska´ Department of Physics

OutlineNon-equilibrium condensation in dissipative environment

Polariton model and Keldysh field theoryMean-field equationsConnections of mean-field equations to other limitsPhase transition and fluctuationsSuperfluidity

Polariton superfluidity

Marzena Hanna Szymanska Dissipative Systems and Non-Equilibrium BEC 10 / 11

Page 46: Part2: Dissipative Systems and Non-Equilibrium Bose ... · Part2: Dissipative Systems and Non-Equilibrium Bose-Einstein Condensation Marzena Hanna Szymanska´ Department of Physics

OutlineNon-equilibrium condensation in dissipative environment

Polariton model and Keldysh field theoryMean-field equationsConnections of mean-field equations to other limitsPhase transition and fluctuationsSuperfluidity

Polariton superfluidity

Marzena Hanna Szymanska Dissipative Systems and Non-Equilibrium BEC 10 / 11

Page 47: Part2: Dissipative Systems and Non-Equilibrium Bose ... · Part2: Dissipative Systems and Non-Equilibrium Bose-Einstein Condensation Marzena Hanna Szymanska´ Department of Physics

OutlineNon-equilibrium condensation in dissipative environment

Polariton model and Keldysh field theoryMean-field equationsConnections of mean-field equations to other limitsPhase transition and fluctuationsSuperfluidity

Conclusion

Unified description of condenstes (BEC and BCS) and lasers

Bose-Einstein distribution not special - BEC possible for any “bosonic” distribution(i.e divergent at some frequency)

However, dissipation and driving changes spectrum of excitationsdifferent collective modes

affected correlations i.e spatial and temporal coherence

spontaneous vortices

changed superfluid properties - still under experimental investigation

Marzena Hanna Szymanska Dissipative Systems and Non-Equilibrium BEC 11 / 11

Page 48: Part2: Dissipative Systems and Non-Equilibrium Bose ... · Part2: Dissipative Systems and Non-Equilibrium Bose-Einstein Condensation Marzena Hanna Szymanska´ Department of Physics

OutlineNon-equilibrium condensation in dissipative environment

Polariton model and Keldysh field theoryMean-field equationsConnections of mean-field equations to other limitsPhase transition and fluctuationsSuperfluidity

Conclusion

Unified description of condenstes (BEC and BCS) and lasers

Bose-Einstein distribution not special - BEC possible for any “bosonic” distribution(i.e divergent at some frequency)

However, dissipation and driving changes spectrum of excitationsdifferent collective modes

affected correlations i.e spatial and temporal coherence

spontaneous vortices

changed superfluid properties - still under experimental investigation

Marzena Hanna Szymanska Dissipative Systems and Non-Equilibrium BEC 11 / 11

Page 49: Part2: Dissipative Systems and Non-Equilibrium Bose ... · Part2: Dissipative Systems and Non-Equilibrium Bose-Einstein Condensation Marzena Hanna Szymanska´ Department of Physics

Extra slides

Marzena Hanna Szymanska Dissipative Systems and Non-Equilibrium BEC 12 / 12