particle detectors 3 - [email protected] 1 particle detectors 3 detectors for particle...

10
[email protected] 1 Particle Detectors 3 Detectors for Particle Physics Part III Interaction of electrons, photons and hadrons with matter Scintillators Photodetectors Cherenov Counters Transition radiation Calorimeters - Shower development - electromagnetic - hadronic [email protected] 2 Particle Detectors 3 Energy Loss of Electrons In addition to energy loss by ionisation high energy particles also loose energy due to interaction with the Coulomb field of the nuclei: Bremsstrahlung Due to their small mass this effect is especially prominent for electrons (positrons): it is useful to introduce radiation length energy attenuation: approx.: critical energy : approximately: dE dx Z 2 E X 0 E E 0 x X 0 ------ exp = X 0 716g cm 2 A ZZ 1 + ( ) 287 Z ( ) ln ------------------------------------------------------ = E c dE Brems dx -------------------- dE collision dx ------------------------- = E c 610MeV Z 1.24 + --------------------- = Example: Cu αlnE E c [email protected] 3 Particle Detectors 3 Interaction of Photons with Matter Three effects are important: Photoeffect: γ + atom e + atom + Comptoneffect: γ + atom → γ + e + atom + Pairproduction: γ + nucl. e + + e - + nucl. für σ Ph Z 5 E 3.5 ----------- σ Compton E ln E -------- Z σ Pair Z 2 E γ 2 m e c 2 » Blei (schwer) Kohlenstoff (leicht) Photon Energy 1 Mb 1 kb 1 b 10 mb 10 eV 1 keV 1 MeV 1 GeV 100 GeV (b) Lead ( Z = 82) σ coherent σ incoh experimental σ tot σ p.e. σ nuc κ N κ e Cross section (barns/atom) (a) Carbon ( Z = 6) σ coherent σ incoh σ nuc κ N κ e σ p.e. experimental σ tot C Pb σ 10eV 1keV 1MeV 1GeV 100GeV E γ 1Mb 1kb 1b 10mb minimum [email protected] 4 Particle Detectors 3 Intensity Attenuation Intensity attenuation: , with mass absorption coefficient [cm -1 ] strongly energy dependent connection between radiation length and high energy limit for pair production: probability for pair production after traversing one X 0 is 54%. Ix () I 0 µx ( ) exp = µ N A σ A --------------- = σ E 1 GeV » 7 9 -- 4 αr e 2 Z 2 183 Z 1 3 ----------- ln 7 9 -- A N A ------- 1 X 0 ------ = Ix () I 0 7 9 -- x X 0 ------ exp =

Upload: others

Post on 09-May-2020

10 views

Category:

Documents


0 download

TRANSCRIPT

[email protected] 1 Par ticle Detectors 3

Detectors for Particle Physics Part III

Interaction of electrons, photons and hadrons with matter

Scintillators

Photodetectors

Cherenov Counters

Transition radiation

Calorimeters

-

Shower development

-

electromagnetic

-

hadronic

[email protected] 2 Par ticle Detectors 3

Energy Loss of Electrons

In addition to energy loss by ionisation high energy particles also loose energy due to interaction with the Coulomb field of the nuclei: Bremsstrahlung

Due to their small mass this effect is especially prominent for electrons (positrons):

it is useful to introduce radiation length

energy attenuation:

approx.:

critical energy :

approximately:

dE dx⁄– Z2 E⋅∝

X0

E E0x–

X0------

exp=

X0716g cm 2– A

Z Z 1+( ) 287 Z⁄( )ln-------------------------------------------------------=

Ec

dEBrems

dx--------------------

dEcollision

dx-------------------------=

Ec610MeVZ 1.24+---------------------=

Example: Cu

αlnE

Ec

[email protected] 3 Par ticle Detectors 3

Interaction of Photons with Matter

Three effects are important:

Photoeffect:

γ

+ atom

e

+ atom

+

Comptoneffect:

γ

+ atom

→ γ

+ e

+ atom

+

Pairproduction:

γ

+ nucl.

e

+

+ e

-

+ nucl.

für

σPhZ5

E3.5-----------∝

σComptonEln

E--------- Z⋅∝

σPair Z2∝ Eγ 2mec2»

Blei (schwer)

Kohlenstoff (leicht)

Photon Energy

1 Mb

1 kb

1 b

10 mb10 eV 1 keV 1 MeV 1 GeV 100 GeV

(b) Lead ( Z = 82)

σcoherent

σincoh

− experimental σtot

σp.e.

σnuc

κN

κe

Cro

ss s

ectio

n (

barn

s/a

tom

)C

ross

sec

tion

(ba

rns

/ato

m)

10 mb

1 b

1 kb

1 Mb

(a) Carbon ( Z = 6)

σcoherent

σincoh

σnuc

κN

κe

σp.e.

− experimental σtot

C

Pb

σ

10eV 1keV 1MeV 1GeV 100GeV

1Mb

1kb

1b

10mb

minimum

[email protected] 4 Par ticle Detectors 3

Intensity Attenuation

• Intensity attenuation: ,

with mass absorption coefficient [cm-1]

strongly energy dependent

• connection between radiation length and high energy limit for pair production:

⇒ probability for pair production after

traversing one X0 is ≈54%.

I x( ) I0 µx–( )exp⋅=

µN A σ⋅

A---------------=

σE 1 GeV»

79---4αre

2Z2 183

Z1 3⁄-----------ln

79--- A

N A------- 1

X0------⋅ ⋅≈=

I x( ) I0 79--- x

X0------–

exp⋅=

[email protected] 5 Par ticle Detectors 3

Photon Absorption Length λλλλ

Definition of mass absorption coefficient: [g cm-2] with λ 1µ ρ⁄( )

---------------=

σPhZ5

E3.5-----------∝ σCompton

ElnE

--------- Z⋅∝ σPair Z2∝

µN A σ⋅

A---------------=

Photon energy

100

10

10–4

10–5

10–6

1

0.1

0.01

0.001

10 eV 100 eV 1 keV 10 keV 100 keV 1 MeV 10 MeV 100 MeV 1 GeV 10 GeV 100 GeV

Absorp

tion length

λ

(g/

cm

2)

Si

C

Fe Pb

H

Sn

[email protected] 6 Par ticle Detectors 3

Scintillation Detectors

Phenomenon of scintillation known since long. Extensive use only after invention of photomultiplier in 1944. Since then significant development of this technology.

Advantage for detection of particles and photons:• simplicity and robustness• signal speed• high density → large signals

⇒ good time and energy measurement

Now also scintillating fibres available ⇒  • position resolution as well

There are different mechanisms in:• anorganic crystals• organic substances

photo detector

light guide

scintillator

[email protected] 7 Par ticle Detectors 3

Inorganic Crystals

Example: Sodium-Iodide • NaI insolator with bandgap of 7eV

• replace ≈ 0.1% of sodium atoms with so-called activators: thallium atoms ⇒ - shift of light energy into visible regime: (better for detection via photo cathode)- enhanced light yield- reduced reabsorption

• exciton creation by charged particles

• excitons move in crystal until they reach activator

• energy release by photon emission (3eV ⇒ λ ≈ 400nm)

• for this wavelength the material is transparent

• decay time τ ≈ 230 ns

electron

hole

exci

ton

activatorstates

valence band

exciton band

conduction band

ener

gy

electron traps≈ 3eV ≈ 7e

V

[email protected] 8 Par ticle Detectors 3

Organic Scintillators

Mechanism• Excited vibrational modes of

molecules de-excite by emission of UV light.

• This UV light is then transformed into visible light by so called wave length shifters that are added to the material.

Mono crystals- Napthalen (C10H8)

- Anthrazen (C10H10)- p-Terphenyl (C58H14)

Liquid- and plastic- scintillators• consist of organic substance

(polystyrol) plus scint. molecules (≈1%) • in addition: secondary fluor

compounds as wave length shifters

[email protected] 9 Par ticle Detectors 3

Comparison Organic vs Inorganic Scintillators

Inorganic crystals• well suited for calorimetric applications (high light yield and small radiation length)

Plastic scintillators• fast particle registration (trigger)

Inorganic

Organic

[email protected] 10 Par ticle Detectors 3

Light Collection

plexiglas lightguide

total reflectionin optical fibres

wave length shifter bars

[email protected] 11 Par ticle Detectors 3

Conversion of Scintillation Light

Scintillation light must be converted into electrical signal .

Requirement• high sensitivity, i.e. high "quantum efficiency": Q.E. = Nphotoelectrons / Nphoton

Commonly used photo detectors

• gas based systems- e.g. RICH detectors

• vacuum based systems- photomultiplier

• solid state detectors- photodiodes etc

λλλλ (nm)

[email protected] 12 Par ticle Detectors 3

Photomultiplier

voltage divider

focussing vacuum vessel (glass)

anode

cathodedynods

-UD

γ

Example: 10 dynodes, each with gain factor

⇒ total gain

g 4=

M gii 1=

N

∏ 410= = 106≈

[email protected] 13 Par ticle Detectors 3

Avalanche Photo Diode APD

• large reverse bias voltage of 100-200 V

• high internal electric field leads to avalanche formation

• typical gain G 100 1000–≈

[email protected] 14 Par ticle Detectors 3

Hybrid Photo Diode HPD

Combination of:• photocathode- like in PMT

• acceleration region in vacuum- ∆V = 10 - 20 kV

• silicon detector

- Gain

- Poisson statistics with

⇒ extremly good pulse height resolution. Single photon counting.

Ge∆VWSi-----------

20keV3.6eV---------------- 5

3×10≈= =

n 5000=

Backscattering fromsilicon surface

[email protected] 15 Par ticle Detectors 3

Cherenkov Radiation• If particle velocity is larger than speed of light

in medium:- asymmetric polarisation of medium- emission of Cherenkov light

• Opening angle of emission cone:

θc( )cos c n⁄( ) ∆t⋅βc ∆t⋅

------------------------ 1β n⋅----------= =

• threshold at (i.e. )

• maximum opening angle:

(für )

• photon yield small (λ∼ 400-700nm):

βthr1n---= θC 0≅

θmax arc1n---

cos= β 1≈

dN dx⁄ 500 θCsin2= [cm 1– ]

θ

wave front

lpart=βc∆t

llight=(c/n)∆tl

finitethickness

Atomic Dipoles

[email protected] 16 Par ticle Detectors 3

Cerenkov Angle vs ββββ

Geschwindigkeit β

Em

issi

on

swin

kel θ

Geschwindigkeit β

θ

0

10

20

30

40

50

60

0.5 0.6 0.7 0.8 0.9 10

0.5

1

1.5

2

2.5

3

0.9985 0.999 0.9995 1

n=2.0

1.5

1.34

1.2

Plexig

las; B

aF2

H 2O

BaO; A

gCl

Liquids and Solids Gases

Isobuta

n

Freo

nPr

opan

Ätha

n

Luft

n=1.00131

1.000295

velocity β velocity β

emis

sion

ang

le θ

[email protected] 17 Par ticle Detectors 3

Photon Yield vs ββββ

Geschwindigkeit β

Ph

oto

nen

/cm

(40

0-70

0nm

)

Geschwindigkeit βP

ho

ton

en/m

(40

0-70

0nm

)0

50

100

150

200

250

300

350

400

0.5 0.6 0.7 0.8 0.9 10

20

40

60

80

100

120

0.9985 0.999 0.9995 1

n=2.0

1.5

1.34

1.2

Plexig

las; B

aF2

H 2O

BaO; A

gCl

Flüssigkeiten und Feststoffe Gase

Isob

utan

Freo

n Prop

an

Ätha

n

Luft

n=1.00131

1.000295

Liquids and Solids

velocity β velocity β

Gases

[email protected] 18 Par ticle Detectors 3

Example: Ring Imaging Cherenkov Counter RICH

K

π e

Hermes RICH detector

p [GeV]

θ [r

ad] π

K

p

particleidentification

[email protected] 19 Par ticle Detectors 3

Transition Radiation

Even below the threshold for Cherenkov-radiation photons can be emitted when charged particles cross boundaries between media with different dielectric constants.

Radiated energy per boundary:

• , i.e. only significant for highly

relativistic particles (e±)

• X-ray photons are emitted in a forward cone;

• → transition radiation only occurs very close to the track

W13---α h

2π------ωpγ γ∝=

θ 1 γ⁄∝

dipol radiation

[email protected] 20 Par ticle Detectors 3

Transition Radiation Detectors

low Z

high Z (e.g. Xe Z=54)

TR hits characterised by:• large amplitude• occur preferentially at start of the track

30 GeV π 30 GeV eTR

Application:• distinguish high energetic electrons

from pions• discrimination possible for momenta

from about 1 GeV/c to ~100 GeV/c

≈1000 foils

[email protected] 21 Par ticle Detectors 3

Why do we need Calorimeters ?

Recall: for tracking in magnetic field we have

• momentum (energy) measurement degrades linearly with increasing energy

• size of detector • only detection of charged particles

In contrast (as we will see) for calorimeters:

• detection of - photons- neutral hadrons

⇒  for high energy detectors calorimeters are essential components

σ pT( )pT

---------------pT

L2

------∝

L E∝

σ E( )E

------------ 1

E--------∝

E [GeV]

σ/E trackerhadr. calorimeter

elmag.. calo.

[email protected] 22 Par ticle Detectors 3

Electromagnetic Shower DevelopmentInteraction of photons and electrons above 10 MeV dominated by

• pairproduction γ → e+e-

• Bremsstrahlung e± → e± γ

which are both characterised by X0 . Alternating sequence leads to shower which stops if energy of particles < Ec .

Simple model for shower development initiated by photon of energy E0=Eγ :

• within ≈1 X0 γ produces e+e- pair • assume symmetric energy sharing Ee =Eγ /2

• e+e- radiate photon after ≈1 X0 E γ =Ee /2

• ⇒ number of particles at depth :

with energy

• multiplication continues until energy falls

below critical energy :

• from then on shower particles are only absorbed. Position of shower maximum:

t x X0⁄=

N t( ) 2t

= E t( ) E0 2 t–⋅=

Ec E0 2 – tMAX⋅=

tMAX

E0 Ec⁄ln

2ln---------------------- E0ln∝=

[email protected] 23 Par ticle Detectors 3

Energy Loss of ElectronsIn addition to energy loss by ionisation high energy particles also loose energy due to interaction with the Coulomb field of the nuclei: Bremsstrahlung

Due to their small mass this effect is especially prominent for electrons (positrons):

• it is useful to introduce radiation length

• energy attenuation:

• approx.:

• critical energy :

• approximately:

dE dx⁄– Z2 E⋅∝

X0

E E0x–

X0------

exp=

X0716g cm 2– A

Z Z 1+( ) 287 Z⁄( )ln-------------------------------------------------------=

Ec

dEBrems

dx--------------------

dEcollision

dx-------------------------=

Ec610MeVZ 1.24+---------------------=

Example: Cu

αlnE

Ec

[email protected] 24 Par ticle Detectors 3

Shower Depth vs Energy

0 5 10 15 20 25

typical range of depth for EM calorimeter

[email protected] 25 Par ticle Detectors 3

Example: µµµµ-induced Shower

[email protected] 26 Par ticle Detectors 3

Shower Development

dNdt------- t

αe

β– t⋅∝Multiple scattering of the e± causes a broadening of the shower also in the transverse direction:• contribution from electrons with

dominates

• ⇒ the shower width can be characterized by the so-called

Moliere-Radius

• meaning: 90(95)% of shower energy is contained in cylinder with radius RM (2RM) around the shower axis

E Ec≅

RM21MeV

Ec-------------------X0=

Shower Containment:• transverse: - Example lead glass: RM = 1.8X0 ¯ 3.6 cm ⇒ ˚R95% ¯ 7 cm

• longitudinal: [with ]- Example: 100 GeV e- in lead glass (Ec=11.8 MeV ⇒ ˚ tMAX ¯ 13, L95% ¯ 23)

R95% 2RM=

L95% tMAX 0.08 Z⋅ 9.6 [X0]+ += tMAX E0 Ec⁄( )ln 2ln( )⁄=

[email protected] 27 Par ticle Detectors 3

Stochastic Fluctuations• Number of particles at shower maximum increases linearly with initial energy:

• Total number of particles in the shower

• If response of calorimeter is proportional to number of shower particles it acts as a linear device for energy measurements

• Even for a perfect detector there are intrinsic statistical limitations for the energy resolution:

- total track length

- detectable track length with [above energy threshold ]

- ⇒  for relative energy resolution

N MAX N tMAX( ) E0 Ec⁄= =

Ntot N MAX∝ E0 Ec⁄=

T Ntot X0⋅E0

Ec------ X0⋅∝ ∝

T det F ξ( ) T⋅= ξ Ecut Ec⁄= Ecut

σ E( )E

------------σ T det( )

T det-------------------

1

T det

-------------- 1

E--------∝= =

[email protected] 28 Par ticle Detectors 3

Energy ResolutionIn general the energy resolution of a calorimeter can be parametrised as:

σ E( )E

------------a

E-------- b

cE---⊕ ⊕=

Stochastic Term

• stochastic fluctuations in shower development

• sampling fluctuations in case of sampling calori-meter

• photo-electron statistics

Constant Term

• inhomogeneitiesdead material

• non-linearities

• leakage

• inter-calibration between individual cells

Noise Term

• electronic noise

• radioactivity

• pile-up

[email protected] 29 Par ticle Detectors 3

Calorimeter Types

Homogeneous calorimeters:

• detector = absorber

• good energy resolution

• limited spatial resolution (particularly in longitudinal direction)

• only used for electromagnetic calorimetry

Sampling calorimeters:

• detectors and absorber are separated ⇒ only fraction of the energy is sampled

• heavy absorber material: compact design

• energy resolution limited by sampling fluctuations

• good spatial resolution due to segmentation

• can be used for electromagnetic and hadronic calorimetry

[email protected] 30 Par ticle Detectors 3

Examples for Sampling Calorimeters

Lead MatrixScintillating Fibres

Scintillator

AbsorberCharge sensitiveAmplifier

+ HV

Liquid (LAr, LXe, LKr)

Light Guide

Light Detector

MWPCStreamer Tubes

"spaghetti" calorimeter

WavelengthShifter

For sampling thickness there are additional sampling fluctuations:

d

σ E( )E

------------ 1

E-------- d

X0------⋅∝

[email protected] 31 Par ticle Detectors 3

Comparison of various Calorimeters (Electromagnetic)

∝ 0.01/Ε

∝ 0.01/√ Ε

[email protected] 32 Par ticle Detectors 3

Hadron CalorimetersHigh energy hadrons also develop showers in an absorber

Shower development much more complica-ted than in EM case

Components in shower• hadronic• electromagnetic- mainly due to πo

• invisible- nuclear excitation- neutrons- neutrinos

Typical length scale given by nuclear interaction length λ i

Excited nuclei

e+

e+e-

e-

πo

π-n

nπ-

Heavy fragmentλI

ElectromagneticComponent

Hadronic Component

⇒  hadronic showers are much longer and much wider than electromagnetic showers

[email protected] 33 Par ticle Detectors 3

Hadronic InteractionsFor high energies the hadronic cross section is• ≈ constant as function of energy• ≈ independent of hadron type

Material dependence of total cross section is given by:

⇒ Characterize hadronic interactions by hadronic

interaction length [cm]

[in table: [g/cm2] ]

σA σp A2 3⁄⋅=

λ̃ IA

N Aρ σA⋅----------------------=

λI λI˜ ρ⋅ A

1 3⁄∝=

X0 radiation length

λI interaction lenght

Z

λ I , X

0 (c

m)

10-1

1

10

10 2

10 3

0 10 20 30 40 50 60 70 80 90 100

~

10

100

10–1

1 10 102

103

104

105

106

107

108

109

pp200

20

50

Cro

ss s

ectio

n (

mb

)

Center of mass energy (GeV)1.9 2 10 100 103 104

total⇓

elastic

pp σT

πd

πp

Cro

ss s

ection (

mb)

Center of mass energy (GeV)

1.2 2 3 4 5 6 7 8 910 20 30 40

2.1 3 4 5 6 7 8 910 20 30 40 50 60

10 1 10 10 10–1 2 3

10

100

200

2

20

50

5 π+p elastic

π+p total⇓

π+p

σT

σ [mb]

[email protected] 34 Par ticle Detectors 3

Compensation

Problem• the fraction of the different components fluctuate significantly• the signal response of electromagnetic and hadronic component are in general different

i.e. e/mip ≠ h/mip • for good performance one needs to compensate this effect. Two possibilities:• hardware compensation- careful choice of absorber & active material and their thickness- example: ZEUS calorimeter: Uranium (depleted) / scintillator [3.3/2.6 mm]

• software compensation- if sufficient granularity one can distinguish between electromagnetic and hadronic component and correct by software weighting- example: H1 calorimeter: liquid argon (LAr) with steel plates

• due to the large fluctuations hadronic calorimeters in general have worse resolution

compared to electromagnetic calorimeters → typical values: σ E( )E

------------ 35 50 %–

E------------------------∝

[email protected] 35 Par ticle Detectors 3

Calorimeter Examples

Experiment Kind Absorber Active material Resolution Type

ZEUS em Uranium Scintillator 18% / √E sampling

ZEUS had Uranium Scintillator 35% / √E sampling

H1 em Pb LAr 12% / √E sampling

H1 had Steel LAr 50% / √E sampling

H1 SpaCal em Pb Scintill. Fibre 7.5% / √E sampling

NA48 em LKr LKr 3.5% / √E homogeneous

BaBar em CsI CsI 2.3% / E1/4 homogeneous

ATLAS em Pb (Cu) LAr 10% / √E sampling

ATLAS had Iron (Cu) Scintillator 47% / √E sampling

CMS em PbWO4 PbWO4 4% / √E homogeneous

CMS had Brass Scintillator 115% / √E sampling

[email protected] 36 Par ticle Detectors 3

LHC Calorimeters under Construction

~75000 Crystals~75000 Crystals

ATLAS ECAL

CMS ECAL

~120000 channels

[email protected] 37 Par ticle Detectors 3

Calorimeter R&D for ILC @ DESY• At Linear Collider expect final states with heavy bosons: W, Z, H

• Haveto reconstruct their hadronic decay modes → multi jet events

• Challenge: need jet resolution of 30%/√E

• Expect ~60% of total energy in charged particles (tracker) , 20% in photons (ECAL), 10% in neutral hadrons (HCAL) and 10% in neutrinos ⇒ new concept of particle flow:- reconstruction of individual particles- separation of particles (charged and neutral)

• Detector requirements:- excellent tracking, in particular in dense jets- excellent granularity in the ECAL- �no� material in front of ECAL- good granularity in the HCAL- excellent linking between tracker � ECAL � HCAL- excellent hermeticity