path-loss and shadowing (large-scale fading) - ntuย ยท path-loss and shadowing (large-scale fading)...

33
Path-loss and Shadowing (Large-scale Fading) PROF. MICHAEL TSAI 2017/10/23

Upload: buianh

Post on 16-Apr-2018

256 views

Category:

Documents


3 download

TRANSCRIPT

Path-loss and Shadowing(Large-scale Fading)

PROF. MICHAEL TSAI2017/10/23

Friis Formula

TX Antenna

EIRP=๐‘ƒ"๐บ"

๐‘‘

Power spatial density %&'

14๐œ‹๐‘‘+

๐ด-

ร—

ร—

RX Antenna

โ‡’ ๐‘ƒ0=๐‘ƒ"๐บ"๐ด-4๐œ‹๐‘‘+

2

Antenna Apertureโ€ข Antenna Aperture=Effective Area

โ€ข Isotropic Antennaโ€™s effective area ๐‘จ๐’†,๐’Š๐’”๐’ โ‰๐€๐Ÿ

๐Ÿ’๐…

โ€ข Isotropic Antennaโ€™s Gain=1

โ€ข ๐‘ฎ = ๐Ÿ’๐…๐€๐Ÿ ๐‘จ๐’†

โ€ข Friis Formula becomes: ๐‘ท๐’“ =๐‘ท๐’•๐‘ฎ๐’•๐‘ฎ๐’“๐€๐Ÿ

๐Ÿ’๐…๐’… ๐Ÿ = ๐‘ท๐’•๐‘จ๐’•๐‘จ๐’“๐€๐Ÿ๐’…๐Ÿ

3

๐‘ท๐’“ =๐‘ท๐’•๐‘ฎ๐’•๐ด-4๐œ‹๐‘‘+

Friis Formula

โ€ข ๐€๐Ÿ

๐Ÿ’๐…๐’… ๐Ÿ is often referred as โ€œFree-Space Path Lossโ€ (FSPL)

โ€ข Only valid when d is in the โ€œfar-fieldโ€ of the transmitting antenna

โ€ข Far-field: when ๐’… > ๐’…๐’‡, Fraunhofer distance

โ€ข ๐’…๐’‡ =๐Ÿ๐‘ซ๐Ÿ

๐€, and it must satisfies ๐’…๐’‡ โ‰ซ ๐‘ซ and ๐’…๐’‡ โ‰ซ ๐€

โ€ข D: Largest physical linear dimension of the antennaโ€ข ๐œ†: Wavelength

โ€ข We often choose a ๐’…๐ŸŽ in the far-field region, and smaller than any practical distance used in the system

โ€ข Then we have ๐‘ท๐’“ ๐’… = ๐‘ท๐’“ ๐’…๐ŸŽ๐’…๐ŸŽ๐’…

๐Ÿ

๐‘ท๐’“ =๐‘ท๐’•๐‘ฎ๐’•๐‘ฎ๐’“๐€๐Ÿ

๐Ÿ’๐…๐’… ๐Ÿ

4

Received Signal after Free-Space Path Loss

๐’“ ๐’• = ๐‘น๐’†๐€ ๐‘ฎ๐’•๐‘ฎ๐’“๐’†๐’™๐’‘ โˆ’๐’‹๐Ÿ๐…๐’…๐€

๐Ÿ’๐…๐’… ๐’ˆN ๐’• ๐’†๐’™๐’‘ ๐’‹๐Ÿ๐…๐’‡๐’„๐’•

phase difference due to propagation distance

Free-Space Path Loss

Complex envelope

Carrier (sinusoid)

5

Example: Far-field Distanceโ€ข Find the far-field distance of an antenna with

maximum dimension of 1m and operating frequency of 900 MHz (GSM 900)

โ€ข Ans:

โ€ข Largest dimension of antenna: D=1m

โ€ข Operating Frequency: f=900 MHz

โ€ข Wavelength: ๐€ = ๐’„๐’‡ =

๐Ÿ‘ร—๐Ÿ๐ŸŽ๐Ÿ–

๐Ÿ—๐ŸŽ๐ŸŽร—๐Ÿ๐ŸŽ๐Ÿ” = ๐ŸŽ. ๐Ÿ‘๐Ÿ‘

โ€ข ๐’…๐’‡ =๐Ÿ๐ƒ๐Ÿ

๐€ = ๐Ÿ๐ŸŽ.๐Ÿ‘๐Ÿ‘ = ๐Ÿ”. ๐ŸŽ๐Ÿ” (m)

6

Example: FSPL โ€ข If a transmitter produces 50 watts of power, express the transmit

power in units of (a) dBm and (b) dBW. โ€ข If 50 watts is applied to a unity gain antenna with a 900 MHz

carrier frequency, find the received power in dBm at a free space distance of 100 m from the antenna. What is the received power at 10 km? Assume unity gain for the receiver antenna.

โ€ข Ans:

โ€ข ๐Ÿ๐ŸŽ๐’๐’๐’ˆ๐Ÿ๐ŸŽ ๐Ÿ“๐ŸŽ = ๐Ÿ๐Ÿ•๐’…๐‘ฉ๐‘พ = ๐Ÿ’๐Ÿ•๐๐๐ฆโ€ข Received Power at 100m

๐‘ท๐’“(๐Ÿ๐ŸŽ๐ŸŽ๐’Ž) =๐Ÿ“๐ŸŽร—๐Ÿร—๐Ÿร— ๐Ÿ‘ร—๐Ÿ๐ŸŽ๐Ÿ–

๐Ÿ—๐ŸŽ๐ŸŽร—๐Ÿ๐ŸŽ๐Ÿ”๐Ÿ

๐Ÿ’๐…ร—๐Ÿ๐ŸŽ๐ŸŽ ๐Ÿ = ๐Ÿ‘. ๐Ÿ“ร—๐Ÿ๐ŸŽc๐Ÿ” ๐‘พ= โˆ’๐Ÿ“๐Ÿ’. ๐Ÿ“(๐’…๐‘ฉ๐‘พ)

โ€ข Received Power at 10km

๐‘ท๐’“ ๐Ÿ๐ŸŽ๐’Œ๐’Ž = ๐‘ท๐’“ ๐Ÿ๐ŸŽ๐ŸŽ๐’Ž๐Ÿ๐ŸŽ๐ŸŽ๐Ÿ๐ŸŽ๐ŸŽ๐ŸŽ๐ŸŽ

๐Ÿ

= ๐Ÿ‘. ๐Ÿ“ร—๐Ÿ๐ŸŽc๐Ÿ๐ŸŽ ๐‘พ= โˆ’๐Ÿ—๐Ÿ’. ๐Ÿ“(๐’…๐‘ฉ๐‘พ)

7

Zuvio 1: FSPL โ€ข If a transmitter produces 50 watts of power, express the

transmit power in units of (a) dBm and (b) dBW.

โ€ข If 50 watts is applied to a unity gain antenna with a 900 MHz carrier frequency, find the received power in dBm at a free space distance of 100 m from the antenna. What is the received power at 10 km? Assume unity gain for the receiver antenna.

8

Two-ray Model

TX Antenna

๐‘‘

๐œƒ

๐‘™

๐‘ฅ ๐‘ฅโ€ฒ

RX Antenna

โ„Ž"โ„Ž0

๐บj

๐บk ๐บl

๐บm

๐‘Ÿ+c0jo ๐‘ก =

๐‘…๐‘’๐œ†4๐œ‹

๐บj๐บl๐‘”t ๐‘ก exp โˆ’๐‘—2๐œ‹๐‘™๐œ†๐‘™ +

๐‘… ๐บk๐บm๐‘”t ๐‘ก โˆ’ ๐œ exp โˆ’๐‘—2๐œ‹ ๐‘ฅ + ๐‘ฅ|๐œ†

๐‘ฅ + ๐‘ฅ| exp ๐‘—2๐œ‹๐‘“k๐‘ก

Delayed since x+xโ€™ is longer. ๐œ = (๐‘ฅ + ๐‘ฅ| โˆ’ ๐‘™)/๐‘

R: ground reflection coefficient (phase and amplitude change) 9

Two-ray Model: Received Power

โ€ข ๐‘ท๐’“ = ๐‘ท๐’•๐€๐Ÿ’๐…

๐Ÿ ๐‘ฎ๐’‚๐‘ฎ๐’ƒ๐’ + ๐‘ฎ๐’„๐‘ฎ๐’…๐’†๐’™๐’‘ c๐’‹๐šซ๐“

๐’™๏ฟฝ๐’™|

๐Ÿ

โ€ข The above is verified by empirical results.

โ€ข ๐šซ๐“ = ๐Ÿ๐…(๐’™ + ๐’™| โˆ’ ๐’)/๐€

โ€ข ๐’™ + ๐’™| โˆ’ ๐’ = ๐’‰๐’• + ๐’‰๐’“ ๐Ÿ + ๐’…๐Ÿ โˆ’ ๐’‰๐’• โˆ’ ๐’‰๐’“ ๐Ÿ + ๐’…๐Ÿ

10

l

x

xโ€™

xโ€™

x

Two-ray Model: Received Power

โ€ข When ๐’… โ‰ซ ๐’‰๐’• + ๐’‰๐’“, ๐šซ๐“ = ๐Ÿ๐… ๐’™๏ฟฝ๐’™๏ฟฝc๐’๐€

โ‰ˆ ๐Ÿ’๐…๐’‰๐’•๐’‰๐’“๐€๐’…

โ€ข For asymptotically large d, ๐’™ + ๐’™| โ‰ˆ ๐ฅ โ‰ˆ ๐’…, ๐œƒ โ‰ˆ ๐ŸŽ,๐†๐š๐†๐› โ‰ˆ๐‘ฎ๐’„๐‘ฎ๐’…, ๐‘ โ‰ˆ โˆ’๐Ÿ(phase is inverted after reflection)

โ€ข ๐‘ฎ๐’‚๐‘ฎ๐’ƒ๐’

+ ๐‘ฎ๐’„๐‘ฎ๐’…๐’†๐’™๐’‘ c๐’‹๐šซ๐“๐’™๏ฟฝ๐’™|

๐Ÿโ‰ˆ ๐‘ฎ๐’‚๐‘ฎ๐’ƒ

๐’…

๐Ÿ๐Ÿ + ๐’†๐’™๐’‘ โˆ’๐’‹๐šซ๐“ ๐Ÿ

โ€ข ๐Ÿ + ๐’†๐’™๐’‘ โˆ’๐’‹๐šซ๐“ ๐Ÿ = ๐Ÿ โˆ’ ๐’„๐’๐’” ๐šซ๐“๐Ÿ+ ๐’”๐’Š๐’๐Ÿ๐šซ๐“ = ๐Ÿ โˆ’

๐Ÿ๐œ๐จ๐ฌ ๐šซ๐“ = ๐Ÿ’๐’”๐’Š๐’๐Ÿ(๐šซ๐“๐Ÿ) โ‰ˆ ๐šซ๐“๐Ÿ

โ€ข ๐‘ท๐’“ โ‰ˆ๐€ ๐‘ฎ๐’‚๐‘ฎ๐’ƒ๐Ÿ’๐…๐’…

๐Ÿ๐Ÿ’๐…๐’‰๐’•๐’‰๐’“๐€๐’…

๐Ÿ๐๐ญ =

๐‘ฎ๐’‚๐‘ฎ๐’ƒ๐’‰๐’•๐’‰๐’“๐’…๐Ÿ

๐Ÿ๐๐ญ

11Independent of ๐œ† now

12

๐‘‘k =4โ„Ž"โ„Ž0๐œ†

โ„Ž"

Could be a natural choice of cell size

Indoor Attenuationโ€ข Factors which affect the indoor path-loss:

โ€ข Wall/floor materialsโ€ข Room/hallway/window/open area layoutsโ€ข Obstructing objectsโ€™ location and materialsโ€ข Room size/floor numbers

โ€ข Partition Loss:

13

Partition type Partition Loss (dB) for 900-1300 MHz

Floor 10-20 for the first one,6-10 per floor for the next 3,A few dB per floor afterwards.

Cloth partition 1.4

Double plasterboard wall 3.4

Foil insulation 3.9

Concrete wall 13

Aluminum siding 20.4

All metal 26

Simplified Path-Loss Modelโ€ข Back to the simplest:

โ€ข ๐‘‘๏ฟฝ: reference distance for the antenna far field (usually 1-10m indoors and 10-100m outdoors)โ€ข ๐พ: constant path-loss factor (antenna, average channel

attenuation), and sometimes we use

โ€ข ๐›พ: path-loss exponent

14

๐‘ƒ0 = ๐‘ƒ"๐พ๐‘‘๏ฟฝ๐‘‘

๏ฟฝ

๐พ =๐œ†

4๐œ‹๐‘‘๏ฟฝ

+

Some empirical results

15

Measurements in Germany Cities

Environment Path-loss Exponent

Free-space 2

Urban area cellular radio 2.7-3.5

Shadowed urban cellular radio

3-5

In building LOS 1.6 to 1.8

Obstructed in building 4 to 6

Obstructed in factories 2 to 3

Empirical Path-Loss Modelโ€ข Based on empirical measurementsโ€ข over a given distanceโ€ข in a given frequency rangeโ€ข for a particular geographical area or building

โ€ข Could be applicable to other environments as wellโ€ข Less accurate in a more general environment

โ€ข Analytical model: ๐‘ท๐’“/๐‘ท๐’• is characterized as a function of distance.

โ€ข Empirical Model: ๐‘ท๐’“/๐‘ท๐’• is a function of distance including the effects of path loss, shadowing, and multipath.โ€ข Need to average the received power measurements to remove

multipath effects ร  Local Mean Attenuation (LMA) at distance d.

16

Example: Okumura Model

โ€ข Okumura Model:๐‘ท๐‘ณ ๐’… ๐’…๐‘ฉ = ๐‘ณ ๐’‡๐’„,๐’… + ๐‘จ๐ ๐’‡๐’„,๐’… โˆ’ ๐‘ฎ ๐’‰๐’• โˆ’ ๐‘ฎ ๐’‰๐’“ โˆ’ ๐‘ฎ๐‘จ๐‘น๐‘ฌ๐‘จโ€ข ๐‘ณ ๐’‡๐’„,๐’… : FSPL, ๐‘จ๐ ๐’‡๐’„,๐’… : median attenuation in addition to FSPL

โ€ข ๐บ โ„Ž" = 20 log๏ฟฝ๏ฟฝ(๏ฟฝ +๏ฟฝ๏ฟฝ) , ๐บ โ„Ž0 = ยก

10 log๏ฟฝ๏ฟฝ๏ฟฝยขยฃ , โ„Ž0 โ‰ค 3๐‘š,

20 log๏ฟฝ๏ฟฝ๏ฟฝยขยฃ , 3๐‘š < โ„Ž0 < 10๐‘š.

:antenna height gain factor.โ€ข ๐‘ฎ๐‘จ๐‘น๐‘ฌ๐‘จ: gain due to the type of environment

17

Example: Piecewise Linear Modelโ€ข N segments with N-1

โ€œbreakpointsโ€

โ€ข Applicable to both outdoor and indoor channels

โ€ข Example โ€“ dual-slope model:

โ€ข ๐พ: constant path-loss factorโ€ข ๐›พ๏ฟฝ: path-loss exponent for ๐‘‘๏ฟฝ~๐‘‘kโ€ข ๐›พ+: path-loss exponent after ๐‘‘k 18

๐‘ƒ0 ๐‘‘ =๐‘ƒ"๐พ

๐‘‘๏ฟฝ๐‘‘

๏ฟฝยฉ

๐‘ƒ"๐พ๐‘‘k๐‘‘

๏ฟฝยฉ ๐‘‘๐‘‘k

๏ฟฝ'

๐‘‘๏ฟฝ โ‰ค ๐‘‘ โ‰ค ๐‘‘k,

๐‘‘ > ๐‘‘k.

Shadow Fadingโ€ข Same T-R distance usually have different path loss

โ€ข Surrounding environment is different

โ€ข Reality: simplified Path-Loss Model represents an โ€œaverageโ€

โ€ข How to represent the difference between the average and the actual path loss?

โ€ข Empirical measurements have shown that

โ€ข it is random (and so is a random variable)โ€ข Log-normal distributed

19

Log-normal distributionโ€ข A log-normal distribution is a probability distribution

of a random variable whose logarithm is normally distributed:

โ€ข ๐‘ฅ: therandomvariable(linearscale)โ€ข ๐œ‡, ๐œŽ+:mean and variance of the distribution (in dB)

20

๐‘“ยน ๐‘ฅ; ๐œ‡, ๐œŽ+ =1

๐‘ฅ๐œŽ 2๐œ‹exp โˆ’

log ๐‘ฅ โˆ’ ๐œ‡ +

2๐œŽ+

logarithm of the random variable

normalized so that the integration of the pdf=1

Log-normal Shadowingโ€ข Expressing the path loss in dB, we have

โ€ข ๐‘ฟ๐ˆ: Describes the random shadowing effects

โ€ข ๐‘ฟ๐ˆ~๐‘ต(๐ŸŽ, ๐ˆ๐Ÿ)(normal distribution with zero mean and ๐ˆ๐Ÿ variance)

โ€ข Same T-R distance, but different levels of clutter.

โ€ข Empirical Studies show that ๐ˆ ranges from 4 dB to 13dB in an outdoor channel

21

๐‘ƒยพ ๐‘‘ ๐‘‘๐ต = ๐‘ƒยพ ๐‘‘ + ๐‘‹ร = ๐‘ƒยพ ๐‘‘๏ฟฝ + 10๐›พ log๐‘‘๐‘‘๏ฟฝ

+ ๐‘‹ร

Why is it log-normal distributed?โ€ข Attenuation of a signal when passing through an

object of depth d is approximately:

โ€ข ๐›ผ:Attenuation factor which depends on the material

โ€ข If ๐œถ is approximately the same for all blocking objects:

โ€ข ๐‘‘" = โˆ‘ ๐‘‘ร…ร… : sum of all object depths

โ€ข By central limit theorem, ๐’…๐’•~๐‘ต(๐, ๐ˆ๐Ÿ)when the number of object is large (which is true).

22

๐‘  ๐‘‘ = exp โˆ’๐›ผ๐‘‘

๐‘  ๐‘‘" = exp โˆ’๐›ผร‡๐‘‘ร…ร…

= exp โˆ’๐›ผ๐‘‘"

Path Loss, Shadowing, and Multi-Path

23

Cell Coverage Areaโ€ข Cell coverage area: expected percentage of locations

within a cell where the received power at these locations is above a given minimum.

24

Some area within the cell has received power lower than ๐‘ƒ&ร…รˆ

Some area outside of the cell has received power higher than ๐‘ƒ&ร…รˆ

Cell Coverage Areaโ€ข We can boost the transmission power at the BS

โ€ข Extra interference to the neighbor cells

โ€ข In fact, any mobile in the cell has a nonzero probability of having its received power below ๐‘ท๐’Ž๐’Š๐’.

โ€ข Since Normal distribution has infinite tailsโ€ข Make sense in the real-world:

in a tunnel, blocked by large buildings, doesnโ€™t matter if it is very close to the BS

25

Cell Coverage Area

โ€ข Cell coverage area is given by

โ€ข ๐‘ท๐‘จ โ‰ ๐’‘ ๐‘ท๐’“ ๐’“ > ๐‘ท๐’Ž๐’Š๐’

26

๐‘ช = ๐‘ฌ๐Ÿ๐…๐‘น๐ŸรŠ ๐Ÿ ๐‘ท๐’“ ๐’“ > ๐‘ท๐’Ž๐’Š๐’๐’Š๐’๐’…๐‘จ ๐’…๐‘จ

๐’„๐’†๐’๐’๐’‚๐’“๐’†๐’‚

=๐Ÿ๐…๐‘น๐ŸรŠ ๐‘ฌ ๐Ÿ ๐‘ท๐’“ ๐’“ > ๐‘ท๐’Ž๐’Š๐’๐’Š๐’๐’…๐‘จ ๐’…๐‘จ

๐’„๐’†๐’๐’๐’‚๐’“๐’†๐’‚

1 if the statement is true, 0 otherwise. (indicator function)

๐‘ช =๐Ÿ๐…๐‘น๐ŸรŠ ๐‘ท๐‘จ๐’…๐‘จ

๐’„๐’†๐’๐’๐’‚๐’“๐’†๐’‚=

๐Ÿ๐…๐‘น๐Ÿ รŠ รŠ ๐‘ท๐‘จ

๐‘น

๐ŸŽ๐’“๐’…๐’“

๐Ÿ๐…

๐ŸŽ๐’…๐œฝ

Cell Coverage Area

โ€ข Q-function:

27

๐‘ƒรŒ = ๐‘ ๐‘ƒ0รŽ ๐‘Ÿ โ‰ฅ ๐‘ƒ&ร…รˆ = ๐‘„๐‘ƒ&ร…รˆ โˆ’ ๐‘ƒ" โˆ’ ๐‘ƒยพ ๐‘Ÿ

๐œŽ

๐‘„ ๐‘ง โ‰ ๐‘ ๐‘‹ > ๐‘ง = รŠ12๐œ‹

ร’

ร“exp โˆ’

๐‘ฆ+

2 ๐‘‘๐‘ฆ

Log-normal distributionโ€™s standard deviation

z

Cell Coverage Areaโ€ข Solving the equations yield:

โ€ข ๐’‚ = ๐‘ท๐’Ž๐’Š๐’c๐‘ท๐’“ ๐‘น๐ˆ , ๐’ƒ = ๐Ÿ๐ŸŽ๐œธ๐’๐’๐’ˆ๐Ÿ๐ŸŽ ๐’†

๐ˆ

โ€ข If ๐‘ท๐’Ž๐’Š๐’ = ๐‘ท๐’“ ๐‘น

28

๐ถ = ๐‘„ ๐‘Ž + exp2 โˆ’ 2๐‘Ž๐‘๐‘+ ๐‘„

2 โˆ’ ๐‘Ž๐‘๐‘

average received power at cell boundary (distance=R)

๐ถ =12 + exp

2๐‘+ ๐‘„

2๐‘

Exampleโ€ข Find the coverage area for a cell with โ€ข a cell radius of 600mโ€ข a base station transmission power of 20 dBmโ€ข a minimum received power requirement of -110 dBm.

โ€ข path loss model: ๐‘ƒ0(๐‘‘) = ๐‘ƒ"๐พmร™m

๏ฟฝ, ๐›พ = 3.71, ๐พ = โˆ’31.54๐‘‘๐ต, ๐‘‘๏ฟฝ = 1, shadowing

standard deviation ๐œŽ = 3.65dBโ€ข Ans:

โ€ข ๐‘ท๐’“ ๐‘น = ๐Ÿ๐ŸŽโˆ’ ๐Ÿ‘๐Ÿ.๐Ÿ“๐Ÿ’ โˆ’ ๐Ÿ๐ŸŽร—๐Ÿ‘.๐Ÿ•๐Ÿร—๐’๐’๐’ˆ๐Ÿ๐ŸŽ ๐Ÿ”๐ŸŽ๐ŸŽ = โˆ’๐Ÿ๐Ÿ๐Ÿ’.๐Ÿ”๐’…๐‘ฉ๐’Ž

โ€ข ๐’‚ = c๐Ÿ๐Ÿ๐ŸŽ๏ฟฝ๐Ÿ๐Ÿ๐Ÿ’.๐Ÿ”๐Ÿ‘.๐Ÿ”๐Ÿ“ = ๐Ÿ. ๐Ÿ๐Ÿ”,๐’ƒ = ๐Ÿ๐ŸŽร—๐Ÿ‘.๐Ÿ•๐Ÿร—๐ŸŽ.๐Ÿ’๐Ÿ‘๐Ÿ’

๐Ÿ‘.๐Ÿ”๐Ÿ“ = ๐Ÿ’.๐Ÿ’๐Ÿ

โ€ข ๐‘ช = ๐‘ธ ๐Ÿ.๐Ÿ๐Ÿ” + ๐’†๐’™๐’‘ โˆ’๐ŸŽ. ๐Ÿ’๐Ÿ” ๐‘ธ โˆ’๐ŸŽ. ๐Ÿ–๐ŸŽ๐Ÿ• = ๐ŸŽ.๐Ÿ” (not good)

โ€ข If we calculate C for a minimum received power requirement of -120 dBmโ€ข C=0.988! 29

๐ถ = ๐‘„ ๐‘Ž + exp2 โˆ’ 2๐‘Ž๐‘๐‘+ ๐‘„

2 โˆ’ ๐‘Ž๐‘๐‘

๐’‚ = ๐‘ท๐’Ž๐’Š๐’c๐‘ท๐’“ ๐‘น๐ˆ

, ๐’ƒ = ๐Ÿ๐ŸŽ๐œธ๐’๐’๐’ˆ๐Ÿ๐ŸŽ ๐’†๐ˆ

Example: road corners path loss

30

5 m

40 m

10 m

Radio: ChipconCC2420IEEE 802.15.4, 2.4 GHzTX pwr: 0 dBm

8 dBi peak gainomni-directionalantenna

Intel-NTU Connected Context Computing Center

โ€ข Compare the path-loss exponent of three different locations:

1. Corner of NTU_CSIE building

2. XinHai-Keelong intersection

3. FuXing-HePing intersection

Link Measurements โ€“Path loss around the corner building

31

1 2 3

Passing-by vehicles

Occasionally Frequently Frequently

Buildings Around

No Few buildings

Some high buildings

Intersection Narrow Wide Wide

32

Zuvio 2โ€ข Out of all 4G (LTE) cellular service providers in Taiwan,

if we consider only FSPL (1) which provider would give you the best SNR? (2) whatโ€™s the difference (in dB) of SNR comparing signals from the โ€œbestโ€ and the โ€œworstโ€ providers?

โ€ข You can assume that all the other factors are the same (base station antennas and cellular phone antennas)

33