patient – ventilator asynchrony

Upload: mohamedkoriesh

Post on 02-Jun-2018

227 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/11/2019 Patient Ventilator Asynchrony

    1/47

    Patient Ventilator Asynchrony

    Dr Vincent IoosMedical ICU PIMS APICON 2008

    Workshop on Mechanical Ventilation

  • 8/11/2019 Patient Ventilator Asynchrony

    2/47

    Goal of mechanical ventilation

    Do you mechanically ventilate your patient toreverse diaphragmatic fatigue ?

    or Do you encourage greater diaphragm use to

    avoid ventilator-induced diaphragmaticdysfunction?

  • 8/11/2019 Patient Ventilator Asynchrony

    3/47

  • 8/11/2019 Patient Ventilator Asynchrony

    4/47

    Patient triggered ventilation

    Assisted mechanical ventilation Avoid ventilator induced diaphragmatic

    dysfunction Providing sufficient level of ventilatory supportto reduce patients work of breathing

  • 8/11/2019 Patient Ventilator Asynchrony

    5/47

  • 8/11/2019 Patient Ventilator Asynchrony

    6/47

    Volume or pressure oriented?

  • 8/11/2019 Patient Ventilator Asynchrony

    7/47

    Volume oriented modes

    Inspiratory flow is preset

    Inspiratory time determines the Vt

    The variable parameter is the airway peak andplateau pressure

  • 8/11/2019 Patient Ventilator Asynchrony

    8/47

    Equation of insuflated gases

    in flow assist control ventilation Describes interactions between the patient

    and the ventilator Pressure required to deliver a volume of gas

    in the lungs is determined by elastic andresistive properties of the lung

    Paw = Vt/C +VR + PEP

  • 8/11/2019 Patient Ventilator Asynchrony

    9/47

    Airway Pressure

    C = Vt / P and P = P Plat - PEEP

    Paw= Po + Vt/C + RV

  • 8/11/2019 Patient Ventilator Asynchrony

    10/47

    Flow shapes

  • 8/11/2019 Patient Ventilator Asynchrony

    11/47

    Pressure oriented modes

    Pressure in airway is the preset parameter

    Flow is adjusted at every moment to reach thepreset pressure

    The variable parameter is Vt

  • 8/11/2019 Patient Ventilator Asynchrony

    12/47

    Equation of motionin pressure support ventilation

    Pressure = pressure applied by the ventilatoron the airway + pressure generated byrespiratory muscles

    Pmus is determined by respiratory drive andrespiratory muscle strenght

    Paw + Pmus = Vt/C + VxR + PEP

  • 8/11/2019 Patient Ventilator Asynchrony

    13/47

    Determinant factorsof inspiratory flow in PSV

    Pressure support setting Pmus (inspiratory effort) Airway resistance Respiratory system compliance Vt directly depends on inspiratory flow, but

    also on auto-PEEP (decreases the drivingpressure gradient)

  • 8/11/2019 Patient Ventilator Asynchrony

    14/47

  • 8/11/2019 Patient Ventilator Asynchrony

    15/47

    Look at the curves !

  • 8/11/2019 Patient Ventilator Asynchrony

    16/47

    A challenge for the intensivist

    Discomfort anxiety Increased work of breathing Increased requirement of sedation Increased length of mechanical ventilation Increased incidence of VAP

  • 8/11/2019 Patient Ventilator Asynchrony

    17/47

    Patient-ventilator asynchrony

    Mechanical ventilation: 2 pumps Ventilator controlled by the physician

    Patients own respiratory muscle pump

    Mismatch between the patient and the ventilatorinspiratory and expiratory time time

    Patient fighting with the ventilator

  • 8/11/2019 Patient Ventilator Asynchrony

    18/47

  • 8/11/2019 Patient Ventilator Asynchrony

    19/47

  • 8/11/2019 Patient Ventilator Asynchrony

    20/47

    Ventilation phases

  • 8/11/2019 Patient Ventilator Asynchrony

    21/47

    Trigger asynchrony

    Ineffective triggerring: muscular effort without ventilator trigger

    Double triggerring

    Auto-triggering Insensitive trigger: triggering that requires

    excessive patient effort

  • 8/11/2019 Patient Ventilator Asynchrony

    22/47

    Ineffective triggering

  • 8/11/2019 Patient Ventilator Asynchrony

    23/47

  • 8/11/2019 Patient Ventilator Asynchrony

    24/47

    Double triggering

    Cough

    Sighs

    Inedaquate flow delivery

  • 8/11/2019 Patient Ventilator Asynchrony

    25/47

    Auto-triggering

    Circuit leak Water in the circuit

    Cardiac oscillations Nebulizer treatments

    Negative suction applied trough chest tube

  • 8/11/2019 Patient Ventilator Asynchrony

    26/47

  • 8/11/2019 Patient Ventilator Asynchrony

    27/47

  • 8/11/2019 Patient Ventilator Asynchrony

    28/47

    Flow asynchrony

    Fixed flow pattern (volume oriented) Variable flow pattern (pressure oriented)

  • 8/11/2019 Patient Ventilator Asynchrony

    29/47

    Volume oriented ventilation(fixed flow pattern)

    Inspiratory flow varies according to theunderlying condition

    If patients flow demand increases, peak flowshould be adjusted accordingly Usually, peak flow is too low Dished-out appearance of the presure-wave-

    form Importance of flow-pattern

  • 8/11/2019 Patient Ventilator Asynchrony

    30/47

  • 8/11/2019 Patient Ventilator Asynchrony

    31/47

    -Ineffictive triggering at

    30 l/mn- Increase in flow rate

    - Subsequent increase ofexpiratory time

    - Decreased dynamichyperinflation

    - Subsequent decreasein ineffictive trigerring

  • 8/11/2019 Patient Ventilator Asynchrony

    32/47

    Importance of flow pattern

    Increase in peak-flow setting fron 60 to 120l/mn eliminated scooped appearance of the

    airway pressure waveform

  • 8/11/2019 Patient Ventilator Asynchrony

    33/47

    Pressure oriented ventilation(variable flow)

    Peak flow is depending on : Set target pressure

    Patient effort Respiratory system compliance

    Adjustement : rate of valve opening = rise time =presure slope = flow acceleration

  • 8/11/2019 Patient Ventilator Asynchrony

    34/47

  • 8/11/2019 Patient Ventilator Asynchrony

    35/47

  • 8/11/2019 Patient Ventilator Asynchrony

    36/47

  • 8/11/2019 Patient Ventilator Asynchrony

    37/47

    Termination asynchrony

    Ventilator should cycle at the end of the neuralinspiration time

    Delayed termination: Dynamic hyperinflation Trigger delay

    Ineffective triggering

    Premature termination

  • 8/11/2019 Patient Ventilator Asynchrony

    38/47

  • 8/11/2019 Patient Ventilator Asynchrony

    39/47

  • 8/11/2019 Patient Ventilator Asynchrony

    40/47

    Set inspiratory time < 1 sec

    PSV = 10 cmH2O

  • 8/11/2019 Patient Ventilator Asynchrony

    41/47

    PSV = 10 cmH2O

    Inspiratoy flow terminate despitecontinued Pes defelection

    Double Trigerring

    Patient 1 Patient 2

  • 8/11/2019 Patient Ventilator Asynchrony

    42/47

    Expiratory asynchrony

    Shortened expiratory time: Auto-PEEP trigger asynchrony

    Delay in the relaxation of the expiratorymuscle activity prior to the next mechanicalinspiration

    Overlap between expiratory and insiratoryuscle activity Prolonged expiratory time

  • 8/11/2019 Patient Ventilator Asynchrony

    43/47

    Auto-PEEP created by flow patternsthat increases inspiratory time

    Lower peak flow during control ventilation Switch from constant flow to descending ramp

    flow Inadequate pressure slope during presure

    controlled ventilation Termination criteria that prolong expiratory

    time during PSV

  • 8/11/2019 Patient Ventilator Asynchrony

    44/47

  • 8/11/2019 Patient Ventilator Asynchrony

    45/47

  • 8/11/2019 Patient Ventilator Asynchrony

    46/47

  • 8/11/2019 Patient Ventilator Asynchrony

    47/47

    Conclusion

    Look at your patient ! Look at the curves ! Have a good knowledge of the ventilation

    modalities of the ventilator you are using Excessive ventilatory support leads to ineffective

    triggering

    Do not forget to set trigger sensitivity, to avoidexcessive effort and auto-triggering