patterns in decomposition rates among photosynthetic organisms

15
Oecologia (1993) 94:457M71 Oecologia Springer-Verlag 1993 Review article Patterns in decomposition rates among photosynthetic organisms: the importance of detritus C :N :P content S. Enriquez ~, C.M. Duarte ~, K. Sand-Jensen 2 t Centro de Estudios Avanzados de Blanes, (CSIC), Cami de Santa BArbara, 17300 Blanes, Girona, Spain 2 Freshwater Biological Laboratory, University of Copenhagen, 51 Helsingorsgade, 3400 Hillerod, Denmark Received: 30 January 1993 / Accepted: 4 April 1993 Abstract. The strength and generality of the relationship between decomposition rates and detritus carbon, nitro- gen, and phosphorus concentrations was assessed by comparing published reports of decomposition rates of detritus of photosynthetic organisms, from unicellular algae to trees. The results obtained demonstrated the existence of a general positive, linear relationship be- tween plant decomposition rates and nitrogen and phos- phorus concentrations. Differences in the carbon, nitro- gen, and phosphorus concentrations of plant detritus accounted for 89% of the variance in plant decom- position rates of detritus originating from photosynthetic organisms ranging from unicellular microalgae to trees. The results also demonstrate that moist plant material decomposes substantially faster than dry material with similar nutrient concentrations. Consideration of lignin, instead of carbon, concentrations did not improve the relationships obtained. These results reflect the coupling of phosphorus and nitrogen in the basic biochemical processes of both plants and their microbial decom- posers, and stress the importance of this coupling for carbon and nutrient flow in ecosystems. Key words: Decomposition - Plant kingdom - Nutrients Carbon fixed by photosynthetic organisms is made avail- able to other ecosystem components via herbivores or detritivores. The detrital path is a major determinant of the flow of carbon fixed by plants in ecosystems were herbivores consume a modest fraction of primary production, as is often the case (Swift et al. 1979). De- composition of plant detritus is largely conducted by bacteria and fungi (e.g. Persson et al. 1980), and the rate of this process depends, therefore, on all factors influenc- ing their activity. These may be separated, following Swift et al. (1979), into abiotic factors, the physico- This work was funded through a grant of CICYT (MAR91~503) to C.M.D. Correspondence to: S. Enriquez chemical conditions under which the decomposition oc- curs, and substrate quality (e.g. biochemical composition of plant litter), which constrains its suitability for micro- bial growth. Photosynthetic organisms can directly in- fluence decomposition rates through their biochemical composition. For instance, plants may accumulate de- fence chemicals in their tissues which, besides decreasing their palatability to grazers (e.g. Coley et al. 1985), also reduce their quality as a substrate for decomposer mi- croorganisms (Swift et al. 1979). Similarly, nutrient reab- sorption before abscission of plant tissues may, in addi- tion to improving the internal nutrient economy of the plant (Chapin 1980), affect their suitability as substrate for microbial decomposers. Decomposer organisms tend to have very high nitro- gen and phosphorus contents (Findlay 1934; Thayer 1974; Swift et al. 1979; Goldman et al. 1987; Vadstein and Olsen 1989) indicative of high requirements for these nutrients. For instance balanced bacterial growth re- quires substrates with carbon, nitrogen, and phosphorus in an (atomic) ratio of 106:12:1 (Goldman et al. 1987), although bacteria have some capacity to vary these re- quirements (e.g. Tezuka 1990). These high nutrient con- tents are only encountered in fast-growing phytoplank- ton cells (Goldman et al. 1979; Duarte 1992), and micro- bial decomposers are often supplied with plant detritus depleted in nitrogen and phosphorus relative to their requirements. Recent research has demonstrated that bacterial growth efficiency (i.e. the fraction of the carbon used allocated to growth) decreases about 100-fold with increasing C/N and C/P ratios in their substrate (Gold- man et al. 1987). Thus, detritus with high nitrogen and phosphorus content should decompose fast because of the associated fast growth of the microbial populations, whereas excess carbon in the plant litter should lead to nutrient-controlled carbon remineralization (cf. Gold- man et al. 1987; Vadstein and Olsen 1989). These arguments provide an explanation for the in- crease in decomposition rate with increasing nutrient concentration, or decreasing carbon/nutrient ratios, demonstrated six decades ago (Tenny and Waksman 1929), and confirmed since for different aquatic (e.g.

Upload: hoangquynh

Post on 13-Feb-2017

227 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Patterns in decomposition rates among photosynthetic organisms

Oecologia (1993) 94:457M71 Oecologia �9 Springer-Verlag 1993

Review article

Patterns in decomposition rates among photosynthetic organisms: the importance of detritus C :N :P content

S. Enriquez ~, C.M. Duarte ~, K. Sand-Jensen 2

t Centro de Estudios Avanzados de Blanes, (CSIC), Cami de Santa BArbara, 17300 Blanes, Girona, Spain 2 Freshwater Biological Laboratory, University of Copenhagen, 51 Helsingorsgade, 3400 Hillerod, Denmark

Received: 30 January 1993 / Accepted: 4 April 1993

Abstract. The strength and generality of the relationship between decomposition rates and detritus carbon, nitro- gen, and phosphorus concentrations was assessed by comparing published reports of decomposition rates of detritus of photosynthetic organisms, from unicellular algae to trees. The results obtained demonstrated the existence of a general positive, linear relationship be- tween plant decomposition rates and nitrogen and phos- phorus concentrations. Differences in the carbon, nitro- gen, and phosphorus concentrations of plant detritus accounted for 89% of the variance in plant decom- position rates of detritus originating from photosynthetic organisms ranging from unicellular microalgae to trees. The results also demonstrate that moist plant material decomposes substantially faster than dry material with similar nutrient concentrations. Consideration of lignin, instead of carbon, concentrations did not improve the relationships obtained. These results reflect the coupling of phosphorus and nitrogen in the basic biochemical processes of both plants and their microbial decom- posers, and stress the importance of this coupling for carbon and nutrient flow in ecosystems.

Key words: Decomposition - Plant kingdom - Nutrients

Carbon fixed by photosynthetic organisms is made avail- able to other ecosystem components via herbivores or detritivores. The detrital path is a major determinant of the flow of carbon fixed by plants in ecosystems were herbivores consume a modest fraction of primary production, as is often the case (Swift et al. 1979). De- composition of plant detritus is largely conducted by bacteria and fungi (e.g. Persson et al. 1980), and the rate of this process depends, therefore, on all factors influenc- ing their activity. These may be separated, following Swift et al. (1979), into abiotic factors, the physico-

This work was funded through a grant of CICYT (MAR91~503) to C.M.D.

Correspondence to: S. Enriquez

chemical conditions under which the decomposition oc- curs, and substrate quality (e.g. biochemical composition of plant litter), which constrains its suitability for micro- bial growth. Photosynthetic organisms can directly in- fluence decomposition rates through their biochemical composition. For instance, plants may accumulate de- fence chemicals in their tissues which, besides decreasing their palatability to grazers (e.g. Coley et al. 1985), also reduce their quality as a substrate for decomposer mi- croorganisms (Swift et al. 1979). Similarly, nutrient reab- sorption before abscission of plant tissues may, in addi- tion to improving the internal nutrient economy of the plant (Chapin 1980), affect their suitability as substrate for microbial decomposers.

Decomposer organisms tend to have very high nitro- gen and phosphorus contents (Findlay 1934; Thayer 1974; Swift et al. 1979; Goldman et al. 1987; Vadstein and Olsen 1989) indicative of high requirements for these nutrients. For instance balanced bacterial growth re- quires substrates with carbon, nitrogen, and phosphorus in an (atomic) ratio of 106:12:1 (Goldman et al. 1987), although bacteria have some capacity to vary these re- quirements (e.g. Tezuka 1990). These high nutrient con- tents are only encountered in fast-growing phytoplank- ton cells (Goldman et al. 1979; Duarte 1992), and micro- bial decomposers are often supplied with plant detritus depleted in nitrogen and phosphorus relative to their requirements. Recent research has demonstrated that bacterial growth efficiency (i.e. the fraction of the carbon used allocated to growth) decreases about 100-fold with increasing C/N and C/P ratios in their substrate (Gold- man et al. 1987). Thus, detritus with high nitrogen and phosphorus content should decompose fast because of the associated fast growth of the microbial populations, whereas excess carbon in the plant litter should lead to nutrient-controlled carbon remineralization (cf. Gold- man et al. 1987; Vadstein and Olsen 1989).

These arguments provide an explanation for the in- crease in decomposition rate with increasing nutrient concentration, or decreasing carbon/nutrient ratios, demonstrated six decades ago (Tenny and Waksman 1929), and confirmed since for different aquatic (e.g.

Page 2: Patterns in decomposition rates among photosynthetic organisms

458

Valiela et al. 1984; Twilley et al. 1986; Harrison 1989; Reddy and DeBusk 1991) and terrestrial (e.g. Gosz et al. 1973; Swift et al. 1979; Berg et al. 1982; Taylor et al. 1989; Upadhyay et al. 1989) systems. In addition to reflecting direct nutrient effects, these relationships also appear to have an indirect component, derived from a tendency towards reduced carbon quality and increasing amounts of secondary metabolites in plant litter as nu- trient availability decreases (Coley et al. 1985, Chapin et al. 1987). Hence, some ratios incorporating a descriptor of carbon quality (e.g. lignin/N ratios) have also been shown to be related to decay rates of plant litter (e.g. Melillo et al. 1982; Aber et al. 1990). However, lignin/N ratios appear to outperform C/nutrient ratios as a predic- tor of decay rates only when comparing plant litters of similar lignin contents (Taylor et al. 1989).

Whether the widespread finding of strong relation- ships between litter nutrient content and decomposition rates reflects the existence of a general relationship, ap- plicable to detritus originating from different photosyn- thetic organism, is not known as yet. The existence of such a general relationship is expected because all micro- bial decomposers have high nitrogen and phosphorus, in addition to carbon, needs in both aquatic (Goldman et al. 1987; Vadstein and Olsen 1989) and terrestrial (Find- lay 1934; Thayer 1974; Swift et al. 1979) environments. Conversely, these relationships might differ between dif- ferent sorts of plant detritus if they were indirect, result- ing from covariation between carbon quality (e.g. con- tents of lignin, polyphenols, etc.) and nutrient content within plant types (e.g. Melillo et al. 1982; Abet et al. 1990; Upadhyay et al. 1989).

Here we examine the strength and generality of the relationship between decomposition rates and plant nu- trient concentrations by comparing published reports of decomposition rates and litter nutrient contents across a broad spectrum of plant detritus, from unicellular algae to trees. We first examine the variability in decom- position rates of litter from different sources, and then assess the power of differences in their nutrient concen- tration to statistically account for the observed variabil- ity. A subset of these data, for which lignin contents were available in addition to nitrogen and phosphorus con- tents, was used to compare the strength of the relation- ship between lignin and nutrient contents and litter de- composition rates. Because plant nutrient concentrations are often strongly intercorrelated (Garten 1976; Duarte 1992), we used path analysis (Williams et al. 1990) to statistically resolve the direct contribution of carbon, nitrogen, phosphorus, and, where available, lignin, to the observed relationship between nutrient content and de- tritus decomposition rate.

Methods

We searched the literature for published reports of plant litter decomposition rates and chemical composition (carbon, lignin, nitrogen, and phosphorus concentrations) at initiation of decom- position. Decomposition rates (k, natural log units day-1) were described from the changes in plant dry weight (W) with time (t,

days) since the initiation of the experiments using the equation,

wt = Wo e-kt

which is the model most often used in the literature (Olson 1963) and simpler than the double-exponential model (e.g. O'Connell 1987). Because these decomposition rates have logarithmic units, we also described decomposition rates as the half-life of plant detritus (Ta/2, days), which, although a function of exponential decom- position rates (T1/2 = k - 1 . In 2), provides a more intuitive des- cription of detritus turnover times. Decomposition rates were often reported in the studies, and were otherwise calculated from tab- ulated data or digitized graphs of weight remaining with time elapsed. We included in the data set (Appendix) all studies encoun- tered during our search that included estimates of decomposition rates of plant litter (e.g. photosynthetic tissues, roots, rhizomes, stems), and any of the descriptor of tissue chemical composition needed to test our hypotheses (i.e. C, N, P, and lignin concentra- tions).

Additional detail in the general description of the data set was obtained by grouping the data according to detritus origin (phyto- plankton, macroalgae, seagrasses, freshwater angiosperms, am- phibious plants, sedges, mangroves, grasses, shrubs, conifers, and broad-leaved deciduous and evergreen trees). The relationships be- tween decomposition rates and nutrient concentrations were des- cribed using least-squares regression analyses of log-transformed data. Logarithmic transformation was found to be necessary to avoid heteroscedasticity in these analyses (Draper and Smith 1965). Differences in the relationship between plant litter decomposition rate and nutrient content depending on detritus origin (as defined above) were tested for using analysis of covariance (Draper and Smith 1966). The simultaneous influence of carbon (or lingin), nitrogen, and phosphorus on litter decomposition rates was tested for using multiple least squares regression analyses, instead of carbon/nutrient ratios, for the use of these ratios is conducive to statistical artifacts (cf. Chayes 1971; Atchley and Anderson 1978). The (statistical) influence of nitrogen, phosphorus, carbon (or lig- nin) contents on decomposition rates was partitioned into direct and indirect effects using path analysis (e.g. Williams et al. 1990). Separate path analyses were used to test the effects of C, N, and P, on the one hand, and those oflignin, N, and P, on the other, because lignin contents were only reported in a small subset of the studies, which did not include any study on phytoplankton or macroalgae.

Results and discussion

The data set comprised 256 reports of decomposition rates of plant litters originating from different photosyn- thetic organisms, from land an aquatic environments (Appendix). These data were gathered under a broad variety of conditions, from controlled laboratory experi- ments to field studies, and included decomposition of plant litter originating from photosynthetic tissues, roots, rhizomes, stems and branches, and mixtures of these (Appendix). Unfortunately, detailed descriptions of the experimental conditions (e.g. temperature, pH, oxygen tension) were only reported in a few studies and could not be included in the analysis.

Decomposition rates ranged between 0.00019 day -1 for non-photosynthetic tissues of an Australian shrub (Leucospermun parile), and 0.098 day- i for the cells of a cyanobacterium (Anabaena sp.) and the leaves of a submerged freshwater angiosperm (Vallisneria spiralis), and differed significantly according to their origin (ANO- VA, F=41.3, P < 0.0001; Fig. 1). Decomposition rates were faster for detritus derived from phytoplankton and

Page 3: Patterns in decomposition rates among photosynthetic organisms

459

M i c r o a l g a e Freshwater plants

A m p h i b i o u s p lants Macroa lgae S e a g r a s s e s

Grasses S e d g e s

M a n g r o v e s Broad decid.tree leave:

S h r u b s , - C o n i f e r s

Broad perennial tree leaves

0 . 0 0 0 1

t

i

I I m ~

r-l----q f - y - -

P

0 . 0 0 1

i

** I'---f]

I I t'---

I I I '

7--3---1 , F ~

I I

]

O P

I

0.01

�9

0 . 1 0 5 0 0 1 0 0 0 1 5 0 0 2 0 0 0

b

. O �9

.

[

D e c o m p o s i t i o n r a t e s ( d a y -1 )

Fig. 1. Box plots showing the distribution of detritus decomposition rates and half-lives for detritus of different sources. Boxes encom- pass the 25 and 75% quartiles of all the data for each plant type, the central line represents the median, bars extend to the 95%

H a l f - l i f e o f d e t r i t u s ( d a y s )

confidence limits, asterisks-represent observations extending be- yond the 95% confidence limits, and circles represent observations beyond the 99% confidence limits

Table 1. Regression equations between detritus decomposition rate (K, In units day x) and carbon (C), phosphorus (P), nitrogen (N), and lignin concentrations (as % DW) in the plant litter

Variable Intercept Slope N Slope P Slope C Slope n r z F P dependent lignin

k -2.45 1.19+0.095 231 0.40 155 <0.001 k - 1.42 0.93 • 0.066 143 0.58 198 < 0.001 k 1.17 -2.1• 78 0.12 11.6 <0.001 k - 1.38 - 1.04• 0.20 54 0.32 25 .8 <0.001 k - 1 . 8 9 0.80• 0.50• 141 0.64 123 <0.001 k -0.22 0.71 • 0.220 0.66+0.154 - 1.0• 50 0.85 92 < 0.001 k - 1.87 0.31 ~ 0.240 0.39• -0.22• 43 0.37 9.14 < 0.001

Submersed detritus: k -2.30 1.33• 136 0.50 134 <0.001 k - 1.22 1.01 • 80 0.66 153 <0.001

Terrestrial detritus: k -2.77 0.48• 98 0.14 17 <0.001 k - 2.20 0.46 • 0.09 66 0.26 24 < 0.001

All variables were tog-transformed prior to regression analyses. Also shown are the SE of the regression coefficients, the number of observations involved (n), the coefficient of determination (r2), the

F-statistic (F), and the associated probability level (P) for the regres- sion analysis

amphib ious and submerged freshwater plants (Fig. 1), which had average half-lives between 17 and 58 days, and were slowest for litter derived f rom shrubs and perennial- leaf trees, which had average half-lives ranging between 2 and 3 years (Fig. 1). Lit ter nutr ient concent ra t ions also differed significantly accord ing to the detritus source ( A N O V A , F = 17.9 and 16.8 for N and P, respectively, P < 0.001), such that plants whose detritus decomposed fast also tended to p roduce detritus with high ni t rogen and phosphorus concentra t ions .

Decompos i t i on rates were s t rongly positively cor- related with the initial ni t rogen and phosphorus concen- t rat ion o f the detritus ( r = 0 . 6 4 and 0.76, respectively, P < 0.0001 ; Table 1, Fig. 2), and were weakly, negatively correlated to its c a rbon concent ra t ion ( r = - 0 . 3 7 ;

P < 0 . 0 0 5 ; Table 1). Regression analysis indicated that decomposi t ion rates ( k ) increased linearly (Ho: slope= 1, t-test, P > 0.05) with increasing litter ni t rogen and phosphorus concentra t ions (Table 1). This implies that half-lives (half life = k -1 In 2), and, therefore, de- tritus turnover times are inversely scaled to litter nutr ient concentrat ion. Detr i tus lignin content was negatively correlated with its n i t rogen and phosphorus contents (r = - 0.36 and - 0.57, respectively, P < 0.05), and was significantly, negatively related to litter decompos i t ion rates (Table 1), suppor t ing the impor tance o f ca rbon quali ty on decompos i t ion rates (e.g. Melillo et al. 1982; Aber et al. 1990; U p a d h y a y et al. 1989).

The relationships between decompos i t ion rates and ni trogen and phosphorus concent ra t ions differed signifi-

Page 4: Patterns in decomposition rates among photosynthetic organisms

460

0.1

0.01

0.001

0 . 0 0 0 1

0 . 0 1

o ~ o

eo o

I I

0.10

, , - . /t ,

o ~/y'o_ wO~O e ~0

I I I

1 1 0 0 . 0 0 1 0 . 0 1 0 . 1 1

Nitrogen (% DW) Phosphorus (% DW)

10

Fig. 2. The relationships between de- composition rate and the initial nitro- gen and phosphorus concentrations in the detritus. S o l i d l ines represent the fitted regression lines (Table 1), and o p e n a n d s o l i d c i rc l e s represent detritus decomposing on land and submersed, respectively

' O . 1

0 . 0 1 e~ 0

0 . 0 O l E 0

j 9 6

O . O 0 0 l

0 . 0 1 0 . 1 0 1 0

N i t r o g e n c o n t e n t (% D W ) Fig. 3. Regression lines describing the relationships between decom- position rates and nitrogen and phosphorus concentrations for detritus of different sources. L i n e s extend the range of nutrient con- centrations for detritus source in the data set. 1 - microalgae;

i

t_

e~ 0

E 0

0 . 1

0 . 0 1 --

0 . 0 0 1 --

0 . 0 0 0 1

0 . 0 0 1

2 1

3 5

8 6

4

9

I I I

0 . 0 1 0 . 1 0 1 0

P h o s p h o r u s c o n t e n t ( % D W )

2 - freshwater plants; 3 amphibious plants; 4 macroalgae; 5 - seagrasses; 6 - grasses; 7 - sedges; 8 - mangroves; 9 - broad deciduous tree leaves; 10 - shrubs; 11 - conifers; 12 - broad perennial tree leaves

cantly depending on detritus origin (ANCOVA, F= 11.2 and 5.0, P < 0.001, for nitrogen and phosphorus concen- trations, respectively), which accounted for 32 % and 24 % of the unexplained variance in the relationship between decomposition rate and litter nitrogen and phosphorus concentrations, respectively. Decomposition rate of am- phibious plant litter increased fastest with increasing nitrogen and phosphorus concentration (Fig. 3, Table 2), and no relationship between litter nitrogen or phospho- rus content and decomposition rate was observed within some litter sources (e.g. phytoplankton, freshwater angiosperms; Fig. 3, Table 2). These differences were partially attributable to the different habitats where the detritus decomposed, for litter decomposed faster, for a given nutrient concentration, in water than on land (AN- COVA, F=12.4 and 4.9, P<0.001, for nitrogen and phosphorus, respectively), consistent with the stimulato- ry effect of moisture on decomposition rates (Swift et al. 1979). Moreover, decomposition rates of submerged plant detritus were strongly, linearly scaled to nutrient concentrations (Table 1), whereas those of plant material

decomposing on land were much weaker and scaled as the 1/2 power of nutrient concentration (Table 1).

The large variance in detritus decomposition rates unexplained by nitrogen or phosphorus concentration, as well as the lack of relationship within some sources of detritus, may be partially attributable to the need to consider the effects of carbon, nitrogen and phosphorus contents on plant decomposition in concert. This has been achieved in the past using the carbon/nitrogen and carbon/phosphorus ratios of the detritus, which reflect the relative limitation of decomposers by carbon - and energy - versus nutrients (e.g. Twilley et al. 1986; Taylor et al. 1989; Reddy and DeBusk 1991; and others). We also found strong negative correlations between decom- position rates and C/N and C/P ratios (Fig. 4), and simultaneous consideration of detritus nitrogen, phos- phorus, and carbon concentrations accounted for most (89%, SE of regression estimates = 1.7-fold) of the vari- ance in decomposition rates (Table 1), independently of detritus origin (ANCOVA, F-test, P>0.05). A similar relationship based on lignin, nitrogen, and phosphorus

Page 5: Patterns in decomposition rates among photosynthetic organisms

461

Table 2. Regression equations between detritus decomposition rate (K, in units d 1) and nitrogen (N), and phosphorus (P) concentrations (as % DW), for the different detritus sources in the data set

Plant type Intercept Slope N Intercept Slope P Range n r 2 F P

Phytoplankton N - 1.51 0.314- 0.274 (8.94-2.30) 15 0.02 1.24 0.286 P - 1.26 0.23 • 0.204 (1.70-0.26) 13 0.02 1.25 0.287

Macroalgae N - 1.46 - 1.30 • 0.662 (3.92-1.00) 8 0.29 3.85 0.098 P - 1.54 1.11 • 1.401 (0.36-O.19) 6 0.000 0.63 0.473

Seagrasses N -2.19 0.16• (4.36-0.53) 24 0.000 0.15 0.702 P - 1.64 0.41 • 0.068 (2.50-0.04) 7 0.85 35.33 0.002

Freshwater N - 1 . 5 5 0.40:t:0.516 (3.66-1.15) 17 0.000 0.59 0.454 angiosperms P - 1 . 2 9 0.134-0.230 (0.85-0.10) 14 0.000 0.35 0.580

Amphibious plants N - 2.35 1.98 4- 0.384 (3.25-0.59) 12 0.701 26.75 0.000 P - 0.42 2.22 • 0.343 (0.47-0.08) 9 0.836 41.75 0.000

Sedges N - 1.78 0.744- 0.188 (2.77-0.18) 50 0.505 50.92 0.000 P - 1.78 0.744- 0.188 (0.29-0.01) 24 0.388 15.56 0.001

Mangroves N -2.17 1.62:6 1.046 (1.24-0.36) 8 0.165 2.38 0.174 P -3.71 1.564-0.739 (0.13-0.06) 4 0.537 4.47 0.169

Grasses N -2.48 0.6012.62 (3.52-0.18) 9 0.341 5.14 0.058 P - 1 . 8 5 0.684-0.165 (0.58-0.02) 8 0.699 17.22 0.006

Shrubs N - 2.62 1.19 4- 0.464 (2.15-0.44) 18 0.247 6.57 0.040 P - 1.96 0.574- 0.208 (0.56-0.005) 14 0.329 7.38 0.019

Conifers N - 2.91 0.71 4- 0.227 (4.96-0.35) 25 0.271 9.93 0.040 P -2.02 0.764-0.265 (0.55-0.02) 15 0.340 8.22 0.013

Broad deciduous tree N - 2.70 0.08 ~: 0.209 (3.07-0.07) 43 0.000 0.15 0.704 leaves P - 2.31 0.25 4- 0.291 (0,28-0,02) 26 0.000 0.76 0.391

Broad perennial tree N -2.14 1.53i363 (0.70-0.13) 6 0.770 17.76 0.014 leaves P - 1.57 0.76 • 0.329 (0.06-0.004) 6 0.465 5.34 0.082

All variables were log-transformed prior to regression analyses. Also shown are the SE of the regression coefficients, the range of nitrogen and phosphorus concentrations for the different sources of

detritus, the number of observations involved (n), the coefficient of determination (r2), the F-statistic (F), and the associated probability level (P) for the regression analysis

"7

0 .1

0 .01

0 .001

0 .0001

1 1000 10

6 6 z \ 0 I �9 o d ~t. o . ~ . $" 4 i t . . �9 �9 0 0 o �9

I r

10 100

C / N

I I

100 1000 10000

C/P

Fig. 4. The relationship between detritus decomposition rate and initial C/N and C/P atomic ratios. Solid lines represent the fitted re- gression lines

concen t ra t ions , was m u c h w e a k e r (37% o f the var iance expla ined , SE o f regress ion es t imates = 2.2-fold), pe rhaps because o f the n a r r o w e r r ange o f de t r i tus sources for which es t imates o f l ignin concen t r a t i on were avai lable .

N i t r o g e n a n d p h o s p h o r u s concen t r a t i ons in the p l a n t de t r i tus were h ighly co r r e l a t ed ( r = 0.83, P < 0.0001), as d e m o n s t r a t e d for te r res t r ia l ( G a r t e n 1976) and aqua t i c (Dua r t e 1990, 1992) p lants . The s t rong co l inear i ty be- tween p h o s p h o r u s a n d n i t rogen concen t r a t ions implies tha t the coefficients o f d e t e r m i n a t i o n o b t a i n e d in the mul t ip le regress ion analys is (Tab le 1) m a y be inflated, and the regress ion coefficients b iased ( D r a p e r and Smi th

1966). The s ta t is t ica l influence o f l i t ter n i t rogen, phos- phorus , and c a r b o n (or l ignin) concen t r a t ions on de- c o m p o s i t i o n ra tes is bes t depic ted , therefore , as a mix tu re o f d i rec t (i.e. d e p e n d e n t on the concen t r a t i on o f a par - t icu lar e lement) and indi rec t effects, ac t ing t h r o u g h the re la t ionsh ip to o the r nu t r ien ts (Fig. 5). W e used p a t h analys is (Wi l l iams et al. 1990) to e luc ida te these di f ferent effects. This showed tha t ind i rec t effects were indeed i m p o r t a n t , and accoun ted for 52% and 44% o f the effect o f n i t rogen and p h o s p h o r u s , respect ively, on l i t ter de- c o m p o s i t i o n rates (Fig. 5), whereas no signif icant d i rec t effect cou ld be a t t r i bu t ed to differences in c a r b o n concen-

Page 6: Patterns in decomposition rates among photosynthetic organisms

462

~ 0 N, 0.41 P, 0.03 C)

�9 86 0 . 8 7 ~ -0 17 Phosphorus " �9 �9 i ' k (0.48 P, 0.34 N, 0 . 0 4 y Decompos i t ion

\ ~ Ca~rbon ~ -0.37 (-0"18 c, -0.07 N, -0.12 p)

rate

N i t rogen �9 ~ / ~ 0 . 4 9 ( 0 . 1 9 N, 0.26 P, 0.04 Lignin) 1 3 / / 0 . 6 1

0!36 Phosnl~orus 0.61 ~ . . " " P - - (0.43 P, 0.12 N, 0.06 lignin~,,~" Decompos i t ion rate

\ \ 0 . .... ~ / - 0 . 4 3 (-0.11 Lignin, -0.07 N, -0.25 P)

Lignin

Fig. 5a, b. Path diagrams describing the structure of the relationship be- tween decomposition rates and a ni- trogen, phosphorus and carbon, or b lignin concentrations. Numbers in bold type show the Pearson correla- tion coefficients among the variables, and numbers in parentheses partition the Pearson correlations between de- composition rates and nutrient con- centration into direct and indirect (i.e. attributable to indirect relation- ships to other variables) effects (cf. Williams et al. 1990)

tration. Similarly, path analysis on the smaller data set for which lignin concentration was available also re- vealed no significant direct effect of lignin concentration on detritus decomposition rates (Fig. 5).

These results provide evidence of the importance of the nitrogen and phosphorus concentration in the plant litter in regulating decomposition rates, consistent with current knowledge of microbial nutrient requirements. That detritus carbon concentrations were not particular- ly important in accounting for differences in decom- position rates is expected from the high C/N and C/P ratios characteristic of plant detritus (Fig. 4), relative to those of bacteria (Thayer 1974; Swift et al. 1979) and saprophytic fungi (Findlay 1934; Swift et al. 1979). The lack of strong relationships between detritus carbon or lignin concentrations and decomposition rates does not conflict with the important role of carbon quality in regulating decomposition rates. Instead, it probably re- flects the fact that carbon quality is a compound variable, involving a broad array of compounds besides lignin in the diverse set of detritus sources compared here. These results are, therefore, consistent with previous reports that differences in decomposition rates were best related to nutrient content when comparing litters from a broad range of plant sources, but to carbon quality when com- paring litter derived from similar plants (Taylor et al. 1989). The relationship between plant decomposition rates and detritus carbon, nitrogen and phosphorus con- centration found here accounted for most (89%) of the differences in the decomposition rates of detritus derived from photosynthetic organisms ranging from unicellular microalgae to trees. These results highlight, therefore, the importance of the nutritional balance (C :N :P) of plant detritus in regulating decomposition rates.

The nutritional balance of plant detritus plays, therefore, an important role in the control of material

flow in ecosystems. Nutrient constraints on carbon flow through detrital food webs may be, at least qualitatively, similar to the demonstrated importance of plant nutrient status for herbivory (e.g. Mattson 1980). Microbial de- composers also play a major role in the digestion of the plant material ingested by herbivores, so that the diges- tion process in herbivore guts involves, in fact, decom- position. Thus, there are close relationships between plant nutrient status and herbivory (Mattson 1980), and between plant nutrient concentration and the efficiency of conversion of ingested food (Mattson 1980). The par- allel between detritivory and herbivory extends beyond nutrient control of their rates. For instance, increasing temperature accelerates decomposition rates (Godshalk and Wetzel 1978; Swift et al. 1979; Best et al. 1990; Aizaki and Takamura 1991). Likewise, the digestive tracts of homeotherm herbivores provide, compared with those of poikilotherms, a suitable "digestion reactor" with high temperatures enabling efficient microbial activ- ity (Swift et al. 1979). Thus, herbivory and detritivory are, to some extent, constrained by similar factors, through similar causes. The recent awareness of the im- portance of microbial heterotrophs as links between pri- mary produceres and herbivores in planktonic ecosys- tems (i.e. the microbial loop, Azam et al. 1983), may well reflect the general structure of ecosystems, where primary producers and herbivores are linked by such microbial loop (whether internally, i.e. intestinal flora, or external- ly, i.e. decomposers).

The important role of nutrients in controlling plant decomposition rates has also the indirect effect of cou- pling growth and decomposition rates, for fast-growing plants tend to have high nutrient concentrations (Chapin et al. 1987), and also decompose fast because of the adequacy of their litter as substrate for microbial growth. Exceptions to this rule are systems where climatic con-

Page 7: Patterns in decomposition rates among photosynthetic organisms

463

ditions reduce decompos i t ion rates, such as water- logged soils, lakes, and the sea floor, where plant decompos i t ion is reduced by low p H and /o r anoxia (Godsha lk and Wetzel 1978; Swift et al. 1979; Best et al. 1990), leading to an inordinate accumula t ion o f organic matter . H o w - ever, the general associat ion o f fast g rowth rates with fast decompos i t ion rates, resulting f rom the control l ing role o f nutrients in bo th processes, acts to prevent the accu- mula t ion o f ca rbon and associated nutrients as plant detritus. Conversely, the associat ion between slow plant g rowth rates and slow litter decompos i t ion rates ensures the release o f nutrients f rom plant detritus at rates slow enough to allow for efficient recycling. These pat terns are conducive, therefore, to an overall balance between the magni tude o f living and detrital p lant material, which is p robab ly a fundamenta l aspect o f ecosystem funct ioning and plant succession.

References

Aber JD, Melillo JM, McClaugherty CA (1990) Predicting long- term patterns of mass loss, nitrogen dynamics, and soil organic matter formation from initial fine litter chemistry in temperate forest ecosystems. Can J Bot 68: 2201-2208

Aerts R (1989) Aboveground biomass and nutrient dynamics of Calluna vulgaris and Molinia caerulea in a dry heathland. Oikos 56:31-38

Aizaki M, Takamura N (1991) Regeneration of nutrient and de- tritus formation from aerobic decomposition of natural Phyto- plankton. Jpn J Limnol 52:83-94

Albright LJ, Chocair J, Masuda K, Vald6s M (1980) In situ degra- dation of the kelps Macrocystis integrifolia and Nereocystis luetkeana in British Columbia coastal waters. Nat Can 107:3-10

Andersen FO (1978) Effects of nutrient level on the decomposition of Phragmites eommunis Trin Arch Hydrobiol 84: 42-54

Atchley WR, Anderson D (1978) Ratios and the analysis of biologi- cal data. Syst Zoo1 27:71-78

Azam F, Fenchel T, Field JG, Meyer-Reil LA, Thingstad F (1983) The ecological role of water-column microbes in the sea. Mar Ecol Prog Ser 10:257-263

Bastardo H (1979) Laboratory studies on decomposition of littoral plants. Polskie. Arch Hydrobiol 26:267-299

Bayley SE, Zoltek J Jr, Hermann AJ, Dolan TJ, Tortora L (1985) Experimental manipulation of nutrients and water in a fresh- water marsh: Effects on biomass, decomposition, and nutrient accumulation. Limnol Oceanogr 30:500-512

Benner R, Fogel ML, Sprague EK (1991) Diagenesis of below- ground biomass of Spartina alterniflora in salt-marsh sediments. Limnol Oceanogr 36:1358-1374

Berg B, Ekbohm G (1991) Litter mass-loss rates and decomposition patterns in some needle and leaf litter types. Long-term decom- position in a Scots pine forest VII. Can J Bot 69:1449-1456

Berg B, Tamm CO (1991) Decomposition and nutrient dynamics of litter in long-term optimum nutrition experiments. Scand J For Res 6: 305-321

Berg B, Wessen B, Ekbohm G (1982) Nitrogen level and decom- position in Scots pine needle litter. Oikos 38:291-296

Best EPH, Dassen JHA, Boon JJ, Wiegers G (1990) Studies on decomposition of Ceratophyllum demersum litter under labora- tory and field conditions: losses of dry mass and nutrients, qualitative changes in organic compounds and consequences for ambient water and sediments. Hydrobiologia 194: 91-114

Biddanda BA (1988) Microbial aggregation and degradation of phytoplankton-derived detritus in seawater. II. Microbial me- tabolism. Mar Ecol Prog Ser 42:89-95

Birch PB, Gabrielson JO, Hamel KS (1983) Decomposition of Cladophora. I. Field studies in the Peel-Harvey estuarine sys- tem, Western Australia. Bot Mar 26:165-171

Bockheim JG, Jepsen EA, Heisey DM (1991) Nutrient dynamics in decomposing leaf of four tree species on a sandy soil in north- western Wisconsin. Can J For 21 : 803-812

Breteler RJ, Teal JM (1981) Trace element enrichments in decom- posing litter of Spartina alterniflora. Aquat Bot 11 : 111-120

Briggs SV, Maher MT, Tongway DJ (1985) Dry matter and nutrient loss from decomposing Vallisneria spiralis L. Aquat Bot 22:387-392

Brock TCM (1984) Aspects of the decomposition of Nymphoides peltata (Gmel.) O. Kuntze (Menyantheceae). Aquat Bot 19:131-156

Brock TCM, De Lyon MJH, Van Laar EMJM, Van Loon EMM (1985) Field studies on the breakdown ofNuphar lutea (L.) SM. (Nymphaeaceae), and a comparison of three mathematical models for organic weight loss. Aquat Bot 21 : 1-22

Chapin FS III (1980) The mineral nutrition of wild plants. Annu Rev Eeol Syst 11 : 233-260

Chapin FS III, Bloom AJ, Field CB, Waring RH (1987) Plant responses to multiple environmental factors. BioScience 37: 49-57

Chayes F (1971) Ratio correlations. University of Chicago Press, Chicago

Coley PD, Bryant JP, Chapin FS III (1985) Resource availability and plant antiherbivore defense. Science 230:895-899

Davis SM (1991) Growth, decomposition, and nutrient retention of Cladiumjamaicense Crantz and Typha dominguensis Pers. in the Florida Everglades. Aquat Bot 40:203-224

De Busk TA, Dierberg FE (1984) The effect of nitrogen and fiber content on the decomposition of the water hyacinth (Eichhornia erassipes (Mart.) Solms.). Hydrobiologia 118 : 199-204

Draper NR, Smith H (1966) Applied regression analysis. Wiley Duarte CM (1990) Seagrass nutrient concentration. Mar Ecol Prog

Ser 67:201-207 Duarte CM (1992) Nutrient concentration of aquatic plants: Pat-

terns across species. Limnol Oceanogr 37:882-889 Escudero A, Sanz SE, Del Arco JM, Garrido MV (1991) Leaf litter

decomposition in a mountain stream. Verb Int Vet Limnol 24:1987-1993

Fahey TJ, Stevens PA, Hornung M, Rowland P (1991) Decom- position and nutrient release from logging residue following conventional harvest of Sitka spruce in North Wales. Forestry 64: 289-301

Findlay WPK (1934) Studies in the physiology of wood-decay fungi. I. The effect of nitrogen content upon the rate of decay. Ann Bot 46:109-117

Findlay S, Howe K, Austin HK (1990) Comparison of detritus dynamics in two tidal freshwater wetlands. Ecology 71:288-295

Gabrielson JO, Birch PB, Hamel KS (1983) Decomposition of Cladophora. II. In vitro studies of nitrogen and phosphorus regeneration. Bot Mar 26:173-179

Garber JH (1984) Laboratory study of nitrogen and phosphorus remineralization during the decomposition of coastal plankton and seston. Estuarine Coastal Shelf Sci 18:685-702

Garten CT Jr (1976) Correlation between concentrations of ele- ments in plants. Nature 261:686-688

Gessner MO, Meyer E, Schwoerbel J (1991) Rapid processing of fresh leaf litter in an upland stream. Verh Int Verein Limnol 24:1846-1850

Godshalk GL, Wetzel RG (1978a) Decomposition of aquatic angiosperms. II. Particulate components. Aquat Bot 5:301-327

Godshalk GL, Wetzel RG (1978b) Decomposition of aquatic angiosperms. III. Zostera marina L. and a conceptual model of decomposition. Aquat Bot 5:329-354

Goldman JC, Caron DA, Dennett MR (1987) Regulation of gross growth efficiency and ammonium regeneration in bacteria by substrate C:N ratio. Limnol Oceanogr 32:1239-1252

Golterman HL (1972) The role of phytoplankton in detritus forma- tion. Mem Ist Ital Idrobiol 29:89-103

Page 8: Patterns in decomposition rates among photosynthetic organisms

464

Gosz JR, Likens GE, Bormann FH (1973) Nutrient release from decomposing leaf and branch litter in the Hubbard Brook Forest, New Hampshire. Ecol Monogr 43:173-191

Haines EB, Hanson RB (1979) Experimental degradation of de- tritus made from the salt marsh plants Spartina alterniflora Loisel, Salicornia virginica L., and Juncus roemerianus Scheele. 1979. J Exp Mar Biol Ecol 40:27-40

Harrison PG (1982) Control of microbial growth and of amphipod grazing by water soluble compounds from leaves of Zostera marina. Mar Biol 67:225-230

Harrison PG (1989) Detrital processing in seagrass systems: a review of factors affecting decay rates, remineralization and detritivory. Aquat Bot 23:263-288

Hemminga MA, Buth GJC (1991) Decomposition in salt marsh ecosystems of the S.W. Netherlands: the effects of biotic and abiotic factors. Vegetatio 92: 73-83

Hemminga MA, Nieuwenhuize J (1991) Transport, deposition and "in situ" decay of seagrasses in a tropical mudflat area (Banc D'Arguin, Mauritania). Neth J Sea Res 27:183-190

Hill BH (1979) Uptake and release of nutrients by aquatic ma- crophytes. Aquat Bot 7:87-93

Iversen TM (1973) Decomposition of autumn-shed beech leaves in a springbrook and its significance for the fauna. Arch Hydrobiol 72: 305-312

Joergensen RG (1991) Organic matter and nutrient dynamics of the litter layer on a forest rendzina under beech. Biol Fertil Soils 11 : 163-169

Joergensen RG, Meyer B (1990) Nutrient changes in decomposing beech leaf litter assessed using a solution flux approach. J Soil Sci 41 : 279-293

Kenworthy WJ, Thayer GW (1984) Production and decomposition of the roots and rhizomes of seagrasses, Zostera marina and Thalassia testudinum, in temperate and subtropical marine eco- systems. Bull Mar Sci 35:364-379

Lee SY (1989) The importance of sesarminae crabs Chiromanthes spp. and inundation frecuency on mangrove (Kandelia candel (L.) Druce) leaf litter turnover in a Hong Kong tidal shrimp pond. J Exp Mar Biol Ecol 131:23-43

Mattson, WJ Jr (1980) Herbivory in relation to plant nitrogen content. Annu Rev Ecol Syst 11 : 119-161

McClaugherty CA, Pastor J, Aber JD (1985) Forest litter decom- position in relation to soil nitrogen dynamics and litter quality. Ecology 66: 266-275

Melillo JM, Aber JD, Muratore JM (1982) Nitrogen and lignin control of hardwood leaf litter decomposition dynamics. Ecol- ogy 63:621-626

Mitchell DT, Coley PGF, Webb S, Allsopp N (1986) Litterfall and decomposition processes in the coastal fynbos vegetation, South-Western Cape, South Africa. J Ecol 74:977-993

Neely RK, Davis CB (1985) Nitrogen and phosphorus fertilization of Sparganium eurycarpum Engelm. and Typha glauca Godr. Stands. II. Emergent plant decomposition. Aquat Bot 22:363-375

Nelson WJ, Kadlec JA, Murkin HR (1990) Seasonal comparison of weight for two types of Typha glauca Godr. leaf litter. Aquat Bot 37:299-314

Newell RC, Lucas MI, Linley EAS (1981) Rate of degradation and efficiency of conversion of phytoplankton debris by marine micro-organisms. Mar Ecol Prog Ser 6:123-136

Newell SY, Fell JW, Statzell-Tallman A, Miller C, Cefalu R (1984) Carbon and nitrogen dynamics in decomposing leaves of three coastal marine vascular plants of the subtropics. Aquat Bot 19:183-192

Newell SY, Fell JW, Miller C (1986) Deposition and decomposition of Turtlegrass leaves. Int Rev Ges Hydrobiol 71 : 363-369

O'Connell AM (1987) Litter dynamics in Karri (Eucalyptus diver- sicolor) forest of South-Western Australia. J Ecol 75 : 781-796

O'Connell AM (1988) Nutrient dynamics in decomposing litter in karri (Eucalyptus diversicolor F. Murll.) forests of South- Western Australia. Journal of Ecology 76:1186-1203

Olson JS (1963) Energy storage and the balance of producers and decomposers in ecological systems. Ecology 44:327-332

Otsuki A, Hanya T (1972) Production of dissolved organic matter from dead green algal cells. I. Aerobic microbial decomposition. Limnol Oceanogr 17:248-257

Palm CA, Sanchez PA (1990) Decomposition and nutrient release patterns of the leaves of three tropical legumes. Biotropica 22:330-338

Peduzzi P, Herndl GJ (1991) Decomposition and significance of seagrass leaf litter (Cymodocea nodosa) for the microbial food web in coastal waters (Gulf of Trieste, Northern Adriatic Sea). Mar Ecol Prog Ser 71 : 163-174

Pellikaan GC (1982) Decomposition processes of eelgrass, Zostera marina L. Hydrobiol Bull 16:83-92

Pellikaan GC (1984) Laboratory experiments on eelgrass (Zostera marina) decomposition. Neth J Sea Res 18: 360-383

Persson T, B~gtth E, Clarholm M, Lundkvist H, Stderstr6m B, Sohlenius B (1980) Trophic structure, biomass dynamics and carbon metabolism of soil organisms in a Scots pine forest. Eeol Bull 32: 419-462

Reddy KR, DeBusk WF (1991) Decomposition of water hyacinth detritus in eutrophic lake water. Hydrobiologia 211:101-109

Robertson AI, Daniel PA (1989) Decomposition and the annual flux of detritus from fallen timber in tropical mangrove forest. Limnol Oceanogr 34: 640-646

Rogers KH, Breen CM (1982) Decomposition of Potamogeton crispus L. : The effects of drying on the pattern of mass and nutrient loss. Aquat Bot 12:1-12

Romero J, Pergent G, Pergent-Martini C, Mateo MA, Regnier C (1992) The detritic compartment in a Posidonia oceanica mead- ow: litter features, decomposition rates and mineral stocks. Mar Ecol PSZNI 13: 69-83

Rublee PA, Roman MR (1982) Decomposition of turtlegrass (Thalassia testudinum Koning) in flowing sea-water tanks and litterbags: compositional changes and comparisons with natural particulate matter. J Exp Mar Biol Ecol 58:47-58

Schlesinger WH (1985) Decomposition of chaparral shrub foliage. Ecology 66:1353-1359

Seastedt TR (1988) Mass, nitrogen and phosphorus dynamics in foliage and root detritus of tallgrass prairie. Ecology 69: 59-65

Sharma E, Ambasht RS (1987) Litterfall, decomposition and nu- trient release in an age sequence of Alnus nepalensis plantation stands in the eastern Himalaya. J Ecol 75:997-1010

Swift M J, Heal OW, Anderson JM (1979) Decomposition in terres- trial ecosystems (Studies in Ecology Vol. 5). Blackwell, Oxford

Tanaka Y (1991) Microbial decomposition of reed (Phragmites communis) leaves in a saline lake. Hydrobiologia 220:119-129

Taylor BR, Parkinson D, Parsons WFJ (1989) Nitrogen and lignin content as predictors of litter decay rates: a microcosm test. Ecology 70: 97-104

Tenny FG, Waksman SA (1929) Composition of natural organic materials and their decomposition in the soil. IV. The nature and rapidity of decomposition of the various organic complexes in the different plant materials, under aerobic conditions. Soil Sci 28 : 55-84

Tezuka Y (1990) Bacterial regeneration of ammonium and phos- phate as affected by the carbon : nitrogen : phosphorus ratio of organic substrates. Microb Ecol 19:228-238

Thayer GW (1974) Identity and regulation of nutrients limiting phytoplankton production in the shallow estuaries near Beau- fort, N.C. Oecologia 14:75-92

Twilley RR, Blanton LR, Brinson MM, Davis GJ (1985) Biomass production and nutrient cycling in aquatic macrophyte com- munities of the Chowan River, North Carolina. Aquat Bot 22: 231-252

Twilley RR, Ejdung G, Romare P, Kemp M (1986) A comparative study of decomposition, oxygen consumption and nutrient re- lease for selected aquatic plants occurring in an estuarine en- vironment. Oikos 47:190-198

Upadhyay VP, Singh JS, Meentemeyer V (1989) Dynamics and weight loss of leaf litter in Central Himalayan forests: abiotic versus litter quality influences. J Ecol 77:147-161

Valiela I, Wilson J, Buchsbaum R, Rietsma C, Bryant D, Foreman K, Teal J (1984) Importance of chemical composition of salt

Page 9: Patterns in decomposition rates among photosynthetic organisms

465

marsh litter on decay rates and feeding by detritivores. Bull Mar Sci 35:261-269

Vadstein O, Olsen Y (1989) Chemical composition and phosphate uptake kinetics of limnetic bacterial communities cultures in chemostats under phosphorus limitation. Limnol Oceanogr 34:939-946

Van der Valk AG, Attiwill PM (1984) Decomposition of leaf a n d root litter of Avicennia marina at Westernport bay, Victoria, Australia. Aquat Bot 18: 205-221

Van der Valk AG, Rhymer JM, Murkin HR (1991) Flooding and the decomposition of litter of four emergent plant species in a prairie wetland. Wetlands 11 : 1-16

Wahbeh MI, Mahasneh AM (1985) Some aspects of decomposition of leaf litter of the seagrass Halophila stipulacea from the Gulf of Aqaba (Jordan). Aquat Bot 21:237-244

Walsh I, Dymond J, Collier R (1988) Rates of recycling of biogenic components of settling particles in the ocean derived from sedi- ment trap experiments. Deep-Sea Res 35:43-58

Williams WA, Jones MB, Demment MW (1990) A concise table for path analysis statistics. Agron J 82:1022-1024

Yavitt JB, Fahey TJ (1986) Litter decay and leaching from the forest floor in Pinus contorta (Lodgepole pine) ecosystems. J Ecol 74:525-545

Page 10: Patterns in decomposition rates among photosynthetic organisms

App

endi

x. N

utri

ent

cont

ent,

dec

ompo

siti

on r

ate,

and

pla

nt a

nd e

xper

imen

tal

char

acte

rist

ics

for

the

plan

t de

com

posi

tion

exp

erim

ents

com

pile

d in

the

dat

a se

t us

ed h

ere

Pla

nt t

ype

Spec

ies

Fra

ctio

n C

ondi

tion

s %

N

%P

%C

C

N

CP

K

(d-1

) A

utho

r

Aqu

atic

pla

nts

."

Phy

topl

ankt

on

Mac

roal

gae

Seag

rass

es

Mix

ed n

atur

al c

omm

unit

y M

ixed

nat

ural

com

mun

ity

Mix

ed n

atur

al c

omm

unit

y C

ryso

phyc

eae

Cry

soph

ycea

e M

ixed

nat

ural

com

mun

ity

Mix

ed n

atur

al c

omm

unit

y M

ixed

nat

ural

com

mun

ity

Mix

ed n

atur

al c

omm

unit

y A

naba

ena

sp.

Mic

rocy

stis

sp.

Sy

nech

ococ

cus

sp.

Dun

alie

lla

sp.

Cyl

indr

othe

ca s

p.

Ses

ton

Skel

eton

ema

cost

atum

Sc

ened

esm

us s

p.

SkeI

eton

ema

cost

atum

C

haet

ocer

os t

rico

mut

um

Tha

lass

iosi

ra a

npst

ii

Mix

ed n

atur

al c

omm

unit

y C

hlor

ella

sp.

M

ixed

nat

ural

com

mun

ity

Mac

rocy

stis

int

egri

foli

a M

aero

cyst

is i

ntey

rifo

lia

Cla

doph

ora

aft.

albi

da

Cla

doph

ora

aft.

albi

da

Cla

doph

ora

aft.

albi

da

Cla

doph

ora

aft.

albi

da

Cla

doph

ora

aft.

albi

da

Ulv

a sp

.

Zos

tera

mar

ina

Zos

tera

mar

ina

Zos

tera

mar

ina

Zos

tera

mar

ina

Tha

lass

ia t

estu

dinu

m

Zos

tera

mar

ina

Tha

lass

ia t

estu

dinu

m

Tha

lass

ia t

estu

dinu

m

Tha

lass

ia t

estu

dinu

m

Pos

idon

ia a

ustr

alis

H

eter

ozos

tera

tas

man

ica

Zos

tera

mar

ina

Cym

odoc

ea n

odos

a T

hala

ssia

tes

tudi

num

T

hala

ssia

tes

tudi

num

Who

le o

rgan

ism

W

hole

org

anis

m

Who

le o

rgan

ism

W

hole

org

anis

m

Who

le o

rgan

ism

W

hole

org

anis

m

Who

le o

rgam

sm

Who

le o

rgam

sm

Who

le o

rgam

sm

Who

le o

rgan

ism

W

hole

org

amsm

W

hole

org

anis

m

Who

le o

rgam

sm

Who

le o

rgan

ism

W

hole

org

anis

m

Who

le o

rgam

sm

Who

le o

rgan

asm

W

hole

org

amsm

W

hole

org

anis

m

Who

le o

rgan

asm

W

hole

org

amsm

W

hole

org

amsm

W

hole

org

amsm

Sti

pes

Pho

tosy

n. t

issu

e P

hoto

syn.

tis

sue

Pho

tosy

n. t

issu

e P

hoto

syn.

tis

sue

Pho

tosy

n. t

issu

e P

hoto

syn.

tis

sue

Pho

tosy

n. t

issu

e

Mix

ed l

itte

r M

ixed

lit

ter

Lea

ves

Lea

ves

Lea

ves

Lea

ves

Lea

ves

Lea

ves

Lea

ves

Lea

ves

Lea

ves

Lea

ves

(ave

rage

) L

eave

s (a

vera

ge)

Rhi

zom

es

Roo

ts

Wat

er

8.55

0.

0360

(A

izak

i &

Tak

amur

a 19

91)

Wat

er

6.75

0.

0560

(A

izak

i &

Tak

amur

a 19

91)

Wat

er

8.26

0.

0660

(A

izak

i &

Tak

amur

a 19

91)

Wat

er

4.19

0.

800

25.5

0 7.

10

82.3

4 0.

0360

(A

izak

i &

Tak

amur

a 19

91)

Wat

er

4.19

0.

800

25.5

0 7.

10

82.3

4 0.

0360

(A

izak

i &

Tak

amur

a 19

91)

Wat

er

8.72

0.

0470

(A

izak

i &

Tak

amur

a 19

91)

Wat

er

9.29

0.

0680

(A

izak

i &

Tak

amur

a 19

91)

Wat

er

6.51

0.

0270

(A

izak

i &

Tak

amur

a 19

91)

Wat

er

7.40

0.

0980

(A

izak

i &

Tak

amur

a 19

91)

Wat

er

8.94

0.

388

0.09

80

(Aiz

aki

& T

akam

ura

1991

) W

ater

4.

34

0.60

2 0.

0528

(A

izak

i &

Tak

amur

a 19

91)

Wat

er

6.08

0.

850

29.2

7 5.

62

88.9

6 0.

0956

(B

idda

nda

1988

) W

ater

4.

52

0.98

3 45

.40

11.7

3 11

9.29

0.

0498

(B

idda

nda

1988

) W

ater

4.

19

0.80

0 25

.50

7.10

82

.34

0.04

17

(Bid

dand

a 19

88)

Wat

er

2.40

0.

260

15.1

0 7.

30

146.

00

0.02

94

(Gar

ber

1984

) W

ater

3.

30

0.69

0 27

.40

9.62

10

2.00

0.

0449

(G

arbe

r 19

84)

Wat

er

8.00

48

.00

7.00

0.

0233

(G

olte

rman

197

2)

Wat

er

5.92

1.

700

31.3

0 6.

17

52.1

7 0.

0676

(N

ewel

l et

al.

1981

) W

ater

2.

30

18.0

8 9.

19

0.06

99

(New

ell

et a

l. 19

81)

Wat

er

3.59

0.

340

22.6

0 7.

34

171.

90

0.03

88

(New

ell

et a

l. 1

981)

W

ater

11

.10

0.00

93

(Ots

uki

& H

anya

19

72)

Wat

er

6.63

1.

090

49.6

8.

73

117.

55

0.05

40

(Tw

ille

y et

al.

1986

) W

ater

5.

95

1.09

7 45

.00

8.83

10

6.00

0.

0658

(W

alsh

et

al.

1988

)

Wat

er

1.00

29

.50

34.4

2 0.

0295

(A

lbri

ght

et a

l. 19

80)

Wat

er

2.10

30

.00

16.6

7 0.

0321

(A

lbri

ght

et a

l. 1

980)

W

ater

2.

50

0.19

0 40

.00

18.6

7 54

3.86

0.

0076

(B

irch

et

al.

1983

) W

ater

3.

92

0.33

5 43

.50

12.9

5 33

0.51

0.

0082

(G

abri

elso

n et

al.

1983

) W

ater

3.

44

0.29

1 40

.70

13.8

0 36

2.56

0.

0038

(G

abri

elso

n et

al.

1983

) W

ater

3.

21

0.31

3 43

.40

15.7

7 36

1.67

0.

0076

(G

abri

elso

n et

al.

1983

) W

ater

2.

73

0.27

8 40

.30

17.2

2 37

2.74

0.

0035

(G

abri

elso

n et

al.

1983

) W

ater

2.

89

0.36

0 31

.2

12.6

0 22

3.89

0.

0230

(T

wil

ley

et a

l. 19

86)

Wat

er

20.8

0 0.

0010

(G

odsh

alk

& W

etze

l 19

78a)

W

ater

20

.80

0.00

20

(God

shal

k &

Wet

zel

1978

b)

Wat

er

1.90

0.

0035

(H

arri

son

1982

) W

ater

4.

00

0.01

80

(Har

riso

n 19

82)

Wat

er

2.80

0.

0007

(H

arri

son

1989

) W

ater

3.

50

0.00

70

(Har

riso

n 19

89)

Wat

er

2.00

0.

0170

(H

arri

son

1989

) W

ater

1.

80

0.00

85

(Har

riso

n 19

89)

Wat

er

1.80

0.

0080

(H

arri

son

1989

) W

ater

1.

90

0.00

13

(Har

riso

n 19

89)

Wat

er

3.00

0.

0040

(H

arri

son

1989

) W

ater

2.

64

0.55

0 55

.00

24.3

1 25

8.33

0.

0124

(H

emm

inga

& N

ieuw

enhu

ize

1991

) W

ater

2.

76

0.50

0 37

.00

15.6

4 19

1.17

0.

0230

(H

emm

inga

& N

ieuw

enhu

ize

1991

) W

ater

1.

12

34.4

0 35

.42

0.00

07

(Ken

wor

thy

& T

haye

r 19

84)

Wat

er

1.00

32

.00

37.3

3 0.

0183

(K

enw

orth

y &

Tha

yer

1984

)

Page 11: Patterns in decomposition rates among photosynthetic organisms

Pla

nt t

ype

Spec

ies

Fra

ctio

n C

ondi

tion

s %

N

%P

%C

C

N

CP

K

(d

1)

Aut

hor

Fre

shw

ater

an

gios

perm

s

Am

phib

ious

P

lant

s

Zos

tera

mar

ina

Roo

ts

Wat

er

0.73

32

.00

51.1

4 0.

0048

Z

oste

ra m

arin

a R

hizo

mes

W

ater

0.

53

34.4

0 74

.84

0.00

35

Thal

assi

a te

stud

inum

L

eave

s (a

vera

ge)

Wat

er

2.10

36

.30

20.1

7 0.

0048

Th

alas

sia

test

udin

um

Lea

ves

(ave

rage

) W

ater

1.

80

33.9

0 21

.97

0.02

79

Cym

odoc

ea

nodo

sa

Lea

ves

Wat

er

4.36

50

.60

13.5

4 0.

0039

Z

oste

ra m

arin

a L

eave

s W

ater

1.

61

0.55

0 28

.98

21.0

0 14

0.91

0.

0136

Z

oste

ra m

arin

a L

eave

s W

ater

2.

41

2.50

0 33

.80

16.3

6 34

.93

0.03

57

Zos

tera

mar

ina

Mix

ed l

itte

r W

ater

1.

27

2.10

0 24

.10

22.1

4 29

.65

0.03

57

Pos

idon

ia o

cean

ica

Mix

ed l

itte

r (+

woo

d)

Wat

er (

20 m

.) 1

.40

0.07

8 31

.20

26.0

0 10

40

0.00

87

Pos

idon

ia o

eean

ica

Mix

ed l

itte

r (+

woo

d)

Wat

er (

5 m

.)

0.58

0.

038

23.7

0 47

.67

1633

0.

0066

Th

alas

sia

test

udin

um

Lea

ves

Wat

er

1.86

28

.18

17.6

8 0.

0149

H

alop

hila

stip

ulac

ea

Lea

ves

Wat

er

0.00

32

Pot

amog

eton

per

foli

atus

L

eave

s W

ater

1.

15

0.04

46

Pot

amog

eton

luc

ens

Lea

ves

Wat

er

2.40

0.

160

0.05

17

Pot

amog

eton

luc

ens

Lea

ves

Wat

er

1.20

0.

100

0.04

58

Elo

dea

cana

dens

is

Lea

ves

Wat

er

1.26

0.

200

0.04

75

Elo

dea

cana

dens

is

Lea

ves

Wat

er

3.66

0.

820

0.08

59

Cer

atop

hyllu

m

Lea

ves

(ave

rage

) W

ater

3.

44

0.84

8 55

.38

18.7

8 16

8.69

0.

0247

V

allis

neri

a sp

iral

is

Lea

ves

Wat

er

2.61

0.

370

0.09

87

Naj

asfl

exil

is

Lea

ves

Wat

er

1.80

31

.2

20.2

2 0.

0070

M

yrio

phyl

lum

het

erop

hyll

um

Lea

ves

Wat

er

2 24

.7

14.4

1 0.

0090

M

yrio

phyl

lum

het

erop

hyll

um

Lea

ves

Wat

er

2 24

.7

14.4

1 0.

0340

N

ajas

flex

ilis

L

eave

s W

ater

1.

80

31.2

20

.22

0.02

80

Pot

amog

eton

nod

osus

L

eave

s (a

vera

ge)

Wat

er

2.40

0.

430

41.6

0 20

.22

249.

2 0.

0483

P

otam

oget

on c

risp

us

Lea

ves

Wat

er

2.15

0.

290

0.06

48

Pot

amog

eton

cri

spus

L

eave

s W

ater

1.

90

0.29

0 0.

0640

Ju

stic

ia a

mer

ican

a L

eave

s, p

etio

les,

ste

ms

Wat

er

0.13

7 0.

0138

Ju

stic

ia a

mer

ican

a R

oots

and

Rhi

zom

es

Wat

er

0.29

8 0.

0398

P

otam

oget

on

Lea

ves

Wat

er

1.77

0.

360

31.9

21

.03

228.

912

0.03

10

Rap

pia

Lea

ves

Wat

er

1.37

0.

510

32.6

27

.76

165.

130

0.02

80

Myr

ioph

yllu

m

Lea

ves

Wat

er

2.79

0.

560

30.4

1

2.7

1

140.

238

0.04

50

Sagi

ttar

ia l

anc~

folia

L

eave

s W

ater

2.

40

0.15

0 0.

0058

Sa

gitt

aria

lan

cifo

lia

Ste

ms

Wat

er

1.40

0.

130

0.00

76

Nym

phoi

des

pelt

ata

Pet

iole

s W

ater

77

0.

0420

N

ymph

oide

s pe

ltat

a L

ong

Sho

ots

Wat

er

178

0.04

40

Nym

phoi

des

pelt

ata

Lea

ves

Wat

er

3.24

8 0.

465

50.0

4 22

0.

0560

N

ymph

oide

s pe

ltat

a L

eave

s W

ater

3.

248

0.46

5 50

.04

16

0.09

10

Nym

phoi

des

pelt

ata

Pet

iole

s W

ater

48

0.

0450

N

ymph

oide

s pe

ltat

a R

oots

W

ater

17

9 0.

0790

N

ymph

oide

s pe

ltat

a R

oots

W

ater

13

7 0.

0490

N

ymph

oide

s pe

ltat

a S

hort

Sho

ots

Wat

er

143

0.03

50

Nym

phoi

des

pelt

ata

Lon

g S

hoot

s W

ater

15

1 0.

0370

N

ymph

oide

s pe

ltat

a S

hort

Sho

ots

Wat

er

152

0.05

50

Nup

har

vari

egat

um

Lea

ves

Wat

er

2.4

39.3

19

.14

0.06

00

Nup

har

vari

egat

um

Lea

ves

Wat

er

2.4

39.3

19

.10

0.02

00

Spar

gani

um

eury

carp

um

Mix

ed l

itte

r W

ater

1.

41

38.6

7 32

0.

0076

Sp

arga

nium

eu

ryca

rpum

M

ixed

lit

ter

Wat

er

0.59

0.

079

38.4

3 76

57

0.00

0.

0021

Sp

arga

nium

eu

ryca

rpum

M

ixed

lit

ter

Wat

er

0.59

0.

130

38.4

3 76

57

0.00

0.

0017

E

ichh

orni

a cr

assi

pes

Mix

ed l

itte

r (a

vera

ge)

Wat

er

2.53

0.

270

88.9

1 41

71

0.00

0.

0095

(Ken

wor

thy

& T

haye

r 19

84)

(Ken

wor

thy

& T

haye

r 19

84)

(New

ell

et a

l. 19

86)

(New

ell

et a

l. 19

86)

(Ped

uzzi

& H

ernd

l 19

91)

(Pel

lika

an 1

982)

(P

elli

kaan

198

4)

(Pel

lika

an 1

984)

(R

omer

o et

al.

1992

) (R

omer

o et

al.

1992

) (R

uble

e &

Rom

an

1982

) (W

ahbe

h &

Mah

asne

h 19

85)

(Bas

tard

o 19

79)

(Bas

tard

o 19

79)

(Bas

tard

o 19

79)

(Bas

tard

o 19

79)

(Bas

tard

o 19

79)

(Bes

t et

al.

1990

) (B

rigg

s et

al.

1985

) (G

odsh

alk

& W

etze

l 19

78a)

(G

odsh

alk

& W

etze

l 19

78a)

(G

odsh

alk

& W

etze

l 19

78a)

(G

odsh

alk

& W

etze

l 19

78a)

(H

ill

1979

) (R

oger

s &

Bre

en 1

982)

(R

oger

s &

Bre

en 1

982)

(T

wil

ley

et a

l. 19

85)

(Tw

ille

y et

al.

1985

) (T

wil

ley

et a

l. 19

86)

(Tw

ille

y et

al.

1986

) (T

wil

ley

et a

l. 19

86)

(Bay

ley

et a

l. 19

85)

(Bay

ley

et a

l. 19

85)

(Bro

ck /

984)

(B

rock

198

4)

(Bro

ck 1

984)

(B

rock

198

4)

(Bro

ck 1

984)

(B

rock

198

4)

(Bro

ck 1

984)

(B

rock

198

4)

(Bro

ck 1

984)

(B

rock

198

4)

(God

shal

k &

Wet

zel

1978

a)

(God

shal

k &

Wet

zel

1978

a)

(Nee

ley

& D

avis

198

5)

(Nee

ley

& D

avis

198

5)

(Nee

ley

& D

avis

198

5)

(Red

dy &

DeB

usk

1991

)

Page 12: Patterns in decomposition rates among photosynthetic organisms

4~

P

lant

typ

e Sp

ecie

s F

ract

ion

Con

diti

ons

%N

%

P %

C

CN

C

P

K (

d-l

) A

utho

r

Nup

har

lute

um

Lea

ves,

pet

iole

s, s

tem

s W

ater

2.

92

0.38

3 0.

0988

N

upha

r lu

teum

R

oots

and

rhi

zom

es

Wat

er

1.67

0.

245

0.01

42

Ter

rest

rial

pla

nts

:

Sedg

es

Ph

rag

mit

es

com

mun

is

Mix

ed l

itte

r W

ater

1.

04

0.00

1.8

Phr

agm

ites

com

mun

is

Mix

ed l

itte

r W

ater

0.

60

0.00

14

Pan

icum

sp.

Mix

ed l

itte

r W

ater

1.

60

0.07

0 0.

0071

Sp

artin

a al

tern

iflor

a R

oots

B

elow

grou

nd

0.39

38

.24

114.

39

0.00

67

Spar

tina

alte

rnifo

lia (s

hort

for

m)

Mix

ed l

itte

r S

oil/

Fer

tili

zed

2.54

41

.90

19.2

5 0.

0052

Sp

artin

a al

tern

ifolia

(tal

l fo

rm)

Mix

ed l

itte

r S

oil/

Fer

tili

zed

1.20

41

.70

40.5

4 0.

0081

Sp

artin

a al

tern

ifolia

(sho

rt f

orm

) M

ixed

lit

ter

Soi

l/C

ontr

ol

0.77

43

.10

65.3

0 0.

0033

Sp

artin

a al

tern

ifolia

(tal

l fo

rm)

Mix

ed l

itte

r S

oil/

Con

trol

0.

53

41.9

0 92

.23

0.00

63

Typh

a do

min

gens

is

Mix

ed l

itte

r W

ater

0.

50

0.01

4 0.

0010

Ty

pha

dom

inge

nsis

M

ixed

lit

ter

Wat

er

0.35

0.

012

0.00

099

Cla

dium

jam

aice

nse

Mix

ed l

itte

r W

ater

0.

40

0.02

0 0.

0013

C

ladi

um ja

mai

cens

e M

ixed

lit

ter

Wat

er

0.50

0.

022

0.00

07

Cla

dium

jam

aice

nse

Mix

ed l

itte

r W

ater

0.

30

0.00

6 0.

0007

Ty

pha

dom

inge

nsis

M

ixed

lit

ter

Wat

er

0.50

0.

028

0.00

21

Typh

a m

arsh

M

ixed

lit

ter

Wat

er

0.48

0.

001

Scir

pus

subt

erm

inal

is

Mix

ed l

itte

r W

ater

1.

2 30

.4

29.5

6 0.

0090

Sc

irpu

s ac

utus

M

ixed

lit

ter

Wat

er

1.5

43.6

33

.91

0.00

20

Scir

pus

acut

us

Mix

ed l

itte

r W

ater

1.

5 43

.6

33.9

1 0.

0050

Sc

irpu

s su

bter

min

alis

M

ixed

lit

ter

Wat

er

1.2

30.4

29

.56

0.00

20

Spar

tina

alte

rnifl

ora

Mix

ed l

itte

r W

ater

1.

33

0.01

11

Junc

us r

oem

eria

nus

Mix

ed l

itte

r W

ater

0.

79

0.00

91

Spar

tina

angl

ica

Mix

ed l

itte

r W

ater

1.

12

0.00

79

Spar

tina

angl

ica

Mix

ed l

itte

r W

ater

0.

71

0.00

22

Trig

loeh

in m

ariti

ma

Lea

ves

Wat

er

2.54

0.

0256

Sp

artin

a an

glie

a M

ixed

lit

ter

Wat

er

0.90

0.

0033

Sp

artin

a an

gIic

a M

ixed

lit

ter

Wat

er

1.29

0.

0093

Tr

iglo

chin

mar

itim

a M

ixed

lit

ter

Wat

er

2.09

0.

0025

Sp

artin

a an

glic

a L

eave

s W

ater

1.

67

0.00

61

Typh

a 9l

auca

M

ixed

lit

ter

Wat

er

0.48

0.

050

38.6

7 94

18

00.0

0 0.

0011

Ty

pha

glau

ca

Mix

ed l

itte

r W

ater

0.

55

38.6

6 82

0.

0016

Ty

pha

glau

ca

Mix

ed l

itte

r W

ater

0.

48

0.02

5 38

.67

94

1800

.00

0.00

11

Typh

a gl

auca

L

eave

s (s

enes

ced)

W

ater

0.

63

0.05

0 0.

0104

Ty

pha

glau

ca

Lea

ves

(gre

en)

Wat

er

2.77

0.

290

0.02

35

Junc

us r

oem

eria

nus

Mix

ed l

itte

r W

ater

0.

70

45.6

2 76

.03

0.00

17

Phr

agm

ites

eom

mun

is

Lea

ves

Wat

er

0.71

40

.00

65.7

3 0.

0045

Sp

artin

a M

ixed

lit

ter

Wat

er

1.07

0.

150

42.3

46

.12

728.

5 0.

0098

Sp

artin

a al

tern

ifolia

M

ixed

lit

ter

Wat

er

0.71

0.

0043

Sp

artin

a al

tern

ifolia

M

ixed

lit

ter

Wat

er

1.64

0.

0071

Ty

pha

glau

ca

Mix

ed l

itte

r W

ater

0.

82

0.10

8 47

.10

67.0

1 11

31.8

6 0.

0012

Sc

oloc

hloa

fest

ucac

ea

Mix

ed l

itte

r W

ater

0.

77

0.05

3 43

.10

65.3

0 21

00.7

9 0.

0016

Sc

irpu

s la

eust

ris

Mix

ed l

itte

r W

ater

0.

40

0.03

4 45

.40

132.

42

3449

.51

0.00

1 P

hrag

mite

s au

stra

lis

Mix

ed l

itte

r W

ater

0.

30

0.02

9 47

.50

187.

85

4305

.56

0.00

07

Scol

ochl

oafe

stuc

acea

M

ixed

lit

ter

Wat

er

0.87

0.

060

43.3

5 58

.13

1866

.46

0.00

22

Typh

a x

g!au

ca

Mix

ed l

itte

r W

ater

0.

75

0.09

2 46

.00

71.5

6 12

91.6

7 0.

0012

P

hrag

mite

s aus

tral

is

Mix

ed l

itte

r W

ater

0.

18

0.01

6 48

.60

315

7846

.88

0.00

03

(Tw

ille

y et

al.

198

5)

(Tw

ille

y et

al.

198

5)

(And

erse

n 19

78)

(And

erse

n 19

78)

(Bay

ley

et a

l. 19

85)

(Ben

ner

et a

l. 19

91)

(Bre

tele

r &

Tea

l 19

81)

(Bre

tele

r &

Tea

l 19

81)

(Bre

tele

r &

Tea

l 19

81)

(Bre

tele

r &

Tea

l 19

81)

(Dav

is 1

991)

(D

avis

199

1)

(Dav

is 1

991)

(D

avis

199

1)

(Dav

is 1

991)

(D

avis

199

1)

(Fin

dley

et

al.

1990

) (G

odsh

alk

& W

etze

l 19

78a)

(G

odsh

alk

& W

etze

l 19

78a)

(G

odsh

alk

& W

etze

l 19

78a)

(G

odsh

alk

& W

etze

l 19

78a)

(H

aine

s &

Han

son

1979

) (H

aine

s &

Han

son

1979

) (H

emm

inga

& B

uth

1991

) (H

emm

inga

& B

uth

1991

) (H

emm

inga

& B

uth

1991

) (H

emm

inga

& B

uth

1991

) (H

emm

inga

& B

uth

1991

) (H

emm

inga

& B

uth

1991

) (H

emm

inga

& B

uth

1991

) (N

eele

y &

Dav

is 1

985)

(N

eele

y &

Dav

is 1

985)

(N

eele

y &

Dav

is 1

985)

(N

elso

n et

al.

1990

) (N

elso

n et

al.

1990

) (N

ewel

l et

al.

198

4)

(Tan

aka

1991

) (T

wil

ley

et a

l. 19

86)

(Val

iela

et

al.

1984

) (V

alie

la e

t al

. 19

84)

(Van

der

Val

k et

al.

1991

) (V

an d

er V

alk

et a

l. 19

91)

(Van

der

Val

k et

al.

1991

) (V

an d

er V

alk

et a

l. 19

91)

(Van

der

Val

k et

al.

1991

) (V

an d

er V

alk

et a

l. 19

91)

(Van

der

Val

k et

al.

1991

)

Page 13: Patterns in decomposition rates among photosynthetic organisms

Pla

nt t

ype

Spec

ies

Fra

ctio

n C

ondi

tion

s %

N

%P

%C

C

N

CP

K

(d-

1)

Aut

hor

Man

grov

es

Gra

sses

Bro

ad

deci

duou

s tr

ee l

eave

s

Scir

pus

lacu

stri

s M

ixed

lit

ter

Wat

er

0.63

0.

051

45.3

5 83

.98

2319

.88

0.00

15

Typ

haxg

lauc

a M

ixed

lit

ter

Wat

er

0.89

0.

123

48.2

0 63

.18

1012

.33

0.00

10

Seol

oehl

oafe

stuc

aeea

M

ixed

lit

ter

Wat

er

0.97

0.

067

43.6

0 52

.44

1681

.09

0.00

23

Phr

agm

ites

aus

tral

is

Mix

ed l

itte

r W

ater

0.

41

0.04

1 46

.40

132.

03

2923

.58

0.00

08

Scir

pus

lacu

stri

s M

ixed

lit

ter

Wat

er

0.86

0.

067

45.3

0 61

.45

1746

.64

0.00

11

Kan

delia

can

del,

Mix

ed l

itte

r (+

wo

od

) W

ater

0.

75

31.5

0 49

0.

0018

A

vice

nnia

mar

ina

Rhi

zoph

ora

man

gle

Mix

ed l

itte

r (+

wo

od

) W

ater

0.

40

43.3

5 12

6.44

0.

0095

R

hizo

phor

a sp

p.

Mix

ed l

itte

r (+

wo

od

) S

oil

0.37

37

.19

117.

27

0.00

08

Rhi

zoph

ora

spp.

M

ixed

lit

ter

(+w

oo

d)

Soi

l 0.

36

34.4

8 11

1.74

0.

0002

A

vice

nnia

mar

ina

Mix

ed l

itte

r (+

wo

od

) W

ater

/Bag

ged

0.74

0.

065

0.01

14

Avi

cenn

ia m

arin

a M

ixed

lit

ter

(+w

oo

d)

Wat

er/

0.76

0.

061

0.01

89

Unb

agge

d A

vice

nnia

mar

ina

Roo

ts

Wat

er

1.18

0.

106

0.00

38

Avi

cenn

ia m

arin

a L

eave

s W

ater

1.

24

0.12

7 0.

0071

Mol

inia

cae

rule

a M

ixed

lit

ter

Soi

l 1.

95

0,58

0 0.

0153

E

lym

us p

ycna

nthu

s M

ixed

lit

ter

Wat

er

0.90

0.

0079

E

ryth

rina

sp.

M

ixed

lit

ter

Soil

3.

52

0.21

0 0.

0095

C

ajan

us c

ajan

M

ixed

lit

ter

Soi

l 3.

48

0.18

0 0.

0047

In

ga e

dulis

M

ixed

lit

ter

Soi

l 3.

18

0.22

0 0.

0025

T

allg

rass

pra

irie

M

ixed

lit

ter

(ave

rage

) S

oil

0.18

0.

015

0.00

09

Whi

te p

ine

Nee

dles

S

oil

0.35

0.

0012

H

emlo

ck

Nee

dles

S

oil

0.66

0.

0009

6 W

hite

spr

uce

Nee

dles

S

oil

0.52

0.

060

0.00

14

Dou

glas

fir

N

eedl

es

Soi

l 0.

61

0.11

0 0.

0017

P

inus

rox

burg

hii

Nee

dles

S

oil

0.67

0.

050

0.00

21

Red

map

le

Lea

ves

Soi

l 1.

59

0.00

20

Red

oak

L

eave

s S

oil

1.90

0.

0011

A

spen

L

eave

s S

oil

2.14

0.

0014

R

ed o

ak

Lea

ves

Soi

l 1.

94

0,00

11

Sug

ar m

aple

L

eave

s S

oil

2.05

0.

0023

P

aper

bir

ch

Lea

ves

Soi

l 2.

22

0.00

17

Red

map

le

Lea

ves

Soi

l 1.

80

0.00

19

Red

oak

L

eave

s S

oil

2.26

0.

0009

W

hite

oak

L

eave

s S

oil

1.67

0.

0012

S

ugar

map

le

Roo

ts

Soi

l 2.

62

0.00

06

Aln

us i

nean

a L

eave

s S

oil

3.07

0.

137

0.00

09

Bet

ulap

ubes

cens

L

eave

s S

oil

0.77

0.

105

0,00

09

Bet

ula

pube

scen

s L

eave

s S

oil

1.74

0.

180

0.00

09

Pop

ulus

tre

mul

oide

s L

eave

s S

oil

0.84

0,

120

0.00

12

Que

rcus

elli

psoi

dalis

L

eave

s S

oil

1.40

0.

120

0.00

09

Bet

ula

papy

rife

ra

Lea

ves

Soi

l 0.

92

0.11

0 0.

0012

F

rang

ula

alnu

s L

eave

s S

oil

0.88

0.

030

0.00

54

Que

rcus

pyr

enai

ca

Lea

ves

Soi

l 0.

6 0,

042

0.00

30

Bet

ula

pube

seen

s L

eave

s S

oil

0.61

0,

029

0.00

33

Sali

x fr

agil

is

Lea

ves

Wat

er

1.20

0.

100

0.02

46

Aln

us g

luti

nosa

L

eave

s W

ater

2.

60

0,11

8 0.

0252

F

agus

syl

vati

ca

Lea

ves

Soi

l 0.

71

0.03

0 0.

0007

S

ugar

map

le

Lea

ves

Soil

0.

57

0.02

0 0.

0014

(Van

der

Val

k et

al.

1991

) (V

an d

er V

alk

et a

l. 19

91)

(Van

der

Val

k et

al.

1991

) (V

an d

er V

alk

et a

l. 19

91)

(Van

der

Val

k et

al.

1991

)

(Lee

198

9)

(New

ell

et a

l. 19

84)

(Rob

erts

on &

Dan

iel

1989

) (R

ober

tson

& D

anie

l 19

89)

(Van

der

Val

k &

Att

iwil

l 19

84)

(Van

der

Val

k &

Att

iwil

l 19

84)

(Van

der

Val

k &

Att

iwil

l 19

84)

(Van

der

Val

k &

Att

iwil

l 19

84)

(Aer

ts 1

989)

(H

emm

inga

& B

uth

1991

) (P

alm

& S

anch

ez 1

990)

(P

alm

& S

anch

ez 1

990)

(P

alm

& S

anch

ez 1

990)

(S

east

edt

1988

) (M

cCla

ughe

rty

et a

l. 19

85)

(McC

laug

hert

y et

al.

1985

) (T

aylo

r et

al.

1989

) (T

aylo

r et

al.

1989

) (U

padh

yay

et a

l. 19

89)

(Abe

r et

al.

1990

) (A

bet

et a

l. 19

90)

(Abe

r et

al.

1990

) (A

ber

et a

l. 19

90)

(Abe

r et

al.

1990

) (A

bet

et a

l. 19

90)

(Abe

r et

al.

1990

) (A

bet

et a

l. 19

90)

(Abe

r et

al.

1990

) (A

ber

et a

l. 19

90)

(Ber

g &

Ekb

ohm

19

91)

(Ber

g &

Ekb

ohm

199

1)

(Ber

g &

Ekb

ohm

199

1)

(Boc

khei

m e

t al

. 19

91)

(Boc

khei

m e

t al

. 19

91)

(Boc

khei

m e

t al

. 19

91)

(Esc

uder

o et

al.

1991

) (E

scud

ero

et a

l. 19

91)

(Esc

uder

o et

al.

1991

) (G

essn

er e

t al

. 19

91)

(Ges

sner

et

al.

1991

) (G

osz

et a

l. 19

73)

(Gos

z et

al.

1973

)

Page 14: Patterns in decomposition rates among photosynthetic organisms

4~

Pla

nt t

ype

Spec

ies

Fra

ctio

n C

ondi

tion

s %

N

%P

%C

C

N

CP

K

(d

1)

Aut

hor

Shr

ubs

Con

ifer

s

Sug

ar m

aple

L

eave

s S

oil

0.62

0.

020

0.00

09

Yel

low

bir

ch

Lea

ves

Soi

l 1.

09

0.08

0 0.

0017

Y

ello

w b

irch

L

eave

s S

oil

0.85

0.

060

0.00

23

Fag

us s

ylva

tica

L

eave

s S

oil

0.82

0.

090

0.00

10

Fag

us s

ylva

tica

L

eave

s W

ater

0.

67

0.00

35

Fag

us s

ylva

tica

L

eave

s (a

vera

ge)

Soi

l 1.

12

0.00

21

Fag

us s

ylva

tica

L

eave

s S

oil

1.12

0.

0013

A

spen

L

eave

s S

oil

0.66

0.

0016

W

hite

oak

L

eave

s S

oil

0.67

0.

0015

R

ed m

aple

W

ood

chip

s S

oil

0.07

0.

0008

S

ugar

map

le

Lea

ves

Soi

l 0.

66

0.00

22

Aln

us n

epal

ensi

s W

ood

part

S

oil

2.56

0.

072

0.00

29

Asp

en

Lea

ves

Soi

l 0.

64

0.12

0 0.

0018

B

alsa

m p

opla

r L

eave

s S

oil

0.58

0.

130

0.00

16

Cow

-par

snip

M

ixed

lit

ter

Soi

l 1.

31

0.29

0 0.

0036

G

rass

M

ixed

lit

ter

Soi

l 0.

81

0.06

0 0.

0022

D

ogw

ood

leaf

lit

ter

Lea

ves

Soi

l 0.

78

0.08

0 0.

0021

Salic

orni

a vi

rgin

iea

Mix

ed l

itte

r (+

wo

od

) W

ater

1.

56

0.56

0 0.

0413

H

alim

ione

por

tula

coid

es

Mix

ed l

itte

r (+

wo

od

) W

ater

o

2.09

0.

0090

Li

rnon

ium

vul

gare

M

ixed

lit

ter

(+w

oo

d)

Wat

er

2.06

0.

0025

Li

mon

ium

vul

gare

L

eave

s W

ater

2.

15

0.00

48

Hal

imio

ne p

ortu

laeo

ides

M

ixed

lit

ter

(+w

oo

d)

Wat

er

1.70

0.

0090

Le

ucos

perr

num

pari

le

Mix

ed l

itte

r (+

wo

od

) S

oil

0.53

0.

023

51.0

666

11

2.4

1

5653

.81

0.00

02

Aca

cia

urop

hylla

M

ixed

lit

ter

(+w

oo

d)

Soi

l 0.

71

0.01

0 0.

0010

Tr

ymal

ium

spa

thul

atum

L

eave

s S

oil

0.6

0.01

9 0.

0031

B

ossi

aea

laid

law

aian

a L

eave

s S

oil

1.78

0.

019

0.00

16

Cas

uari

na d

ecus

sata

L

eave

s S

oil

0.44

0.

005

0.00

12

Aca

cia

urop

hylla

L

eave

s S

oil

1.27

0.

015

0.00

15

B.

laid

law

aian

a po

ds

Pod

s S

oil

0.61

0.

006

0.00

08

Cea

noth

us m

egac

arpu

s L

eave

s S

oil

0.63

0.

028

0.00

10

Salv

ia m

elif

era

Lea

ves

Soi

l 0.

58

0.10

5 0.

0011

Sa

lvia

mel

ifer

a L

eave

s S

oil

0.65

0.

133

0.00

09

Cea

noth

us m

egac

arpu

s L

eave

s S

oil

0.67

0.

046

0.00

1 R

ose

sp.

Lea

ves

Soi

l 1.

15

0.19

0 0.

0032

M

allo

tusp

hili

ppen

sis

Lea

ves

Soi

l 0.

50

0.13

0 0.

0110

Pin

us c

onto

rta

Nee

dles

So

il

0.45

0.

0004

W

hite

pin

e R

oots

S

oil

1.83

0.

0008

H

emlo

ck

Nee

dles

So

il

1.50

0.

001

Whi

te p

ine

Nee

dles

S

oil

0.97

0.

001

Red

pin

e N

eedl

es

Soi

l 1.

26

0.00

09

Sco

ts p

ine

Nee

dles

S

oil

1.89

0.

0008

S

cots

pin

e N

eedl

es

Soi

l 0.

37

0.00

07

Sco

ts p

ine

Nee

dles

S

oil

1.22

0.

0009

P

inus

syl

vest

ris

Nee

dles

S

oil

0.48

0.

033

0.00

08

Pin

us s

ylve

stri

s N

eedl

es

Soi

l 1.

51

0.13

1 0.

0010

L

odge

pole

pin

e N

eedl

es

Soi

l 0.

48

0.03

3 0.

0008

L

odge

pole

pin

e N

eedl

es

Soi

l 1.

05

0.08

2 0.

0008

B

row

n sp

ruce

N

eedl

es

Soi

l/

0.42

0.

041

0.00

06

Fer

tili

zeed

(Gos

z et

al.

1973

) (G

osz

et a

l. 19

73)

(Gos

z et

al.

1973

) (G

osz

et a

l. 19

73)

(Ive

rsen

197

3)

(Joe

rgen

sen

& M

eyer

199

0)

(Joe

rgen

sen

1991

) (M

cCla

ughe

rty

et a

l. 19

85)

(McC

laug

hert

y et

al.

1985

) (M

cCla

ughe

rty

et a

l. 19

85)

(McC

laug

hert

y et

al.

1985

) (S

harm

a &

Am

bash

t 19

87)

(Tay

lor

et a

l. 19

89)

(Tay

lor

et a

l. 19

89)

(Tay

lor

et a

l. 19

89)

(Tay

lor

et a

l. 19

89)

(Tay

lor

et a

l. 19

89)

(Hai

nes

& H

anso

n 19

79)

(Hem

min

ga &

But

h 19

91a)

(H

emm

inga

& B

uth

1991

a)

(Hem

min

ga &

But

h 19

91a)

(H

emm

inga

& B

uth

1991

a)

(Mit

chel

l et

al.

1986

) (O

'Con

nell

198

7)

(O'C

onne

ll 1

987)

(O

'Con

nell

198

7)

(O'C

onne

ll 1

987)

(O

'Con

nell

198

7)

(O'C

onne

ll 1

987)

(S

chle

sing

er 1

985)

(S

chle

sing

er 1

985)

(S

chle

sing

er 1

985)

(S

chle

sing

er 1

985)

(T

aylo

r et

al.

1988

) (U

padh

yay

et a

l. 19

89)

(Yav

itt

& F

ahey

198

6)

(Abe

r et

al.

1990

) (A

ber

et a

l. 19

90)

(Abe

r et

al.

1990

) (A

ber

et a

l. 19

90)

(Ber

g et

al.

1982

) (B

erg

et a

l. 19

82)

(Ber

g et

al.

1982

) (B

erg

& E

kboh

m

1991

) (B

erg

& E

kboh

m 1

991)

(B

erg

& E

kboh

m 1

991)

(B

erg

& E

kboh

m 1

991)

(B

erg

& T

amm

199

1)

Page 15: Patterns in decomposition rates among photosynthetic organisms

Pla

nt t

ype

Spec

ies

Fra

ctio

n C

ondi

tion

s %

N

%P

%C

C

N

CP

K

(d-

1)

Aut

hor

Bro

ad p

eren

nial

tr

ee l

eave

s

Bro

wn

spru

ce

Nee

dles

S

oil

0.43

0.

041

0.00

05

Gre

en s

pruc

e N

eedl

es

Soi

l/

0.85

0.

132

0.00

08

Fer

tili

zeed

G

reen

spr

uce

Nee

dles

S

oil

0.85

0.

132

0.00

1 P

inus

ban

ksia

na

Nee

dles

S

oil

0.88

0.

080

0.00

05

Pin

us p

inas

ter

Nee

dles

S

oil

0.4

0.01

7 0.

0010

P

inus

syl

vest

ris

Nee

dles

S

oil

0.69

0.

037

0.00

20

Sit

ka s

pruc

e B

ranc

hes

Soi

l 4.

96

0.55

0 0.

0355

Q

uerc

us l

anug

inos

a L

eave

s So

il

1.32

0.

120

0.00

49

Lyon

ia o

valif

olia

L

eave

s S

oil

0.80

0.

080

0.00

73

Que

reus

gla

uca

Lea

ves

Soi

l 0.

94

0.07

0 0.

0073

Sh

orea

rob

usta

L

eave

s S

oil

0.99

0.

280

0.00

76

Que

rcus

flori

bund

a L

eave

s S

oil

0.97

0.

120

0.00

51

Que

rcus

leu

cotr

icho

phor

a L

eave

s S

oil

1.15

0.

220

0.00

52

Euc

alyp

tus

dive

rsic

olor

F

ruit

S

oil

0.21

0.

027

0.00

05

Euc

alyp

tus

dive

rsic

olor

L

eave

s S

oil

0.41

0.

010

0.00

15

Euc

alyp

tus

dive

rsic

olor

T

wig

s S

oil

0.21

0.

008

0.00

03

Euc

alyp

tus

dive

rsic

olor

B

ark

Soi

l 0.

13

0.00

4 0.

0006

M

yric

a es

cule

nta

Lea

ves

Soi

l 0.

58

0.05

7 0.

0043

R

hodo

dend

ron

arbo

reum

L

eave

s S

oil

0.70

0.

060

0.00

48

(Ber

g &

Tam

m 1

991)

(B

erg

& T

amm

199

1)

(Ber

g &

Tam

m 1

991)

(B

ockh

eim

et

al.

1991

) (E

scud

ero

et a

l. 1

991)

(E

scud

ero

et a

l. 19

91)

(Fah

ey e

t al

. 19

91)

(Upa

dhya

y et

al.

1989

) (U

padh

yay

et a

l. 19

89)

(Upa

dhya

y et

al.

1989

) (U

padh

yay

et a

l. 19

89)

(Upa

dhya

y et

al.

1989

) (U

padh

yay

et a

l. 19

89)

(O'C

onne

ll 1

988)

(O

'Con

nell

198

8)

(O'C

onne

ll 1

988)

(O

'Con

nell

198

8)

(Upa

dhya

y et

al.

1989

) (U

padh

yay

et a

l. 19

89)