paul tc-2007 free radical substitution eletrophilic addition nucleophilic substitution elimination...
Embed Size (px)
DESCRIPTION
Paul TC-2007 Initiation Propagation Termination FREE RADICAL SUBSTITUTION MECHANISM Least favourable Possible Major organic product Br 2 Br C H HH H Br C H H H C H H H C H H H H H H C H H H C H H H C H H H C H H HH Br Br 2 CH 3 + Br 2 CH 3 Br + Br CH 4 + Br CH 3 + HBr Br 2 2 Br C H H H C H H C H H H H H + 2 CH 3 H 3 C-CH 3 C H H H C H H H Br C H H H C H H H C H H H + Most favourable H 3 C + Br CH 3 Br Initiation Propagation TerminationTRANSCRIPT

Paul TC-2007
Free radical substitution
Eletrophilic addition
Nucleophilic substitution
Elimination
Addition – Elimination
Electrophilic substitution
Esterification Alkaline hydrolysis
Nucleophilic addition
ORGANIC REACTION MECHANISMSAS A2
Dehydration
Friedel-Crafts
Bromination
Nitration
AcylationAddition polymerisation
Bond fission
Hydration of alkene
Formation of polypeptides
Formation of polyamides
Formation of polyesters
Bromination of alkene

Paul TC-2007
BOND FISSION
BrBr
BrBr
Br
Br
+Br
-
+
2 xHomolytic fission
Heterolytic fission
Free radicals(= an unpaired electron)
Electrophile Nucleophile(= electron pair acceptor) (= electron pair donor)
(Breaking of the bond)
Reaction of ALKANES = Free radical substitution
Reaction of ALKENES = Electrophilic additionBr2 Br +. + Br -
Br2 2 Br.
HOMOLYTIC FISSION
HETEROLYTIC FISSION
Curly arrow
One electron moving
A pair of electrons moving

Paul TC-2007
Initiation
Propagation
Termination
FREE RADICAL SUBSTITUTION MECHANISM
Least favourable
Possible
Major organic product
BrBr BrBr BrBr 2 Br2 Br2 Br
C
H
H H
H
Br C
H
H
H
C
H
H
H
C
H
H
H
BrH BrH BrH
BrBrC
H
H
H
C
H
H
H
BrBr BrBr C
H
H Br
H
C
H
H Br
HHBr BrBr BrBrBr
+
+
+
+
+
2 Br Br2
CH3+ Br2 CH3Br + Br
CH4 + Br CH3+ HBr
Br2 2 Br
C
H
H
H
C
H
H
C
H
H
H
H
H
+
2 CH3 H3C-CH3
C
H
H
H
C
H
H
H
BrC
H
H
H
C
H
H
H
C
H
H Br
H
+
Most favourableH3C + Br CH3Br
Initiation
Propagation
Termination

Paul TC-2007
2-methylpropene
CC
H3C
H3C
H
H
Br
Br-
+
C+
C
Br
Carbocation
(Electrophile)
:Br -Nucleophile
H3C
H3CHH C
C
BrBr
BROMINATION OF ALKENE
H3C
H3CHH
1,2-dibromo-2-methylpropane

Paul TC-2007
HYDRATION OF ALKENE MECHANISM
CC
H3C
H3C
H
H
2-methylpropene
H+
C+CH
H3C H3C
H
H
O
HH
CC
H
O+
H3C H3C
H
H
HH
2-methylpropan-1-olC
C
H
O
H3C H3C
H
H
H
H+

Paul TC-2007
H
Cl H
C = C
H
Cl H
C = C
H H
Cl H
C C
H H
Trigonal planar
Cl H
C = C
H H
+
Cl H
C C
H H
Cl H
C C
H H
Cl H
C = C
H H
+
Repeat unit
Repeat unit
= Any 2 consecutive C along the C chain
Cl H
C C
H H n
or
Chloroethene
Polychloroethene
120o
Trimer
Monomer
Dimer
ADDITION POLYMERISATION MECHANISM

Paul TC-2007
NUCLEOPHILIC SUBSTITUTION MECHANISM
ELECTRON CLOUD from the nucleophile SHIFTS toward +C atom, and a DATIVE COVALENT BOND starts to form.
As this happens, the C – X bond is WEAKENS and eventually BREAKS HETEROLITICALLY.
R - X + :Nu- R - Nu + :X-
OH - Cl -δ+ δ-
H
C
H
Cl
HH
C
H
HO
H
δ+ δ-
+ +

Paul TC-2007
H
Cl
H
C
H
C
H
H
OH -
Cl -
Cl
H
C
H
C
H
H
-
H
C
H
C
H
H
ELIMINATION MECHANISM
H2O +
+

Paul TC-2007
H+
H
O
H
C
H
C
H
H
H
H
O
H
C
H
C
H
H
H
H+
H
H
CC
H
H
O
H
H+
DEHYDRATION
+H+

Paul TC-2007
C O
HO
R+
H
OR
+
H+ C O
HO
R
H+
C O
HO
R
+
H
ORH
H
HC O
HO
R
O
R
+
R
CO
RO +
H+HC
O
RO
R
H2O
+
ESTERIFICATIONMECHANISM
Protonation Nucleophilicattack
Protontransfer
Waterelimination Proton
elimination

Paul TC-2007
ADDITION-ELIMINATION MECHANISM(NUCLEOPHILIC SUBSTITUTION)
Cl-δ+ δ-
HO
C
H
O
δ+ δ-
Cl
C
H
O
OH-
δ+ δ- δ+ δ-C O-
OH
H
ClNucleophilic addition
EliminationNucleophilic substitution
δ+
δ-
+
+

Paul TC-2007
ALKALINE HYDROLYSIS MECHANISM
OH-
RC O
R
O
Nucleophilicattack
C O-
R
HO Na+
OR
O-R Na+
Break down of the tetrahedralintermediate
C OR
OHOHR C OR
O-Na+ Proton transfer

Paul TC-2007
NO2+
NO2
+
HH NO2
NITRATION
H++
Formation of the electrophile: NO2+
nitroniumion
HNO3 + H2SO4 H2NO3+ + HSO4
-
H2NO3+ H2 O + NO2
+
H+ + HSO4- H2SO4Regeneration of the catalyst:
Electrophilic substitution:
HSO4-
HNO3 + H2SO4 H2O + NO2+ + HSO4
-
C6H6 + HNO3 C6H5NO2 + H2OOverall equation:
H2SO4 cat.50oC

Paul TC-2007
Br+
Br
+
HH Br
BROMINATION
H++
Formation of the electrophile: Br+ Br2 + FeBr3 Br+ + FeBr4
-
H+ + FeBr4- FeBr3 +HBrRegeneration of the catalyst:
Electrophilic substitution:
FeBr4-
C6H6 + Br2 C6H5Br + HBrOverall equation:
FeCl3 cat.

Paul TC-2007
CH3+
CH3
+
HH CH3
FRIEDEL-CRAFT MECHANISM
H++
Formation of the electrophile: CH3+
CH3Cl + FeCl3 CH3+ + FeCl4-
H+ + FeCl4- FeCl3 + HClRegeneration of the catalyst:
Electrophilic substitution:
FeCl4-
C6H6 + CH3Cl C6H5CH3 + HClOverall equation:
FeCl3 cat.

Paul TC-2007
COCH3+
COCH3
+
HH COCH3
ACYLATION MECHANISM
H++
Formation of the electrophile: CH3CO+ CH3COCl + FeCl3 CH3CO+ + FeCl4-
H+ + FeCl4- FeCl3 + HClRegeneration of the catalyst:
Electrophilic substitution:
FeCl4-
C6H6 + CH3COCl C6H5COCH3 + HCl
Overall equation: FeCl3 cat.

Paul TC-2007
NΞC - C
H
O
H
H
C
H
NΞC O -
H CΞN
δ+ δ-
+
H
C
H
NΞC O H
- CΞN
NUCLEOPHILIC ADDITION MECHANISM
oxoanion
Dative covalent bond formation
bond weakens and breaks heterolytically
This reaction is useful because the chain is extended by 1 carbon.
2-hydroxynitrile
Dative covalent bond formation
bond weakens and breaks heterolytically
δ+ δ-+
+

Paul TC-2007
C
H
R
N
O
OH
C
H
H
+ +C
H
R
N
O
C
H
H
OH`
C
H
R
N
O
OH
C
H
H
OH
C
H
R
N
O
C
H
C
H
R
N
O
C
H
H
C
H
R
N
O
C
H
Peptide link(amide)
FORMATION OF POLYPEPTIDES
Repeat unit(aminoacid residue)
Peptide link(amide)
+ 2 H2O
C
H
R
N
O
C
H n
Monomer2-amino acid
Trimer

Paul TC-2007
Peptide link(amide)
Peptide link(amide)
(CH2)n N
H
H
N
H
H O
(CH2)n
OH
C
O
OH
C (CH2)n N
H
H
N
H
H
(CH2)n
O
OH
C
O
OH
C
(CH2)n N
H
N
H
H
(CH2)n N
H
N
H
(CH2)n
O
C
O
C (CH2)n
O
C
O
OH
C
O
OH
C
+++
Peptide link(amide)
Repeat unit Repeat unit
2 monomers
+3 H2O
DIBASIC ACID and DIAMINE to form POLYAMIDES
(CH2)n
O
C
O
C
Repeat unit
(CH2)n N
H
N
H

Paul TC-2007
Esterlink
+ +
Esterlink
Esterlink
+ 3 H2O
OH
O
CHO
O
C (CH2)n OH
O
CHO
O
C (CH2)n(CH2)nOH O H
O
CHO
O
C (CH2)n
O
C
O
C (CH2)nH(CH2)nO O
Repeat unit(2 monomers)
(CH2)nOH+
(CH2)nO O H
REACTION OF DIBASIC ACID and DIOL to form POLYESTERS
O
C
O
C (CH2)nH(CH2)nO O
Repeat unit(2 monomers)