pavel nikulshin - topsoe.com · pavel nikulshin modern approaches to designing highly effective...

66
Pavel Nikulshin Modern approaches to designing highly effective hydrotreating catalysts PhD, Senior Researcher Samara State Technical University Chair of Chemical Technology of Oil and Gas Refining E-mail: [email protected] Moscow, May 16, 2016

Upload: phamnga

Post on 10-Jul-2018

260 views

Category:

Documents


1 download

TRANSCRIPT

Page 1: Pavel Nikulshin - topsoe.com · Pavel Nikulshin Modern approaches to designing highly effective hydrotreating catalysts . PhD, Senior Researcher . Samara State Technical University

Pavel Nikulshin

Modern approaches to designing highly

effective hydrotreating catalysts

PhD, Senior Researcher Samara State Technical University Chair of Chemical Technology of Oil and Gas Refining E-mail: [email protected]

Moscow, May 16, 2016

Page 2: Pavel Nikulshin - topsoe.com · Pavel Nikulshin Modern approaches to designing highly effective hydrotreating catalysts . PhD, Senior Researcher . Samara State Technical University

Introduction. Hydrotreating processes in oil refinery

Gasoline fractions

SRGO

VGO

Crude Oil after

Desalting Аtm Dist

Vac Dist

Deep

hydrotreating

Deep hydrotreating FCC

IBP-180 °С

180-360 °С

360-500 °С

180-360 °С

100-220 °С

Selective hydrotreating

Gasoline

Diesel fuel

Deep hydrotreating

> 500 °С Coking

Target tasks Undesirable reactions Gasoline

Remove sulfur to below 0.5 ppm (reforming feedstock) 10-40 ppm (FCC gasoline)

Aromatics & olefin hydrogenation

SRGO Remove sulfur to below 50-10 ppm condensed aromatics hydrogenation

Cracking

VGO Remove sulfur to below 350-500 ppm metals removal

Cracking

2

Page 3: Pavel Nikulshin - topsoe.com · Pavel Nikulshin Modern approaches to designing highly effective hydrotreating catalysts . PhD, Senior Researcher . Samara State Technical University

Worsening of oil crudes Stricter environmental

requirements to products Involvement of bio-raw materials Involvement of oil-slime to refining

Challenges in oil refining:

catalysts

Gasoline fractions

SRGO

VGO

Crude Oil after

Desalting Аtm Dist

Vac Dist

Deep

hydrotreating

Deep hydrotreating FCC

IBP-180 °С

180-360 °С

360-500 °С

180-360 °С

100-220 °С

Selective hydrotreating

Gasoline …

Deep hydrotreating

> 500 °С Coking

2

Diesel fuel

Introduction. Hydrotreating processes in oil refinery

Page 4: Pavel Nikulshin - topsoe.com · Pavel Nikulshin Modern approaches to designing highly effective hydrotreating catalysts . PhD, Senior Researcher . Samara State Technical University

mm μm nm Å

NiMoS phase CoMoS phase NiWS phase

Particle length 25-60 Å

S = 1.8 % wt. (18 000 ppm)

S = 0.001 % wt. (10 ppm)

H2 Feedstock

Catalysts

30–100 m3

Product H2S

P = 2-10 МPа, T = 280-420 ºC

3 Introduction. Industrial hydrotreating catalysts

> 100 brands of catalysts

NiMo/Al2O3; CoMo/Al2O3 NiW/Al2O3; NiW/ASA

Page 5: Pavel Nikulshin - topsoe.com · Pavel Nikulshin Modern approaches to designing highly effective hydrotreating catalysts . PhD, Senior Researcher . Samara State Technical University

The “Rim-edge” model M. Daage, R. R. Chianelli // J. Catal. 149 (2)

(1994) 414

“Co(Ni)MoS” phase model H. Topsøe et al. // J. Catal. 68 (1981) 433

J.V. Lauritsen et al. // J. Catal. 249 (2007) 220

H. Toulhoat and P. Raybaud // J. Catal. (2003)

Main developed concepts of catalysis by sulfides

The electronic model of promoting

S. Harris, R.R. Chianelli // J. Catal. 98 (1986) 17

S S S

S S S

S S S S S Co Ni Ni

4

Page 6: Pavel Nikulshin - topsoe.com · Pavel Nikulshin Modern approaches to designing highly effective hydrotreating catalysts . PhD, Senior Researcher . Samara State Technical University

Al2O3

5 Scientific challenges in sulfide catalysis

Turnover frequency [mol DBT × mol act. site-1 × s-1]

MS2 Dibenzothiophene

Biphenyl

H2S

Page 7: Pavel Nikulshin - topsoe.com · Pavel Nikulshin Modern approaches to designing highly effective hydrotreating catalysts . PhD, Senior Researcher . Samara State Technical University

Al2O3

5

TOFXMS,P,T = f(L,N,X,M, ni,..?)

Scientific challenges in sulfide catalysis

Turnover frequency [mol DBT × mol act. site-1 × s-1]

Fundamental questions: Intrinsic nature of active sites (electronic,

structural) “Structure – activity” relationships Evolution of active sites at reaction conditions (T,

p(H2), H2S, N-,O-containing compounds…) Support effects (electronic, new compositions,

Brønsted/Lewis…) Create new active sites (CoMoS-III, NiCoMoS,

NiMoWS, …)

N

L

X = Co, Ni…

M = Mo, W…

MS2 Dibenzothiophene

Biphenyl

H2S

Page 8: Pavel Nikulshin - topsoe.com · Pavel Nikulshin Modern approaches to designing highly effective hydrotreating catalysts . PhD, Senior Researcher . Samara State Technical University

6 Haldor Topsøe’s grants for PhD students of Samara State Technical University

Alexander Mozhaev 2011 winner

Deep HDS, HYD. Co2Mo10HPA based catalysts. NiCoMoS catalysts

Daria Ishutenko 2012 winner

Selective HDS of FCC gasoline. KCoMoS catalysts based on PMo12HPA

Pavel Nikulshin 2008 winner

Deep HDS of diesel XMo6HPAs as precursors for HDS catalysts. C-coated supports

Maria Kulikova 2015 winner

Deep HDS&HYD NiMoWS catalysts based on

SiMonW12-nHPA

Andrey Varakin 2014 winner

HDO reactions. Co-hydrotreating. Unsupported catalysts

Aleksey Pimerzin 2013 winner

Deep HDS, HYD, HDN. Spillover effects in sulfide catalysis

TOFXMS = f(L,N,X,M, ni,..?)

Page 9: Pavel Nikulshin - topsoe.com · Pavel Nikulshin Modern approaches to designing highly effective hydrotreating catalysts . PhD, Senior Researcher . Samara State Technical University

Topics 1. Development of new sulfide catalysts

1.1 New molecular precursors of active phases 1.2 Effect of composition and morphology of active phase species on

catalytic properties 2. Catalysts for deep hydrotreating of oil fractions

2.1 Trimetallic NiCoMoS catalysts with enhanced HDS & HYD activities 2.2 NiW/Al2O3 catalysts prepared with heteropolycompounds

3. Catalysts for selective hydrodesulfurization of FCC gasolines 3.1 Trimetallic KCoMoS catalysts with improved HDS/HYDO selectivity

4. Catalysts for co-hydrotreating of diesel and vegetable oil 4.1 Carbon-covered supports for sulfide catalysts

Page 10: Pavel Nikulshin - topsoe.com · Pavel Nikulshin Modern approaches to designing highly effective hydrotreating catalysts . PhD, Senior Researcher . Samara State Technical University

Topics 1. Development of new sulfide catalysts

1.1 New molecular precursors of active phases 1.2 Effect of composition and morphology of active phase species on

catalytic properties 2. Catalysts for deep hydrotreating of oil fractions

2.1 Trimetallic NiCoMoS catalysts with enhanced HDS & HYD activities 2.2 NiW/Al2O3 catalysts prepared with heteropolycompounds

3. Catalysts for selective hydrodesulfurization of FCC gasolines 3.1 Trimetallic KCoMoS catalysts with improved HDS/HYDO selectivity

4. Catalysts for co-hydrotreating of diesel and vegetable oil 4.1 Carbon-covered supports for sulfide catalysts

Page 11: Pavel Nikulshin - topsoe.com · Pavel Nikulshin Modern approaches to designing highly effective hydrotreating catalysts . PhD, Senior Researcher . Samara State Technical University

Co

Co9S8

MoS2Co

Co9S8

MoS2

(1) Impregnation with (NH4)6Mo7O24 and Ni(NO3)2

(2) Drying and calcination

(3) Sulfidation

7

Drawbacks: Cо atoms introduced in Al2O3 Co atoms exists in nonactive

Co9S8 species MoS2 not fully sulfided and

strongly bonded with Al2O3

Some problems in preparation of Co(Ni)Mo/Al2O3 catalysts

Page 12: Pavel Nikulshin - topsoe.com · Pavel Nikulshin Modern approaches to designing highly effective hydrotreating catalysts . PhD, Senior Researcher . Samara State Technical University

Catalysts improvement

Use of HPA in the impregnating

solution (Co2Mo10O34

6-, PMo12O40

3-)

Increase of active metals contents

Use of «Doping» elements (Rh, Pt,

Ru, P, F)

Use of new carriers (C, TiO2, zeolite,…)

Use of chelating agent in the

impregnating solution

(NTA, EDTA...)

Modification of the oxidic precursor by organic agents (TEG, TGA…)

How to improve HDS catalysts?

Use of unsupported sulfides and

nonsulfide catalysts

8

Page 13: Pavel Nikulshin - topsoe.com · Pavel Nikulshin Modern approaches to designing highly effective hydrotreating catalysts . PhD, Senior Researcher . Samara State Technical University

Catalysts improvement

Use of HPA in the impregnating

solution (Co2Mo10O34

6-, PMo12O40

3-)

Increase of active metals contents

Use of «Doping» elements (Rh, Pt,

Ru, P, F)

Use of new carriers (C, TiO2, zeolite,…)

Use of chelating agent in the

impregnating solution

(NTA, EDTA...)

Modification of the oxidic precursor by organic agents (TEG, TGA…)

How to improve HDS catalysts?

Use of unsupported sulfides and

nonsulfide catalysts

8

Page 14: Pavel Nikulshin - topsoe.com · Pavel Nikulshin Modern approaches to designing highly effective hydrotreating catalysts . PhD, Senior Researcher . Samara State Technical University

Blue octahedra: MoO6; green octahedra: octahedral heteroatom (Co); pink tetrahedra: central heteroatom in Keggin structure (P, Si).

Preparation of catalysts with heteropolyanions

887 877 Solution of HPA

Impregnation

of Al2O3

Impregnated carrier

Drying at 110 0C 6 h

Catalyst in oxide state

Sulfided catalyst

Sulfidation at 400 0C, H2S/H2

Al2O3 Al2O3Al2O3

Typical HPAs structures used for preparation of hydroprocessing catalysts

9

Page 15: Pavel Nikulshin - topsoe.com · Pavel Nikulshin Modern approaches to designing highly effective hydrotreating catalysts . PhD, Senior Researcher . Samara State Technical University

Catalytic properties: thiophene HDS

Thiophene hydrodesulfurization (HDS)

SS

2H2+

H2

Conditions: Pulse microcatalytic reactor

t = 300 – 4000C

P = 0.125 MPa

V(H2) = 20 сm3/min

Vthiophene = 0.2 μL;

m.= 0.25 mg

P.A. Nikulshin et al. // Appl. Catal. A 393 (2011) 146

0,000

0,020

0,040

0,060

0,080

0,100

0,120

Cr Mn Fe Co Ni Cu Zn Ga

400 0С380 0С

360 0С340 0С

320 0С300 0С

HDS,

0,0000,0200,0400,0600,0800,1000,1200,1400,160

Cr Mn Fe Co Ni Cu Zn Ga

HDS, 400 0С380 0С

360 0С340 0С

320 0С300 0С

XMo6/Al2O3

Ni3-XMo6/Al2O3

Mo/Al2O3 (400 0C)

Ni0.5-Mo/Al2O3 (400 0C)

10 Anderson type XMo6HPA

Page 16: Pavel Nikulshin - topsoe.com · Pavel Nikulshin Modern approaches to designing highly effective hydrotreating catalysts . PhD, Senior Researcher . Samara State Technical University

Selective HDS of FCC gasoline

Catalytic properties: HDS vs HYDO

Mo/Al2O3

SS

2H2+

H2

Conditions: Bench scale flow reactor Feedstock: n-hexene-1 (36 wt.%), thiophene (0.1 wt.% S),

n-heptane (solvent) t = 2200C P = 1.5 MPa LHSV = 5.0 h-1; H2/feedstock = 100 NL/L; mcat = 0.3 g

XMo6/Al2O3

CH2CH3CH3CH3

+2H2

0

5

10

15

20

25

Cr Mn Fe Co Ni Cu Zn Ga

Thiophene HDSHexene-1

Conversion, %

0.00

0.20

0.40

0.60

0.80

1.00

1.20

Cr Mn Fe Co Ni Cu Zn Ga

HDS/HYDO selectivity factor

)1ln()1ln( HDS/HYDO

HYD

HDS

xx

−−

=

Undesirable reaction HYDO

Target reaction HDS

Mo/Al2O3

11 Anderson type XMo6HPA

Page 17: Pavel Nikulshin - topsoe.com · Pavel Nikulshin Modern approaches to designing highly effective hydrotreating catalysts . PhD, Senior Researcher . Samara State Technical University

Physical-chemical properties of the catalysts

Catalyst Ni(Co)MoS

phase, at. %

Ni(Co)Sx phase, at. %

Ni(Co)2+ phase, at. %

(Co/Mo)slab

NiMo6/Al2O3 67 8 25 0.14

CoMo6/Al2O3 71 9 20 0.13

XPS Co2p spectrum of СоМо6/Al2O3 catalyst

Co2p3/2 (CoMoS)

Co2p1/2 (CoMoS)

Co2p3/2 (Co2+)Co2p1/2 (Co2+)

Co2p3/2 (Co9S8)

Co2p1/2 (Co9S8)

The decomposition of the Mo3d and Co2p XPS spectra were performed using approaches proposed by [] and with the use of CasaXPS Version 2.3.16 software. A.D. Gandubert et al // Oil & Gas Sci. & Tech. 62 (2007), No. 1, 79 K. Marchand et al // Oil & Gas Sci. & Tech. 64 (2009), No. 6, 719

Active phase of the catalysts is Co(Ni)MoS phase with deficiency of promoter atoms Role of HPA is in the formation of “framework” of an active phase, i.e. multilayer MoS2 slabs.

12 Anderson type XMo6HPA

MoS2

Page 18: Pavel Nikulshin - topsoe.com · Pavel Nikulshin Modern approaches to designing highly effective hydrotreating catalysts . PhD, Senior Researcher . Samara State Technical University

Sabatier’s principle in catalysis by supported TMS

=> Heteroatom X promotes optimization of the electron density on the anti-bonding d-orbital of Mo in the active mixed sulfide phase and, thereby, facilitates productivities of the active sites

13 Anderson type XMo6HPA

Thiophene HDS over XMo6/Al2O3 catalysts vs DFT calculated heat of thiophene adsorption

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.0 0.2 0.4 0.6 0.8 1.0

HDS,

Cu

Zn

Ni

Co

Fe

Cr

∑ ⋅+ sMo)mol(XSHmolC 44

eVΔH Tads,−

HDS activity vs T of TPR peak maximum of sulfided catalysts

0.0

5.0

10.0

15.0

20.0

300 310 320 330 340 350 360

Thi

ophe

ne H

DS

(%)

Temperature of maximum peak reduction (°С)

CoNi

Fe

CrCu

Zn

Mo

DFT calculations of the heat of adsorption of thiophene H. Orita et. al. // Appl. Catal. A

258 (1) (2003) 115

XMo-S

TPR curves (TCD signals) of sulfided XMo6/Al2O3 and Mo/Al2O3 catalysts

Page 19: Pavel Nikulshin - topsoe.com · Pavel Nikulshin Modern approaches to designing highly effective hydrotreating catalysts . PhD, Senior Researcher . Samara State Technical University

40

50

60

70

80

90

100

0.00 0.10 0.20 0.30 0.40 0.50 0.60Promoter/Mo

Thi

ophe

ne c

onve

rsio

n ( %

)

CoMo/Al2O3(industrial)

NiMo6-emuls

FeMo6-emuls

Co3/2-PMo12O40/Al2O3

CoMo6/Al2O3

Co2Mo10/Al2O3

Co7/2-PMo12O40/Al2O3

Co3-Co2Mo10/Al2O3

Co-CoMo6/Al2O3 ?

Shortcomings: There is no HPA structure with higher Co (Ni)/Mo ratio

than 5:1 Use only HPA as a precursor of catalysts leads to

formation of active phase with deficiency of CoMo sites

Advantages: Application of HPCs gives a possibility to introduce Mo

and a promoter (modifiers) into a catalyst simultaneously – from one molecule

CoMoS phase of type II formed from HPCs

14 Heteropolycompounds as precursors of hydrotreating catalysts

Page 20: Pavel Nikulshin - topsoe.com · Pavel Nikulshin Modern approaches to designing highly effective hydrotreating catalysts . PhD, Senior Researcher . Samara State Technical University

15

40

50

60

70

80

90

100

0.00 0.10 0.20 0.30 0.40 0.50 0.60Promoter/Mo

Thi

ophe

ne c

onve

rsio

n ( %

)

CoMo/Al2O3(industrial)

NiMo6-emuls

FeMo6-emuls

Co3/2-PMo12O40/Al2O3

CoMo6/Al2O3

Co2Mo10/Al2O3

Co7/2-PMo12O40/Al2O3

Co3-Co2Mo10/Al2O3

Co-CoMo6/Al2O3 ?

C. Lamonier et al. // Appl. Catal. B 70 (2007) 548–556 J. Mazurelle et al. // Catal. Today 130 (2008) 41–49 A. Mozhaev / PhD thesis, Moscow, 2012, 173 p. P. Nikulshin, C. Lamonier et al. // Comptes Rendus Chimie (2015)

Heteropolycompounds as precursors of hydrotreating catalysts: overcoming of shortcomings

Use of Co salt of HPAs for catalysts preparation

Page 21: Pavel Nikulshin - topsoe.com · Pavel Nikulshin Modern approaches to designing highly effective hydrotreating catalysts . PhD, Senior Researcher . Samara State Technical University

Heteropolycompounds as precursors of hydrotreating catalysts: overcoming of shortcomings

15

40

50

60

70

80

90

100

0.00 0.10 0.20 0.30 0.40 0.50 0.60Promoter/Mo

Thi

ophe

ne c

onve

rsio

n ( %

)

CoMo/Al2O3(industrial)

NiMo6-emuls

FeMo6-emuls

Co3/2-PMo12O40/Al2O3

CoMo6/Al2O3

Co2Mo10/Al2O3

Co7/2-PMo12O40/Al2O3

Co3-Co2Mo10/Al2O3

Co-CoMo6/Al2O3 ?

Use of Co salt of HPAs for catalysts preparation

C. Lamonier et al. // Appl. Catal. B 70 (2007) 548–556 J. Mazurelle et al. // Catal. Today 130 (2008) 41–49 A. Mozhaev / PhD thesis, Moscow, 2012, 173 p. P. Nikulshin, C. Lamonier et al. // Comptes Rendus Chimie (2015)

Page 22: Pavel Nikulshin - topsoe.com · Pavel Nikulshin Modern approaches to designing highly effective hydrotreating catalysts . PhD, Senior Researcher . Samara State Technical University

Difficulties in deep hydrodesulfurization of oil fractions

16

σ-bonding

π-bonding

Steric hindrance

Sulfur compound Relative HDS rate

Thiophene 2250

Benzothiophene 1330

Dibenzothiophene (DBT) 100

4-methyldibenzothiophene (4-MDBT) 9

4,6-dimethyldibenzothiophene (4,6-DMDBT) 7

C. Song / Catal. Today 86 (2003) 211

Reactivity of various organic sulfur compounds in HDS versus their ring sizes and positions of alkyl

substitutions on the ring

Page 23: Pavel Nikulshin - topsoe.com · Pavel Nikulshin Modern approaches to designing highly effective hydrotreating catalysts . PhD, Senior Researcher . Samara State Technical University

17

0

10

20

30

40

50

0.0 0.2 0.4 0.6 0.8 1.0

k HD

S×10

5(m

ol·h

-1·g

-1)

DBT HDS4,6-DMDBT HDS

(Co/Mo)edge

Co2+

Co2+

Co2+

P. Nikulshin et al. // J. Catalysis 312 (2014) 152 P. Nikulshin, C. Lamonier et al. / Comptes Rendus Chimie (2015)

Heteropolycompounds as precursors of hydrotreating catalysts: overcoming of shortcomings

Page 24: Pavel Nikulshin - topsoe.com · Pavel Nikulshin Modern approaches to designing highly effective hydrotreating catalysts . PhD, Senior Researcher . Samara State Technical University

17

0

10

20

30

40

50

0.0 0.2 0.4 0.6 0.8 1.0

k HD

S×10

5(m

ol·h

-1·g

-1)

DBT HDS4,6-DMDBT HDS

(Co/Mo)edge

Co2+

Co2+

Co2+

Promotion degree of the MoS2 edges (Co/Mo)edge became only 0.64

Co salt of Co2Mo10HPA does not provide required molecular contact of Co2+ with HPA on the alumina surface

New approach?

Heteropolycompounds as precursors of hydrotreating catalysts: overcoming of shortcomings

Page 25: Pavel Nikulshin - topsoe.com · Pavel Nikulshin Modern approaches to designing highly effective hydrotreating catalysts . PhD, Senior Researcher . Samara State Technical University

Catalysts improvement

Use of HPA in the impregnating

solution (Co2Mo10O34

6-, PMo12O40

3-)

Increase of active metals contents

Use of «Doping» elements (Rh, Pt,

Ru, P, F)

Use of new carriers (C, TiO2, zeolite,…)

Use of chelating agent in the

impregnating solution

(NTA, EDTA...)

Modification of the oxidic precursor by organic agents (TEG, TGA…)

How to improve HDS catalysts?

Use of unsupported sulfides and

nonsulfide catalysts

What results will be obtained if both HPA and chelating agent are used for catalyst preparation?

Page 26: Pavel Nikulshin - topsoe.com · Pavel Nikulshin Modern approaches to designing highly effective hydrotreating catalysts . PhD, Senior Researcher . Samara State Technical University

Topics 1. Development of new sulfide catalysts

1.1 New molecular precursors of active phases 1.2 Effect of composition and morphology of active phase species on

catalytic properties 2. Catalysts for deep hydrotreating of oil fractions

2.1 Trimetallic NiCoMoS catalysts with enhanced HDS & HYD activities 2.2 NiW/Al2O3 catalysts prepared with heteropolycompounds

3. Catalysts for selective hydrodesulfurization of FCC gasolines

4. Catalysts for co-hydrotreating of diesel and vegetable oil 4.1 Carbon-covered supports for sulfide catalysts

Page 27: Pavel Nikulshin - topsoe.com · Pavel Nikulshin Modern approaches to designing highly effective hydrotreating catalysts . PhD, Senior Researcher . Samara State Technical University

Catalyst

Presence in impregnating solution

Amount in the Catalysts (wt. %) Co/Mo

ratio

Textural characteristics

Со2+ NH4+ Chelating

agent Mo Co SSA (m2/g)

Vp (cm3/g)

APR (Å)

Co2Mo10HPA – + – 10.0 1.2 0.17 183 0.58 62

Co3-Co2Mo10HPA + – – 9.9 3.1 0.31 170 0.46 62

[Co(NTA)]3-Co2Mo10HPA + + NTA 10.0 3.2 0.32 168 0.46 62

[Co(EDTA)]3-Co2Mo10HPA + + EDTA 10.1 3.0 0.30 172 0.46 62

[Co(CA)]3-Co2Mo10HPA + – Citric acid 10.1 3.0 0.30 170 0.46 62

[Co(TA)]3-Co2Mo10HPA + – Tartaric acid 10.1 3.0 0.30 170 0.46 62

Simultaneous using Co2Mo10HPA and different types of chelating agents

Co complex with chelating agent

(NTA, EDTA, CA, TA)

Co2Mo10HPA (T=40 °C, aqueous sol.)

Al2O3 Sg= 240 m2/g, Vp= 0.7 cm3/g,

Dp= 12 nm

Drying 110 °C (5h)

[Co(Ligand)]-Co2Mo10HPA/Al2O3 catalysts

18

Page 28: Pavel Nikulshin - topsoe.com · Pavel Nikulshin Modern approaches to designing highly effective hydrotreating catalysts . PhD, Senior Researcher . Samara State Technical University

Composition of CoMoS species present at the surface of sulfided catalysts (from TEM and XPS)

Catalyst (Co/Mo)tot (Co/Mo)edge Co in CoMoS and multi-slabs CoMoS/ (wt. %)

Co2Mo10/Al2O3 0.2 0.4

Co3-Co2Mo10/Al2O3 0.5 0.6

Co3[NTA]-Co2Mo10/Al2O3 0.5 0.9

Co3[EDTA]-Co2Mo10/Al2O3 0.5 0.7

Co3[CA]-Co2Mo10/Al2O3 0.5 1.1

Co3[TA]-Co2Mo10/Al2O3 0.5 0.8

19

Al2O3

CoMoSC/CoMoSC

0.14

0.43

0.3

0.21

0.72

0.52

0 0.5 1 1.5

Simultaneous using Co2Mo10HPA with Co(Chel) complexes resulted in formation of CoMoS species fully covered with Co promoter atoms

Differences in morphological properties of sulfide species connects with the features of the formed supported oxidic precursors that was indicated by Raman P. Nikulshin et al. // J. Catalysis 312 (2014) 152

Page 29: Pavel Nikulshin - topsoe.com · Pavel Nikulshin Modern approaches to designing highly effective hydrotreating catalysts . PhD, Senior Researcher . Samara State Technical University

Al2O3

Correlation of reaction rate constants with Co content into CoMoS and multi-CoMoS/ species

Hydrodesulfurization of DBT and 4,6-DMDBT

Hydrotreating of thiophene with n-hexene

R² = 0.72R² = 0.95

0.0

2.0

4.0

6.0

8.0

10.0

12.0

14.0

16.0

18.0

20.0

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

k HD

S×10

5(m

ol·h

-1·g

-1)

R² = 0.67R² = 1.00

0

200

400

600

800

1000

1200

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

k HY

D×1

05(m

ol·h

-1·g

-1)

R² = 0.89

R² = 0.43

R² = 0.89 R² = 0.49

0.0

10.0

20.0

30.0

40.0

50.0

60.0

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

k HD

S×10

5(m

ol·h

-1·g

-1)

DBT

4,6-DMDBT

Good correlation between rate constants of HDS and HYD of “light” molecules and CoMoS phase content and bad – for “heavy” molecules

+ +

20

CoMoSC

Thiophene HDS

Hexene-1 HYD

St. # ≥ 1

Page 30: Pavel Nikulshin - topsoe.com · Pavel Nikulshin Modern approaches to designing highly effective hydrotreating catalysts . PhD, Senior Researcher . Samara State Technical University

Al2O3

Hydrodesulfurization of DBT and 4,6-DMDBT

Hydrotreating of thiophene with n-hexene

R² = 0.72R² = 0.95

0.0

2.0

4.0

6.0

8.0

10.0

12.0

14.0

16.0

18.0

20.0

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

k HD

S×10

5(m

ol·h

-1·g

-1)

R² = 0.67R² = 1.00

0

200

400

600

800

1000

1200

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

k HY

D×1

05(m

ol·h

-1·g

-1)

R² = 0.89

R² = 0.43

R² = 0.89 R² = 0.49

0.0

10.0

20.0

30.0

40.0

50.0

60.0

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

k HD

S×10

5(m

ol·h

-1·g

-1)

DBT

4,6-DMDBT

+ + +

20

Good correlation between rate constants of DBT and 4,5-DMDBT and multi-slab CoMoS phase content

CoMoSC/CoMoSC

Thiophene HDS

Hexene-1 HYD

St. # ≥ 1 St. # ≥ 2

Correlation of reaction rate constants with Co content into CoMoS and multi-CoMoS/ species

Page 31: Pavel Nikulshin - topsoe.com · Pavel Nikulshin Modern approaches to designing highly effective hydrotreating catalysts . PhD, Senior Researcher . Samara State Technical University

21

Catalyst Activity

SF Reference HDS HYD

CoMo/Al2O3-1 30.9 58.2 0.42 Qiherima et al. Chin. J. of Catal. 32

(2011) 240 CoMo/Al2O3-2 42.2 59.1 0.61

CoMo/γ-Al2O3-1 33.6 54.8 0.52 M. Li et al. Catal. Today 149 (2010)

35 Co/Mo-S/δ-γ-Al2O3 39.8 46.4 0.81 CoMo/SiO2 10.2 9.8 1.04 CoMo/Al2O3 (industrial) 11.0 11.0 1.00

D. Mey et al. J. of Catal. 227 (2004)

436 CoMo/Al2O3 62.0 98.0 0.25 J.-S. Choi et al.

Appl. Catal. A 267 (2004) 203

Sn-CoMo/Al2O3 11.16 24.5 0.42

CoMo/Al2O3 31.0 47.0 0.58 D.J. Pérez-Martínez et al. Appl. Catal. A

390 (2010) 59

K-CoMo/Al2O3 25.0 47.0 0.45 K-CoMo/Al2O3 10.0 26.0 0.35 B-CoMo/Al2O3 24.0 37.0 0.59

(Co/Mo)edge

Average length (nm)

HDS/HYDOselectivity factor

0.20.30.4

0.50.6

0.70.8

0.91.0

1.11.2 2.8

3.0

3.23.4

3.63.8

4.04.2

4.41.2

1.4

1.6

1.8

2.0

2.2

2.4

2.6

Comparison of HDS and HYD activities and selectivity factor of CoMo-supported catalysts

HDS CoMo edge site HYDO

CoMo corner site The HDS/HYDO selectivities linearly depend on the number of CoMo sites on the slab edges. P. Nikulshin et al. // J. Catalysis 312 (2014) 152

Towards control of selectivity factor HDS/HYDO in FCC gasoline HDT: composition and size effects

CA NTA

TA

[Co(Lig)]-Co2Mo10Al2O3 catalysts

Page 32: Pavel Nikulshin - topsoe.com · Pavel Nikulshin Modern approaches to designing highly effective hydrotreating catalysts . PhD, Senior Researcher . Samara State Technical University

TOF number in HDS of DBT and 4,6-DMDBT vs average length of CoMoS phase and (Co/Mo)edge ratio

22

0.20.30.40.50.6

0.70.8

0.91.0

1.11.2 2.8

3.03.2

3.43.6

3.84.0

4.24.4

5.0

10.0

15.0

20.0

25.0

(Co/Mo)edge

Average length (nm)

DBT

4,6-DMDBT

)(s10 TOF 14/ −×

During DBT HDS, the highest TOF/ value is achieved at a minimal (Co/Mo)edge ratio (0.3 – 0.4) when the Co atoms are located on the S-edge and when the active phase is short

P. Nikulshin et al. // J. Catalysis 312 (2014) 152

(Ni/W)edge

(Co/Mo)edge

Catalyst DBT 4,6-DMDBT Ref Co2Mo10/Al2O3 23.9 4.4 Present work Co3[EDTA]-Co2Mo10/Al2O3 18.8 4.9 Industrial catalyst CoMoS/Al2O3

0.4 - S.T. Oyama et al. Catal. Today 143

(2009) 94 Industrial catalyst CoMoS/Al2O3

0.4 0.1 M. Kouzu et al. Appl. Catal. A 276

(2004) 241 CoMo/Al2O3 10.8 1.4 Lee et al.

Catal. Today 86 (2003) 141

CoMo/C 9.5 1.1

CoMo-S/γ-Al2O3 - 0.8 Laurenti et al. J. Catalysis 297

(2013) 165 CoMoS-S/γT-Al2O3 - 1.3 CoMoS-S/δ-Al2O3 - 1.9 CoMoS-acac/γ-Al2O3 - 1.3 CoMoS-acac/γT-Al2O3 - 1.8 CoMoS-acac/δ-Al2O3 - 2.3

Activity of СоМо catalysts in DBT and 4,6-DMDBT HDS

S

S Mo Mo

S

S

S Mo

S Mo Co

Co Co Mo S

S

S S

Co Co Co S S S

Mixed CoMoS sites located on short slabs

are the most active

EDTA

Co2Mo10

[Co(Lig)]-Co2Mo10Al2O3 catalysts

CA

TA NTA

Page 33: Pavel Nikulshin - topsoe.com · Pavel Nikulshin Modern approaches to designing highly effective hydrotreating catalysts . PhD, Senior Researcher . Samara State Technical University

Dependence of S content in hydrogenated products of diesel HDT on effective Co content in CoMoS determined by XPS

P. Nikulshin et al. / Fuel 100 (2012) 24–33 A. Mozhaev / PhD thesis, Moscow, 2012, 173 p.

Bench-scale flow reactor Feedstock: SRGO&LCO (80/20) Catalyst : 10 cm3 in SiC P(H2) = 4.0 MPa Temperature = 340 0C LHSV = 2.0 h-1

HTO = 500 NL/L

Deep diesel hydrotreating over Co3[Chel]-Co2Mo10/Al2O3 catalysts

23

Nikulshin et. al. Patent of Russia

0

20

40

60

80

100

120

140

160

180

200

0.0 0.2 0.4 0.6 0.8 1.0

Prod

uct s

ulfu

r (w

tppm

)

Co3-Co2Mo10/Al2O3

Co3(CA)-Co2Mo10/Al2O3

Co3(TA)-Co2Mo10/Al2O3

Co3(EDTA)-Co2Mo10/Al2O3

Co3(NTA)-Co2Mo10/Al2O3

Euro-5

ULSD 8 ppm S

T = 355 0C ОСПС = 1.5 h-1

1.1 % wt. S

Co3[CA]-Co2Mo10/Al2O3

Page 34: Pavel Nikulshin - topsoe.com · Pavel Nikulshin Modern approaches to designing highly effective hydrotreating catalysts . PhD, Senior Researcher . Samara State Technical University

Topics 1. Development of new sulfide catalysts

1.1 New molecular precursors of active phases 1.2 Effect of composition and morphology of active phase species on

catalytic properties 2. Catalysts for deep hydrotreating of oil fractions

2.1 Trimetallic NiCoMoS catalysts with enhanced HDS & HYD activities 2.2 Spillover effect in catalysis by sulfides 2.3 NiW/Al2O3 catalysts prepared with heteropolycompounds

3. Catalysts for selective hydrodesulfurization of FCC gasolines 3.1 Trimetallic KCoMoS catalysts with improved HDS/HYDO selectivity

4. Catalysts for co-hydrotreating of diesel and vegetable oil 4.1 Carbon-covered supports for sulfide catalysts

Page 35: Pavel Nikulshin - topsoe.com · Pavel Nikulshin Modern approaches to designing highly effective hydrotreating catalysts . PhD, Senior Researcher . Samara State Technical University

Al2O3

Trimetallic NiCoMoS catalysts

[Co2Mo10O38H4]6-

HDS activity

NiCoMoS phase?

Citric Acid

Ni2+

The aim of this work was to investigate the co-promotion effect in NiCoMo/Al2O3 catalysts based on Co2Mo10-heteropolyacid and nickel citrate.

MoS2

24

Page 36: Pavel Nikulshin - topsoe.com · Pavel Nikulshin Modern approaches to designing highly effective hydrotreating catalysts . PhD, Senior Researcher . Samara State Technical University

Catalyst Atomic ratio Content in the catalyst (wt. %) Specific

surface area (m2/g)

Pore volume (cm3/g)

Average pore

diameter (Å) Mo Co Ni Carbon

Mo/Al2O3 - - 10.2 - - - 134 0.31 56 Co2Mo10/Al2O3 0.17 - 10.1 1.3 - - 115 0.25 56

Co1-Co2Mo10/Al2O3 0.25 - 9.9 2.0 - 0.6 105 0.21 56

Co3-Co2Mo10/Al2O3 0.35 - 10.0 3.3 - 1.5 90 0.18 56/38

Co6-Co2Mo10/Al2O3 0.45 - 10.0 5.0 - 2.6 75 0.14 56/38

Ni1-Co2Mo10/Al2O3 0.16 0.09 10.2 1.3 0.8 0.5 111 0.26 56 Ni3-Co2Mo10/Al2O3 0.14 0.21 9.9 1.3 2.0 1.6 92 0.18 56/38 Ni6-Co2Mo10/Al2O3 0.11 0.34 10.1 1.3 3.8 2.5 80 0.16 56/38

MoNiCoCo++ MoNiCo

Ni++

Composition of prepared Cox-Co2Mo10/Al2O3 and Nix-Co2Mo10/Al2O3 catalysts

Al2O3 Sg= 220 m2gг, Vp= 0.60 cm3/g,

Dp= 6.0 нм

Dried, 120 0C (5 h)

25

Co2Mo10HPA (T=400C, water

solution)

Cox-Co2Mo10/Al2O3 catalysts

Co complex with CA

Ni complex with CA

Nix-Co2Mo10/Al2O3 catalysts

Incipient pore-volume impregnation

A. Mozhaev, P. Nikulshin et al. // Catal Today (2015)

Page 37: Pavel Nikulshin - topsoe.com · Pavel Nikulshin Modern approaches to designing highly effective hydrotreating catalysts . PhD, Senior Researcher . Samara State Technical University

Dependence of effective amount of Со and Ni particles on Co(Ni)/(Co+Ni+Mo) promotion degree

26

0.0

0.5

1.0

1.5

2.0

0 0.1 0.2 0.3 0.4 0.5

Effe

ctiv

e am

ount

of C

o (w

t. %

)

CoMoS

Co2+

Co9S8

Cox-Co2Mo10/Al2O3

XPS Ni2p spectra recorded for Ni3-Co2Mo10/Al2O3 catalyst

130

135

140

145

150

155

160

165

170

175

890 885 880 875 870 865 860 855 850 845

Binding energy (eV)

CPS

×10

2

Ni2p3/2 (NiS)

Ni2p1/2 (Ni2+)

Ni2p1/2 (NiMoS)

Ni2p1/2 (NiS)

Ni2p3/2 (Ni2+)

Ni2p3/2 (NiMoS)

Catalyst Co percentage in

Ni percentage in

CoMoS Co9S8 Co2+ NiMoS NiS Ni2+ Mo/Al2O3 - - - - - - Co2Mo10/Al2O3 63 2 35 - - - Co1-Co2Mo10/Al2O3 55 9 36 - - - Co3-Co2Mo10/Al2O3 50 15 35 - - - Co6-Co2Mo10/Al2O3 31 31 38 - - - Ni1-Co2Mo10/Al2O3 62 3 35 47 28 25 Ni3-Co2Mo10/Al2O3 63 2 35 44 28 28 Ni6-Co2Mo10/Al2O3 62 2 36 25 40 35

0.0

0.5

1.0

1.5

2.0

0 0.1 0.2 0.3 0.4 0.5

Effe

ctiv

e am

ount

of C

o (N

i) (w

t. %

)

NiMoS

Ni2+

NiS

CoMoS

Co2+

Co9S8

MoNiCo(Ni) Co++

Nix-Co2Mo10/Al2O3

Page 38: Pavel Nikulshin - topsoe.com · Pavel Nikulshin Modern approaches to designing highly effective hydrotreating catalysts . PhD, Senior Researcher . Samara State Technical University

27 Rate constants in DBT HDS vs promotion degree and the effective amount of active phase species

0.0

2.0

4.0

6.0

8.0

10.0

12.0

14.0

0 0.1 0.2 0.3 0.4 0.5

k HD

S×1

0-4 (m

ol h

-1g-1

)

Nix-Co2Mo10/Al2O3

Cox-Co2Mo10/Al2O3

MoNiCo(Ni) Co++

0.0

2.0

4.0

6.0

8.0

10.0

12.0

14.0

0.0 0.5 1.0 1.5 2.0 2.5Effective amount of Co (Ni) in (Ni)CoMoS phase (wt. %)

Co3-Co2Mo10/Al2O3

Mo/Al2O3

k HD

S×1

0-4 (m

ol h

-1g-1

)

CoMoSNiMoS

Ni3-Co2Mo10/Al2O3

Ni6-Co2Mo10/Al2O3

Ni1-Co2Mo10/Al2O3

Co6-Co2Mo10/Al2O3

Co1-Co2Mo10/Al2O3

Co2Mo10/Al2O3

For both series of the catalysts, HDS activity passed through maximum with increasing Ni or Co. Maximal rate constants were reached at 0.33 of Co(Ni)/(Co+Ni+Mo).

At equal content of Co in CoMoS and sum of the Co and Ni in the NiCoMoS phase, the Nix-Co2Mo10S/Al2O3 catalysts were more active.

Conditions: t = 2750C; P= 3.0 MPa; LHSW= 27 h-1; HTO = 700 NL/L; mcat = 0.15 g.

What are the reasons of the changes in the activities of the promoted (Ni)CoMoS catalysts?

Page 39: Pavel Nikulshin - topsoe.com · Pavel Nikulshin Modern approaches to designing highly effective hydrotreating catalysts . PhD, Senior Researcher . Samara State Technical University

28

Catalysts Number of MoIV

edge site (1020 at. g-1) TOFedge TOFMo TOFCo TOFNi

Mo/Al2O3 1.26 - - 0.63 0.63 - - Co2Mo10/Al2O3 1.68 0.43 - 3.5 0.63 7.3 - Co1-Co2Mo10/Al2O3 1.48 0.68 - 5.1 0.63 6.9 Co3-Co2Mo10/Al2O3 1.66 1.09 - 7.1 - 6.4 - Co6-Co2Mo10/Al2O3 1.35 1.16 - 7.1 - 6.1 - Ni1-Co2Mo10/Al2O3 1.64 0.44 0.23 7.5 0.63 7.3 17.9 Ni3-Co2Mo10/Al2O3 1.66 0.44 0.57 9.8 - 7.3 11.6 Ni6-Co2Mo10/Al2O3 1.66 0.45 0.64 9.7 - 7.3 10.0

( )edgeMoCo ( )edgeMo

Ni

Content of active sites and TOF values (× 10-4 s-1) in HDS of DBT

TOF values in DBT HDS on prepared Cox-Co2Mo10/Al2O3 and Nix-Co2Mo10/Al2O3 catalysts

TOFedge × [MoIVedge] = TOFMo × [Mo] + TOFCo × [Co] + TOFNi × [Ni]

TOFedge × [MoIVedge] = TOFMo × [Mo] + TOFCo × [Co]

TOFedge × [MoIVedge] = TOFMo × [Mo]

For CoMoS2/Al2O3 catalysts:

For NiCoMoS2/Al2O3 catalysts:

For MoS2/Al2O3 catalysts:

MoS2

0.00.3

0.60.9

1.22.53.0

3.54.0

4.5

5

10

15

20

TOF × 104 (s-1)

Average length (nm)

( )edgeMoNiCo+

Mo/Al2O3

Cox-Co2Mo10/Al2O3

Nix-Co2Mo10/Al2O3

Page 40: Pavel Nikulshin - topsoe.com · Pavel Nikulshin Modern approaches to designing highly effective hydrotreating catalysts . PhD, Senior Researcher . Samara State Technical University

Topics 1. Development of new sulfide catalysts

1.1 New molecular precursors of active phases 1.2 Effect of composition and morphology of active phase species on

catalytic properties 2. Catalysts for deep hydrotreating of oil fractions

2.1 Trimetallic NiCoMoS catalysts with enhanced HDS & HYD activities 2.2 NiW/Al2O3 catalysts prepared with heteropolycompounds

3. Catalysts for selective hydrodesulfurization of FCC gasolines 3.1 Trimetallic KCoMoS catalysts with improved HDS/HYDO selectivity

4. Catalysts for co-hydrotreating of diesel and vegetable oil 4.1 Carbon-covered supports for sulfide catalysts

Page 41: Pavel Nikulshin - topsoe.com · Pavel Nikulshin Modern approaches to designing highly effective hydrotreating catalysts . PhD, Senior Researcher . Samara State Technical University

29 The use of H3PW12O40 and Ni(Citr) for preparation of NiWS/Al2O3 catalysts

MoS2

4.05.0

6.0

7.0

8.00.0

0.30.6

0.91.2

5

10

15

(Ni/W)edge

TOF × 104 (s-1)

Average length (nm)

λ = 0.33λ = 0.24λ = 0.11

λ = 0

λ = 0.45λ = 0.60

DBT HDSNaphthalene HYDQuinoline HDN

0.0

5.0

10.0

15.0

0.11 0.33

Ni-CA-PW0.11-NiPW0.33-NiW

WNiNi+=λ

k×10

4(m

ol·h

-1·g

-1)

NiWS

Rate constants of the DBT HDS over NiWS/Al2O3 catalysts

Ni3/2PW12O40

(NH4)6W12O39 and Ni(NO3)2

H3PW12O40 and Ni(Citr)

3D dependence of the TOF number in DBT HDS, naphthalene HYD and quinoline HDN over λ-Ni-CA-PW/Al2O3 catalysts on

the average length of the NiWS phase species and (Ni/W)edge

⇒ Simultaneous use of PW12HPA and Ni(Citr) led to formation of NiWS phase contained much more Ni than in the references

⇒ Both NiW reference catalysts had active sites with lower TOF than their counterparts from PW12HPA and Ni(Citr).

⇒ Better dispersion of NiWS species and beneficial role of coke formed from citric molecules during catalyst sulfidation P. Minaev, P. Nikulshin et al // Appl. Catal A (2015)

Page 42: Pavel Nikulshin - topsoe.com · Pavel Nikulshin Modern approaches to designing highly effective hydrotreating catalysts . PhD, Senior Researcher . Samara State Technical University

Testing of catalytic properties in VGO hydrotreating

Bench-scale flow reactor Catalyst: 15 cm3 in SiC P(H2) = 5.0 MPa, T = 360-390 0C LHSV = 0.5 – 1.5 h-1, HTO = 800 NL/L

30

Item VGO Distillation (°C) Density at 20 °C (g/cm3)

350 – 500 901

Content (wt. %) Sulfur 1.7 Nitrogen 0.089 Polycyclic aromatics 9.2

Characteristics of VGO

Catalyst Hydrotreating conditions Content in the hydrogenated products

T (ºС)

LHSV (h-1)

P (МPа)

HTO (NL/L) Sulfur

(ppm) Nitrogen

(ppm) PACs] (% wt)

NiWS/Al2O3 360 0.5 5.0 800 120 147 3.9 360 1.0 5.0 800 342 264 4.2 390 1.0 5.0 800 60 82 5.2

Conditions and results of VGO hydrotreating over NiWS/Al2O3 catalyst

Page 43: Pavel Nikulshin - topsoe.com · Pavel Nikulshin Modern approaches to designing highly effective hydrotreating catalysts . PhD, Senior Researcher . Samara State Technical University

Topics 1. Development of new sulfide catalysts

1.1 New molecular precursors of active phases 1.2 Effect of composition and morphology of active phase species on

catalytic properties 2. Catalysts for deep hydrotreating of oil fractions

2.1 Trimetallic NiCoMoS catalysts with enhanced HDS & HYD activities 2.3 NiW/Al2O3 catalysts prepared with heteropolycompounds

3. Catalysts for selective hydrodesulfurization of FCC gasolines 3.1 Trimetallic KCoMoS catalysts with improved HDS/HYDO selectivity

4. Catalysts for co-hydrotreating of diesel and vegetable oil 4.1 Carbon-covered supports for sulfide catalysts

Page 44: Pavel Nikulshin - topsoe.com · Pavel Nikulshin Modern approaches to designing highly effective hydrotreating catalysts . PhD, Senior Researcher . Samara State Technical University

Gasoline fractions

SRGO

VGO

Crude Oil after

Desalting Аtm Dist

Vac Dist

Deep

hydrotreating

Deep hydrotreating FCC

IBP-1800С

180-3600С

360-5000С 180-3600С

100-2200С

Selective hydrotreating

Gasoline

Diesel fuel

Deep hydrotreating

> 5000С Coking

Typical components

of regular gasoline

Hydrotreating processes in oil refinery

Page 45: Pavel Nikulshin - topsoe.com · Pavel Nikulshin Modern approaches to designing highly effective hydrotreating catalysts . PhD, Senior Researcher . Samara State Technical University

(Co/Mo)edge

Average length (nm)

HDS/HYDOselectivity factor

0.20.30.4

0.50.6

0.70.8

0.91.0

1.11.2 2.8

3.0

3.23.4

3.63.8

4.04.2

4.41.2

1.4

1.6

1.8

2.0

2.2

2.4

2.6

HDS CoMo edge site HYDO

CoMo corner site

CA NTA

TA

Towards control of selectivity factor HDS/HYDO in FCC gasoline HDT: background

[Co(Ligand)]-Co2Mo10Al2O3 catalysts

Page 46: Pavel Nikulshin - topsoe.com · Pavel Nikulshin Modern approaches to designing highly effective hydrotreating catalysts . PhD, Senior Researcher . Samara State Technical University

Preparation of KCoMoS/Al2O3 catalysts and their textural properties

31

PМо12HPA

Al2O3 Sg= 220 m2/g,

Vp= 0.747 сm3/g

Kх-(CA)-PMo12/Al2O3

in oxide form

Catalysts in sulfide form

Citric acid

КОН Co6(CA)-Kх-PMo12/Al2O3 in oxide form

СоCO3

Catalysts in sulfide form

Catalyst Metal content (% wt.) Textural characteristics

Mo Co K SБET (m2/g) Vp (сm3/g) R (Å)

PMo12/Al2O3 12 - - 169 0.30 67 К5%(CA)-PMo12/Al2O3 12 - 5 92 0.28 67 К10%(CA)-PMo12/Al2O3 12 - 10 73 0.27 67 К15%(CA)-PMo12/Al2O3 12 - 15 47 0.19 67

Co6(CA-PMo12/Al2O3 12 3.7 - 178 0.36 67 Co6(CA)-К5%-PMo12/Al2O3 12 3.7 5 111 0.35 67 Co6(CA)-К7.5%-PMo12/Al2O3 12 3.7 7.5 94 0.34 59 Co6(CA)-К10%-PMo12/Al2O3 12 3.7 10 58 0.23 59 Co6(CA)-К15%-PMo12/Al2O3 12 3.7 15 23 0.10 59

Page 47: Pavel Nikulshin - topsoe.com · Pavel Nikulshin Modern approaches to designing highly effective hydrotreating catalysts . PhD, Senior Researcher . Samara State Technical University

Physical-chemical properties of synthesized catalysts: NH3-TPD and Raman spectroscopy

9 84

800 900 1000 1100

936

885

936

855

Wavenumber (cm )-1

881

926

0 wt. %

5 wt. %

10 wt. %

15 wt. %

955

CoMoO4

νMo=Mo 940 and 818 cm-1

K2MoO4

νMo=Mo 875 and 820 cm-1

J.A. Bergwerff et al. // J. AM. CHEM. SOC. 126 (2004) 14548

Polymolybdate entities are formed

G. Mestl, T.K.K. Srinivasan // Catal. Rev.-Sci.Eng. 40(4) (1998) 451

Mo4(Citrate)2O114-

νMo=Mo 944, 901 and 860 cm-1

Mo(HxCitrate)3O11(4-x)-

νMo=Mo 933, 901 and 861 cm-1

Raman spectra of Co(CA)-Kx-PMo12/Al2O3 catalysts

NH3-TPD profiles of Co(CA)-Kx-PMo12/Al2O3 catalysts

32

Potassium decreases the amount of acidic sites on the catalyst surface.

Poymolybdate entities are saved on the oxidic catalysts within investigated potassium content (5-15 wt. %).

Page 48: Pavel Nikulshin - topsoe.com · Pavel Nikulshin Modern approaches to designing highly effective hydrotreating catalysts . PhD, Senior Researcher . Samara State Technical University

Physical-chemical properties of synthesized (K)Mo and (K)CoMo catalysts: XPS and TEM

Catalyst Relative particles amount (%)

(nm) CoMoS Co9S8 Co2+ MoS2 MoSxOy Mo6+

PMo12/Al2O3 - - - 70 10 20 3.4 1.6

К5%-PMo12/Al2O3 - - - 80 7 12 3.9 1.6

К10%-PMo12/Al2O3 - - - 82 8 10 - -

К15%-PMo12/Al2O3 - - - 86 7 7 5.8 2.4

Co(CA)-PMo12/Al2O3 57 13 30 70 16 14 3.8 1.5

Co(CA)-К5%-PMo12/Al2O3 63 12 25 74 14 12 4.6 1.8

Co(CA)-К7.5%-PMo12/Al2O3 66 10 24 74 12 14 - -

Co(CA)-К10%-PMo12/Al2O3 - - - - - - 5.4 2.1

Co(CA)-К15%-PMo12/Al2O3 74 5 21 82 10 10 6.3 2.4

L N

Potassium improves: the sulfidation degree of active metals with

more selective formation of CoMoS phase; the growth of average slab length

Potassium partially insert in sulfide slab with changing the nature of active sites and probably with formation of new type of active sites.

K+

K+

K+

10 nm

33

Page 49: Pavel Nikulshin - topsoe.com · Pavel Nikulshin Modern approaches to designing highly effective hydrotreating catalysts . PhD, Senior Researcher . Samara State Technical University

Hydrotreating of model gasoline

Kx-PMo12/Al2O3

Co(CA)-Kx-PMo12/Al2O3

34

Al2O3

Conditions: Bench scale flow reactor Feedstock: n-hexene-1 (36 wt.%), thiophene (0.1 wt.% S), n-heptane (solvent) t = 2200C P = 1.5 MPa LHSV = 5.0 h-1; H2/feedstock = 100 NL/L;

5.1=Nnm 3.8=L

Page 50: Pavel Nikulshin - topsoe.com · Pavel Nikulshin Modern approaches to designing highly effective hydrotreating catalysts . PhD, Senior Researcher . Samara State Technical University

Hydrotreating of model gasoline

Kx-PMo12/Al2O3

Co(CA)-Kx-PMo12/Al2O3

34

K+

K+ K+

K+

K+ K+

K+

Conditions: Bench scale flow reactor Feedstock: n-hexene-1 (36 wt.%), thiophene (0.1 wt.% S), n-heptane (solvent) t = 2200C P = 1.5 MPa LHSV = 5.0 h-1; H2/feedstock = 100 NL/L;

Al2O3

5.1=Nnm 3.8=L

Page 51: Pavel Nikulshin - topsoe.com · Pavel Nikulshin Modern approaches to designing highly effective hydrotreating catalysts . PhD, Senior Researcher . Samara State Technical University

Hydrotreating of model gasoline

Kx-PMo12/Al2O3

Co(CA)-Kx-PMo12/Al2O3

34

K+

Al2O3

K+ K+ K+

K+

K+

Conditions: Bench scale flow reactor Feedstock: n-hexene-1 (36 wt.%), thiophene (0.1 wt.% S), n-heptane (solvent) t = 2200C P = 1.5 MPa LHSV = 5.0 h-1; H2/feedstock = 100 NL/L;

4.2=Nnm 6.3=L

Page 52: Pavel Nikulshin - topsoe.com · Pavel Nikulshin Modern approaches to designing highly effective hydrotreating catalysts . PhD, Senior Researcher . Samara State Technical University

Hydrotreating of model gasoline

Kx-PMo12/Al2O3

Co(CA)-Kx-PMo12/Al2O3

34

K+

Al2O3

K+ K+ K+

K+

K+

4.2=Nnm 6.3=L

Promoting catalysts by potassium leads to the partial poisoning the active sites.

Potassium increases the sulfidation degree of metals, content of CoMoS phase and average slab length

Page 53: Pavel Nikulshin - topsoe.com · Pavel Nikulshin Modern approaches to designing highly effective hydrotreating catalysts . PhD, Senior Researcher . Samara State Technical University

K+

Al2O3

K+ K+ K+

K+

Hydrotreating of model gasoline

Kx-PMo12/Al2O3

Co(CA)-Kx-PMo12/Al2O3

Promoting catalysts with potassium leads to the partial poisoning of the active sites.

34

K+

Potassium increases the sulfidation degree of metals, content of CoMoS phase and average slab length

Al2O3

CH2CH2

H2S +

CH2CH2

H2S +

Page 54: Pavel Nikulshin - topsoe.com · Pavel Nikulshin Modern approaches to designing highly effective hydrotreating catalysts . PhD, Senior Researcher . Samara State Technical University

K+

Al2O3

K+ K+ K+

K+

Hydrotreating of model gasoline

Kx-PMo12/Al2O3

Co(CA)-Kx-PMo12/Al2O3

34

K+

Olefin HYD is more sensitive to potassium than HDS reaction.

Al2O3

CH2CH2

H2S +

CH2CH2

H2S +

D. Ishutenko, P. Nikulshin et al. // Catal Today (2015)

Promoting catalysts with potassium leads to the partial poisoning of the active sites.

Potassium increases the sulfidation degree of metals, content of CoMoS phase and average slab length

Page 55: Pavel Nikulshin - topsoe.com · Pavel Nikulshin Modern approaches to designing highly effective hydrotreating catalysts . PhD, Senior Researcher . Samara State Technical University

35

Nikulshin et. al. Patent of RF

Heavy FCC gasoline hydrotreating over KCoPMo12/Al2O3 catalysts

FCC gasoline

28 - 110°С

110 - FBP°С

Merox

Selective HDS

Blended product

RON = 91.2S cont. = 49.4 ppmOlefins = 19.8 wt. %

RON = 91.2S cont. = 12.0 ppmOlefins = 22.6 wt. %

RON = 91.7S cont. = 92.1 ppmOlefins = 13.5 wt. %

RON = 91.6S cont. = 14.0 ppmOlefins = 12.9 wt. %

Split

ter

RON = 91.0S cont. = 13.0 ppmOlefins = 19.6 wt. %

HYDO = 4.4 % HDS = 84.8 %

Saving octane number!

Page 56: Pavel Nikulshin - topsoe.com · Pavel Nikulshin Modern approaches to designing highly effective hydrotreating catalysts . PhD, Senior Researcher . Samara State Technical University

Topics 1. Development of new sulfide catalysts

1.1 New molecular precursors of active phases 1.2 Effect of composition and morphology of active phase species on

catalytic properties 2. Catalysts for deep hydrotreating of oil fractions

2.1 Trimetallic NiCoMoS catalysts with enhanced HDS & HYD activities 2. NiW/Al2O3 catalysts prepared with heteropolycompounds

3. Catalysts for selective hydrodesulfurization of FCC gasolines 3.1 Trimetallic KCoMoS catalysts with improved HDS/HYDO selectivity

4. Catalysts for co-hydrotreating of diesel and vegetable oil 4.1 Carbon-covered supports for sulfide catalysts

Page 57: Pavel Nikulshin - topsoe.com · Pavel Nikulshin Modern approaches to designing highly effective hydrotreating catalysts . PhD, Senior Researcher . Samara State Technical University

Publication evolution by Scopus database

0

50

100

150

200

2010 2025 2050 Fuels from oil Bio-fuels

4,0 mln.

L/year

EJ/year

Consumption of energy by transports (Shell)

Bio-oil

Amount

Oil refining industry

+Н2

Wood biomass

Triglycerides of fatty acids

Bio-diesel

Re-esterification СН3ОН

Green diesel

Co-processing of bio- and oil raw materials

Pyrolysis

36

New fuels

Production of biofuels

Page 58: Pavel Nikulshin - topsoe.com · Pavel Nikulshin Modern approaches to designing highly effective hydrotreating catalysts . PhD, Senior Researcher . Samara State Technical University

Guaiacol HDO

Catalytic properties: guaiacol HDO

XMo6/Al2O3

OHOMe

DME

CH3+or CH4

OHOH OH

HYD

OH

DDO

OHOH OH OH

HYD+

Conditions: Bench scale flow reactor Feedstock: guaiacol (3 wt.%), DMDS (0.6 wt.% S),

toluene (solvent) t = 250 0C; P = 3.0 MPa; LHSV = 50 h-1; H2/feedstock = 500 NL/L; mcat = 0.2 g

0.0

2.0

4.0

6.0

8.0

10.0

12.0

Cr Mn Fe Co Ni Cu Zn Ga

kHDO × 103, mol/(g·h)

%1001 InitHDO

StatHDO

HDO ×

−=

xxDea

)1ln(HDO HDOxWFk −−=

0

10

20

30

40

50

60

Cr Mn Fe Co Ni Cu Zn Ga

Dea, %

TOS = 15 h

Activity

Deactivation

37 Anderson type XMo6HPA

Page 59: Pavel Nikulshin - topsoe.com · Pavel Nikulshin Modern approaches to designing highly effective hydrotreating catalysts . PhD, Senior Researcher . Samara State Technical University

Support Content Textural properties

carbon, % wt.

acid sites (μmol NH3/g)

SBET, (m2/g)

Vp (cm3/g)

Rav (Å)

Al2O3 - 200 208 0.62 48 Al2O3-ZSM-5 - 233 240 0.67 48 Al2O3-BETA - 308 263 0.66 48 C6/Al2O3 5.6 142 184 0.49 48 Sibunit (C) 99.4 10 233 0.41 19

Ammonia TPD profiles for modified supports

38 Effect of support acidity of CoMo catalysts on their activity in guaiacol HDO

0

20

40

60

80

100

0 50 100 150 200 250 300 350Acidity,

μmol NH3/g

Dd, %

DdGua

DdHDO

C C6/Al2O3

Al2O3

Al2O3-ZSM-5

Al2O3-BETA

0 10 20 30 40 50 60 70 80

0 2 4 6 8 10

HD

O c

onve

rsio

n (%

)

Time-on-stream (h)

C Al 2 O 3 - ZSM - 5 Al 2 O 3 - BETA Al 2 O 3 C 6 /Al 2 O 3

CoMo catalysts supported on alumina modified carriers were prepared

Catalysts were tested in guaiacol HDO reaction

P. Nikulshin et al. Catal Ind 6 (2014) 338

Co(CA)-PMo12HPA catalysts Deactivation vs support acidity

Page 60: Pavel Nikulshin - topsoe.com · Pavel Nikulshin Modern approaches to designing highly effective hydrotreating catalysts . PhD, Senior Researcher . Samara State Technical University

Selectivity С18 /С

17

Dea

ctiv

atio

n de

gree

(%)

0.0

0.3

0.6

0.9

1.2

1.5

1.8

0.0

5.0

10.0

15.0

20.0

25.0

30.0

35.0

0 1.0 5.0 Carbon content in C/Al2О3 (% wt.)

30

40

50

60

70

80

90

100

0 1.0 5.0

280 0C 300 0C 320 0C

xHDO (%)

Carbon content in C/Al2О3 (% wt.)

Activity of Co-PMo/С/Al2O3 catalysts in oleic acid HDO 39

P. Nikulshin et al. Catal Today (2015)

Al2O3

Co-PMo/Сx/Al2O3 catalyst

+H2

+ H2S+ H2

– H2S

+H2

– H2O

+H2

+H2

+H2

+H2

+H2

+H2

+H2

HDO pathway

DEC pathway

– CO

– CO

– H2O

+H2

– H2O

C17H35

O

OH

C17H32

C17H34 CH2

C17H33

O

OH

C17H35

O

H

– H2O

+ H2S

C17H36

C17H34

– CO– H2O

C18H38

C17H35 CH2SH

C17H35 CH2OH

C17H33 CH2OH

– H2O

C17H33

O

H

– H2O

Oleic acid

+H2 – H2S

Heptadecene

Heptadecane

Stearic acid

Heptadecyne

OctadecaneOctadecene

Octadecenol

Octadecanol

Octadecanal Octadecanthiol

Octadecenal

Page 61: Pavel Nikulshin - topsoe.com · Pavel Nikulshin Modern approaches to designing highly effective hydrotreating catalysts . PhD, Senior Researcher . Samara State Technical University

РПС

РПС

ВОДО

РОД

АЗОТ

ВЗ(3)

ВЗ(6)

ВЗ(8)ВЗ(7)

ВЗ(9)

ВЗ(2)

ВЗ(5)

ВЗ(1)

ВЗ(4)

ВP(2)

КМ1(0-100)

М4(0-100) М2

(0-10)

М (0-10)

1ВЗ(12)

РРГ1(0-30 nl/h)

РРГ2(0-30 nl/h)

Ф

Ф

PV300SV300

PV300SV300

ALARM

ОК

TT

РДС

ВР(1)

Сброс

СНД

СВД

Х

Р

РТ

T

ИТ

EВЗ(10)

ВЗ(11)НЖ

М3 (0-160)

Ф

Сырье

Обезвоздушивание

Ф

FLO W RA TE 50 ML/MINFLO W RATE 50 ML/MIN

FL OW RATE 50 ML/ MINFL OW RATE 50 ML /MIN

БПИ

ОК

ОК

М5 (0-16)

ВИУ

H2S/

H2

РПСИРГ( )up to 5 nl/h

ИРГ(Н2 30 )up to nl/h

ИРГ( )up to nl/h10

ВТР

ВТР

(0,6-300,0 )g/h

БОГ

AIR

СДГ

ПК

Co-hydrotreating o SRGO with sunflower oil (SO) in bench-scale flow reactor

Conditions: t = 280 - 380 0C; P = 4.0 MPa; LHSV = 1.0 – 4.0 h-1; Н2/feed = 500 nL/L; Vcat = 15 сm3

Item SRGO (100 wt.)

SRGO (85 % wt.) + SO (15 % wt.)

Cetane number, p. 49 50 Total sulfur content, ppm 9209 8031 Density at 20 0С, kg/m3 0.837 0.849 Distillation: - IBP - 10% at temperature - 50% at temperature - 90% at temperature - 95% at temperature

186 217 278 344 365

190 217 284 364 372

Flash point, 0С 75 74 Pour point, 0С - 6.5 - 5.5 Iodine number, g I2/100 g 1.5 20.2

Mixture with 5, 10 and 15 % of sunflower oil with SRGO were used

Characteristics of used feedstock

40

)1(

101

HDS nCСk

nS

nS

−⋅−

=−−

τ

Page 62: Pavel Nikulshin - topsoe.com · Pavel Nikulshin Modern approaches to designing highly effective hydrotreating catalysts . PhD, Senior Researcher . Samara State Technical University

Catalyst ΔT for 50 ppm S

(0C) Co-РMo/Al2O3 +19 Ni-РMo/Al2O3 +3 Ni-РMo/C2/Al2O3 -

Necessary temperature increase (ΔT) to produce diesel with S = 50 ppm from

SRGO and SO 15 %

Dependence of S content in the hydrogenated products on time contact

41

Co-PMo12/Al2O3 catalyst

0 100 200 300 400 500 600 700 800

0.00 0.25 0.50 0.75 1.00 1.25

Sulfu

r con

tent

(ppm

)

1/LHSV (h)

SRGO (100%) SRGO (85%) + SO (15%)

0

50

100

150

200

0.0 5.0 10.0 15.0 20.0

Rem

aini

ng S

con

tent

, ppm

Sunflower content in mixture with SRGO (wt. %)

Co - PMo /Al 2 O 3 Ni - PMo /Al 2 O 3 Ni - PMo /C 2 /Al 2 O 3

Hydrogenated products from SRGO and SO

SRGO (85 % wt.) + SO (15 % wt.)

SRGO

Full conversion of triglycerides

600110016002100260031003600

Волновое число, см -1

а

б

в

-С-H st

=С-H st

-СH2 δ

С=О st С-О-С st

-СH3 δ-(СH2)n-

Wavenumber (cm-1)

Co-hydrotreating o SRGO with sunflower oil (SO) in bench-scale flow reactor

Page 63: Pavel Nikulshin - topsoe.com · Pavel Nikulshin Modern approaches to designing highly effective hydrotreating catalysts . PhD, Senior Researcher . Samara State Technical University

Co(Ni)-PMo/Sup catalysts in co-hydrotreating of SRGO with sunflower oil: accelerated deactivation

Catalyst Sulfur content (ppm)

Cetane number

Pour point (˚С)

Deactivation HDS (%)

Coke content (% wt.)

Deactivation HDS (%) SRGO + LCO+LCGO []

Co-РMo/Al2O3 170 55.0 -0.5 318 7.3 15-30 Ni-РMo/Al2O3 70 55.0 -0.5 263 6.1 - Ni-РMo/C2/Al2O3 50 55.0 -0.5 184 5.7 -

Time-on-stream (h)

T = 340 0C, P = 4.0 MPа,

LHSV = 2.0 h-1, HTO = 500 nL/L,

Feedstock: SRGO+SO

T = 340 0C, P = 4.0 MPа,

ОСПС = 2.0 h-1, HTO = 500 nL/L,

Feedstock: SRGO+SO

T = 340 0C, P = 4.0 MPа,

LHSV = 2.0 h-1, HTO = 500 nL/L,

Feedstock: SRGO

R2

R1 Co-РMo/Al2O3

Ni-РMo/Al2O3

Ni-РMo/C2/Al2O3

AD T = 380 0C, P = 1.0 MPа,

ОСПС = 2.0 h-1, HTO = 150 nL/L,

Feedstock: SRGO+SO

0

100

200

300

400

500

600

700

800

900

1000

40 60 80 100 120 140 160 180

Sulfu

r con

tent

(ppm

)

P.A. Nikulshin et al. // Appl. Catal. B 158–159 (2014) 161

42

Page 64: Pavel Nikulshin - topsoe.com · Pavel Nikulshin Modern approaches to designing highly effective hydrotreating catalysts . PhD, Senior Researcher . Samara State Technical University

Instead of conclusions

Hydroprocessing Active phase composition

Active phase morphology Promoter degree of Mo(W)S2 edges

(Co(Ni)/Mo(W))edge Content of active sites

Со(Ni)Mo(W) (% wt.)

Hydrogen activation and

spillover Average stacking

number of Mo(W)S2 Average length

L (nm)

Gasoline hydrotreating

CoMoS NiMoS ≥ 1 2 – 4 0.1 – 0.6 > 0.6 Necessary

FCC gasoline selective hydrotreating

KCoMoS ≥ 1 ≥ 5 0.9 – 1.0 0.6 – 0.9 Unnecessary

Diesel hydrotreating CoMoS, NiMoS,

NiCoMoS ≥ 1.6 2 – 3 0.3 – 0.5 > 1.2 Necessary

VGO hydrotreating NiMoS,

NiCoMoS, NiWS,

NiMoWS ≥ 1.6 3 - 4 0.3 – 0.7 > 1.5 Necessary

Co-hydrotreating of diesel and vegetable oil

NiMoS, NiWS,

NiMoWS ≥ 1.6 2 – 3 0.3 – 0.7 > 1.3 Necessary

43

NL

MoS2

Principals of molecular designing of hydrotreating catalysts

TOFXMS = f(Mor(N, L), (X/M)edge) × f(P, T) × f(Spillover)

Page 65: Pavel Nikulshin - topsoe.com · Pavel Nikulshin Modern approaches to designing highly effective hydrotreating catalysts . PhD, Senior Researcher . Samara State Technical University

PhD students A. Mozhaev (2012) D. Ishutenko (2013) V. Salnikov (2014) P. Minaev (2015)

Al. Pimerzin (2015) A. Varakin (2016)

Acknowledgments

Ministry of Science and Education of Russian Federation

Prof. and Drs. Prof. A. Pimerzin Prof. N. Tomina Dr. A. Layshenko Dr. V. Zvetkov

Samara State Technical University

M.V. Lomonosov Moscow State

University

Dr. K. Maslakov

N.D. Zelinsky Institute of Organic

Chemistry

Prof. V. Kogan Dr. V. Dorokhov

Russian Foundation for Basic Research

Page 66: Pavel Nikulshin - topsoe.com · Pavel Nikulshin Modern approaches to designing highly effective hydrotreating catalysts . PhD, Senior Researcher . Samara State Technical University

Thank you for your attention!