pawel keblinski materials science and engineering mrc115 office hours: tuesday 1-3 phone: (518) 276...

38
Pawel Keblinski Materials Science and Engineering MRC115 Office hours: Tuesday 1-3 phone: (518) 276 6858 email: [email protected] ENGR-1100 Introduction to Engineering Analysis

Post on 21-Dec-2015

220 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Pawel Keblinski Materials Science and Engineering MRC115 Office hours: Tuesday 1-3 phone: (518) 276 6858 email: keblip@rpi.edu ENGR-1100 Introduction to

Pawel Keblinski

Materials Science and Engineering MRC115

Office hours: Tuesday 1-3

phone: (518) 276 6858

email: [email protected]

ENGR-1100 Introduction to Engineering Analysis

Page 2: Pawel Keblinski Materials Science and Engineering MRC115 Office hours: Tuesday 1-3 phone: (518) 276 6858 email: keblip@rpi.edu ENGR-1100 Introduction to

TA: Igor Bolotnov, Mechanical, Aerospace and Nuclear Engineering

JEC5204

Office hours: Tuesday 3-5

phone: (518) 276 812 email:[email protected]

ENGR-1100 Introduction to Engineering Analysis

Page 3: Pawel Keblinski Materials Science and Engineering MRC115 Office hours: Tuesday 1-3 phone: (518) 276 6858 email: keblip@rpi.edu ENGR-1100 Introduction to

SI (Supplemental Instruction)

(Begins Wed. Sept. 8)

Sun. 8pm-10pm - DCC 330

Wed 8pm-10pm - Sage 5510

ENGR-1100 Introduction to Engineering Analysis

Drop-in Tutoring - DCC 345

(Begins Tue. Sept. 7th)

Sundays - 3-5pm

M-Th - 7-9pm

Page 4: Pawel Keblinski Materials Science and Engineering MRC115 Office hours: Tuesday 1-3 phone: (518) 276 6858 email: keblip@rpi.edu ENGR-1100 Introduction to

Lecture 3

ENGR-1100 Introduction to Engineering Analysis

Page 5: Pawel Keblinski Materials Science and Engineering MRC115 Office hours: Tuesday 1-3 phone: (518) 276 6858 email: keblip@rpi.edu ENGR-1100 Introduction to

Lecture Outline

• Rectangular components of a force

• Resultant force by rectangular components

Page 6: Pawel Keblinski Materials Science and Engineering MRC115 Office hours: Tuesday 1-3 phone: (518) 276 6858 email: keblip@rpi.edu ENGR-1100 Introduction to

Rectangular Components of a Force

A force F can be resolved into a rectangular component Fx along the x-axis and a rectangular component Fy along the y-axis . The forces Fx and Fy are the vector components of the force F.

FFy

Fx

x

y

Page 7: Pawel Keblinski Materials Science and Engineering MRC115 Office hours: Tuesday 1-3 phone: (518) 276 6858 email: keblip@rpi.edu ENGR-1100 Introduction to

The force F and its two dimensional vector components Fx

and Fy can be written in Cartesian vector form by using unit

vectors i and j.

F = Fx + Fy= Fx i + Fy j

F=| F |

Fx = F cos F= Fx2+

Fy2

Fy = F sin tan-

1(Fy/Fx)

FFy

Fx

x

y

Page 8: Pawel Keblinski Materials Science and Engineering MRC115 Office hours: Tuesday 1-3 phone: (518) 276 6858 email: keblip@rpi.edu ENGR-1100 Introduction to

Example

(a) Determine the x and y scalar component of the force shown in figure 2-47.

(b) Express the force in Cartesian vector form.

F=275 lb

x

y

Figure 2-47

570

Page 9: Pawel Keblinski Materials Science and Engineering MRC115 Office hours: Tuesday 1-3 phone: (518) 276 6858 email: keblip@rpi.edu ENGR-1100 Introduction to

Solution

x

F=275 lby

570

Fx=cos(570) *275=149.8 lb

Fy=sin(570) *275=230.6lb

Fy

Fx

F= Fxi+ Fyj=149.8 i + 230.6 j

Page 10: Pawel Keblinski Materials Science and Engineering MRC115 Office hours: Tuesday 1-3 phone: (518) 276 6858 email: keblip@rpi.edu ENGR-1100 Introduction to

Class Assignment: Exercise set 2-49please submit to TA at the end of the lecture

F=475 lb

x

y

Figure 2-49

220

(a) Determine the x and y scalar components of the force shown in figure 2-49.

(b) Express the force in Cartesian vector form.

Solution

a) Fx=-440lb

Fy=-177.9lb

b) F=-440 i - 177.9 j lb

Page 11: Pawel Keblinski Materials Science and Engineering MRC115 Office hours: Tuesday 1-3 phone: (518) 276 6858 email: keblip@rpi.edu ENGR-1100 Introduction to

Three Dimension Rectangular Components of a Force

x

y

z

F

Fx=Fxi

Fz=Fzk

Fy=Fyjx y

z

F = = Fx i + Fy j + Fz k

= F cos x i + F cos y j + F cos z k = FeF

Where eF= cos x i + cos y j + cos z k is a unit

vector along the line of action of the force.

Page 12: Pawel Keblinski Materials Science and Engineering MRC115 Office hours: Tuesday 1-3 phone: (518) 276 6858 email: keblip@rpi.edu ENGR-1100 Introduction to

The Scalar Components of a Force

x

y

z

F

Fx

Fyx y

z

Fz

Fx = F cos x; Fy = F cos y; Fz = F cos z;

xcos-1(Fx/F); ycos-1(Fy/F); zcos-1(Fz/F);

F= Fx2 + Fy

2 + Fz2

cos2 x+cos2 y+cos2 z=10< <1800

Page 13: Pawel Keblinski Materials Science and Engineering MRC115 Office hours: Tuesday 1-3 phone: (518) 276 6858 email: keblip@rpi.edu ENGR-1100 Introduction to

Azimuth Angle

x

y

z

F

- azimuth angle- elevation angle

x

y

z

Fxy

Fz

Fxy

Fxy = F cos

Fz

Fz = F sin ;

Fx

Fx= Fxy cos Fcos cos

Fy

Fy= Fxy sin Fcos sin

Page 14: Pawel Keblinski Materials Science and Engineering MRC115 Office hours: Tuesday 1-3 phone: (518) 276 6858 email: keblip@rpi.edu ENGR-1100 Introduction to

Finding the direction of a force by two points along its line of action

x

y

z

F

xB

xA

yB

yA

zBzA

cosx= xB-xA

(xB-xA)2+ (yB-yA)2+ (zB-zA)2

cosy= yB-yA

(xB-xA)2+ (yB-yA)2+ (zB-zA)2

cosz= zB-zA

(xB-xA)2+ (yB-yA)2+ (zB-zA)2

xA, yA, zAxB, yB, zB

Page 15: Pawel Keblinski Materials Science and Engineering MRC115 Office hours: Tuesday 1-3 phone: (518) 276 6858 email: keblip@rpi.edu ENGR-1100 Introduction to

Example

For the force shown in the figurea) Determine the x, y, and z scalar components of the force.b) Express the force in Cartesian form.

x

y

zF=745 N

Page 16: Pawel Keblinski Materials Science and Engineering MRC115 Office hours: Tuesday 1-3 phone: (518) 276 6858 email: keblip@rpi.edu ENGR-1100 Introduction to

Solution

x

y

zF=745 N

Fz

Fxy

Fz = F sin = 745 sin(600)=411.4 N

Fxy = F cos = 745 cos(600)=237.5 N

Page 17: Pawel Keblinski Materials Science and Engineering MRC115 Office hours: Tuesday 1-3 phone: (518) 276 6858 email: keblip@rpi.edu ENGR-1100 Introduction to

Fx

Or if we follow the obtained formula:Fx= Fxy cos 237.5*cos(2330)=-142.9 NFy= Fxy sin 237.5*sin(2330)=-189.7 N

x

y

z

Fz

Fxy=237.5 N

Fx= Fxy cos 237.5*sin(370)=-142.9 N

Fy= Fxy sin 237.5*cos(370)=-189.7 N

Fy

F=-142.9 i – 189.7 j + 411.4 kb)

Page 18: Pawel Keblinski Materials Science and Engineering MRC115 Office hours: Tuesday 1-3 phone: (518) 276 6858 email: keblip@rpi.edu ENGR-1100 Introduction to

Class Assignment: Exercise set 2-55please submit to TA at the end of the lecture

For the force shown in Fig. P2-58a) Determine the x,y, and z scalar components of the force.b) Express the force in Cartesian form.

x

y

z

F=1000 lb

Solution

a) Fx=-583 lb

Fy=694lb

Fz=423 lb

b) F=-583 i +694 j + 423 k lb

Page 19: Pawel Keblinski Materials Science and Engineering MRC115 Office hours: Tuesday 1-3 phone: (518) 276 6858 email: keblip@rpi.edu ENGR-1100 Introduction to

Resultant Force by Rectangular Components

A = Ax i + Ay j + Az k

B = Bx i + By j + Bz k

The sum of the two forces are:

R=A+B=(Ax i + Ay j + Az k) + (Bx i + By j + Bz

k)

Rx= Ax +Bx ); Ry= Ay +By ); Rz= Az +Bz )

z

x

y

A

B

Ax +Bx )i + Ay +By ) j + Az +Bz) k

Page 20: Pawel Keblinski Materials Science and Engineering MRC115 Office hours: Tuesday 1-3 phone: (518) 276 6858 email: keblip@rpi.edu ENGR-1100 Introduction to

The magnitude: R= Rx2 + Ry

2 + Rz2

The direction:

xcos-1(Rx/R); ycos-1(Ry/R); zcos-1(Rz/R);

Rx= Ax +Bx ); Ry= Ay +By ); Rz= Az +Bz )

Page 21: Pawel Keblinski Materials Science and Engineering MRC115 Office hours: Tuesday 1-3 phone: (518) 276 6858 email: keblip@rpi.edu ENGR-1100 Introduction to

ExampleDetermine the magnitude and direction of the resultant force of the following three forces.

Solution:F1=350 i+ 0 j + 0 k

F2=500*cos(2100) i +500*sin(2100)j+0 k

F3= 600*cos(1200) i + 600*sin(1200)j+0 k

F1=350 i

F2= -433 i -250 j

F3= -300 i + 519.6 j

R=F1+F2+F3=-383 i + 269.6 j

Page 22: Pawel Keblinski Materials Science and Engineering MRC115 Office hours: Tuesday 1-3 phone: (518) 276 6858 email: keblip@rpi.edu ENGR-1100 Introduction to

R=F1+F2+F3=-383 i + 269.6 j

The force magnitude:

xcos-1(Rx/R)

R= Fx2 + Fy

2 + Fz2 =

R= 468.4 N

xcos-1(Rx/R)= cos-1(-383/468.4)=144.80

x=144.80

R

3832 + 269.62+02

The direction:

x

Page 23: Pawel Keblinski Materials Science and Engineering MRC115 Office hours: Tuesday 1-3 phone: (518) 276 6858 email: keblip@rpi.edu ENGR-1100 Introduction to

Class Assignment: Exercise set 2-71please submit to TA at the end of the lecture

Determine the magnitude R of the resultant of the forces and the angle x between the line of action of the resultant and the x-axis, using the rectangular component method

x

F1=600 lb

y

450 F2=700 lb

F3=800 lb

150

300

Solution:

R=1696 lb 10.220

Page 24: Pawel Keblinski Materials Science and Engineering MRC115 Office hours: Tuesday 1-3 phone: (518) 276 6858 email: keblip@rpi.edu ENGR-1100 Introduction to

The scalar (or dot) product

A•B=B•A=AB cos()

0< <1800

Finding the rectangular scalar component of vector A along the x-axis

Ax=A•i=A cos(x)

The scalar product of two intersecting vectors is defined as the product of the magnitudes of the vectors and the cosine of the angle between them

Along any direction

An=A•en=A cos(n)

A

n

y

en

et

At=A-An

Page 25: Pawel Keblinski Materials Science and Engineering MRC115 Office hours: Tuesday 1-3 phone: (518) 276 6858 email: keblip@rpi.edu ENGR-1100 Introduction to

The scalar product of the two vectors written in Cartesian form are:

A•B = (Ax i + Ay j + Az k) • (Bx i + By j + Bz k)

Ax Bx (i•i) + Ax By (i•j) + Ax Bz (i•k)+

Ay Bx (j•i) + Ay By (j•j) + Ay Bz (j•k)+

Az Bx (k•i) + Az By (k•j) + Az Bz (k•k)

Therefore: A•B = Ax Bx + Ay By + Az Bz

Since i, j, k are orthogonal:

i•j= j•k= k•j=(1)*(1)*cos(900)=0

i•i= j•j= k•k=(1)*(1)*cos(00)=1

Page 26: Pawel Keblinski Materials Science and Engineering MRC115 Office hours: Tuesday 1-3 phone: (518) 276 6858 email: keblip@rpi.edu ENGR-1100 Introduction to

Example

Determine the angle between the following vectors:

A=3i +0j +4k and B=2i -2j +5k

A•B=AB cos() cos()= A•B/ AB

A•B=3*2+0*(-2)+4*5=26

cos()= 26/28.7 = 25.10

Page 27: Pawel Keblinski Materials Science and Engineering MRC115 Office hours: Tuesday 1-3 phone: (518) 276 6858 email: keblip@rpi.edu ENGR-1100 Introduction to

Orthogonal (perpendicular) vectors

(v1 ,v2 ,v3)

x

z

v

(w1 ,w2 ,w3)

w

w and v are orthogonal if and only if w·v=0

y

Page 28: Pawel Keblinski Materials Science and Engineering MRC115 Office hours: Tuesday 1-3 phone: (518) 276 6858 email: keblip@rpi.edu ENGR-1100 Introduction to

Properties of the dot product

If u , v, and w are vectors in 2- or 3- space and k is a scalar, then:

a) u·v= v·u

b) u·(v+w)= u ·v + u·w

c) k(u·v)= (ku) ·v = u·(kv)

d) v·v> 0 if v=0, and v·v= 0 if v=0

Page 29: Pawel Keblinski Materials Science and Engineering MRC115 Office hours: Tuesday 1-3 phone: (518) 276 6858 email: keblip@rpi.edu ENGR-1100 Introduction to

x

y

z

F1 =300 lb

1.5 ft6 ft2 ft

4.5 ft

F2 =240 lb

Determine:

a) The magnitude and direction (x, y, z)

of the resultant force.

b) The magnitude of the rectangular

component of the force F1 along

the line of action of force F2.

c) The angle between force F1 and F2.

Using dot product for a force system

Page 30: Pawel Keblinski Materials Science and Engineering MRC115 Office hours: Tuesday 1-3 phone: (518) 276 6858 email: keblip@rpi.edu ENGR-1100 Introduction to

Solution

• F1= F1 e1

e1 = 1.5/(1.52+62+4.52)1/2 i + 6/(1.52+62+4.52)1/2 j+

4.5/(1.52+62+4.52)1/2 k

e1 = 0.196 i + 0.784 j+ 0.588 k

F1 = 58.8 i + 235.3 j+ 176.5 k lb

x

y

z

F1 =300 lb

1.5 ft6 ft2 ft

4.5 ft

F2 =240 lb

Page 31: Pawel Keblinski Materials Science and Engineering MRC115 Office hours: Tuesday 1-3 phone: (518) 276 6858 email: keblip@rpi.edu ENGR-1100 Introduction to

x

y

z

F1 =300 lb

1.5 ft6 ft2 ft

4.5 ft

F2 =240 lb

L1

L1=(22+1.52)1/2=2.5 ftL2

L2=2.5 tan(600)=4.33 ft

• F2= F2 e2

e2 = 1.5/(1.52+(-2)2+4.332)1/2 i -2/(1.52+(-2)2+4.332)1/2 j+

4.33 /(1.52+(-2)2+4.332)1/2 k

e2 = 0.3 i - 0.4 j+ 0.866 k

F2= 72 i - 96 j+ 207.8 k lb

Page 32: Pawel Keblinski Materials Science and Engineering MRC115 Office hours: Tuesday 1-3 phone: (518) 276 6858 email: keblip@rpi.edu ENGR-1100 Introduction to

R= F1 + F2 = 130.8 i + 139.35 j+ 384.3 k lb

R= Rx2 + Ry

2 + Rz2 = 130.82 + 139.352+384.32 = 429 lb

xcos-1(Rx/R); ycos-1(Ry/R); zcos-1(Rz/R);

R= 429 lb

xcos-1(130.8/429)

ycos-1(139.35/429)

zcos-1(384.3/429)

x72.20

y71.10

z26.40

Page 33: Pawel Keblinski Materials Science and Engineering MRC115 Office hours: Tuesday 1-3 phone: (518) 276 6858 email: keblip@rpi.edu ENGR-1100 Introduction to

b) The magnitude of the rectangular component of the force F1 along the line of action of force F2.

F1•e2=(58.8 i + 235.3 j+ 176.5 k)•(0.3 i - 0.4 j+ 0.866 k)=

58.8*0.3+235.3*(-0.4)+176.5*0.866=76 lb

Page 34: Pawel Keblinski Materials Science and Engineering MRC115 Office hours: Tuesday 1-3 phone: (518) 276 6858 email: keblip@rpi.edu ENGR-1100 Introduction to

c) The angle between force F1 and F2.

F1•F2= F1 F2 cos() cos()= F1•F2 / F1 F2

F1•F2= 58.8 i + 235.3 j+ 176.5 k)•(72 i - 96 j+ 207.8 k )=

58.8*72+235.3*(-96)+176.5*207.8=18321 lb

F1 F2=72000

cos()=18321/72000

Page 35: Pawel Keblinski Materials Science and Engineering MRC115 Office hours: Tuesday 1-3 phone: (518) 276 6858 email: keblip@rpi.edu ENGR-1100 Introduction to

Class assignment: Exercise set 2-63

x y

z

3 ft 3 ft

4 ft

3 ft

6 ftF2=700 lb

F1=900 lb

Two forces are applied to an eye bolt as shown in Fig. P2-63.

a) Determine the x,y, and z scalar components of vector F1.

b) Express vector F1 in Cartesian vector form.

c) Determine the angle between vectors F1 and F2.

Fig. P2-63

Page 36: Pawel Keblinski Materials Science and Engineering MRC115 Office hours: Tuesday 1-3 phone: (518) 276 6858 email: keblip@rpi.edu ENGR-1100 Introduction to

Solution

x y

z

3 ft 3 ft

4 ft

3 ft

6 ftF2=700 lb

F1=900 lb

d1 = (-6)2 +32 +72

F1x = F1 cos(x) =900 *{(–6)/9.7}=-557 lb

9.7 ft

d1 = x12+ y1

2+ z12

F1y = F1 cos(y) =900 *{3/9.7}=278.5 lb

F1z = F1 cos(z) =900 *{7/9.7}=649.8 lb

b) Express vector F1 in Cartesian vector form.

F1 = -557 i + 278.5j+ 649.8 k lb

Page 37: Pawel Keblinski Materials Science and Engineering MRC115 Office hours: Tuesday 1-3 phone: (518) 276 6858 email: keblip@rpi.edu ENGR-1100 Introduction to

c) Determine the angle between vectors F1 and F2.

x y

z

3 ft 3 ft

4 ft

3 ft

6 ftF2=700 lb

F1=900 lb

F1 = -557 i + 278.5j+ 649.8 k lb

d2 = (-6)2 +62 +32 9 ft

e2 =

cos()= F1•e2 / F1 e2

F1•e2 = (-557)*(-2/3)+278.5*2/3+649.8*0.33=771.4lb

cos()=771.4/900 =310

d2 = x22+ y2

2+ z22

+ 6/9j + 3/9 k = -0.67 i + 0.67 j + 0.33 k-6/9 i

Page 38: Pawel Keblinski Materials Science and Engineering MRC115 Office hours: Tuesday 1-3 phone: (518) 276 6858 email: keblip@rpi.edu ENGR-1100 Introduction to

Class Assignment: Exercise set 2-78please submit to TA at the end of the lecture

Determine the magnitude R of the resultant of the forces and the angles x, y, z between the line of action of the resultant and the x-, y-, and z-coordinate axes, using the rectangular component method.

Solution:

R=28.6 kN

x= 82.20

y= 69.60

z= 22.00