pc817 sharp sharp electrionic components

4

Click here to load reader

Upload: duypham

Post on 01-Jun-2018

219 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: PC817 SHARP Sharp Electrionic Components

8/9/2019 PC817 SHARP Sharp Electrionic Components

http://slidepdf.com/reader/full/pc817-sharp-sharp-electrionic-components 1/4

PC817 Series

PC817 SeriesHigh Density Mounting TypePhotocoupler

Features

1. Current transfer ratio

2. High isolation voltage between input and

3. Compact dual-in-line package

Applications

1. Computer terminals2. System appliances, measuring instruments

3. Registers, copiers, automatic vending

4. Electric home appliances, such as fan

output ( Viso

machines

heaters, etc.

Outline Dimensions ( Unit : mm)

data books, etc. Contact SHARP in order to obtain the latest version of the device specification sheets before using any SHARP's device. ”

“ In the absence of confirmation by device specification sheets, SHARP takes no responsibility for any defects that occur in equipment using any of SHARP's devices, shown in catalogs,

4. Recognized by UL, file No. E64380

θθ

PC847

diagramInternal connection

P C 8 1 7

A n o d e m a r k

P C 8 1 7

P C 8 1 7

P C 8 1 7

P C 8 1

7

P C 8 1

7

A

n o d e m a r k

P C 8 1

7

Internal connectiondiagram

PC837

PC827

P C 8 1 7

P C 8 1 7

P C 8 1 7

PC817

1 2

4 3

1 2

34

θθ

1 Anode

2 Cathode

3 Emitter

4 Collector

θ = 0 to 13 ˚

1 2 3 4

5678

1 2 3 4

5678

1 3 Anode

2 4 Cathode

5 7 Emitter

6 8 Collector

Anode

mark

θ θ

θ= 0 to 13 ˚

1 2 3 4 5 6 7 8

9

1

9

1 3 5 7 Anode

2 4 6 8 Cathode

θ θ

θ = 0 to 13 ˚

1 2 3 4 5 6

789

1 2 3 4 5 6

789

1 3 5 Anode

2 4 6 Cathode

7 9 Emitter

8 Collector

θ = 0 to 13 ˚9 Emitter

Collector

Internal connection diagram Internal connection diagram

PC817 : 1-channel type

PC827 : 2-channel type

PC837 : 3-channel type

PC847 : 4-channel type

5. Signal transmission between circuits of

different potentials and impedances

Anode mark

TUV ( VDE0884 ) approved type is also available as an option.

( CTR: MIN. 50% at I F = 5mA ,VCE=5V)

CTRrank mark

Lead forming type ( I type ) and taping reel type (P type ) are also available. (PC817I/PC817P )

: 5 000V rms )

4.58 ± 0.5

3 . 5

± 0 . 5

3 . 0

± 0 . 5

0.5 ± 0.1

7.62 ± 0.3

0.26 ± 0.1

1.2 ± 0.30.9 ± 0.2

6 . 5

± 0 . 5

2.54 ± 0.25

2 . 7

± 0 . 5

0 . 5

T Y P .

2.54 ± 0.25

6 . 5

± 0 . 5

0.9 ± 0.2

1.2 ± 0.3

9.66 ± 0.5

3 . 5

± 0 . 5

3 . 0

± 0 . 5

0 . 5

T Y P .

0.5 ± 0.1

2 . 7

± 0 . 5

0.26 ± 0.1

7.62

± 0.3

2.54 ± 0.25

6 . 5

±

0 . 5

0.9 ± 0.2

1.2 ± 0.3

19.82 ± 0.5

3 . 5

± 0 . 5

3 . 0

± 0 . 5

0 . 5

T Y P .

0.5 ± 0.1

2 . 7

± 0 . 5

0.26 ± 0.1

7.62 ± 0.3

2.54 ± 0.25

6 . 5

± 0

. 5

0.9 ± 0.2

1.2 ± 0.3

14.74 ± 0.5

0 . 5

T Y P .

3 . 5

± 0 . 5

3 . 0

± 0 . 5

0.5 ± 0.1

2 . 7

± 0 . 2

0.26 ± 0.1

7.62 ± 0.3

..

1111

1212

11

12

111213141516111213141516

11

12

13

14

15

16

1010

2 3 4 5 6 7 8

10

1010

10

Page 2: PC817 SHARP Sharp Electrionic Components

8/9/2019 PC817 SHARP Sharp Electrionic Components

http://slidepdf.com/reader/full/pc817-sharp-sharp-electrionic-components 2/4

*1 Pulse width<=100µs, Duty ratio : 0.001

*3 For 10 seconds

Parameter Symbol Rating Unit

Input

Forward current IF 50 mA*1Peak forward current I FM 1 A

Reverse voltage VR 6 V

Power dissipation P 70 mW

Output

Collector-emitter voltage V CEO 35 V

Emitter-collector voltage V ECO 6 V

Collector current IC 50 mA

Collector power dissipation P C 150 mW

Total power dissipation P tot 200 mW*2Isolation voltage V iso

Operating temperature T opr - 30 to + 100 ˚C

Storage temperature T stg - 55 to + 125 ˚C*3Soldering temperature T sol 260 ˚C

*4 Classification table of current transfer ratio is shown below.

PC817 Series

Absolute Maximum Ratings

Electro-optical Characteristics

Model No. CTR ( % )PC817A

PC817B

PC817C

PC817D

Rank mark A

B

C

D

A or B

B or C

C or D

A, B or C

B, C or D

A, B, C or D

80 to 160

130 to 260

200 to 400

300 to 600

80 to 260

130 to 400

200 to 600

80 to 400

130 to 600

80 to 600

50 to 600A, B, C, D or No mark 0- 25

30

0 25 50 75 100 125

40

50

60

20

10

Fig. 1 Forward Current vs. Ambient Temperature

Ambient temperature Ta (˚C)

( Ta= 25˚C)

( Ta= 25˚C)

F o r w a r d c u r r e n t I F

( m A )

5 000

*2 40 to 60% RH, AC for 1 minute

Parameter Symbol Conditions MIN. TYP. MAX. Unit

Input

Forward voltage V F IF = 20mA - 1.2 1.4 V

Peak forward voltage V FM IFM = 0.5A - - 3.0 V

Reverse current IR VR = 4V - - 10 µA

Terminal capacitance Ct V = 0, f = 1kHz - 30 250 pF

Output Collector dark current ICEO VCE = 20V - - 10 - 7 A

Transfer

charac-

teristics

*4Current transfer ratio CTR IF = 5mA, V CE = 5V 50 - 600 %

Collector-emitter saturation voltage V CE(sat) IF = 20mA, I C = 1mA - 0.1 0.2 V

Isolation resistance R ISO DC500V, 40 to 60% RH 5 x 1010 1011 - Ω

Floating capacitance Cf V = 0, f = 1MHz - 0.6 1.0 pF

Cut-off frequency f c VCE = 5V, I C = 2mA, R L = 100Ω, - 3 d B - 80 - kHz

Response timeRise time t r

VCE = 2V, I C = 2mA, R L = 100Ω- 4 18 µ s

- 3 18 µ sFall time t f

V rms

PC87AB

PC87BC

PC87CD

PC87AC

PC87BD

PC87AD

PC87

: 1 or 2 or 3 or 4

Page 3: PC817 SHARP Sharp Electrionic Components

8/9/2019 PC817 SHARP Sharp Electrionic Components

http://slidepdf.com/reader/full/pc817-sharp-sharp-electrionic-components 3/4

Duty ratio

5

5

Pulse width <=100µ s

10

20

100

50

200

500

210 - 3 10 - 25 2 10 -15 2 5

Fig. 3 Peak Forward Current vs. Duty Ratio

0

1

C u r r e n t t r a n s f e r r a t i o C T R ( % )

200

2 5 10 20 50

160

120

80

40

20

60

100

140

180

100

0

50

150

0 25 50 75 100

R e l a t i v e c u r r e n t t r a n s f e r r a t i o ( % )

Fig. 7 Relative Current Transfer Ratio vs. Ambient Temperature

0

0

5

1

10

15

20

25

30

2 3 4 5 6 7 8 9

20mA

10mA

5mA

Fig. 6 Collector Current vs. Collector-emitter Voltage

P e a k f o r w a r d c u r r e n t I F M ( m

A )

Fig. 4 Current Transfer Ratio vs. Forward Current

Forward current I F ( mA )

C o l l e c t o r c u r r e n t I C ( m A )

Collector-emitter voltage V CE (V) Ambient temperature T a (˚C)

00 125

100

200

50

150

25 50 75 100

Ambient Temperature

C

( m W )

- 30

Fig. 2 Collector Power Dissipation vs.

PC817 Series

a (˚C

)

C o l l e c t o r p o w e r d i s s i p a t i o n P

Ambient temperature T

1

VCE = 5V

IF = 30mA

PC(MAX.)

IF = 5mA

VCE = 5V

Fig. 5 Forward Current vs. Forward Voltage

10 000

5 000

2 000

1 000

Ta = 25˚C

Ta = 25˚C50˚C 25˚C

0˚C

0

2

0.5 1.0 1.5 2.0 2.5 3.0 3.5

5

10

20

50

100

200

500

1

- 25˚C

Ta = 75˚C

F o r w a r d

c u r r e n t I F

( m A )

Forward voltage V F ( V)

- 30

Ta= 25 C

Page 4: PC817 SHARP Sharp Electrionic Components

8/9/2019 PC817 SHARP Sharp Electrionic Components

http://slidepdf.com/reader/full/pc817-sharp-sharp-electrionic-components 4/4

0

0.02

- 25 0 25 50 75 100

0.04

0.06

0.08

0.10

0.12

0.14

0.16

Fig. 8 Collector-emitter Saturation Voltage vs. Ambient Temperature

250 50 75 100

C o l l e c t o r d a r k c u r r e n t I C E O

( A )

Fig.11 Frequency Response

Frequency f (kHz )

-20

0

0.5 1 2 5

-10

200100502010 500

1k Ω

100Ω

Fig. 9 Collector Dark Current vs.

C E ( s a t ) ( V )

Ambient Temperature

V o l t a

g e g a i n A v

( d B )

0.2

0.1

0.5

R e s

p o n s e t i m e ( µ s )

12

0.1 1 10

5

10

20

50

100

200

500

L (k Ω )

C o l l e c t o r - e m i t t e r s a t u r a t i o n v o l t a g e V C E ( s a t )

( V )

Forward current I F ( mA )

0

0

1

2

3

4

5

5 10

6

15

7mA

Fig.12 Collector-emitter Saturation Voltage vs. Forward Current

PC817 Series

Test Circuit for Response Time

VCC

ttr

ts

90%

10%

td

Output

Input

RLInput OutputRD

VCC

RL OutputRD

Test Circuit for Frepuency Response

C o l l e c t o r - e m i t t e r s a t u r a t i o n v o l t a g e

V

Ambient temperature T a (˚C)

f

IF = 20mA

IC = 1mA

10 - 11

10 - 10

10 - 9

10 - 8

10 - 7

10 - 6

10 - 5

- 25

VCE = 20V

Ambient temperature T a (˚C)

t r

t f

t s

t d

VCE = 2V

IC = 2mA

Ta= 25 C

RL = 10k Ω

VCE = 2V

1mA

3mA

5mA

Ta = 25 C

IC = 2mA

IC = 0.5mA

Ta = 25˚C

Please refer to the chapter “Precautions for Use ”

Fig.10 Response Time vs. Load Resistance

Load resistance R